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Plastic is wonderful because it’s durable and plastic is terrible

because it’s durable (Leeson, 2016)
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Abstract

Biocomposites made from starch and natural fibers were studied in this work. Starch is abundantly
produced by fractionation processes of crops and legumes while natural fibers, such as flax and hemp
fibers, are largely produced in Europe.

A new processing method, through microwave-assisted plasticization, was studied in this work.
Thermoplastic starch (TPS) samples were produced from pea starch, glycerol and water. Low
percentages of starch (20% (w/w)) and high temperatures (190°C) gave the most optimal results in terms
of homogeneous plasticization and ability to be molded. Flax, hemp and microcrystalline cellulosic
natural fibers were processed with the selected TPS matrices to create biocomposites. FTIR analyses
and optical microscopy highlighted the presence of matrix around the fibers, indicating a good
compatibility between the initial components. No degradation of the TPS matrix or the fibers relatable

to the microwave process was identified.

The fibers and starch composition of biocomposites, as well as their processing parameters, were related
to their tensile test measurements through multilinear regression modeling. The database built with TPS
and biocomposites data gave models with most of the variability explained when studying the Young’s
modulus and tensile strength (R?2 > 0.96). The analysis of the regression coefficients significance
indicated that many variables and interactions had an impact on the mechanical properties of the final
material. To help the scientific literature in their further research, a list of significant parameters was

produced.

Key words: Thermoplastic starch; Biocomposites; Natural fibers; Microwave; Explanatory model;

Mechanical properties



Résumé

Des biocomposites formulés a partir d’amidon et de fibres naturelles ont été étudiés dans le cadre de ce
travail. L’amidon est abondamment produit par fractionnement de céréales et de légumineuses, tandis

que les fibres naturelles, comme les fibres de lin et de chanvre, sont largement produites en Europe.

Une nouvelle méthode de formulation, par plastification assistée par microondes, a été étudiée dans le
cadre de ce travail. Des thermoplastiques d’amidon (TPS) ont été produits a partir d’amidon de pois, de
glycérol et d’eau. De faibles pourcentages d’amidon (20% de la masse totale) et des températures élevées
(190°C) ont donnés les résultats les plus optimaux en ce qui concerne I’homogénéité de la plastification
et la capacité a étre moulé. Des fibres naturelles de lin, de chanvre et de cellulose microcristalline ont
été ajoutées aux matrices TPS sélectionnées pour créer des biocomposites. Les analyses par FTIR et
I’étude par microscopie optique ont mis en évidence la présence de matrice TPS autour des fibres,
indiquant une bonne compatibilité entre les composants initiaux. Aucune dégradation de la matrice TPS

ou des fibres, liées au procédé par microondes, n’a été identifiée.

La modélisation par régression multilinéaire a été utilisée pour étudier la relation entre la composition
des fibres et de I’amidon des biocomposites, ainsi que leurs parametres de formulation, avec leurs
mesures d’essai de traction. La base de données construite avec les échantillons de TPS et de
biocomposites, pour 1I’étude du module de Young et de la résistance a la traction, a produit des modeles
dont la plus grande partie de la variabilité était expliquée (R?> 0,96). L’analyse de la significativité des
coefficients de régression a indiqué que de nombreuses variables et interactions avaient une incidence
sur les propriétés mécaniques du matériau final. Pour aider la littérature scientifique dans ses recherches

ultérieures, une liste de parametres significatifs a été produite.

Mots-clés : Amidon thermoplastique; Biocomposites; Fibres naturelles; Microondes; Model explicatif;

Propriétés mécaniques
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l. State of the art

1. Plastic industry and its economy

1.1. History of the plastic industry

Plastic materials occupy an essential place in our daily life. They can be found as packaging (food
wrappers and trays, drinks bottles, soap or toothpaste containers), as building and construction materials
(window frames, pipes, building insulation) or as automotive, electrical and electronic parts. They equip
our household with many objects (clothes, kitchen appliances and utensils, bathroom items) or for our
leisure and sports equipment. Many other examples exist in many other sectors including the medical

and pharmaceutical industry or agriculture (PlasticsEurope et al., 2019; Shrivastava, 2018a).

Plastic history is marked by significant discoveries and inventions that led to the plastic industry known
today. For example, in 1862, Parkesine was presented to the world at the Great International Exhibition
in London by Alexander Parkes. This material is considered as the precursor of celluloid, one of the first
semi-synthetic plastic materials. It was produced from nitrocellulose, some solvents, and natural
plasticizers such as camphor or vegetable oil. In 1907, the first fully synthetic resin was produced from
phenol and formaldehyde. It was invented by Leo Baekeland who named this plastic Bakelite. This
invention marked the beginning of the plastic industry (Crawford and Quinn, 2017a). However, it was
only after World War I, that plastic materials started being mass produced (Shrivastava, 2018a). The
abundance and low price of oil, and the improvements in manufacturing processes decreased the
production costs and allowed the production of new plastic materials such as polyurethanes, polyesters,
or polypropylene. Quickly, numerous new plastic products appeared on the market such as Nylon or

Teflon (American Chemisty Council, n.d.).

The success of plastic materials comes from several factors: they are inexpensive, they are known to
have constant and reliable quality over the years and the seasons, and by means of the specific functions
they offer, they can be used in countless fields of applications (American Chemisty Council, n.d.;
Shrivastava, 2018a). They were developed as functional alternatives to other materials, mainly harvested
directly as raw material (e.g. horn, tortoiseshell, leather, ivory or wood) or manufactured (e.g. glass,
natural fibers, or metals). Today, plastic materials have been developed and improved in such ways that
they have enhanced the comfort and standard of living as they bring hygiene and safety to our world
(Shrivastava, 2018a).



1.2. Plastic end-of-life

A plastic material becomes a plastic waste at the end of its life and can take different directions
depending on if it is collected or not. In Europe, collected plastic is either recycled, burned for energy
recovery, or disposed in a landfill (PlasticsEurope et al., 2019; Shrivastava, 2018b). However, some
countries such as Belgium, has vastly banned the disposal of plastic waste in landfill.

In 2018, Europe produced 62 million tons (Mt) of plastic materials, and 29 Mt post-consumer plastic
waste was collected the same year. From that collected waste, most of it was converted as energy
(42.6%) or recycled (32.5%). However, 24.9% was still sent to landfill.

Plastic products have different lifespans, from less than a year to several decades. Thus, the amount of
plastic produced does not always correlate with the plastic waste collected that same year. Even if the
percentage of collected plastic waste sent to landfill decreases each year, it can be seen in Figure 1 that
many European countries still do not have landfill restriction implemented, and many improvements in
terms of waste management (recycling and energy recovery) still have to be achieved (PlasticsEurope
etal., 2019).

- Switzerland
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Figure 1: Post-consumer plastic waste rates of recycling, energy recovery and landfill per country in 2018
(PlasticsEurope et al., 2019)

Unfortunately, not every plastic waste is collected: they are then dumped or littered in the environment
and mostly end up in the rivers and oceans (Shrivastava, 2018b). But that is not the only way plastic
waste enters the aquatic environment. It arrives there by different ways: through dumping, via landfills,

or by accidental spillage. Up today, approximately 10% of all the plastic ever produced has been released



in the ocean. Furthermore, a third of the plastic yearly produced is considered as single-use plastic and

is dumped before the first year after manufacture (Crawford and Quinn, 2017b).

From this overview, it seems that the field of plastics faces a major challenge: maintaining the plastic
materials advantages in terms of properties while reducing their drawbacks occurring at the end of their
life. Improvement of the collecting and recycling system and the implement of landfill restrictions to
more countries could reduce the percentage of waste sent to landfill. This part is beyond the scope of
this study. Plastics with short lifespans are especially concerning; therefore, several options might be
considered such as the design of performing materials either biodegradable or recyclable.

1.3. Plastic materials classification and applications

Plastics are not a single material but a group of different materials and blends that each have their own
properties and characteristics which are suitable for specific applications. They can be produced from
different raw materials such as fossil materials (crude oil, gas and coil) or renewable materials (cellulose,

vegetable oils, starch,...) (Shrivastava, 2018b).

Two main types of plastics exist, thermoplastics and thermosets (also called thermosetting plastics).
Thermoplastics are found in majority on the market. In 2008, they represented more than 70% of the
plastic demand in Europe (PlasticsEurope et al., 2019). Thermoplastics are polymers that can be
processed either as soft or liquid materials when heated. The state depends on whether the glass
transition temperature (Tg) or the melting temperature (Tm) is respectively reached. When cooled, they
solidify into a glassy or semicrystalline solid. This process is reversible, and these materials can be
processed repeatedly by applying heat, meaning they can be recycled into new products. However, this
reversible process can lead to degradation or affect some properties after a certain number of repetitions
(Birca et al., 2019; Verma and Sharma, 2017). On the contrary, thermosets do not have the ability to
melt under heating. This comes from a chemical reaction during their processing that forms
intermolecular cross-links, creating a complex network. This reaction is called the curing process. As a
result, their mechanical properties are not dependent of usage temperature, unlike thermoplastics (Birca
et al., 2019). Table 1 presents a non-exhaustive list of common plastic materials for each group with

some application examples.



Table 1: Common thermoplastics and thermosets and their usual applications (PlasticsEurope et al., 2019)

Type of plastic Examples of applications
Thermoplastics
High-Density Polyethylene (HDPE) Milk bottles, shampoo bottles, pipes
Low-Density Polyethylene (LDPE) Reusable bags, food packaging films, water bottles
Polypropylene (PP) Food packaging, wrappers, automotive parts
Polyvinyl chloride (PVC) Window frames, pipes, floor and wall covering
Polyethylene terephthalate (PET) Bottles of water, juices
Polystyrene (PS) Food packaging, building insulation, eyeglasses frames
Thermosets
Polyurethanes (PUR) Insulation of buildings, pillows and mattresses

In special paints for ships or wind turbines, as protective coating on

Epoxy resins beds, furniture, bicycles

Acrtificial corneas, bakeware, cookware, medical devices, personal

Silicone
care products

1.4. Plastic industry marketplace and economy

The plastic industry holds a significant place in Europe by providing direct employment to over 1.6
million people in around 60,000 companies, placing the industry as 7" in industrial value added
contribution (PlasticsEurope et al., 2019).

In 2018, almost 360 Mt of plastics were produced worldwide. Europe represented 17% of the world
production with 62 Mt of plastics produced. As seen in Figure 2, the packaging and the building and
construction sectors are the most demanding in plastics (39.9 and 19.8%, respectively). As for the plastic

types, PE and PP represent almost half of the plastic demand (29.7 and 19.3%, respectively).

By sector By plastic type

Others 16.7%
\

Packaging 39.9% Others 19.0%
PE 29.7%

/

Agriculture 3.4% _
\

\

Household, leisure and

/| PS 6.4%
sports 4.1% = — ’
// \
/ I PET 7.7%
Electrical and _/
electronic 6.2%
‘ PUR 7.9% VPP 19.3%
Automotive * B“ildi'?g and
9.9% \_ construction 19.8%

/
PVC 10.0% _/

Figure 2: Distribution of the plastic demand by sector and by plastic type in Europe in 2018 (Reproduced from
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1.5. Bioplastics

Bioplastics are a subcategory of the previously described materials. Whether they are thermoplastics or
thermosets, plastics are considered bioplastics if they are partially or totally biobased and/or
biodegradable. Thus, biobased does not imply biodegradability. “Biobased”” means “produced (partially)
from renewable resources” while biodegradation is a biochemical process that transforms the biomass
into water, carbon dioxide and compost, that depends on environmental conditions (European
Bioplastics, 2019).

In 2018, bioplastics represented only one percent of the 360 Mt of plastic produced worldwide. Despite
that low proportion, the bioplastics demand is increasing, and the market is in constant diversification
and growth. From the bioplastic production of 2019, 55.5% were biodegradable with mainly starch
blends, polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) (21.3%, 13.9% and
13.4%, respectively). The 44.5% left were biobased and non-biodegradable bioplastics with, in majority,
biobased-polyethylene (PE), -polyamide (PA), -polyethylene terephthalate (PET) and -polytrimethylene
terephthalate (PTT) (11.8%, 11.6%, 9.8% and 9.2%, respectively) (European Bioplastics, 2019).

Bioplastics are used in many sectors as diverse applications. Packaging and food services are major
sectors for bioplastics. They are found as foamed packaging chips, cosmetics tubes and jars, shopping
bags, trays, nets and films for fruits and vegetables, beverage bottles, or even catering products such as
cups, plates and cutlery. Another important sector is agriculture and horticulture mainly with mulch
films but also plant twine, clips, or pots. Other examples are found as pharmaceutical and medical
applications, as consumer electronics, in the automotive industry, as building and construction materials,

as textiles, and many more (European Bioplastics, 2019; Thielen, 2014).

Biobased bioplastics are produced from raw materials such as polysaccharides (e.g. cellulose or starch),
proteins (e.g. casein), lignin, natural rubbers, sugar, and oils originated from various plants (Thielen,
2014). The main advantages of these bioplastics are the use of renewable resources that regenerate faster
than fossil resources and the fact that their life cycle has the potential to be carbon neutral, as seen in
Figure 3. This means that the carbon dioxide released during the bioplastic’s life (production,
utilization, end-of-life) can be reabsorbed by the plants that will be used to create new biobased
bioplastics in a human-life time lap (European Bioplastics, 2019). Another advantage of bioplastics is
the increased or the creation of unique performances for some applications, such as the use of natural

rubbers (extracted from rubber trees) in tires, which are not totally replaceable by synthetic rubbers.
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Figure 3: Life cycle of biobased bioplastics (Thielen, 2014)

Despite many advantages, biobased bioplastics remain a controversial topic because they can be made
from food or feed crops. This is why many researchers and industries tend to use agriculture residues

and waste or lignocellulosic materials to produce 2" generation bioplastics (Thielen, 2014).

To know what type of plastic is more sustainable for a specific application, Life Cycle Assessment
(LCA) methodology can be performed to quantify the potential environmental impacts of the product
through its entire life cycle. Starting with the extraction of the raw material, then with the production
and the utilization of the product to finally its disposal, this life cycle is illustrated in Figure 3 for
biobased bioplastics. This tool specifically focuses on the environment pressures in terms of climate
change, human health effect, or resource depletion to name a few. Thus, it does not include economic
or social impacts and needs to be combined with other tools to have a global perspective on the

improvements needed (European Commission, 2019).

This work focuses on the formulation of biobased and biodegradable plastics made from starch and
natural fibers. The use of starch is motivated by its occurrence as a co-product in the fractionation of
legumes for proteins extraction. The hemp and flax fibers were the selected natural fibers, as they are

widely produced locally (Belgium and France) and have been largely studied.



2. Thermoplastic starch (TPS) : a biobased and biodegradable plastic

2.1. Origin and structure of starch

Starch can be found in seeds, stems, leaves, roots, bulbs, tubers and fruits (Fraser-Reid et al., 2008).
Some plants are known to have a high starch content (around 70% dry weight (DW)) such as wheat,
corn, barley, potatoes, cassava, or sweet potatoes (ETIP Bioenergy, 2020).

Plants store starch in semicrystalline granules, which size, shape, surface, morphology, and crystallinity
content differ depending on the biomass origin (species and anatomical part) (Fraser-Reid et al., 2008).
The Figure 4 presents the structure of starch granules. Each granule is constructed on different level or
organization. As seen in Figure 4 (a,b), granules are constructed as a succession of semicrystalline and
amorphous layers of growth rings. Crystalline and amorphous lamellae are stacked within each
semicrystalline layer. Crystalline lamellae are mostly composed of amylopectin chains organized in
double helices and disposed in parallel. As for the amorphous lamellae, they mostly contain the amylose
chains as well as the branching points of the amylopectin chains (Figure 4 (c)) (Malumba et al., 2011).
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Figure 4: Schematic representation of a starch granule (Malumba et al., 2011)

Amylose and amylopectin are the two major polysaccharides found in starch. Amylose is a linear glucan
with a-(1->4)-linkage and amylopectin is a branched glucan with a-(1->4)-linkage (linear backbone),
with additional a-(1->6)-linkage at the branch points, as presented in Figure 5 (Prabhu and Prashantha,
2018).



a-(1-4)-linkage

Amylose

a-(1-4)-linkage

*CH,0H ¢ “CH,0H

0-(1-6)-linkage

Amylopectin

Figure 5: Chemical structure of amylose and amylopectin segments (inspired by Prabhu and Prashantha, 2018)

Starch amylose/amylopectin ratio varies depending on the botanical and anatomical origin of the
considered biomass. Most species have starch composed of 20-30% amylose. However, some varieties
are composed of only amylopectin (e.g. waxy rice or waxy maize) or have higher amylose content (e.g.
amylomaize-V and VII) (Fraser-Reid et al., 2008). Table 2 presents the amylose and amylopectin

content, as well as starch crystallinity, for some common plants.

Table 2: Amylose and amylopectin content and crystallinity percentages of starch from different sources

Type of starch Amylose (%) Amylopectin (%) Crystallinity (%0)
Corn 17-25! 75-831 43-482
Wheat 20-25! 75-80* 36-392
Potato 17-241 76-83* 23-532
Pea 33-88° 12-67° 17-202
Faba bean 34-40* 60-66* 20-22¢
Rice 15-35! 65-85* 382

!: Zakaria et al., 2017; 2: Zhang et al., 2014a; °: Ratnayake et al., 2002; *: Punia et al., 2019

Riley (2012) defines the crystallinity in polymers, as “the fraction of a polymer that consists of regions
showing three-dimensional order”. In starch, the crystallinity represents the percentage of crystalline
regions present in the starch granules. That percentage is dependent of the botanical origin as seen in
Table 2. Furthermore, different crystal patterns exist such as A-, B- and C-types. A-type pattern is found
in cereal starches (corn, wheat, rice). B-type pattern is present in fruits, tubers and high-amylose corn.
The C-type is found in legumes seed starches and is an intermediate pattern between A- and B-type
(Genkina et al., 2007; Zhang et al., 2014a). As presented in Figure 6 (A), the double helix of



amylopectin form a monoclinical lattice and a hexagonal lattice for the A- and B-type pattern,
respectively (Genkina et al., 2007). This figure also shows that crystallites with an A-type pattern are
denser and not as hydrated as a B-type pattern. X-ray diffraction is commonly used to identify the

different crystal patterns as they each possess specific diffraction patterns, as observed in Figure 6 (B)

(Carvalho, 2013). The crystallinity percentage can also be calculated from the diffractogram (Zhang et
al., 2008).
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Figure 6 : (A) Plane projection of starch double helices and water molecules arrangements of starch A- and B-type
crystalline structures. (Zhang et al., 2008) (B) X-ray diffraction patterns of A-,B- and C-type crystallites (Carvalho,
2013)

2.2. Native and modified starches

Commercial starch is classified in two classes, native and modified starch. Native starch is the original
form of starch obtained after its extraction, while modified starch is obtained after treatment of native
starch to improve its properties. Modified starch can be obtained through chemical, thermophysical, or

enzymatic treatments. Examples of some common treatments and applications are presented below.

