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Abstract

The red giant branch bump is a phenomenon that consists of a decrease in
luminosity for a given time during the red giant branch phase and has been

known for some time. Nevertheless, discrepancies between models and
observations show that it is not yet fully understood. It is therefore

interesting to try to understand the influence of various parameters that are
part of the structure of the star on the bump. We have used the stellar
evolution code called Clés to study the influence of the total mass of the

star, its overshooting parameter, its undershooting parameter, its
metallicity, and the microscopic and turbulent diffusion. To study the

effects of changing these parameters, the attention was given to the track of
the star in the Hertzsprung-Russell diagram during its evolution and on the
hydrogen abundance profile of the star, the discontinuity in the latter being
the key element for the appearance of the bump. Effects can be seen on the
bump for each of the parameters studied, which can be summarized in two

categories: a change in the luminosity at which the bump occurs and a
change in the size of the bump, thus the importance of the observed

decrease in luminosity.
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1 Introduction

The red giant branch bump is a phenomenon known theoretically since the
end of the sixties (Thomas 1967; Iben 1968) and then confirmed by obser-
vations during the eighties (King et al, 1985). Since then, a large number of
much more recent works have been devoted to the red giant branch bump
(Cassisi et al., 2001; Bjork and Chaboyer, 2005; Cassisi et al., 2011; Joyce
and Chaboyer, 2015; Lagioia et al, 2015; Bossini et al., 2015; Khan et al.
2018; ...). In addition to being a current research topic, what makes it all
the more interesting is the fact that there is a disagreement between mod-
els and observations. A deeper understanding of this phenomenon and the
parameters which play a role in it may allow to obtain new constraints on
errors and thus improve the theoretical models at our disposal. But what is
this red giant bump?

Through its life, a star evolves. After the formation of the star and the
descent on the hayashi track, where a global contraction leads to a heating of
all the stellar layers, the star spends about 80 to 90 % of its lifetime on the
so-called main sequence, during which hydrogen is transformed into helium
in the central layers. Once it leaves the main sequence, it begins its ascension
on the red giant branch (RGB) where its luminosity increases. For low mass
stars, this ascension is momentarily reversed, their luminosity decreases be-
fore resuming their way up on the red giant branch. This temporary drop of
luminosity is what we call the red giant branch bump.

But why is it called like that? Let’s imagine that we observe a cluster of
stars. As usual for clusters, it is assumed that all the members of the clus-
ter have common properties, in particular, same age and same metallicity.
Knowing this, a big amount of those stars have more or less the same evolu-
tion. For the low mass stars composing this cluster, the bump then happens
more or less at the same luminosity. Each star has three times the luminosi-
ties contained in the range of luminosities of the bump. Therefore, there are
some luminosities more probable to be observed than others. If a histogram
of the number of stars per luminosity is drawn, a bump is observed at the
concerned luminosities. Due to a passage on the same luminosity range three
times during this phase of evolution, when a cluster is observed, there are
more stars with typical luminosity of the bump.
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My work for this master thesis consisted in analysing this bump. I had to
run models of stellar evolution, modifying some physical properties to have
a better understanding of the influence of those diverse parameters on the
red giant branch bump.

Section 2 recalls the structural equations and other relationships that will
be useful in understanding the phenomena outlined below and used by our
stellar evolution code, which is also briefly described in this section.

As explained above, the bump takes place during the red giant branch
phase. But the evolution that the star undergoes before reaching the RGB
will have an impact on the bump. Section 3 then presents the evolution of
the star from its formation until it reaches the RGB.

Section 4 describes what happens during the rise of the star on the red
giant branch and why the bump occurs during this phase.

Section 5 is the heart of this master thesis. It presents the different pa-
rameters studied by showing the impact that a variation of these parameters
implies on the bump and an explanation of what is observed is given from
the hydrogen abundance profile in the star.

Section 6 provides a comparison of the results obtained with three papers
on the bump read at the beginning of the work on this thesis.

Section 7 serves as a summary and conclusion to this master thesis.
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2 Internal structure equations

To describe the internal structure of a star and the phenomena occurring in
it, several equations are needed. These are presented below. Those equations
allow to have a good understanding of what happens in the star and how it
evolves throughout its life via the changes of the involved parameters.

2.1 Internal structure differential equations

Among the equations describing the interior of the star, four of them allow to
describe the structure itself of the star. Those four equations are differential
equations and may be expressed following two different variables, namely the
mass and the distance to the center. Here, these equations are expressed as
a function of mass because it will be the main landmark through this master
thesis. Nevertheless, from those relations, their expressions according to the
distance to the center can be easily found.

2.1.1 Mass conservation equation

The mass conservation equation gives a relationship between the mass inside
a sphere of radius r and the radius via the density. With this equation, the
mass for a given radius, or inversely the radius for a given mass, can be ob-
tained:

dr

dm
=

1

4πρr2
(1)

with r the distance to the center, m the mass contained in the sphere of
radius r and ρ the density.

2.1.2 Hydrostatic equilibrium

The hydrostatic equilibrium is reached when the gravitational force and the
force due to the pressure gradient compensate each other exactly, then:
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dP

dm
= − Gm

4πr4
(2)

with P the pressure and G the universal constant of gravitation

2.1.3 The energy transfer

The temperature in the star is not uniform, which implies the presence of
a temperature gradient. This temperature gradient induces a transfer of
energy. In a star, the energy is globally transferred from the inside to the
outside. There are two ways for this energy to be transported: by a radiative
transfer of energy or by convective motions of matter. Depending on the part
of the star and the stage of evolution of the star we are looking at, the zone
under consideration can be radiative or convective. In either case, there is
alway at least some part of the energy transferred by radiation.

The radiative transfer is written:

dT

dm
= − 3κL

64π2acr4T 3
(3)

where T is the temperature, κ the opacity, L the luminosity, a the radia-
tion density and c the speed of light.

In the case where the convection is effective:

dT

dm
= −∇ad

Gm

4πr4
T

P
(4)

where ∇ad is the adiabatic temperature gradient.

The Schwarzschild criterion is used to determine whether convection is
effective or not. This criterion states that convection occurs if the radiative
temperature gradient is greater than the adiabatic temperature gradient:

∇rad > ∇ad (5)
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The radiative temperature gradient is given by:

∇rad ≡
3κPL

16πacGmT 4
(6)

This radiative temperature gradient is the value that the real temperature
gradient should have so that all the energy would be transported by radiation.

The adiabatic temperature gradient is given by:

∇ad ≡
∂lnT

∂lnP
|s (7)

with s the entropy. It is thus the temperature gradient taken for a constant
entropy. For an ideal gas, ∇ad = 2/5.

In convective regions, mixing is assumed to be instantaneous, which
means that the chemical composition is constant all along the convective
layers.

2.1.4 Conservation of energy

There are two possible sources of energy, one coming from the gravitational
contraction, the other from nuclear reactions.

dL

dm
= εn + εgrav (8)

where L is the total amount of energy produced per second in the sphere
of radius r and mass m, εn being the production of energy due to nuclear
reactions and εgrav being the energy produced or absorbed due to the gravi-
tational contraction or expansion.

The term εgrav is generally very small when most of the energy is pro-
duced by nuclear reactions like during core hydrogen burning phases. It is
however important to follow its evolution since it is the signature of stellar
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readjustment to new physical conditions.

In the case where εgrav is negligible, the star is in thermal equilibrium and
the energy is considered as coming exclusively from the nuclear reaction. In
thermal equilibrium the previous equation is written:

dL

dm
= εn (9)

2.2 Constitutive equations

There are thus four differential equations to describe the internal structure
of a star, dr

dm
, dP
dm

, dT
dm

and dL
dm

, but also seven unknowns: r, ρ, P, T, L, κ and
ε. Additional relations connecting these variables are therefore required.

2.2.1 Equation of state

The pressure inside a star may be considered as a sum of two components,
the gas pressure and the radiative pressure:

P = Pg + Prad (10)

with Pg the gas pressure and Prad the radiative pressure. The second
term, Prad is mostly relevant for high temperature stars so high mass stars.
In low mass stars, this term may be neglected and only the gas pressure is
considered. This last can be given by the equation of state.

For the equation of state, two cases can be distinguished. The first one
is when we may assume we have a non-degenerate ideal gas described by the
Maxwell-Boltzmann distribution, the second case is when we have a degen-
eracy of the gas of electrons obeying a Fermi-Dirac distribution.

For a non-degenerate gas:

Pg '
kρT

µmu

(11)
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where k is the Boltzmann constant, µ is the mean molecular weight which
is the mean mass of stellar particles and mu is the atomic mass constant.

For the degenerate case, it can again be subdivided in two different cases,
whether the gas is relativistic or not.
In the non-relativistic case:

Pe ' K1ρ
5
3 (12)

and in the relativistic case:

Pe ' K2ρ
4
3 (13)

Pe is the pressure of the gas of electrons, K1 and K2 are constants with
K1 = 8π

15h3me
( 3h3

8πmu
)
5
3 and K2 = 2πc

3h3
( 3h3

8mu
)
4
3

2.2.2 Energy production

As seen in the conservation of energy equation, the energy may be produced
via two different processes, the gravitational contraction and the nuclear re-
actions.

The energy production by gravitational contraction εgrav is written:

εgrav =
du

dt
+ P

dv

dt
(14)

With u the internal energy, t the time and v the specific volume. It takes
into account the variation of internal energy and the work done by the grav-
itational contraction.

The energy production by nuclear reaction εn depends on which nuclear
reaction is happening. In the context of the study of the red giant branch
bump, the only relevant nuclear reaction is the hydrogen combustion. There-
fore, attention is focused on this one. There are however still two different
cases. Indeed, there are two ways to produce helium from hydrogen, via the
pp chain or via the CNO cycle. The production of energy via those two
processes can be written:
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εpp ∼ CppX
2ρT 5 (15)

for the pp chain, and

εCNO ∼ CCNOXCNOXρT
15 (16)

for the CNO cycle.
In those equations, C is a constant, different for the pp chain and the CNO
cycle, X is the abundance of hydrogen and XCNO is the abundance of carbon,
nitrogen and oxygen taken together.

Because of the greater temperature sensitivity of CNO reactions, it is
obvious that this way of producing helium will be favoured when the tem-
perature is increased.

2.2.3 Opacity

The opacity is a factor linked to the interaction between matter and radi-
ation. The higher the opacity, the more interactions there is. Then, the
higher the opacity, the lower the chance of a photon traveling freely through
the stellar layers. A high opacity “blocks” the photon, thus also the transfer
of energy through radiation.

