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Abstract

Demand in products derived from crude oil and the decrease of the gas and petroleum reserves
have been boosting the petroleum industry to always beat back the limit between reserves and
resources, explaining why the interest for directional drilling has been growing up during the last
several decades. Nowadays, rotary steerable systems are so efficient that they are becoming the
benchmark for the industry. More than one million feet of well-bore are drilled every year using
this technology.

The drilling industry handles dimensions and times that cover several order of magnitude. The
time scale ranges from seconds for the bit revolution to days for the drilling of a well, while the
length scale ranges from hundredth of millimetres for the penetration parameters of a bit in a rock
formation to kilometres for the length of a drillstring. This makes the drilling industry such an
unfamiliar field which confronts engineers to unconventional challenges.

This complexity may explain why, despite the substantial resources of the oil industry, direc-
tional drilling processes are still misapprehended. Indeed, the industry continues to rely on trial
and error to control the direction of an oil well. Nevertheless, relatively recent theories try to com-
prehend the directional behaviour of a drilling assembly in order to predict, with relative success,
the geometry of the borehole drilled. Mathematical models of the near-bit region of the drillstring
already exist. However the literature covers especially drilling assembly equipped with a push-
the-bit system. The main purpose of the second part of this work is to develop a mathematical
model of a drilling assembly equipped with a point-the-bit system. This one is an enhancement
of the Mathematical Model of the Near-Bit Region of an Advancing Drilling System developed by
Detournay (2007). The model is composed of three interacting components: (i) the equations
governing the geometrical evolution of the borehole, (ii) the laws that link the kinematical bit-rock
penetration variables to the forces on the bit, and (iii) the relationships between the forces on the
bit and the loads on the drillstring.

The third part of this work presents the results of a parametric analysis of this mathematical
model. The parametric analysis, led in the framework of planar borehole trajectories and stationary
solutions, focus on the the borehole curvature and distinguishes the two configurations of the BHA:
with and without rotary steerable system.

Finally, a brief case study of a commercialised point-the-bit system is presented in the fourth
part. The goal of this last section is to validate the mathematical model developed and highlight
the limitations of this one. Some commonly accepted thoughts are also approached.
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Résumé

La demande croissante en produits dérivés du pétrole cumulée à l’épuisement des réserves
ont contraint l’industrie pétrolière à toujours repousser les limites séparant réserve de ressource,
expliquant pourquoi l’intérêt envers le forage directionnel n’a fait que croitre durant ces dernières
décennies. Actuellement, les "rotary steerable systems" sont d’une efficacité telle qu’ils sont en
passe de devenir la référence dans l’industrie. Plus de 300 kilomètres de puits sont forés chaque
années au moyen de cette technologie.

L’industrie du forage pétrolier manipule des dimensions et des échelles de temps qui couvrent
plusieurs ordres de grandeurs. Les temps mis en jeu varient de la seconde pour une révolution
de la tête de forage aux jours pour le forage complet d’un puit. Les dimensions varient, quant à
elles, du centième de millimètre pour la pénétration de l’outil dans la roche aux kilomètres pour
la longueur du train de tige, faisant du forage pétrolier un domaine relativement inhabituel et qui
confronte les ingénieurs à des défis peu conventionnels.

Cette complexité peut expliquer pourquoi, malgré les importantes ressources financières de
l’industrie pétrolière, les processus intervenant dans le forage directionnel sont encore peu compris.
Actuellement, l’industrie continue à baser le contrôle de la géométrie des puits sur une logique
d’essais/erreurs. Néanmoins, certaines théories relativement récentes tentent de comprendre le
comportement directionnel des assemblages de forage. Des modèles mathématiques de la garniture
de forage existent, cependant la littérature couvre principalement les assemblages équipés de "push-
the-bit system". Le but principal de la seconde partie de ce travail est de développer un modèle
mathématique d’un assemblage de forage équipé d’un "point-the-bit system". Celui-ci est
une amélioration du Mathematical Model of the Near-Bit Region of an Advancing Drilling System
développé par Detournay (2007). Le modèle réside en trois composants couplés: (i) les équations
régissant l’évolution géométrique du puit, (ii) les lois qui lient les grandeurs cinématiques de
pénétration de l’outil dans la roche aux forces agissant sur l’outil, et (iii) les relations liant les
forces appliquées à l’outil aux charges sur le train de tiges.

La troisième partie de ce travail présente les résultats d’une analyse paramétrique du modèle
mathématique. Celle-ci, menée dans le contexte de trajectoires planes et de solutions stationnaires,
se concentre sur la courbure du puit et distingue deux configurations pour la garniture de forage:
avec et sans "rotary steerable system".

Pour finir, une étude de cas d’un "point-the-bit" commercial est présentée. Le but de cette
dernière section est de valider le modèle mathématique développé et de mettre en évidence ses
limitations. Certaines idées communément acceptées par l’industrie sont également abordées.
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Used Symbols
Generally, capital letters (from Latin and Greek alphabet) are adopted to denote quantities

referring to the borehole. Contrary, lower case letters denote quantities referring to the drillstring
or the bit. Characters overhung by a hat apply to quantities evaluated at the bit, while characters
overhung by a bar (two bars) apply to quantities evaluated at the first (second) stabilizer above
the bit.

β Inclination of the bit penetration on the bit axis

δ Dimensionless settlement under the first stabilizer

δλ The Dirac delta function in x = λ

η Lateral steering resistance O(1 ∼ 102)

θ Inclination of the BHA on the vertical

θk Kink angle between the two segment of the BHA

θm Average inclination of the BHA between the bit and the second stabilizer

θm,1 Average inclination of the BHA between the bit and the first stabilizer

θm,2 Average inclination of the BHA between the first and the second stabilizer

κ Dimensionless borehole curvature O(10−4)

κi Dimensionless length defined by κi = λi/` O(10−1)

λi Characteristic dimensions of the BHA (see Figure 16) O(1 ∼ 10 m)

ν Bit slenderness (ν = b/a) O(10−1 ∼ 1)

ϕ Angular penetration per revolution O(10−4 rad/rev)

χ Angular steering resistance O(10−6 ∼ 1)

ψ Bit tilt O(10−2 ∼ 10−1 rad)

Γ0 Dimensionless threshold contact moment

Γ1 Dimensionless threshold transverse contact force

Γ2 Dimensionless threshold axial contact force

∆ Settlement under the first stabilizer

Θ Inclination of the borehole on the vertical

Λ Dimensionless position of the RSS actuator O(10−1)

Ξ Overgauge factor O(10−5)

Π Dimensionless weight-on-bit O(10−1 ∼ 10)

Υ Dimensionless rigidity of the BHA O(10−3 ∼ 1)

Φ Dimensionless force applied by the RSS actuator O(10−1)

Φl Dimensionless left support reaction of the outer housing on the shaft O(10−1)

Φr Dimensionless right support reaction of the outer housing on the shaft O(10−1)

v



a Bit radius O(100 mm)

b Bit gauge height O(100 mm)

d1 Axial depth of cut per revolution O(1 mm/rev)

d2 Transverse depth of cut per revolution O(10−2 mm/rev)

f2 Dimensionless transverse force O(10−1)

` Length of BHA between the bit and the second stabilizer O(10 m)

m Dimensionless moment O(10−2)

s Curvilinear coordinate along the BHA (with origin at the bit)

w Weight per unit length of the BHA O(103 N/m)

A Borehole radius O(100 mm)

E Young’s modulus 210, 000 N/mm2

F̆ Force applied by the RSS actuator O(10 kN)

F1 Axial force

F2 Transversal force O(10 kN)

G0 Threshold contact moment O(10 kN)

G1 Threshold axial contact force

G2 Threshold transverse contact force

Hi,Gi Bitmetrics coefficients

I Moment of inertia of the BHA

K Curvature of the borehole O(10−5 m−1)

M3 Bending moment O(10 kN.m)

S Curvilinear coordinate along the borehole (with origin at the surface)

T Torque-on-bit O(1 ∼ 102 kN.m)

W Weight-on-bit O(105 kg)
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Abbreviations

BHA Bottom Hole Assembly

DC Drill Collar

DP Drill Pipe

HWDP Heavy Wall Drill Pipe

MD Measured Depth

PDC Polycrystalline Diamond Compact

ROP Rate Of Penetration

RSS Rotary Steerable System

TVD True Vertical Depth
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Part I

Introduction

The use of energy has been a key in the development of the human society. All around the
world and throughout history, human activity consumes energy. Managing the production and the
consumption of energy is essential in the industrialized world of today since all economic activities
require energy resources. The rise of the oil importance was mostly due to the invention of the
internal combustion engine and the popularization of the commercial aviation. Currently, the main
source of energy is fossil which includes coal, gas and petroleum. In 2008, the worldwide energy
consumption was 474.1018 Joules with 80 to 90 percent derived from the combustion of fossil fuels
(BP, 2010). Petroleum plays an essential role in economy, politics and technology. On top of
that, it is also the raw material for many chemical products, including pharmaceuticals, solvents,
fertilizers, pesticides and plastics. In summary, its qualities (dense and portable source of energy)
to power the vast majority of vehicles1 combined to the fact that it constitutes the base of many
industrial chemicals makes it one of the world’s most important commodities.

The demand for oil is highly dependent on the global macroeconomic conditions. According
to the International Energy Agency (2004), high oil prices generally have a large negative impact
on the global economic growth. The oil price from 1861–2008 presented in Figure 1(a) highlights
the correlation between world events and crude oil prices. E.g., it shows sharp increases in 1973
and 1979 during the energy crises. The major trade movements, presented in Figure 1(b), calls
attention to the global aspect of the oil inter-area movements.

The increasing use of energy resources since the Industrial Revolution has an effect on the
environment. Fossil fuels do not only generate air pollutants like carbon dioxide (CO2), sulphur
dioxide and trioxide (SOx) or nitrogen oxides (NOx) but also releases traces of metals. The
significant increase of greenhouse gases emission (like carbon dioxide) is thought to be responsible
for some fraction of the rapid increase in global warming seen especially in the temperature records
during the 20th century.

1Today, about 90% of transportation fuel needs are fulfilled by oil.
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Figure 1: Oil prices and trade flows worldwide (BP, 2010)
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The consumption of energy at a greater rate than its regeneration leads the gas and petroleum
reserves to decrease. For the first time, the physical limits of the Earth are met under the com-
bination of finite resources and gas emissions. According to the Society of Petroleum Engineers
et al. (2007), contingent resources are quantities of petroleum estimated to be potentially recov-
erable but which are not currently considered to be commercially recoverable due to one or more
contingencies. On the other side, reserves are those quantities of petroleum anticipated to be com-
mercially recoverable by application of development projects to known accumulations from a given
date forward under defined conditions. In other words, reserves are all resources attainable with
the current technology and for profit while reserves are not currently considered lucrative. The
global distribution of oil proved reserves at the end of 2009 are presented in Figure 2(a) while the
evolution of this distribution is presented in Figure 2(b).