Chemical treatments

The three main chemical modifications are esterification, etherification or oxidation. Esterification for
example, can result in a reduction of the sensitivity of starch to water by substituting OH groups by
hydrophobic groups, which is interesting for dry food applications and also for thermoplastic starch
formulation (Nafchi et al., 2013; Shrestha and Halley, 2014). Starch oxidation can reduce retrogradation,
bring stabilization and low viscosity of the cooked starch pastes which can be used in the gum confection
or in battered meat and fish preparation (Shrestha and Halley, 2014). Other effects are possible such as
the cross-linking of starch chains, the addition of positive or negative charges, or the increase of
hydrophilic behavior (Fraser-Reid et al., 2008).




Thermophysical treatments

Annealing and heat-moisture treatment (HMT) are common physical treatments. Annealing consists of
heating starch below its melting temperature (Tm) but close to its glass-transition temperature (Tg). This
allows a reorganization of starch molecules that will realign the starch chains and increase the
interactions between them (Ratnayake et al., 2002). In result, the starch crystallization is improved
(Shrestha and Halley, 2014). HMT is a physical treatment under specific temperature and moisture
conditions that will impact the physico-chemical, rheological, and retrogradation properties of starch
(Ratnayake et al., 2002). For example, it can decrease the process time by increasing the heat
penetration, and the resulting starch can be used in sterilized soups or sauces (Shrestha and Halley,
2014).

All these modifications can be applied alone or combined and will give the starch product distinct
properties (Shrestha and Halley, 2014).

2.3. Thermoplastic starch (TPS)

As the melting temperature of native starch is above its decomposition temperature, it does not have
thermoplastic properties. To gelatinize and form a thermoplastic, native starch needs to undergo thermal
processes and shear stress in presence of plasticizers. Under these specific conditions, thermoplastic
starch (TPS) can be formulated. (Janssen and Moscicki, 2010; Zhang et al., 2014b).

TPS has been widely studied because starch is biodegradable, renewable annually, available worldwide
and at relatively low cost (Janssen and Moscicki, 2010; Prabhu and Prashantha, 2018; Zhang et al.,
2014a). Starch can be found as a co-product from the fractionation process of some plants, such as pea
or faba bean, where the main goal is to extract protein (Ma et al., 2008). The starch fraction can thus be
valorized and transformed into TPS materials or sold to TPS manufacturers to increase the process

efficiency.

Despite many advantages, TPS materials made from native starch often tend to show little resistance to
moisture and have poor mechanical properties (Zhang et al., 2014b). They also tend to recrystallize
during storage, which alters the mechanical properties, thus the quality, of these materials (Leroy et al.,
2012; Prabhu and Prashantha, 2018). In the scientific literature, these TPS properties are studied with
measurements such as the tensile strength (TS), the elongation at break (EaB), the Young’s modulus
(YM), or the water vapor permeability (WVP) (Prabhu and Prashantha, 2018; Zhang et al., 2014b).
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When a plasticizer is added to starch, intra- and inter-molecular hydrogen bonds between starch chains
are substituted by starch-plasticizer interactions (Altayan et al., 2017). Because plasticizers molecules
are “smaller”, they move more easily in the mixture than starch molecules and can modify the starch
crystalline network without breaking it, by incorporating themselves between the starch chains (Nafchi
et al., 2013). This phenomenon is illustrated in Figure 6 (A) where the water molecules are present
inside the starch double helixes. With the addition of plasticizers, the structure is softened, and the
macromolecular chains have a higher mobility. As a result, the glass transition temperature (T,) of starch
is lowered, and its melting temperature (Tm) decreases below its decomposition temperature. This whole
process is called plasticization (Zhang et al., 2014b). This plasticization process results in the
destructuration of the crystalline structure of starch and forms an amorphous TPS (Prabhu and
Prashantha, 2018). One of the drawbacks of TPS is the recrystallization that can occur during storage
by the formation of hydrogen bonds between the starch chains by expulsing plasticizers. The change in
the mechanical properties of TPS caused by this process is called retrogradation or “aging” (Prabhu and
Prashantha, 2018).

Common plasticizers are water, glycerol, sorbitol, glucose, sucrose, fructose, glycols, urea, amides, and
amino acids. Combinations of these are also used (Zhang et al., 2014b). The nature and content of
plasticizer will impact the final properties of the TPS, rendering it more suitable for particular
applications. For example, Nafchi et al. (2013) explain that the permeability to gases (O, CO,, water

vapor) increases when the plasticizer concentration is increased.

2.3.2. _Manufacturing processes

In the context of laboratory research, thermoplastic starch is generally obtained by casting solutions. An
aqueous suspension of starch mixed with plasticizers is heated to allow the gelatinization of starch. The
solution is then casted on a plate to cool down and dry before peeling the TPS film (Zhang et al., 2014b,
2014a). The extrusion process is commonly used to manufacture TPS on an industrial scale (Prabhu and
Prashantha, 2018). A typical extruder is presented in Figure 7. The TPS mixture (starch and plasticizers)
is fed from the hopper into a heated barrel. The materials are mixed, transported by the screw and heated
at the same time. When the mixture arrives at the end of the barrel in a melted state, it passes through a
die with a specific shape and size. Usually the first extrusion process will produce pellets. However,
TPS extrudates can also be blown into films or molded into shapes before solidification. Pellets can be
extruded a second time to add additives and change the properties of TPS (Zhang et al., 2014a). Other
plasticization methods exist, such as internal mixing or compression molding (Prabhu and Prashantha,

2018). The choice of the method to use will depend on the TPS composition and the targeted application.
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Figure 7: Scheme of a typical extruder (Ponomarev et al., 2012)

Other processing methods can be considered such as heating in a microwave reactor (also called
microwave). This device generates and disperses high frequency electromagnetic waves (usually
between 0.9 and 2.5 GHz) called microwave frequencies. During a microwave treatment, the water and
any other polar molecules that are present in the matter align their dipoles with the alternating field
coming from the microwaves. This phenomenon makes the molecules rotate rapidly and the energy
created is dissipated as heat (Menendez et al., 2010). Each material possesses a dielectric constant (also
called relative permittivity) that expresses how easily this material can align their dipole when it is
subjected to an electric field. In result, the higher this value, the faster it will heat in the microwave. As
examples, the dielectric permittivity of water and glycerol at 20°C are 80.1 and 46.5, respectively
(Engineering ToolBox, 2008). Because the microwave reactor heats the matter directly in the center and
performs rapid heating, it is used in many industries (Menendez et al., 2010) and could be a good
alternative for the manufacturing of TPS. Different process parameters can be varied such as the

temperature, the time of the heating period, the time of treatment, or the heating power.

2.3.3.

As stated before, TPS materials have limited applications due to low mechanical properties and tendency
to absorb water. To address these drawbacks, studies have focused on the composition of the TPS

mixture to improve these properties.

Starch source

The first criteria that impacts TPS is the type of starch. Because starches from different plants have
different amylose/amylopectin ratio, they will form TPS with different properties (Lopez and Garcia,
2012; Zhang et al., 2014b). For example, Lépez and Garcia (2012) compared TPS films made from
starch with different amylose content and found out that the ones with a higher amylose content (corn

starch, 23.9% amylose) were stronger, less flexible and more resistant to water while the ones with a
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lower amylose content (ahipa starch, 11.6% amylose) were more flexible and showed higher

permeability to water.
Plasticizer

As stated before, the properties of TPS materials are affected by the plasticizer(s) used. Its nature and
its proportion in the mixture can impact the glass-transition temperature, the water absorption, the
physical properties (strength, flexibility, extensibility, permeability) and the homogeneity of the
resulting TPS (Zhang et al., 2014b; Zhang and Han, 2006). It is thus important to choose the

plasticizer(s) depending on the properties wanted.

Starch modification

Starch can be modified before the production of TPS. As explained before, these modifications will
allow the substitution of (hydrophilic)-OH groups for selected groups (hydrophobic, hydrophilic) for
specific reactiveness and properties. For example, for TPS materials, it can result in an improvement of
the mechanical and barrier properties and a reduction of sensitivity to liquid water (Nafchi et al., 2013).
It can also improve the compatibility between starch and polymers in blends thanks to the groups

substitution (Zhang et al., 2014b). In this study, only native starch will be used.

Starch blends

Starch can be blended with other polymers, natural or synthetic, biodegradable or not (Janssen and
Moscicki, 2010; Zhang et al., 2014b). Some examples include polyethylene (PE), polyvinyl alcohol
(PVA) or polylactic acid (PLA). Such blends have been proven to improve the mechanical properties of
TPS but still present some issues regarding the compatibility between starch (hydrophilic) and some
hydrophobic polymer matrices. This leads to blends with small amount of starch (< 40%) in the mix to
prevent starch agglomeration. To address this problem, chemical compatibilizers can be added to
improve the dispersion of starch in the matrix (Zhang et al., 2014b). For example, Sabetzadeh et al.,
2012 showed that the use of polyethylene-grafted maleic anhydride (PE-g-MA) could improve the

miscibility, and thus the mechanical properties, between PE and starch.

Other materials, called fillers, can be added to the TPS mixture such as nanoclay. Those fillers have
demonstrated the enhancement of mechanical properties, thermal stability and water resistance of TPS.
When using nanoclay, the results come from the numerous interactions created between nanoclay and

starch thanks to the large interface area between them (Zhang et al., 2014b).

Fibers can also be added to TPS and used as a reinforcement to improve the properties of TPS (Zhang
et al., 2014b). In a goal of developing biobased and/or biodegradable materials, such option is favored.

It will be further discussed in the following section.
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2.4. Fibers as a reinforcement in TPS matrices

TPS reinforced with fibers form biocomposites. In fact, composites are multicomponent materials where
at least one of the components is a continuous phase (the TPS matrix in this case) (Work et al., 2004).
As for biocomposites, they are defined by Jawaid et al., (2017) as “composite materials in which at least
one of the constituents is derived from natural resources”. If the polymer matrix, as well as the
reinforcement material, are from natural resources, they can be called “green biocomposites™ (Jawaid et
al., 2017).

Fibers, natural or not, are used as reinforcement in composites. Thanks to their high mechanical
resistance, they have the ability to transfer that resistance to the matrix they are embedded in through
the creation of strong bonds. This results in the improvement of the mechanical properties of the final
composite. Thermal, gas properties, and water resistance can also be improved (Zhang et al., 2014b).
Fibers reinforced composites are mainly used in applications where the tensile strength has to be high
(Pervaiz et al., 2016).

Natural fibers are already used in many composites to substitute glass fibers. They have equivalent
mechanical properties but are less dense (Mohanty et al., 2002), which can reduce considerably the
weight of the material and in results can help to save fuel when these materials are used in transports
(Pervaiz et al., 2016). They also have a better environmental footprint than glass fibers and some
biocomposites made from renewable matrices and natural fibers can possess a carbon neutral impact
(Mohanty et al., 2002). One of the drawbacks of natural fibers is their variability in quality due to

environmental conditions while glass fibers quality is constant (Staiger and Tucker, 2008).

Fibers are the macrofibrils coming from the primary and secondary walls of the plants and are composed
of cellulose microfibrils embedded with hemicellulose, lignin and pectin. Fiber resistance is related to
the cellulose amount (Staiger and Tucker, 2008), thanks to its complex structure giving it its mechanical
strength (Wang et al., 2018). Flax and hemp fibers are thus a promising choice to improve TPS
mechanical properties due to their large amount of cellulose (85-87% DW for flax fibers (Kozasowski
et al., 2012) and 57-77% DW for hemp fibers (Ravi et al., 2018)).

The final properties of biocomposites are dependent of the initial compounds’ properties (Balakrishnan
et al., 2016) but also of the interface between each one of them (Gassan et al., 2000). Incompatibility
can lead to a decrease in the mechanical properties of the biocomposite (Ravi et al., 2018). When
studying the mechanical properties, the orientation and dispersion of fibers in the biocomposite, as well
as the fiber dimensions (length and diameter), are parameters that will have an impact on the final

mechanical properties of the biocomposite (Castellani et al., 2016).

In this study, native starch reinforced with flax and hemp fibers will be used. Microcrystalline cellulose

fibers will also be used as it is widely studied as a standard for fiber integration in plastic matrices.
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3. Characterization of TPS and biocomposites

Many analyses exist to evaluate the properties and the composition of biomaterials. Some common tests
are used to study the mechanical properties of TPS and fibers reinforced TPS as well as most fossil-
based plastics. Thus, these tests allow a comparison of TPS and biocomposites with bioplastics and
fossil-based plastics already existing on the market and with many studies in that field of research. Other
analyses can be performed to study the chemical bonds and functions present in the material. It can help
understand how these materials evolve through the plasticization of starch and the formulation of

biocomposites.

3.1. Mechanical analysis: Tensile test

Tensile tests are performed with a specific equipment illustrated in Figure 8 (A). As seen on this figure,
the sample is attached to jaws by its opposite ends and are pulled apart by a force, increasing the distance
at a constant rate. This results in an elongation and then usually the fracture of the sample. The
instrument generates a stress-strain curve where the stress (o) represents the load or force (F) divided
by the surface area (A) of the sample (c = F/A) and the strain () is the change in length (AL) divided
by the original length (Lo) of the sample (e = AL/Lo) (Wiederhorn et al., 2006). Figure 8 (B) presents a
typical tensile curve. Several points/areas on the curve are used to characterize and compare samples in
terms of mechanical properties. The Young’s Modulus (YM), also called the elastic modulus, expresses
the stiffness of the sample or its ability to be deformed reversibly. The total strain, also called the
elongation at break (EaB), represents the maximum deformation a material can withstand before
breaking. The (ultimate) tensile strength (TS) is the maximum stress the sample can bear and expresses

the strength of the material (Zhang et al., 2014a).
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Figure 8: (A) Typical tensile testing instrument (Shrivastava, 2018c), (B) Deformation of a sample during a tensile test

and the corresponding stress-strain curve (Yalcin, 2016)

15



3.2. Surface composition: Fourier-transform infrared (FTIR) spectroscopy

The sample is irradiated by infrared (IR) light, which is usually mid-IR (wavenumber between 4000 and
400 cm™). When the vibrational frequency of a bond corresponds to the IR frequency, IR light is
absorbed. IR spectroscopy consists of recording the transmitted IR light that passed through the sample
which brings information about the molecular structure (bonds and functions) of the sample (Wang and
Chu, 2013).

The attenuated total reflectance (ATR) method, presented in Figure 9, is often used as it implies easy
sample preparation and good reproducibility. The infrared beam enters the crystal, that is in direct
contact with the sample and creates an evanescent wave that goes through that sample and carries its
chemical information. The wave only enters the sample from 0.5 to 5um, which makes this method a
surface analysis (PerkinElmer, 2005). The detector detects the signal as an interferogram (Sharma et al.,
2018). The latter is then converted into an IR spectrum through a mathematical transformation called
Fourier-transform as presented in Figure 10. To obtain the percentage of transmittance in function of
the wavenumber, the single beam spectrum must be normalized with the background spectrum, which

consists of dividing the single beam spectrum signals by the background signals (Sharma et al., 2018).
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Figure 9: lllustration of the ATR method (PerkinElmer, 2005)
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Figure 10: Fourier transform of an interferogram (Sharma et al., 2018)

Based on this literature review, this work will focus on how to facilitate the production of biocomposites
on a small scale and how to identify the parameters impacting the final mechanical properties of
biocomposites and the degree of their influence. The objectives presented in the next section will explain

how to achieve these challenges.
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Il.  Objectives

This work focuses on thermoplastic starch (TPS) and biocomposites (fibers reinforced TPS). These bio-
based and biodegradable plastics can be an alternative to some non-biodegradable fossil-based plastics.
This is a way to valorize starch found as a coproduct in the protein extraction process of some plants
(e.g. pea, faba bean).

This master thesis will be divided in two parts.

The first part will study the microwave-assisted plasticization of TPS and biocomposites as a hew
processing method, under varied process parameters. A classification based on scores determined by
several selection criteria will be performed. These samples will be analyzed by FTIR to understand the
evolution of functional groups and linkages during the plasticization of TPS and after addition of fibers.
Microscope observations will be performed to determine the impact of the process on the fibers’
dimensions (lengths and diameters) and to understand the compatibility between the fibers and the TPS
matrix. The orientation of the fibers in the matrix will also be studied.

These few analyses will allow to understand if this new processing method is suitable for the formulation

of TPS and biocomposites, and to highlight the limits of the microwave for this kind of study.

In the second part, models will be designed to highlight the importance of the processing and chemical
composition on the mechanical properties of biocomposites made from TPS matrices and fibers. Data
from literature will be collected to create a database. Multilinear regressions will be performed to study
the significance of parameters such as starch and fibers composition as well as process parameters on

the tensile test measurements (Young’s modulus, tensile strength and elongation at break).
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[1l1. Part 1: Microwave-assisted formulation of biocomposites and

characterizations

1. Materials and methods

1.1. Materials

Table 3: Brand or origin of the raw materials with technical information

Name Brand/origin

Glycerol Alfa Aesar (99%)

Pea starch Native NASTAR pea starch Provided by Cosucra Belgium (Dry matter
90+2%, £35% Amylose, £65% Amylopectin, granulometry <250um, protein
<0.5%, fat <0.4%, ashes <0.2% (Cosucra Socode, n.d.))

Microcrystalline Mikro-Technik GmbH (£200 pm in length and 30 pum diameter (Morin et al.,
cellulose fiber (C200) 2019))

Flax fibers Retted tow flax fibers harvested in France in 2014 and stored in dry and dark
conditions before use. Chopped at a targeted length of 5mm (75.8% cellulose,
11.4% hemicellulose, 4.5% lignin, 8.2% extractible (Morin et al., 2019))

Hemp fibers Retted technical hemp fibers (Fedora 17 or Santhica 27 variety), harvested
in France in 2014 and stored in dark and dry conditions before use. Chopped
at a targeted length of 5mm (81.0% cellulose, 11.0% hemicellulose, 2.5%
lignin, 5.5% extractible (Morin et al., 2019))

Chemicals were used as received without further purification.

1.2. Microwave-assisted thermoplastic starch formulation

TPS were formulated in a microwave reactor (StartSYNTH, Milestone Srl) with distilled water and
glycerol. An optimized experimental plan was generated using the JMP 15 statistical software (SAS
Institute Inc.), presented in Table 5. The aim was to determine which area(s) of the tested matrix gave

promising TPS, according to selected parameters.

1.2.1. Samples preparation

Pea starch and plasticizers were weighted directly in the microwave Teflon tubes. The chip was placed

first, then glycerol, starch, and water were added in that order. The mixture was stirred by vortex for
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1.5min, and then for 5min by magnetic stirring at 250RPM, to ensure proper homogenization. The tubes
were placed into closed vessels and set up at equal distance in the microwave reactor as shown in Figure

11. Each sample was triplicated within the same batch, one repetition with the temperature probe (C)

and two repetitions without (A & B).

