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Chapter 1: Introduction 

 

 

1.1 PREAMBLE  

 
Operations research and optimization models have been proposed for many years in order to 

design sports tournaments, displaying different desirable properties and satisfying various 

feasibility constraints. Indeed, sports competitions may involve several logistical and economic 

issues, which has led many researchers to take an interest in the topic. Sport’s contribution to 

the economy is constantly growing and, according to the European Commission's study, based 

in 2012 data, the share of sport-related Gross Domestic Product (GDP) in the EU is 2.12 % and 

amounts to € 279.7 bn (The house of european sport, 2018). 

Some of the properties, or performance indicators, of tournaments have also been examined 

from a more theoretical point of view. Indeed, different types of competition have been studied 

in the context of sports and other domains. Although sport is the first sector that comes to mind 

when speaking about tournaments, another key field is politics—the organization of elections 

for example. Nevertheless, during the elaboration of the themes of this thesis, sports 

tournaments will be the focus. 

With sport and tournaments being a high-profile and popular domain, many optimization 

problems have already been analyzed and studied in the literature. These studies have aimed in 

particular at the most familiar and highly mediatized sports, such as football played under the 

auspices of the Union of European Football Associations (UEFA) and the Fédération 

Internationale de Football Association (FIFA), (see Green (2015) or Lasek et al. (2013)) or 

basketball organized by the National Collegiate Athletic Association (NCAA) (see Schwertman 

(1991) or Khatibi (2015)). However, no specific sport will be analyzed in this thesis, as it will 

only focus on the optimal design of sport tournament.  

“Designing an optimal contest is both a matter of significant financial concern for the 

organizers, participating individuals, and teams, and a matter of consuming personal interest 

for millions of fans” (Szymanski, 2010, p. 1137). 
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Before moving to the research question, the word “tournament” needs to be defined.  

 

Definition 1. “Tournaments are used to select a single winner from a group of participants in 

a sporting event or a paired-comparison experiment” (Horen & Riezman, 1985, p1).  

 

Tournaments offer a model of the statistical method called the method of paired comparisons 

or pairwise comparisons—that is, comparing two elements with each other in order to identify 

the preferred option. This technique of paired comparisons is used when several objects have 

to be considered on the basis of various criteria or measures.  

In the context of sport, at each stage of the tournament, every paired comparison will be called 

a match. It can thus be said that a tournament is a rule that indicates how the teams or players 

will be compared in order to choose the winner of a competition with a set of p players. This 

rule will, consequently, generate a sequence of games to be played (Maurer, 1975).  

Although many studies and articles have examined the design of sports tournaments, few 

articles deal with tournament structure. Indeed, there are many different ways to build a 

tournament, depending on various criteria, which is explained in detail in Chapter 3. 

 

1.2 RESEARCH QUESTION AND GOALS 

 
The starting point of this thesis was the article by Alder et al. (2017) on random knockout 

tournaments. In this paper, the authors demonstrated that, in the special case where only one 

player has a higher relative strength than the others, the design that maximizes the strongest 

player’s winning probability is the balanced structure. The authors also assumed, without any 

proof, that in the more general case where players have different strengths, the balanced 

structure still maximizes the strongest player’s winning probability.  

Consequently, the main objective of this thesis will be to examine this assumption by answering 

the following question: “In a knockout tournament, that is to say a direct elimination 

tournament, what type of structure optimizes the strongest player’s probability of winning?”  
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During the elaboration of this thesis, different sports tournaments and their specific terminology 

were defined, winning probabilities of random knockout tournaments were computed, and an 

algorithm was developed in order to provide indications of the effectiveness of the tournament 

structure and to evaluate and draw conclusions regarding the types of structure to be chosen. 

Indeed, the algorithm will allow to see how the interaction between the player strength and the 

chosen tournament structure affects its probability of winning.  

In order to be able to infer which type of structure maximizes or minimizes the strongest 

player’s probability of winning, all possible structures were analyzed. To do this, tournaments 

were considered as full unordered binary trees. Once these structures were obtained, a 

simulation was performed to randomly assign strengths to the different players, and they were 

then randomly placed in the tournament bracket. Finally, the winning probability of each player 

for each round was computed in order to identify the highest one and thus to obtain the optimal 

structure for the strongest player.  

For ease of reading, terms specific to sports tournaments and binary trees are explained in 

section 1.3 and 3.1. 

 

1.3 TERMINOLOGY 

 

Explanations of the particular terms used in this thesis are given in the following subsections. 

Common terms such as tournament type, structure, and format are sometimes misused or can 

have different meanings depending on the author. The purpose of this section is to define their 

meanings and set the direction in which the terms will be used. 

These various terms are frequently used in sports literature, which is why no basic references 

are mentioned. 
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1.3.1 Tournament format 

 

According to Adler et al. (2017), the tournament format is the number of matches played in 

each round. A round refers to the set of matches that can be played at the same time. For 

example, Figure 1 shows a three-round tournament.  

 

 

Figure 1: A three-round tournament  

Retrieved from https://www.printyourbrackets.com/ 

 

A tournament is composed of R rounds, with round i consisting of 𝑚𝑖 matches. The total 

number of matches will therefore be equal to ∑ 𝑚𝑖  =  𝑝 −  1𝑅
𝑖=1  (Adler et al., 2017), with p 

being the number of players or teams. As can be observed in Figure 1, the first round is 

composed of four matches, the second round has two matches, and the last round, the final, has 

one match. The winner of this last match will be declared the winner of the tournament. This 

constitution of matches will thus refer to the tournament format 4 – 2 – 1.  

 

1.3.2  Tournament type 

 

Depending on the sport, many different types of competition may exist. Indeed, there are many 

different systems for organizing tournaments, each with its own advantages and drawbacks. 

The three most common are round-robin, single elimination, and double-elimination 

tournaments. 

a) The most studied tournament in the statistical literature is the (single) round-robin 

tournament, in which players or teams play once against each other. The winner is 
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determined by the number of victories or by the total number of points accumulated 

during the games played.  

As this type of tournament requires many matches, it is only valuable when the number 

of players or teams is small, and when games are played quickly. Figure 2 presents an 

example of a round robin tournament involving eight teams. 

 

Figure 2: Round-robin bracket with eight participants. Retrieved from 

https://www.printyourbrackets.com/ 

 

 

b) As can be seen in Figure 4, a knockout tournament, also known as a single-

elimination tournament, is an event in which the participants—individual players or 

teams—are placed into a bracket with L leaves. Knockout tournaments differ from 

round-robin tournaments in that not all possible pairs of games occur. The draw is, 

therefore, of great importance here. 

The draw corresponds to the way players are placed in the bracket, either (1) randomly, 

or (2) in a predefined way according to the players' strengths.  

i) The first case is termed a random knockout tournament. The p players are randomly 

paired and then randomly planted into the L leaves of the tournament bracket.  

ii) The second case is termed seeding. The seeding corresponds to the assignment of 

players to the L leaves according to their strengths (Vu et al., 2009). In the most 

used seeded knockout tournament, players or teams are placed in the bracket in a 
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manner that ensures the two best players or teams to not meet until the last round of 

the competition (i.e. the final). This typical seeding, called the standard seeding, is 

shown at Figure 3 for an eight player competition. The numbering represents the 

strength of the player, the strongest player being player 1 and the weakest, in this 

case, player 8. 

 

 

Figure 3: Standard seeding in a knockout tournament with eight players  

 

 

Single-elimination tournaments are widespread in sports competitions. They are regularly used 

as a qualifying tournament when the number of teams is high, or as a playoff tournament—that 

is, a series of games in which teams compete at the end of a sports season to determine who is 

eligible to play in a higher division in the following season (Karpov, 2016). 

Using the knockout tournament type is the simplest way to organize a tournament, as players 

compete two-by-two in each round, with the winner moving on to the next round and the loser 

permanently eliminated from the competition. The tournament proceeds recursively with 

players advancing into the pool until only one player remains—the tournament winner.  

In a single-elimination tournament, the minimal number of rounds is equal to the power to 

which 2 is raised to get the total number of players. Indeed, if p is the number of players and R 

the minimal number of rounds, we have:  

𝑅 =  ⌈𝑙𝑜𝑔2 𝑝⌉ 

where ⌈𝑥⌉ is the smallest integer greater than or equal to x.  
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For example, using the bracket illustrated in Figure 4, there are eight players, hence, the 

minimal number of rounds will be equal to ⌈𝑙𝑜𝑔2 𝑝⌉ = ⌈𝑙𝑜𝑔2 8⌉ = 3. 

In a reverse way, the maximal number of players for a particular format of R rounds can be 

obtained via the formula:  

𝑝 =  2𝑅 

 

The main appeal of the single-elimination tournament is therefore its simplicity. Indeed, this 

model of organization can be easily constructed and applied when the number of players or 

teams is large. Moreover, this type of tournament is the fastest way to produce a winner.  

 

 

Figure 4: Single elimination bracket with eight participants 

Retrieved from https://www.printyourbrackets.com/ 

 

c) In contrast to the single elimination model, in a double-elimination tournament, from 

the second round, a second bracket containing all the losers is introduced, as can be seen 

at the bottom of Figure 5. Every time a player loses a match, they are put in this second 

bracket to play at another time. 

Having this bracket allows a player who has lost once to still play in the finals. Indeed, 

it accepts that one of the best players may have a bad first match or may have been 

poorly seeded in the single-elimination draw—the double-elimination format ensures 

that all entries play at least two games (Byl, 2014). However, this model requires more 

time and organization.  
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Figure 5: Double elimination bracket with eight participants. Retrieved from 

https://www.printyourbrackets.com/ 

 

 

 

1.3.2.1 Which tournament type to choose?  

As detailed in subsection 1.3.2, each type of tournament has its own advantages and drawbacks. 