42.2 198.9
S. & Cent. America

42.2
Asia
Paci�c

73.3
North
America

127.7
Africa

136.9
Europe & Eurasia

754.2
Middle East

(a) Proved reserves at end 2009 (Thousand million barrels)

9.6

56.63.2
5.5         

10.3

 14.9

2009
Total 1333.1

thousand million
barrels1999

Total 1085.6
thousand million

barrels

9.0

7.8

6.4
3.7 63.2

9.91989
Total 1006.4

thousand million
barrels

8.4

65.73.4

9.7

5.9

6.9

Middle East
S. & Cent. America 
Europe & Eurasia
Africa
North America
Asia Pacific

(b) Distribution of proved reserves in 1989, 1999 and 2009 (Percentage)

Figure 2: Oil proved reserves distribution and evolution (BP, 2010)

Demand in products derived from crude oil and the decrease of the gas and petroleum re-

3



serves boost the petroleum industry to always beat back the limit between reserves and resources.
Now, the drilling industry meets more challenging drilling objectives everyday, which explains the
growing interest for directional drilling during the last decades.

1 Drilling

Well drilling is the process of building a hole in the ground in order to extract a natural
resource (such as ground water, natural gas or petroleum) or for the exploration of the nature.
Two main technologies have been invented: the percussion and the rotating drilling. Nowadays,
most common rigs in use are rotary drilling rigs. Their mechanics are quite simple: a rotating
bit breaks loose the rock at the bottom of the hole while the rock fragments are swept away and
lifted out of the hole by the mud stream. The main tasks of a rotary rig are to create rotation of
the drillstring, to provide the infrastructure to advance and lift the drillstring and to establish the
casing. The rotation of the drillstring is obtained by means of a rotary drive2 system which can
be at the surface but could also be at the bottom hole (downhole motor). Downhole motors are
special engines located above the bit to promote bit rotation, they convert hydraulic power of the
drilling fluid into mechanical power.

The mud consists generally of water with viscosifiers and weighting materials. In addition to
clean, cool and lubricate the bit, it maintains the stability of the borehole walls by exerting a
sufficient hydrostatic pressure. Powerful pumps, usually located at the derrick floor, are used to
inject the drilling fluids to the bit through the drillstring and then flow up between the drillstring
and the borehole.

One of the largest portion of the total cost of a drilling project return to the casing of steel
pipes which is put in place to stabilize the borehole walls. The clearance between the casing and
the borehole is filled with cement. As the well becomes deeper, the diameter of the casing used
gets smaller, the diameter of the well can vary from 30 to 4 in, or from 76 to 10 cm (Sampaio,
2008).

1.1 The Drillstring

The purpose of the drillstring is to transmit axial force, torque, and drilling fluid (hydraulic
power) to the bit. A basic drillstring is schematically presented in Figure 3, it is composed of the
following components:

The swivel is suspended by the hook of the traveling block and allows the drill-string to rotate
as drilling fluid is pumped to within the drillstring. It also supports the axial load of the
drillstring.

The kelly is a long four-sided (square) or six-sided (hexagon) steel bar with a hole drilled through
the middle for a fluid path. The purpose of the kelly is to transmit rotary motion and torque
to the drillstring (and consequently to the drill bit), while allowing the drillstring to be
lowered or raised during rotation. The length overall of the kelly is about 50 ft (15 m).

Drill pipes (DP) generally compose the upper (right bellow the kelly assembly) and longer por-
tion of the drillstring, usually about 15, 000 ft (4, 500 m). They must be light and strong.
The outside diameter usually varies from 23/8 to 65/8 in (or 6 to 17 cm).

Drill collars (DC ) are thick and heavy pipes normally located right above the bit. The purpose
of the drill collars is to provide the axial force to the bit, i.e., the weight on bit (WOB).

2The rotary speed at the surface is between 50 and 200 revolutions per minute for usual bits while the torque
required to rotate the string at surface may vary between 0.5 and 50 kN.m. The torque on the bit varies between 0.5
and 10 kN.m.
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Figure 3: A basic drillstring and its components

Sometimes, heavy wall drill pipes (HWDP) are used in addition. They are strong enough
to be under compression and they are flexible enough to be used in directional drilling. The
overall length of DC is usually about 10, 000 ft (3, 000 m).

Stabilizers are used to provide localized supports to the drillstring. They are essential in direc-
tional drilling and their space distribution highly conditions the behaviour of the bottom
hole assembly. In vertical drilling, they can be used to limit low vibrations frequency while
drilling. Different kinds of stabilizers are shown in Figure 4.

Figure 4: Different kinds of stabilizers

The bottom hole assembly (BHA) consists in the lower part of the drillstring. It is composed
of drill collars, stabilizers and heavy wall drill pipes. This part is loaded in compression and can
be several hundred meters long. The WOB has a typical value between 0 and 250 kN.
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1.2 Drill Bits

Drill bits are connected to the lower end of the drill collars. There are a large variety of
bits. Each type is designed to drill rocks of different hardness, composition, abrasiveness, etc.
encountered during drilling operations but the selection of the appropriate bit depends also on the
expected drill trajectory and the diameter of the borehole. The choice of the appropriate bit is
extremely important. Drilling bits constitute just a fraction (one to five percent) of total well costs
but are a critical component. Indeed, total well cost is widely dependent of the performance of the
bit, i.e., the time required to drill the well (the bit’s efficiency and the bit life).

Drill bits can be classified in two main families: roller cone bits and fixed cutter bits (or drag
bits).

1.2.1 Roller Cone Bits

Roller cone bits consist in rotating conical cutters or cones. The rotation of the cones, caused
by the rotation of the drillstring, brings new teeth in contact with the bottom of the hole. The
concentrated weight on those teeth crushes the rock and break it up into small pieces. This kind
of bit required thus a heavy WOB. As the cone rolls, the torque needed at the bit is small.

There are two main types of roller cone bits, steel milled-tooth bits and carbide insert bits while
the number of cone can vary between two and four. Two roller-cone bits are shown in Figure 5.

Figure 5: Tricone drill bits

1.2.2 Drag Bits

In the beginning of the drilling industry, all the bits were of the drag type. Drag bits have an
integral cutting element and no moving parts. They drill with a shearing action under the action
of axial force and rotation. This shearing process requires usually less WOB than the indenting
process of roller-cone bits but a larger torque.

Drag bits can be split in two main classes: diamond impregnated bits and polycrystalline
diamond compact bits. All of them take advantage of the properties of diamonds like extreme
hardness, compressive strength, and thermal conductivity.

Polycrystalline diamond compact bits

Polycrystalline diamond compact (PDC ) bits have been used since late 70’s. They are usually
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more expensive than roller-cone bits but have a better rate of penetration (ROP) and longer life
in some hard and abrasive formations.

PDC bits shear the rock with a continuous scrapping motion by means of cutters made of syn-
thetic diamond disk, see Figure 6(a). The cutters are about 1/8 in (3, 2 mm) thick and about 1/2
to 1 in (12, 7 to 25, 4 mm) in diameter. The number, size, position and shape of the chips are
important parameters in PDC bits performances.

Diamond impregnated bits

The objective of diamond impregnated bits is to provide a sharp cutting edge at any moment.
The cutting elements are made of (synthetic) diamonds suspended in a tungsten-carbide matrix,
see Figure 6(b). The matrix erodes when diamonds become worn and blunt in order to expose new
sharp diamonds.

Primarily those bits were used exclusively in hard and abrasive formations, where PDC bits
are too slow and roller-cones wear out quickly, and for coring. However, nowadays some of them
are designed to drill also medium hard formations.

(a) Polycrystalline diamond bits (b) Diamond impregnated bits

Figure 6: Drag bits

1.3 Directional Drilling

Directional drilling started as corrective operations occurring during drilling, as sidetracks due
to fishing operation failures. But the drilling industry started really to take an interest in this
technology, in the late 1920’s, when there were several lawsuits about wells drilled from a rig
on one property that had crossed the boundary and were penetrating a reservoir on an adjacent
property. The 1970’s and their energy crisis initiated this technology to be profitable, especially for
offshore reserves. In the 1990’s the introduction of the commercial rotary steerable system (RSS )
revolutionized directional drilling. Nowadays, directional drilling is so efficient that it is becoming
the benchmark for the industry. More than 75% of the well drilled from offshore rigs are directional
wells.

Directional drilling offers substantial increases in production over vertical wells. Drilling trough
the reservoir at an angle, and thus increasing the exposed section trough the reservoir, allows
drainage improvements of the oil slick. Reservoirs where vertical access is difficult or not possible

7



(for instance an oilfield under a town, under a lake, or underneath a difficult to drill formation)
are now accessible. Allowing more wellheads to be grouped together on one surface location can
allow fewer rig moves, less surface area disturbance, and make it easier and cheaper to complete
and produce the wells.

Several methods and equipments are available to steer the borehole and impose the trajectory
of the bit. According to Sampaio (2008), the main families are presented below.

Whipstocks are the oldest technique but the most time consuming. A whipstock can be described
as a wedge placed in the borehole to force the drill bit to start drilling in a direction away
from the borehole axis. It produces a kick-off point with exact depth control and a precise
direction.

The Hydraulic Method or jetting requires the use of a jetting bit to wash away the formation.
This technique can only be used in soft–medium formation in which hydraulic power can be
used to wash away a lateral “pocket” of the formation to initiate deflection.

Downhole Motors or mud motors are designed to turn the bit without the need to rotate the
drill string. Thus, it is possible to orient the bit in a desired direction, and maintain it in
this direction throughout the bit run. There are two types of downhole motors:

• Positive Displacement Motors are rotor-stator assemblies, consisting of a helical rotor
that moves within a molded, elastomer–lined stator. In general, more torque will be
generated by configurations employing greater numbers of lobes.

• Turbine Motors consist of multistage motor, each stage comprising a rotor a stator.
They operate at relatively high rotary speeds, and so are run exclusively with fixed
cutter bits.

Rotary Steerable Systems allow continuous rotation of the drillstring while steering the bit
(3D directional control). The drilling efficiency they provide leads to tangible improvements
in cost-per-foot and drilling optimization. Rotary steerable systems use a subassembly behind
the bit, which can be operated from the surface. They can be divided in two main groups:

• The Point-The-Bit System steers the bit by tilting the bit in the direction of the desired
curve, see Figure 7(a). Usually the bit is tilted by bending the transmission shaft inside
a non-rotating housing.

