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Chapter 1

Introduction and problem
statement

1.1 Introduction

Blacklight Analytics is a enterprise that develops solutions regarding the manage-
ment of local electrical distribution networks. In the recent years, distribution sys-
tems need to integrate more and more renewable generation in their networks. Since
networks cannot be quickly upgraded and at low cost, new generators are connected
to the network under non-firm access contract. The assets in the networks have
been designed to transmit power in one direction, from the global network, on which
the local network is connected, to the local network. This configuration implies
situations where the temporary high production in the local network creates con-
gestion problems in the assets, when energy generated must be injected into the
global network. There is a need for a practical method able to limits dynamically
the generators production such that the system can be considered safe, i.e has a very
low probability that the electrical power flowing through one asset is higher than
the maximum tolerated power is this asset.

Blacklight Analytics develops a solution to this problem. The method casts the
problem into a stochastic decision process. This process is divided in three phases
: (i) generation of a network model, (ii) forecasting of the power produced or con-
sumed, (iii) computation of the generator limits. The phase (ii) , for each network
generator, takes as input generator production historical and output future produc-
tion probability distribution . This output will be used to define generator limits.
If the forecasted probability distribution indicates that there is a non-negligible risk
that the production of the generator outnumbers its maximum acceptable value,
above which it encounters risks, it means that the generator capacity must be vol-
untarily restrained immediately. In the current implementation, the forecasting
method uses Gaussian process regression to forecast individually each source and
combine information using covariance estimation. This master thesis subject ad-
dresses the question of what is the best forecasting method to implement in this
described context, and on the basis of which elements of comparison. The growing
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scientific field of Deep Learning has a great potential to be exploited to achieve this
goal.

Therefore, the concrete goal of this Master Thesis is the comparison of different
probabilistic forecasting models, mostly from the deep learning scientific field, in the
context of the prediction of renewable energy production. The implementation code
can be accessed at https://github.com/Naaapp/MasterThesis.

1.2 Document Organisation

We introduces the main goal that we want to achieve in this master thesis, i.e the
comparison of different probabilistic forecasting models in the context of the predic-
tion of renewable energy production, presents the related works and state mathemat-
ically the problem (1). After defining the problem, we describe the toolkit that will
be used to tackle it, GluonTS, with its historical, functioning, different main com-
ponents, as well as the different forecasting models implemented within (2). Then,
we perform a comparison, using a classical metric as element of comparison, of all
implemented models, after discussing the values of their hyperparameters (3). After
this comparison, we discuss the relevance of using a classical metric to evaluate the
quality of the forecast, knowing our previously defined goal, and from this discussion
we introduce a new metric and the corresponding loss function (4). Come next the
comparison of all implemented models using this newly defined metric (5) which
allow us to conclude about the best forecasting model in the defined context.

1.3 Related Works

Time series forecasting is a well-defined and extensively explored scientific field. It
is considered as part of the probability scientific field for many years, from very
simple or naive forecasting models (Naive, Seasonal Naive, Moving Average, etc) [1]
to more complex models as the Autoregressive integrated moving average (ARIMA)
[2] or Exponential smoothing, introduced by statistician Robert Goodell Brown in
1956 [3]. Exponential smoothing and ARIMA models are the two most widely used
approaches to time series forecasting, and provide complementary approaches to the
problem. While exponential smoothing models are based on a description of the trend
and seasonality in the data, ARIMA models aim to describe the autocorrelations in
the data.

Probabilistic time series forecasting stems from single-valued time series forecast-
ing. For instance, ETS forecasting is an exponential smoothing method that can
generate single values but also prediction intervals [4].

In recent years, advances in deep learning has led to interesting results in proba-
bilistic forecasting field. Recent publications ([5], [6]) and forecasting competitions
results ([7], [8]) have shown the relevance of using deep learning based models to
obtain better results than, for example, ETS or ARIMA methods.
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Regarding the implementation of these techniques, deep learning frameworks,
such as Tensorflow [9], MXNet [10] and Pytorch [11] are popular solutions. Con-
sidering the time series modeling, a certain number of commercial and open-source
solutions exist but does not provides toolkits focused on modern deep learning.
For example the R-forecast package [12] provide a plethora of models and tools for
classical forecasting methods and contains neural forecasting models, however these
pre-date modern deep learning methods and the toolkit only contain stand-alone
implementations of simple local models. There is a lack of state-of-the-art architec-
tures.

The lack of specific probabilistic time-series forecasting toolkit has been recently
filled with GluonTS (https://gluon-ts.mxnet.io) [13], a deep learning library
that bundles components, models and tools for time series applications such as
single-valued and probabilistic forecasting or anomaly detection. It relies on the
deep-learning framework MXNet [10], developed by Amazon Web Services, and is
implemented in programming language Python. As it provides all the services needed
to produce experiments and comparisons of deep learning probabilistic forecasting
models, it is the main implementation tool of this master thesis. All models that
will be compared in this work are GluonTS pre-implemented models.

Deep Learning probabilistic forecasting of renewable energy production is a sub-
ject that has already been covered by various scientific teams, with different contexts,
goals and techniques. Various results has been compiled and analysed in different
scientific review papers. Probabilistic forecasting in the context of wind turbines
generation has been reviewed in [14]. Deep learning techniques for renewable energy
forecasting has been reviewed in [15]. These reviews exposes notably a great number
of different models and techniques.

Review [15] is more a presentation of state-of-the art techniques than a compari-
son, as it doesn’t presents quantitative results. Review [14] presents results extracted
from the scientific papers presenting the different models. These results are obtains
with completely different datasets and other elements of the context are unknown.

As it is performed using the same toolkit, with the same dataset and context, this
works presents a more reliable comparison and will explore the possibility of using
other metrics than the ones used in these referred reviews, knowing the goal that
has been fixed, which will possibly differs from the goal pursued in these reviews.
As this work is focused on the models that are pre-implemented in GluonTS, some
state-of-the-art models that are compared in this reviews are not compared in this
work. These models are generally not open-source or accessible anyway.

1.4 Problem Statement

Before entering into solution description, we need to define mathematically the prob-
lem of time series deep-learning forecasting, whereabouts GluonTS has been con-
ceived.

As different types of models has fundamental differences in the way they express
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the problem, the mathematical formulation differs. Two mathematical formulation
are presented, corresponding to two types of models found among the implemented
models. The first mathematical formulation corresponds to the feed-forward models.
The second mathematical formulation corresponds to the RNN models.

Models dataset is composed of certain number of time series, in training dataset
and in testing dataset. In general the training and testing dataset is composed of
the same time series (this affirmation is discussed in section 2.3). This situation is
the one considered in this section.

Let the following variables :

• I the number of time series considered

• T the number of time steps in time series

• xi,t a scalar variable representing the value of the time series i at time step t.

• a, b, c, d, e specific values of t, with e = T

• t = 0 < t = a < t = b < t = c < t = d < t = e

• predict length = b − a, fixed hyper parameter of the problem. Indicates the
number of time steps about which the models must make a prediction simul-
taneously.

• context length = c − b, fixed hyper parameter of the problem. Indicates the
number of time steps that the model consider as input simultaneously.

We also define L : R × (R → R) → R the loss function taking a value and a
probability distribution as input and giving a loss value as output. As example of
function L, we can mention the negative log-likelihood :

L(y, φ(x)) = −ln(φ(x = y)) (1.1)

The details of loss implementation are discussed in section 2.4.

Each time series can be conceptually decomposed as two pieces. The first piece,
[xi,0, ..., xi,d−1] correspond to the part of the time series whereupon we want to train.
The second piece [xi,d, ..., xi,e−1] correspond to the part of the time series whereupon
we want to test. The training set is composed only of the first pieces of each time
series when the training set is composed of the two pieces (i.e. the totality of the
time series).

At the end of the training, the model neural network has been trained on the
whole training data, and can be tested on the testing data.
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1.4.1 First mathematical formulation : Feed Forward mod-
els

This formulation corresponds to the way the models that can be described as Feed
Forward (see SimpleFeedForward model in section 2.7.1) compute a solution of the
problem.

xi

0 a b c d e

Figure 1.1: Feed forward models forecast : General case illustration

Considering an interval [xi,a, ..., xi,c−1] in the time series i, our goal is to estimate
the distribution of future window [xi,b, ..., xi,c−1] given its history [xi,a, ..., xi,b−1]. The
estimated distribution is defined as :

pθ(xi,b, ..., xi,c−1|xi,a, ..., xi,b−1) (1.2)

Where θ denotes the models parameters. This distribution can be factorised as :

pθ(xi,b, ..., xi,c−1|xi,a, ..., xi,b−1) =
c−1∏
t=b

pθ(xi,t|xi,a, ..., xi,b−1) (1.3)

We define NNθ, a neural network parametrized by θ. It hypothesis space is defined
as {h : Rb−a → Rk(c−b), h ∈ H}, with k the number of parameters needed to defines
the output distribution. We consider the case of a gaussian distribution, with k = 2.
The evaluation of NNθ can be described as :

[µθi,b, .., µθi,c−1, σθi,b, .., σθi,c−1] = NNθ(xi,a, .., xi,b−1) (1.4)

The estimated distribution of a variable xi,t of the future window (t ∈ [b, c − 1])
is expressed as, with φµ,σ : R→ R a gaussian function parametrized by parameters
µ and σ :

pθ(xi,t|xi,a, ..., xi,b−1) = φµθi,t,σθi,t(xi,t) (1.5)
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The estimated distribution of the future window as defined in equation 1.2 is
expressed as :

pθ(xi,b, ..., xi,c−1|xi,a, ..., xi,b−1) =
c−1∏
t=b

φµθi,t,σθi,t(xi,t) (1.6)