Microwave | »
reactor enclosure
Probe .
|| :—<"
Teflontube — [ |
Vessel ——1 | | F5
Rotating plate —1 | | L — A
| T~ ||
c B

Figure 11: Set up of the samples in the microwave. Left: photo of the system. Right: representation of the microwave
enclosure with the samples on the rotating plate and the probe in the sample C.

After plasticizing, the samples were cooled down in a room temperature water bath for 10min before
collecting them from the tubes. Collected samples were kept at 80% relative humidity at room
temperature, in a desiccator with aluminosilicate gel (from Merck), for a week before being sliced and
stored into closed plastic cups and further analyzed.

1.2.2. Process parameters selection and experimental plan

Four process parameters were studied:

- the targeted temperature in the microwave reactor during plasticization

- the heating time to reach the targeted temperature (see Figure 12)

- the treatment time at the targeted temperature (see Figure 12)

- the percentage of starch (wt%) in the mixture, where water and glycerol completed the mix in

equal proportions.

The heating power was set to the device maximum (1200W) during the entire treatment to allow the
microwave to adjust the probed mixture to the required temperature. The stirring was set to 20% of
nominal power, which should have been enough to ensure good homogenization during the treatment

but not too intense, knowing that the formulated fluids were rheo-thickening.
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Figure 12 presents the microwave interface and shows how the process parameters were set up and how
the power and temperature are monitored during a typical treatment. The first line on the left picture

represents the process parameters for the heating period and the second for the treatment period.

Heating period Treatment period

Figure 12: Examples of the microwave process parameters set up (left) and the temperature and energy monitoring
curves (right)

Table 4 presents the range of values for each process parameter studied, where the extreme values were
selected based on the literature (see appendix 1). Then, an optimized experimental plan, presented in
Table 5, was generated with the JMP 15 statistical software including first and second interactions
between factors. As presented in Table 4, the software added an in-between value for each process
parameter, which allowed to have enough combinations of process parameters to study the first and

second interactions.

Table 4: Range of values for process parameters used for the optimized experimental plan of TPS formulation

Minimal value In-between value = Maximum value

Temperature (°C) 130 160 190
Time of heating (min) 1 2 3
Time of treatment (min) 0.5 5.25 10

Starch (% wiw) 20 40 60
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Table 5: Optimized experimental plan of the TPS formulation

Sample Temperature Time of.heating Time of treatment Glycerol Starch Water
(°C) (min) (min) (%) (%) (%)
TPS 1 130 1 0.5 40 20 40
TPS 2 130 1 0.5 20 60 20
TPS 3 130 1 10 30 40 30
TPS 4 130 2 5.25 30 40 30
TPS5 130 3 0.5 30 40 30
TPS 6 130 3 10 40 20 40
TPS 7 130 3 10 20 60 20
TPS 8 160 1 5.25 30 40 30
TPS9 160 2 0,5 30 40 30
TPS 10 160 2 5.25 40 20 40
TPS 11 160 2 5.25 20 60 20
TPS 12 160 2 10 30 40 30
TPS 13 160 3 5.25 30 40 30
TPS 14 190 1 0.5 30 40 30
TPS 15 190 1 10 40 20 40
TPS 16 190 1 10 20 60 20
TPS 17 190 2 5.25 40 20 40
TPS 18 190 2 5.25 28.7 42.6 28.7
TPS 19 190 3 0.5 40 20 40
TPS 20 190 3 0.5 20 60 20
TPS 21 190 3 10 30 40 30

1.2.3. Samples selection

The formulated TPS were selected using a scoring grid based on selection criteria presented in Table 6

(observations without equipment). For each criterion, a score was attributed, giving a final score for
each TPS.

Table 6: Formulated TPS selection criteria with associated score

Criterion

Score

Consistency

0 = Hard block, powder or liquid
1 = Block between soft and hard

2 = Soft block

3 = Paste that can be molded

Color

0 = Dark orange, brown
1 = Light yellow to light orange
2 = White or transparent

Color homogeneity

0 = Non-homogeneo

1 = Almost homogeneous

2 = Homogeneous

us

Air bubbles

0 = Big air bubbles (cavities) or air bubbles of different sizes
1 = Small homogeneous air bubbles
2 = No air bubbles or very few
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Depending on the score obtained, the TPS were classified as optimal (complete plasticization), non-
optimal (uncomplete plasticization) or promising (optimal if the homogeneity is improved). This

classification was defined following Table 7.

Table 7: Classification of the formulated TPS based on the score obtained based on the selection criteria

TPS Classification Score
Optimal >7
Promising (homogeneity to improve) >4and <6
Non-optimal <4

1.3. Biocomposites formulation in a microwave reactor

Biocomposites were formulated in the microwave reactor from the TPS samples that were optimal and
from non-modified natural fibers: microcrystalline cellulose fiber (C200), flax fibers, and hemp fibers.

1.3.1. Sample preparation

The samples preparation was similar to TPS. First, the TPS mixture was prepared as before (starch with
plasticizers and homogenization). Then, the fibers were added to the mixture and blended by hand. After
the process in the microwave, the samples were also cooled down in a room temperature water bath for

10min before removal from the tubes.

The process parameters, as well as the compositions of the TPS matrices, were the same as the TPS
samples selected (all composed of 20% starch, 40% water and 40% glycerol (w/w)). The biocomposite
total mass was composed of 90 or 95% (w/w) of TPS matrix and 10 or 5% of fibers. The corresponding

experimental plan is presented in Table 8.

The biocomposites samples are denominated BC followed by the temperature of process, the first letter
of the type of fiber, and the percentage of fiber. As example, BC130C10 is a biocomposite processed at
130°C with 10% of C200 fibers. For more clarity, the TPS n°6, 10 and 17 will be denominated TPS130,
TPS160, and TPS190 in reference to their process temperature. It will be explained later why these three
TPS were selected.
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Table 8: Experimental plan of biocomposites formulation in the microwave

sample TPS Temperature  Time of heating  Time of treatment  Type of  Fiber percentage
P matrix (°C) (min) (min) fiber (%)
BC130C10 N°6 130 3 10 C200 10
BC130F10 (TPS130) 130 3 10 Flax 10
BC130H10 130 3 10 Hemp 10
BC160C10 N°10 160 2 5.25 C200 10
BC160F10 160 2 5.25 Flax 10
(TPS160)
BC160H10 160 2 5.25 Hemp 10
BC190C10 N°17 190 2 5.25 C200 10
BC190F10 (TPS190) 190 2 5.25 Flax 10
BC190H10 190 2 5.25 Hemp 10
BC190C5 N®17 190 2 5.25 C200 5
BC190F5 190 2 5.25 Flax 5
(TPS190)
BC190H5 190 2 5.25 Hemp 5

1.3.2. Sample selection

The formulated biocomposites were selected using a scoring grid, similar than for TPS, based on
selection criteria presented in Table 9 (observations without equipment). For each criterion, a score was

attributed, giving a final score for each biocomposites.

Table 9: Formulated biocomposites selection criteria with associated score

Criterion Score

0 = Hard block, powder or liquid
1 = Block between soft and hard

2 = Soft block
3 = Paste that can be molded
0 = Non-homogeneous
Color homogeneity 1 = Almost homogeneous
2 = Homogeneous
0 = Big air bubbles (cavities) or air bubbles of different sizes
Air bubbles 1 = Small homogeneous air bubbles
2 = No air bubbles or very few

Consistency

Depending on the score obtained, the biocomposites were classified as optimal, non-optimal, or
promising (optimal if the homogeneity is improved). This classification is presented in Table 10 and

was defined following Table 9.

Table 10: Classification of the formulated biocomposites based on the score obtained based on the selection criteria

Biocomposites Classification Score
Optimal =7
Promising (homogeneity to improve) >4and <7
Non-optimal <4
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1.4. Characterization of samples and their compounds

1.4.1. Fibers morphology characterization with an optical microscope

Fibers isolated from the biocomposites as well as unprocessed fibers were observed with an optical
microscope (Leica DM2700 P). Pictures were taken and the diameter (in um) and length (in mm) of
fibers were measured with the computer program ImageJ. The Weibull distributions (only for positive
variables) of these measurements were compared. Pictures of fibers in the TPS matrix were also taken

to observe the orientation of the fibers in that matrix.

1.4.2. FTIR analyses

The TPS samples selected, their corresponding biocomposites as well as their initial compounds such
as glycerol, starch, water and fibers (before and after integration), were analyzed by an ATR-FTIR
spectrometer (Bruker Vertex 70) under an inert nitrogen atmosphere. The transmittance was recorded

in function of the wavenumber from 4000 to 400 cm* with a resolution of 4 cm™.

The FTIR spectra were analyzed statistically with the R software (The R foundation, Version 4.0.0)
using a code presented in appendix 5. The goal was to determine whether the process parameters were
related to the presence of some chemical bonds (covalent and hydrogen bonds) between the different
samples. The code performed different types of spectra transformations (normalization, first and second
derivations and combinations of these). Several correlations were estimated between each spectrum
transformation and each studied parameter (i.e. formulation conditions, chemical composition). Peaks

were selected according to their ability to improve fitting the correlation of the established model.
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2. Results and discussion

2.1. TPS formulation

The TPS samples formulated in the microwave were classified based on their final score determined by
the selection criteria presented before. These data are presented in appendix 2. As a reminder, four
process parameters were tested in the microwave to understand which conditions gave optimal TPS
samples. With the resulting TPS scores, we can see if any process parameter has an impact on the final
score of formulated TPS. It is important to note that the following results are general assumptions based

on visual observations and are specific to the experimental conditions.

Figure 13 represents the total scores of TPS formulated in the microwave in relation to the percentage
of starch in the mixture and the process temperature. As seen on that figure, there is a trend between the
scores and the starch percentage; the scores are higher when the percentage of starch is low. In fact, all
the TPS samples that were classified as optimal (score > 7) had a starch percentage equal to 20.

o

Score

190
20

Starch % 60 130 Temperature (*C)

Figure 13: Surface diagram of TPS formulation in the microwave: TPS scores in function of starch percentage and

temperature of the microwave

To have a better idea of the relationship between the starch percentage and the TPS scores, these two
variables are presented in Figure 14. The estimated linear trend has an R? = 0.84, which is not
particularly high to build a precise model but is high enough to show the evolution of the score
depending on the starch percentage. As stated before, these data are from visual observations and

provide general insights.
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Figure 14: Final scores of microwave formulated TPS in function of the starch percentage in the TPS mix.
Green = optimal, orange = promising, red = not optimal.

As for the temperature of treatment, optimal TPS samples were found for each tested temperature (130,
160 and 190°C) and Figure 13 shows that there is no clear relationship between the score and the
temperature. In fact, the estimated linear trend between them has an R2=0.0056 (see appendix 4).
However, among the optimal samples (score > 7), some differences in terms of consistency can be
noticed and are illustrated in Figure 15. The samples formulated at 130°C and 160°C (Figure 15 A and
B) had a soft consistency but took the shape of the microwave tube (consistency score = 2). In contrast,
the ones formulated at 190°C (Figure 15 C) were more liquid and could be molded in the shape of the
plastic cup, after being removed from the tubes (consistency score = 3). When considering processing
and applications where the samples need to be molded, it seems that 190°C is the most suitable
temperature tested for these conditions.

Figure 15: Pictures of the microwave formulated TPS. A: TPS n°6 (130°C), B: TPS n°10 (160°C), C: TPS n°17
(190°C)
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For the times of heating and treatment, the data from this experimental plan, presented in Figure 16, do
not show a significant linear trend between those two factors and the TPS scores. The estimated linear
trend between the time of heating and the TPS scores has an R2=0 and the one between the time of

treatment and the TPS scores has an R2=0.0034 (see appendix 4).
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Figure 16: Surface diagram of TPS formulation in the microwave: TPS scores in function of time of heating and time
of treatment

All the samples that were processed with the same temperature and the same amount of starch were
classified in the same category except for one case. The samples that were processed at 130°C with 20%
of starch and with different times of heating and treatments were not classified the same. This difference
comes from the large air bubbles present in the sample processed with shorter times of heating (1min)
and treatment (0.5min), as seen in Figure 17 A and B, which was classified as promising. The other
sample (3min of heating and 10min of treatment) was completely homogeneous and was classified as
optimal (Figure 17 C and D).
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Figure 17: Pictures of the microwave formulated TPS. A,B: 130°C, 20% starch, 1min heating, 0.5min treatment, C,D:
130°C, 20% starch, 3min heating, 10min treatment. C and D are sliced samples.

To be able to understand what non-optimal samples look like, some examples are presented in Figure
18. All the presented TPS show heterogeneous plasticization. Picture B,C and D also show overheating

zones and probably sample degradation.

Figure 18: Pictures of the microwave formulated TPS. A: TPS n°8, B: TPS n°11, C: TPS n°16, D: TPS n°20. Bottom
pictures are the sliced samples.
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From these results, it can be concluded that:

- The optimal samples are found in each range of temperature but only the optimal ones
formulated at 190°C have the ability to be molded.

- The percentage of starch impacts the final score of the TPS. In this experiment, 20% (w/w) of
starch gives the highest scores.

- These data do not show a clear relationship between the times of heating and treatment and the
final TPS scores, in the tested range.

- For the lower temperature tested (130°C), it seems that a longer time is required to obtain a

homogeneous sample.

As shown in Figure 15, the temperature of treatment had an impact on the final consistency of the TPS
sample. Only the optimal samples processed at 190°C were liquid enough and able to be molded. This
could be explained by the temperature of demolding. All samples were cooled down for 10min in a room
temperature water bath, meaning that the samples that reached 190°C had a higher temperature of
demolding than the ones at 130 and 160°C. It is possible then that the samples processed at 190°C were
still warm enough to be molded when the others were already too cold. As a consequence, it is possible
that the samples processed at higher temperatures continued the plasticization process while cooling
down and thus had a longer time of plasticization.

In the case of this study, it seems that the microwave was only suitable when the TPS mixture was in a
liquid form with lower viscosity, i.e. containing 20% (w/w) of starch. Previous studies have shown
promising results for TPS with starch percentages up to around 80% (Averous and Boquillon, 2004; Ma
et al., 2008; Thunwall et al., 2008). The main difference lies in the processing device. In fact, TPS is
often formulated with an extruder, mainly different in three aspects compared to the microwave: the

way samples are prepared, the heating and the stirring method.

In an extruder, all the compounds are fed through the hopper. Then, the TPS mixture is constantly stirred
with an endless screw and the mixture is in contact with a heating barrel (as presented in Figure 7). This
device allows optimal homogenization and homogeneous heating. Concerning the heating in the
microwave, it is known to heat samples more evenly than other conventional heating methods as the
energy targets each molecule in the sample. The monitoring curves show that all the temperatures were

reached in the center of the tubes, even when the period of heating was short (< 3min).

The main problem seems to come from the stirring during the sample preparation and in the microwave.
The magnetic chips chosen were small to fit the tubes. As the samples were rheo-thickening or had a
powdery consistency, it was not enough to offer proper homogenization (for starch percentages above
20%) before and during the treatment. This means that the mixtures with more than 20% of starch were

heterogenous before the treatment, with some areas containing more plasticizers than others. This
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resulted in samples with heterogeneous plasticization or no plasticization at all. The speed, the size, and

shape of the magnetic chip are thus important to consider, depending on the composition of the mixture.

The homogenization is the limiting parameter for the microwave formulation of TPS. The samples must
be liquid enough, meaning containing low starch amounts. From this observation, two potential

solutions are here presented in order to produce TPS in a microwave with higher percentages of starch.

The first is the sample preparation. Many studies that have produced TPS with high starch percentages
(Averous and Boquillon, 2004; Ma et al., 2008) prepare their samples by blending the starch and the
plasticizers with a mixer. The samples are then stored for hours up to weeks to allow the plasticizers to
penetrate between the starch particles before the plasticization process. This could be a good solution,
especially when the starch percentage is high (from 60%) to avoid heterogenous plasticization where

only parts of the sample are mixed with the plasticizer(s).

Another improvement would be to set up the microwave reactor differently. By adding a mixer from the
top, as presented in Figure 19, optimal homogenization would be applied during the treatment. It would
imply the process of one sample at a time and would need a larger container. The probe and the mixer
would need to pass through the lid in a hermetic way, if no loss of water is wanted.

Microwave reactor

enclosure

Probe /

Mixer —]

Hermetic lid —

Sample container 1

Figure 19: Representation of a new microwave set up
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2.2. Biocomposites formulation

After the classification of TPS samples, three of the five optimal TPS were selected (one for each
temperature; TPS130, TPS160 and TPS190) and fibers were added to formulate biocomposites (Table
8). As a reminder, all the selected TPS samples were composed of 20% starch, 40% water and 40%
glycerol (w/w).

As well as for the TPS, the biocomposites were classified based on their final scores determined from
selection criteria presented before (Table 9). These final scores as well as the detailed scores for each

criterion are represented in the appendix 3.

The color criterion was not used to classify the biocomposites. This criterion was used to classify the
TPS and to select the ones that did not show strong coloration, which could have been an indicator of
starch thermo-degradation. As a result, all the TPS samples selected (and further used to formulate the
biocomposites) did not show strong coloration (white or lightly yellow). The biocomposites’ color
mainly came from the fibers and could not be used to classify the samples.

In terms of fibers homogeneity, all samples seemed to have a good fiber dispersion, after visual
comparison. However, it was not possible to differentiate the samples visually, that is why this criterion
was not used to determine the biocomposites score. Samples analysis, such as FTIR analysis will

determine if some samples are more homogeneous than others in terms of composition.

The final scores of biocomposites are represented in Figure 20. First, 10% ((w/w) compared to TPS
mass) of each fiber were added, for each temperature. Many studies have added fibers from 5 to around
20% (Avérous et al., 2001; Averous and Boquillon, 2004; Curvelo et al., 2001; Girones et al., 2012). It
seemed a good compromise to start with 10% of fibers, knowing that the mixture would thicken from
pretests. None of the samples were considered optimal (total scores between 1 and 4). However, as seen
on the figure, as the temperature increased, the scores increased also. With an addition of 10% (w/w) of
fibers, the best consistency was obtained at 190°C but the samples were still too viscous to be molded

and not homogeneous enough.
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Figure 20: 3D histogram of biocomposites scores formulated in the microwave in function of the temperature of
treatment and fiber type. The fiber percentages are in brackets. The numbers represent the scores.

After seeing that the results with 10% of fibers were not optimal, other tests were performed with an
addition of 5% (w/w) fibers, at the treatment temperature of 190°C. The scores increased when the
percentage of fiber was decreased. Figure 21 shows that the samples had an improved ability to be
molded, and the one with C200 had a comparable appearance with the corresponding optimal TPS.
However, the ones with flax and hemp fibers were not optimal in terms of homogenization. That is why
only the biocomposite formulated at 190°C with 5% C200 was classified as optimal (score = 7). Hemp

fibers samples were very similar than flax fibers samples.

As for the TPS samples, the raise of process temperature improved the consistency of the biocomposites
samples and their ability to be molded. It could come from the same explanation, namely the demolding
temperature being higher when the process temperature is higher, which gives a better ability to be

molded.