The Kramers’ law provides an approximate relation for the opacity, due to
bound-free and free-free atomic transitions mainly responsible for the opacity
in low mass stars. This law is written:

κ = Cf(X, Y, Z)(1 +X)ρT−3.5 (17)

where κ is the opacity, C a constant and f(X,Y,Z) a term depending on
the chemical composition, Y being the helium abundance and Z the metal-
licity.

It shows that opacity increases with decreasing temperature, which is the
reason why convection is present in the outer layers of low-mass stars.
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2.3 Stellar evolution code

In order to modelize the different stars studied in this work, we use the stel-
lar evolution code Clés which stands for Code Liégeois d’Évolution Stellaire
(Scuflaire et al., 2007), developed by the Department of Astrophysics and
Geophysics of Liège.
This code allows to model a star for which certain parameters are set and to
follow its evolution during its life. To achieve this, the code uses the equa-
tions of structure and the constitutive equations presented above in sections
2.1 and 2.2.
To use the code it is necessary to use some external data such as for nuclear
reactions, equations of state or opacity. For nuclear reactions we refer to
“Solar fusion cross sections. II. The pp chain and CNO cycles. Reviews of
Modern Physics” (Adelberger et al. 2011). For state equations we use the
code “FreeEOS: Equation of State for stellar interiors calculations” (Irwin,
2012). For the opacity, the data are taken from “OPAL Equation-of-State
Tables for Astrophysical Applications” (Rogers et al., 1996).
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3 From the formation to the Red Giant Branch

Let’s begin by a quick review of the evolution of a star, from its formation
until it reaches the red giant branch and the bump.

3.1 Pre main sequence

The formation of a star begins when a perturbation inside a molecular cloud
induces the contraction of a part of this molecular cloud. We can consider
that the star is born once the contracting material reaches the hydrostatic
equilibrium. At this point, there is not yet nuclear energy production since
the temperature inside the star is too small, all the energy comes from the
contraction of the star which continues even if it has been slowed down when
reaching hydrostatic equilibrium. This phase is called the Hayashi phase and
is represented as an almost vertical line on the Hertzsprung-Russell diagram
(HR diagram), which relates the logarithm of the stellar luminosity and the
logarithm of the effective temperature. The effective temperature is thus
almost constant while the luminosity is decreasing. During this phase, the
star is completely convective.

After this descent on the Hayashi track, depending on the mass of our
star, the onset of the nuclear reactions occurs or not. The bump concerns
low mass stars but not too low. Indeed, as it will be shown later, the bump
happens during the red giant branch phase following the main sequence and
to reach those phases, the fusion of hydrogen must occur inside the star.

Since the hydrostatic equilibrium is established, the Viriel theorem for a
non-relativistic monoatomic ideal gas sphere writes:

Eg = −2Ei (18)

with Eg the total gravitational potential of the star and Ei its internal
energy.
The star contracts, releasing potential energy. The Viriel theorem tells us
that half of this released energy is converted into internal energy while the
rest is radiated. Since the internal energy is proportional to P/ρ, this increase
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of internal energy leads to an increase or a decrease of the temperature de-
pending whether the star is degenerate or not.

For too low mass stars, the limit being approximately at 0.08 M�, due to
the degeneracy of the electrons, temperatures reach a maximum before they
drop and are never high enough to trigger hydrogen fusion. Those stars are
the so-called brown dwarfs. The temperature of the brown dwarfs then con-
tinues to decrease with time. The onset of the nuclear reactions may begin
when the central temperature neighbors 107 K and this required temperature
is never reached in in the brown dwarfs case.

For more massive stars, the contraction of the star results in an increase
of the temperature. This increase of the temperature leads to a decrease in
the opacity, see equation (17), and this decrease of opacity leads to a decrease
of the radiative temperature gradient. Following the Schwarzschild criterion
(equation (5)), a radiative core appears. After some time, the core temper-
ature reaches a sufficiently high value to onset the burning of the hydrogen.
With the onset of nuclear reactions, a restructuring of the interior of the
star occurs and a slight decrease in luminosity and effective temperature is
observed.

To follow the evolution of the star, let’s take a closer look at the hydro-
gen abundance. In what follows, the same star, with a mass of 1.3 M�, is
considered at each stage of its evolution.

During the pre main sequence, the hydrogen abundance profile is as shown
in blue in Figure 1. Since there are no nuclear reactions yet, it is normal to
observe that it is constant over the whole star.

3.2 Main sequence

3.2.1 Nuclear energy

After stabilization the star reaches the ZAMS, the Zero Age Main Sequence,
which is simply the beginning of the main sequence. Thermal equilibrium
is reached, all the energy comes then from the nuclear reactions, and the
hydrodynamic equilibrium is still present.
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When the star reaches the ZAMS, the hydrogen burning in the core starts.
This leads to a variation of chemical composition, the mean molecular weight
increases and this change is now the element responsible for the evolution of
the star during the main sequence phase. The stars spend the biggest part
of their life in the main sequence. This time spent in the main sequence
depends on the mass of the star. Indeed, it can be shown that the luminosity
is proportional to the mass.

L ∝Mα

The exponent α will depend on the mass but is of the order of three for
low and intermediate mass stars and close to one for massive stars. From
this, it can be observed that the luminosity is higher for more massive stars.
A higher luminosity means that the star has a higher nuclear energy produc-
tion, the hydrogen is then consumed faster and the star spends less time in
the main sequence.

3.2.2 Convective core

During this phase, the stars may have a convective core or not. As it will
be shown later, the presence of a convective core during the main sequence
influences the bump. The occurrence of convection is linked to the type of
nuclear reactions present for the hydrogen burning, and this in turn depends
on the mass of the star. Below a mass limit of about 1.2 M�, the hydrogen
burning occurs through pp chains reactions and the core is radiative. Above
the limit of 1.2 M�, the helium is formed through CNO cycle and the star
has a convective core. The production of energy via those two processes is
given by equations (15) and (16).

From equation (6), a high L/m ratio leads to a high radiative tempera-
ture gradient. Thanks to the Schwarzschild criterion (equation (5)) we know
it favors a convective transport of the energy. By expressing the luminosity
from the equation of conservation of the energy (equation (8) ) taking into
account the thermal equilibrium and using equations (15) and (16), we have:
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L =

∫ M

0

εpp/CNOdm ∼
∫ M

0

ρT νdm (19)

With ν the temperature sensitivity, which is of the order of 5 for the pp
chain and 15 for the CNO cycle as see in equations (15) and (16). The ratio
L/m is thus proportional to T ν . This higher sensitivity to the temperature of
the CNO cycle explains thus a higher ratio L/m and thus the appearance of
convection in the core of the star, when helium is produced this way, which
happens in stars more massive than about 1.2 M�.

3.2.3 Overshooting-Undershooting

As stated previously, the fact that there is or not a convective core is impor-
tant for the study of the red giant branch bump. When the core is convective,
the matter moves up and down in it. It happens that matter goes beyond the
limit of the convective core. This is what is called overshooting. The mass
extent of the overshooting region as well as the efficiency of the mixing are
still unknown. For its extent it is generally assume that overshooting takes
place over a distance l given by:

l = αHP (20)

where α is the overshooting parameter, of the order of a few tenths and
HP is the pressure scale height at the convective core boundary. The over-
shooting parameter is one of the most troublesome uncertainties in stellar
evolution modeling.

Moreover it is generally assume that in the overshooting region above the
convective core, a full mixing occurs instantaneously, as it is the case in the
convective core itself. This means that overshooting has the primary effect
of increasing the mass of the fully mixed material in stars. The overshooting
thus modifies the profile of the abundance of hydrogen which, as will be seen
later, is the key element of the bump.

Since low mass stars have a convective envelope (see Section 2.2.3), just
like overshooting may happen in a convective core, some undershooting can

21



also occur below the lower boundary, adding another uncertainty to the stel-
lar modeling. The phenomenon occurs the same way as the overshooting:
matter moves up and down in the convective envelope and some matter goes
beyond its limit, reaching then deeper layers.
For the undershooting a parameter α is also used, this time called under-
shooting parameter and the pressure scale height Hp is taken at the base of
the envelope.

3.2.4 Diffusion

Some processes happen on a small scale, like it is the case of the microscopic
diffusion. It results from two processes: the gravitational settling and the
radiative forces. The first one, linked to the gravitational force, brings down
the heavier elements while the lighter elements are brought upwards. The ra-
diative force pushes up particles with high cross-section while particles with
low cross-section go down.

The speed of diffusion depends on the depth in the star. It will be fast
at the surface but slow in the deep layers of the star.

As heavy elements fall down as a result of diffusion, they reach the bound-
ary of the convective core where they increase the opacity and favor a slightly
larger convective core. The diffusion will then, as the overshooting, modifies
the hydrogen profile and thus also what happens during the bump.

In addition, levitation of ionized matter occurs as a result of radiative
accelerations and can somewhat counterbalance the effects of microscopic
diffusion. This induces another uncertainty in the chemical profiles since it
is absent in most stellar evolution codes, in particular in Clés.

3.2.5 Global evolution

During the evolution in the main sequence, the star undergoes a contrac-
tion of its core, where nuclear reactions take place, and an expansion of
its envelope, i.e. the layers located above the core. Globally, the radius of
the star increases. The contraction of the core results from the transforma-
tion of hydrogen into helium, leading to an increase in the mean molecular
weight in the affected regions. The equation of state (11) shows that pres-
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sure, temperature, density and mean molecular weight are all linked together.
The change of the mean molecular weight thus impacts the other physical
properties. Temperature is however kept quasi constant through a process
generally called the “pressure thermostatic control mechanism” that will not
be described here.

Regarding the luminosity of the star, it has been stated just above that
there are two kinds of nuclear processes. The luminosity increases more in
the case where there are pp chain reactions than in the case of CNO cycle
reactions, where the luminosity is even almost constant.

Finally the effective temperature remains constant when the pp chain is
responsible for the reactions, while it decreases in the case of CNO cycle
reactions.

3.2.6 Hydrogen profile

Figure 1 shows in purple the hydrogen abundance profile as a function of the
fractional mass q=m/M during the main sequence of a 1.3 M� star. There
are several profiles in order to be able to follow the evolution of this one
during the main sequence. The profile during the pre main sequence is also
shown in blue and the one during the post main sequence in red:
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Figure 1: X profile as a function of the fractional mass q=m/M during the
pre main sequence (blue), main sequence (purple) and post main sequence
(red) of a 1.3M�.