This estimation is performed for different intervals [xi,a, ..., xi,c−1]. We consider
disjoint adjacent future windows, from the first possible future window (b = context length),
see figure 1.2, to the last possible future window (b = d− predict length), see figure
1.4, and for all time series i ∈ [0, I].

xi

a = 0 b c d e

Figure 1.2: Feed forward models forecast : First possible interval illustration

xi

0 a b c d e

Figure 1.3: Feed forward models forecast : Second possible interval illustration

xi

0 a b c = d e

Figure 1.4: Feed forward models forecast : Last possible interval illustration

6



Finally, the global loss of the estimation is defined as the sum, for each time series
and each time step, of the loss function L with as argument the real value and the
estimated distribution :

loss(θ) =
I∑
i=1

d−1∑
t=b−a

L(xi,t, φµθi,t,σθi,t(xi,t)) (1.7)

1.4.2 Second mathematical formulation : RNN models

This formulation corresponds to the way the models that can be described as RNN
(see CanonicalRNN model in section 2.7.2) express the problem.

xi

0 a c d e

Figure 1.5: RNN models forecast: General case illustration

Considering an interval [xi,a, ..., xi,c−1] in the time series i, our goal is to estimate,
∀t ∈ [a+ 1, c− 1], the distribution of xi,t given xi,t−1 and its hidden states hi,t. The
estimated distribution is defined as :

pθ(xi,t|xi,t−1, hi,t) (1.8)

Where θ denotes the models parameters.

We define fθ, a function parametrized by θ. It hypothesis space is defined as
{hf : RR→ R, hf ∈ Hf}. Its evaluation can be described as, ∀t ∈ [a+ 1, c− 1] :

hi,t = fθ(xi,t−1, hi,t−1) (1.9)

We define gθ, a function parametrized by θ. It hypothesis space is defined as
{hg : R → Rk, hg ∈ Hg}. With k the number of parameters needed to defines the
output distribution. We consider the case of a gaussian distribution, with k = 2. Its
evaluation can be described as, ∀t ∈ [a+ 1, c− 1] ::

[µθi,t, σθi,t] = gθ(hi,t) (1.10)
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The estimated distribution as defined in equation 1.8 is expressed as, ∀t ∈ [a +
1, c− 1], with φµ,σ : R → R a gaussian function parametrized by parameters µ and
σ :

pθ(xi,t|xi,t−1, hi,t) = φµθi,t,σθi,t(xi,t) (1.11)

This estimation is performed for different intervals [xi,a, ..., xi,c−1]. We consider
disjoint adjacent interval, from the first possible future interval (c = context length+
predict length), to last possible future window (c = d), and for all time series
i ∈ [0, I].

Finally, the global loss of the estimation is defined as the sum, for each time series
and each time step considered, of the loss function L with as argument the real value
and the estimated distribution :

loss(θ) =
I∑
i=1

d−1∑
t=b−a

L(xi,t, φµθi,t,σθi,t(xi,t)) (1.12)
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Chapter 2

GluonTS

2.1 GluonTS : from origins to nowadays

To tackle the problem that has been formalised mathematically in the last chapter,
the main implementation tool that have been chosen is the toolkit GluonTS. To
begin the presentation of this toolkit, a summary of it history might be useful.

GluonTS has been developed by a Amazon Web Service team to fill the gap of
time series modeling toolkit [13]. From it origins, it goal is to provides a deep learning
library that bundles components, models and tools for time series applications such
as forecasting or anomaly detection. It simplifies all aspects of scientific experiments
with time series models, which justify its use in this master thesis.

At the time of writing this master thesis, GluonTS is a very recent toolkit, which
is coherent with the fact that the deep learning forecasting field is recent itself. It first
release version (v0.1.0 ) is dated from March 3rd 2019. The implementation of the
code has been performed on the version v0.4.2 released on November 26th 2019 and
as been updated for version v0.5.0, released on May 12nd 2020. Models Wavenet
(see 2.7.10) and NBEATS (see 2.7.11) have notably been added in this update.
These versions are still considered as beta versions. This implied several bugs and
implementation issues. In particular some models (for example an implementation
of the DeepState model described in paper [16] ) failed to run correctly, and the run
of “custom” models (implemented using the provided model template functionality)
is incompatible, due to a running error, with the ”hybridization” functionality, an
CPU-GPU optimization method which provides important training time reducing.
In addition, some functionalities that would be useful are not currently implemented,
as alternative loss functions for pre-implemented models (see 4.3 section).

2.2 GluonTS Functioning

The GluonTS functioning could be summarised as the interaction between different
components that are cited here and presented in details in following sections.
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The GluonTS toolkit defines a dataset structure, containing in particular the time
series information (see section 2.3). This dataset is given as input to a GluonTS
model. This model is pre-implemented or implemented using the provided “model
template” functionality, which allows to create any kind of models following a defined
structure. The selected model uses the dataset information for its training and
testing . When the model is evaluated, it gives in all cases as output a distribution
for each of the testing time steps, for each time series (see 1.4). The type of output
distribution is an hyperparameter of the problem and is discussed in section 2.6.
Concretely, the output information is not the distribution parameters themselves but
a set of randomly drawn sample of the predicted distribution . The model, if belongs
to deep learning models category, must be trained before evaluation, using the loss
function (see section 2.4). The resulting output distributions could be evaluated
using the appropriate metrics (see section 2.5).

2.3 Datasets

GluonTS interface imposes a certain structure of datasets, objects containing data
used for training and testing models. This section describes what is this structure,
what are the original data information at our disposition and how these data are
traduced into datasets.

Datasets are composed of some mandatory and some optional components.
‘dataset.train‘ is an iterable collection of data entries used for training. Each entry
corresponds to one time series. ′dataset.test is an iterable collection of data entries
used for inference. ‘dataset.metadata‘ contains metadata of the dataset such as
the frequency of the time series, the context length and the prediction length (see
below).

GluonTS is optimized to handle multiple time series in parallel. The training time
will be significantly increased if the dataset is composed of only one time series of
very long length compared to a dataset composed of multiples time series of smaller
length.

As mentioned in section 1.4, in general the training and testing sets are composed
of the same time series. The definition of the task whereabouts this master thesis is
dedicated, the forecasting of wind turbines production, admits situations not com-
patible with this general affirmation. In fact, the goal is to forecast the production
of an energy generator using a model which possibly could not be trained on the
current generator production history, but on others generator production history.
The comparison must be performed on different configurations of training/testing
data, including where the training data and testing data comes from the same gen-
erator(s) history and where it is not the case. This allow us to test how the forecast
quality is influenced by the variation of configuration of input data.

Original data provided by “Blacklight Analytics” is composed of different time series
:
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• A continuous 6 months history of a wind turbine production , in kWh
(6months-minutes.csv)

• An history of a wind turbine production, in negative MWh
(mesure p gestamp.csv)

• A 2 days history of two wind turbines production, in negative MWh
(2eol measurements.csv)

The constant time between two time steps in these time series is 1 minute. Using
GluonTS terminology, the time series are at a “frequency” of 1 minute. All the time
series are converted to positive MWh. Nowadays the different studied configuration,
because of the GluonTS behaviour optimized to handle multiple time series and
behaviour, these original times series are manually splitted before putting them in
dataset structure. Each original time series are manually splitted in certain number
of time series of same size. This size is considered as a hyper parameter of the
problem.

The configurations considered are the following :

• All the disposable times series are used as training and testing data. Referred
as “Config A” in the following sections.

• 2eol measurements.csv time series used as testing data and the other time
series as training data. Referred as “Config B” in the following sections.

We will see in chapter 3 that the configuration A/B does not influences signifi-
cantly the choice of the optimal parameters, as the experimentation that have been
performs tends to show. Knowing that testing different configurations systemati-
cally is in the majority of the time redundant and the training time needed for the
experimentation is multiplied, the different configurations forecasting results will not
be systematically shown.

GluonTS allow the use of features, i.e. information used as input to the models
additionally to time series information. Between the tested models, only DeepAr
(2.7.3) is compatible with this functionality. In our case, it could be interesting
to differentiate the different wind turbines information. Time series sources can be
described using static categorical features. For example, in the configuration A,
splitted time series coming from time series 6months-minutes.csv will have a cate-
gorical value of 0, time series from mesure p gestamp.csv the value of 1, times series
from 2eol measurements.csv values of 2 and 3. This functionality could be useful
whether the different sources have fundamental differences in behaviour. Neverthe-
less, the concrete use of this functionality in the code fails for an unknown reason.
As it is an optional functionality that could be use on only one model, we decide to
give up this functionality.

As defined in section 1.4, predict length and context length are hyperparameters
of the problem. BlackLight Analytics is interested in a prediction interval of 10
minutes. The hyperparameter is set definitely to 10, as the frequency is 1 minute.
context length, indicating the number of time steps considered as input for the
model network, is considered as an hyperparameter to tune (3.3.1 and 5.2.1).
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2.4 Loss

Loss functions are a key component of the deep learning forecasting process, as in
any deep learning applications, as they evaluate the quality of the prediction during
the training process, in order to update the model network in consequence. We
have seen how the loss is expressed in the problem statement in section 1.4. In this
section we discuss about the loss function L, that appears in this loss expression,
that GluonTS will use.