Each situation, therefore, needs to be analyzed in order to determine which type of tournament 

is the most suitable. For example, single and double elimination tournaments require fewer 

games than round-robin tournaments. For a single-elimination tournament with p players, only 

p-1 games are played, or 2*(p-1) games in the case of a double-elimination tournament, while, 

in a round-robin tournament, 
1

2
 * p * (p-1) games will have to be played. Hence, if games are 

expensive or time-consuming, or the number of teams is high, a double-elimination or a round-

robin tournament may be inappropriate. However, it must also be taken into account that a 

knockout tournament may, sometimes, result in an unexpected situation, with the strongest 

player eliminated early in the tournament. These conflicting issues must be balanced prudently 

in order to ascertain the most suitable type of tournament. 

In this thesis, only the case of random knockout tournaments is studied. Hereafter, unless 

otherwise stated, the use of the term “tournaments” refers exclusively to random knockout 

tournaments. 
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1.3.3 Tournament structure  

 

In random knockout tournaments, different types of structure, indicating the skeleton of the 

tournament,  need to be distinguished. The structure gives an indication of how the players will 

be paired, but without stipulating which players will face each other (Edwards, 1991).   

As an example, Figure 6 shows two different types of tournament structure which use the same 

format. As explained in section 1.3.1, the tournament format refers to the number of matches 

played in each round, whereas the structure refers to the way the matches are placed in the 

tournament. In Figure 6, both tournaments have a 2-2-1 format but different structures.  

 

 

Figure 6: 2-2-1 tournament format with different structures 

 

 

Within the structures, two major types can be specified: balanced and unbalanced. 

a) Balanced structure 

In order to define balanced structures, two situations must be distinguished.   

i) The number of participants is equal to a power of 2—in this case, the balanced 

structure was given in Figure 4. The number of rounds, R, is equal to 𝑙𝑜𝑔2𝑝. The 

first round counts 
𝑝

2
 matches, the second 

𝑝

4
 matches, and so on until there is only 

one game left. 

ii) Nevertheless, it often happens that the number of participants is not a power of 

2. In this second case, the number of players is equal to 2𝑟  +  𝑘 with 

0 ≤  𝑘 < 2𝑟. In this situation, to obtain a balanced structure, k matches are 

added in the preliminary round, followed by the balanced (i.e. symmetric) 
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structure for the remaining 2𝑟 players. An example of a balanced structure with 

six players is given in Figure 7. 

 

Figure 7: Balanced structure for knockout tournament with six players 

 

b) Unbalanced structure 

All other tournament structures that are not balanced are called unbalanced. 

There is therefore a multitude of different cases for the unbalanced structure. The 

extreme case, where there is only one single match per round played, is shown in Figure 

8, and is categorized as the totally unbalanced structure.  

 

 

Figure 8: Totally unbalanced structure for knockout tournaments with eight participants 
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1.4  OVERVIEW 

 

To end the introduction, this section contains an overview to present the structure of this thesis. 

Chapter 1 presents an outline to the problem, Chapter 2 explains the methodology used and a 

review of the related literature. The methods used in the study are then described in Chapter 3, 

along with the obtained results. Finally, Chapter 4 outlines the main conclusions and identifies 

both limitations to the study and recommendations for further research. 
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Chapter 2: Literature Review 

 

 

The literature review is an essential part of the research process. It highlights information, 

studies, and results previously written on the subject, through scientific articles, books, and 

articles from specialized journals. It helps to provide a foundation of knowledge on a particular 

topic and, moreover, to identify links between the current study and related research. Identifying 

exactly where an intended study sits in the general field of research gives essential perspective 

to the work (Upstate, University of South Carolina, 2020). 

The aim of this thesis is to understand and synthesize some of the fundamental models, 

applications, and results pertaining to the design of knockout tournaments. To that end, various 

theoretical positions are presented in section 2.2, along with previous studies.  

To begin this overview, section 2.1 briefly presents the methodology used to carry out the 

literature review. 

 

2.1 METHODOLOGY 

 
To answer the research question, the first task was to analyze and understand the different types 

of structures used for knockout tournaments.  

As mentioned in the introduction, the starting point of this thesis was the article “Random 

Knockout tournaments”, by Adler et al. (2017), which proves, in a particular case, that the 

balanced format is the one that maximizes the strongest player's chances of victory in a 

knockout tournament. The author states, "Although we do not have a proof, we conjecture that, 

among all possible formats, the balanced format maximizes and the one-match-per-round 

format minimizes the best player’s probability of winning the tournament even in the case of 

general" strengths (Adler et al., 2017, p1). My aim was to support or disprove this conjecture—

not by proving it mathematically, like Adler et al., but by using results given by an iterative 

algorithm.  

To gather more relevant information about tournaments and the winning probabilities they 

involve, the scientific literature on this topic was reviewed, with an emphasis on knockout 
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tournaments. Moreover, an introduction to graph theory and the theory of trees was studied in 

order to build the different types of tournament structure. More information on this is presented 

in Chapter 3. 

 

2.2  PRIOR WORK  

 
Going back the oldest literature on the subject, Zermelo (1929) seems to have been the first 

author to consider paired comparison, a process of comparing individuals in pairs to decide 

which of each is preferred. Zermelo developed a method based on the maximum likelihood 

principle, a method of estimating the parameters of a model that selects the set of values 

maximizing the likelihood function. The author considered sports events, mainly chess, and 

was one of the first researchers to introduce the ranking theory, restudied thereafter by Wei 

(1952) in his doctoral thesis.  

The Zermelo method was similarly rediscovered by Bradley and Terry (1952), which led them 

to develop a probability model that allows the computation of the result of a paired comparison. 

The Bradley-Terry model defines the probability that object j is preferred over object i in the 

form of pairwise judgments, using this equation: 

𝑽(𝒊 > 𝒋) =
𝒗𝒊

𝒗𝒊 + 𝒗𝒋
 

where 𝑣𝑖 and 𝑣𝑗  are positive real-value scores assigned to i and j. 

The Bradley and Terry model is the most commonly used model in sports operational problems, 

as it also allows researchers to compute the probability that player i will beat player j. 

Kendall (1955) applied this same model in the case of sports tournaments by assigning each 

player a strength. Here, the term “strength” is used as a numerical measure to show how good—

for example, how strong—a team or a player is. After each stage, he computed the score of each 

player by giving them the score of every opponent they had beaten and half the score of whoever 

they were beaten by. Consequently, after each stage, the player ranking was updated. 

The notion of ranking is an important part of sports research, as it allows an objective indication 

of the strength of an individual to be given based on their previous performance (Lasek et al., 

2013).  
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One of the most notorious ranking systems was described by Elo (1977) and is referred to as 

the "Elo rating system". The basis of this system is that, in the beginning, each player receives 

a rating, representing a total of points indicating their skills. After each match, the points are 

updated depending on both the outcome of the match and the opponent's strength. As players 

with a high rating are expected to defeat weaker players, victory will bring them only a few 

points. On the other hand, if underdogs win, they take many points. The idea behind the Elo 

ranking is, therefore, to correct teams’ rating points during the tournament's progress (Lasek et 

al., 2013). 

Although the Elo rating was initially created to rank players in chess, it is now regularly used 

in other domains—for example in the go games, some online games, and even for ranking 

football teams. 

In the context of this thesis, unlike Kendall and Elo, it is assumed that a player's strength is 

fixed and known. This specification will be essential in Chapter 4, when computing the 

probability of victory of each player for each match, as the strength is a part of the calculation.  

Hence, a player’s strength is a key notion for sport tournaments optimization. It helps to 

determine which player will be considered the best. From this basis, many studies have been 

performed on the sports tournament’s fairness, investigating how to build a tournament so that 

the highest-ranked player—that is, the strongest—has the highest probability of winning the 

tournament and the second highest-ranked player has the second-highest probability of winning 

(Bengston, 2010). This probability that the best competitor wins the tournament, related to the 

tournament seeding, has been studied by many authors, including David (1959), who built on 

Kendall’s work by taking into account knockout tournaments and by analyzing the winning 

probability of the top player in a four-player tournament with random seeding.  

Glenn (1960) expanded the number of players and also examined the effectiveness of knockout 

tournaments. He introduced the definition of the “best” player as the one having a probability 

higher than 1/2 of beating each of the others, an approach that was subsequently used and 

studied by Searls (1963).  

Hwang (1982) presented a new method of seeding. In contrast to the classic approach, this 

method reseeds players after each round and therefore takes into account their updated 

strengths. This method will thus tend to benefit the strongest players by favoring them. 
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Horen and Riezman (1985) also used the notion of “best”, by considering the best possible draw 

under four criteria. They wondered which of the following the best draw would achieve: 

maximizing the best team’s probability of winning the tournament; giving the best team the 

higher probability of winning; maximizing the probability that the strongest team will only face 

the second-strongest team in the final round; or maximizing the expected value of the winning 

team. They finally came to the conclusion that the balanced structure, for a four-player 

tournament, meets all four criteria and asserted that the strongest player’s probability is 

maximized under the seeding [(1,4)-(2-3)], where the numbering represents the players’ 

ranking.  

Appleton (1995) looked at the different types of tournaments to ascertain which ones were 

optimum. He concluded that the double round-robin tournaments most often result in the 

strongest team winning the tournament. However, he highlighted the benefits of knockout 

tournaments by saying that they produce a winner in fewer matches and also involve some 

excitement in the draw, as they sometimes permit a lower-ranked player to reach the final.  