Once again, the homogenization was a limiting step in the preparation and the process of biocomposites.
After the TPS mixture was prepared as before, the fibers were added and stirred by hand until having a
homogeneous paste. The more fibers, the thicker the paste and therefore the more difficult it was to
blend in the microwave, just as for the percentage of starch in the TPS matrix. Itis clear that the magnetic
chip was not adequate to have proper homogenization. This explains that the decrease of the fiber
percentage in the mixture increased the biocomposites final scores as well as their ability to be molded.
This phenomenon could limit the improvement of the mechanical properties as it was demonstrated that
the Young’s modulus and the tensile strength increase with the amount of reinforcing fibers (Avérous
et al., 2001; Gironés et al., 2012; Prachayawarakorn et al., 2010).
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Figure 21: Pictures of biocomposites. A, B: 10% and 5% C200 fibers, C,D: 10% and 5% flax fibers.
Pictures from E to H are the sliced samples of the ones above.

Results also show that biocomposites processed at 190°C made with C200 fibers seemed more
homogeneous in terms of consistency than with other fibers. This could be explained by the size of the
different fibers. The C200 fibers have a length of £0.2 mm when the flax and hemp fibers have a length
of £5mm. It is then easier for the C200 fibers to disperse in the mixture and it gives more liquid samples
before process. In results, the stirring in the microwave is more efficient, the samples have a better

consistency and are more homogeneous in appearance.

Figure 22 and 23 present images of biocomposites with flax and hemp fibers observed with an optical
microscope. Both of these pictures show that the fibers are positioned in many directions and cross each
other, as pointed by the arrows. In the biocomposite, the forces are absorbed by the fibers. When the
fibers are all in the same direction, the mechanical strength of the material is dependent of that direction
(Mathes, 2018). In the case of this study, the mechanical strength is not direction dependent and the

biocomposites seems to be able to handle forces from many directions.
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Figure 22: Optical microscope images of biocomposite with flax fibers

Figure 23: Optical microscope images of biocomposite with hemp fibers

34



Frequency (%)

2.3. Fibers morphology characterization with an optical microscope

The diameters and length of flax and hemp fibers have been measured before and after plasticization

into biocomposites. Their distributions are represented in Figure 24. C200 fibers were not observed as

they were too small to be isolated from the biocomposites. The objective was to study the impact of the

microwave-assisted plasticization on the fibers’ dimensions (diameter and length) as it is known that

some processes, like extrusion, reduce the fibers length during composite formulation (Castellani et al.,

2016). Another objective was to observe the way fibers interact physically with the TPS matrix and so

evaluate their compatibility.
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Figure 24: Distribution of natural hemp and flax fibers before and after integration into biocomposites. A: Flax fibers
diameters, B: Hemp fibers diameters, C: Flax fibers lengths, D: Hemp fibers lengths. «Forme» = shape and N is the
number of fibers measured.

To study the symmetry of the studied populations, the shape factor (referred as “Forme” in Figure 24)
was studied. A shape of 3 represents a “normal curve”-shape, a shape close to 1 represents a right-

skewed curve and a shape close to 10 represents a left-skewed curve.
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As seen in Figure 24A, there is not a clear change of the diameter distribution of the biocomposites
(BC) flax fibers, before and after plasticization. The distribution of BC130F10 is close to the
unprocessed fibers and the great majority of the diameters is between 0 and 180um. BC160F10 has, on
average, smaller diameters with a range between 0 and 120um. BC190F10 and BC190F5 show the
largest diameters distribution with a range between 0 and 240um. BC160F10 is the closest to a normal
distribution diameter with a shape of 1.802, centered around 30um. The other ones have shapes closer

to 1 and the diameters are centered around 0 to 20um.

The BC hemp fibers diameters increase slightly after plasticization as illustrated in Figure 24B. The
majority of the unprocessed hemp fibers have a diameter range between 0 and 150um and BC190H5
between 0 and 175um. All the biocomposites with 10%(w/w) fibers have a diameter range between 0
and 200um. BC190H10 has a distribution closer to a normal curve (shape=2.521), than all the other
distributions, where the shapes have a value around 1.75. BC190H10 has diameters centered around

75um and the other ones around 25 to 50um.

Figure 24C shows that the BC flax fibers lengths have increased in a similar way after each treatment.
The length range increases from 0 to 6 mm for the majority of the unprocessed fibers to 0 to 12mm for
the other ones. A flattening of the distributions is also observed as the maximum goes from almost 40%
in frequency to less than 20% for all the treatments except for BC130F10 which have a maximum
slightly above 20%. This shows that after the integrations, the fibers distribution is more spread on the
entire range than before. All the distributions have lengths centered around 2mm.

Figure 24D presents the BC hemp fibers lengths, which increase also after each treatment, but with
different lengths and shapes. The fibers lengths seem to increase with the process temperature; the fibers
have a length range of 0 to 6mm for the unprocessed fibers, of 0 to 8mm for BC130H10 and of 0 to
12mm for BC160H10, BC190H10 and BC190H5. The distributions of BC130H10, BC190H10 and
BC190HS5 are close to a normal curve (shape=2.251, 1.988, 1.918, respectively). The distribution of
BC160H10 is close to a right-skewed curve (shape=1.405) and with a similar repartition than the
unprocessed fibers (shape=1.466). Just as the unprocessed fibers, BC160H10 have lengths centered
around Imm and BC190H10 and BC190H5 around 3mm, even though they have the same length range
(0-12mm). BC130H10 has lengths centered around 2mm.

From these observations, the fibers length ranges are clearly increased during plasticization into
biocomposites. For the flax fibers, the temperature does not seem to impact the length range, in contrary
with the hemp fibers where the longest ones are found when processed at 160 and 190°C. Even though
the length ranges are increased, all the flax fibers lengths are centered around 2mm and the hemp fibers
vary from 1 to 3mm when looking at centered lengths values. This shows that only a low number of

fibers had a length increase in both cases.
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As for the diameters, they slightly increase after processing for both flax and hemp fibers, with one
exception for the flax fibers with a decrease of diameters when processed at 160°C. The temperature
and the time of heating and of treatment do not influence the diameters. As a reminder, BC130 samples
were processed during 3min of heating and 10min of treatment and all the other ones during 2min of
heating and 5.25min of treatment (Table 8). This difference is not translated into the graphs. As
example, BC130H10 and BC160H10 have similar diameter distributions but distinct temperature and
times of heating and treatment.

As other types of treatments, it was expected that the microwave would degrade the fibers with a
decrease in the fiber length and diameter as a result. From this analysis, it can be concluded that the
microwave-assisted plasticization does not degrade the fibers (decrease of fibers length and diameter),
in the tested conditions. As the fibers lengths and diameters are mostly increased along the plasticization,
it could be interesting to measure the fibers after process systematically. As stated before, these
parameters are related with the final properties of the biocomposites (Castellani et al., 2016), and will
be further demonstrated in Section V. In the majority of the articles describing these parameters in the
literature (Avérous et al., 2001; Curvelo et al., 2001; Gironés et al., 2012), only the fibers morphology

before treatment is referenced (please confer to the Section 1V).

Different hypotheses were formulated for the physical interactions between the TPS matrix and the
fibers during the plasticization into biocomposite:

a) Formation of a visible TPS matrix layer around the fiber
b) Presence of TPS matrix along the fiber, in a heterogeneous way

¢) Absence of TPS matrix or formation of a TPS matrix layer that is not visible

These hypotheses are illustrated in Figure 25.

TPS matrix Fiber

Figure 25: Hypotheses of interactions between the TPS matrix and the fiber during plasticization
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Figure 26 depicts examples of pictures were TPS matrix was observed around the isolated fibers with

the optical microscope. Different cases are observed, that can be related with the different hypotheses.

1000 ym
S

A : BC130H10

1000 pm

D : BC130F10

E : BC160F10

B : BC130H10

1000 pm

C : BC190H10 F : BC190F5 -

Figure 26: Flax and hemp fibers observed with an optical microscope after plasticization into biocomposites




Two hypotheses could explain Figure 26B. The first would be the absence of TPS matrix and the other
one would be the presence of a thin layer of TPS matrix that could not be distinguished from the fiber.
In the case of Figure 26C,D and E, TPS matrix seems to be present in specific areas around the fiber.
The last case scenario is for Figure 26A and F, where TPS matrix seems to be present almost all around

the fiber and the limit between the fiber and the matrix is difficult to determine.

The presence of TPS matrix around the flax and hemp fibers indicates that, when the fibers were pulled
out of the BC manually, TPS matrix stayed around them, which could evidence a certain compatibility
between the fibers and the matrix.

The increase in diameter observed in Figure 24 could be explained by the presence of TPS matrix all
around the fiber. As the distinction between the fiber and the matrix is not always clear, it is possible
that the actual fibers diameters were overestimated. TPS matrix is also present at the surface of fibers
heterogeneously. It shows that the fibers could be heterogenous on their surface, in terms of chemical
composition, or at least properties. This could be explained by the presence of different polysaccharides
profiles at the fiber surface (Morin et al., 2020).

From these observations, it seems that some fibers have more TPS matrix around them than others. It
can be reminded that the BC were not completely homogenous, as presented before (Section 111 2.2.).
It may be hypothesized that some fibers were present in a richer TPS matrix environment than others. If

this was the case, it could have increased the chance of these fibers having TPS matrix around them.

For the different hypotheses, no trend could be identified in terms of process parameters.

2.4. FTIR analyses

2.4.1. Comparison of the TPS and its initial compounds

The FTIR spectra of TPS130, glycerol and starch were compared and presented in Figure 27. For each
spectrum, the peaks assignments, based on the literature, were compiled in Table 11 with the
corresponding chemical bonds. Each chemical bond has different vibration types: symmetric or
asymmetric stretching, deformation, or scissoring. The vibrations mode depends on the chemical bond
position in the molecule and its environment. This can be translated by a shift in the maximum
wavenumber of the corresponding peak. The FTIR peaks comparison between TPS, glycerol and starch
will help to understand and identify the type of interactions and reactions occurring between the initial

compounds during the plasticization.
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Table 11: Wavenumbers and bonds associated for TPS sample and initial compounds

Wavenumber (cm™) Chemical bonds Starch | Glycerol | TPS130 | References
. 3200- 3200- 3200-

3200-3600 O-H stretching 3600 3600 3600 a,b,c
2930 C-H stretching 2928 2933 2941 a,c
2885 C-H stretching (in CH) 2887 2879 2883 c
1650 O-H deformation (of absorbed water) 1637 1651 1643 ac
1520 C-H or CH, deformation 1518 - - c
1458 CH, symmetric deformation 1458 1454 1456 a, b,c
1415 CH, symmetric scissoring 1414 1412 1416 a,b
1330 C-H deformation 1335 1327 1333 b, c
1230 C-O stretching or -O-CH,-C 1242 1230 1236 b, c
1200 C-O stretching 1205 1209 1211 b
1150 C-O-C asymmetric stretching 1148 - 1153 a
1100 C-C and C-O-C asymmetric stretching 1105 1109 1111 b, c
1080 C-O stretching 1078 - 1074 a,c
1025 C-H deformation + C-C stretching - 1030 1040 b
1010 C-O stretching 1013 - - a
985 C-C stretching 993 993 995 b
925 -OH 928 922 924 b, c
850 C-O-C symmetric stretching 852 852 849 b
765 C-C stretching 762 - - b

a : Abdullah et al., 2018, b : Kachel-Jakubowska et al., 2017, ¢ : Oniszczuk et al., 2019

New peaks were not identified in the TPS130 spectrum compared with the initial compounds. This
shows that there was no creation of new covalent chemical bonds between the initial compounds during
the plasticization. This observation confirms previous research stating that the plasticization is a physical
rearrangement where the plasticizers (glycerol and water) penetrate the starch structure and form
hydrogen bonds (Prabhu and Prashantha, 2018). These interactions can be identified in the 3200-
3600cm™ band. There is no major difference for this band before and after plasticization. The peaks
around 2930 and 2885cm™ are more defined after plasticization and confirm the inter- and intra-

molecular bonding between glycerol and starch (Stagner et al., 2011).

Almost all the characteristic peaks present on the starch and glycerol spectra are found in the TPS130
spectrum. The fact that some peaks were not found (1518, 1013 and 762cm) or shifted (2941,1153 and
1040cm) in the TPS130 spectrum could be explained by a rearrangement of the different compounds.
As glycerol and water are inserted inside the starch structure, new non-covalent hydrogen bonds are
created, and the overall structure is rigidified. Some chemical bonds are thus not able to move as before.
All the other bonds are less than 4cm? different than the initial compounds and are considered

equivalent.
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Figure 27: FTIR analysis of a TPS sample and its initial compound
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The biocomposites and their corresponding TPS were analyzed with the code presented in appendix 5.
The parameters studied were the process temperature, the fiber percentage , the time of heating and the
time of treatment, such as defined in the materials and methods (Section I11. 1.3.1). This code aims to
detect correlation between FTIR peaks and process conditions.

For each transformation operated by the code (i.e. normalization, 1% and 2" derivation), no significant
correlation was observed between the FTIR spectra and the studied parameters (R2 between 0.1 and 0.6).
This means that all the studied samples (optimal TPS and corresponding BC) were similar in terms of
FTIR spectra for the studied parameters. This shows that the presence of fibers in the biocomposite was

not detected by this analysis.

From these results, fibers were isolated from the biocomposites and analyzed by FTIR. These isolated
fibers and corresponding biocomposites were also analyzed with the same code and the same
parameters. No significant correlation was observed either. This means that all the studied samples
(optimal TPS, corresponding BC and isolated fibers) are similar in terms of FTIR spectra for the studied

parameters.

It could have been expected that the presence and/or the amount of fibers had an impact on the chemical
bonds found in the sample. For example, with the appearance of specific peaks corresponding to

cellulose, lignin or hemicelluloses.

The code analysis shows that the fibers’ characteristic peaks were not detected and confirms the presence
of TPS matrix around them (as seen in Section I11. 2.3). The ATR-FTIR analysis is a surface analysis
and only the outer layer of the sample is analyzed. In this case, it is the TPS matrix around the fibers

that was analyzed.

The fiber addition did not seem to have caused chemical modification of the TPS matrix, at the studied

surfaces.

These observations show that the FTIR analysis is not adequate to study the fibers modifications

occurring during the plasticization.

Analysis of the isolated fibers confirms the presence of TPS matrix around them and supports the good
compatibility between them. It could be interesting to study this compatibility with another processing
method, such as extrusion, to understand if the microwave-assisted process is more appropriate for this

parameter or not.
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3. Conclusion and perspectives

In this first part, formulation of thermoplastic starch and biocomposites using microwave-assisted
plasticization was studied.

Thermoplastic starch samples were first produced. The lowest tested percentage of starch (20% (w/w))
was considered the most optimal regarding the selection criteria (consistency, color, homogeneity). The

highest temperature tested (190°C) gave samples with the highest ability to be molded.

Biocomposites were produced with different natural lignocellulosic fibers (flax, hemp, microcrystalline
cellulose) and with the most optimal thermoplastic starch as the matrix. The best results in terms of
homogeneity and ability to be molded, were obtained at the highest temperature (190°C) and with the
lowest percentages of fibers (5%). Biocomposites made with flax and hemp fibers were similar. The use
of microcrystalline cellulose fibers gave better results regarding the same criteria, probably explained
by their smaller particles size.

The analysis of these samples through FTIR and optical microscopy revealed the presence of
thermoplastic starch matrix surrounding the fibers indicating a good compatibility between these
components. No sign of chemical degradation was observed in the matrix and the fibers dimensions

were not physically degraded by the process.

Considering all these results, this new processing method seems promising. The homogenization of the
matrix and the fibers through this method is the limiting factor and has to be improved.

Other tests could be performed on a larger scale with the addition of an external homogenization system

such as suggested before.

The samples produced could be analyzed through tensile tests to evaluate their performances in terms

of mechanical properties compared to other processing methods such as extrusion.

Analyses of the fibers surface could help understand their compatibility with the matrix. In fact, fibers
surface components are implicated in the interface interactions and will probably influence the strength

of the physical or chemical link between the initial components.
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V. Part 2: Modeling of the biocomposites mechanical properties

1. Context

Thermoplastic starch (TPS) have been studied since the start of the 1990°s (Ollett etal., 1991; Wiedmann
and Strobel, 1991). A few years later, biocomposites made from plasticized starch and natural fibers
started to be studied as well (Aichholzer, 1995; Bledzki and Gassan, 1999). For 30 years, research
focused on the improvement of these materials properties by numerous means, such as explained in
Section 1. 2.3.3. As this topic has been widely studied, it appears interesting to collect data from
literature to create models that could explain the factors influencing the final biocomposites” mechanical
properties and by extent (after empirical model validation) predict the mechanical properties of new
biocomposites made from starch and natural fibers. Such models could help orientate the research by
providing a decisional tool identifying the parameters that have a major impact on the mechanical
properties. It could also save time and financial resources as the prediction could reduce the number of

tests to be performed, depending on the mechanical properties wanted.
2. Materials and methods

2.1. Database creation

The literature of TPS, biocomposites made from starch and natural fibers and raw natural fibers alone
was reviewed to create a database. Only studies using distilled water and/or glycerol as plasticizers for
the TPS formulation were selected as they are common plasticizers and were used to formulate
biocomposites previously in this work. The data collection also focused on research where the materials
were studied through tensile tests. The response measurements were the Young's modulus (YM, in
MPa), the tensile strength (TS, in MPa) and the elongation at break (EaB, in %). They are commonly
discussed in the literature and give a good representation of the materials' mechanical properties. As
explained in Section 1. 3.1., the YM represents the ability of a material to be deformed reversibly, the
TS represents the maximum strength a sample can bear before breaking and the EaB represents the
maximum deformation a material can withstand before breaking. These measurements can allow a

prediction of the material’s application.

This database was created with input and output variables. The input variables are the formulation and

process parameters such as :

- The chemical composition of the fiber (% DW (w/w) cellulose, hemicellulose, lignin) and starch
(% amylose, amylopectin)
- The percentages of the TPS matrix compounds (% (w/w) starch, water, glycerol)

- The percentage of fibers expressed as the percentage of the total biocomposite mass
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- The fiber length (in mm)
- The temperature (in °C)
- RH (in %)

- Rotor speed (in RPM)

For more clarity, all the variables corresponding to a percentage will be written with the variable name
followed by %, such as, starch% or fibers%.

The RH is the relative humidity set during the aging of the sample. The rotor speed was set to 0 when
no rotor was used in the process. The output variables are the tensile tests’ measurements (YM, TS and
EaB).

Many studies did not provide the chemical composition of the fibers and starch used. To complete the
database, the percentages of cellulose, hemicellulose and lignin for the fiber and the percentages of
amylose and amylopectin for starch were added with standard values for the corresponding initial
compounds on the basis of the botanical origin.

The main database created with 72 references was composed of 551 lines. After the missing information
concerning the input variables were completed as explained, the lines where information was not found
or could not be replaced by standard values, were not considered. This was the case when the speed or
the fiber length were not mentioned, for example. In the end, 61 studies with a total of 477 lines
referenced all the input variables and at least one output variable. These references are presented in

appendix 6.