• The Push-The-Bit System steers the bit by applying a side load that forces the bit
laterally in the direction of the desired curve, see figure 7(b). A system of hydraulic
actuated pads located close to the bit creates the lateral force with controlled direction
and magnitude at the bit, which causes the deviation.

There are advantages and disadvantages to both systems. The choice between those two
systems depends widely on the situation: the tortuosity of the path, the kind of bit, etc.

Whipstocks and the hydraulic method fell into disuse with the advent of downhole motors in the
1970’s. Twenty years later, the introduction of commercial rotary steerable systems revolutionized
directional drilling. Nowadays, the process of drilling highly deviated wells is almost automated
thanks to these devices. Actually more than one million feet of well-bore are drilled every year
using rotary steerable systems and application of such systems has now spread to many of the
major oilfields in the world.

The number of stabilizers, their positions and the stiffness of the elements of the BHA, i.e., the
geometry of the BHA, influence widely the directional behaviour of the drilling system and so the
trajectory of the well.
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(a) The point-the-bit system (b) The push-the-bit system

Figure 7: Schematic description of the two main rotary steerable systems (RSS )

1.4 A Bit of History

Contrary to what we would expect, the drilling industry is not recent. Despite it involves
relatively complex processes, drilling oil wells originated more than 1,500 years in China, where
the oil was burned to evaporate brine and produce salt. The evolution of the drilling industry
through the ages, especially through the last century, is phenomenal. Drilling methods are now far
from the use of sharpened bamboos and involve high-tech systems to reach unimaginable depths
or extended-reaches. A non exhaustive time-line is presented below, it parallels some technological
advances or highlights related to the oil industry.

347 Oil wells are drilled in China up to 800 ft (240 m) deep using bits attached to bamboo poles;
1845 The rotary drilling method is patented in England;
1846 Canadian Abraham Gesner develops a process to distil kerosene (coal oil) from coal and

bituminous shale;
1876 Nicolaus Otto invents the first four-stroke internal combustion engine, the Otto Cycle Engine,

which he uses to build a motorcycle;
1893 Drilling depths reach 6, 575 ft (2004 m);
1896 Henry Ford builds his "quadricycle”;
1897 The first offshore drilling is done off the coast of Santa Barbara, California;
1908 First rock bit use;
1927 Charles Lindberg makes the first non-stop solo flight across the Atlantic;
1933 Tricone bits are introduced;
1947 Drilling depths reach 17, 776 ft (5418 m);
1953 The first fully hydraulic rig is introduced;
1958 More than a million passengers fly over the Atlantic Ocean, surpassing the total of Atlantic

steamship passengers for the first time;
1973 PDC bits are introduced;
1974 Drilling depths of 31, 441 ft (9, 558 m) are accomplished in Oklahoma. The Bertha Rogers

well encountered enormous pressure, almost 25, 000 psi (172 kPa);
1989 The Kola Superdeep Borehole, SG-3, reaches 40, 230 ft (12, 262 m), it is the deepest hole ever

drilled . High unexpected temperatures (180 ◦C) at this depth and location prevents to drill
deeper;
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2008 In the Al Shaheen oil field (north east of Qatar), the GSF Rig 127 sets a world record for
the longest extended-reach well ever drilled at 40, 320 ft (12, 289 m) measured depth3 with a
35, 770 ft (10, 902 m) horizontal section.

Nowadays, the drilling industry handles dimensions and times that cover several order of mag-
nitude. The time scale ranges from seconds for the bit revolution to days for the drilling of a well,
while the length scale ranges from hundredth of millimetres for the penetration parameters of a bit
in a rock formation to kilometres for the length of a drillstring. This makes the drilling industry
such an unfamiliar field which confronts engineers to unconventional challenges.

3The measured depth, MD, is the length of the path of the wellbore. This measurement differs from the true
vertical depth of the well in all but vertical wells.
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Part II

Mathematical Model

Initial mathematical models of drilling assembly were analytical or semi-analytical, they were
developed during the 50’s and 60’s by Lubinski and Woods (1953) followed by Murphey and
Cheatham (1965). Those theories offer qualitative explanations or a means for calculating solutions
to deviations problems for certain restricted conditions (such as straight inclined holes).

With the advent of finite element methods in the industry during the late 70’s to 80’s, Amoco
Production group produced an important contribution through the publications of Millheim (1977-
1981), Brett et al. (1986) and Warren (1987). The first boundary condition involving bit rock
interaction laws is added by Brett et al. (1986).

In the late 80’s and the early 90’s, Ho contributed widely to the modelling of the bit rock
interaction, see Ho (1986; 1987; 1989; 1995). However, the procedure to propagate the borehole
and determine the evolution of the complete system (BHA structure and bit-rock interactions) is
not described in his publications or patents.

The University of Braunschweig and the mud motor and rotary steerable division of Baker
Hughes (Inteq) worked essentially on the active control of trajectory with rotary steerable system.
A set of publications were published through this German collaboration (Heisig et al., 1996; Neubert
and Heisig, 1996; Neubert, 1997; Pastusek et al., 2005; Neubert et al., 2005).

More recently, the very active Paris School of Mines pursues the work undergone at the French
oil company Elf in the mid 80’s by Birades and Fenoul (Birades, 1986; Birades and Fenoul, 1986
and 1988). The main contribution concerns the characterisation of the bit rock interface. Although
they present some results of numerical simulations of borehole trajectories (Menand et al., 2002,
2003, 2006; Boualleg et al., 2006), mathematical details of the model are available only in Ph.D
theses (Simon, 1996; Maouche, 1999).

All models described in the literature differ by the type of model used to described the me-
chanical response of the BHA and by the boundary conditions4 nature applied. The vast majority
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of the models account only for the lower part of the drillstring, i.e., from the drill bit up to the
last considered stabilizer or up to the point of tangency, but they can diverge on

• the nature of the trajectory: planar or 3D;

• the behaviour of the solution: dynamic or static;

• the method used to solve the equations: analytic, finite elements or finite differences;

• the number of stabilizer;

• the presence of a rotary steerable system;

• the nature of the boundary conditions applied at the lower point (the bit) and at the upper
point;

• etc.

But the main purpose of those models is to relate the loads applied on the drillstring to the forces
acting on the bit.

The directional behaviour of a drilling assembly depends not only on the drillstring but also
on the bit, these two components are mechanically linked. Indeed the forces acting on the bit
are transmitted by the drillstring while the behaviour of the drillstring depends on its boundary
conditions at the bit. When a bit-rock interaction model (which predict the drill ahead tendency
of the bit) is coupled with a drillstring model, the propagation of the borehole and the future
trajectory of the bit can be estimated.

The theory initiated by Detournay (2007) lead to the development of a rigorous directional
drilling model. This mathematical model consists of three interacting components (see Figure 8):

• The equations governing the geometrical evolution of the borehole, which includes the rela-
tionships between the kinematical state variables characterizing the penetration of the bit in
the rock and the geometrical quantities describing the borehole.

• The laws that link the kinematical bit/rock penetration variables to the forces on the bit. The
characterization of the bit in the bit-rock interaction law is compatible with the mechanical
description of the BHA, which is typically modelled within the framework of beam theory.

• The relationships between the forces on the bit and the loads on the BHA. Evidently, these
relations involves the elastic response of the BHA and the contacts between the drillstring
and the borehole wall.

This model distinguishes especially from the traditional models by the nature of the boundary
conditions considered at the bit for the beam problem. Indeed, in view of the bit-rock interaction
feature developed in this theory, force-velocity (penetration per revolution) boundary conditions
substitute the classical force-displacement boundary conditions.

This part of the work proposes to develop a mathematical model of drilling assembly equipped
with a point-the-bit system based on the theory established by Detournay. The originality of this
work lies in the fact that the literature covers exclusively drilling assembly equipped with a push-
the-bit system. No (mathematical) model of point-the-bit system has been developed up to this
point or at least has been published, to our knowledge.
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Figure 8: Schematic description of the complete mathematical model of a drilling assembly
equipped with a rotary steerable system

1 Problem Definition

1.1 Point-the-Bit System Description

It is commonly accepted in the industry that point-the-bit system steer the bit by "tilting" the
bit in the direction of the desired curve. We distinguish two main methods to "tilt" the bit:

• The drive shaft is bended inside a non-rotating housing as in Figure 9(a);

• A pre-determined bias is hold by a geo-stationary unit inside a rotating housing as in Fig-
ure 9(b).

But this work will focus on the first technology which is currently more common in the industry. We
will thus only consider the configuration in which the bit tilt is obtained by imposing a deflection to
the transmission shaft by means of eccentric rings or pads. These actuators are usually controlled
through a hydraulic system.

(a) Internally deflected driveshaft on a non-rotating
housing

(b) Geo-stationary unit keeps bit tilt angle in a rotating
section

Figure 9: Point-the-bit systems: two main methods to tilt the bit (Sugiura, 2008)

This technology incorporates two adjacent stabilizers to maintain the system inside the bore-
hole. It is commonly accepted in the industry and by drillers that the near-bit stabilizer acts as
a fulcrum point4 and orients the drill bit axis in the desired direction. From this point of view

4A fulcrum point is a fixed point of support of a lever which acts as the pivot about which the lever turns.
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and considering the "Force and Levers" theory, the shorter the distance between the bit and the
fulcrum point, the less force has to be developed by the actuator at the steering unit for the same
side force acting at the bit. For this reason, some drillers prefer to use long passive gauge bits in
order to reduce the length between the bit and the fulcrum point. Influences of those parameters
are investigated in the parametric analysis (Part III) and in the case study (Part IV) of this work.

1.2 Reduced Problem

This report focuses on the near-bit region of the borehole that contains the BHA segment
with the bit and the two first stabilizers. However the complete version of this problem would
include the complete description of the drillstring (from the bit to the rig) and the entire geometry
of the borehole, the reduced problem presented in this work is likely to be sufficient to predict
the borehole evolution. Influence of the BHA and the drillstring above the second stabilizer is
bracketed by the consideration of two limiting boundary conditions at the upper stabilizer, either
zero moment or zero rotation relative to the borehole axis. Moreover, we consider no penetration
of the stabilizers into the rock and that their diameter is close to the borehole diameter, meaning
that drillstring is compelled to lie on the borehole axis at the stabilizers.

We further assume that the bit follows a plane trajectory, i.e., that the borehole axis is
a plane curve. Since all quantities (such as forces or velocities) used in the model are averaged
over at least one revolution of the bit, bit-rock interaction laws involve the same set of parameters
both in planar than in non-planar borehole geometries. Consequently, this assumption does not
trivialize the boundary conditions at the bit-rock interface.