McGarry and Schutz (1997) compared the efficiency of different tournament types such as 

round-robin and knockout tournaments in their paper “Efficacy of traditional sport tournament 

structures”. Note the difference in the notion of structure. Indeed, they used the term “structure” 

to refer to the type of tournament, as opposed to the use in this paper, to designate the shape of 

the tournament bracket. They concluded that “the KO1 structure is probably the most suitable 

tournament structure in most cases, given its ranking ability of all players, its promotion of the 

strongest players and the relatively few games required” (McGarry & Schutz, 1997, p. 74). 

However, they specified that it is only the case with a fair seeding, asserting that random 

knockout performs much worse. 

Schwenk (2000) focused on finding the fairest seeding for a knockout tournament. He used the 

term “fair” to explain that “each team’s probability of winning should somehow reflect its 

inherent strength” (Schwenk, 2000, p. 142) and introduced the “cohort randomized seeding”. 

For an eight-player tournament (see Figure 9), the bracket is divided into three cohorts, with 

the first two players (P1 and P2) placed in the first cohort; C1 = {P1, P2}. The second cohort is 

C2 = {P3, P4}, and the third cohort is C3 = {P5, P6, P7, P8}. Once all the cohorts are obtained, 

the players are randomly assigned to a leaf according to their cohorts. For example, P1 could 

be assigned either to leaf 1 or leaf 5. Schwenk defined this type of seeding as the fairest, as it 

 
1 Knockout tournament 
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respects some rules, including the fact that a higher seeded, i.e. weaker, player should not have 

a harder draw than a stronger player. Hence, Schwenk’s method, unlike Hwang’s, tends to 

minimize the best players’ favoritism, by minimizing the disproportionate advantage of the best 

players. 

 

Figure 9: Cohort randomized seeding for eight players 

 

In the references already cited in this section, some researchers have based their results on 

experiments carried out using algorithms. With advances in computational science, some 

authors have also focused on the related complexity and on ways of reducing it.  

Vu et al. (2009) analyzed the “schedule control” of a tournament—that is, which type of design 

maximizes the chance of victory for a given player—and the associated computational 

complexity. Their paper, “On the complexity of schedule control problems for knockout 

tournaments”, has had a significant influence on probability studies in the sports sector, 

especially those dealing with the subject of sports bribery, as their research included 

manipulating the tournament seeding so that it benefits a certain player. Moreover, the authors 

showed that when the number of players is a power of two and the tournament structure is 

balanced, the problem is NP-hard.  

Aziz et al. (2018) in their paper on balanced knockout and double elimination tournaments also 

analyzed rigged tournaments, showing that verifying whether there is a draw in which a player 

wins is a NP-complete problem. 

As can be noticed in the above-mentioned articles, most studies have analyzed seeded 

tournaments, few of them deal with random tournaments. The main reason is that in a totally 



 

18 
 

random tournament, it may happen that the strongest player meets the second strongest player 

in the first match. This would imply that in a knockout tournament a very strong player could 

be eliminated in the first round. By the same logic, a weak player, or even the weakest player, 

would have an increased probability of reaching the final. This would lead to uninteresting 

matches or finals. Moreover, in the sports field, spectator entertainment is paramount and 

valuable from a financial point of view. A first-round match involving the two best players or 

a final in which a good player faced one of the weakest ones would therefore be uninteresting 

and financially disastrous. This is why, in most cases, tournament organizers have a clear 

preference for seeded tournaments (Schwenk, 2000).  

Nevertheless, some authors have still studied random tournaments. Edwards (1991), for 

example, conducted a detailed study on knockout tournaments. His paper “Random knockout 

tournament” was widely used during the writing of this thesis and is, therefore, quoted several 

times throughout. 

Marchand (2002) compared the probability that a strong player wins the tournament with a 

random seeding versus a standard seeding. He came to the conclusion that, contrary to 

expectations, in terms of probabilities, the outcome of a random tournament is close to that of 

a seeded tournament.  

Ross and Ghamami (2008) also considered random knockout tournaments by taking into 

consideration the problem of using simulations to estimate the win probabilities of each player. 

They used various estimators to compare the different draws and concluded that the method of 

“observed survivals” is the most efficient one. They used the term “observed survivals” to 

denote the set of players still alive after each round r. Those survivals are the states of a Markov 

chain—a stochastic model describing a sequence of possible events in which the probability of 

each event depends only on the state attained in the previous event, according to the Oxford 

dictionary (“Markov chain”, n.d.). Using the Markov model gives the authors a considerable 

advantage of speed and accuracy when producing results. 

Karpov (2016) performed a study to determine which type of seeding was optimal for the 

strongest players in case of knockout tournament with a number of players equal to a power of 

two. He introduced the notion of the “equal gap seeding”, i.e. a “unique seeding that, under the 

linear domain assumption, maximizes the probability that the strongest participant is the 

winner, the strongest two participants are the finalists, the strongest four participants are the 

quarterfinalists, etc.” (Karpov, 2016, p. 706) 
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In all the aforementioned articles, only classic type tournaments were studied. It was Maurer 

(1975) who first started to consider different formats. 

The term "classic" is used here to describe a tournament that has 𝑝 players and a balanced 

structure. As a reminder, the balanced structure can be defined as a structure, including p players 

with 𝑝 =  2𝑅 + k where R is the total number of rounds and k additional players, for which 

there are k matches in the preliminary round, followed by the balanced (i.e., symmetric) 

structure for the remaining 2𝑅 players. The 𝑝 −  (2 ∗ 𝑘) players that did not play during the 

first round have what is called “bye”, as illustrated in Figure 10.  

 

 

Figure 10: Six-player tournament structure with two “byes” 

 

A multitude of other structures can be designed in order to build a tournament for p players, 

some being more eccentric than others. The generation of all these different structures is 

explained in Chapter 3. 

As previously stated, the Adler et al. (2017) paper on random knockout tournaments is of 

paramount interest to this study. Hence, a large part of this section is dedicated to an analysis 

of this article. The authors proved that, in a random knockout tournament, in the special case 

where 𝑣1 >  𝑣2 =  𝑣3  = . . . =  𝑣𝑝, it is the balanced format that maximizes the strongest 

player’s chance of winning. This case was first studied by Maurer (1975), who proved, but in a 

different way, that for this particular case, the balanced structure is, indeed, optimal.  

Adler et al. (2017) also demonstrated, by analogy, that totally unbalanced structure—that is, the 

one match per round format—minimizes the strongest player’s chances of winning. Moreover, 

the authors gave both an upper and a lower bound for each participant, the upper bound giving 
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the probability that the weakest player will win the tournament, and the lower bound giving the 

probability that the strongest player will win. 

Another well-used article was produced by Bengtson (2010), who gave more explanation on 

seeding and its impact on the odds of winning a knockout tournament. Like Adler et al. (2017), 

Bengtson used the Bradley-Terry model that returns the probability of participant i beating 

participant j, noted as 𝑉𝑖𝑗  in this equation 

𝑉𝑖𝑗  =  
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑖)

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑖)  +  𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑗)
 

 

From that rule, the preference matrix P, a matrix containing the probability that a player beats 

another, can be derived. Applied to an eight-player tournament, this is denoted thus: 

P = [
𝑉11 ⋯ 𝑉18

⋮ ⋱ ⋮
𝑉81 ⋯ 𝑉88

] 

David (1959) showed that this preference matrix P follows the strong stochastic transitivity. 

This results in ∀i j k,  

if 𝑉𝑖𝑗  ≥ 0.5 and 𝑉𝑗𝑘≥ 0.5 then 𝑉𝑖𝑘≥ 0.5 

This means that if the probability of participant i beating participant j is greater than or equal to 

0.5, and the probability of participant j beating participant k also greater than or equal to 0.5, 

the probability of participant i beating participant k, by the principle of transitivity, will 

similarly be greater than or equal to 0.5. 

This paper only considers the strong stochastic transitivity matrix, and presumes that the players 

are ranked in the order 𝑝1, 𝑝2 , . . . , 𝑝𝑛 from the strongest to the weakest (Hwang, 1982). 

Consequently, as the matrix P follows the strong stochastic transitivity, players can be ranked 

according to their strengths, which will be useful later when calculating each player’s 

probability of winning. Player 𝑝𝑖 will be ranked above player 𝑝𝑗, indicating that player i is 

stronger than player j if 𝑝𝑖  has a better chance of winning against 𝑝𝑗.Moreover, Bengtson used 

the probability that i win the round r as 

𝑊𝑖𝑟  = 𝑊𝑖,𝑟−1 [∑ 𝑃𝑖𝑘𝑊𝑘,𝑟−1
𝑢
𝑘=𝑣 ] 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖,0 =  1 𝑎𝑛𝑑 𝑟 > 0  

with 
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𝑣 =  𝑆(𝑖, 𝑟)  =  1 +  2𝑟−1  +  2𝑟−1  ⌊
𝑖 − 1

2𝑟
⌋  −  2𝑟−1  ⌊

𝑖 − 1

2𝑟−1
⌋ 

and 𝑢 =  𝑣 + 2𝑟−1 − 1 

 

In the above formula, u and v are used to represent the upper and lower limit of the possible 

opponents of i. These limits indicate all possible opponents of a player i in a round r. 

For example, in an eight-player tournament with three rounds (R=3), as shown in Figure 10, 

during the first round, the player located in the first leaf can only meet the player of the second 

leaf. In the second round, they could meet either the player located on the 3rd or the 4th leaf. 