This database was divided in three, one database for each output variable in order to predict each of the
measurements separately. The YM database was built from 50 references out of the 61, the TS database

from 57 references and the EaB database from 56 references.

Each of these databases was also used to produce two other ones, one containing only the TPS samples
and one with only the biocomposites samples. The goal was to know if it was better to consider the TPS
matrix together with the BC samples or if they were different enough that these materials should be
studied separately. In total, nine databases were created and tested to create the best model possible for
each output variable. Each database is described in Table 12, where the length, the input and output

variables as well as their validity range are mentioned.

For the TPS+BC database, all the variables referring to the fiber were set to O for the TPS samples.

When only natural fibers were studied, all the variables referring to TPS were set to 0.
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Table 12: Description of the different databases: mean value and validity range of each variable. NA = not applicable

Input variables

TPS

Young's modulus
BC

TPS + BC

Cellulose%
Hemicellulose%
Lignin%
Fiber%

Fiber length (mm)
Starch%
Amylose%
Amylopectin%
Glycerol%
Water%
Temperature (°C)
Relative humidity (%)
Rotor speed (RPM)
Young's modulus (MPa)

Mean (Min-Max)
NA
NA
NA
NA
NA
57.68 (2.88 - 86.96)
38.86 (0.00 - 87.00)
60.84 (13.00 - 100.00)
19.26 (0.00 - 60.00)
22.24 (0.00 - 96.10)
139.90 (85.00 - 180.00)
55.76 (7.00 - 95.00)
163.20 (0.00 - 2000.00)
229.62 (0.12 - 3204.00)

Mean (Min-Max)
70.47 (0.00 - 100.00)
9.08 (0.00 - 89.90)
8.81 (0.00 - 48.40)
20.16 (0.30 - 100.00)
5.55 (0.00 - 150.60)
55.73 (0.00 - 75.00)
19.76 (0.00 - 28.00)
69.32 (0.00 - 100.00)
20.43 (0.00 - 50.00)
13.91 (0.00 - 96.10)
119.50 (0.00 - 200.00)
50.83 (7.00 - 83.00)
200.70 (0.00 - 2000.00)
907.76 (0.50 - 15000.00)

Mean (Min-Max)
35.14 (0.00 - 100.00)
4.53 (0.00 - 89.90)
4.40 (0.00 - 48.40)
10.06 (0.00 - 100.00)
2.77 (0.00 - 150.60)
56.71 (0.00 - 86.96)
29.33(0.00 - 87.00)
65.07 (0.00 - 100.00)
19.84 (0.00 - 60.00)
18.09 (0.00 - 96.10)
129.70 (0.00 - 200.00)
53.30 (7.00 - 95.00)
181.90 (0.00 - 2000.00)
567.80 (0.12 - 15000.00)

Database length 192 191 383
Tensile strength
Variables TPS BC TPS + BC
Mean (Min-Max) Mean (Min-Max) Mean (Min-Max)
Cellulose% NA 44.70 (0.00 - 100.00) 36.43 (0.00 - 100.00)
Hemicellulose% NA 8.98 (0.00 - 89.90) 4.57 (0.00 - 89.90)
Lignin% NA 4.25 (0.00 - 48.40) 4.34 (0.00 - 48.40)
Fiber% NA 18.52 (0.30 - 100.00) 9.41 (0.00 - 100.00)
Fiber length (mm) NA 5.41 (0.00 - 150.60) 2.75 (0.00 - 150.60)
Starch% 58.43 (2.88 - 95.00) 59.47 (0.00 - 95.00) 58.96 (0.00 - 95.00)
Amylose%o 37.31(0.00 - 87.00) 20.18 (0.00 - 28.00) 28.61 (0.00 - 87.00)
Amylopectin% 62.32 (13.00 - 100.00) 70.16 (0.00 - 100.00) 66.30 (0.00 - 100.00)
Glycerol% 18.11 (0.00 - 50.00) 19.41 (0.00 - 50.00) 18.77 (0.00 - 50.00)
Water% 22.72 (0.00 - 97.00) 12.51 (0.00 - 96.10) 17.54 (0.00 - 97.00)

Temperature (°C)
Relative humidity (%)
Rotor speed (RPM)
Tensile strength (MPa)

139.40 (25.00 - 180.00)
53.78 (7.00 - 90.00)
171.70 (0.00 - 2000.00)
7.86 (0.10 - 53.50)

126.30 (25.00 - 175.00)
52.82 (7.00 - 83.00)
175.10 (0.00 - 2000.00)
17.04 (0.18 - 550.00)

131.90 (0.00 - 200.00)
53.29 (7.00 - 90.00)
173.40 (0.00 - 2000.00)
12.53 (0.10 - 550.00)

Database length 211 218 429
Elongation at break
Variables TPS BC TPS + BC
Mean (Min-Max) Mean (Min-Max) Mean (Min-Max)
Cellulose% NA 73.20 (6.70 - 100.00) 29.68 (0.00 - 100.00)
Hemicellulose% NA 9.23 (0.00 - 89.90) 3.74 (0.00 - 89.90)
Lignin% NA 9.78 (0.00 - 48.40) 3.97 (0.00 - 48.40)
Fiber% NA 15.46 (0.30 - 100.00) 6.27 (0.00 - 100.00)
Fiber length (mm) NA 4.99 (0.00 - 150.60) 2.02 (0.00 - 150.60)
Starch% 56.69 (2.88 - 86.96) 61.16 (0.00 - 75.00) 58.50 (0.00 - 86.96)
Amylose%o 32.37 (3.64 - 87.00) 21.80 (0.00 - 28.00) 30.46 (0.00 - 87.00)
Amylopectin% 63.31 (13.00 - 95.00) 72.72 (0.00 - 95.00) 67.12 (0.00 - 95.00)
Glycerol% 21.97 (0.00 - 60.00) 23.36 (0.00 - 50.00) 22.53 (0.00 - 60.00)
Water% 20.70 (0.00 - 97.00) 11.38 (0.00 - 96.10) 16.92 (0.00 - 97.00)

Temperature (°C)
Relative humidity (%)
Rotor speed (RPM)
Elongation at break (%)

134.70 (25.00 - 180.00)
53.11 (7.00 - 95.00)
152.20 (0.00 - 2000.00)
58.02 (0.10 - 751.40)

119.30 (0.00 - 170.00)
50.90 (7.00 - 83.00)
120.80 (0.00 - 2000.00)
22.50 (0.88 - 105.81)

128.50 (0.00 - 180.00)
52.21 (7.00 - 95.00)
139.50 (0.00 - 2000.00)
43.62 (0.10 - 751.40)

Database length

242

165

407
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2.2. Models design

For each database, different models were built through a code developed by an LBTV staff member
using the RStudio software, linked to Anaconda. For each model, the code (presented in appendix 7) is

composed of different steps:

1) Reading and description of the database (Table 12)
2) Correlation analysis between the input variables (Table 14)

3) Random separation of the database in two: 70% to build the model (called training set) and 30%

for the self-validation (to verify the accuracy of the model on new data, called testing set)

4) Design of different models based on transformations such as represented in Table 13
Different data transformations were performed by applying a mathematical function on the output
variable. The goal is to transform the relationship between the input and output variables into a linear

regression as the code evaluate the quality of a linear regression.

Table 13: Data transformation and corresponding equations tested

Data

. Equation
transformation g
Linear y=Il4+ax*xx; +B*x; ++8*xx,+ 70 *x)+ 4+ 0 (xp_q*xy)
Logarithm log(y) =T4+a *x; + Bxxy ++ 8 *xx,+ Y (g xx3)+ 4+ 0 (Xp_q *Xy)
Square root ﬁz [+a*x; +B*xp +4+ 8 *xx,+ ¥y (X1 %x) + 4+ 0 (X1 *Xy)
1
Inverse §= [+ *x; +B*xx3 ++8*xx,+ vV (xy*xx)+ 4+ 0 (xp_q1*x,)

For each model, the output variable (y) is built from the input variables; independent variables (x;), and
their simple interactions (x; * x;), which are calculated by the code. The code performs a multilinear
regression by varying the coefficient (a, B, ...) of each input variable and the intercept (I) to obtain the
model with the smallest sum of squared errors between the model and the observations. A coefficient of
determination (adjusted R2) is provided for each model that represents how much the variability of the
model is explained by the variables and their interactions. In this work, it was decided that the model

with the highest Rz would be the one selected between the different mathematical transformations.

5) Variable regression coefficients

For each database, the regression coefficients (a, f3, ...) that were determined for the selected models

are computed with their level of significance (see one example in Table 16).
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6) Variable selection

Once the model is built and that the regression coefficients and their signification are available, it is
usually observed that some variables are not significant, especially when interactions are added. A
selection of variables can be performed to have a model with only significant regression coefficients
(meaning they are significantly different than 0). Only the variables that participate in the model are
considered and can be studied.

In this work, the backward stepwise selection method was used. The first variable that is taken out of
the model is the one with the highest coefficient p-value, meaning the least significant. Once it is taken
out, a new model is created with new coefficients and corresponding significance. From this new model,
the new least significant variable is taken out of the model, just as before. A new model is created, and
the process continued until only significant coefficients are left. The signification of the p-value is

determined manually and in this case p-values < 0.05 were significant.
3. Results and discussion

3.1. Correlation between the input variables

The correlation matrix between the input variables can help understand relationships between these
variables within the database. Collinearity may happen when two variables are correlated, meaning there
is a linear relationship between them. If more than two variables are correlated, they are considered

multicollinear (JMP Statistical Discovery, n.d.).

Each correlation can be explained in different ways, direct correlation such as the two variables are
linked by an equation or correlation caused by a bias in the database. A bias can be caused by a
correlation randomly present in nature, or when only some combinations of values are present in the

database.

If two correlated variables are included in the regression model it can have non-negligible impacts on
the model. Many coefficients can be non-significant even if the R2 of the model is high. The regression
coefficients can also have poor estimation or be estimated in the wrong direction. Their standard error
can also be higher. Usually, removing one of the correlated variables out of the model can help solving

these issues (JMP Statistical Discovery, n.d.).

The correlation matrix between input variables for the YM using the TPS+BC database is presented in
Table 14.
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Table 14: Correlation between the input variables for one database (TPS+BC for YM) as example. Values > |0.4] are in bold.

Cellulose Hemicellulose  Lignin Fiber Fiber length Starch Amylose Amylopectin Glycerol ~ Water  Temperature Relative  Speed
% % % % (mm) % % % % % (°C) Humidity (RPM)
(%)
Cellulose %
Hemicellulose % 0.1119
Lignin % 0.1810 0.4723
Fiber % 0.3673 0.1625 0.6074
Fiber length (mm) 0.0980 0.0048 0.4296 0.5518
Starch % 0.1954 0.0015 -0.2523 -0.2710 -0.2099
Amylose % -0.3310 -0.1518 -0.2765 -0.3290 -0.1633 0.0956
Amylopectin % 0.2620 0.1477 -0.1229 -0.3022 -0.2644 0.1779 -0.7490
Glycerol % 0.0088 0.1516 0.0341 -0.1890 -0.0985 0.3267 -0.1021 0.2567
Water % -0.1702 -0.0613 -0.0822 -0.1372 -0.0958 -0.7590 0.1047 -0.0414 -0.6053
Temperature (°C) -0.2657 0.0454 -0.2028 -0.5051 -0.3391 0.4376 0.4323 -0.0505 0.2640 -0.2087
Relative Humidity (%) | 0.1141 -0.2046 -0.1668 -0.0615 -0.0196 -0.1128 0.1540 -0.1309 -0.1496 0.1872 -0.0375
Speed (RPM) 0.0037 -0.0685 -0.0977 -0.0707 -0.0410 0.1373 -0.0878 0.1140 0.0118 -0.0951 -0.0741 -0.0198
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The correlation coefficient between the percentage of amylose and the one of amylopectin is -0.75 in
Table 14. This is explained by the fact that the sum of these percentages is equal to 100%. As this
correlation is a direct correlation, one of them needs to be taken out of the model. In this case, amylose

was removed before creating the models.

In Table 14, hemicellulose and lignin have a coefficient of correlation of 0.47. This makes sense as
cellulose, hemicellulose and lignin are the main components of fibers. It means that these three variables
are somewhat dependent. However, not all combinations are represented in nature and in the database.
As example, lignin does not usually exceed 40% and some studied fibers are only made of cellulose. It
can thus be interesting to include all of them in the model as they do not have the same ranges of values
(see Table 12) and have different interactions with the other variables. The importance of these
interactions can also be different. This is why these three variables were kept in the model. The same

explanation can be used for the composition of the TPS matrix (starch, glycerol, and water%).

Other correlations can be highlighted such as the correlations between the fiber percentage and lignin
(0.61) or between the fiber percentage and the fiber length (0.55). These are not direct correlations as
no equation can link these variables.

The correlation matrices for the other databases were reviewed but not presented. No other direct

correlation was detected.

3.2. Models design and selection

For each database, the model selected and their corresponding adjusted R2, RMSE (root mean square
error) and NRMSE (normalized root mean square error) are represented in Table 15. The RMSE
represents the difference between the values estimated by the model and the observed values. It can be
used to compare the accuracy of different models for one database but not between different databases,
as it is dependent on the database size and range. To compare models from different databases, the
NRMSE can be used, which is the RMSE divided by the mean value of the output variable observations
in the database used (Otto, 2019). NRMSE is presented as a percentage in the table. The different results

were compiled before and after the variables selection step.
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Table 15: Models selected, before and after variables selection with their corresponding R2, RMSE and NRMSE

YM TS EaB
Before selection | After selection | Before selection | After selection | Before selection | After selection
Selected model Linear Linear Linear Linear Inverse Log
TPS+BC R2 0.9807 0.9629 0.9818 0.9655 0.6223 0.6495
RMSE 539.74 309.58 15.38 6.89 102.75 5114144.02
NRMSE 95.06% 54.52% 122.82% 54.99% 235.56% 11724310%
Selected model Square root Linear Square root
BC R2 0.9703 ) 0.9887 ) 0.8167 )
RMSE 5870175.66 85779.19 23591268.44
NRMSE 646666% 503399.03% 104850100%
Selected model Linear Linear Square root Log Square root Square root
TPS R2 0.8366 0.7342 0.7200 0.7267 0.6050 0.5573
RMSE 385.49 211.78 10.34 512.67 46.16 50.38
NRMSE 167.89% 92.23% 131.58% 6522.52% 79.57% 86.83%

The models using the BC database could not be calculated after variables selection because of a

collinearity detection that could not be solved.

3.2.1.

For the YM and TS, the adjusted R2 of the TPS+BC and BC database are greater than 0.97. It means
that a great majority of the model variability is explained by the variables studied. For the same output
variables, the TPS database presents a smaller R2. From these observations, it seems that when only the
TPS samples were considered, the addition of other variables or interactions could help to explain a
larger part of the variability. Concerning the EaB, the largest R? was obtained using the BC database
and was equal to 0.82. It shows that for this measurement, variables or interactions are missing to explain

the entire model variability.

If we compare the NRMSE values, they are considerably higher for the BC database than the other
databases. For YM and TS, the smallest NRMSE are obtained using the TPS+BC database while for
EaB it was with the TPS database. It seems that for the YM and TS, adding the TPS observations to the
BC observations is reducing the model error without changing much the R2. For the EaB, the error is
reduced when TPS observations are added but also the R2. It seems less evident to explain in this case.
It could mean that TPS and BC have different behaviors regarding this measurement and should not be
studied together. Important variables could be missing to explain the variability in the TPS database.
Also, it is possible that the mathematical transformation used were not suitable to explain the

relationship between EaB and the input variables.

Regarding the models with smaller R2, some hypotheses in terms of missing variables can be formulated.
For example, Angellier et al., (2006) showed that the TPS time of aging before tensile tests influences
the tensile test responses. The process duration, the crystallinity of starch and the temperature of aging

were also studied by a few references (Torres et al., 2007; Van Soest and Borger, 1997) and showed
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they had an impact on the mechanical properties of TPS and/or biocomposites. These different

parameters were only referenced a few times and thus could not be added to construct the model.

It is also possible that the mathematical transformations or equations used were not adequate and that
other transformations could have been more suitable to represent the relationship between the input and
output variables.

3.2.2. Models comparison after variable selection

After the variable selection, four out of six models have the same type of mathematical transformation
for the models selected. It is the case for the YM using TPS+BC and TPS databases with the linear
model, for the TS using the TPS+BC database also with the linear model and for the EaB using the TPS
database with the square root model. For the three first cases, the NRMSE were reduced after variables
selection and for the last case it was slightly increased. The R? were also slightly reduced, when using
the TPS+BC database for YM and TS and for the EaB using the TPS database. The R? decrease was
more important when using the TPS database for YM.

In the two other cases, different types of models were selected, the R2 were slightly higher but the RMSE
were significantly increased. For these cases, the method of variables selection seems less appropriate

when the highest R2 is used to select the best model.

Using the highest R? as the model selection parameter can thus be discussed as the model with the
highest R? does not imply that it has the smallest RMSE, thus the smallest error. For example, before
the variables selection, the linear model selected for TS using the TPS+BC database had an R2 of 0.9818
and a RMSE of 15.39. It means that the model can be well explained by the selected variables but have
a large error associated with it. The logarithmic model, also for TS using the same database, had an R2
of 0.8434 and a RMSE of 6.72, having therefore a better predictive power. This shows that the model

quality and accuracy does not depend only on the R2,

The multilinear regression method can be used for predictive modeling or for explanatory modeling. In
the case of predictive modeling, the goal is to predict the output variable the most accurately possible.
In explanatory modeling, the focus is to understand which input variable will have the most impact on
the output variable and how they will impact it, by analyzing their regression coefficient. Depending on
the objective, there must be a compromise between the R2 and the RMSE to determine which model is
more adequate. A high Rz will show that the selected variables explain a large variability when a small
RMSE will translate a small error of the model and a higher accuracy in the prediction. If the model is
accurate enough, it can be used to predict the output variable of new samples with a certain error

associated with it. The input variables of the new samples must be in the validity range of the model.
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Regarding the RMSE obtained in this work, these models will not be used to predict the mechanical
properties of new samples. However, the models produced with the highest R2 can be used as

explanatory models. The regression coefficients of one of them will be studied in the next section.

3.3. Regression coefficients analysis

The regression coefficients of the YM using the TPS+BC database are analyzed, regarding the high R?
associated. The regression coefficients after variables selection are presented in Table 16.

Before the variable selection, only 8 coefficients were significant whereas 38 are significant after the

selection. All the variables selected participate to the model.

All the non-interaction variables selected are related to the composition of the biocomposite. The process
variables do not seem to impact the YM when considered alone but they do when they are studied with
a variable related to the composition, such as the interaction between hemicellulose and speed or fiber
length and temperature.

Some regression coefficients signs of input variables seem logical such as the fiber percentage that has
a positive coefficient, meaning the YM increases with the fiber percentage when all the other variables
are fixed. This makes sense as the fiber is used to reinforce the biocomposite and in results the more the
fibers, the larger YM in the studied range (Avérous et al., 2001; Gironés et al., 2012).