GluonTS implements for its predefined models only one type of loss function.
This loss function is, for the majority of the models, the inverse of the log-density
of the output distribution, as defined in the equation 2.1. In some models, the
fundamental difference in terms of architecture justify a different loss. For example
the MQRNN and MQCNN models use a combination of different quantile losses as
loss function (see 2.7.7).

If φ(x) is a probability distribution and y an observed value, the loss function L
is :

Ldefault(y, φ(x)) = −ln(φ(x = y)) (2.1)

The use of this loss expresses efficiently that the predicted distribution must
corresponds to the real distribution (distribution that is unknown, but from which
observed values can be considered as samples). In the chapter 3 of this master
thesis, the model comparison will be done using this default loss, considering that the
objective pursued is the minimization of the difference between predicted distribution
and the real distribution.

The chapter 4 of this master thesis will discuss the relevance of this affirmation
and the use of this default loss.

2.5 Metrics

Metric functions are a key component of the deep learning forecasting process as
much as loss functions. When the loss evaluates the quality of the forecast during
training, the metric evaluate the forecast during testing. In this section, we discuss
about the optimal choice of metrics that we will use, taking account the choice of
loss.

Concerning the evaluation of the results, GluonTS provides a module using the
trained model and testing data to provide quantitative results, as metrics (“Aggre-
gate”, for all time series, or “Item”, for each series separately). Metrics proposed by
GluonTS includes MSE, MSIS, RMSE, MASE, and other classical measures.

All metric function takes as argument N randomly drawn sample values of the
predicted probability distribution ([x1, ..., xN ]) and one observed value y. For exam-
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ple the MSE metric function is defined as :

MSE(y, [x1, ..., xN ]) =
1

N

N∑
i=0

(y − xi)2 (2.2)

“Item” metric value is the mean of metric function value for each time step of
the testing interval. In fact, for models that falls under the feed-forward category,
the testing consists in evaluating the model with, as prediction interval, the testing
interval (see 1.4) and compute the metric of each time step of this interval. For RNN
models category, the testing consists in evaluating the first time step of the testing
interval, obtains a distribution as output, sample from it a value and use this value
as argument for the following time step evaluation, and continue until the end of the
testing interval. “Aggregate” metric value is the mean of “Item” metrics values for
each time series.

In chapter 3, as we use the default loss, metric function must correspond to this
loss, as it has been defined in section 2.4.

The problem is that the metric function cannot be equivalent to loss function, as
these are functions with different inputs, the loss function taking as input the pre-
dicted distribution instead of randomly drawn point sample. Nowadays, in fine, the
use of metrics like MSE, MSIS, RMSE, MASE to evaluate the quality of the model
express the same goal as the use of the defined loss function, i.e. the minimization
of the difference between predicted and real distribution. A high value of one of
these metrics in mean is proportional to a high value in mean of the loss in mean.
The metric chosen for the first model comparison in chapter 3 is MASE, the “Mean
Squared Averaged Error”, that is available for all model (in contrast to MSE, not
available for MQCNN and MQRNN models). It is defined as the MSE divided by
the absolute error of a naive one step model prediction.

2.6 Distribution

In previous section, in particular in the problem statement (1.4), we formulate the
problem as probabilistic, which means that the prediction output is not a single
value but a distribution. We still have to define what type of distribution is given
at output.

GluonTS proposes different types of output distribution. In most of the models
the output of the neural network is technically a vector of values which is transformed
to a vector of distribution parameters of the chosen distribution. Finally is given
as output a defined number of sampled point of the distribution that has been
parametrized using the parameters.

In current implementation, three different output distribution could be used,
Gaussian, Laplace and PiecewiseLinear, for the majority of models (some models,
MQCNN, MQRNN, NBEATS and Wavenet does not outputs samples of a distribu-
tion function, but quantiles of the distribution itself, see 2.7 ).
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Student and Beta has been rejected because the quantiles of the distribution
are not obtainable, which is not acceptable as we are interestered in the quantiles
values in the chapter 4. Uniform has been rejected because of loss concerns in
execution. Other options are available, as multiple kernel gaussian. The study [14]
assert that the two most common choices of output distribution in the context of
the wind turbines probabilistic forecasting are Gaussian and Beta distribution. This
affirmation will be verified (concerning Gaussian) in sections 3.3.5 and 5.2.5.

The GluonTS models are mandatory to output an object containing samples of
the distribution, not the distribution itself (parameters values). Parameters values
could be saved in the case of custom models in order to obtain precises information
about the distribution that has been predicted.

Figure 2.1: Comparison between Gaussian distribution and Laplace distribution
(https://www.researchgate.net/figure/

Gaussian-distribution-and-Laplace-distribution_fig7_321825093)

Figure 2.2: Comparison between Gaussian distribution and PiecewiseLinear
distribution (https://en.wikipedia.org/wiki/Piecewise_linear_function)

2.7 Models presentation

GluonTS, as a toolkit focused on providing tools to implement, evaluate and compare
time series forecasting models, provides a wide range of different forecasting models.
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Before evaluate it, the models must be theoretically introduced.

All the pre-implemented deep learning models that have been tested are presented
here. The models own hyperparameters are mentioned in corresponding section.
Own hyperparameter values comparison is performed in section 3.4.

2.7.1 FeedForward

The first mathematical formulation of the problem (in section 1.4.1) corresponds
to the way models that could be described as “Feed Forward models” expresses the
problem. This implemented model, named FeedForward, neural network consists in
an MLP (Multi-layer Perceptron).

Its number of hidden layers and number of hidden nodes per layer are consid-
ered as tunable hyper parameters whose values will be discussed in corresponding
comparison sections (3.4.1 and 5.3.1).

2.7.2 Recurrent Neural Network

The second mathematical formulation of the problem (in section 1.4.2) corresponds
to the way models that could be described as “Recurrent Neural Network models”
expresses the problem. This implemented model, named CanonicalRNN , neural net-
work consists in an RNN (Recurrent Neural Network). The denomination “Canon-
ical” is employed to avoid confusion with other RNN-based models, as DeepAr and
MQRNN.

Its number of hidden layers and number of hidden nodes per layer is considered
as tunable hyperparameters whose the values will be discussed in corresponding
comparison sections (3.4.2 and 5.3.2).

2.7.3 DeepAR

The model DeepAr is the implementation of a “DeepAR” model close the one de-
scribed in paper ”DeepAR: Probabilistic Forecasting with Autoregressive Recurrent
Networks” [17]. This model is described as “A forecasting method based on autore-
gressive recurrent network (..) that tailors a similar LSTM-based recurrent neural
network architecture to the probabilistic forecasting problem”.

As the model neural network consists in a autoregressive neural network similar
to RNN, tunable hyperparameters are the same than for CanonicalRNN model, i.e
the number of hidden layers and the number of hidden nodes per layer. Their values
are discussed in corresponding comparisons sections (3.4.3 and 5.3.3).This model
can use static features information.
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2.7.4 Deep Factors

The model DeepFactor is the implementation of the model described in paper “Deep
Factors for Forecasting” [18]. This model is composed of a “global” and a “local”
model. It uses is global (RNN) model to learn patterns across multiple related
time series and an arbitrary local model to model the time series on a per time
series basis. The referred paper evokes in particular : “We assume that each time
series is governed by the following two components: fixed and random. Fixed effects
are common patterns that are given by linear combinations of K latent global deep
factors. These deep factors can be thought of as dynamic principal components or
eigen time series that drive the underlying dynamics of all the time series” In the
current implementation proposed by GluonTs, the local model is a RNN.

The tunable hyperparameters of the model are : the number of hidden layers and
the number of hidden nodes per layer of the global model network and the number
of factors . Their values are discussed in corresponding comparisons sections (3.4.4
and 5.3.4).

2.7.5 Gaussian Process

The model GaussianProcess is an implementation of a model using concept of gaus-
sian processes , introduced in [19]. This model does not includes tunable hyperpa-
rameters.

2.7.6 NPTS

The model NPTS is the implementation of the “Non-Parametric Time Series Fore-
caster” model, described in paper [20]. It falls into the class of simple forecasters
that use one of the past observed targets as the forecast for the current time step.
It randomly samples a past time index as the prediction for the current time step.
This model does not includes tunable hyperparameters, and doesn’t belongs to the
deep learning model category, but is considered as one by GluonTS.

2.7.7 MQCNN

The model MQCNN is the implementation of one variant of the model described in
paper ”A Multi-Horizon Quantile Recurrent Forecaster” [21].

It belongs to the category of “Sequence-to-Sequence” models, for which GluonTS
provides a template allowing to create a various models of this category.MQCNN
is a pre-implemented model constructed on this template. “Sequence-to-sequence”
models are composed of two main components. The encoder network, that encodes
information about context interval in a latent state. And the decoder network, which
generates the forecast of the prediction interval by combining the latent information
with the features from the prediction range. In MQCNN, the encoder is a Con-
volutional Neural Network and the decoder an Multi-layer Perceptron. Unlike the
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majority of the probabilistic forecasting models, the output is not a distribution of
probability but the quantiles of this distribution, which are obtained individually by
single-valued forecasting. This fundamental difference make impossible to modify
the loss (see discussion in section 4.3).

The dimensions of the MLP (the number of nodes in the final layer, the number
of hidden layers and the number of hidden nodes per layer ) are tunable parameters.
Their values are discussed in corresponding comparisons sections (3.4.5 and 5.3.5).