Finally, we focus on the equilibrium points of the dynamical system, i.e., on the stationary
solutions of the problem. Due to the changing orientation of the borehole with respect to the
gravitational field, the only stationary solutions for planar borehole are the trivial cases of a
straight borehole. Nevertheless, in most situations, solutions of the evolutionary system can be
estimated as a sequence of stationary solutions. The stationary solutions are the equilibrium points
of the system of equations (3), they obviously correspond to segments of borehole characterized
by a constant curvature and by a constant diameter (see section 2, Geometrical Problem of the
Borehole).

In the following sections we expand the three interacting components of the mathematical
model. Firstly the borehole propagation criteria is introduced, this leg of the complete model
relates the borehole geometry to the penetration variables of the bit. Secondly we establish the
bit-rock interaction laws which associates the forces acting on the bit to the penetration variables
of the bit. Finally we develop the drillstring beam model, this third leg establishes the relations
between the loads applied on the drillstring and the forces and moments acting on the bit.

Notation adopted

Generally, capital letters (from Latin and Greek alphabet) are adopted to denote quantities
referring to the borehole. Contrary, lower case letters denote quantities referring to the drillstring
or the bit. Characters overhung by a hat apply to quantities evaluated at the bit, while characters
overhung by a bar (two bars) apply to quantities evaluated at the first (second) stabilizer above
the bit.

2 Geometrical Problem of the Borehole

At the lengthscale of its current length (L) and in the context of planar trajectories, the
borehole is a 1D object. Its geometry can be thus completely defined by the inclination angle Θ(S)
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corresponding to the curvilinear coordinate S, see Figure 10(a). Associating S = 0 to the borehole
entry on the earth surface and S = L to the current hole bottom, Θ(S) is a function defined on
0 ≤ S ≤ L.

If we consider now the borehole at the lengthscale of the bit radius (a), this 1D description is
not sufficient to catch the clearance between the bit and the borehole which affects the tilt of the
bit ψ, see Figure 10(b). The overgauge factor Ξ(S) is thus introduced

Ξ(S) =
A(S)

a
− 1 (1)

with A(S) denoting the mean borehole radius at coordinate S. For apparent technological reasons,
the overgauge cannot be negative.

(a) Definition of the curvilinear coordinate S, the length
of the borehole L and the inclination angle Θ

(b) Correlation between the bit tilt ψ and the clearance
between the bit and the borehole

Figure 10: Geometrical problem of the borehole

In summary, modelling directional drilling requires to consider the borehole as a "1D+ε" object
in order to distinguish both lenghtscale L and a. The borehole geometry is then completely
described by the two functions Θ(S) and Ξ(S). The borehole curvature K(S) is also introduced

K(S) =
dΘ(S)

dS
(2)

In term of the borehole propagation problem we need to formulate the evolution of the borehole
geometry when its length grows from L to L+ ∆L. As shown by Detournay (2007), the borehole
propagation problem can be cast mathematically as a spatial evolution problem described by a
system of two differential equations, a second order one in Θ(S) and a first order one in Ξ(S)

d2Θ

dS2
= F (S) and

dΞ

dS
= G(S) (3)

It is now obvious that the stationary solutions of the problem, corresponding to the equilibrium
points of this system of equations, is characterized by a constant curvature and by a constant
diameter.
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3 Bit-Rock Interaction Problem

As we already pointed out, one particularity of this theory is that the bit-rock interactions at
the bit are force-velocity boundary conditions. Indeed a pseudo time is involved in the laws relating
forces on the bit to the penetration per revolution. This penetration of the bit in the rock over one
revolution involves removal rock and is associated to the incremental propagation of the borehole.
The kinematics of the bit is described by the penetration vector d and the angular penetration
vector ϕ which are linked to the velocity v and spin ω vectors:

d =
2πv

Ω
and ϕ =

2πω

Ω
(4)

and where Ω is the magnitude of the bit angular velocity vector Ω.

Due to the assumption of plane trajectories, the vector d is restrained in the plane of the
borehole axis while the vector ϕ is orthogonal to that plane. Those vectors can be expressed in
the director basis associated to the bit (̂ı1, ı̂2, ı̂3). The penetration per revolution of the bit is then
described by three quantities (for planar trajectories): (i) the axial penetration d1, (ii) the lateral
penetration d2 and (iii) the angular penetration ϕ3, see Figure 11. The penetration vector d is
tangent to the borehole axis, its inclination β on the axis of revolution of the bit ı̂1 is given by

β = arctan

(
d2

d1

)
(5)

and is related to the bit tilt by the relation

ψ + β = 0 (6)

Figure 11: Penetration parameters for a plane trajectory. Definition of the axial penetration d1,
the lateral penetration d2 and the angular penetration ϕ3 (Perneder, 2008a)

3.1 Interface Laws for Space Trajectories

Bit-rock interface laws are the relations between the kinematic parameters of the bit and the
dynamic quantities acting on the bit, i.e., the forces and moments. The general formulation of
the bit-rock interface laws links the vector of the generalized forces applied on the bit F and the
generalized penetration vector D by the expression

F = H(D) (7)
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In the general context of a 3D trajectory, the two generalized vectors are defined as

F =
{
F̂1, F̂2, F̂3, M̂2, M̂3

}T
(8)

D =
{
d1, d2, d3, ϕ2, ϕ3

}T
(9)

Considerations about the bit symmetry, the nature of the interaction (see Appendix A) and the
assumed rock isotropy allow to express the general formulation (7) as a linear relationship between
F and D. It has been shown by Detournay (2007) that this linear relationship can be written as

F̂1

F̂2

F̂3

M̂2

M̂3


= −



G1

G2

G3

G4

G5


−



H11 0 0 0 0

0 H22 H23 H24 H25

0 H32 H33 H34 H35

0 H42 H43 H44 H45

0 H52 H53 H54 H55





d1

d2

d3

ϕ2

ϕ3


(10)

where the coefficients of the matrices G and H depend on the bit tilt.

The existence of off-diagonal terms reflects the non-coaxiality between dynamic and the kine-
matic quantities. Indeed, the terms H23 = H32 express the non-coaxiality of the side force vector
(F̂2, F̂3) and the lateral penetration vector (d2, d3). This phenomenon, which is called bit walk,
results from the rotation of the drill bit and is characterized by the bit walk angle α between the
side force vector and the lateral penetration vector (see Figure 12). Comparably, the existence of
the off-diagonal terms H45 = H54 lead to the non-coaxiality of moment vector (M̂2, M̂3) and the
rotation vector of the bit (ϕ2, ϕ3).

Figure 12: Definition of the left and right walk tendency of a bit and of the walk angle α (Perneder,
2008a)

Perneder (2008a) determined the expression of the elements Hij and Gi and showed that the
matrix H is not symmetric.
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3.2 Interface Laws for Plane Trajectories

In the context under consideration, i.e., a plane trajectory contained in the plane (̂ı1, ı̂2), both
penetration variables d3 and ϕ2 vanish5. The general formulation of the bit-rock interactions given
by Equation (10) can thus be simplified as

F̂1

F̂2

M̂3

 = −


G1

G2

G0

−

H11 0 0

0 H22 H25

0 H52 H55



d1

d2

ϕ3

 (11)

Moreover when the origin of the director basis is located at the geometric centre of the bit, the
therms H25 and H52 are both null. In the following developments, the notations Hi = Hii,
H55 = H0 and G5 = G0 have been adopted for concision considerations.

Considering that under stationary conditions the axial force at the bit F̂1 is constant and equal
to the opposite of the weight on bit W , the bitmetrics laws can be written as

W = G1 +H1d1 , F̂2 = −G2 − ηH1d2 , M̂3 = −G0 − h2H1ϕ3 (12)

where two quantities reflecting the geometry of the bit have been introduced

η =
H2

H1
and h =

√
H0

H1
(13)

Ideally, the WOB is greater than the threshold force G1 = W∗ and the axial penetration occurs
in Regime II. In contrast, it can be assumed that the lateral and angular penetrations are both
dominated by the contact process (Regime I). Meaning that the coefficients G0 and G2 are null.
However, the formulation (12) will be maintained by concerns of generality.

4 Mechanical Problem of the Drillstring

The last component of the complete model is the drillstring model. It relates the loads applied
on the drillstring to the forces and moment acting on the bit. As it has already been noticed,
we focus on the near-bit region of the drillstring, i.e., the BHA segment between the bit and the
second stabilizer. Moreover we assume that those stabilizers are perfectly fitted to the borehole.
Finally, we neglect the frictional resistance and so consider that all the axial force is transmitted
to the bit.

In the context of planar trajectories, the drillstring is a 1D object and is thus completely defined
by its inclination θ(s) corresponding to the curvilinear coordinate6 s. Considering that the current
length of the drillstring is `, the function θ(s) is defined between the bit in s = 0 and the second
stabilizer in s = `, see Figure 13. The position of the first stabilizer along the drillstring is s = λ1.
According to the adopted notation, the length of the borehole axis is given by Ŝ − ¯̄S = L while
the length of the drillstring is given by ¯̄s− ŝ = `. Nonetheless, when the bit is drilling, those two
lengths are nearly equal L ' `.

The bit tilt introduced as a consequence of the clearance between the bit and the borehole can
now be defined as the difference between the inclination of the drillstring at the bit θ(ŝ) and the
inclination of the borehole at the bit Θ(Ŝ)

ψ = θ̂ − Θ̂ (14)
5It does not indicate that the force F̂3 and the moment M̂2 are null but the mathematical model of the drillstring

does not take them into account.
6The drillstring curvilinear coordinate s is running in the opposite direction compared to the borehole curvilinear

coordinates S.
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Figure 13: Description of the simplified problem for the drillstring model

Since the drillstring is moving along the borehole (either during drilling of during a trip up),
all the quantities associated to the drillstring are functions of both the space s and the "time" L.
However this work focus on the behaviour of the BHA when the bit is drilling, i.e., when Ŝ = L,
and the "time" component can be ignored.

4.1 Formulation within St-Venant Beam Theory

Assuming small rotations and small displacement by reference to an initial configuration, the
elastic response of the drillstring is expressed in the framework of St-Venant beam theory, which is
an approximation of the more rigorous Kirchhoff’s theory. This approximation is lawful when the
shear deformation can be neglected compare to the bending deformation, this is usually the case
with circular and tubular cross sections.