Finally, in the third round, they could meet either the player located on the 5th, 6th, 7th, or 8th 

leaf. 

Thus, for the player located in leaf 1:  

• S(1,1) = 2 as v = 2 and u = 2 

• S(1,2) = 3,4 as v = 3 and u = 4 

• S(1,3) = 5,6,7,8 as v = 5 and u = 8 

 

 

Figure 11: Tournament bracket with eight leaves 

 

Using the same example, 𝑊11 is the probability that player 1 wins round 1 or the probability 

that player 1 beat player 2. 𝑊12  is the probability that player 1 wins round 2 or the probability 

that player 1 wins round 1 and beats player 3 or player 4.  
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These formulas, first introduced by Edwards (1991) in his doctoral thesis about knockout 

tournaments, allow the computation of the probabilities that a player has to win each match. By 

taking the probability of winning the last match, i.e. the match in round R, the probability of 

winning the tournament is obtained.  
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Chapter 3: Theoretical Framework and Development 

 

 

3.1 BINARY TREES  

 
3.1.1 Preliminary theory 

 

Before investigating the thesis topic further, definitions and additional explanations of the graph 

theory and the theory of trees are required. This study uses perfect binary trees with n external 

nodes as a representation of a p players tournament structure.  

 

i) Graph Theory  

The theory presented in this section is taken from the lecture notes on “Graph theory” by T. 

Harju from the Department of Mathematics at the University of Turku (Harju, 2012). 

Let V be a finite set, and denote by 

E(V) = {{u, v} | u, v ∈ V, u = v} 

 

Definition 2. A pair G = (V, E) with E ⊆ E(V) is called a graph (on V). The elements of V are 

the vertices of G, and the elements of E are the edges of G. The vertex set of a graph G is 

denoted by VG and its edge set is denoted by EG. Therefore G = (VG, EG). 

 

ii) Theory of Trees  

Unless specifically mentioned, the theory presented in this section is taken from the lecture 

notes on “Advanced computation” by P. Geurts from the Montefiore Institute at the University 

of Liège (Geurts, 2018). 
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Definition 3. A tree2 T(N,E) is a connected acyclic graph where 

o N is a set of nodes  

o E ⊂ N x N is a set of edges 

with the following properties:  

o T is connected and acyclic, i.e., all the nodes are connected and there is no cycle 

within the tree.  

o If T is not empty, there exists a distinguished node called the root node. This root is 

unique. 

o For each edge (𝑛1, 𝑛2) in E, if 𝑛1 is on the unique path from the root to 𝑛2, then 𝑛1 is 

called the parent of 𝑛2, and 𝑛2 is called a child of 𝑛1. 

• The root node of T does not have a parent 

• The other nodes of T have only one parent node 

o The path is a sequence of nodes 𝑛1, 𝑛2, . . . , 𝑛𝑁 such as for all i ∈ [1, 𝑁 − 1], (𝑛𝑖, 𝑛𝑖+1) 

is an edge of the tree.  

 

Figure 12: A rooted tree with nine nodes 

 

 

There is also some additional and specific terminology related to theory of trees:  

o If 𝑛1 is the parent node of 𝑛2, 𝑛2 is the child of 𝑛1. 

o Two nodes 𝑛1 𝑎𝑛𝑑 𝑛2 having the same parent node will be siblings. 

o A node having at least one child will be considered as an internal node. 

o An external node, i.e., a non-internal node, is a leaf.  

 
2 In graph theory, a rooted tree 
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o The height of a node is the number of edges of the longer path from this node to a 

leaf. The height of the tree is the height of its root.  

o The depth of a node is the number of edges on the path to reach the tree root.  

 

Definition 4. A binary tree is a tree having the following property: 

o Each of its nodes has no more than two children.  

 

 

Figure 13: A binary tree with four nodes 

 

From Figure 13, the following point can be added: 

o Each child is either a left or a right child.  

 

Definition 5.  A full binary tree is a binary tree in which every external node has exactly two 

children.  

 

Figure 14: A binary tree with two internal nodes and three external nodes 
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Definition 6. A perfect binary tree is a full binary tree in which all the leaves have the same 

depth.  

 

Figure 15: A perfect binary tree with three internal nodes and four external nodes 

 

 

A full binary tree has these properties:  

o The number of internal nodes, n, is equal to 
𝑁 − 1

2
 , where N is the total number of 

nodes.  

o The number of external nodes is equal to the number of internal nodes plus 1. 

o The number of nodes at the depth i is smaller than or equal to 2𝑖.  

o The height h of the tree is smaller than or equal to the number of internal nodes.  

 

Figure 16 shows the distinction between a full binary tree and a complete binary tree, both 

with four external nodes. These concepts are essential to the next sections, which deals with 

different tournament structures. 

 

Figure 16: Full binary tree vs complete binary tree with four external nodes 
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Definition 7.  A labeled tree is a tree in which each node is assigned a unique number from 1 

to |N| (Weisstein, Labeled Tree, n.d.). 

 

In order to distinguish two labeled trees, the way in which the nodes are labeled is key. The 

mathematician Cayley (1889) was one of the first to discuss the mathematical theory of trees, 

and, in his paper "A theorem on trees", he described the number of different rooted labeled 

trees. He concluded that the number of trees on n labeled nodes is 𝑛𝑛−2. Indeed, as can be seen 

in Figure 17, those three trees, although similar in structure, are different in terms of labeling. 

 

Figure 17: Labeled tree with three nodes 

 

Definition 8. A subtree is a tree which is a child of a node. 

 

In Figure 18, the section circled in red, B, represents the subtree of the binary tree A.  

 

Figure 18: A binary tree and its subtree 

 

Definition 9. An ordered tree is a tree in which the order of the subtrees is significant 

(Weisstein, Ordered Tree, n.d.). 
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More precisely, a full binary tree is ordered if the children of each internal node are labeled left 

and right, respectively. Hence, two ordered trees are considered as distinct if the children of at 

least one node are labeled differently.  

Several authors have been investigating the number of different full ordered binary trees and, 

among them, Stanley (1997), in his book dealing with combinatorial problems, described the 

relationship between the Catalan number and many contexts, including:  

o The number of different ways to correctly match n pairs of parentheses:  

((()))     ()(())     ()()()     (())()     (()()) 

 

o The different ways in which a product of n different ordered factors can be calculated 

by pairs: 

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd)) 

 

o The total number of full ordered binary trees.  

 

This study will only focus on the latest examples. Indeed, the number of full binary ordered 

trees with n internal nodes is given by the nth  Catalan number and can be computed with this 

formula:   

𝐶𝑛 =  
1

𝑛 +  1
(

2 𝑛 

𝑛 
)  =  

(2𝑛)!

(𝑛 + 1)!  𝑛!
 

 

For example, for n = 3, 𝐶3 =  5, which means that five distinct full ordered binary trees with 

three internal nodes can be identified (see Figure 19).  

 

 

Figure 19: All possible full ordered binary tree with three internal nodes 
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Using the previously defined terms, it can be stated that the two left trees and the two right trees 

have the same format, 1-1-1. Moreover, those four trees are isomorphic. 

 

Definition 10. Two graphs (N,E) and (N',E') are isomorphic if |N|=|N'| and if the nodes of N 

and N' can be relabeled with the elements of {1,2,...,|N|} in such a way that the resulting labeled 

graphs become identical (same set of nodes, same set of edges).  

 

That is, (N,E) and (N',E') are isomorphic if they are identical apart from the label of their nodes. 

In terms of sports tournaments, it is irrelevant whether a leaf of the tree is pointing to the right 

or to the left. This is explained in more depth in section 3.1.2. 

The number of non-isomorphic trees with three internal nodes can be reduced to two (see Figure 

20), and these can be termed unordered binary trees. 

 

Figure 20: Unlabeled tree with three internal nodes 

 

 

“Unordered” simply means that the order is insignificant. As can be seen in Figure 21, both 

trees are equivalent if they are considered as unordered trees. Indeed, they differ only in the 

respective ordering of their subtrees. However, these trees would have been seen as distinct if 

they were considered as ordered trees.  
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Figure 21: Equivalence in unordered trees 

 

 

3.1.2 Tournaments as Binary Trees  

 

The relationship between a knockout tournament and graph theory is easily noticeable, as can 

be seen in Figure 22, a 90-degree rotation to the right of a binary tree will result in a tournament 

representation. Each of the p players is first placed on one on the n+1 external nodes. Players 

with the same father node—siblings—compete against each other; the losing player is 

eliminated and thus removed from the tree, while the winning player advances to the top. The 

winner will be the player who succeeds in climbing up to the root of the tree.  

A tournament structure can, therefore, be built using a full binary tree, but with some small 

modifications when the number of players is not a power of two. This is explained more in 

detail in the section 1.6.1.  

Binary tree knowledge has thus allowed several authors to manipulate the structures and to 

obtain different probabilities in the context of sports tournaments. Therefore, for the sake of 

simplicity, in this paper, the term “binary trees” means “full binary trees”. 

 

Figure 22: From a binary tree to a tournament bracket 
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As previously stated, Maurer (1975) was the first to analyze non-classical tournaments by 

considering different structures. Indeed, he proved that, for a random structured format, in the 

particular case where  𝑣1  >  𝑣2  =  𝑣3  = . . . =  𝑣𝑝, meaning that one player has a higher 

strength while all the others have the same strength, it is the balanced format that maximizes 

the stronger player’s probability of winning the tournament. To prove it, he used the fact that a 

random format for p players is a combination of a random format of fewer players. This 

proposal is used in section 3.2.2, in the design of the algorithm used in this study, using a 

recursive function. 