On this profile, the effect of the onset of nuclear reactions can easily be
noted. The initially uniform hydrogen abundance is no longer homogeneous.
During the main sequence, the hydrogen is consumed in the core and there
is less and less hydrogen in it. Since the star is beyond the limit of 1.2 M�,
the hydrogen combustion takes place here via the CNO cycle and therefore a
convective core is present. The convective core can be seen as the plateau at
the core of the star in the profiles shown above. During the main sequence,
it first expands and then becomes smaller again. Even if the convective core
is considered to be the plateau, the abundance of hydrogen also decreases
beyond it. Nuclear reactions therefore also take place beyond the convective
core. As the mass of the convective core decreases, the area where nuclear
reactions take place shrinks and the core leaves behind a gradient of hydrogen
abundance. As the hydrogen abundance is constant beyond 0.6 M� the
profiles are only shown up to this point in order to highlight the profiles
behavior close to the center.
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3.3 Post main sequence

After all the hydrogen has been consumed in the core of the star, it remains
a core composed of helium which is devoid of energy source since the temper-
ature is too small to start transforming helium into carbon and oxygen. This
helium core is thus isothermal. Around this isothermal helium core, there is
a hydrogen burning shell which will add more and more helium to the core.
But the isothermal helium core have a mass limit beyond which it can’t sup-
port the envelope mass. This limit is called the Schönberg-Chandrasekhar
mass limit and may be written:

Mc

M
= 0.37(

µenv
µcore

)2 (21)

Where Mc is the mass of the isothermal helium core, M the total mass of
the star, µenv is the mean molecular weight of the envelope and finally µcore
is the mean molecular weight of the core.

This mass limit comes from the fact that the pressure at the isothermal
core border does not increase continuously with the mass of the core. It
reaches a maximum above which the core cannot hold anymore the pressure
of the envelope. The core will then contract and will eventually become de-
generate while the envelope is still expanding. The star undergoes a thermal
runaway which leads to a lower and lower effective temperature and an evo-
lution towards the red giant branch located in the area of the Hayashi track.
This phase is quite fast and stabilization occurs when the star reaches the
red giant branch, with an extended convective envelope.

Resulting from the energy released by the contraction of the core, a tem-
perature gradient forms in the so far isothermal layers. However as the den-
sity increases and the matter becomes more and more degenerate, electron
conduction becomes the dominant contributor to the energy transfer and this
translates in a lower and lower opacity. Equation 8 shows that the radiative
temperature gradient becomes lower and lower, i.e. a quasi isothermal core
is formed afresh.

The hydrogen abundance profile in the post main sequence can be seen in
figure 1 in red. On this profile it can be seen that the core has absolutely no
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hydrogen left, all of it has been consumed. As previously stated, the helium
core is isothermal, so there is no convection.

To be noted, only low mass stars will reach this Schönberg-Chandrasekhar
limit after completing core hydrogen burning and have a degenerate core
before beginning their ascension on the red giant branch. More massive
stars end their main sequence with a helium core already larger than the
Schönberg-Chandrasekhar limit.

Figure 2 shows the HR diagram for a 1.3 M� on which we see the different
part of the evolution discussed above. We have the Hayashi track in 1, the
“radiative” pre main sequence in 2, also called the Henyey track, the main
sequence in 3 and the transition between the main sequence and the red giant
branch in 4. The next phase, the red giant branch, is shown in 5.

Figure 2: HR diagram for a 1.3 M� on which we see the different part of the
evolution we discussed above. 1: The Hayashi track; 2:Pre main-sequence
(Henyey track); 3: The main sequence; 4:The transition between the main
sequence and the red giant branch; 5: The red giant branch
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4 The Red Giant Branch and the bump

4.1 The red giant branch

During its life on the red giant branch, the star structure is “divided” into 4
parts. The first one at the center, is an isothermal, degenerate helium core.
Above the core, there is a shell in which CNO reactions transform hydrogen
into helium. At the surface of the star, there is a convective envelope. Finally,
the last part is a radiative zone located between the shell and the envelope,
which becomes thinner and thinner as the convective envelope extends and
reaches deeper and deeper layers.

As hydrogen is transformed into helium in the shell, the mass of the he-
lium core increases and the shell moves outward toward fresher hydrogen
layers. During this phase, a contraction of the core and an expansion of the
envelope occur. This expansion of the envelope leads to a decrease of the
temperature and according to the Kramers’ law (equation 17) an increase in
the opacity happens. The higher opacity leads to a higher radiative temper-
ature gradient. According to the Schwarzschild criterion, the envelop goes
thus deeper in the star.

At the onset of the RGB phase, the envelope has a chemical composi-
tion still very close to the initial composition since convective mixing dilutes
the chemical impact of diffusion. As it goes deeper, in the region where
the chemical composition was affected by nuclear burning during main se-
quence, a mixing of chemically inhomogeneous matter occurs. This mixing
brings some material towards the surface, like for example the 14N much
more abundant in CNO affected regions, this is called the first dredge-up.
The convective envelope is fully mixed and when it reaches layers left by
the receding convective core during the main sequence, a discontinuity in
chemical composition is formed just at the lower boundary of the envelope.
However, as the shell moves outward as a result of hydrogen burning, the
temperature increases below the convective envelope and the deepening of
this envelope is reversed, leading to a chemical discontinuity located at the
deepest level reached by the envelope.

What happens globally during the ascension on the red giant branch? As
said previously, the core accumulates helium so its mass increases while its
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radius decreases. From homology relations it can be shown that in a non
degenerate matter that the temperature can be written:

Tshell ∝ µshell
Mcore

Rcore

(22)

Where Tshell is the temperature in the H-burning shell, µ is the mean
molecular weight in the shell, Mcore is the mass of the isothermal helium core
and Rcore its radius.

As this relationship is important to understand the behavior of the star
during the RGB phase and the bump, it is interesting to look at how we get
it. Assuming, then, that homological relationships are valid for the expansion
of the shell of our star, the following can be written:

T (r) = t(r/Rcore)Tcore(Mcore, Rcore) (23)

and
P (r) = p(r/Rcore)Pcore(Mcore, Rcore) (24)

where T(r) and P(r) are respectively the temperature and the pressure
at a radius r. These two quantities are therefore expressed as the prod-
uct of two functions, one dependent on r/Rcore, t(r/Rcore) for the tempera-
ture and p(r/Rcore) for the pressure, and the second dependent on the mass
and radius of the helium core, Tcore(Mcore, Rcore) for the temperature and
Pcore(Mcore, Rcore)for the pressure.

Using the integrated form of hydrostatic equilibrium, the pressure can be
written as:

P (r) = P (r0)−
∫ r

r0

Gmρ

r2
dr (25)

with ro being the distance between the center of the star and the top of
the shell.

As the weight of the envelope is really low, it does not affect significantly
the shell and the pressure at the top of the shell can therefore be neglected.
The mass of the shell being negligible compared to that of the helium core,
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the mass can be approximated as always being that of the core and can thus
be taken out of the integral. Then:

P (r) ' −GMcore

∫ r

r0

ρ

r2
dr (26)

To obtain a relationship of the same form as equation 24, the change of
variable y = Rcore/r is used, then:

P (r) ' GMcore

Rcore

∫ y

yo

ρ(y)dy (27)

From the equation of state for a non-degenerate gas (equation 11), T(r)
expressed and P(r) is replaced with its expression in equation 27:

T (r) =
P (r)µmu

ρk
=
GMcore

Rcore

∫ y
y0
ρ(y)dy

ρ

µmu

k
= t(r/Rcore)µ

Mcore

Rcore

(28)

r being taken in the shell, one obtains well the relation (22).

The increase of the mass and the decrease of the radius favor an increase
of the temperature as long as a decrease in the mean molecular weight inside
the shell does not reverse this temperature increase.

As for the luminosity, the following relation can be written:

L ∝ εMshell ∝ ρT 15
shellMshell (29)

Where L is the luminosity essentially produced inside the H-burning shell,
ε is the nuclear energy rate and Tshell and Mshell are respectively the temper-
ature and the mass of the shell.

The luminosity is proportional to the energy production by the nuclear
reaction, itself proportional to the temperature. The conclusion is that the
luminosity will increase with the temperature of the shell.
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4.2 The bump

When the shell reaches the discontinuity left by the envelope, the hydrogen
abundance suddenly increases, modifying at the same time the mean molecu-
lar weight. The hydrogen abundance is higher, so the mean molecular weight
become smaller. As shown in equation (22) above, the temperature in the
shell is directly linked to the mean molecular weight and, as µ decreases more
than compensates the increase in Mcore

Rcore
, the temperature also decreases. Since

the luminosity is proportional to the temperature, it is easy to conclude that
the decrease of the mean molecular mass leads to a decrease of the luminosity.

It is important to note that this decrease of luminosity happens only
for a while when the discontinuity is reached by the shell. As said previ-
ously, the global behavior of the luminosity is an increasing along the RGB.
The difference here with the “normal” situation, is that the change of mean
molecular mass happens suddenly. In the normal situation, higher hydrogen
abundance reached while the shell moves along the hydrogen profile, and
therefore the decrease of the mean molecular weight, are always present, but
are compensated by the increase in the factor Mcore

Rcore
in the equation (22). The

discontinuity makes the change of µ too large and too fast to be compensated
by Mcore

Rcore
.

Since quasi all the energy production in the star comes from the shell, a
decrease of luminosity in the shell means then a global decrease of the lumi-
nosity.

After the encounter of the chemical discontinuity, the hydrogen abun-
dance becomes constant and as the Mcore

Rcore
term continues to increase, we then

return to normal regime and the star continues its ascent on the red giant
branch.
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Figure 3: The profile of X for a 1.3M� star at three different moments. On the
first graph when the base of the envelope, represented by the black vertical
line, is still quite high, the second when the envelope reaches its maximum
depth and the last when the H-burning shell reached the discontinuity.
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Figure 3 shows the profile of X for a 1.3 M� star at three different mo-
ments on the red giant branch. The H-burning shell is located just above the
helium core. On each profile, the base of the convective envelope is indicated
by a vertical black line.
On the first profile, the base of the convective envelope is still far from the
H-burning shell. This base of the envelope goes deeper with time. On the
second profile, the base of the envelope at its maximum depth. The chemical
discontinuity is clearly visible at a fractional mass of the order of 0.2. On
the last profile, the H-burning shell has reached the chemical discontinuity,
while the convective envelope recedes towards the surface. The H-burning
shell moves now in layers with a constant chemical composition.