The deformation of the BHA segment is analysed by choosing the chord linking the bit and the
second stabilizer as reference configuration. Since the bit and the second stabilizer are compelled
to lie on the borehole axis, their positions in the fixed cartesian coordinate system (e1, e2) defined
in Figure 13 are known. Considering that the coordinates of the bit are (X̂, Ŷ ) and those of the
second stabilizer are ( ¯̄X, ¯̄Y ), the inclination θm of the chord on the e1-axis is given by

θm = arctan

(
Ŷ − ¯̄Y

X̂ − ¯̄X

)
(15)

A new coordinate system (x,y) is defined to characterize the beam deflection. Its origin is
chosen at the second stabilizer and with the x-axis coinciding with the chord and pointing towards
the bit (see Figure 13). The reference configuration of the BHA segment is thus the part of the
x-axis defined by 0 ≤ x ≤ `, y = 0, and any deformation of the beam corresponds to a transverse
deflection U(x), taken positive in the direction of the y-axis.

We can assert that any transverse displacement imposed to a point of a beam is equivalent in
terms of internal efforts to introduce an adequate kink angle at this point while keeping this one
seating on the reference configuration. Indeed, the two configurations shown in Figure 14 lead to
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Figure 14: Two equivalent configurations of a beam in terms of internal shear and moment

the same shear and moment diagrams along the beam. The settlement ∆ requisite to keep the
stabilizer on the borehole axis can thus be advantageously substituted by the kink angle θk given
by

θk = θm,1 − θm,2 (16)

where θm,1 and θm,2 are defined in Figure 15 for the stationary solution characterised the constant
curvature K = R−1

Figure 15: Definition of angles θm,1 and θm,2 for the stationary solution characterised the constant
curvature K = R−1

4.2 Geometrical & Loading Considerations

The free body diagram presented in Figure 16 highlights the parameters involved in the relation-
ships governing the drillstring model. This figure parallels the free body diagram and the sketch of
a real point-the-bit system, the "Well-Guide RSS" commercialised by Girodata. To our knowledge,
all point-the-bit systems are significantly identical in their design and operating principle.

To bracket the effect of the drillstring above the second stabilizer, two limiting boundary
conditions will be considered at this stabilizer: either zero moment or zero rotation relative to
the borehole axis.

Devices that control the deflection of the transmission shaft usually operate at imposed dis-
placements because of their design. However we can transform this problem to an equivalent one

20



Figure 16: The "Well-Guide RSS" designed by Girodata and the free body diagram considered to
develop the BHA model

that operates at imposed forces and calculate the displacements retrospectively. We will therefore
suppose that the force F̆ applied by this device is known.

On the free body diagram, the upper beam (the red one) is kinematically determinate, i.e., we
can immediately find its support reactions which have to be considered as forces acting on the
transmission shaft (the black beam in Figure 16). The Figure 17 depicts how to calculate these
reactions. We can thus replace the outer housing by a couple of reactions (functions of the force
F̆ ) on the transmission shaft.

Figure 17: Reactions F̆l and F̆r of the outer housing on the transmission shaft

4.3 Governing Equations

To write the equation governing the deflection of the beam, we use the fundamental relation
between the curvature K and the moment M . In the context of small rotations and small dis-
placement by reference to the initial configuration, the exact expression of the curvature can be
approximated by the second derivative with respect to coordinate x

M3 = EI
d2U

ds2
' EI d2U

dx2
(17)

where E is Young’s modulus and I is the area moment of inertia. The rigidity EI is assumed to
be constant along the beam.

The beam is subjected to gravity loading and to the transverse forces F̆ , F̆l and F̆r respectively
at x = `− s̆, x = λ4 and x = λ4 +λ3. Considering that the gravity field is inclined by an angle −θm
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on the x-axis and if we denote the weight per unit length of the beam by w, then the transverse
lineic force is −w sin θm.

Considering now the balance of forces and moments we can write

• the moment equilibrium:

dM3

dx
+ F2 = 0 (18)

• the transverse force equilibrium:

dF2

dx
+ F̆lδλ4

− F̆ δ`−s̆ + F̆rδλ4+λ3
− w sin θm = 0 (19)

where δλ denotes the Dirac delta function at x = λ;

• the axial force equilibrium:

dF1

dx
+ w cos θm = 0 (20)

Combining equations (17) to (19) and considering that the beam is also submitted to the kink
angle θk at the first stabilizer, i.e., in x = `− λ1, we obtain

EI
d4U

dx4
− F̆lδλ4

+ F̆ δ`−s̆ − F̆rδλ4+λ3
+ w sin θm − θkδ`−λ1

= 0 (21)

The axial equilibrium (20) is simply integrated to yield

F̂1 = ¯̄F1 − x.w cos θm (22)

4.4 Boundary Conditions

The solution of the governing equation involves four integration constants, we need thus four
boundary conditions. Those conditions are imposed deflection (U), rotation (dU/dx) or moment
(∼ d2U/dx2) at each end. Rotations are taken positive counterclockwise and are relative to the
inclination of the chord linking the bit to the second stabilizer.

The boundary conditions are

• At the bit (x = `):

U = 0 (23)
dU

dx
= Θ̂ + ψ − θm (24)

• At the second stabilizer (x = 0):

U = 0 (25)
dU

dx
= ¯̄Θ− θm or

d2U

dx2
= 0 (26)

depending if the second stabilizer is assumed to blocked or hinged.

In the problem under consideration, the shaft is also maintained on the borehole axis by the
first stabilizer. Since this constraint has been substituted by imposing an adequate kink angle
while the stabilizer is compelled to lie on the reference configuration, a fifth boundary condition is
imposed at x = `− λ1:

U = 0 (27)
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4.5 Scaling

The governing equations can advantageously be scaled. The characteristic quantities are defined
as, respectively for the length, the deflection, the force and the moment,

L∗ = ` U∗ =
w`4

EI
F∗ = w` M∗ = w`2 (28)

The dimensionless position, deflection, shear force and moment are then defined as

ξ =
x

L∗
u =

U

U∗
f2 =

F2

F∗
m =

M

M∗
(29)

With the scaling (28), the dimensionless moment and shear force are related to the deflection
by the relations

m =
d2u

dξ2
f2 = − d3u

dξ3
(30)

According to Figure 18 and considering κi =
λi
`
, the governing equation (21) becomes then

d4u

dξ4
− Φlδκ4 + ΦδΛ − Φrδκ3+κ4 + sin θm − θkΥδ1−κ1 = 0 (31)

with the scaled distance Λ between the stabilizer and the actuator and the dimensionless rigidity
of the shaft Υ, which are given by

Λ = 1− s̆

`
Υ =

EI

w`3
(32)

and with the scaled forces

Φl =
F̆l
w`

, Φ =
F̆

w`
and Φr =

F̆r
w`

(33)

Figure 18: Free body diagram of the scaled problem

Boundary conditions are now expressed as
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• at the bit (ξ = 1):

u = 0
du

dξ
= Υ

(
Θ̂ + ψ − θm

)
• at the first stabilizer (ξ = 1− κ1):

u = 0

• at the second stabilizer (ξ = 0):

u = 0
du

dξ
= Υ

(
¯̄Θ− θm

)
or

d2u

dξ2
= 0

The governing equation (31) is of fourth order, its integration involves thus four integration con-
stants while we have five boundary conditions to impose. This difficulty is circumvented by means
of a method called the force method or method of consistent deformations. This method consists
in making the beam isostatic by releasing appropriate boundary conditions and externalize those
by external forces. Amplitudes of those external forces are determined by imposing consistent
deformations according to the released boundary conditions through a system of equations. This
method is explained in details for the problem under consideration in Appendix B.

Equation (31) can be solved with the boundary conditions expressed above. According to the
borehole evolution problem, the relevant elements of the solution are the expressions of the efforts
on the bit, the moment M̂3 and the transverse force F̂2. Due to the superposition principle and the
linearity of the beam problem, the solution can be written as the sum of five terms, each expressing
either a boundary condition or a load.

F̂2

w`
= FbΥ

(
Θ̂ + ψ − θm

)
+ FsΥ

(
¯̄Θ− θm

)
+ FkΥθk + Fw sin θm + FrΦ (34)

M̂3

w`2
= MbΥ

(
Θ̂ + ψ − θm

)
+MsΥ

(
¯̄Θ− θm

)
+MkΥθk +Mw sin θm +MrΦ (35)

The first term corresponds to the rotation imposed at the bit, the second to the rotation at the
second stabilizer, the third brings out the effect of the kink angle θk, the fourth express the influence
of the distributed load w, and the fifth highlights the effect of the load Φ applied by the actuator.

The coefficients F ’s and M’s are functions of only κ1 except FΦ and MΦ, which are also
functions of κ2, κ3, κ4 and Λ. Naturally the coefficients Fs and Ms are equal to zero when the
second stabilizer is assumed to be hinged. The expressions of those coefficients are given in Table 1
for the two limiting cases, i.e., blocked rotation at the second stabilizer ( ¯̄θ = ¯̄Θ − θm) and free
rotation at the second stabilizer ( ¯̄M3 = 0).

The particular problem corresponding to the BHA without the first stabilizer can also be
treated. Coefficients F ’s and M’s corresponding to this situation are given in Table C.1, Ap-
pendix C. This solution is immediate and the coefficients are numbers except FΦ andMΦ which
are still functions of κ3, κ4 and Λ.

5 Stationary Solutions

Stationary solutions of the problem are practically significant, they correspond to the equilib-
rium points of equations (3) and are characterized by a constant curvature and diameter. As it has
already been explained, stationary solutions in the context of planar borehole axis do not exist,
except the trivial cases of straight borehole. Nonetheless, they are of prime interest since solutions
of the evolving problem can often be approximated by sequences of stationary solutions.
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Blocked rotation Free rotation

Fb −3 (κ1 + 1)

κ2
1

6 (κ1 + 2)

(κ1 − 4)κ2
1

Fs
3

κ1
0

Fk
6

κ1

− 18

(κ1 − 4)κ1

Fw
2κ2

1 + 3κ1 − 1

8κ1

κ3
1 − κ2

1 − 9κ1 + 3

4 (κ1 − 4)κ1

Fr −3 (Λ− κ4) (Λ− κ3 − κ4) (Λ− κ2 + κ4)

2 (κ1 − 1)κ1

3 (Λ− κ4) (Λ− κ3 − κ4) (Λ + κ3 + 2κ4)

κ1

(
κ2

1 − 5κ1 + 4
)

Mb
3

κ1
+ 1 − 12

(κ1 − 4)κ1

Ms −1 0

Mk −2
6

κ1 − 4

Mw
(1− 3κ1)

24

κ2
1 − 3κ1 + 1

16− 4κ1

Mr
(Λ− κ4) (Λ− κ3 − κ4) (Λ− κ2 + κ4)

2 (κ1 − 1)
− (Λ− κ4) (Λ− κ3 − κ4) (Λ + κ3 + 2κ4)

κ2
1 − 5κ1 + 4

Table 1: Coefficients F ’s andM’s when the first stabilizer is imposed to stay on the chord
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In situations of steady state, the loads acting on the BHA do not fluctuate and its deformed
shape is invariant during drilling. The BHA movement can thus be akin to a rigid body motion
while the forces and moments acting on the bit are invariant meaning that the penetration variables
are constant. Indeed, introducing the δ-operator to denote the variation of a quantity over one
revolution of the bit, it appears

δd = δβ = δϕ3 = 0 (36)

which means that those quantities do not vary over one bit revolution, i.e.,

d = ds , β = βs , ϕ3 = ϕs (37)

where d is the magnitude of the penetration vector d. On the other side, the variation of the
absolute bit inclination and the increment of the borehole length after one bit revolution can be
expressed as

δθ̂ = ϕ3 , δL = d (38)

The expression (2) of the borehole curvature can be expressed in terms of the δ-variation of the
borehole inclination at the bit Θ̂ and the penetration d according to

K̂ =
δΘ̂

d
(39)

Using equations (6), (14) and (38) we can determine the expression of the constant curvature K̂
as

K̂ =
ϕ3 + δβ

d
=
ϕs
ds

(40)

while the constant diameter of the borehole lead to a constant expression of the overgauge factor

Ξ = Ξ0 +
2

π
ν|βs| (41)

where ν is the bit slenderness ν = b/a.