2.7.8 MQRNN

The model MQRNN is the implementation of one variant of the model described in
paper ”A Multi-Horizon Quantile Recurrent Forecaster” [21].

The model is the same than MQCNN excepting that the encoder is a Recurrent
Neural Network. The tunable hyper parameters are the dimensions of this RNN
(the number of nodes in the final layer, the number of hidden layers and the number
of hidden nodes in each layers of the neural network ). Their values are discussed in
corresponding comparisons sections (3.4.6 and 5.3.6).

2.7.9 Transformer

The model Transformer is the implementation of “Transformer” model architecture,
as it was defined in paper [22]. It is described in this paper as ”The first sequence
transduction model based entirely on attention, replacing the recurrent layers most
commonly used in encoder-decoder architectures with multi-headed self-attention”.

The tunable hyperparameters of the model are : the dimensions of the transformer
network and the number of heads in the multi-head attention mechanism . Their
values are discussed in corresponding comparisons sections (3.4.7 and 5.3.7).

2.7.10 Wavenet

The model Wavenet is the implementation of ”Wavenet” model architecture, as it
was defined in paper [23], with a quantized target. This model network is composed
of dilated causal convolutional layers. Both residual and parameterised skip connec-
tions are used throughout the network,to speed up convergence and enable training
of much deeper models.

The tunable hyperparameters are the number of residual channels in the architec-
ture and the number of skip channels in the architecture. Their values are discussed
in corresponding comparisons sections (3.4.8 and 5.3.8).

2.7.11 NBEATS

The model NBEATS is the implementation of a model based on a “NBEATS” Net-
work, as described in the paper [24]. This model is defined as a deep neural ar-
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chitecture based on backward and forward residual links and a very deep stack of
fully-connected layers. GluonTS documentation precises that there are noteworthy
differences in this implementation compared to the paper version. For example the
parameter LH defined in the paper is not implemented.

The tunable hyperparameters are the number of stacks the NBEATS network
should contains and and the number of blocks per stack. Their values are discussed
in corresponding comparisons sections (3.4.9 and 5.3.9).
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Chapter 3

Model comparison using default
loss and metrics

3.1 Technical Aspects

Before entering into sections implying quantitative experimental results, we need to
define the hardware configuration. The code has been runned locally on a single-
GPU computer with the configuration resumed in the following figure :

Operating System Linux Ubuntu 20.04
CPU Intel(R) Core(TM) i5-6500 CPU @ 3.20GHZ
GPU Nvidia(R) GEFORCE GTX 1060 6 GB
RAM 8.00 Go

Main Programs
MXNet v1.6 (CUDA 9.6 compatible version),
GluonTS v0.5.0

Table 3.1: Hardware Configuration

3.2 Testing protocol definition

Now that the different GluonTS components has been described and that the key
components loss functions and metrics functions has been discussed, the different
models that have been presented could be compared (after discussing their hyper-
parameter values). Each comparison using as element of comparison the metric
MASE, as defined in section 2.5. The models uses their default loss as defined in
section 2.4.

Before the comparison between different models, we need to compare the impact
of the values of the different hyperparameters of the problem. The hyperparameters
of the problem are :

• The context length, defined in section 1.4.
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• The size of time series

• The learning rate of the model training

• The number of epochs of the training

• The output distribution, defined in section 2.6

• The own hyperparameters of the different models

The default input data configuration is A (see 2.3). Results for different input
data configuration are not systematically showed because experimentation that has
been performed (but are not all presented here) show that the configuration A/B
does not significantly influences the choice of hyperparameters. Some results are
presented : 3.3.5 and 3.3.3 and shows similar results for the two configurations.
and the presentation of results for the two configurations would be redundant and
time-consuming.

Concretely, the following subsections of the section 3.3 are organised as follows :

• We select one hyperparameter, commons to different models, to tune.

• The model is run for different values of this hyperparameter, with other hyper-
parameters fixed to default GluonTS values if the hyperparameter as not been
already tuned or fixed to values that has been observed as optimal during pre-
vious hyperparameter tuning. All these hyperparameters values are described
as “default” in the following subsections.

• Results are presented as histogram, with on the abscissa the hyperparameter
value and on the ordinate the MASE metric value obtains by the trained
model.

• We deduce the optimal value of the parameter from these results, knowing
that the goal is the minimization of the MASE value

Concretely, the following subsections of the section 3.4 are organised as follows :

• We select one model between the implemented models presented in section 2.7.

• For each of it tunable hyperparameter, the model is run for a range of this
hyperparameter values, with other hyperparameters fixed to default GluonTS
values if the hyperparameter as not been already tuned or fixed to values
that has been observed as optimal during previous hyperparameter tuning.
All these hyperparameters values are described as “default” in the following
subsections. Some models does not have tunable hyperparameter.

• Results are presented as histogram, with on the abscissa the model hyper-
parameter value and on the ordinate the MASE metric value obtains by the
trained model.

• Using these results, optimal value of the parameter is obtains, knowing that
the goal is the minimization of the MASE value
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• We present the plot of the forecasting result, with all hyperparameters of
the model fixed to optimal values as it has been discussed in this section.
The predicted distribution is visually represented by it quantiles . The plot
results are all presented with the same values of quantiles, i.e the quantile
quantile(0.99) and the respective quantile(0.01) but also the quantile(0.9),
quantile(0.1) and the median.

Finally we had the section presenting the comparison of all implemented models,
with all their hyperparameter tuned. Results are presented as an histogram with on
the abscissa the different models tested and on the ordinate the MASE metric value
obtains by the trained model.

In the following sections, the usage of the parameter value notation [a,b,..], for
example [10,20], corresponds to a vector parameter, describing in general a neural
network architecture, where a,b,.. are the number of cells in each layer.
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3.3 Hyperparameters commons to different mod-

els comparison

3.3.1 Context length

Figure 3.1: Comparison of different context lengths for different models (Models:
SimpleFeedForward, CanonicalRNN, DeepAr, DeepFactor, MQCNN, MQRNN,

Wavenet (Default hyperparameter values), Config A)
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Figure 3.2: Comparison of different context length for different models (Models:
NBEATS, Transformer, Wavenet (Default hyperparameter values), Config A)

The context length, as it was defined in section 1.4, is a crucial hyperparameter of
the defined problem, as it define the input size of the model neural network, which
might have impact on the prediction result.

Context lenght is implied as a hyperparameter in 9 tested models. As results
varies in function of the models, results are presented for each of them, in figures
3.1 and 3.2.

We observe that this hyperparameter influences widely the results for a certain
number of models. For example there is a factor 1.25 between the better and worst
context lenght value for SimpleFeedForward or DeepAr model and a factor of 2 for
MQRNN. These results allows us to deduce the optimal value of context length
for each models. Models SimpleFeedForward and MQCNN optimal value is 30,
CanonicalRNN, Wavenet and Transformer is 60, MQRNN and DeepFactor is 100,
DeepAr and NBEATS is 120. These values are considered as default values in the
following comparison sections.
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3.3.2 Time series size

Figure 3.3: Comparison of different time series sizes (Models: SimpleFeedForward,
DeepAr, MQCNN, MQRNN, Transformer (Default parameters values), Config A)

The size of time series that are given to dataset object might influence the prediction
quality. It can be see as how much the initial time series are splitted manually before
putting them in dataset. Splitting the initial time series implies losing information
(all the training intervals straddling two splitted time series).

Different values tested corresponds to time series of 2-day lenght (2880 time steps),
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1-day length (1440 time steps), 1/2-day length (720 time steps) and 1/4-day length
(360 time steps), bigger values than 2800 are less convenient as one of the original
time series at our disposition is 2 days long.

Results, presented in figure 3.3.2, allows us to deduce the optimal value of time
series size for each models. Model Transformer optimal value is 1440. All other
models optimal values are 2880 (Results are only showed for SimpleFeedForward,
DeepAr, MQCNN and MQRNN). These values are considered as default values in
the following comparison sections.
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3.3.3 Learning rate

Figure 3.4: Comparison of different learning rates for different models (Models:
SimpleFeedForward, CanonicalRNN, DeepAr, DeepFactor, MQCNN, MQRNN

(Default hyperparameter values), Config A)
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Figure 3.5: Comparison of different learning rates for different models (Models:
NBEATS, Transformer, GaussianProcess, Wavenet (Default hyperparameter

values), Config A)

Figure 3.6: Comparison of different learning rates (Models: NBEATS (Default
hyperparameter values), Config B)

Learning rate is a key element of deep learning training, as it drives the weight
updates of the models neural networks. The default learning rate in GluonTS for
all deep learning models is 10−3.
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Learning rate is implied as a hyperparameter in 10 tested models. As results
varies in function of the models, results are presented for each of them, in figures
3.4 and 3.5.

We observe that this hyperparameter influences widely the results for all mod-
els except CanonicalRNN and DeepFactor. These results allows us to deduce the
optimal value of learning rate for each models. Models SimpleFeedForward, Canon-
icalRNN, MQRNN, Nbeats, Wavenet and Transformer optimal value is 10−3, Gaus-
sianProcess is 10−2, DeepAr and MQCNN is 10−4 and DeepFactor is 10−5. These
values are considered as default values in the following comparison sections.
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3.3.4 Epochs

Figure 3.7: Comparison of different epochs values for different models (Models:
SimpleFeedForward, CanonicalRNN, DeepAr, DeepFactor, MQCNN, MQRNN

(Default hyperparameter values), Config A)
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Figure 3.8: Comparison of different epochs values for different models (Models:
NBEATS, Transformer, GaussianProcess, Wavenet (Default hyperparameter

values), Config A)

Models training implies of a certain number of epochs. This number influences the
results, as the model must be trained aptly to avoid underfitting or overfitting. The
default number of epochs in GluonTS is 100 epochs for all models except Wavenet
(200 epochs).