Moreover, in his paper, Maurer (1975) counted the number of different tournament structures 

for p players using this formula: 

𝐴𝑝  =  ∑ 𝐴𝑖 ∗ (𝐴𝑝−𝑖  +  𝛿𝑖,𝑝−𝑖)

𝑝−1

𝑖 = 1

 

with 𝐴1 =  1  

where 𝛿𝑖,𝑗 denotes the Kronecker’s delta, a two-variables function that returns 1 if i=j and 0 

otherwise.  

Table 1 illustrates how this works for a tournament with up to 12 players. 

p (number of players) 𝑨𝒑 

2 1 

3 1 

4 2 

5 3 

6 6 

7 11 

8 23 

9 46 

10 98 

11 207 

12 451 

Table 1: Number of tournament structures with up to 12 players 
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Furthermore, Maurer (1975) added an additional formula that, within all the possible structures, 

allows the balanced ones— 𝐵𝑝—to be obtained:  

𝐵𝑝  =  ∑ 𝐵𝑖 ∗ (𝐵𝑝−𝑖  +  𝛿𝑖,𝑝−𝑖)

𝑢

𝑖 = 𝑙

 

with 𝐵1 =  1  

where for  

p = 2𝑅  +  𝑘  with 0 ≤ 𝑘 < 2𝑅:  

▪ l = max (2𝑅−1, k) 

▪ u = min (2𝑅−1 + 𝑘, 2𝑅) 

The outcome is shown in Table 2.  

p 1 2 3 4 5 6 7 8 9 10 11 12 

𝑩𝒑 1 1 1 1 1 2 1 1 1 3 3 5 

 

Table 2: The numbers of balanced structures for tournaments involving up to 12 players 

 

In a similar manner, Chung and Hwang (1978) represented a knockout tournament with p 

players as a full binary tree with n+1 external nodes. They conjectured that, in the case of any 

knockout tournament with an organized structure where all the participants are equally likely 

to be placed in the bracket—i.e., a random knockout tournament—the stronger player has a 

higher probability of winning the competition. Indeed, the authors assumed that if 𝑉𝑖𝑗  > 
1

2
 , then 

the probability that i wins the tournament will be higher than or equal to the probability that j 

wins the tournament.  

However, this was later contradicted by Israel (1981), who proved that for certain types of 

structures, the strongest player does not necessarily have the highest likelihood of success. The 

author showed, by a counterexample with a random single elimination of 17 players, that a 

player with a lower strength may have a higher winning probability than their stronger 

opponents.  

Later, in his doctoral thesis “The combinatorial theory of single-elimination tournaments”, 

Edwards (1991) took up many of the principles previously cited in order to make a complete 
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and thorough study of knockout tournaments. Like Maurer, he associated the notion of a 

knockout tournament with an unordered binary tree. Actually, as can be seen in Figure 19, the 

two trees on the left are isomorphic to the two trees on the right. This distinction allows a 

significant reduction in the number of different trees.  

In the same way that the number of ordered binary trees with n internal nodes3 is represented 

by the nth Catalan number, Etherington and Wedderburn found the total number of unordered 

binary trees4 with their so-called sequences of Wedderburn–Etherington numbers. This 

sequence can be obtained with:  

𝑈2𝑛−1  =  ∑ 𝑈𝑖 𝑈2𝑛−𝑖−1
𝑛−1
𝑖 = 1   for even numbers 

𝑈2𝑛  =  
𝑈𝑛 (𝑈𝑛+1) 

2
 +  ∑ 𝑈𝑖 𝑈2𝑛−𝑖

𝑛−1
𝑖 = 1   for odd numbers  

with 𝑈1 =  1 

 

Table 3 shows the difference between the number of ordered (𝐶𝑛) and unordered (𝑈𝑛) binary 

trees with n internal nodes. 

n (=internal nodes) 𝐶𝑛 𝑈𝑛 

2 2 1 

3 5 2 

4 14 3 

5 42 6 

6 132 11 

7 429 23 

8 1430 46 

9 4832 86 

10 16796 207 

11 58786 451 

12 208012 983 

 

Table 3: The numbers of ordered and unordered binary trees up to 12 internal nodes 

 
3 OEIS: A000108 
4 OEIS:  A001190 

https://oeis.org/A000108
https://oeis.org/A001190
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It can be seen that the right column values were previously obtained by Maurer, who defined 

them as the number of different possible structures of a knockout tournament with p players. 

As a reminder, p = n+1 with n the number of internal nodes if the tournament is seen in terms 

of a binary tree.  

The main advantage of obtaining unordered trees is therefore to reduce the number of structures 

possibilities. 

 

3.2 TOURNAMENT STRUCTURE 

 

3.2.1 Unlabeled tree as a tournament structure  

 

One objective of this study is to be able to generate all possible tournament structures with p 

players—that is, all full unordered binary trees with n+1 external nodes. To do so, full and 

perfect binary trees with 2𝑅 leaves are used, and players planted into trees’ leaves. 

When the number of players is a power of two, it is only necessary to place these p players on 

the n external nodes—the leaves—of the tree. When the number of players is not a power of 

two, the dummy player technique is used.  

This technique, initially used by Searls (1963) and later by Chung and Hwang (1978), Hwang 

(1982), and Edwards (1991), consists of adding dummy players—players with zero strengths—

in order to transform a full binary tree into a perfect binary tree. The number of dummy players, 

D, is computed by 2𝑅  −  𝑝 , with p being the total number of players and R the total number of 

rounds to be played and obtained by  

𝑅 =  ⌈𝑙𝑜𝑔2 𝑝⌉ 

D = 2𝑅  −  𝑝 

 

For example, to build a tournament with six players, the following applies: 𝑅 =  ⌈𝑙𝑜𝑔2 𝑝⌉ = 

⌈𝑙𝑜𝑔2 6⌉ = 3. It is therefore necessary to add 2𝑅  −  𝑝  = 23 –  6 = 2 dummy players. Those 

dummy players can be placed in several places in the tournament bracket. Figure 23 shows a 

possible example where the dummy players are represented in red. 
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Figure 23: Example of a six-players structure with two dummy players 

 

The outcome is therefore similar to that shown in Figure 9, where two "byes" were inserted. 

Indeed, inserting the two dummy players, with their zero strengths, will ensure that their 

opponent wins the match. Using them also allows the use of a perfect binary tree structure, 

which makes the calculations easier. 

However, inserting players with a zero strength will have an impact on the preference matrix 

P. Indeed, the probability that player i beats player j is obtained by 

 

𝑉𝑖𝑗  =  
𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑖)

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑖)  +  𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑗)
 

 

For computing the probability that a dummy player beats another dummy player, as division by 

0 is not allowed, one will have to win with a probability of 1, and thus 1s and 0s have to be 

added in order to obtain a correct preference matrix. 

For instance, a tournament with three players, two real ones and one dummy, looks like this: 

 

𝑃 =  [ 

𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

 ] =  [ 
0.5 𝑃12 1
𝑃21 0.5 1
0 0 0.5

] 

 

Hence, the question that arises is where to place these dummy players in order to obtain all 

possible unlabeled binary trees and thus all possible structures for a tournament of p players.  
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3.2.1 Generation of Tournament Structure  

 

The generation of ordered binary trees has been explored in the literature many times. For 

example, Pallo (1986) introduced weight sequences—sequences of positive integers that 

characterize the binary tree—and used them in order to lexicographically generate binary trees. 

Lucas et al. (1993) presented a recursive algorithm which aimed to generate different binary 

trees by a single edge rotation.  

The literature on the generation of unordered binary trees is more limited; but Furnas (1984) 

presented several methods for randomly generating different types of trees and proposed a 

possible algorithm. Pallo (1989) introduced the canonical weight coding—a sequence of digits 

representing the number of leaves in the left (or right) subtree—to obtain a unique 

representation of a tree T. This work on canonical weight coding was later continued by Effantin 

(2004). In their papers, Pallo (1989) and Effantin (2004) both presented an iterative algorithm 

that formulated the next canonical weight coding based on the previous one.  

A third method, and the one that is used in this thesis, was suggested by Edwards (1991) who 

represented each tournament structure by a label. His method consists of giving a label—that 

is, a unique sequence of digits—representing each of the possible full unordered binary trees 

with n+1 external nodes. The p players of a tournament will be placed on each of the n+1 

external nodes of a perfect binary tree.  

 

This label is composed only of 2s, 1s, and 0s.  

o A “2” means that two “real” players, i.e. not dummy, are placed in the bracket  

o A “1” means that one real player faces a dummy player   

o A “0” means that two dummy players are placed in the bracket 

 

As an example, Figure 24 shows the sequence “2210” for a five-player game with the dummy 

players in red.  
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Figure 24: Tournament structure 2210 

 

As each digit of the label corresponds to a match, the length of the label depends on the number 

of rounds within the tournament structure. Indeed, depending on the structure, there may be 

between ⌈𝑙𝑜𝑔2 𝑝⌉ and p-1 rounds.  

If Rmin is the minimum number of rounds and Rmax is the maximum number of rounds for a 

tournament with p players, the following applies:  

o Rmin = ⌈𝑙𝑜𝑔2 𝑝⌉ 

o Rmax= p-1 

There will therefore be several labels of length 2𝑥, where 𝑅𝑚𝑖𝑛 ≤  𝑥 ≤  𝑅𝑚𝑎𝑥 and x ∈  𝑁. 