All the variables related to the TPS composition (starch, glycerol and water%) have a negative
coefficient, meaning that for each of these variables, YM decreases when they are increased
individually. This is more difficult to explain as these three variables present many interactions with
other parameters. The interactions between these variables two by two can be analyzed. It seems that it
is better to process starch with water (positive coefficient) than with glycerol (negative coefficient), this
is confirmed with the interaction between glycerol and water (negative coefficient). These variables also
interact with variables related to the fiber (e.g. Lignin*Starch%, Fiber%*%Glycerol) and also with the
process variables (e.g. Glycerol%*Speed, Water%*RH). From all these interactions, it seems that the

variables selected should be imperatively studied together when producing biocomposites.

From this analysis, it can be concluded that many variables and their interactions are part of the presented
model. The standardization of these coefficients could help understand which ones have the most impact

on the final response to be able to focus on these variables or interactions.
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Table 16: Regression coefficient of the YM after variables selection. The significance was determined with the P-value
as follow : 0 < *** < 0.001 < ** < 0.01< *<0.05

Young’s modulus
TPS+BC
Intercept 2793.90 ***
Hemicellulose% -523.04 ***
Fiber% 142.49 ***
Fiber_length -1371.60 ***
Starch% -23.80 ***
Glycerol% -56.45 *
Water% -38.28 *
Cellulose%*Hemicellulose% 043 *
Cellulose%*Fiber_length 14.09 ***
Cellulose%*Starch% -0.20 *
Cellulose%*Amylopectin% 019 *
Hemicellulose%*Fiber_length 12,17 ***
Hemicellulose%*Amylopectin%o 110 *
Hemicellulose%*RH 6.63 ***
Hemicellulose%*Speed 1.34 ***
Lignin%*Fiber_length 19.74 ***
Lignin%*Starch% 5.74 ***
Lignin%*Amylopectin% -3.37 ***
Lignin%*Glycerol% 5,93 ***
Lignin%*Water% 5.05 ***
Lignin%*RH -6.23 ***
Fiber%*Starch% -1.05 ***
Fiber%*Glycerol% -2.16  ***
Fiber%*Water%o -1.23  ***
Fiber_length*Water%o 25.13 ***
Fiber_length*Temperature -0.44 F**
Starch%*Amylopectin%o 0.42 ***
Starch%*Glycerol% -0.63 *
Starch%*Water% 032 *
Starch%*Speed 0.04 ***
Amylopectin%*Water% 019 *
Amylopectin%*RH -0.54 F**
Amylopectin%*Speed -0.04 ***
Glycerol%*Water% -1.04  *
Glycerol%o*RH 151 ***
Glycerol%*Speed 002 *
Water%*RH 041 *
Temperature*RH -0.07 *
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3.4. Model improvement

There are two main ways to improve the quality of the different models, by improving the data collection
to build the database itself and by changing or adding some mathematical and statistical operations in

the code.

3.4.1. Database creation

The data collection can be improved in many ways to ensure a database closer to the reality and to help

reducing the error of the models.

The collection of more data seems evident. The larger the dataset, the larger part of the population is
represented.

In numerous papers, the data were presented in graphs and the values were estimated as best as possible.
This adds an error to the model. Also, only the mean and standard deviation are usually presented. This
means that the variability coming from the samples is not considered in the presented model. Sharing
the data for each repetition in a table, in supplementary data for example, could solve this problem. This
would, on one hand, increase the size of the database and on the other hand, include the variability of

each sample. In the end, only the error coming from the method itself would remain.

As explained before, the addition of other input variables and their interactions, such as other process
parameters or aging parameters, could help to explain a larger part of the variability of the model and

thus increase the R2.

Many of these additional parameters are only available in a small number of references which raises an
important issue: much information is not communicated through scientific papers. As explained, when
the composition of the fiber or starch was not communicated, it was manually added with standard
values for these compounds. For the fiber composition, the cellulose, hemicellulose, and lignin
percentages had missing values representing 30, 38 and 34% of the original database, respectively. For
the amylose and amylopectin percentages, the missing values represented 29% of the original database.

These missing values were replaced by standard values to avoid reducing the database by a third.

This analysis clearly showed an impact of the fiber composition on the final composite properties. While
this effect is expected (as different types of fibers are added within the TPS matrix in the literature), the

missing data were surprising.
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As presented in Table 13, mathematical transformations were applied on the output variable “y” such
as “f(y) = x”, with x representing all the input variables. Other transformations could be applied such as

“y? = x” or “exp(y) = X" among others.

Mathematical transformations can also be applied on the input instead of the output variables such as “y
= f(x)”. The transformation of each input variable and the determination of the most suitable
transformation for each one of them is done independently. This method requires more power of
calculation as many combinations have to be tested. To understand the relationship between each input
variable and the output variable and how it can be optimized, each input variable can be plotted with the
output variable separately. For example, as seen in Figure 28, depending on the relationship between
the input and output variable, the transformations and optimizations will be different.

Y
5
4
3
2
1
-
0 X
0 1 2 3 4 5
-1
—logl0 inverse square root linear

Figure 28: Examples of mathematical functions

As for the validation of the model, many other validation methods exist, and all have strengths and

weaknesses.

The model can also be improved by detecting outliers, which are observations that seem to deviate from
the others in a dataset. This kind of data can bias the accuracy of the model and different techniques

exist to differentiate them from the rest of the data (Santoyo, 2017).

The presence of outliers can from a problem in the database (encoding error). It can also happen that the
model is only accurate on a certain range. Before or after a certain threshold for one or several variables,
the response can be different, and the observations are far from the others. This type of detection can
help improve the model by removing or modifying encoding errors or to select a certain range of values

where their respond in the same way.
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In this work, simple interactions between the input variables were added to build the models. It could
be interesting to add more interactions such as 3 or 4-ways interactions but it can complexify the models.

The more interactions the more tedious the selection of variables is.

Many methods of variables selection exist. In this work the backwards method was used but forward or
stepwise methods also exist for example. The forward method adds significant variables one at a time
until the addition of a new variable is not significant. The stepwise method is a combination of addition
and elimination of variables (Choueiry, 2020).

Once the variables are selected and the model is improved as much as possible, the coefficient of each
variable can be analyzed. Before comparing these coefficients, they can be standardized by dividing
them by the mean or the range of each variable in the database. In this way, each coefficient is equivalent
in terms of weight and by comparing them, we can identify the variables that have the most impact on

the response.

After the improvement of the model by these different methods, the error coming from the variability
of the different methods of measurement (for input and output variables) will still remain.
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4. Conclusion and perspectives

In this second part, models were created to explain the mechanical properties of TPS and biocomposites
by studying which parameters and interactions are impacting the tensile tests’ measurements (Young

modulus, tensile strength, elongation at break).

The parameters studied were related to the material’s composition and the process parameters. Different
databases were created for each measurement, by reviewing the literature. Several mathematical
transformations were applied on the response variables and multilinear regressions were performed on
each one of them. A selection of variables was performed to obtain models with only significant

regression coefficients. The highest Rz was used to determine the best model for each database.

It appears that higher R? were reached for the models created for the Young’s modulus and the tensile
strength. The variable selection helped decrease the error (RMSE) of most models and also decreased
the number of variables included in the model. For the Young’s modulus using the TPS+BC database,
the selected regression coefficients were provided. Only variables related to the materials compositions
were selected alone. These variables as well as variables related to the process parameters were selected
as interactions. This analysis indicated that all the studied parameters were important to the model at
some point and should be well referenced as it is not always the case. More parameters could be added

to explain a larger part of the variability, especially when the R2 were smaller.

Various ways of improvement have been proposed, by improving the data collection but also by
improving the code. The application of these improvements could help to create models with a decreased
error, and a higher variability explained. These models could be used to predict the tensile tests’
measurements of new samples. Other models could also be generated in order to explain or predict other

properties such as gas barrier properties, biodegradability or any other property that can be measured.
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VI. Appendixes
1) Process parameters of TPS made from glycerol and/or water from the literature
References Plant source Amylose/ Compounds percentages Process Temperature| Speed | Processing
amylopectin ratio (Glycerol/Water/ Starch) Time
(Forssell et al., Barley 28/72 14/30/56 Melt mixing 170°C 80 rpm |15 min
1997) 20/25/55
29/12/59
39/11.5/49.5
(Angellier et al., Waxy maize <1 % amylose 2.7/86.4/10.9 Heating in a reactor | 150°C ND 10 min
2006) 3.4/86.4/10.2 under pressure with
4/86.4/9.5 stirring
(Ma et al., 2008) Pea 35/65 23/0/73 Single screw plastic |120-140°C |20 rpm | ND
extruder
(Thunwall et al., Hydroxy- ND 6/17/77 Extrusion ND ND ND
2008) propylated starch
(Prachayawarakorn | Mung bean (Vigna | 30/62 50/0/50 Internal mixer 140°C 50 rpm |5 min
etal., 2010) radiata)
(Altayan et al., Potato ND 30/20/50 Twin counter- 160°C 60 rpm |7 min
2017) rotating internal

mixer

2) Scoring grid of TPS formulated in the microwave with water and glycerol
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3) Scoring grid of biocomposites formulated in the microwave

Sample  Consistency Color homogeneity Air bubbles Final decision

BC130C10
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4) Relationship between the times of heating and of treatment as well as the process

temperature with the TPS scores

TPS scores in function of the process temperature
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5) Code used for the FTIR analysis

FEFER AR R AR R A A R R R R A R R R A R R R R R R R R R R A R R R R R R R R R R 4
#### Auteur: Brieuc Lecart, PhD student in Uliége lecart.brieuc@gmail.com #########F$4#444483434034343343434444344
#### Testeurs: Sophie Morin ; Lionel Dumoulin #########i#i#d#d#didddtttitida ittt itae ittt and
#### Rédigé par adaptation de mon travail de fin d'étude: "Caractérisation et prédiction de la composition ######
4444 biochimique de la biomasse de miscanthus pour un débouché en bioéthanol 2G™ ###4#344444848 0448000008848 434
###4# Réalisé & 1'INRA d'Estrées-Mons en 2012. Script initial réalisé avec l'aide de 1'INRE d'Orléans #+######%##4#
FHr#rEi it At R A R A R AR AR A AR A R A R R R A R R AR R A A R R AR R A e AR R R R R E R R AR AR R R AR AR R AR AR AR
setwd ('C:/Users/Mathilde/dox/EXCOMT00 Biocomposites fibres-TPS/Interpretation R/CalibrationR')

options ("scipen"=100

install.packages ("pls")

library(pls)

source ('calib ok.r')

source ('carspls_LOO.r')
donnees_decoupees<—read.table("DonneesBruteS!BCfdonnees_decoupees.txt",sep:"\t",header:TRUE]
donnees_decoupee5_norm<—read.table("DonneesBrutes/BC/donnees_decoupees_norm.txt",Sep:"\t",header:TRUE]
donneesidecoupeesider1<—read.table("DonneesBrutes/BCHdonneesidecoupeesiderl.txt",sep:"\t“,header:TRUE]
donneesidecoupeesider2<—read.table("DonneesBrutes/BC/donneesidecoupeesiderz.txt",sep="\t",header=TRUE]
donneesidecoupeesiderlinorm<—read.table("DonneesBruteS!BC/donneesidecoupeesiderlinorm.txt",sep="\t",header=TRUEJ
donneeS_decoupee5_der2_norm<—read.table("DonneesBruteS!BC/donnees_decoupees_derZ_norm.txt",Sep="\t",header=TRUEJ
donnees_decoupee5_norm_der1<—read.table("DonneesBruteS!BC/donneeS_decoupees_norm_derl.txt",Sep:"\t",header:TRUEj
donnees_decoupee5_norm_der2<—read.table("DonneesBrutes/BC/donnee5_decoupees_norm_der2.txt",sep:"\t",header:TRUEJ
donneesidecoupeesiok<—data.frame('PP'=a5.numeric(donneesidecoupees$PE],'5iqnal'=1(as.matrix(donneesidecoupees[,z:
ncol (donnees_decoupees) ])))

donnees_decoupee5_norm_ok<—data.frame('PP'=a5.numeric(donnees_decoupees_normsPP],
'Signal':l(as.matrix(donnees_decoupees_norm[,2:ncol(donnees_decoupees_norm]]]J]
donnees_decoupee5_der1_ok<—data.frame('PP':as.numeric(donnees_decoupees_der1$EP),
'siqnal':I(as.matrix(donneesidecoupeesiderl[,2:ncol(donneesidecoupeesiderl]]]J]
donneesidecoupeesider270k<—data.frame('PP'=as.numeric(donneesidecoupeesider2$EP],

'signa '=I(as.matrix(donneesidecoupeesiderZ[,2:ncol(donneesidecoup8557der2]]])]
donnees_decoupee5_der1_norm_ok<—data.frame('PP'=a5.numeric(donnees_decoupeeS_derl_normsFPJ,
'Signal':l(as.matrix(donneeS_decoupees_derl_norm[,2:ncol(donneeS_decoupees_derl_norm)])J]
donnees_decoupee5_der2_norm_ok<—data.frame{'PP':as.numeric(donnees_decoupee5_der2_norm$PPJ,
'5iqnal'=1(as.matrix(donneesidecoupeesiderzinorm[,2:ncol(donneesidecoupee57der27norm]]]J)
donneesidecoupeesinormiderliok<—data.frame('PP'=a5.numeric(donneesidecoupeesinormiderl$PPL
'5igna1'=1(as.matrix(donnees_decoupees_norm_derl[,2:ncol(donneeS_decoupees_norm_derl]]]J]
donnees_decoupee5_norm_der2_ok<—data.frame('PP':as.numeric(donnees_decoupee5_norm_der25FPJ,
'Signal':l(as.matrix(donnee5_decoupees_norm_der2[,2:ncol(donnee5_decoupee5_norm_der2)])J]
donneesidecoupeesitransposees<—data.frame('echantillon':as.character(substrinq(colnames
(donneesidecoupeesiokSsiqnal],9]],signal=t(donneesidecoupeesiokSsiqnalj
colnames(donneesidecoupeesitransposeesSsignalj<—donneesidecoupeesiok$PP
donnees_decoupees_norm_transposees<-data.frame('echantillon'=as.character(substring
(colnames(donnee5_decoupee5_norm_ok$Signal),9}),signal:t(donnees_decoupee5_norm_ok$Signalﬂ

43 colnames (donnees_decoupees norm transposees$signal) <-donnees_decoupees_norm ok$EP

44  donnees_decoupees_derl_transposees<-data.frame ('echantillon'=as.character (substring

5 (colnames(donnees_decoupees_derl_okssignalj,9)J,signalzt(donnees_decoupees_derl_okssignal]
colnames(donnees_decoupees_derl_transposee55signall<—donnees_decoupees_derl_oksPP

donnees_decoupees_der2 transposees<-data.frame ('echantillon'=as.character (substring

(colnames (donnees_decoupees_der2 ok$signal),$)),signal=t (donnees decoupees_der2 ok$signal)

colnames (donnees decoupees der2 transposees$signal)<-donnees decoupees der2 ok$PP

donnees_decoupees_derl norm_transposees<-data.frame ('echantillon'=as.character
(substring(colnames(donnees_decoupees_derl_norm_okssignalj,9)J,signalzt(donnees_decoupees_derl_norm_okssignalj
colnames(donnees_decoupees_derl_norm_transposeesssignalj<—donnees_decoupees_derl_norm_ok5PP
donnees_decoupees_der2 norm_transposees<-data.frame ('echantillon'=as.character

(substring (colnames (donnees_decoupees der2 norm ok$signal), 9)),signal=t (donnees decoupees der2 norm ok$signal)
colnames (donnees_decoupees der2 norm transposees$signal)<-donnees decoupees der2 norm ok$PP
donnees_decoupees norm derl transposees<-data.frame ('echantillon'=as.character

(substring (colnames (donnees_decoupees_norm_der1_ok$ signal), 9)),signal=t (donnees_decoupees_norm_derl_ok$ signal})
colnames(donnees_decoupees_norm_der1_transposeesssignalj<—donnees_decoupees_norm_der1_0k5PP
donnees_decoupees_norm_der2_transposees<-data.frame('echantillon'=as.character
(substrinq(colnames(donneesidecoupeesinormider270k5siqnal),9)),siqnalzt(donneesidecoupeesinormider270k5siqnal)
colnames (donnees_decoupees norm der2 transposees$signal)<-donnees decoupees norm der2 ok$PP

donnees_ref ok<-read.table("DonneesBrutes/BC/Parametres BC.txt",sep='\t', header=TRUE)
donnees_calibration<-merge (donnees ref ok,donnees decoupees_transposees,by='echantillon')
donnees_calibration_norm(—merge(donnees_ref_ok,donnees_decoupees_norm_transposees,by='echantillonW
donnees_calibration_derl<—merge(donnees_ref_ok,donnees_decoupees_derl_transposees,by='echantillonW
donnees_calibration_derZ<—merge(donnees_ref_ok,donnees_decoupees_derz_transposees,by='echantillonW
donnees_calibration derl norm<-merge(donnees ref ok,donnees decoupees_derl norm transposees,by='echantillon')
donnees_calibration der2 norm<-merge (donnees ref ok,donnees decoupees_der2 norm transposees,by='echantillon')
donnees_calibration norm derl<-merge(donnees ref ok,donnees decoupees norm derl transposees,by='echantillon')
donneeS_Calibration_norm_der2<—merge (donnees_ref_ok, donneeS_decoupee5_norm_der2_tranSposees,by: 'echantillon')
write.table (donnees_calibration, file="Resultats/BC/donnees_decoupees_calib.txt", sep="\t", row.names=FALSE,
col.names=TRUE)

write.table (donnees calibration norm, file="Resultats/BC/donnees decoupees norm calib.txt", sep="\t",
row.names=FALSE, col.names=TRUE)

write.table (donnees calibration derl, file="Resultats/BC/donnees_decoupees_derl calib.txt",sep="\t",
row.names=FALSE, col.names=TRUE)

write.table (donnees_calibration_der2, file="Resultats/BC/donnees_decoupees_der2 calib.txt", sep="\t",
row.names=FALSE, col .names=TRUE)

write.table (donnees_calibration_derl_norm, file="Resultats/BC/donnees_decoupees_derl_norm calib.txt",
sep="\t", row.names=FALSE, col.names=TRUE)

write.table (donnees calibration der2 norm,file="Resultats/BC/donnees decoupees_der2 norm calib.txt",
sep="\t", row.names=FALSE, col .names=TRUE)