Epochs is implied as a hyperparameter in 10 tested models. As results varies in
function of the models, results are presented for each of them, in figures 3.7 and 3.8.

We observe that this hyperparameter has a great influence in results. These
results allows us to deduce the optimal value of epochs for each models. Models Deep
Factor and CanonicalRNN optimal value is 20, GaussianProcess and MQCNN is
50, MQRNN is 80, Transformer is 100, NBEATS, DeepAr and SimpleFeedForward
is 120, Wavenet is 400. These values are considered as default values in the following
comparison sections.
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3.3.5 Output Distribution

Figure 3.9: Comparison of different output distributions for different models
(Models: SimpleFeedForward, CanonicalRNN, DeepAr, DeepFactor, Transformer

(Default hyperparameter values), Config A)
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Figure 3.10: Comparison of different output distributions (Model:
SimpleFeedForward (Default hyperparameter values), Config B)

In the case of the models that outputs a probability distribution via distribution
parameters (as it is the case in problem statement section 1.4), the type of distribu-
tion must be specified. The models MQRNN, MQCNN, GaussianProcess, Nbeats,
Wavenet are excluded from this subsection, as they does not used distribution pa-
rameters. The set of possible output distribution has been defined in section 2.6.

Results shows that, for all models with exception of the DeepFactor model case,
Gaussian distribution (and Laplace) is outperformed by PiecewiseLinear distribu-
tion, which gives optimal results among the three output distribution considered.
This optimal distribution are considered as default in following comparison sections.
These result contradict the affirmation that the better output distributions in the
context of wind turbines production forecasting are Gaussian and Beta, as stated
in [14], and shows impressive improvements using the PiecewiseLinear distribution,
especially in the case of Transformer model.
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3.3.6 Number of Pieces of PiecewiseLinear distribution

Figure 3.11: Comparison of different number of pieces for PiecewiseLinear
distribution for different model ( Models: SimpleFeedForward, DeepAr,

Transformer (Default parameter values), Config : A)

The piecewise linear output distribution, which belongs to the set of disposable
output distribution, is composed of a certain number of pieces, number that we
must define. As it influences the shape of the distribution, we might study the
impact of this parameter.

Starting from a 2 pieces output distribution, we observe in the results that adding
pieces does not improve significantly the prediction where increasing the size of the
neural network, as it increases the number of output distribution parameters . We
consider thence a number of 2 pieces for models using PiecewiseLinear distribution
as default in the following comparison sections.
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3.4 Different models hyperparameters compari-

son and plot results

3.4.1 Feed Forward

Figure 3.12: Comparison of different n hidden dim values for SimpleFeedForward
model (Default hyperparameter values), Config A)

FeedForward model is an implemented model described in section 2.7.1. Its own tun-
able hyperparameter is the dimensions of the neural network hidden layers, named
n hidden dim. The default value in GluonTS is [40]. Results shows that the opti-
mal value is [100]. Plots results, illustrating the model predictions, are presented in
figure 3.13.

34



Figure 3.13: Forecast result of SimpleFeedForward model at 3 hours and 1 hour
scale (n hidden dim = [100], Default hyperparameter values), Config A)
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3.4.2 Canonical RNN

Figure 3.14: Comparison of different n layers and n cells values for Canonical
RNN model (Default hyperparameter values, Config A)

CanonicalRNN model is an implemented model described in section 2.7.2. Its own
tunable hyperparameters are the dimensions of the neural network hidden layers,
represented by n layers and n cells. The default values in GluonTS are 1 for
n layers and 20 for n cells . Results shows that different values of these parameters
make almost no difference in terms of results. Plots results, illustrating the model
predictions, are presented in figure 3.15.
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Figure 3.15: Forecast result of CanonicalRNN model at 3 hours and 1 hour scale
(n layers = 4, n cells = 20 Default hyperparameter values, Config A)
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3.4.3 Deep AR

Figure 3.16: Comparison of different n layers and n cells values for DeepAR
model (Default hyperparameter values, Config A)

DeepAr model is an implemented model described in section 2.7.3. Its own tunable
hyperparameters are the dimension of the neural network hidden layers, represented
by n layers and n cells. The default values in GluonTS are 2 for n layers and 40
for n cells. Results shows that the optimal values are 3 for n layers and 100 for
n cells. Plots results, illustrating the model predictions, are presented in figure 3.17.
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Figure 3.17: Forecast result of DeepAr model at 3 hours and 1 hour scale
(n layers = 3, n cells = 100, Default hyperparameter values, Config A)
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3.4.4 Deep Factor

Figure 3.18: Comparison of different n factors values, n hidden global values and
n layers global values for DeepFactor model (Default hyperparameter values,

Config A)

DeepFactor model is an implemented model described in section 2.7.4. Its own
tunable hyperparameters are the number of factors (n factors) and the dimensions
of the global neural network hidden layers, represented by n layers global for the
number of layers and n hidden global for the number of cells in each layers. The
default values in GluonTS are 10 for n factors, 50 for n hidden global and 1 for
n layers global. Results shows that the optimal values are 10 for n factors, 20 for
n hidden global and 2 for n layers global. We can nevertheless point that results
are in any cases very high in MASE compared to the other models that have already
been presented. Plots results, illustrating the model predictions, are presented in
figure 3.19.
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Figure 3.19: Forecast result of DeepFactor model at 3 hours and 1 hour scale
(n factors = 10, n hidden global = 20, n layers global = 2, Default

hyperparameter values, Config A)
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3.4.5 MQCNN

Figure 3.20: Comparison of different mlp final dim and mlp hidden values for
MQCNN model (Default hyperparameter values, Config A)

MQCNN model is an implemented model described in section 2.7.7. Its own tunable
hyperparameters are the dimensions of the neural network layers, represented by
mlp final for the dimension of the final layer and mlp hidden for the dimension
of hidden layers. The default values in GluonTS are 20 for mlp final and [30] for
mlp hidden . Results shows that the optimal values are 40 for mlp final and [30]
for mlp hidden. Plots results, illustrating the model predictions, are presented in
figure 3.21.
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Figure 3.21: Forecast result of MQCNN model at 3 hours and 1 hour scale
(mlp final dim = 40 and mlp hidden = [30], Default hyperparameter values,

Config A)
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3.4.6 MQRNN

Figure 3.22: Comparison of different mlp final dim and mlp hidden values for
MQRNN model (Default hyperparameter values, Config A)

MQRNN model is an implemented model described in section 2.7.8. Its own tunable
hyperparameters are the dimension of the neural network layers, represented by
mlp final for the dimension of the final layer and mlp hidden for the dimension
of hidden layers. The default values in GluonTS are 20 for mlp final and [30] for
mlp hidden . Results shows that the optimal values are 50 for mlp final and [20]
for mlp hidden. Plots results, illustrating the model predictions, are presented in
figure 3.23.
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Figure 3.23: Forecast result of MQRNN model at 3 hours and 1 hour scale
(mlp final dim = 50 and mlp hidden = [30], Default hyperparameter values,

Config A)
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3.4.7 Transformer

Figure 3.24: Comparison of different model dim and n heads values for
Transformer model (Default hyperparameter values, Config A)

Transformer model is an implemented model described in section 2.7.9. Its own
tunable hyperparameters are the dimension of the transformer network (model dim)
and the number of heads in the multi-head attention mechanism (n heads). The
default values in GluonTS are 16 for model dim and 8 for n heads . Results shows
that the optimal values are the same that the default ones. Plots results, illustrating
the model predictions, are presented in figure 3.25.
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Figure 3.25: Forecast result of Transformer model at 3 hours and 1 hour scale
(model dim = 16 and n heads = 8 , Default hyperparameter values, Config A)
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3.4.8 Wavenet

Figure 3.26: Comparison of different num residue and n skip values for Wavenet
model (Default hyperparameter values, Config A)

Wavenet model is an implemented model described in section 2.7.10. Its own tunable
hyperparameters are the number of residual channels in wavenet architecture ( n res)
and the number of skip channels in wavenet architecture (n skip). The default values
in GluonTS are 24 for n res and 8 for n skip. Results shows that the optimal values
are the same that the default ones.

Plots results, illustrating the model predictions, are presented in figure 3.27.
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Figure 3.27: Forecast result of Wavenet model at 3 hours and 1 hour scale
(num residue = 24, n skip = 32 , Default hyperparameter values, Config A)
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3.4.9 NBEATS

Figure 3.28: Comparison of different num stacks and num blocks values for
NBEATS model (Default hyperparameter values, Config A)

Nbeats model is an implemented model described in section 2.7.11. Its own tunable
hyperparameters are the number of stacks the NBEATS network should contains
(num stacks) and the number of blocks per stack ( num blocks). The default values
in GluonTS are 30 for num stacks and [1] for num blocks . Results shows that
the optimal values are 40 for num stacks and [1] for num blocks. Plots results,
illustrating the model predictions, are presented in figure 3.29.
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Figure 3.29: Forecast result of NBEATS model at 3 hours and 1 hour scale
(num stacks = 40 and num blocks = [1], Default hyperparameter values, Config

A)

3.4.10 Gaussian Process

GaussianProcess model is an implemented model described in section 2.7.5. Its has
no own tunable parameters. Plots results, illustrating the model predictions, are
presented in figure 3.30.
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Figure 3.30: Forecast result of GaussianProcess model at 3 hours and 1 hour scale
( Default hyperparameter values, Config A)

3.4.11 NPTS

NPTS model is an implemented model described in section 2.7.6. It doesn’t have
any own tunable parameters.