As an example, for a five-player tournament, Rmin = 2 and Rmax=3, leading to two possible 

label lengths: 4 and 8 (see Figure 25).  
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Figure 25: The different labels and related structures for five players 

 

In order to identify these different structures, a set of rules, given by Edwards in Table 4, needs 

to be respected. In section 3.2.3, based on these rules, an algorithm giving all the possible 

sequences of tournament structures is presented. 

 

 

Table 4: Rules for labeling tournament structures with R rounds and t teams. Reprinted 

from The Combinatorial Theory of Single-Elimination Tournaments, by Christopher 

Edwards (1991) 
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3.2.2 Tournament Structure Algorithm  

 

In order to facilitate the understanding of the method used, this subsection outlines the main 

principles, and details each of them. The main principles are as follows: 

• Generate all the full unordered binary trees sequences using Edwards’s method  

• Randomly assign strengths to players and randomly place them in the bracket 

• Compute the probability of each player winning each round  

• Deduce which structures minimize or maximize the strongest player’s probability of 

winning 

 

3.2.2.1 Full Unordered binary trees sequences 

The method devised by Edwards (1991) is used to obtain all the possible labels representing the 

full unordered binary trees. However, before obtaining the final tournament structure labels, 

several steps are necessary.  

The first step is to randomly generate labels containing the numbers 2, 1, and 0. Once all the 

possible labels sequences are obtained, they need to be sorted, based on Edwards’ labeling rules, 

in order to delete the labels that were not allowed.  

The outcome returns all possible tournament structures with p players (see Figure 26). The 

number of different structures for p players follows the Wedderburn–Etherington sequence. 

As written in the first point of Table 1, the length of a label is  2𝑅−1, with R the number of 

rounds. Because unclassical structure is being analyzed, the number of rounds will vary 

between Rmin and Rmax.  

o Rmin = ⌈𝑙𝑜𝑔2 𝑝⌉ 

o Rmax= p-1 

As a label contains only 2s, 1s, and 0s, and as all the possibilities are required, it is necessary 

to check that, for all R, the number of possible labels is equal to 32𝑅
 with 𝑅𝑚𝑖𝑛 ≤  𝑅 ≤

 𝑅𝑚𝑎𝑥. 
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Hence, the higher the number of rounds, the longer the label. As an example, with six players, 

the maximal number of rounds is five, and the maximal length of the label is therefore 25−1  =

 16. This produces 316 = 43 054 721 possible labels, which is computationally difficult to 

generate. 

This is why, for a number of rounds greater than two, a recursive function is set up.  

 

 

 

Figure 26: Tournament structure for up to seven players. Reprinted from The 

Combinatorial Theory of Single-Elimination Tournaments, by Christopher Edwards (1991) 

 

 



 

41 
 

i) Recursive function trick 

As previously stated, the algorithm randomly generates sequences of numbers between 0 and 

2. Consequently, there is an exponential number of possibilities when the number of rounds, 

and thus the length of the sequence, increases. To bypass this difficulty, a recursive function 

was implemented. 

An analysis of the structure of a tournament shows that the left half of the label, representing 

the top table of a bracket, is a substructure of a label with fewer players.    

 

Figure 27: Labels for tournaments with up to seven players 

 

As an example, Figure 27 shows the different labels for tournaments involving up to seven 

players. It can be observed that for the sequences of seven players and five rounds (i.e. length 

16), the left part of the label, highlighted in yellow, comes from the eight-length labels of fewer 

players. 

Hence, in the algorithm, from a number of rounds greater than two, the recursive function 

“use_previous_left” is used to generate the left half of the label. 

The rules used in the function use_previous_left(p,r), with p the number of players and r the 

number of rounds with 3 <  𝑟 are as follows: for any p, store, in a list, the final authorized 

labels of r-1. 
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In the same way, to generate the right part of the label, the function “use_previous_right” is 

used. 

The rules used in the function use_previous_right(p,r), with p the number of players and r the 

number of rounds with 3 <  𝑟 are as follows: 

1) For any p, store in a list the right half of the final authorized labels of r-1 and add one 

label full of 0s. 

2) Concatenate the right halves together.  

3) Perform skimming, based on Edwards’s rules. 

The function “use_previous_full” will concatenate the left and the rights part to obtain full 

labels and, after the skimming with Edwards’ rule, returns the accepted labels for p players and 

r rounds.  

Taking the example of Figure 27, the situation for seven players and five rounds is as follows:  

• use_previous_left(7,5) returns: 

1) The accepted full labels for four rounds 

o [21101000] 

o [21101010] 

o [21111000] 

o [22101000] 

• use_previous_right(7,5) returns:  

1) The accepted right halves labels for four rounds and the label full of 0s 

o [1000] 

o [1010] 

o [1110] 

o [0000] 

2) After the concatenation between each one, and skimming by Edwards’ rules 

o [10001000] 
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o [10101000] 

o [10000000] 

• use_previous_full(7,5)  

✓ [2110100010001000] 

✓ [2110101010000000] 

✓ [2111100010000000] 

✓ [2210100010000000] 

 

Using the two recursive functions, use_previous_left(p,r) and use_previous_right(p,r), enables 

larger length labels to be generated. Indeed, without it, the algorithm struggles in generating 

labels with a length greater than 8. With those improvements, labels up to a length of 256 can 

easily be generated.  

 

ii) Other useful methods 

In order to obtain the different possible structures, Edwards’ rules were introduced in an 

algorithm. However, the outcome was not specific enough, and the total number of structures 

did not follow the Wedderburn–Etherington sequences. Other methods were therefore used to 

obtain the intended result.  

▪ In the fifth rule of Table 4, Edwards (1991) states “The sum of the digits in the first half 

of a label is greater than or equal to the sum of the digits in the second half of a label. 

This rule also applies to each quarter, eighth, etc., that is, the sum of the digits in the 

first quarter of a label is greater than or equal to the sum of the digits in the second 

quarter of a label and the sum of the digits in the third quarter of a label is greater than 

the sum of the digits in the fourth quarter of a label.” 

It will be specified that the digits in the third quarter of a label must be greater than or 

equal to the sum of the digits in the fourth quarter of a label. As an example, for the 

label 21101010, the sum of the digits in the third quarter is equal to the sum of the digits 

in the fourth quarter.  
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▪ An additional rule, required in order to avoid redundant structures, specifies that the 

fourth quarter of a label cannot be exclusively composed of 0s. As an example, without 

that rule, a seven-player tournament with five rounds produces these labels:  

o 21101000010001000 

o 21101000010100000 

In both cases, the left halves are exactly the same. In the right halves, even though the 

real players are not located in the same leaves, the outcome will be the same. Indeed, 

these two right halves labels, although different in the tournament format (0-0-0-1 for 

first label vs 0-0-1-0 for the second), represent the same structure.  

Figure 28 shows the right halves of these two labels.  

 

Figure 28: Label “21101000010001000” and “21101000010100000” 

 

The label “21101000010001000” is preferred, as it does not involve a quarter composed 

of only 0’s.  

The only exception to this rule will be in the case of a totally unbalanced structure. In 

that case, as illustrated in Figure 29, the fourth quarter is fully filled with 0s but is 

nevertheless accepted.  



 

45 
 

 

Figure 29: Totally unbalanced structure “2110100010000000” 

 

In order to verify that we have the right number of structures for a p players tournament 

with r rounds, we use, once again, the formulas provided by Edwards (1991): 

𝑁(𝑝, 𝑟)  =  ∑[𝑁(𝑝 − 𝑖, 𝑟 − 1)] [𝑁(𝑖, 𝑟 − 1) +  𝛿𝑝−𝑖,𝑖] [1 −
𝛿𝑝−𝑖,𝑖

2
]

𝑢

𝑖 = 𝑙

 

𝑤𝑖𝑡ℎ 𝑁(𝑝, 𝑟)  =  1 𝑖𝑓 𝑝 ≤  3 

 

Therefore, for a tournament with p players (or t teams) and at most r rounds, we have: 

 

Table 5: The number of tournament structures with t teams and at most r rounds. 

Reprinted from The combinatorial theory of single-elimination tournaments, by 

Christopher Edwards (1991) 
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In order to obtain the number of different structures for exactly r rounds, just subtract 

the left adjacent columns. The outcome is shown at Table 6.  

 

Table 6: The number of tournament structures with t teams and exactly r rounds. 

Reprinted from the combinatorial theory of single-elimination tournaments, by 

Christopher Edwards (1991) 

For confirmation, the sum of each line represents the Wedderburn–Etherington 

sequence. 

 

3.2.2.2 Assignment of strengths and placement in the bracket  

Once all the possible structures have been obtained, the players can be placed in the 

bracket. 

As previously stated, this study used a perfect binary tree—that is, a binary tree in which 

all the external nodes are at the same level, to represent each possible structure. As 

mentioned in section 3.2.2, dummy players are added to fulfil a complete binary tree 

into a perfect binary tree (see Figure 23). Hence, a tournament of R rounds has p, the 

number of real players, and D, the number of dummy players, with the relation:  

2𝑅  =  𝑝 +  𝐷 

Each player of this set has to be assigned a strength, and these will be stored in a vector 

of size 2𝑅. Assigning a strength allow players to be ranked to determine the different 

odds of victory.  



 

47 
 

In this study, it was arbitrarily decided to represent these strengths by a random integer 

between 0 and 20, 0 being the lowest possible strength and 20 being the highest. All 

dummy players received a zero strength. 

To know which players of the set will be dummy players, a function is used that 

translates the structure label, composed of digits 2, 1, and 0, into a sequence composed 

only of 1 and 0, which represents each external node of the perfect binary tree. An 

external node, represented by the digit 1, contains a real player, while those represented 

by the digit 0 contain dummy players.  