5.1 Equations Governing the Stationary Problem

Considering that the borehole segment between the bit and the second stabilizer is a circular
arc, the system of equations consisting of the relationships (40) and (41) between the borehole
geometry and the penetration variables, the bit-rock interaction laws (12) and the solution (34)-
(35) of the BHA problem can be simplified, see Appendix D. The inclination θm of the chord on
the e1-axis can be expressed as

θm =
1

2

(
Θ̂ + Θ̄

)
(42)

and
(

Θ̂ + Θ̄
)
as (

Θ̂ + Θ̄
)

= K` (43)

After introducing the dimensionless curvature κ

κ = K` (44)

we can write

Θ̂− θm =
κ

2
, Θ̄− θm = −κ

2
(45)
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while the kink angle θk can be expressed as

θk =
κ

2
(46)

Finally the system of equations governing the equilibrium solution is summarized below, where
we assume that drilling takes place in regime II, i.e., that the weight on bit W is larger than the
threshold contact force G1.

• Bit-rock interaction:

W = G1 +H1d1 , F̂2 = −G2 − ηH1d2 , M̂3 = −G0 − h2H1ϕ3 (47)

• Relationship between bit penetration and borehole geometry:

κ =
ϕ3`

d
, Ξ = Ξ0 +

2

π
ν|β| (48)

• Drillstring equilibrium:

F̂2

w`
=

1

2
FbΥ (κ− 2β)− 1

2
FsΥκ+

1

2
FkΥκ+ Fw sin θm + FrΦ (49)

M̂3

w`2
=

1

2
MbΥ (κ− 2β)− 1

2
MsΥκ+

1

2
MkΥκ+Mw sin θm +MrΦ (50)

The system of equations (47)-(50) is closed in terms of the unknowns κ and β, i.e., in terms of the
dimensionless borehole curvature and the penetration inclination (or equivalently the bit tilt).

5.2 Equilibrium Borehole Curvature and Radius

We are now in position to calculate both the equilibrium curvature κs and overgauge Ξs, which
is directly related to the penetration inclination βs (itself equal to the opposite of the bit tilt ψs).

The bit-rock interaction laws (47) and the penetration relationships (48) can be combined to
express the lateral force on bit, F̂2, and the moment on bit M̂3 in terms of the weight on bit W .
The following approximations are used

d2 ' βd1 , ϕ3 '
κd1

`
(51)

both on account that β � 1. Hence,

F̂2 = −G2 − βη (W − G1) (52)
M̂3 = −G0 − κχ (W − G1) ` (53)

where η and χ denote the lateral and angular steering resistances respectively. The are defined as

η =
H2

H1
, χ =

(
h

`

)2

=
H0

H1`2
(54)

Next, F̂2 and M̂3 are eliminated between (49), (50), (52) and (53), to yield a linear system of
equations in terms of β and κ Mββ Mβκ

Mκβ Mκκ

βκ
 =

NβNκ
 (55)
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where the coefficients M ’s are given by

Mββ = Fb − ηΠc (56)

Mβκ =
Υ

2
(Fs −Fb −Fk) (57)

Mκβ = ΥMb (58)

Mκκ =
Υ

2
(Ms −Mb −Mk)− χΠc (59)

where Πc denotes the dimensionless fraction of the weight-on-bit mobilized by the cutting process

Πc = Π− Γ1 (60)

and Π is the dimensionless weight-on-bit

Π =
W

w`
(61)

It is interesting to note that the matrix of coefficients M is never diagonal. The coefficients N ’s
are given by

Nβ = Γ2 + Fw sin θm + Fr (Λ) Φ (62)
Nκ = Γ0 +Mw sin θm +Mr (Λ) Φ (63)

where

Γ0 =
G0

w`2
, Γ1 =

G1

w`
, Γ2 =

G2

w`
(64)

The equilibrium solution κs and βs is then deduced from (55) to be

βs =
MκκNβ −MβκNκ

MββMκκ −MβκMκβ
, κs =

MββNκ −MκβNβ
MββMκκ −MβκMκβ

(65)
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Part III

Parametric Analysis

In this part of the work, we conduct a parametric analysis of the mathematical model developed
in the previous part. The analysis is restricted to planar borehole trajectories and stationary
solutions. In this context, solutions of the problem correspond to BHA segments of constant
deformed shape moving into boreholes of constant curvature and radius. Moreover, it is assumed
that the lateral and angular penetrations are both dominated by the contact process (Regime I).
Meaning that the coefficients G0 and G2 present in the bit-rock interaction laws (47) are null.

The problem being fully symmetric with respect to the vertical axis, this parametric analysis
considers only the cases where the inclination of the chord θm is positive. Indeed, solutions for
θm < 0 are identical to solution for θm > 0 with the opposite sign for the resulting curvature and
bit tilt. A positive curvature (increasing borehole inclination Θ) corresponds thus to a curvatures
oriented in the direction of the director vector ı̂2. Therefore, build-up and drop-off tendencies
correspond to positive and negative curvature, respectively.

This parametric analysis focus on the borehole curvature which is the most relevant output of
the mathematical model from a directional driller perspective. We first determine the combination
of parameters that control the directional tendency of the drilling assembly, i.e., the sign of the
borehole curvature. Then, the effects of the parameters on its magnitude are studied. The analysis
is conducted for the two configurations of the BHA: blocked and free rotation at the second
stabilizer.

This part is divided in four sections. The first one introduces the range of amplitude of the
parameters governing the solutions that are representative of field cases. The second section
deals with the behaviour of the BHA without the rotary steerable system (i.e., F̆ = 0), general
comments are made about the solution and results of simulations are presented. The more complex
configuration corresponding to the BHA equipped with a rotary steerable system is approached in
the third section.
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1 Range of Amplitude of the Governing Parameters

In the framework of the mathematical model, the solution of the problem is expressed in terms
of the dimensionless borehole curvature κ and the penetration inclination β which is directly
related to the bit tilt ψ. This solution is controlled by twelve dimensionless parameters that can
be classified into three different categories:

Three bit-rock interactions parameters: the lateral η and the angular χ steering resistances
are two numbers introduced to characterised the steerability of the system. The dimensionless
fraction of the weight-on-bit mobilized by frictional contact between the rock and the bit on
surfaces such as wear flat is designated by Γ1.

Two control parameters: the dimensionless weight-on-bit Π and steering force Φ are the only
parameters controlled by the driller during drilling.

Seven BHA parameters: the inclination of the chord θm, the dimensionless position of the RSS
actuator Λ, the dimensionless distances κi (i = 1 ... 4) and the dimensionless BHA stiffness Υ
are used to specify the geometry of the BHA. Note that the dimensionless distances between
the stabilizers must satisfy

κ4 + κ3 + κ2 + κ1 = 1 (66)

Finally, we introduce the number Ψ defined as

Ψ =
Πc

Υ
(67)

which affects greatly the directional behaviour of the drilling assembly as it will be shown in the
analysis and where Πc designates the dimensionless fraction of the weight-on-bit mobilized by the
cutting process Πc = Π− Γ1

1.1 Bit-Rock Interaction Properties

The lateral steering resistance η is defined as the ratio between the two bitmetric coefficients
H2 and H1. For simple PDC bit geometry, it can be expressed as

η =
1

2
ξν (68)

where ν is the bit aspect ratio and ξ is defined as the ratio between two numbers characterizing
the interactions between the rock and the different part of the bit

ν =
b

a
, ξ =

ζ

ζ ′
(69)

Indeed, ζ depicts the interactions between the cutting structure and the rock while the number
ζ ′ considers the interactions between the gauge and the rock. In the typical field of directional
drilling, the bit aspect ratio usually varies between 1/5 and 2. On the other side, laboratory tests
conducted by Menand et al. (2002) indicate that ξ takes values of order O(10) for "active" gauge
and of order O(102) for "passive" gauge. In summary, the lateral steering resistance η covers
typically two orders of magnitude O(1 ∼ 102).

The expression of the angular steering resistance χ is also derived from the bitmetric coefficients
but depends besides of the scaling `

χ =

(
h

`

)2

with h =

√
H0

H1
(70)
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In the particular case of simple PDC bit geometry it can be expressed as

χ =
1

6

(
a

`

)2

+
2

3

(
b

`

)2

η

' 2

3

(
b

`

)2

η (71)

Considering that the length of point-the-bit systems ranges usually from 3 to 10 meters and that the
bit gauge height (for PDC bit) embraces generally values between 0.1 and 1.5 ft (3 cm and 50 cm),
the angular steering resistance χ covers six orders of magnitude O(10−3 ∼ 50). Table 2 resumes
the orders of magnitude for the two steering resistances η and χ.

ν 0.2− 2.0

ξ 010− 100

η 001− 100

χ 0.001− 500.0

Table 2: Range of amplitude of the bit-rock interactions properties

As mentioned earlier, the lateral and angular penetrations are assumed to be both dominated
by the contact process (Regime I) meaning that the two bitmetric coefficients G0 and G2 are set
to zero for this analysis. Contrariwise, the axial penetration occurs ideally in Regime II and the
bitmetric coefficient G1 is not null. Detournay (2007) shows that the fractions of the weight-on-bit
mobilized by frictional contact between the rock and the bit on surfaces such as wear flat, can be
expressed as

G1 = σa`1 (72)

where σ is the contact strength, i.e., the maximum pressure that can be transmitted at the interface
between the wearflat and the rock, a is the bit radius and `1 denotes the contact length which is
an objective measure of the bit bluntness. For problems under consideration, the typical order of
magnitude of G1 is 10 kN.