Plots results, illustrating the model predictions, are presented in figure 3.31.
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Figure 3.31: Forecast result of NPTS model at 3 hours and 1 hour scale ( Config A)

3.4.12 ETS

ETS model is an model that does not belongs to the deep learning domain that has
been mentionned in section 1.1. It will be used in the comparison of all models to
compare all the deep learning solutions to a “classical” forecasting solution.

Plots results, illustrating the model predictions, are presented in figure 3.31.
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Figure 3.32: Forecast result of ETS model at 3 hours and 1 hour scale (Config A)
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3.5 Comparison of all tuned models

Figure 3.33: Comparison of different models (Default hyperparameter values,
Config A). First figure represents all the models, the second represents only the 8

best models in terms of MASE

A first observation is that there are very large differences in terms of MASE metric
value the different between models. We can divise the 12 presented models between
four groups.

DeepFactor and NPTS provides very bad predictions, with MASE superior to
10. There are clearly solutions to avoid in this context. Wavenet and Canoni-
calRNN, if they performed better than the previous ones, are also considered as
unsatisfactory, with MASE between 5 and 10. Transformer and Nbeats provides in-
teresting results, but are clearly perfectible, with MASE between 2.5 and 5. The last
group is composed of six models, SimpleFeedForward, MQCNN, MQRNN, DeepAR,
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GaussianProcess and ETS. They results in MASE, between 1.7 and 2.5, are tight.
Nowadays, we can classify them, and obtain what can be considered as the better
model between the 11 models compared, with as metric MASE : MQCNN, followed
by MQRNN, DeepAr, SimpleFeedForward and GaussianProcess.

3.6 Time global comparison

Models

SimpleFeedForward CanonicalRNN DeepAr DeepFactor

Epoch time (s) 1.487 9.785 2.253 1.764
Number of epochs 120 20 120 20

Total time (s) 178.44 195.70 270.36 35.28

Table 3.2: Comparison of different models training times (Default hyperparamter
values, Config A)

Models

MQCNN MQRNN Transformer NBEATS Wavenet

Epoch time (s) 2.059 3.016 2.398 6.007 14.544
Number of epochs 50 80 100 120 120

Total time (s) 102.95 241.28 239.8 720.84 1745.28

Table 3.3: Comparison of different models training times (Default hyperparamter
values, Config A)

Another element of comparison is the training time of the different models. If the
majority of the models have acceptable total training time (between 30 seconds and
4 minutes), the training time of NBEATS (12 minutes) and Wavenet (29 minutes)
is not negligible.
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Chapter 4

Using another metrics to compare
forecasting models

4.1 Discussion about the purpose of the default

metrics and loss considering the goal

Now that the comparison of the models as been done with as goal the minimization
of the difference between predicted distribution and real distribution, as defined
in sections concerning the loss (2.4) and the metrics (2.5), we can interrogate the
pertinence of this ”per default” goal in the particular context where the probabilistic
forecasting models must be used.

As it as been introduced in section 1.1, the forecasting models usage we are inter-
ested in is the inclusion in a stochastic decision process, where we need to forecast
the future generator production to anticipate risk of congestion. The stochastic deci-
sion process, is, more than everything, interested in a forecasting process that gives
a precise estimation of what we could call the ”security” quantile value, for each time
step of the prediction window, i.e of the value for which there is a ”very low” proba-
bility that the production at this time step outnumber this value (in this context we
consider a probability of 1 %). That value will be used to determine the generator
production capacity. For example if the security quantile value forecasted is supe-
rior to the maximum acceptable value, above which the generator encounter risks,
it means that the generator capacity must be voluntarily restrained immediately.

In other terms, considering that the model output is a probability distribution,
the goal fixed is not to minimize the difference (in any ways to define it) between
the predicted and observed time series but to minimize the difference between the
predicted ”security quantile”, i.e the quantile(1 − e) of the predicted distribution,
knowing that e is the probability of error considered as acceptable (1% in this con-
text), and the real security quantile (the quantile of the real probability distribution
of the source). A too low predicted security quantile signify that the risk of pro-
duction oversupply is underestimated, leading to situations where the system will
estimate that the network is safe wrongly. Inversely, a too high predicted security
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quantile signify that the risk is overestimated, leading to situations where the pro-
duction capacity will be restrained unnecessarily. This situation is nevertheless less
problematic than the first one (as it will causes lack of optimization but no risk of
generator damage ). The minimization must be for all time steps of the prediction
range.

This objective is not disconnected from the classical objective consisting in min-
imizing the difference between the predicted and observed probability distribution.
If the predicted distribution is close to the observed distribution, the predicted se-
curity quantile tends to be close to the observed security quantile. Nowadays, we
highlight the need to use another metric to focus the evaluation of the prediction on
the security quantile specifically.

4.2 Introducing a new metric

A new metric function is essential to evaluate correctly the models, knowing the goal
we want them to pursue (4.1). We propose here a metric that fulfills this need.

The metric role must be to indicates if the predicted quantile security value is
over/under-estimated, for each time steps of the prediction interval and for each
time series. The natural way of proceeding would be to compare the values of the
predicted security quantile with the values of the observed security quantile, but this
technique is not applicable considering that the observed security value is unknown.
The only observed information at our disposition is the observed (point) value. The
metric that we define must use only this information.

The proposed metric, Coverage uses an implemented metric, coverageq. This
metric is defined as, taking as argument N randomly drawn sample values of the
predicted probability distribution ([x1, ..., xN ]), one observed value y, q the quantile
considered and quantileq([x1, ..., xN ] a function giving the quantile q value for the
approximated distribution constructed on the samples [x1, ..., xN ] :

coverageq(y, [x1, ..., xN ]) = I(y < quantileq([x1, ..., xN ])) (4.1)

This metric indicated if the observed value is below the predicted distribution quan-
tile q. The Coverage metric is defined as, for e is the probability of error considered
as acceptable :

Coverage(y, [x1, ..., xN ], e) = coverage1−e(y, [x1, ..., xN ])− (1− e) (4.2)

The Coverage “Item” metric value corresponds to the average of Coverage for all
time steps of the prediction interval for time series i. The Coverage “Aggregate”
Metric value corresponds to the average of Coverage Item metrics for all time series
i. The Aggregate Metric Coverage value must tends to 0 to achieve the goal. If
Coverage(x) > x, the quantile value is too high (the window is too large) and if
Coverage(x) < x the quantile value is too tight.
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This metric is not sufficient to evaluate the quality of a model prediction. The
model could have a good Coverage value because the predicted distribution is very
spread out, ensuring a positive value of Coverage, or because the predicted distribu-
tion is too tight but shifted up compare to the real distribution.

Classical metric as MASE could be used as second metric to indicates, in ad-
dition to the security quantile estimation quality, the whole distribution prediction
accuracy.

4.3 Custom Loss

As a new metric function has been introduced to fulfill the needs implied by the goal
being pursued (4.1), the loss function must be discussed as well. The loss function
must take account if the predicted security quantile is over/under-estimated.

We could express a loss strictly equivalent to the metric Coverage described in
section 4.2. It would be defined as the metric Coverage but with the probability of
distribution itself and not the samples of this probability.

Problem is that the defined metric make sense when averaged to form “Item”
and “Aggregates” metrics. The value of one Coverage metric evaluation is binary.
We could also use a different, non-binary loss that penalize values bigger than
quantile(1 − e) This proposed loss is the following, for φ(x) is the output distri-
bution and y the observed value :

Lalt(y, φ(x)) = ey−quantile1−e(φ(x)) (4.3)

The loss increases exponentially if y superior to the security quantile, and is remains
low if not.

The only way to use other loss than the default loss for the pre-implemented
models of GluonTS is to define custom models copying the originals at the exception
of intern modifications to change loss function.

A major implementation problem issue arises. Between the different pre-implemented
models, some can be copied and used as custom models with different loss function.
It is the case of ”Simple”, ”SimpleFeedForward”, ”CanonicalRNN” , DeepAr and
DeepFactor. Some models that can be implemented in this way faces a problem. In
the current version of GluonTS the use of a custom model implies that the hybridis-
ation, important part of the implementation optimization, cannot be used, because
of a running erro, resulting in very important training time. In particular DeepAr
and DeepFactor model are hardly affected by the absence of hybridisation. The
training time without hybridisation (presented in 3.6) is multiplied by a factor 15.
Loss function will not be modified for these models, despite the fact that it is tech-
nically possible. Other models cannot change they loss because of the way they are
implemented, because of how they evaluates the loss, or because they use another
loss minimization organisation (MQCNN and MQRNN).
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Cannot be able to modify the loss does not means that the models cannot be
used to achieve the goal, as the base loss is connected to the new goal anyway, as
explains in section 4.1.