This sequence was then multiplied by the vector containing the players' strengths. Thus, 

a dummy player has a strength equal to zero. To make this clearer, here is an example. 

2210 is a possible five-player tournament structure. If it is translated in terms of external 

nodes, it produces the sequence 11111000, as shown in Figure 30, where P means that 

a real player is assign to that node, and D, in red, represents a dummy player.  

 

Figure 30: Representation of the “11111000” external nodes sequence 

 

 

When this sequence is multiplied by a random strength vector, as shown in Figure 31, 

it produces the final player strength.  
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Figure 31: Method to obtain the final player strengths vector 

 

This final player strengths vector represents one possible draw for a range of strengths. 

However, there is a multitude of different possible draws, which is why permutations 

will be done within the real players—that is, non-zero strengths (see Figure 32).  

 

Figure 32: Permutations within final player strengths vector 

 

All these final strengths vectors represent the possible draws.  
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3.2.2.3 Computation of the probabilities  

As explained in Chapter 2, the probability 𝑊𝑖𝑟—the probability that player i wins the 

round r is used to obtain 𝑊𝑖𝑅  —the probability that player i wins the last round, R, and 

thus, the tournament. 

𝑊𝑖𝑟  = 𝑊𝑖,𝑟−1 [∑ 𝑃𝑖𝑘𝑊𝑘,𝑟−1
𝑢
𝑘=𝑣 ] 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖,0 =  1 𝑎𝑛𝑑 𝑟 > 0  

The first step is therefore to compute the strongest player’s average probability of 

winning for all the possible draws of given strengths. The second step is to calculate it 

for a multitude of different strengths. Finally, the outcome is the strongest player’s 

average probability of winning for a given structure.  

 

3.2.2.4 Optimal structure 

For each possible tournament structure of p players, the probability that a player i wins the 

tournament can be computed. Therefore, by taking the strongest player’s probability of 

winning in each structure and by choosing the maximal one, the optimal type of structure 

can be deduced. In the same way, choosing the minimal probability reveals the structure 

that minimizes the strongest player’s probability of winning. 

 

 

3.3 RESULTS  

 

3.3.1 All possible structures algorithm  

 

i) Strongest player’s probability 

This section presents the results obtained via the algorithm for tournaments of up to 12 

players. As previously mentioned, the draw can have a significant impact on the outcome 

of a tournament. For example, if the algorithm was run only once, and if the random draw 

resulted in the strongest player facing the second-strongest player in the first match of the 

first round, the probability would have been biased by an outstanding result. Therefore, in 
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order to produce valuable and meaningful results, 100 permutations have been done into 

the final strengths vector (see Figure 32) to produce different draws with the same given 

strengths and the algorithm was run over 1000 iterations. 

As can be seen in Figure 33, which shows the distribution of the average strongest player’s 

probability of winning for the structure 2111, the results are stable, with a slight standard 

deviation (see Table 7). 

Standard deviation (s) 0.002 

Table 7: Standard deviation for 2111 structure 

 

Figure 33: Probability distribution for 2111 structure 

 

In the tables that follow, the left column represents the possible structures, and the right 

column represents the average strongest player’s probability of winning. The lines 

corresponding to balanced structures are highlighted in grey. 

 

▪ Two players  

2 0.677 

Table 8: Strongest player’s probability of winning in a two-player tournament 
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▪ Three players  

21 0.518 

Table 9: Strongest player’s probability of winning in a three-player tournament 

 

▪ Four players  

22 0.440 

2110 0.412 

Table 10: Strongest player’s probability of winning in a five-player tournament 

 

▪ Five players  

2111 0.372 

2210 0.355 

21101000 0.344 

Table 11: Strongest player’s probability of winning in a five-player tournament 

 

▪ Six players  

2121 0.329 

2211 0.326 

22101000 0.296 

21111000 0.306 

21101010 0.315 

2110100010000000 0.289 

Table 12: Strongest player’s probability of winning in a six-player tournament 

 

▪ Seven players  

2221 0.294 

22111000 0.266 

21211000 0.270 

21111010 0.283 

21101110 0.285 
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22101010 0.275 

2111100010000000 0.255 

2110101010000000 0.260 

2210100010000000 0.273 

2110100010001000 0.251 

21101000100000001000000000000000 0.249 

Table 13: Strongest player’s probability of winning in a seven-player tournament 

 

As revealed in Tables 8 to 13, the number of tournament structures and the length of the labels 

increases quickly. For more than eight rounds (i.e., label length 12) the probability calculation 

becomes computationally expensive. However, as can be observed, as the length of the label 

increases, the strongest player’s probability of winning decreases. It can therefore be assumed 

that by only computing the “short” labels, the optimal one will become apparent.  

Without showing all the different labels, the optimal structures for tournaments with eight 

players or more are as follows: 

 

▪ Eight players  

2222 0.271 

21101111 0.265 

21111110 0.259 

21102110 0.259 

21211010 0.253 

22211000 0.239 

22111010 0.251 

22101110 0.255 

Table 14: Strongest player’s probability of winning in an eight-player tournament 

 

▪ Nine players 

21112110 0.240 

21111111 0.243 
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22102110 0.236 

22101111 0.240 

21211110 0.237 

22111110 0.235 

22211010 0.229 

22221000 0.221 

Table 15: Strongest player’s probability of winning in a nine-player tournament 

 

▪ Ten players 

21112111 0.226 

22102210 0.219 

22102111 0.222 

21212110 0.220 

21211111 0.223 

22112110 0.219 

22111111 0.222 

22211110 0.216 

22221010 0.211 

Table 16: Strongest player’s probability of winning in a ten-player tournament 

 

▪ Eleven players 

21212111 0.209 

21212210 0.207 

22112111 0.208 

22112210 0.206 

22212110 0.203 

22211111 0.205 

22221110 0.201 

Table 17: Strongest player’s probability of winning in an eleven-player tournament 
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▪ Twelve players 

21212121 0.199 

22112211 0.196 

22112121 0.197 

22212210 0.193 

22212111 0.194 

22222110 0.190 

22221111 0.192 

Table 18: Strongest player’s probability of winning in a twelve-player tournament 

 

As can be observed, for each tournament, it is the balanced structure that gives the highest 

winning probability for the strongest player. Indeed, for a tournament with p = 2𝑅  +  𝑘  players, 

the structure owing k matches in the first round followed by 2𝑅 in the second round maximizes 

the strongest player’s probability of winning the tournament.  

However, as previously computed in Table 2, using Maurer’s formula 𝐵𝑝, for some 

tournaments, different balanced structures can appear. For instance, when the number of players 

is equal to six, there are two possible balanced structures (see Figure 34).  

 

 

Figure 34: Possible balanced structure for a six-player tournament 

 

In the left structure of Figure 34, the two first round matches are both in the upper part of the 

structure, while in the right structure, the two first round matches are separated, one in the upper 

part and one in the lower part of the structure.  
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As a result of the computed probabilities, it can be said that the right-hand structure gives a 

slightly higher probability of winning. This conclusion, although formulated differently, was 

also reached by Adler et al. (2017). Indeed, in their remark 6, they stated “In the case of general 

𝑣𝑖, the format that calls for n/2 matches when an even number n of players remain is not optimal 

for the best player” (Adler et al., 2017, p. 7). The format they were talking about, for a six-

player tournament, with three matches in the first round, is represented in Figure 35. As can be 

observed, the outcome is exactly the same as that illustrated in the left hand-side structure of 

Figure 34—whether the bottom bracket match is played in the first round or the second round, 

does not affect the players' probabilities of winning. 

 

Figure 35: 3-1-1 format 

 

Therefore, for a tournament with p = 2𝑅  +  𝑘  players, in order to obtain the optimal structure 

for the strongest player, the k matches played in the first round should be equally set out in the 

structure. If k is even, k/2 matches should be placed in the upper substructure and k/2 matches 

in the lower substructures. When k is odd, ⌊𝑘/2⌋ + 1 matches should be set out in the upper 

substructures and ⌊𝑘/2⌋ matches in the lower substructures, or conversely.  

In parallel, by taking the same tables, it can be observed that the strongest player’s probability 

of losing is increased with the totally unbalanced structure (i.e., only one match per round is 

played), which was also conjectured by Adler et al. (2017). 

 

ii) Weakest player’s probability 

Using the same method as was applied to the strongest player, the corresponding analysis can 

be done with the weakest player.  
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As demonstrated by Adler et al. (2017) for a particular case where 𝑣1  =  𝑣2  =  𝑣3  = . . . =

 𝑣𝑝−1  >  𝑣𝑝, where all players have the same strength except one, the weakest, who has a lower 

strength, the structure that maximizes the chances of victory for that player is the one where 

one match per round is played. The authors also proved that if 𝑝 =  2𝑅  +  𝑘, 1 ≤ 𝑘 ≤ 2𝑅, the 

structure that minimizes the weakest player's chances of winning is the one in which k matches 

are played in the first round and then all remaining players compete in each following round 

(Adler et al., 2017).  

As stated previously, the probability computation becomes more expensive as the number of 

rounds increases. Hence, another method of calculating the probability has been put in place, 

but only for totally unbalanced structures. In these structures, two players are first randomly 

chosen to play against each other in the first round, and the winner then faces another random 

player, and so on until there is only one player left. This technique ensures that no dummy 

players are added, because all players are chosen randomly, round by round. The probability 

calculation is therefore much faster. 