The end of the red giant branch evolution is marked by the onset of he-
lium burning. Due to the fact that we have an isothermal fully degenerate
helium core, the temperature of the core is approximately the same as the
one of the shell. The equation (22) tells us that Tshell ∝ Mcore

Rcore
so Tcore ∝ Mcore

Rcore

where Tcore is the temperature of the core. A temperature approaching 108K
is required to begin the helium burning. For our low mass stars, whatever
the total mass as long as the core is degenerate, this always happens when
the helium core reaches 0.48 M�.

4.3 High mass stars

For higher mass stars with partly degenerate or non degenerate helium core,
the end of the red giant branch is also marked by the start of helium burning.
However, the core temperature increases due to its contraction and it even-
tually reaches a temperature high enough to begin the helium burning before
having a core mass of 0.48 M�. This may happen before the encounter of the
shell with the chemical discontinuity. As seen in the explanation of the red
giant branch bump, the H-shell reaching the discontinuity is the key element
for the occurrence of this phenomenon. In this case, there is then no bump
during the red giant branch ascension.

Figure 4 shows the hydrogen profile in a 2.5 M� star. A yellow vertical
line has been drawn to illustrate the boundary of the convective core due to
core helium burning.
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Figure 4: Profile of X for a 2.5 M� star at the end of the red chiant branch
phase. The yellow line indicates the upper limit of the convective core due
to core helium burning.

4.4 Energy production

One way to see the H-burning shell progressing through the star is to look
at nuclear power generation.
Figure 5 shows energy production as a function of mass fraction. In purple
is represented εν which is the production of nuclear energy while in green is
represented εgrav, the energy coming from the contraction of the star.
Two information can easily be observed on this graph. The first is that there
is no energy production due to the contraction during the red giant phase,
or at least at a very negligible rate compared to nuclear power production.
So we are well into thermal equilibrium. The second observable information
is the peak that εν is doing. It can be seen that all nuclear power generation
is produced in a fairly thin region. That region is the H-burning shell. By
observing the evolution of the position of this peak in the star, it is possible
to follow the displacement of the shell.
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Figure 5: Energy production rate via the nuclear reactions (purple line) and
via the gravitational contraction (green line) in function of the fractional
mass q=m/M at a given moment during the red giant phase

4.5 Temperature gradients

Three different gradients can be distinguished: the radiative temperature
gradient, the adiabatic temperature gradient and the real temperature gra-
dient. The radiative and adiabatic temperature gradients are given by the
equations (6) and (7) respectively. The real temperature gradient always has
the value of one of the other two, whichever has the lower value.
Figure 6 shows a profile of these different gradients during the bump. In green
can be seen the adiabatic temperature gradient, which is almost constant.
In purple can be seen the radiative temperature gradient. In blue is repre-
sented the real temperature gradient which covers the radiative temperature
gradient, and is therefore equal to it, to the left of the black vertical line and
covers the adiabatic temperature gradient, and is therefore equal to it, to the
right of this line. This black vertical line represents the boundary of the con-
vective envelope. On the right side of this limit, the adiabatic temperature
gradient is smaller than the radiative temperature gradient. According to
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the Schwarzschild’s criterion (5), there is a convective zone on this side, the
envelope. On the left side, the radiative temperature gradient being smaller
than the adiabatic temperature gradient, the same criterion shows well the
presence of a radiative region. So, by looking at the evolution of these dif-
ferent gradients, it is possible to follow the evolution of the radiative region
and the convective envelope and thus also the bump.

Figure 6: Radiative temperature gradient (purple), adiabatic temperature
gradient (green) and real temperature gradient (blue) in function of the frac-
tional mass q=m/M during the red giant phase
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5 Study of the different parameters

Although the main mechanism for the appearance of the bump is under-
stood, namely the encounter of the H-burning shell with the discontinuity
of the hydrogen abundance, there is a discrepancy between the theoretical
models and the observations. This discrepancy tells that this phenomenon is
not yet fully understood, or, to use different terms, theoretical models are not
yet perfectly developed. This is not surprising since, as already mentioned,
uncertainties such as overshooting and diffusion affect the computation of
stellar models.
One way to better understand the red giant branch bump is then to run
evolutionary models with different sets of parameters. For this study, several
models were run with the code Clés and the physics described in Section 2.3,
changing various parameters to see how they affect the evolution of the star.
More specifically, investigations were focused on their impact on the extent
and location of the bump in the HR diagram. The hydrogen abundance pro-
file in the star was then used to understand these effects.

The different parameters discussed in the following sections are the mass,
the overshooting, the undershooting, the metallicity and finally the diffusion.

5.1 The mass

The total mass of a star is an important parameter. As shown in previous
sections, it is crucial for the type of nuclear reactions during the main se-
quence and for the amount of electron degeneracy in the helium core during
the ascension of the red giant branch.

The figure 7 shows the tracks in the HR diagram for four different masses.
The first on is for a 1.0 M� star, the second one a 1.3 M� star, the third one
a 1.8 M� star and finally a 2.2 M� star, respectively represented in purple,
green, blue and yellow.
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Figure 7: Tracks in the HR diagram for four stars having different masses:
1.0 M� (purple), 1.3 M� (blue), 1.8 M� (green) and 2.2 M� (yellow).

The overall shape of the different curves is globally the same but never-
theless with significant differences.
The first point is the general ”translation” of the curves. For a same phase,
a more massive star is more luminous and hotter than a less massive star.
A change in the behaviour of the curve can also be observed during the main
sequence as the result of core hydrogen burning through pp or CNO reactions
(see Section 3.2.5)
Finally a difference is observable during the bump. The figure 8 shows a
zoom on this part of the evolution in the HR diagram:

37



Figure 8: Tracks in the HR diagram, zoomed in on the bump part, for four
stars having different masses: 1.0 M� (purple), 1.3 M� (blue), 1.8 M� (green)
and 2.2 M� (yellow).

On this zoom, the bump for each mass considered is clearly identifiable.
Each of these bumps differs from the others in two aspects.
The first aspect is the position in the HR diagram. This difference in po-
sition indicates that the bump does not occur at the same luminosity as a
function of the mass of the star. The more massive the star is, the brighter it
is when the bump starts. The beginning of the bump occurs at a luminosity
of approximately 1.48L�, 1.66L�, 1.93� and 2.25L� respectively for masses
of 1.0M�, 1.3M�, 1.8M� and 2.2M�.
The second aspect is the size of the bump. It can be seen that the decrease in
luminosity before it increases again can be more or less important depending
on the mass of the star. An interesting point to note is that the size of the
bump does not always evolve in the same way when looking at a higher (or
lower) mass. For example, if the studied mass is increased from 1.3M� to
1.8M�, the size of the bump decreases, whereas an increase to 2.2M� results
in an increase in the size of the bump. In the case of the star of 1.3 M�,
there is a decrease in luminosity of 0.08 L�, a decrease of 0.05 L� for a mass
of 1.8 M� and a decrease of 0.19 L� in the case of the star of 2.2 M�. In
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order to know the bump behaviour for a new mass it would be necessary to
run a new model, as the relation between total mass of the star and the size
of the bump is not direct.

To understand these two aspects of the differences between the bumps
of the different masses studied, an examination of the hydrogen abundance
profile of each of these stars is required.

Figure 9 shows the abundance of hydrogen as a function of mass. Since
four stars of different masses are being studied, it is more interesting to look
at mass dependence and not at fractional mass as it is the case for all the
other hydrogen abundance profiles presented in the other sections. The four
profiles, one for each of the masses studied, are plotted on the same graph to
facilitate comparison between them. To get a better view of the interesting
part of the profiles, the graph shows them only up to a mass of 0.4 M�.
Above this mass and for the four stars, the abundance of hydrogen is con-
stant up to the their surface. Profiles are taken when the maximum depth
of the convective envelope is reached and before the hydrogen burning shell
meets the chemical discontinuity in order to see the discontinuity. From left
to right, we have the profile of star 1.0 M�, star 1.3 M�, star 1.8 M� and
star 2.2 M�, respectively represented by the purple, green, blue and yellow
lines.
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Figure 9: From the left to the right, the hydrogen abundance in function of
the mass in solar mass for the 1.0 M�, 1.3 M�, 1.8 M� and 2.2 M� star,
respectively represented by the purple, green, blue and yellow lines.

Regarding the first aspect, the fact that the luminosity of the star during
the bump is higher for heavier stars, it is easily observable that the dis-
continuity is located at a higher mass for more massive stars. Indeed, the
discontinuity is located at mass of approximately 0.24 M�, 0.25 M�, 0.28
M� and 0.32 M� for stars of total mass 1.0 M�, 1.3 M�, 1.8 M� and 2.2
M� respectively. This means that, when the H-burning shell reaches the
discontinuity, the isothermal helium core is heavier for more massive stars,
resulting in a higher shell temperature for these stars, according to equation
(22), and the luminosity is then higher, according to equation (29).

For the second aspect, the size of the bump, it has been shown by the
equations (22) and (29) that luminosity is proportional to the average molec-
ular weight. Figure 9 shows that the discontinuity in the abundance of hydro-
gen does not always have the same size. A larger discontinuity, corresponding
to greater increase in hydrogen, leads to a greater decrease in the average
molecular weight and thus a greater decrease in luminosity, represented by a
larger bump size on the HR diagram.
In Figure 9, the discontinuities of stars 1.0 M� and 1.3 M� have almost
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the same size, which is also the case for their bump. For the 1.8 M� star,
the discontinuity is much smaller than for the previous two stars, resulting
in a smaller decrease in luminosity. On the contrary, for the 2.2 M� star,
the discontinuity is much larger, resulting in a greater decrease in luminosity.

The total mass is therefore a parameter that has a great influence on
the bump. As a reminder, the total mass not only influences the size of
the bump and the luminosity at which it occurs, but also the appearance
of the bump itself. As explained in section 3.1, a star with a mass of less
than 0.08M� does not ignite hydrogen combustion, so the bump does not
occur. For too high mass, as explained in Section 4.3 and illustrated in
Figure 4 for a star of 2.5M�, the bump does not occur due to the start
of helium combustion in the core before the H-burning shell reaches the
hydrogen abundance discontinuity.