In the models where the loss can be changed, to express the fact that we want to
optimize the Coverage and the MASE, the implemented custom loss is a combina-
tion of the loss functions Ldefault and Lalt

custom loss(x, φ) = Ldefault(x, φ) + α ∗ Lalt(x, φ) (4.4)

With α an hyper parameter. It value is a subject of a study in section 5.2.7. We
will see the results for different weighting between the different losses.
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Chapter 5

Model comparison using
quantile-based metrics

5.1 Testing protocol definition

Now that the metric functions and loss functions have been discussed considering
the goal that we pursued , the different models that have been presented could be
compared (after discuss their hyper-parameter values), using as principal element
of comparison the introduced metric Coverage, as defined in section 4.2, and with
MASE metric as second element of comparison. As it was discussed in section 4.3,
the models that could compute and use the alt loss use the custom loss, a weighted
sum of the default and alt loss. The others use their default loss.

Before the comparison between different models, we need to compare the impact
of the values of the different hyperparameters of the problem. The hyperparameters
of the problem are :

• The context length, defined in section 1.4.

• The size of time series

• The learning rate of the model training

• The number of epochs of the training

• The output distribution, defined in section 2.6

• The individual hyperparameters of the different models

• For the models using custom loss, the value of α, defined in section 4.3

The default input data configuration is A (see 2.3). Results for different input
data configuration are not systematically showed because experimentation that has
been performed (but are not all presented here) show that the configuration A/B
does not significantly influences the choice of hyperparameters. Some results are
presented : 3.3.5 and 3.3.3 and shows similar results for the two configurations.
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Exhaustive presentation of results for the two configurations would be redundant
and time-consuming.

Concretely, the following subsections of the section 3.3 are organised as follows :

• We select one hyperparameter, commons to different models, to tune.

• The model is run for different values of this hyperparameter, with other hyper-
parameters fixed to default GluonTS values if the hyperparameter as not been
already tuned or fixed to values that has been observed as optimal during pre-
vious hyperparameter tuning. All these hyperparameters values are described
as “default” in the following subsections.

• Results are firstly presented as histogram, with on the abscissa the hyperpa-
rameter value and on the ordinate the Coverage metric value obtains by the
trained model.

• Results are secondly presented as a scatter diagram, with on the abscissa the
MASE metric obtains by the trained model and on the ordinate the Coverage
metric value obtains by the trained model.

• We deduce the optimal value of the parameter from these results, knowing that
the goal is the minimization of the difference between 0 and Coverage value,
and the minimization of the MASE value. Coverage optimization is prioritized,
but if between two possible values of parameters the Coverage value is similar,
the value of MASE will be considered. We estimate that two values of Coverage
as similar if there difference is at or below the scale of 0.001.

Concretely, the following subsections of the section 3.4 are organised as follows :

• We select one model between the implemented models presented in section 2.7.

• For each of it tunable hyperparameter, the model is run for a range of this
hyperparameter values, with other hyperparameters fixed to default GluonTS
values if the hyperparameter as not been already tuned or fixed to values
that has been observed as optimal during previous hyperparameter tuning.
All these hyperparameters values are described as “default” in the following
subsections. Some models does not have tunable hyperparameter.

• Results are firstly presented as histogram, with on the abscissa the hyperpa-
rameter value and on the ordinate the Coverage metric value obtains by the
trained model.

• Results are secondly presented as a scatter diagram, with on the abscissa the
MASE metric obtains by the trained model and on the ordinate the Coverage
metric value obtains by the trained model.

• We deduce the optimal value of the parameter from these results using the
same method as in section 3.3.
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• Plot results are presented for some models where, as some default hyperparam-
eters values differs from default values in the previous comparison in chapter
3 , results are significantly different from the previously presented plots.

Finally we had the section presenting the comparison of all implemented models,
with all their hyperparameter tuned. Results are firstly presented as an histogram
with on the abscissa the different models tested and on the ordinate the Coverage
metric value obtains by the trained model. Results are secondly presented as a
scatter diagram, with on the abscissa the MASE metric obtains by the trained
model and on the ordinate the Coverage metric value obtains by the trained model.
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5.2 Global Hyperparameters comparison

5.2.1 Context length

Figure 5.1: Comparison between different context length for different models
(Models: SimpleFeedForward, CanonicalRNN, DeepAr (Default hyperparameter

values), Config A)
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Figure 5.2: Comparison between different context length for different models
(Models: DeepFactor, MQCNN, MQRNN (Default hyperparameter values),

Config A)
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Figure 5.3: Comparison between different context lengths for different models
(Models: NBEATS, Transformer, Wavenet (Default hyperparameter values),

Config A)

We compare, as in section 3.3.1, different values of context length hyperparameter
for different models.

Optimal values are the same as in the referred section, as the best value of Cov-
erage (or a value very close to the best) is obtained for the value of the parameter
that is also best for MASE , for all models excepts NBEATS where the optimal
value considering Coverage is 100. These values are considered as default values in
the following comparison sections.
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5.2.2 Time series size

Figure 5.4: Comparison between different time series size for different models
(Models: SimpleFeedForward, DeepAr, MQCNN (Default parameters values),

Config A)
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Figure 5.5: Comparison between different time series size (Model: MQRNN
(Default parameters values), Config A)

We compare, as in section 3.3.2, different values of time series size hyperparameter
for different models.

Optimal values are the same as in the referred section, as the best value of Cov-
erage (or a value very close to the best) is obtained for the value of the parameter
that is also best for MASE , for all models. These values are considered as default
values in the following comparison sections.
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5.2.3 Learning rate

Figure 5.6: Comparison between different learning rates for different models
(Models: SimpleFeedForward, CanonicalRNN, DeepAr (Default hyperparameter

values), Config A)
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Figure 5.7: Comparison between different learning rates for different models
(Models: DeepFactor, MQCNN, MQRNN (Default hyperparameter values),

Config A)
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Figure 5.8: Comparison between different learning rates for different models
(Models: NBEATS, Transformer, GaussianProcess (Default hyperparameter

values), Config A)
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Figure 5.9: Comparison between different learning rates (Model: NBEATS
(Default hyperparameter values), Config B)

We compare, as in section 3.3.3, different values of learning rate hyperparameter for
different models.

These results allows us to deduce the optimal value of learning rate for each
models. Models DeepAr , Nbeats, Wavenet optimal value is 10−3, MQRNN, Gaus-
sianProcess, Transformer is 10−2, SimpleFeedForward, CanonicalRNN, MQCNN,
DeepFactor is 10−4. These values are considered as default values in the following
comparison sections.
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5.2.4 Epochs

Figure 5.10: Comparison between different epochs values for different models
(Models: SimpleFeedForward, CanonicalRNN, DeepAr (Default hyperparameter

values), Config A)
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Figure 5.11: Comparison between different epochs values for different models
(Models: DeepFactor, MQCNN, MQRNN (Default hyperparameter values), Config

A)
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Figure 5.12: Comparison between different epochs values for different models
(Models: NBEATS, Transformer, GaussianProcess (Default hyperparameter

values), Config A)
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Figure 5.13: Comparison between different epochs values for different models
(Models: Wavenet (Default hyperparameter values), Config A)

We compare, in continuity with 3.3.4, different values of epochs hyperparameter.

These results allows us to deduce the optimal value of epochs for each models.
Models CanonicalRNN, SimpleFeedForward, DeepAr optimal value is 20, NBEATS
is 50, Deep Factor is 80, Transformer, MQCNN, GaussianProcess is 100, Wavenet
and MQRNN is 120. Wavenet is 400. These values are considered as default values
in the following comparison sections.
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5.2.5 Output Distribution

Figure 5.14: Comparison between different output distributions for different
models (Models: SimpleFeedForward, CanonicalRNN, DeepAr (Default

hyperparameter values), Config A)
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Figure 5.15: Comparison between different output distributions for different models
(Models: DeepFactor, Transformer (Default hyperparameter values), Config A)

Figure 5.16: Comparison between different output distributions (Model:
SimpleFeedForward (Default hyperparameter values), Config B)

We compare, in continuity with 3.3.5, different values of output distribution type
hyperparameter.

These results allows us to deduce the optimal output distribution for each mod-
els. Models SimpleFeedForward, CanonicalRNN, DeepAr optimal choice is Laplace,
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Transformer and DeepFactor is PiecewiseLinear. These values are considered as
default values in the following comparison sections.

5.2.6 Number of Pieces of PiecewiseLinear distribution

Figure 5.17: Comparison between different number of pieces for PiecewiseLinear
distribution ( Model: SimpleFeedForward (Default parameter values), Config : A)

We compare, in continuity with 3.3.6, different values of number of PiecewiseLinear
output distribution pieces hyperparameter.

The optimal number of pieces is 3 for all models (only SimpleFeedForward com-
parison is presented).
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5.2.7 Alpha

Figure 5.18: Comparison between different α values for different models (Models:
SimpleFeedForward, CanonicalRNN (Default hyperparameter values), Config A)

Hyperparameter α has been introduced in section 4.3, as a weight between default
loss and alternative loss, components of the custom loss. More α value increases,
more the alternative loss impacts the custom loss. In this section we interrogate the
impact of the α on results.

α is implied as a hyperparameter in all models where the custom loss as been
implemented. As results varies in function of the models, results are presented for
each of them, in figures 5.18.