For general cases where players have different strengths, the following results are produced for 

tournaments with up to six players:  

▪ Two players  

2 0.381 

Table 19: Weakest player’s probability of winning in a two-player tournament 

 

▪ Three players  

21 0.145 

Table 20: Weakest player’s probability of winning in a three-player tournament 

 

▪ Four players  

22 0.0724 

2110 0.0811 

Table 21: Weakest player’s probability of winning in a four-player tournament 
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▪ Five players  

2111 0.0426 

2210 0.0519 

21101000 0.0551 

Table 22: Weakest player’s probability of winning in a five-player tournament 

 

▪ Six players  

2121 0.0251 

2211 0.0258 

22101000 0.0278 

21111000 0.0367 

21101010 0.0383 

2110100010000000 0.0397 

Table 23: Weakest player’s probability of winning in a six-player tournament 

 

The highest probability for each table is highlighted in grey and always corresponds to the 

totally unbalanced structure. In view of the results, we therefore support the conjecture of Adler 

et al. (2017). 

 

3.3.2 Optimal label algorithm  

 

In order to directly obtain the optimal label for the strongest player, one last algorithm was 

developed. This algorithm returns, for every p players, the optimal structure—the one that will 

maximize the chances of the strongest player to win a tournament. 

To do this, the same recursion principle as used in the previous algorithm was used.  

For a number of rounds inferior to 3, possible labels of length 2𝑅−1 with R=⌈𝑙𝑜𝑔2𝑝⌉ were 

generated. The only changes made were that the label could only contain 2s or 1s. Indeed, as 

only a limited number of dummy players are introduced, in order to achieve a perfect binary 

tree, the label will never contain 0. 

The 2s represent the pre-round matches, and the number of 2s in the optimal labels is therefore 

equal to k. This implies that the number of 1s will be equal to 2𝑅 – k:  
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Recall: p = 2𝑅  +  𝑘 , 0 ≤  𝑘 <  2𝑅 

The only difficulty, therefore, is in knowing where to place the 2s.  

By observation, it can be deduced that if the number of players is even, which also implies that 

k is null or even, the number of pre-round matches, i.e. 2s, must be distributed equally between 

the top and bottom table—that is, equally distributed between the left and right half of the label. 

On the other hand, when the number of players is odd, k is odd, and thus ⌊𝑘/2⌋ + 1 matches 

should be set out in the upper substructures (the left half of the label,) and ⌊𝑘/2⌋ matches in the 

lower substructures (the right half of the label.) 

When the number of round R is higher than or equal to 3, the same recursion principle as that 

used in the previous algorithm is used. Indeed, the left side of the label is an optimal label for a 

tournament with fewer players. The right side of the label is again an optimal label of a 

tournament with fewer players or a sequence only composed of 1s.  

The output of all these rules gives a unique label representing the optimal tournament structure 

for p players (see Table 24). 

Number of players, p Optimal structure 

2 2 

3 21 

4 22 

5 2111 

6 2121 

7 2221 

8 2222 

9 21111111 

10 21112111 

11 21212111 

12 21212121 

13 22212121 

14 22212221 

15 22222221 

16 22222222 

Table 24: Optimal structure labels for up to twelve players 
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Chapter 4: Conclusion and Future Work 

 

For many years, researchers have been interested in problems related to the design of sports 

tournaments. Their studies have dealt with such areas as choosing the best tournament type; the 

optimal way to build a draw, (i.e. where to place players in the tournament in order to optimize 

the winning probability of a given player); and the best way to rank players according to several 

criteria. However, relatively few studies have looked at the structure (i.e., the skeleton) of these 

tournaments, even though structure has a big impact on the outcome of the competition.  

The only type of tournament structure that is regularly considered is the balanced structure, 

where there are p/2 matches in the first round, with p the number of players, in cases where the 

number of players is equal to a power of 2. In cases where the number of players is not a power 

of 2, k matches are played in the first round, with p = 2𝑅  +  𝑘 and where 0 ≤  𝑘 <  2𝑅, 

followed by the balanced structures. Hence, several authors have started to take an interest in 

the different types of possible structure—for example, Maurer (1975), Chung and Hwang 

(1978), and Edwards (1991). The most recent, Adler et al (2017), demonstrated that in the 

particular case where there is one strongest player and all the remaining players have the same 

strength, it is the balanced format that maximizes the strongest player’s probability of winning 

in a single-elimination tournament. Adler et al (2017) also stated that this probability is 

minimized with a totally unbalanced structure (i.e., one match per round). The general case, 

where all players have different strengths, has been briefly analyzed by the authors and only 

assumptions have been made.  

For this reason, the objective of this thesis was to study in depth the different types of 

tournament structure and to answer this research question:  

“In a knockout tournament, what type of structure optimizes the strongest player’s probability 

of winning?” 

The aim was therefore to generate all the different possible structures of a p players knockout 

tournament and to find the optimal one. As the number of possibilities increases sharply with 

the number of players, an algorithm was developed in order to determine the different 

structures, and  to compute the associated probability of winning for the strongest player.  

From the results obtained—presented in the tables in section 3.3—it is possible to conclude that 

it is effectively the balanced structure that maximizes the strongest player’s probability of 
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winning in the case of random knockout tournaments. We therefore support the conjecture of 

Adler et al. (2017). 

Furthermore, for a tournament with p = 2𝑅  +  𝑘  players, the k matches played in the first round 

should be equally set out in the structure to maximize the strongest player’s probability of 

winning. If k is even, k/2 matches should be placed in the upper substructure and k/2 matches 

in the lower substructures. When k is odd, ⌊𝑘/2⌋ + 1 matches should be set out in the upper 

substructures and ⌊𝑘/2⌋ matches in the lower substructures.  

In parallel, the different structures that minimize the strongest player probability were similarly 

analyzed. Thus, we can also support the conjecture of Adler et al. (2017) saying that it is the 

totally unbalanced structure (i.e., the one match per round structure) that minimizes the 

strongest player’s probability of winning.  

Finally, using the same approach as that used to assess the strongest player’s probability of 

winning, the weakest player’s probabilities were evaluated. As Adler et al. (2017) assumed in 

their paper for the particular case they studied, we also conclude, even in more general cases, 

that the weakest player’s probability of winning is maximized under the totally unbalanced 

structure and minimized under the balanced structure with k matches in the first round.  

 

LIMITATIONS AND FUTURE WORK  

The algorithm proposed in section 3.2.3, based on Edwards' rules, provides, for tournaments 

with up to 10 players, the exact number of tournament structure. However, beyond ten players, 

some structures seem to be missing. Indeed, the number of structures for some rounds is not 

reached. As may be noticed at Table 6, for a tournament of eleven players and four rounds, 45 

different structures should be found. However, our algorithm comes up with only 43, giving a 

total of 205 different structures for an eleven-player tournament, instead of 207 as the 11th 

number in the Wedderburn–Etherington sequence.  

The missing structures never being the balanced ones and due to the fact that they appear only 

from eleven players and only for certain rounds, our results should not be affected. Indeed, it is 

unlikely that one of the missing structures returns a higher winning probability for the strongest 

player. 

Nevertheless, one possible avenue for future work would be to work on the algorithm to check 

why, at times, structures are missing. Moreover, the algorithm could be improved, for example 
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by reducing the complexity, or finding a possible alternative method. Indeed, as the proposed 

algorithm includes nested loops for skimming the different structures labels, the complexity is 

important. Hence, an algorithm that directly gives the accepted structures according to the 

different rules without first having to generate all the possible labels could be considered. 

Additionally, regarding the algorithm, the suggested probability calculations become 

computationally expensive as the number of rounds increases. Other methods, not including 

each round probability computation, should therefore be examined.  

Concerning the starting point of this thesis, although we were able to support the conjecture of 

Adler et al. (2017), we could not prove that it is indeed the balanced structures that maximize 

the chances of victory of the strongest player and the totally unbalanced structures that minimize 

those chances. A mathematical demonstration would therefore be valuable. 
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Executive Summary 

 

For many years, researchers have investigated problems related to the design of sports 

tournaments. Sports competitions involve many logistical and economic issues, which has led 

many authors to examine them from a more theoretical point of view. Many studies deal with 

the best tournament type choice, and the optimal way to devise a draw—that is, where to place 

players in the tournament in order to optimize the winning probability of a given player, 

deciding the best way to rank players according to several criteria, and other issues. However, 

there are relatively few studies on the structure (i.e., the skeleton) of these tournaments, 

although structure has a big impact on the outcome of the competition. 

The purpose of this thesis is, therefore, to analyze the different tournament structures and to 

infer which ones maximize or minimize the strongest player’s probability of winning. The 

research question of this dissertation is: “In a knockout tournament, that is to say, direct 

elimination tournament, what type of structure optimizes the strongest player’s probability of 

winning?” 

During the elaboration of this paper, different sports tournaments and their specific terminology 

are explained, winning probabilities of random knockout tournament are computed, and an 

algorithm is developed in order to provide indications of the effectiveness of the tournament 

structure and to evaluate and draw conclusions on the types of structure to be chosen.  

As a result, we support the conjectures of Adler et al. (2017), saying that, in a random knockout 

tournament and in a general case where the players all have different strengths, the balanced 

structures maximize the chances of victory for the strongest player. In addition, we also achieve 

that the structures minimizing the winning probability of the strongest player, are the totally 

unbalanced ones, that is to say, those where only one match per round is played. Concerning 

the weakest player, the same analyses were carried out and it was concluded, as Adler et al. 

(2017), that, conversely, balanced tournaments minimize the chances of victory of the weakest 

player and totally unbalanced structures maximize them. 

 