5.2 The overshooting

As explained in section 3.2.3, overshooting can occur when there is a convec-
tive core during the main sequence and it consists in the fact that the material
goes beyond the boundary of this core. The overshooting parameter α has
been introduced in equation (20). To study the effect of the overshooting
on the bump, the overshooting parameter was set to a value of 0.2. This
value of 0.2 was chosen in order to have a sufficiently marked effect to be
observed while remaining plausible. The effect was studied for a 1.3 M� star
and a 1.8M� star. Since overshooting is related to the convective core, for
the same overshooting parameter, the observed effects are greater when the
convective core is larger. Therefore, since the convective core is larger for a
more massive star, the effect of overshooting is greater for the 1.8 M� star
than for the 1.3 M� star. So let’s start with the most interesting case, that
of 1.8 M�, and look at the case of a 1.3 M� star afterwards to compare the
effects.

Figure 10 shows the tracks in the HR diagram for a 1.8M� star both with
and without overshooting, respectively represented in green and in purple.
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Figure 10: Tracks in the HR diagram for a 1.8M� star both with and without
overshooting, respectively represented in green and in purple.

Since the convective core, and thus the overshooting, only appears in the
main sequence, it is natural that the two tracks overlap perfectly during the
pre main sequence. Once the main sequence is reached, the two tracks differ
significantly. For a 1.8M�, the effect is such that it is still visible at the end
of the post-main sequence.

Figure 11 shows the abundance of hydrogen in function of the fractional
mass at the end of the main sequence for both with and without overshooting,
respectively represented in green and in purple.

42



Figure 11: Abundance of hydrogen in function of the fractional mass for a
1.8M� at the end of its main sequence for both with and without overshoot-
ing, respectively represented in green and in purple.

This profile shows that the presence of the overshooting is equivalent to
a larger convective core. Indeed, the zero hydrogen abundance plateau goes
further in the star in presence of overshooting. The post-main sequence being
rather short, it is with the same type of profile that the star starts its ascent
on the red giant branch. The latter is then impacted by this difference in
profile, especially during the bump.

Figure 12 shows the same HR diagram as previously but zoomed in on
the bump.
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Figure 12: Tracks in the HR diagram, zoomed in on the bump, for a 1.8M�
star both with and without overshooting, respectively represented in green
and in purple.

It can be seen that for the 1.8M� star, the presence of the overshooting
has a significant impact on the bump. With the overshooting, the bump
starts at a much higher luminosity (almost 2.2L� instead of 1.93 L�) and
the decrease in luminosity during the bump is much more important as well
(0.32 L� in place of 0.05 L�) .

Figure 13 shows the profile of the hydrogen abundance when the convec-
tive envelope have reached its maximal extension. In purple is represented
the profile of the star without undershooting and in green the profile of the
star with overshooting.

44



Figure 13: Hydrogen abundance in function of the fractional mass q=m/M
when the convective envelope have reached its maximal extension for a 1.8M�
star, in purple without overshooting and in green with overshooting.

The convective envelope does not reach as deep a layer when overshoot-
ing occurs (q ' 1.65) as it does when there is no overshooting (q ' 1.55).
As explained in section 4.1, as the shell progresses outward, the envelope
is stopped in its descent because the temperature rises below its limit. In
our case with overshooting, Figure 11 shows that, at the end of the main
sequence, the convective core is larger when overshooting is present, so the
temperature is higher in higher layers in the case with overshooting than in
the case without. This is not only true at the end of the main sequence but
also during the H-burning shell progression. The fact that there are higher
temperatures in higher layers makes the envelope stop less deeply in the star.
The core then has a higher mass, thus also a higher temperature (see equa-
tion (22)), when the H-burning shell reaches the discontinuity. It means that
at the beginning of the bump, a star with overshooting has already reached
a higher luminosity (see equation (29)) than a star without overshooting.

The importance of the discontinuity in the case of an overshooting is
much greater than in the case of no overshooting. The explanation can be
found in the hydrogen abundance profile at the end of the main sequence
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(see Figure 11). Overshooting leads to consumption of hydrogen from the
upper layers. When the convective envelope goes deeper into the star, at
the layer reached by the base of the envelope, more hydrogen has been con-
sumed in case of overshooting. The difference in hydrogen abundance before
and after the envelope has reached this layer is then greater, resulting in a
greater discontinuity in the profile. The increase in hydrogen abundance is
then greater, so there is a greater decrease in the mean molecular weight. Ac-
cording to equation (22), this greater decrease in the mean molecular weight
leads to a greater decrease in the temperature in the H-burning shell and thus
to a greater decrease in the luminosity of the star, according to equation (29).

For comparison purposes, the case of a star of 1.3 M� is now being ex-
amined.

Figure 14 shows the track in the HR diagram for 1.3 M� stars with or
without overshooting, the case with is marked in green and the case without
is marked in purple.
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Figure 14: Tracks in the HR diagram, zoomed in on the bump, for a 1.3M�
star both with and without overshooting, respectively represented in green
and in purple.

As expected, the effect on the bump in the case of a 1.3 M� star is much
less visible than in the case of a 1.8 M� star. As in the other case, it can
be noticed that there is a higher luminosity at the beginning of the bump
when overshooting is present, even if the difference is smaller. Indeed, this
time the beginning of the bump occurs at a luminosity of 1.67 L�, which is
only 0.01 L� higher than the case without overshooting. On the other hand
what is very interesting to note is that this time, instead of increasing the
size of the bump, it decreases it. Only a decreasing of 0.07 L� occurs when
it is worth 0.08 L� without overshooting.

Figure 15 represents the hydrogen profile as a function of the fractional
mass q=m/M at the maximum descent of the envelope for a 1.3 M�, with
or without overshooting, respectively shown in green and purple.
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Figure 15: Hydrogen abundance in function of the fractional mass q=m/M
when the convective envelope have reached its maximal extension for a 1.3M�
star, in purple without overshooting and in green with overshooting.

As in the case of 1.8 M�, the presence of overshooting has the same effect
as if the core were larger during the main sequence. At the end of the main
sequence the helium isothermal core is larger and the base of the envelope
does not descend as deeply into the star. It can be seen that this is the case
in figure 15, even though the difference in depth is much less than for the 1.8
M� star. What differs however is that the discontinuity is smaller here than
in the previous case. The case with overshooting indeed consumes hydrogen
in upper layers compared to the case without overshooting. Nevertheless, the
impacted zone does not extend to the layers affected by the convective en-
velope. The difference between the amount of hydrogen before and after the
envelope reaches its maximum depth is therefore less, leading to a smaller
discontinuity. In the case of the 1.3 M� star, the discontinuity is slightly
smaller when overshooting is present than when there is none. This explains
why overshooting leads to a slightly smaller decrease in luminosity during the
bump, using the same reasoning than for a 1.8 M� star, but this time with
a mean molecular weight which decreases less than without overshooting.

48



The difference brought by overshooting is therefore not only more or less
important from one mass to another but also different, leading in one case
to an increase in the size of the bump and in the other to its decrease.

As discussed in section 4.3, for high-mass stars, the helium core reaches
such a size that the temperature is high enough for helium burning to be-
gin before the H-burning shell has reached the discontinuity, resulting in the
absence of a bump. In addition, it was also noted above that the presence
of overshooting causes the core to become larger, and therefore hotter, when
the H-burning shell reaches the discontinuity. A third case is therefore wor-
thy of consideration: the 2.2 M� star with overshooting.
As mentioned in section 5.1, a 2.2 M� star has a mass that is still low enough
for the bump to occur. Nevertheless, this mass is close to the limit above
which no bump is visible. A model for a 2.2 M� star with an overshooting
parameter α = 0.2 has been run. For this model, the overshooting causes the
core to become massive enough, and therefore hot enough, to trigger helium
combustion before the discontinuity has been reached by the H-burning shell.
In this model, no bump occurs.

Figure 16 shows the hydrogen abundance profile as a function of the
fractional mass q=m/M for the model of a 2.2 M� star with an overshooting
parameter α = 0.2 when the helium burning is onset.
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Figure 16: Hydrogen abundance in function of the fractional mass q=m/M
for a 2.2 M� once the helium burning is onset. The yellow vertical line
represents the limit of the convective core.

The yellow line represents the convective core. If convection occurs, it
means that the core cannot be isothermal, so helium burning is present in
the core. The helium burning shell and the discontinuity are both easily
identifiable, it can be seen that the first one has not yet met the second one,
the bump may not have occurred.

5.3 The undershooting

As described in section 3.2.3, the undershooting is a phenomenon that can
occur when there is a convective envelope. The structure of a star during
the red giant phase has also been described in section 4.1 and it has been
shown that the outermost layer is a convective envelope. As a reminder, in
a convective region, energy is transported by the motion of matter. Under-
shooting occurs when matter still moves beyond the lower boundary of the
convective envelope.
The undershooting parameter α has also been defined. For this study of the
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influence of undershooting on the bump, two different values were chosen for
the undershooting parameter: α = 0.2 and α = 0.4. As with overshooting,
these values were chosen to ensure that the effect is sufficiently observable
yet plausible.

In our models, undershooting is only activated once the red giant branch
is reached. The three tracks are then overlaid in the HR diagram for different
values of the undershooting parameters until they reach the branch of the
red giant. The HR diagram can therefore be examined directly at the red
giant branch where an effect due to undershooting is clearly visible on the
bump.

Figure 17 shows the tracks in the HR diagram around the bump for a 1.3
M� star with an undershooting parameter α = 0.2 in green, α = 0.4 in blue
and without undershooting in purple.

Figure 17: Zoom on the part of the red giant branch of the tracks in the
HR diagram for a 1.3 M� star with an undershooting parameter α = 0.2 in
green, α = 0.4 in blue and without undershooting in purple.

It has been seen in section 4.2 that the key element in the red giant bump
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is the presence of a discontinuity in hydrogen abundance. This discontinu-
ity is left by the deepening of the convective envelope down to a maximum
depth fixed by the outwards motion of the H-burning shell. The location of
the discontinuity is thus the lower boundary of the convective envelope at its
maximum extension. As the undershooting extends the full mixing region,
the higher the undershooting parameter, the deeper is the discontinuity, as
can be seen in the following figure.