These results allows us to deduce the optimal value of α for each models. Model
SimpleFeedForward does not improve in terms of Coverage when α increases, as its
Coverage value is already near the optimum for α = 0, but we observe a loss in
terms of MASE. The value 0 is considered as optimal. CanonnicalRNN value is 2,
as it improves significantly the Coverage without a significative increases of MASE.
These values are considered as default values in the following comparison sections.
We can globally observe that Coverage increased proportionally to α value, which
is coherent with the goal of the alt loss, i.e penalising predictions where the security
quantile value is underestimated.
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5.3 Different models parameters comparison and

results

The different models are described in the 2.7 section

5.3.1 Simple Feed Fordward

Figure 5.19: Comparison between different n hidden dim values for
SimpleFeedForward model (Default hyperparameter values), Config A)

We compare, in continuity with 3.4.1, different values of own SimpleFeedForward
hyperparameter.

Results shows that the optimal value of n hidden dim is [40,100]. Plots results,
illustrating the model predictions, are presented in figure 5.20 because, as some
default hyperparameters values differs from default values in 3.4.1, results are signif-
icantly different from the previously presented plots. We can observe that the model
prediction interval is larger than in the previous plots.
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Figure 5.20: Forecast result of SimpleFeedForward model at 3 hours and 1 hour
scale (n hidden dim = [100], Default hyperparameter values), Config A)
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5.3.2 Canonical RNN

Figure 5.21: Comparison between different n layers and n cells values for
CanonicalRNN model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.2, different values of own CanonicalRNN hyper-
parameters.

Results shows that the optimal value of n layers is 1 and the optimal value of
n cells is 10 . Plots results, illustrating the model predictions, are presented in figure
5.20 because, as some default hyperparameters values differs from default values in
3.4.2 , results are significantly different from the previously presented plots. We can
observe that the model prediction interval is larger than in the previous plots.

83



Figure 5.22: Forecast result of CanonicalRNN model at 3 hours and 1 hour scale
(n layers = 4, n cells = 20 Default hyperparameter values, Config A)
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5.3.3 Deep AR

Figure 5.23: Comparison between different n layers and n cells values for DeepAR
model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.3, different values of own DeepAr hyperparam-
eters.

Results shows that the optimal value of n layers is 4 and the optimal value of
n cells is 40, but the loss in MASE (multipilied by 2) is not valuable, we keep a
value of 60. Plots results, illustrating the model predictions, are presented in figure
5.20 because, as some default hyperparameters values differs from default values in
3.4.3, results are significantly different from the previously presented plots. We can
observe that the model prediction interval is larger than in the previous plots.
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Figure 5.24: Forecast result of DeepAr model at 3 hours and 1 hour scale
(n layers = 3, n cells = 80, Default hyperparameter values, Config A)
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5.3.4 Deep Factor

Figure 5.25: Comparison between different n factors values, n hidden global
values and n layers global values for DeepFactor model (Default hyperparameter

values, Config A)

We compare, in continuity with 3.4.4, different values of own DeepFactor hyperpa-
rameters.

Results shows that the optimal value of n factors is 60, n hidden global is 50
and the optimal value of n layersglobal is 2 . If some default hyperparameters values
differs from default values in 3.4.4, plot results are very similar.
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5.3.5 MQCNN

Figure 5.26: Comparison between different mlp final dim and mlp hidden values
for MQCNN model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.5, different values of own MQCNN hyperparam-
eters.

Results shows that the optimal value are the same than the previous ones. If
some default hyperparameters values differs from default values in 3.4.5, plot results
are very similar.
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5.3.6 MQRNN

Figure 5.27: Comparison between different mlp final dim and mlp hidden values
for MQRNN model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.6, different values of own MQRNN hyperparam-
eters.

Results shows that the optimal value are the same than the previous ones. If
some default hyperparameters values differs from default values in 3.4.6, plot results
are very similar.
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5.3.7 Transformer

Figure 5.28: Comparison between different model dim and n heads values for
Transformer model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.7, different values of own Transformer hyperpa-
rameters.

Results shows that the optimal value are the same than the previous ones. If
some default hyperparameters values differs from default values in 3.4.7, plot results
are very similar.
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5.3.8 Wavenet

Figure 5.29: Comparison between different num residue and n skip values for
Wavenet model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.8, different values of own Wavenet hyperparam-
eters.

Results shows that the optimal value are the same than the previous ones. If some
default hyperparameters values differs from default values in the referred section, plot
results are very similar.

91



5.3.9 NBEATS

Figure 5.30: Comparison between different num stacks and num blocks values for
NBEATS model (Default hyperparameter values, Config A)

We compare, in continuity with 3.4.9, different values of own Wavenet hyperparam-
eters.

Results shows that the optimal value of num stacks is 40 and num blocks is
[3]. If some default hyperparameters values differs from default values in 3.4.9, plot
results are very similar.
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5.4 Comparison of all tuned models

Figure 5.31: Comparison between all different models (Default hyperparameter
values, Config A)
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Figure 5.32: Comparison between the 7 best models in terms of MASE (Default
hyperparameter values, Config A)

A first observation is that there are very large differences in terms of Coverage metric
value between the different models.

In section 3.5, we have classified the models into four groups in function of their
MASE. Models of the group 1, DeepFactor and NPTS, the worst in terms of MASE,
performed also bad considering the Coverage. Wavenet, of the group 2 Nbeats of
the group 3, provides really poor performances in terms of Coverage and are not
acceptable as forecasting solution either. All these models has a Coverage value
inferior to 0.1, which is considered as really bad, as it means that the models indicates
that 99% of the observed points will be below the security quantile value that it
provides where in reality there are less than 89% between this value, in mean.

Transformer, GaussianProcess and CanonicalRNN provides interesting results in
terms of Coverage but their results in terms of MASE are not satisfying. We can
conclude that in this context GaussianProcess and Transformer are not acceptable
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solutions, in contrast with the chapter 3 results. The differences in default hyper-
parameter values, to optimize Coverage metric values results, impact the MASE
metric values results.

It leaves us four models, SimpleFeedForward, DeepAr, MQCNN and MQRNN
that rivalize with the ETS model. The differences in default hyperparameter values,
to optimize Coverage results, impact the MASE results significantly for DeepAr
and SingleFeedForward. The four models provides Coverage values similar (MQRNN
and DeepAr) or better (MQCNN and SimpleFeedForward) than ETS. Three models,
MQCNN, MQRNN and DeepAr, outperforms ETS in terms of MASE.

From these results, we can easily concludes that, in the defined testing context,
model MQCNN outperforms in all domains a classical technique like ETS, where
MQRNN, SimpleFeedForward and DeepAr provides results equivalent to ETS (some
of them with a better Coverage and worse MASE, or vice-versa). The other models
provides less brilliant results, from correct to really bad.
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Chapter 6

Conclusion

To summarize the different steps that has been accomplished, we have introduce
the main goal that we want to achieve, the comparison of different probabilistic
forecasting models in the context of the prediction of renewable energy production,
to protect assets from oversupply (1). Then, we have presented what are the tools
needed to accomplish the goal and define the context (datasets, predict length,
etc) on which the comparison will be performed (2). We perform a comparison
considering a default metric to evaluate models performances (3). Furthermore, we
discuss what might be the most relevant metric considering the main goal that we
want to achieve (4) and we finally perform a comparison using metrics and loss that
have been introduced (5).

The answer to the question of what is the better forecasting model in the defined
context between all the tested models, the model that provides the better results, in
terms of Coverage and MASE, is definitely MQCNN, which outperforms for the two
metrics considered all the other presented models. It is followed by three models,
MQRNN, DeepAr and SimpleFeedForward. All the other models presented (Canon-
icalRNN, Transformer, NBEATS, DeepFactor, Wavenet, NPTS, GaussianProcess)
are outperformed by these four models and the model ETS. We must insist that
these results are obtains in a defined context : for the datasets that has been pre-
sented, for a predict lenght of 10 and with as goal the minimization of the difference
between the real and predicted security quantiles and secondly the minimization of
the difference between real and predicted distributions.

An important note is that the model ETS, a “classical” forecasting model which
does not belongs to the deep learning field, is overpassed only by MQCNN and
SingleFeedForward in terms of Coverage and by MQCNN, MQRNN and DeepAr in
terms of MASE (in the context where the main metric to optimize is Coverage).
From these results, we can conclude that the great majority of the deep learning
techniques that have been tested does not outperforms easily and very significantly
classical techniques like ETS. Nevertheless, MQCNN (Coverage ' 0,MASE =
1.7), outperforms significantly ETS (Coverage = −0.005,MASE = 2.1). One more
time, these results are presented for the defined context, and conclusion could not
be drawn for complete different contexts.
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These conclusions drives us to a reflection about what other context would be in-
teresting to explore. Firstly, as mentioned in 1.3, the comparison performed in this
master thesis is about the models that are implemented in GluonTS. Some state-
of-the-art models that are compared in reviews [25] and [15] are not compared here
because of this choice. In addition of that, some implemented models of GluonTS
has not been usable, because of running errors that will be certainly corrected in fu-
ture versions. The comparison of these other models would be obviously interesting,
as they use different techniques to tackle the problem of probabilistic forecasting,
with some of them possibly very compatible / better in the context of wind turbines
production probabilistic forecasting. But, if this comparison would be interesting, it
is not easy to performs it, as some models implementations are complex and not ac-
cessible. Another element of context is the input data. The comparison is performed
for a fixed amount of input information. Other comparison, with possible more data,
or data containing more varied types of wind turbines, would possible provides differ-
ent results. The size of the prediction interval would also possibly greatly influences
the results but increases it will take us away of the defined goal. The use of other
distribution output ( Beta or Student for example) could be interesting as well.
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