1.2 Rotary Steerable Specifications

This work focus on BHAs equipped with point-the-bit rotary steerable systems. The most part
of borehole drilled by means of RSS have sections of diameter from 61/4 to 121/4 inches. The real
dimensions of steerable systems are generally well-kept secrets. However manufacturers specify
the stiffness of their systems in term of equivalent drill collar, i.e., the RSS is assimilated to a
pipe of internal diameter di and external diameter de. Table 3 summarizes point-the-bit systems
specifications for such borehole size, these ranges are suggested by several field data as well as
specifications given by manufacturers.

The BHA beam model involves several parameters to describe the complete geometry of the
rotary steerable system. Relying on several field observations, some additional assumptions can
be emitted about the distances λi. Indeed, the two distances λ2 and λ4 are commonly equal while
the force F̆ is usually applied at the middle of the segment λ3 of the BHA. We obtain thus the two
new relations

κ4 = κ2 (73)

Λ = κ2 +
κ3

2
(74)
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Hole Size (in) 61/4 81/2 81/4

di (mm) 31.8− 44.5 41.3− 63.5 50.8− 71.5

de (mm) 120.7− 133.4 171.5− 193.7 209.6− 269.9

` (m) 03− 10

w (N/m) 0775− 1034 1563− 2207 2392− 4330

EI/w (×103 m3) 2.8− 3.1 5.6− 6.6 08.2− 12.6

Υ 003− 120 005− 245 008− 470

Table 3: Range of amplitude of the BHA specifications (density is taken as ρ = 8000 kg/m3)

Meaning that the relation (66) becomes

κ1 + 2Λ = 1 (75)

Usually the segment of the BHA joining the bit to the second stabilizer is smaller than the segment
joining the two stabilizers. In this work we consider ranges from 0 to 0.4 for the dimensionless
length κ1, corresponding to a dimensionless position of the RSS actuator Λ varying between 0.3
and 0.5, while the dimensionless length κ2 runs from 0 to 0.3.

1.3 Control Parameters

Drillers can only acts on two parameters during drilling, the weight-on-bit W through the
tension applied at the hook and the transverse force F̆ applied by the actuator of the RSS. The
minimum WOB is defined so that the axial penetration occurs in Regime II, i.e., it should ideally
be greater than the threshold force G1 = W∗. It is thus function of the drill bit properties and
the rock. On the opposite, the maximum WOB that can be applied is defined based on buckling
considerations and is conditioned by the stiffness of the steerable system. Others considerations
about bit cleaning, vibrations, rate of penetration, etc. can also influence the range of weight-on-bit
applied.

The transverse force used to bend the transmission shaft is generally applied and controlled
by means of a hydraulic system. The maximum force that can be applied as well as the accuracy
with which it is applied are thus dependant to the specifications of this hydraulic system. Usually
the hydraulic system embedded is function of the bit diameter and the force F̆ is equal to 5, 10,
20 kN for 61/4, 81/2 and 121/4 bit size, respectively.

Hole Size (in) 61/4 81/2 12

WOB (kN) 050− 150 100− 250 200− 450

Π 04.5− 63.5 04.5− 52.5 04.5− 61.5

F̆ (kN) ±5 ±10 ±20

|Φ| 0− 3

Table 4: Range of amplitude of the control parameters
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1.4 General Comments about the Solution

Regarding the general expression of the equilibrium solution (65), we notice that the curvature
and the penetration inclination have both the same denominator

(
MββMκκ −MβκMκβ

)
. The sign

of this denominator is positive and independent of the magnitude of the parameters governing the
model. The drilling tendency is then entirely controlled by the numerator

(
MββNκ −MκβNβ

)
which appears to be independent of the angular steering resistance χ.

Table 5 summarizes the ranges of amplitude for the parameters governing the solution of the
mathematical model presented in the second part of this work (Mathematical Model).

Hole Size (in) 61/4 81/2 121/4

η 001− 100

χ 10−3 − 50−3

Γ1 4.1− 4.3 0.45− 2.15 0.2− 1.4

Π 04.5− 63.5 04.5− 52.5 04.5− 61.5

|Φ| 0− 3

sin θm 0− 1

Υ 003− 120 005− 245 008− 470

Πc 0.4− 63. 02− 52 03− 61

Ψ 0.004− 22.50 0.01− 9.30 0.007− 7.500

κ1 0.0− 0.4

κ2 0.0− 0.3

Λ 0.3− 0.5

Table 5: Range of amplitude of the governing parameters

2 BHA without Rotary Steerable System (Φ = 0)

The comprehension of the BHA behaviour when no force is developed by the actuator is of
prime importance. Indeed, the solution corresponding to Φ = 0 consists of a simplification of the
general solution (65) since the gravity is the only load acting on the BHA. Moreover, the drilling
tendency of the BHA and how it behaves when the RSS is not activated are also significant from
a directional driller perspective.

In this context, the equilibrium solution is computed considering Φ = 0 in the general so-
lution (65) and the expressions of the F ’s and M’s coefficients given in Table 1. This solution
(κs, βs) or equivalently (κs, ψs) is determined for the two boundary conditions considered at the
upper stabilizer, either blocked (κb, ψb) or free rotation (κf , ψf ) relative to the borehole axis. The
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dimensionless curvature is given by

κb = −

(
ηΨ(1− 3κ1)κ2

1 + 6
(
κ3

1 + 3κ2
1 + 3κ1 − 1

))
sin θm

12Υ
(

2ηΨ2χκ2
1 + 3Ψ

(
ηκ1 + 2χ(κ1 + 1)

)
+ 6
) (76)

κf = −

(
ηΨ
(
κ2

1 − 3κ1 + 1
)
κ2

1 + 6
(
κ2

1 + 3κ1 − 1
))

sin θm

4Υ
(
ηΨ2χ(4− κ1)κ2

1 + 3Ψ
(
η(2− κ1)κ1 + 2χ(κ1 + 2)

)
+ 18

) (77)

while the bit tilt is given by

ψb =

(
χΨκ1

(
2κ2

1 + 3κ1 − 1
)

+
(
3κ2

1 + 3κ1 − 1
))

sin θm

4Υ
(

2ηΨ2χκ2
1 + 3Ψ

(
ηκ1 + 2χ(κ1 + 1)

)
+ 6
) (78)

ψf = −

(
χΨκ1

(
κ3

1 − κ2
1 − 9κ1 + 3

)
+ 3

(
κ3

1 − κ2
1 − 3κ1 + 1

))
sin θm

4Υ
(
ηΨ2χ(4− κ1)κ2

1 + 3Ψ
(
η(2− κ1)κ1 + 2χ(κ1 + 2)

)
+ 18

) (79)

2.1 Drilling Tendency

Regarding the expressions (76) and (77) of the dimensionless curvature κs, it is now obvious
that the drilling tendency is independent of the angular steering resistance χ. Moreover, it appears
that the sign of the curvature is entirely governed by the only two numbers ηΨ and κ1. As shown
in Figure 19, two distinct regions can be identified in the space defined by these two numbers
(κ1, ηΨ). The boundaries between the regions can be derived analytically for the two limiting
cases:

• If the rotation of the upper stabilizer is blocked, any combination of the numbers ηΨ and κ1

complying with the relation

ηΨ =
6
(
κ3

1 + 3κ2
1 + 3κ1 − 1

)
κ2

1(3κ1 − 1)
(80)

corresponds to a curvature κb null, i.e., to a holding assembly. In Figure 19(a), we observe
a window of the parameter κ1 in which the borehole curvature is always negative regardless
of the magnitude of the number ηΨ. Indeed, for a range of the parameter

κ1 ∈
[

3
√

2− 1;
1

3

]
' [0.260; 0.333] (81)

the assembly is always characterised by a dropping tendency.

• If the upper stabilizer is free to rotate, the combination the numbers ηΨ and κ1 corresponding
to a curvature κfs null is

ηΨ = −
6
(
κ2

1 + 3κ1 − 1
)

κ2
1

(
κ2

1 − 3κ1 + 1
) (82)

In Figure 19(b) now, we observe again a window of the parameter κ1 in which the borehole
curvature is always negative regardless of the magnitude of the number ηΨ. This range of
the parameter κ1 corresponding to a dropping tendency is

κ1 ∈
[

1

2

(√
13− 3

)
;

1

2

(
3−
√

5
)]
' [0.302; 0.382] (83)
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The drilling tendency is then independent of the BHA mean inclination θm, which affects only
the magnitude of the curvature. It means that, for any inclination θm, a combination of the
numbers ηΨ and κ1 complying with the relation (80) or (82), depending of the boundary condition
at the upper stabilizer, always yields to a borehole curvature null. This unintuitive observation can
readily be explained. When the curvature is null, the moment M̂3 acting on the bit is null as well
and the BHA can be viewed as a beam on three supports uniformly loaded by sin θm. Considering
the linearity of the problem if this load is doubled, the reaction F̂2 acting on the bit and the
inclination of the deflection at the bit β are doubled too. This proportionality is also valid from a
bit-rock interaction point of view. Indeed, if the weight-on-bit is constant, β is proportional to d2

considering Equation (51) and d2 is proportional to F̂2 with respect to Equation (47). Meaning that
β and F2 are proportional in the two legs of the model and that it corresponds to an equilibrium
solution.

On the other side, for both boundary conditions, the dimensionless curvature κs is positive
when κ1 tends to zero. Meaning that the BHA is always characterised by a building tendency
when the length λ1 is sufficient small compared to the BHA length `, whatever the magnitude of
the number ηΨ which can be written as

ηΨ = η
`2Wc

EI
(84)

where Wc is the fraction of the weight-on-bit mobilized by the cutting process.

Considering expression (84) we notice that the definition (67) of Ψ can be rewritten as

Wc = Ψ
EI

`2
(85)

which is strangely resembling to the critical load defined by Euler7 for the buckling of homogeneous
and perfectly straight columns. Indeed, the drillstring can be assimilated to a slender beam loaded
by an axial force which is the fraction of the weight-on-bit mobilized by the cutting process.

2.2 Build-Up Rate

The drilling tendency is not the only relevant output of the mathematical model, the magnitude
of the borehole curvature is highly significant for the drilling industry. The parametric analysis
presented below has been conducted considering a 81/2 inches borehole diameter and for the range
of parameters listed in Table 5. In the industry, the radius of curvature is not popular and the
build-up rate or dog leg severity are usually preferred. They are expressed in degrees per 100 feet
(or 30 meters) of borehole drilled and correspond to the rate of change of the inclination of the
tangent to the borehole with the borehole length. Practically, a build-up rate of 1◦ per 100 ft
corresponds to a radius R = 1765 m.