write.table (donnees_calibration norm_derl,file="Resultats/BC/donnees_decoupees_norm derl calib.txt",
sep="\t", row.names=FALSE, col .names=TRUE)
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write.table(donnees_calibration norm der2, file="Resultats/BC/donnees decoupees_norm der2 calib.txt",
sep="\t", row.names=FALSE, col .names=TRUE)
chem="fiber.percentage'
calib_data<-drop outliers LCO(data_frame=donnees calibration,trait=chem,maxcomp=20, threshold=0.001,
criterion=1,maxsteps=100)
calib data norm<-drop outliers LOO(data frame=donnees calibration norm,trait=chem,maxcomp=19,
threshold=0.001,criterion=1,maxsteps=100)
calib_data_derl<-drop_outliers LOO(data_frame=donnees_calibration_derl, trait=chem, maxcomp=20,
threshold=0.001, criterion=1,maxsteps=100)
calib_data_der2<-drop_outliers LOO(data_frame=donnees_calibration_der2, trait=chem,maxcomp=20,
threshold=0.001,criterion=1,maxsteps=100)
calib data derl norm<-drop outliers LOO(data frame=donnees calibration derl norm, trait=chem,
maxcomp=20, threshold=0.001, criterion=1,maxsteps=100
calib_data_der2 norm<-drop_outliers_LOO(data_frame=donnees_calibration_der2 norm, trait=chem,
maxcomp=20, threshold=0.001,criterion=1,maxsteps=100)
calib data norm derl<-drop outliers LOO(data frame=donnees calibration norm derl, trait=chem,
maxcomp=20, threshold=0.001, criterion=1,maxsteps=100
calib data norm der2<-drop outliers LOO(data frame=donnees calibration norm derZ, trait=chem,
maxcomp=20, threshold=0.001, criterion=1,maxsteps=100)
outliers<-list('data'=calib datajoutliers, 'data norm'=calib data_ norm$outliers, 'data_derl'
=calib data_derl$outliers, 'data_der2'=calib data_der2$outliers,
'data derl norm'=calib data derl normSoutliers,'data der2 norm'=calib data der2 norm$outliers,
'data_norm derl'=calib data norm derlSoutliers,'data norm der2'=calib_data norm der2Soutliers
print (outliers)
sapply (outliers, length)
sink("Resultats/BC/outliers_decoupees.txt")
print (outliers)
sink()
data calib filt<-calib dataS$data
data_calib norm filt<-calib data norm$data
data calib derl filt<-calib data derl$data
data calib der2 filt<-calib data der25data
data_calib derl norm filt<-calib data_derl norm$data
data_calib der2 norm filt<-calib data_der2 norm$data
data calib norm derl filt<-calib data norm derl$data
data_calib norm der2 filt<-calib data_norm der2Sdata
write.table(data_calib filt,file="Resultats/BC/donnees decoupees_calib filt.txt",sep="\t",
row.names=FALSE, col .names=TRUE)
write.table(data_calib norm filt, file="Resultats/BC/donnees_decoupees_norm calib filt.txt",
sep="\t", row.names=FALSE, col .names=TRUE)
write.table(data calib derl filt,file="Resultats/BC/donnees decoupees derl calib filt.txt",
sep="\t", row.names=FALSE, col .names=TRUE)

write.table(data_calib_der2_filt, file="Resultats/BC/donnees_decoupees_der2_calib filt.txt",

sep="\t", row.names=FALSE, col.names=TRUE)
write.table(data_calib_derl_norm_filt,file="Resultats/BC/donnees_decoupees derl norm_calib filt.txt",

sep="\t", row.names=FALSE, col .names=TRUE)

write.table(data_calib derZ norm filt,file="Resultats/BC/donnees decoupees_der2 norm calib filt.txt",

sep="\t", row.names=FALSE, col .names=TRUE)

write.table(data_calib norm_derl_filt, file="Resultats/BC/donnees_decoupees_norm_derl_calib filt.txt",

sep="\t", row.names=FALSE, col.names=TRUE)
write.table(data_calib_norm_der2_filt,file="Resultats/BC/donnees_decoupees norm der2_calib filt.txt",

sep="\t", row.names=FALSE, col .names=TRUE)

calib data_ok<-calib valid LOO(data_set=data calib filt,trait="trait',maxzcomp=10,ratio=3/4,criterion=1)
calib_data_norm_ck<-calib valid_LOO(data_set=data_calib norm_filt, trait="trait',maxcomp=10,ratio=3/4,criterion=1)
calib_data_derl_ok<-calib valid_LoO(data_set=data_calib derl_filt, trai trait',maxcomp=10, ratio=3/4,criterion=1)
calib data_der2 ok<-calib valid LoO(data_set=data_calib der2 filt,trait='trait',maxcomp=10,ratio=3/4,criterion=1)
calib_data_derl_norm ok<-calib valid_LOO(data_set=data_calib_derl norm_ filt,trait='trait',6maxcomp=10,
ratio=3/4,criterion=1)

calib data_der2 norm ok<-calib valid LOO(data set=data calib der2 norm filt,trait='trait', maxcomp=10,
ratio=3/4,criterion=1)

calib_data_norm_derl ok<-calib valid L0O(data_set=data_calib norm derl_filt,trait="trait', maxcomp=10,
ratio=3/4,criterion=1)

calib_data_norm_der2 ock<-calib valid_LOO(data_set=data_calib_norm der2_ filt,trait='trait', maxcomp=10,
ratio=3/4,criterion=1)

out_calib ok<-data.frame('traitement'=c('Brut','Norm', 'Derl', 'Der2', 'DerlNorm', 'Der2Norm', 'NormDerl', 'NormDer2'),
rbind (calib_data_ok$output,calib_data_norm_okS$output,calib_data_derl ock$output,calib_data_der2_ok$output,
calib_data_derl_norm_okSoutput, calib_data_derz_norm_oksoutput, c:alib_data_norm_derl_okSOUtput,

calib data_norm der2 ok$output),

'nb_outliers'=sapply (outliers, length))

out_calib_ok

sink("Resultats/BC/calib_LOO decoupees filtree.txzt")

print (out_calib_ok)

sink ()

#calib data MCCV<-MCCV(data set=data calib filt,trait='trait',maxcomp=10, fold=4,iter=500,criterion=1)

#calib data_norm_MCCV<-MCCV(data_set=data_calib_norm_filt,trait="trait', maxcomp=10, fold=4,iter=500,criterion=1)
#calib data_derl MCCV<-MCCV(data_set=data_calib derl filt,trai trait',maxcomp=10, fold=4, iter=500,criterion=1)
#calib data_der2 MCCV<-MCCV(data set=data calib der2 filt,trait='trait',maxcomp=10,fold=4,iter=500,criterion=1)
#calib data_derl_norm MCCV<-MCCV(data_set=data_calib_derl_norm_filt,trait="trait',maxcomp=10, fold=4,iter=500,criterion=1)
#calib data_der2_norm MCCV<-MCCV(data_set=data_calib_der2 norm_filt,trait="trait' ,maxcomp=10, fold=4,iter=500,criterion=1)
#calib data_norm derl MCCV<-MCCV(data set=data_calib norm derl filt,trait='trait',maxcomp=10,fold=4,iter=500,criterion=1)
#calib data_norm_der2 MCCV<-MCCV(data_set=data_calib_norm_der2_ filt,trait='trait', maxcomp=10,fold=4,iter=500,criterion=1)
#out_calib_MCC\k—data .frame ('traitement'=c('Brut', 'Norm', 'Derl"', 'Der2"', 'DerlNorm', 'Der2Norm', 'NormDerl', 'NormDer2'),
#rbind(calib_data MCCVSoutput,calib data_norm MCCV$output,calib data derl MCCVSoutput,calib data der2 MCCVSoutput,
#calib data derl norm MCCVSoutput,calib data der2 norm MCCVSoutput,calib data norm derl MCCVSoutput,

69



calib data norm der2 MCCVSoutput),

#'nbfgutliérs':Eapp1§(outliers,length”

#out calib MCCV

#Sin}("Resﬂltats/CalibeCCVidecoupeesifiltree.txtﬂ

#print (out calib MCCV)

$sink() B

cars data<-carspls LOO(X=data calib filt$signal,y=data calib filt$trait,nlLV=10,iteration=100)

car5Zdata_narm<—ca}spls_LOO(X;data_galib_norm_filtSSigaal,y:aata_calib_norm_filtStrait,nLV:lﬂ,iteratiDnzlﬁm

cars data derl<-carspls LOO(X=data calib derl filt$signal,y=data calib derl filt3trait,nLV=10,iteration=100)

cars:data:der2<—carspls:L00(X:data:calib:derEZfiltSSignal,y:data:calib:derE:filtStrait,nLVzlﬂ,iterationzle

cars_data_derl norm<-carspls_LOO(X=data_calib derl norm filt$signal,y=data_calib derl norm filt$trait,nLv=10,iteration=100)

cars_data_der2_norm<-carspls_LOO(¥X=data_calib_der2 norm filtS$signal,y=data_calib_der2 norm filtStrait,nLv=10,iteration=100)

cars_data_norm derl<-carspls_LOO(X=data_calib norm derl filt$signal,y=data_calib norm derl filt$trait,nLv=10,iteration=100)

cars_data_norm_der2<-carspls_LOO(X=data_calib_norm der2 filtS$signal,y=data_calib_norm der2 filtStrait,nLv=10,iteration=100)

selected_lambda<-list(data=as.double (colnames(data calib_filtS$signall,cars_data$SelectedVariables])),data_norm=as.double

(colnames (data_calib norm_filt$signal(,cars_data_norm$SelectedVariables])),
data_derl=as.numeric(colnames(data calib derl filt$signall[,cars_data derl$Selectedvariables])),data der2=as.numeric
(colnames (data_calib_der2_ filt$signall,cars_data_der2$selectedVariables])),
data_derl norm=as.numeric(colnames(data_calib derl norm filt$signall[,cars_data derl norm$SelectedVariables])),
data_der2 norm=as.numeric (colnames(data_calib der2 norm filt$signal[,cars_data_der2 norm$SelectedVariables])),
data_norm derl=as.numeric(colnames(data_calib norm derl filt$signal[,cars_data norm derl$SelectedVariables]))
data_norm der2=as.numeric(colnames(data_calib norm der2_ filt$signal[,cars_data_norm der2$SelectedVariables]))

sink ("Resultats/BC/selected PP_decoupees.txt")

print(selected lambda)

sink()

data_calib filt red<-data calib filt

)

data_calib filt red$signal<-data calib filt redS$signal[,which(colnames(data_calib filt red$signal) %in% selected lambdaSdata)]

data calib norm filt red<-data calib norm filt
data:calib:norm:filt:reds5ignai<—dat§7cal}binormifiltiredSSignal[,which(colnames(datafcalibfuormﬁfiltiredSSignal]
%in% selected lambdaSdata norm)]

data_calib_deri_filt_red(—aata_calib_der1_filt

data calib derl filt red$signal<-data calib derl filt red$signal|,which(colnames(data calib derl filt red$signal)
2in% selected lambdaSdata_derl)] B I B -

data calib der2 filt red<-data calib derz filt
data:calib:derz:filt:reds5ignai<—dat§_cal}b_derE_filt_redSSignal[,which(colnames(data_calib_derZ_filt_redSSignal]
%in% selected lambda$data_der2)]

data_calib derl norm filt red<-data_calib_derl norm filt

data_calib _derl norm filt red$signal<-data calib derl norm filt red$signal[,which(colnames
(data_calib _derl norm filt red$signal) %in% selected_lambda$data_derl_norm)]

data_calib _der2 norm filt red<-data calib_der2 norm filt

data_calib_der2 norm filt red$signal<-data_calib_der2 norm filt red$signall,which(colnames
(data_calib der2 norm filt redS$signal) %in% selected lambdaSdata der2 norm)]

data calib norm derl filt red<-data calib norm derl filt

data_calib _norm derl filt red$signal<-data calib_norm derl filt red$signall[,which(colnames

(data calib norm derl filt red$signal) %in% selected lambda$data norm derl)]

data calib norm der2 filt red<-data calib norm der2 filt

data_calib _norm der2 filt red$signal<-data calib_norm der2_ filt red$signall,which(colnames

(data calib norm der2 filt red$signal) %in% selected lambdaSdata norm der2)]

write.table(data calib_filt red, file="Resultats/BC/donnees_decoupees_calib filt red.txt",sep="\t",
row.names=FALSE, col.names=TRUE)
write.table(data calib norm filt red,file="Resultats/BC/donnees decoupees calib norm filt red.txt",
sep="\t", row.names=FALSE, col .names=TRUE)
write.table(data_calib derl filt red, file="Resultats/BC/donnees decoupees_calib derl filt red.txt",
sep="\t", row.names=FALSE, col .names=TRUE)

write.table(data calib der2 filt red, file="Resultats/BC/donnees decoupees calib der2 filt red.txt",
sep="\t", row.names=FALSE, col.names=TRUE)

write.table(data_calib_derl norm filt_ red, file="Resultats/BC/donnees_decoupees_derl norm calib filt red.txt",

sep="\t", row.names=FALSE, col.names=TRUE)

write.table(data calib der2 norm filt red, file="Resultats/BC/donnees decoupees der2 norm calib filt red.txt",

sep="\t", row.names=FALSE, col .names=TRUE)

write.table(data calib norm derl filt red, file="Resultats/BC/donnees_decoupees_norm derl calib filt red.txt",

sep="\t", row.names=FALSE, col.names=TRUE)

write.table(data_calib norm_der2 filt red, file="Resultats/BC/donnees_decoupees norm der2 calib filt_red.txzt",

sep="\t", row.names=FALSE, col.names=TRUE)

calib data ok red<-calib valid LOO(data set=data calib filt red,trait='trait',maxcomp=min (c(ncol
(data_calib filt red$signal),10)),ratio=3/4,criterion=1)

calib data norm ok red<-calib valid LOO(data_ set=data_calib norm filt red,trait='trait',6maxcomp=min
(c(ncol (data_calib_norm_filt red$signal),10)),ratio=3/4,criterion=1)

calib data derl ok red<-calib valid LOO(data set=data calib derl filt red,trait='trait', maxcomp=min
(c(ncol(data calib derl filt red$signal),10)),ratio=3/4,criterion=1)

calib _data der2 ok red<-calib valid LOO(data_set=data_calib der2 filt red,trait='trait',6maxcomp=min
(c(ncol(data_calib_der2 filt red$signal),10)),ratio=3/4,criterion=1)
calib_data_derl norm ok red<-calib_walid 1oO(data_set=data _calib_derl norm filt_red,trait='trait’',
maxcomp=min(c(ncol (data calib derl norm filt red$signal),10)),ratio=3/4,criterion=1)

calib data der2 norm ok red<-calib walid LOO(data set=data calib der2 norm filt red,trait='trait’,
maxcomp=min (c (ncol (data_calib_der2 norm filt red$signal), 10)),ratio=3/4,criterion=1)

calib data norm derl ok red<-calib walid LOO(data_set=data_calib_norm derl filt red,trait='trait’,
maxcomp=min (c(ncol (data_calib _norm derl filt_red$signal),10)),ratio=3/4,criterion=1)

calib data norm der2 ok red<-calib valid 1LoO(data set=data calib norm der2 filt red,trait="trait',
maxcomp=min (c (ncol (data calib norm der2 filt red$signal),10)),ratio=3/4,criterion=1)
out_calib_ok_reck—data .frame('traitement'=c('Brut', "Norm', 'Derl", 'Der2', 'DerlNorm', 'Der2Norm’',
"NormDerl', 'NormDer2'),

rbind(calib_data ok_red$output,calib_data norm ok_red$output,calib data derl ok red$output,
calib_data_derZ_ok_red$output,

calibidataiderlinormio k redfoutput, calibfdatafderZinormio k redSoutput, calibidatainormiderlio k redfoutput,
Calib_data_norm_derZ_ok_red$output] "

'nb_outliers'=sapply (outliers, length),

'nb_PP'=sapply (selected lambda, length))

out_calib_ok red

sink ("Resultats/BC/calib 10O decoupees filtree reduite.txt™)

print (out calib ok red)

sink()
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#calib_data MCCV_red<-MCCV(data_set=data_calib_filt red,trait='trait',maxcomp=min (c(ncol
(data_calib filt red$signal),10)),fold=4,iter=500,criterion=1)

#tcalib_data_norm MCCV_red<-MCCV(data_set=data_calib _norm filt_red, trait="trait',mazcomp=min
(c(ncol(data calib norm filt red$signal),10)),fold=4,iter=500,criterion=1)

#calib_data_derl MCCV_red<-MCCV(data_set=data_calib derl filt red,trait="trait',maxcomp=min
(c(ncol(data_calib derl filt red$signal),10)), fold=4,iter=500,criterion=1)

#calib data der2 MCCV red<-MCCV(data set=data calib der2 filt red,trait="trait', maxcomp=min
(c(ncol(data calib der2 filt red$signal),10)),fold=4,iter=500,criterion=1)
#calib_data_derl_norm MCCV_red<-MCCV(data_set=data calib_derl norm filt red,trait='trait',
maxcomp=min(c(ncol(data_calib derl norm filt red$signal),10)),fold=4,iter=500,criterion=1)
#calib_data_der2 norm MCCV_red<-MCCV(data_set=data_calib der2 norm filt red,trait='trait',
maxcomp=min (c(ncol (data_calib der2 norm filt red$signal),10)), fold=4,iter=500,criterion=1)
#calib data norm derl MCCV red<-MCCV(data set=data calib norm derl filt red,trait='trait',
maxcomp=min (c(ncol (data calib norm derl filt red$signal),10)), fold=4,iter=500,criterion=1)
#calib data norm der2 MCCV red<-MCCV(data set=data calib norm der2 filt red,trait='trait',
maxcomp=min(c(ncol(data_calib norm der2 filt redS$signal),10)),fold=4,iter=500,criterion=1)
#out_calib_MCCV_red(—data.frame('traitement'=c('Brut','Norm','Derl','Der2','DerlNorm',
'DerZNorm', "NormDerl', 'NormDer2'),

#rbind(calib data MCCV_redSoutput,calib data norm MCCV_ red$output,

calib data derl MCCV red$output,calib data der2 MCCV redSoutput,
#calibidataider17norm7MCCV7red5output,calibidataider27normﬁMCCVﬁredsoutput,
calib_data_norm_der1_MCCV_red$output,calib_data_norm_der2_MCCV_red$output],
#'nb_outliers'=sapply(outliers,length),

#'nb_PP'=sapply(selected lambda, length)

#out_calib MCCV red

#sink ("Resultats/calib MCCV decoupees filtree reduite.txt™)

#print (out calib MCCV red)

#=zink ()

#output<-list('trait'=chem, 'outliers'=outliers, 'Cars_sSel PP'=selected lambda,
# 'LOO_CV_AllPP'=out_calib ok, "MCCV_Al1PP'=out_calib_MCCV,

# 'LOO_CV_CarsSelPP'=out_calib_ok_red, 'MCCV_CarsSelPP'=out_calib MCCV_red)

#sink ("Resultats/recapitulatif calibration decoupees.txt")
#print (output)