Figure 18 shows the hydrogen abundance in function of the fractional
mass for the case without undershooting in purple and for an undershooting
parameter α = 0.2 and α = 0.4 in green and blue respectively. It can be seen
that the discontinuity, initially just above q=0.19, drops a little bit below
q=0.19 for α = 0.2 and up to q=0.185 for α = 0.4.

Figure 18: Hydrogen abundance in function of the fractional mass q=m/M
for a 1.3 M� star. The purple profile represents the case without under-
shooting, the green and blue profiles represent respectively the case with an
undershooting parameter α = 0.2 and α = 0.4

With the discontinuity being closer to the center, it is natural that the
H-shell, going outward, encounters the discontinuity sooner. It has been seen
in the description of the red giant branch (see section 4.1) that, except for
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the moment during which the star undergoes the bump, the luminosity of the
star increase. An earlier encounter between the H-shell and the discontinu-
ity then obviously occurs at a lower luminosity. This can be explained with
equations (22) and (29). At the time of the encounter, this one occurring
earlier, the core is smaller, the temperature is therefore lower in the shell and
thus the luminosity is also lower. The figure 15 shows indeed that for higher
undershooting parameter, the luminosity at which the bump begins is lower.

The situation can also be seen from another point of view. Let’s take a
fixed luminosity, for instance L = 1.56L� .

Figure 19 shows the profiles of hydrogen abundance as a function of the
fractional mass q=m/M in a 1.3 M� star with a luminosity L = 1.56L�.
The case without undershooting is shown in purple, with an undershooting
parameter α = 0.2 in green and with an undershooting parameter α = 0.4 in
blue. There are three hydrogen abundance profiles when the undershooting
parameter is α = 0.2. This is explained by the fact that a star with such an
undershooting parameter will pass three times through the fixed luminosity
value L=1.56 while stars without overshooting or with an undershooting pa-
rameter α = 0.4 will pass only once through this luminosity. The numbers
next to the green profiles indicate the moment that the profile represents.
Profile number 1 is obtained before the bump, profile number 2 is obtained
during the bump and finally profile number 3 is obtained after the bump.
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Figure 19: Profiles of hydrogen abundance as a function of the fractional
mass q=m/M in a 1.3 M� star with a luminosity L = 1.56L�, without
undershooting in purple, with an undershooting parameter α = 0.2 in green
and with an undershooting parameter α = 0.4 in blue. The numbers next
to the green profiles indicate the moment that the profile represents. Profile
number 1 is obtained before the bump, profile number 2 is obtained during
the bump and finally profile number 3 is obtained after the bump.

Let’s imagine a star at the bottom of the branch of the red giants, so
with a low luminosity. The H-burning shell progresses outwards while the
star progresses on the RGB and the luminosity thus increases.

In the case of an undershooting parameter α = 0.4, we find ourselves
in the case where the envelope has descended the deepest into the star and
in this case. Once a luminosity of about L=1.53 L� is reached, the shell
meets the hydrogen abundance discontinuity. So the bump occurs and the
luminosity decreases then increases afresh. The H-burning shell continues
to progress and once the luminosity of 1.56 L� is reached, the hydrogen
abundance profile is as shown in blue in figure 17.

Let’s take the same reasoning but with an undershooting parameter of
α = 0.2. Starting from the bottom of the RGB, the shell progresses, the lu-
minosity increases until the luminosity of L=1.56 L� is reached. Contrary to
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the previous case, the discontinuity has not yet been reached. The hydrogen
abundance profile is then as shown in green in figure 17 with the number
1. The luminosity continues to increase and we reach a luminosity of about
L=1.61. The H-burning shell then meets the discontinuity and the luminos-
ity decreases. As it decreases, it reaches again a luminosity of L=1.56 L�.
The hydrogen abundance profile is then at that moment as represented by
the green profile next to number 2. Once the luminosity of about L=1.54 L�
is reached, it will increase again and thus pass again through a luminosity of
L=1.56 L�, this time with a profile such as the green one next to number 3.

Let’s use the same reasoning again but this time with the case where
there is no undershooting. In this case, the H-burning shell progresses and
the luminosity increases, until a luminosity of L=1.56 L� is reached. Since
the shell has not yet reached the discontinuity, the bump does not take place
yet. The hydrogen profile at this point is such that the purple profile in figure
17. The discontinuity is even further away than in the previous case and it is
necessary to wait for a luminosity of about L=1.66 L� for the bump to start.
We then have a decrease in luminosity but not enough to have a luminosity
of L=1.56 L� again.

This explains why we have three times the luminosity of L=1.56 L� for
an undershooting of α = 0.2 and only once in the other two. It can also be
seen in the HR diagram (see figure 15) that if we draw a horizontal line with
a value of L=1.56 L�, the purple and blue tracks would cross the line only
once, while the green track would cross it three times.

Although changing the luminosity at which the bump occurs, it can be
seen in figure 16 that the size of the discontinuity remains the same in the
three cases presented and the decrease in luminosity will therefore be the
same whether or not there is undershooting and regardless of its undershoot-
ing parameter.

5.4 The metallicity

The metallicity represent the proportion of all the elements heavier than hy-
drogen and helium. At the beginning of the Universe, as a result of primordial
nucleosynthesis, matter was composed almost exclusively of hydrogen and he-
lium with only a very small amount of lithium, beryllium and boron. The
metallicity of the first stars was then very close to zero. It is in the stars that
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heavier elements are formed through nuclear reactions and neutron capture
essentially. These elements may later be found in the interstellar medium,
after having been ejected from stars via, for example, supernovae at the end
of the life of massive stars. From this interstellar medium, new stars may be
formed, with a higher metallicity. We have thus stars forming at different
times and different places, which affect its metallicity. The metallicity stays
nevertheless quite small, the hydrogen and the helium staying the two main
components of stars at their formation, but it is enough to see differences be-
tween stars with different metallicity. An example of composition to see this
dominance of hydrogen and helium is the composition of the surface of the
Sun which is: XSun = 0.7381, YSun = 0.2485 and ZSun = 0.0134 (Asplund et
al., 2009).

As already seen, mean molecular weight is an important parameter in
the study of the bump. Changing metallicity theoretically changes the mean
molecular weight, but metallicity being so small compared to the abundance
of hydrogen (and helium) that this change will not be seen. However, one
factor that changes much more with metallicity is opacity as described by
the Kramer’s law (see equation (17)).

In this study, three different metallicities have been chosen: Z=0.015,
Z=0.01 and Z=0.005. The first one, Z=0.015, is our basic metallicity: ex-
cept in this part in which the metallicity is studied, it is the one used to
model all the other stars.

Figure 20 shows the tracks of three stars of 1.8 M� having as only differ-
ence their metallicity. The purple track represent the star with a metallicity
Z=0.015, the green one is for Z=0.01 and finally the blue one is for Z=0.005.
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Figure 20: Tracks in the HR diagram of a 1.8 M� star with a metallicity
Z=0.015 (purple), Z=0.01 (green) and Z=0.005 (blue).

As for the study of the total mass influence, the change of metallicity
affects the star on its global evolution. The tracks undergoes a translation
towards higher luminosities and temperatures when the chosen metallicity
is lower. Even if it is less significant than in the study of the total mass,
a difference in the shape of the tracks during the main sequence is also
observable.

Figure 21 shows the same tracks but zoomed in on the part where the
bump is happening.
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Figure 21: Tracks in the HR diagram, zoomed in on the bump, of a 1.8 M�
star with a metallicity Z=0.015 (purple), Z=0.01 (green) and Z=0.005 (blue).

As with the rest of the evolution of these stars, it is observed that the
bump occurs at lower luminosity if the metallicity is higher. For a metallicity
Z=0.005 the bump begins at a luminosity L=2.24 L�, for Z=0.01 at L=2.05
L� and for Z=0.015 at L=1.93 L�. Regarding the decrease in luminosity, all
three cases show the same decrease.

Figure 22 shows the hydrogen abundance in function of the fractional
mass q=m/M. Each of them is taken when the convective envelope is at its
maximum extend. The same correspondence is used between the color of the
profile and the metallicity as for the HR diagrams.

58



Figure 22: Hydrogen abundance in function of the fractional mass q=m/M
at the maximum extend of the convective envelope for a 1.8 M� star with a
metallicity Z=0.015 (purple), Z=0.01 (green) and Z=0.005 (blue).

These three profiles show that the convective envelope is deeper in a
higher metallicity star than in a lower metallicity star. The discontinuity
is near q=0.17 for Z=0.005, near q=0.16 for Z=0.01 and near q=0.155 for
Z=0.015. This behaviour comes from the dependence between metallicity
and opacity, as described by Kramers’ law (see equation (17)). Due to their
high ionization potential, heavy elements increase opacity. Opacity is in-
volved in the expression of the radiative temperature gradient (equation
(6)), the latter being directly proportional to opacity. A higher metallic-
ity then leads to a higher radiative temperature gradient. According to the
Schwarzshild criterion (equation (5)) the convective zone, in this case the
convective envelope, is more extensive and the discontinuity is lower in the
star. As seen in the case of undershooting, a lower discontinuity leads to a
lower luminosity at the beginning of the bump because the discontinuity is
reached earlier. So, a higher metallicity leads to a lower luminosity of the
star at the beginning of its bump.

Another explanation which may be complementary to the previous rea-
soning, is that for higher metallicity the core has a smaller mass when the
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bump happens. Indeed, for the metallicities Z=0.015, Z=0.01 and Z=0.005,
the isothermal helium core at the moment of the bump has respectively a
mass of MHe = 0.149M�, MHe = 0.159M� and MHe = 0.169M�. As the
luminosity is link to the mass of the core via equations (22) and (29), it cor-
responds well to what is observed. For a higher Z, the opacity is greater (see
equation (6)), and the luminosity being inversely proportional to the opacity,
the luminosity is lower. Less nuclear power is then required to provide the
luminosity. This leads to the fact that the CNO cycle is less active, which
implies a lower temperature in the core layers. The convective core is then
less massive during the main sequence. Therefore, at the end of the main
sequence, the helium core is also less massive. According to equations (22)
and (29), the shell temperature is lower and therefore the luminosity of the
star is also lower.

The hydrogen profile also shows that the size of the discontinuity is the
same for our three metallicities. This is consistent with the fact that we see
the same decrease in luminosity during the bump for all three cases.

5.5 Diffusion

5.5.1 Microscopic diffusion

Diffusion is described in section 3.2.4. As a reminder, it is a phenomenon
that brings light elements upwards and heavy elements downwards. Micro-
scopic diffusion thus has an impact on the hydrogen abundance profile, but
since diffusion is slow in the deep layers of the star, its impact is quite small.

To see the impact of microscopic diffusion, two evolutionary models for a
1.3M� star are compared, one with microscopic diffusion, the other without.
To be noted that microscopic diffusion is always present in stars, so it is
taken into account in all the other models presented in this study.

Figure 23 represents the tracks in the HR diagram of a 1.3 M� star with
and without microscopic diffusion, in purple and green respectively.
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Figure 23: Tracks in the HR diagram of a 1.3 M� star with and without
microscopic diffusion, in purple and green respectively

It can be observed that microscopic diffusion causes a change in the evo-
lution during the main sequence. Nevertheless, the difference between the
two tracks seems to disappear during the post-main sequence. This differ-
ence during the main sequence will thus have no impact on the bump.

Figure 24 shows a zoom in on the tracks in the HR diagram around the
bump.
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Figure 24: Tracks in the HR diagram zoomed in around the bump for a
1.3 M� star with and without microscopic diffusion, in purple and green
respectively

The microscopic diffusion still has an impact on the bump as can be seen
by looking closely, but as expected the impact is quite small. The bump
starts at L=1.66 L� when there is microscopic diffusion and at L=1.68 L�
when it is not taken into account. In the case of microscopic diffusion, the
bump thus occurs at a slightly lower luminosity but the extent of the decrease
in luminosity remains the same.

Figure 25 shows the hydrogen abundance profile in function of the frac-
tional mass q=m/M for both with and without microscopic diffusion. Just as
the HR diagram must be looked at closely enough to see a difference between
the two bumps, the two profiles must also be looked at closely enough to see
a difference between them.
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Figure 25: Hydrogen abundance in function of the fractional mass q=m/M
at the maximum extent of the convective envelope for a 1.3 M� with and
without microscopic diffusion, respectively in purple and in green.

As can be seen in the profiles above, the discontinuity is slightly deeper
in the star (q a little bit above 0.192 M�) when the microscopic diffusion
is taken into account than when it is neglected (q a little bit above 0.193
M�). As explained for the case of undershooting, a lower envelope leads to
a sooner encounter between the H-burning shell and the discontinuity, the
isothermal core is then less hot, the temperature of the shell is lower and we
have a lower luminosity when the bump starts.

It can also be seen that the size of the discontinuity is the same in both
cases, which is consistent with the fact that the decrease in luminosity in
both cases is the same.

5.5.2 Turbulent diffusion

Microscopic diffusion is not the only type of diffusion that occurs in stars.
Turbulent diffusion can occur due to shear caused by differential rotation in
the star. To study specifically the effect of turbulent diffusion on the bump,
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this diffusion is only introduced from the base of the red giant branch. Tur-
bulent diffusion could be present earlier in the evolution of the star, but
taking it into account already during the main sequence, its effect would be
similar to overshooting, what we want to avoid to specifically see the impact
of turbulent diffusion during RGB and the bump. The star is then compared
to another star in which only microscopic diffusion is present.

Figure 26 shows the tracks of the 1.3 M� star, with and without turbulent
diffusion during the red giant branch phase.

Figure 26: tracks of the 1.3 M� star, with and without turbulent diffusion
during the red giant branch phase, in green and in purple respectively.

The difference between the two bumps is more visible than in the case of
microscopic diffusion but remains less important than some other parameters
studied previously. The bump starts at a higher luminosity, L=1.68 L�, in
the presence of turbulent diffusion than when there is none, L=1.66 L�. The
decrease in luminosity is less in the case of turbulent diffusion where there is
a decrease of 0.06 L� instead of 0.08 L� when there is no turbulent diffusion.
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Figure 27 shows the hydrogen abundance profile in function of the frac-
tional mass q=m/M at the maximum extend of the convective envelope for
the 1.3 M� star with and without turbulent diffusion.

Figure 27: Hydrogen abundance in function of the fractional mass q=m/M
at the maximum extend of the convective envelope for a 1.3 M� star with
and without turbulent diffusion, respectively in green and in purple.

Two major differences can be observed in the profiles presented above.
The first is that, when there is turbulent diffusion, the envelope doesn’t go
as deep into the star (q between 0.194 M� and 0.196 M�) as when only
microscopic diffusion is present (q ' 0.192M�). This then explains why the
bump occurs at higher luminosity when there is turbulent diffusion. Indeed,
when there is turbulent diffusion, the encounter between the H-burning shell
and the chemical discontinuity happens latter in the evolution of the star, the
isothermal core is then hotter, the temperature of the shell is then higher (see
equation (22)) and the luminosity at the beginning of the bump is therefore
higher (see equation (29)).

The second difference is the shape of the discontinuity (if it still can be
called a discontinuity). While for microscopic diffusion there is a very clear
discontinuity, with turbulent diffusion this discontinuity is somehow tilted
leading to a smoother change in hydrogen abundance. So the mean molecu-
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lar weight also changes more smoothly. It has been explained in section 4.2
that the bump occurs because of a sudden decrease in the mean molecular
weight and could not be compensated quickly enough by the term Mcore

Rcore
in

equation (22). Since µ changes more smoothly when there is turbulent diffu-
sion, the term Mcore

Rcore
therefore has more time to increase as µ decreases. The

decrease of µ, which is the factor leading to the decrease in temperature, and
therefore in luminosity (see equation (29)), is then partially compensated.
The decrease does occur but is not as strong as in the case of a steeper dis-
continuity.

5.6 Impact on the observations

Through the study of the impact of the various parameters, two different
effects can be distinguished. The first one is a change in the luminosity at
which the bump happens, the second one is a change of the size of the bump
which means how important is the decrease of the luminosity before resum-
ing to its normal increase.

The impact on the observation of the first effect is quite straightforward.
Depending on the parameters of the stars composing a cluster that would be
observed, the bump would occur at one luminosity or another. If a bump is
detected and the value of some parameters is obtained, the luminosity of the
bump can give some constraints on the unknown parameters.

For the size of the bump, the bigger it is, the wider is the range of lumi-
nosities in the bump. Then, the bigger is the bump, the more complicate it
is to detect it. Indeed, it would be more difficult to detect a bump if all the
stars composing it are distributed on a wide range of luminosity than if they
are all at a specific or small range of luminosity. Nevertheless, if the range of
luminosity for the bump can be determined during an observation, it could
put some constraints on the parameters.

It should be noted that this interpretation of the impact of the change in
the size of the bump on the observations assumes that the bump occurs on the
same time scale. For example, when we look at the effect of overshooting for
a 1.8 M� star, the duration of the bump is approximately the same whether
or not there is overshooting, and the effect on the observation explained
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above is valid. If we look on the other hand at the effect of mass change on
the bump, the bump lasts longer for a 2.2M� star than for a 1.0 M� star.
The fact that the bump covers a wider range of luminosity for a 2.2 M� star
would therefore perhaps be compensated by a longer time spent in this range
of luminosity. However, one should also take into account the global time
of stellar evolution, which is not the same for the two stars. The duration
of the bump should then be compared to the stellar evolution time. We see
by this example that in certain cases the impact on the observations is more
complex to interpret.
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6 Comparison with the literature

The starting point of this study was the reading of three articles concerning
the red giant branch bump. The first one is “The shape of the Red Giant
Branch Bump as a diagnostic of partial mixing processes in low-mass stars”
by Cassisi et al. from 2001, the second one “The magnitude difference be-
tween the main sequence turn off and the red giant branch bump in Galactic
globular clusters” by Cassisi et al. from 2011 and the last one “The Red-
Giant Branch Bump Revisited: Constraints on Envelope Overshooting in a
Wide Range of Masses and Metallicities” by Kahn et al. from 2018. Now
that results has been obtained and interpreted, it is of interest to compare
our results to those of these articles.

6.1 “The shape of the Red Giant Branch Bump as a
diagnostic of partial mixing processes in low-mass
stars” (Cassisi et al., 2001)

The purpose of the first article is to study the impact of the partial mixing
processes on the red giant bump. Partial mixing includes undershooting,
overshooting and diffusion. In particular here what is sought to be under-
stood is the impact of the possible smoothing of the discontinuity left by
diffusion and undershooting.

For this they will use several models whose basic model is a model for
which Y=0.23, Z =0.006 and the mass of the star is 1 M�. Several tests are
performed by adding or not diffusion and using undershooting parameters
α = 0.1 or α = 0.2. Whether there is diffusion or not and whether there is
undershooting or not, the discontinuity remained sharp and the bump ob-
served via the luminosity function did not change in shape, they nevertheless
observed a change of the luminosity at which the bump happens. They con-
cluded that the change in the shape of the bump was probably due to the
change in sharpness of the discontinuity. In order to be able to study this
characteristic, they studied new models in which undershooting and diffusion
were neglected but where the hydrogen abundance just below the maximum
extension of the convective envelope is artificially changed. The smoothing
lengths used are 0.1 Hp , 0.2 Hp, 0.5 Hp and 0.75 Hp, where Hp is the local
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pressure scale height. To simplify the study they used a linear smoothed
zone and the hydrogen abundance in the envelope was modified so as not to
change the total abundances of the star.

Figure 28 shows the type of hydrogen abundance profile they obtained
with a smoothing parameter 0.5 Hp.

Figure 28: Hydrogen abundance in function of the fractional mass in the
model used by Cassisi et al. in the presented paper. The dashed line is the
model without smoothing, the solid line is for a smoothing parameter 0.5 Hp.
(Cassisi et al. 2001)

From these profiles, they used a Monte Carlos technique to obtain lumi-
nosity functions.

Figure 29 shows the luminosity functions for each of the smoothing pa-
rameters used in solid line and the model without smoothing in dotted line.
For artificial smoothing of the discontinuity, they also observed a change in
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luminosity but shifted their results to match the brightest side to make it
easier to compare the shape of the bump, which was the main goal.

Figure 29: Comparison between the different luminosity functions simulated
by the Monte Carlo technique for different hydrogen abundance profile arti-
ficially construct. (Cassisi et al. 2001)

The effect is easily visible, especially for smoothing parameters of 0.5 Hp

or more. For greater smoothing, the bump is more centered and symmetri-
cal. They conclude that the efficiency of hydrogen burning during the bump
depends on the thickness of the discontinuity. The thicker the area of change
in hydrogen abundance, the smaller is the efficiency variation.