#=sink ()
pretr="norm '
nbcomp=5

data_ok<-get (paste("data_calib ",pretr,"filt_red", sep=""))
LOO CV<-plsr(trait~signal,data=data ok,nbcomp,validation="L00")
plot (LOO_CV, ncomp=nbcomp, 1line=T,main=chem, pch=20, col="darkblue")

legend ('topleft', c(paste('Nb_Comp=',nbcomp,sep=""),

paste ('R2_train=",round(R2(LOO_CV,estimate="'train',ncomp=nbcomp)svall2],2),sep=""),

paste ('"R2_cv=",round(R2 (LOO_CV,estimate="CV', ncomp=nbcomp) $vall2],2),sep=""),

paste ('RMSE_cv=", round (RMSEP (LOO_CV,estimate="CV', ncomp=nbcomp) $vall[2],2),sep=""),

paste ('"RPD cv=",round(sd(data ok$trait)/RMSEP(LOO CV,estimate='CV',ncomp=nbcomp)S$vall2],2),
sep="")),bty="n")

png (file="Resultats/Calibration choisie decoupees.png",
width=600, height=600)

plot(LOO_CV,nCémp=nbcomp,line=T,main=chem,pch=20,Col='darkblue'J
legend('topleft',c(paste ("Nb_Comp=',6 nbcomp, sep=""),

paste('R2 train='",round(R2 (LOC CV,estimate='train',ncomp=nbcomp)svall2],2),sep=""),

paste ('RZ_cv=", round (R2 (LOC_CV,estimate='CV', ncomp=nbcomp) $val[2],2),sep=""),
paste('RMSE_cv:',round(RMSEP(LOO_CV,estimate:'CV',ncomp:nbcomp]5va1[2],2],sep:"],

paste ('RPD cv=',round(sd(data okStrait)/RMSEP(LOO CV,estimate='CV',ncomp=nbcomp)svall2],2),
sep=""')),bty="n")

dev.off()

sink ("Resultats/Coeff latent variable decoupees.txt")

print (LOO_CVScoefficient)

sink()

sink ("Resultats/Coeff interception decoupees.txt")

print (LOC_CVSYmeans)

sink()

plot (LOC CV, plottype = "coef", ncomp=nbcomp, legendpos = "bottomleft™, labels = "numbers")

options ("scipen"=100)

install.packages ("signal")

library(signal)

setwd ('C:/Users/Mathilde/dox/EXCOMT00 Biocomposites fibres-TPS/Interpretation R/TraitementR')
donnees brutes<-read.table ("DonneesBrutes/BC/data FTIR BC.txt",sep="\t",header=TRUE)
xlabel="Lambda cm-1"'

ylabel="Absorbance'

xnondecoupe=c (4100, 300)

xdecoupe=c (4000, 400)
donnees_brutes_ok(—data.frame('PP'=a5.numeric(donnees_brutes$lambda),'5iqna1'=1(as.matrix
(donnees brutes[,2:ncol(donnees brutes)])))

windows ()
matplot(donnees_brutes_okSPP,donnees_brutes_ok$siqnal,type:'1',1ty=1,xlab=xlabel,ylab:ylabel,
xlim:xnondecoupe,main:'donneesibrutesiok',col:3]

png (file="Resultats/données_brutes_ok.png",

width=600, height=600)
matplot(donneesibrutesiok$PP,donneesibrutesiok$signal,type:'l',ltyzl,xlah:xlabel,ylab:ylabel,
xlim=xnondecoupe,main='donnees_brutes_ok',Col=3]

dewv.off()

donnees decoupees<-subset (donnees brutes ok,PP >= 410 & PP <= 35900
write.table(donnees_decoupees,file="Resultatsfdonnees_decoupees.txt",Sep="\t",row.names=EALSE,
col.names=TRUE)
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windows ()
matplot(dcnnees_decoupee5$PE,donnees_deccupee5$Signal,type='l',lty=1,xlab=xlabel,ylab=ylabel,
xlim=xdecoupe,main='donnees_decoupees',col=3]

png (file="Resultats/données decoupées.png”,

width=600, height=600)

matplot (donnees_decoupees$PP,donnees_decoupees$signal, type='1", 1ty=1, xlab=xlabel, ylab=ylabel,
xlim=xdecoupe,main='donneesideccupees',col=3

dev.off ()

normalisation<-function(x){ (x-mean(x))/sd(x)}
tsf<—(max(donnees_decoupeesSPP]—min(donnees_decoupeessPPJ]/(1enqth(donnees_decoupeesSPPJ—l
donnees decoupees norm<-data.frame (PP=donnees_decoupees$PF, signal=I(as.matrix(apply
(donnees decoupees$signal, 2,normalisation))))

donnees_decoupees_derl<-data.frame (PP=donnees_decoupees$PP, signal=I(as.matrix(apply
(donnees decoupees$signal, 2, function (x) {sgolayfilt (x,p=2,n=37,m=1, ts=tsf)}))))
donnees_decoupees_der2<—data.frame(PP:donnees_decoupeeSSPP,siqnalzl(as.matrix(apply
(donnees_decoupees$signal, 2, function(x) {sgolayfilt (x,p=3,n=61,m=2, ts=tsf)}))))
donnees_decoupee5_derl_norm<—data.frame(PE=donnees_decoupeeS_derlSPP,5iqna1=1(as.matrix
(apply (donnees decoupees_derl$signal, 2,normalisation))))
donneeSidecoupeeSider27ncrm<—data.frame(PE=donnee57decoupeeSiderE$PP,5ignal=1(as.matrix
(apply (donnees_decoupees_der2$signal, 2,normalisation))))

donnees decoupees norm derl<-data.frame (PP=donnees decoupees norm$PF,signal=I(as.matrix
(apply(donnees_decoupees_normSsiqnal,2,function(x]{sqolayfilt(x,p:2,n:37,m:1,t5:tsfj})JJ]
donnees decoupees norm der2<-data.frame (PP=donnees_decoupees norm$PF, signal=I(as.matrix
(apply(donneesidecoupeesinorm$Signal,2,function(x]{Sgolayfilt(x,p=3,n=61,m=2,t5=t5f]})JJ]
write.table(donnees_decoupees_norm,file:"ResultatS/donnees_decoupees_norm.txt",sep:"\t",
row.names=FALSE, col.names=TRUE)
write.table(donnees_decoupees_derl,file:"ResultatS/donnees_decoupees_derl.txt",sep:"\t",
row.names=FALSE, col.names=TRUE)

write.table (donnees decoupees der2, file="Resultats/donnees decoupees derZ2.txt",sep="\t",
row.names=FALSE, col.names=TRUE)
write.table(donneesidecoupeeSiderlinorm,file="ResultatSfdonneesidecoupeesider17norm.txt",
sep="\t", row.names=FALSE, col .names=TRUE)

write.table (donnees_decoupees_derZ norm, file="Resultats/donnees_decoupees_derZ_norm.txt",
sep="\t", row.names=FALSE, col .names=TRUE)

write.table (donnees_decoupees_norm derl, file="Resultats/donnees_decoupees_norm_derl.txt”,
sep="\t", row.names=FALSE, col .names=TRUE)
write.table(donnees_decoupees_norm_der2,file:"ResultatSfdonnees_decoupees_norm_der2.txt",
sep="\t", row.names=FRLSE, col .names=TRUE)

windows ()

matplot (donnees_decoupees norm$PP,donnees decoupees norm$signal, type='l',lty=1,xlab=xlabel,
ylab=ylabel,xlim=xdecoupe,main='donneesidecoupees',Col=ﬂ

windows ()
matplot(donneesidecoupeesiderl$EP,donneesidecoupeesiderlﬁSignal,type='l',lty=1,xlab=xlabel,
ylab:ylabel,xlim:xdecoupe,main:'donnees_decoupees_derl',col:3

windows ()

matplot (donnees decoupees der25PP,donnees decoupees der2$Ssignal, type='1l"',lty=1,xlab=xlabel,

ylab=ylabel, xlim=xdecoupe,main="donnees_decoupees_der2',col=3

windows ()
matplot(donnees_decoupees_derl_normSPP,donnees_decoupees_derl_normSsiqnal,type:'l',1ty:1,
xlab=x1abe1,ylab=y1abel,xlim=xdecoupe,main='donneeS_decoupees_derl_norm',Co1=3

windows ()

matplot (donnees decoupees derZ norm$PP,donnees decoupees derZ norm$signal, type='l',lty=1,
xlab=xlabel, ylab=ylabel, xlim=xdecoupe,main="donnees decoupees der2 norm',6col=3

windows ()
matplot(donnees_decoupees_norm_derlSPP,donnees_decoupees_norm_derlSsiqnal,type:'l',1ty:1,
xlab:xlabel,ylab:ylabel,xlim:xdecoupe,main:'donneeS_decoupees_norm_der1',Co1:3

windows ()

matplot (donnees decoupees norm der25PP,donnees decoupees norm der2$signal, type='1l',lty=1,
xlab=xlabel, ylab=ylabel, xlim=xdecoupe,main="'donnees decoupees norm der2',6 col=3

png (file="Resultats/données découpées normalisées.png",

width=600, height=600
matplot(donn555_decoupees_norm$PP,donnees_decoupees_normSSiqnal,type:'l',ltyzl,xlab:xlabel,
ylab=y1abe1,xlim=xdecoupe,main='donnees_decoupees_norm',Col=3

dev.off()

png(file="Resultats/données découpées derl.png”,

width=600, height=600

matplot (donnees_decoupees_derl$PP, donnees_decoupees_derl$signal, type='1l', lty=1, xlab=xlabel,
ylab=ylabel,xlim=xdecoupe,main="donnees_decoupees_derl',col=3

dev.off()

png (file="Resultats/données découpées der2.png”,

width=600, height=600

matplot (donnees decoupees der25PP,donnees decoupees der2$signal, type='l',lty=1, xlab=xlabel,
ylab=ylabel, xlim=xdecoupe,main="donnees_decoupess_der2',col=3

dev.off()

png (file="Resultats/données découpées_derl normalisées.png"”,

width=600, height=600

matplot (donnees decoupees derl norm$PP,donnees decoupees derl norm$signal, type='l',lty=1,
xlab=xlabel, ylab=ylabel, xlim=xdecoupe,main="'donnees decoupees derl norm',col=3

dev.off()

png (file="Resultats/données découpées_der2 normalisées.png”,

width=600, height=600
matplot(donneeS_decoupees_deEZ_normSPP,donnee5_decoupees_der2_norm$siqnal,type='l',1ty=1,
xlab=xlabel,ylab=ylabel,xlim=xdecoupe,main='donnee5_decoupee5_der2_norm',Ccl=3

dev.off()




) png(file="Resultats/données découpées normalisées derl.png",

31  width=600, height=600) - - -

32 matplot (donnees decoupees norm derl$PP,donnees decoupees norm derl$signal, type='l',lty=1,

3 xlab=xlabel,ylab=ylabel, xlim=xdecoupe,main="donnees decoupees norm derl',6 col=3)

24 dev.off()

5 png(file="Resultats/données découpées normalisées der2.png",

width=600, height=600)

matplot (donnees_decoupees norm deriiPP,donnees_decoupees norm derisi signal,type='1",1lty=1,
xlab=xlabel,ylab=ylabel, xlim=xdecoupe,main=" donnees decoupees norm der2',col=3)

dev.off()
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7) Code used to design the models

###Téléchargement du logiciel : https://www.anaconda.com/producEaB/individual -
Python 3.7 64bit (32 bit non fonctionnel, & vérifier awvec le processeur de 1'ordinateur)

#Littérature : ce code est inspiré du "Boston housing - price prediction™ décrit ci-dessous
#https://tensorflow.rstudio.com/tutorials/beginners/basic-ml/tutorial basic regression/
#https://rstudio-pubs-static.s3.amazonaws.com/364346 811c80122146847426c9%b1fcled56431a.html

###pdaptation du code : Sophie Morin - PhD Student - morin.msophiefgmail.com###
##Testeurs : Louise Delahave ###

#### Chargement des packages ####
#Enlevez les "$#" pour le premier essai du code, puis il ne sera plus nécessaire
d'installer chacun des packages"
#install.packages ('keras")
library(keras)

#install keras()
#install.packages ('devtools')
library('devtools"')

#install devtools()
#install.packages ("magrittr™)
#install.packages ("dplyr")
library (magrittr)

library (dplyr)

reticulate::use condaenv
#install.packages ('tfdataseEaB'")
library(tfdatasets)
#install.packages('psych')
library (psych)
#install.packages('car')
library(car)

library(tibble)

library(caret)

library(stringr)

#Introduire ici le chemin d'accés de votre base de données#

# Attention : en copiant-collant le chemin d'accés, les "\" doivent &tre changés en "/"#
#Dossier

setwd ('C:/Users/")

#Introduire ici le nom de la base de données de la littérature avec son extension,

qui servira a entrainé le modele#

4La base de données doit se trouver dans le dossier mentionné précédemment#

#Attention : bien vérifier que le séparateur des décimales est un point et non une virgules

NomDB litterature <- readline(prompt="What is the name of the literature database?
(please add the extension of your file):")

###Lecture des bases par le logiciel

##La base de la littérature est affectée a la wariable "trainset"#
trainset<-as_ tibble (read.table (NomDB_litterature,sep="\t", header=TRUE))
trainset

##Lecture du nom des colonnes des bases de données

column_trainset <- names(trainset)

summarize trainset <- summary(trainset)

#This is the repartition of your dataset :

summarize trainset

write.table (summarize trainset, file= "database description.txt")

print (paste ("Column header of the litterature database", column trainset)

77



#Please introduce in the following code lines the rownumber associated with the
variable you want to study #

studied_parameters <- trainset[,c(4,5,6,7,8,10,11,12,13,14,15,16,17,19)1]
studied parameters

#Go in your folder to load the jpeg image called 'Trainset plot' representing the
correlation matrices#

jpeg("Trainset plot.Jjpg", width = 5300, height = 500)

Trainsetplot <- plot(studied parameters,pch=3)

dev.off ()

#The following section will calculate the correlation of the variables of interest

toward the wariable to predict#

#Please inter after the '$' sign the name of your column to predict

correlation <- cor(studied parameters,studied parameters$EaB)

#The following wariable have this coefficient correlation toward the wariable to predict#
correlation

#&ny feature which is not significant (p<0.05), is not contributing signicantly for the model
#Variable tagged with "True" are significantly contributing to the model

selected parameters <- (abs (correlaticon) > (0.05))

selected parameters

write.table (correlation, file= "correlation.txt"™)

#Repartition of the data in the variable to predict. Don't forget to write the name
of your variable of interest after the "5" sign)

jpeg ("histogramm trainset.jpg", width = 1000, height = 500)

histogramme<-hist (trainsetSEaB, xlab="Median Value", main="EaB", col="grey")
dev.off ()

#set.seed indicate to the computer a time limit to perform the computation

set.seed(30000)

#The algorithm separate randomly here the litterature database onto two subset

the first one help to create the model, while the second check the accuracy of the model™)
inTrain <- createDataPartition(y=studied parameters$EaB,p=0.70,1ist=FALSE)

training <- studied parameters[inTrain, ]

testing <- studied parameters[-inTrain, ]

training

###The model is build here. We indicate which kind of generic formula the algorithm
need to perform the simulations

#General linear Model

fit.lm <- Im(EaB~ .,data = training)

coefficients linear <- data.frame(coef = round(fit.lm$coefficients,2))

#This is the coefficienEaB ussd to create the model, saved as "coefficienEaB linear model.txt"
in your folder

coefficients linear

write.table(coefficients linear, file= "coefficients linear model.txt")

#This section check the model accuracy on the base of the randomly created subset of the
litterature database

set.seed (30000)

pred.lm <- predict(fit.lm, newdata = testing)

#Please check if the wvariable indicated after the $ sign is correct

rmse.lm <- sqgrt(sum((pred.lm - testing$EaB)"2)/

length (testing$EaB) )

validity Im <- c(RMSE = rmse.lm, R2 = summary(fit.lm)S3r.squared)
write.table(validity Im, file= "validity linear model.txt")

validity Im

summary (fit.1m)

# This section create a new model based on a logarithmic formula
fit.1lml <- Im(log(EaB)~.,data = training)
coefficients logarithm <- data.frame(coef = round(fit.lml$coefficients,2))

coefficients logarithm

write.table (coefficients logarithm, file= "coefficients logarithm model.txt")
pred.Iml <- predict(fit.Ilml, newdata = testing)

#Please check if the variable indicated after the $ sign is correct

rmse.lml <- sgrt(sum((exp(pred.lml) - testingSEaB)~2)/

length (testingSEaB) )

validity Iml<- c(RMSE = rmse.lml, R2 = summary(fit.lml)S$r.squared)
write.table (validity 1ml, file= "validity logarithm model.txt")

summary (fit.lml)

validity 1ml
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# You can add more mathematical transformations here. Don't forget to adapt the RMSE calculation

#This section aim to predict the wvariable of interest on the basis of your personal data
NomDB_perso <-readline(prompt="What is the name of your personnal database?

(please add the extension of your file)")

testset<—a5_tibble(read.table(NomDB_perso, sep="\t", header=TRUE) )

summary (testset)

testset

column_testset <- names(testset)

print(paste ("Column header of your personnal database",column_testset))

# Please indicate in the following line which columns number the code have to consider.
These columns should be the same as used for the model building

used parameters <- testset[,c(3:15)]

prediction model <- predict(fit.Im5, newdata = used parameters)

write.table (prediction model, file = 'Prediction_data perso.txt', sep="\t")

prediction model

#This part is used to do a selection of wvariables using the Backward stepwise method on

the p-values, with a limit at 0.05

#linear model

BWD.fitlm.p <- ols step backward p(fit.lm, prem=0.05, details=TRUE)

BWD.fitlm.p results <- c(coeff = BWD.fitlm.p$modelfcoefficients, R? ajusté = BWD.fitlm.pSadjr,
RMSE =BWD.fitlm.pSrmse)

write.table (BWD.fitlm.p results, file ='BWD.lineaire.p results.txt')

BWD.fitlm interact.p <- ols step backward p(fit.lm interact,prem=.05, details=TRUE)

BWD.fitlm interact.p_results <- c(coeff = BWD.fitlm interact.p$modelScoefficients,

R?_ajusté = BWD.fitlm interact.p$adijr, RMSE =BWD.fitlm interact.p$rmse)
write.table (BWD.fitlm interact.p results, file ='BWD.lineaire interact results.txt')

#log model

BWD.fitlml.p <- ols step backward p(fit.1lml, prem=0.05, details=TRUE)

BWD.fitlml.p results <- c(coeff = BWD.fitlml.pSmodelScoefficients, R®*_ajusté = BWD.fitlml.pSadjr,
EMSE =exp (BWD.fitlml.pSrmse))

write.table (BWD.fitlml.p results, file ='BWD.log.p results.txt')

BWD.fitlml interact.p <- ols step backward p(fit.lml interact,prem=0.05, details=TRUE)
BWD.fitlml interact.p results <- c(coeff = BWD.fitlml interact.ps$model$coefficients,

R? ajusté = BWD.fitlml interact.pSadjr, RMSE =exp(BWD.fitlml interact.pSrmse)) #calcul RMSE...
write.table (BWD.fitlml interact.p_results, file ='BWD.log interact results.txzt')

#This step can be done for any mathematical transformation
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