They also artificially changed the opacity at the discontinuity but saw no
impact on the bump. They concluded that the most important factor was
therefore the change in hydrogen abundance.
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Finally, they also looked at whether these differences would be visible in
observations and concluded that the response depended on various param-
eters, including metallicity. For a globular cluster of high metallicity, the
effect of a smoothing parameter of 0.5 or more could be observed.

Like Cassini et al.(2001), when we studied the effect of undershooting and
microscopic diffusion, we observed a change in the luminosity at which the
bump occurred but no change in the slope of the discontinuity when these
parameters are taken into account.
Even if the shape is not quite the same, we can compare the case of the
artificial smoothing added in the article to our case of turbulent diffusion
where the discontinuity is also smoothed. We saw that this had the effect of
making the decrease in luminosity less significant. As explained in section
5.6, when the bump is smaller, the impact on observations would be that
more stars would be found in a reduced luminosity interval. We therefore
have the same type of result as Cassisi et al.(2001) and their luminosity
functions are consistent with what we would expect from our results.
Finally, they didn’t observe any change of shape when they changed the
opacity at the discontinuity. We did not look at a direct change in opacity,
but we looked at changes in metallicity that lead to a change in opacity.
Although the luminosity at which the bump occurs changes, we don’t see a
change in the size of the bump, so we would effectively see no difference in
the shape of a luminosity function.

6.2 “The magnitude difference between the main se-
quence turn off and the red giant branch bump in
Galactic globular clusters” (Cassisi et al., 2011)

The second paper by Cassisi et al. (2011) aims to present new magnitude
measurements for the main sequence turn-off (TO) and for the bump. Using
the filter F606W, for their observations, they determine the apparent magni-
tude of the TO and of the bump and use the relative distance of the clusters
from the MS-fitting technique. They then determine the age of the clusters
from the absolute magnitude of the TO. It was for this purpose that they
selected the clusters to be studied. Some were too bright, and thus saturated
the image, other clusters had too few stars in the RGB phase, the bump was
therefore undetectable (these are mostly those with low metallicity). Then
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another selection criterion was that their metallicity had recently been re-
estimated. In the end twelve clusters covering a wide range of metallicity
were selected.

To determine the magnitude of the bump, they count the number of stars
as a function of brightness and make a linear fit that represents the contin-
uum. They then subtract this continuum and look at the maximum.

They made models for MTO
F606W and ∆MTO−Bump

F606W , which are respectively
the magnitude of the turn-off and the difference of luminosity between the
turn-off and the bump in the F606W filter, as a function of the metallicity
[M/H] for several cluster ages. They observe that the bump is more tenuous
with age and ∆MTO−Bump

F606W increases. By setting the points for the measured
clusters, they found that the age obtained by ∆MTO−Bump

F606W is smaller than
that obtained by the TO, i.e. the bump would be too bright. The discrep-
ancy between observations and theory does not change with metallicity, the
error being always approximately 0.2 mag.

Several hypotheses are put forward to explain this. The first is that
the values of [M/H] are underestimated but there is no indication that this
would be the case. The second, that opacity would be underestimated but
they found this unlikely. It is also suggested that this could be due to the lack
of consideration of atomic diffusion but even if this were taken into account
it would be inhibited by turbulence and would not reduce the discrepancy
sufficiently compared to other factors not taken into account which would
increase it. A last solution would be to introduce undershooting.

The method for studying the bump in this second paper by Cassisi et al.
(2011) is very different from what we have done here. It is therefore difficult
to compare what they did with what has been done here. Nevertheless we
can note that their final conclusion was that the bump in their models occurs
at too high luminosity compared to the observations. They put forward
several hypotheses to explain this. Among the least likely they propose that
metallicity has been underestimated. We studied the effect of metallicity
and saw that if metallicity was underestimated, then the bump in the model
would be brighter than with higher metallicity. So even though it is unlikely,
this explanation could explain the discrepancy. A second hypothesis is the
introduction of microscopic diffusion and we have seen that indeed taking this
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into account would reduce the luminosity they would obtain for their models.
However, it is true that the effect is not very pronounced and would probably
not solve the discrepancy by itself. Finally, for the favored hypothesis which
is the introduction of undershooting in the models, we have also studied this
parameter and we have seen that indeed the introduction of undershooting in
the models allows to obtain a bump which occurs at lower luminosity and the
effect is more pronounced than for the introduction of microscopic diffusion.
This could therefore be the source of the discrepancy between their models
and observations.

6.3 “The Red-Giant Branch Bump Revisited: Con-
straints on Envelope Overshooting in a Wide Range
of Masses and Metallicities” (Kahn et al., 2018)

The third paper, by Khan et al. (2018), analyses the bump using a combina-
tion of asteroseismology and spectroscopy. With this method they can study
a data set of nearly 3000 red-giant stars independently of distance and with
wide ranges of mass, age and metallicity.

The masses studied range from 1.0 to 1.6 M� and [M/H] from -0.4 to
0.2 dex. Undershooting is studied for efficiency values of 0.0 (thus no un-
dershooting), 0.025 and 0.05, corresponding to undershooting parameters of
α = 0, α = 0.3 and α = 0.6 respectively.

They compare the observed data with those obtained in simulations by
plotting graphs representing the seismic parameter νmax as a function of
temperature. 1/νmax can be used as a proxy for the luminosity. By assem-
bling the data into several mass and metallicity intervals, they determined
the location of the bump and compared the change in the bump caused by
changing these parameters. The seismic parameter of the bump decreases
with increasing mass and decreasing metallicity. So a larger mass leads to a
higher luminosity and a higher metallicity leads to a lower luminosity.

When undershooting is not taken into account, there is a discrepancy
between observation and models, the models give values of the bump that
are too bright. The next objective is then to compare the observation with

73



various models using different undershooting parameters. Thus for each ob-
servation a value of the undershooting parameter can be found to compensate
for the discrepancy. Indeed the undershooting will lower the luminosity at
which the bump occurs. A more important undershooting seems to be neces-
sary in the case of metal-poor stars. However, the undershooting parameter
never exceeds 0.6.

Uncertainties other than that of the undershooting parameter exist. In
addition to the parameters already mentioned, initial helium abundance and
overshooting have been studied. By increasing the initial helium abundance,
they find that the bump occurs at higher luminosity. By adding overshoot-
ing, they find that the presence of this last has no impact on the bump.

A combination of several changes in the parameters can lead to a dis-
appearance of the discrepancy but the preferred parameter to explain the
discrepancy is the undershooting which must be taken into account.

As in the previous article, the method used differs a lot from ours. Nev-
ertheless, we can compare their conclusions on the impact of the parameters
on luminosity with what we have obtained.

The first result they show is that the luminosity of the bump increases
with increasing mass and decreasing metallicity, which we also obtained.

As proposed in the previous article they use undershooting to make the
discrepancy disappear. So they have that the undershooting lowers the bump
luminosity as we obtained for our models.

Concerning the overshooting, they don’t get any impact. We have seen
in our study of overshooting that it can have a very big impact on the bump
but that indeed, depending on the mass of the star and the overshooting
parameter, the effect can also be minor. It is therefore possible that for the
parameters they have chosen, overshooting is negligible. But it cannot be
neglected in a general way in the study of the bump.
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7 Conclusion

In order to better understand the red giants branch bump, we have tried
to understand the influence of several parameters on it with the help of the
stellar evolution code Clés. Several models has thus been implemented by
modifying the total mass of the star, its overshooting and undershooting pa-
rameters, its metallicity and by looking at cases with or without microscopic
and turbulent diffusion. From these models, mainly by looking at their HR
plot and hydrogen abundance profile, the changes caused on the bump have
been identified and it has been explained why they occurred.

For the total mass of the star, it has been observed that the luminosity at
which the bump occurs increases with the mass. This is due to the fact that
for a star of greater mass, it has a more massive core when the discontinuity
is reached by the H-burning shell. As for the importance of the luminosity
decrease, no direct relation has been observed.

Overshooting alters what happens during the main sequence. This leads
to a different hydrogen profile at the base of the red giant branch. This
change in the profile can have a very big impact on the bump (1.8 M�) as
well as in some cases only a minor impact (1.3 M�). In general it will lead to
a greater luminosity for the beginning of the bump but the size of the bump
can be larger (1.8 M�) or smaller (1.3 M�) depending on the considered case.
The presence of overshooting can even make the bump disappear for a star
of sufficient mass as shown for a star of 2.2 M�.

Undershooting causes the convective envelope to descend further into
the star. The higher the undershooting parameter is set, the earlier the
H-burning shell reaches the discontinuity, and therefore, with a lower core
mass. The bump thus occurs at lower luminosity when the undershooting
parameter is higher.

For metallicity, the luminosity at which the bump occurs is lower for
a higher metallicity. This can be explained by the fact that, when there
is a higher metallicity, on the one hand the discontinuity is deeper in the
star and on the other hand the core of the star is smaller. The size of the
discontinuity in the hydrogen profile is not impacted, which means that the
luminosity drop is the same for each metallicity studied.

Finally, two cases of diffusion were studied, microscopic diffusion and
turbulent diffusion.

In the first case, the presence of microscopic diffusion leads to a disconti-
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nuity located deeper in the star, so the bump occurs at lower luminosity but
the difference with the case without microscopic diffusion is quite small.

In the presence of turbulent diffusion, in addition to the fact that the
discontinuity is located less deep in the star, it is also softer which leads to
a lesser reduction in luminosity during the bump.

When analyzing the various parameters for their effects on the bump,
attention has been focused mainly on what happens to the luminosity at
which the bump occurs and the resulting decrease in luminosity. As briefly
mentioned in section 5.6, the duration of the bump could also have an impact
on the observation of the bump and would therefore be an interesting factor
to analyze in order to go further in this study.

All these results were then compared to three articles about the bump.
Although the methods were not the same, the results tend to be the same
when a comparison is possible.

Another interesting way to go further in the study of the bump would be
to establish luminosity functions as was done in the first paper, presented
by Cassisi et al. (2001), or even better, to be able to obtain cluster obser-
vations to compare the observations with our models. We could then try to
better calibrate the different parameters composing the star. One could also
explore other values of the parameters studied above or try to understand
the influence of other parameters, for example the initial helium abundance
cited by Khan et al. (2018) but not explored at all here.
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Scuflaire, R., Théado, S., Montalbàn, J., Miglio, A., Bourge, P.-O., Go-

dart, M., Thoul, A., Noels A., (2007). CLÉS, Code Liégeois d’Évolution
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