In the following paragraphs, the influence of the main parameters governing the model is
investigated. However, since the magnitude of the borehole curvature is proportional to the sine
of the BHA mean inclination, the influence of the parameter θm is not studied.

2.2.1 Influence of the Parameter κ1

The distance λ1 between the bit and the first stabilizer is of prime importance. BHA assemblies
described by low values of the parameter κ1 are not only mainly characterized by a building
tendency but it also appears that the magnitude of the borehole curvature increases quickly for

7The critical buckling load is given by Euler’s formula:

Fcr = π2EI

`2
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(a) The upper stabilizer is blocked in rotation (κb)

(b) The upper stabilizer is free to rotate (κf )

Figure 19: Sign of the borehole curvature κs in the space (κ1, ηΨ) considering Φ = 0
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values of κ1 approaching zero (see Figure 20, 21, 22 and 23). This observation reflects the behaviour
of the beam model. Indeed, for decreasing values of the parameters κ1, the transversal force acting
on the bit F̂2 increases (see Appendix E), involving an intensification of the the lateral penetration
d2 according to Equation (47) resulting in the growth of the curvature κs.

In the limiting case of κ1 tending to zero, the borehole curvature and the penetration inclination
are independent of the lateral steering resistance and are moreover mainly conditioned by the ratio
between the stiffness and the mean inclination of the BHA

lim
κ1→0

κb =
sin θm

12Υ(χΨ + 1)
(86)

lim
κ1→0

βb =
sin θm

24Υ(χΨ + 1)
(87)

lim
κ1→0

κf =
sin θm

4Υ(2χΨ + 3)
(88)

lim
κ1→0

βf =
sin θm

8Υ(2χΨ + 3)
(89)

Extremely long BHA assemblies compared to the distance between the bit and the first stabilizer
(κ1 � 1) are then always characterised by a building tendency. Furthermore, we observe that the
ratios between the curvature and the penetration inclination are equal and constant for the two
boundary conditions considered at the upper stabilizer

βb
κb

=
βf
κf

= 2 (90)

On the other hand, as soon as the bit and the stabilizer become too close, allow the bit to have
a transverse depth of cut per revolution, d2, and compel the stabilizer to lie on the borehole axis
can not be considered realistic. Limits of the mathematical model are met. Both, the stabilizer
and the bit, have to be viewed as a unique tool.

2.2.2 Influence of the Weight-On-Bit

The influence of the WOB is studied through the dimensionless fraction of the weight-on-bit
mobilized by the cutting process Πc = Π− Γ1. Indeed, it is commonly accepted that the fractions
of the weight-on-bit mobilized by frictional contact between the rock and the bit is readily constant
for a given state of wear (taken here as G1 = 10 kN).

Figure 20 illustrates the effects of the parameters κ1 on the curvature for various values of Πc.
Comparing Figures 20(a) and 20(b), we observe that the solutions are only slightly affected by the
boundary conditions considered at the upper stabilizer. Since these two boundary conditions have
been chosen to bracket the effect of the drillstring above the second stabilizer, it suggests that
considering only the first two stabilisers is probably sufficient to predict the borehole curvature.

Increase of the WOB tends to reduce the magnitude of the borehole curvature and to amplify
the influence of the distance between the bit and the first stabilizer. Especially, for extremely high
values of Πc, the borehole axis becomes straight

lim
Πc→∞

κb = lim
Πc→∞

κf = 0 (91)

On the opposite when the fraction of the WOB mobilized by the cutting process takes extremely
small values compare to the fraction mobilized by frictional contact (i.e., Πc → 0 or Π→ Γ1), the
magnitude of the curvature becomes independent of the steering resistances and is fully conditioned
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(a) The upper stabilizer is blocked in rotation

(b) The upper stabilizer is free to rotate

Figure 20: Effect of the parameter κ1 on the borehole curvature for various Πc and for χ = 1 ,
η = 50 , Υ = 100 and θm = π/4 . The length λ1 and the curvature K are given for a BHA length
` = 6 m
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by the three parameters θm, Υ and κ1

lim
Πc→0

κb = −
(
κ3

1 + 3κ2
1 + 3κ1 − 1

)
sin θm

12Υ
(92)

lim
Πc→0

κf = −
(
κ2

1 + 3κ1 − 1
)

sin θm

12Υ
(93)

Moreover when the length between the first stabiliser and the bit becomes small compare to the
length of the BHA (i.e., κ1 � 1), the curvature of the borehole does not depend on the boundary
condition considered at the upper stabilizer

lim
Πc→0
κ1→0

κb = lim
Πc→0
κ1→0

κf =
sin θm
12Υ

(94)

For moderate values of the angular steering resistance, i.e., for the range of amplitude given
in Table 5, it exists a value of the parameter κ1 for which the curvature can be considered as
independent of the weight-on-bit. Indeed for this value of κ1 , it appears that the curvature is
essentially conditioned by the stiffness Υ while the terms in ηΠc and χΠc can be neglected. This
particular value of κ1 depends on the boundary conditions considered at the upper stabilizer, it
correspond to the third root of the polynomial (95) if the rotation at the upper stabilizer is blocked
and to the second root of the polynomial (96) if the upper stabilizer is free to rotate.

3κ3
1 + 12κ2

1 + 8κ1 − 3 = 0 (95)
−κ3

1 + κ2
1 + 3κ1 − 1 = 0 (96)

The curvature degenerates then to the expression (92) where κ1 is equal to

κ1 =
1

6

(√
21− 3

)
' 0.264 (97)

or to the expression (93) where κ1 is equal to

κ1 =
1

3
+

√
10

3
sin

(
1

3
tan−1

(
3
√

111
))
− 1

3

√
10 cos

(
1

3
tan−1

(
3
√

111
))
' 0.311 (98)

depending on the boundary conditions considered at the upper stabilizer. The curvature is thus
given by

κb = −

(
2
√

21− 9
)

sin θm

108Υ
' −0.0015 sin θm

Υ
(99)

κf ' −0.0025 sin θm
Υ

(100)

2.2.3 Influence of the Stiffness

Effects of the parameter κ1 on the curvature are given in Figure 21 for different values of the
dimensionless stiffness. We notice again that the curvature is only slightly affected by the boundary
conditions considered at the upper stabilizer.

Generally, an increase of Υ (all other parameters being equal) causes a decrease of the curvature.
We notice also a decrease of the dependence on the dimensionless distance between the bit and
the first stabilizer when the stiffness increases. Conversely, for magnitudes of the stiffness met on
the field and for values of the parameters κ1 superior to 0.2, the curvature seems to be essentially
conditioned by the BHA mean inclination and the steering resistances.
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(a) The upper stabilizer is blocked in rotation

(b) The upper stabilizer is free to rotate

Figure 21: Effect of the parameter κ1 on the borehole curvature for various Υ and for χ = 1 ,
η = 50 , Πc = 25 and θm = π/4 . The length λ1 and the curvature K are given for a BHA length
` = 6 m
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Considering now the limiting case of an extremely stiff BHA, the borehole axis degenerates to
a straight line for both boundary conditions considered at the upper stabilizer and for any value
of κ1

lim
Υ→∞

κb = lim
Υ→∞

κf = 0 (101)

On the other side, for low values of the stiffness, two different assemblies (κ1 6=) may produce the
same borehole curvature. In the limiting case of a BHA hugely flexible, the borehole curvature is
independent of the lateral steering resistance but is inversely proportional to Πcχ, meaning large
magnitude of the borehole curvature

lim
Υ→0

κb =
(3κ1 − 1) sin θm

24Πcχ
(102)

lim
Υ→0

κf =

(
κ2

1 − 3κ1 + 1
)

sin θm

4Πcχ(κ1 − 4)
(103)

Moreover, for extremely long BHA compared to the length between the bit and the first stabilizer
(i.e., κ1 � 1), the borehole curvature is independent of any parameters related to the BHA

lim
Υ→0
κ1→0

κb =
sin θm
24Πcχ

(104)

lim
Υ→0
κ1→0

κf =
sin θm
16Πcχ

(105)

2.2.4 Influence of the Steering Resistances

The lateral and the angular steering resistances involves several parameters characterizing the
bit or the interactions between the rock and the different part of the bit. Moreover η and χ
are linked by the relation (71), meaning that a variation of one of these parameters may induce
variations of both steering resistances which are not necessarily of the same magnitude. Considering
independently every parameters (a, b or ξ), we can establish the following relations relating the
variation of this parameter to the variations of steering resistances

• A variation of the bit radius ∆a implies

∆η ∝ −∆a

a2

∆χ ∝ −∆a

a2
(106)

• A variation of the bit gauge ∆b implies

∆η ∝ ∆b

∆χ ∝ b2∆b (107)

• A variation of the ratio ∆ξ implies

∆η ∝ ∆ξ

∆χ ∝ ∆ξ (108)

Considering that the definition of the angular steering resistance (71) involves the length of the
BHA, it appears that a variation ∆` implies

∆η ∝ 0

∆χ ∝ −∆`

`3
(109)
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Finally, in the expressions of the dimensionless curvature (76) and (77), the lateral and angular
steering resistances appear only as coefficients of the parameter Πc meaning that their effects on
the curvature are amplified by large value of the weight-on-bit.

Figures 22 and 23 depict the effects of the parameters κ1 on the curvature for various values of
the steering resistances η and χ, respectively. As expected since η and χ express the difficulty to
steer the bit, an increase of those parameters involves a decrease of the borehole curvature. These
figures confirm that the drillstring above the second stabilizer has a weak influence on the borehole
curvature.

Similarly to the effects of the weight-on-bit, an increase of the lateral steering resistance reduces
the magnitude of the curvature. Figure 22 highlights also that, for κ1 → 0, the borehole curvature
do not depend on η. The lateral steering resistance is the only parameters who does not modify
the intersection of the curve κs(κ1) with the ordinates axis.

For extremely high values of η, it appears that the borehole curvature has a weak dependence
on κ1

lim
η→∞

κb = −κ1(1− 3κ1) sin θm
12Υ(2χΨκ1 + 3)

(110)

lim
η→∞

κf = −
κ1

(
κ2

1 − 3κ1 + 1
)

sin θm

4Υ
(
χΨ(4− κ1)κ1 + 3(2− κ1)

) (111)

and BHA assemblies are always characterized by a dropping tendency for κ1 < 0.333 or κ1 < 0.382
depending on the boundary condition considered at the upper stabilizer.

On the opposite for extremely low values of the lateral steering resistance, the borehole curva-
ture is still highly dependent on κ1

lim
η→0

κb = −
(
κ3

1 + 3κ2
1 + 3κ1 − 1

)
sin θm

12Υ
(
χΨ(κ1 + 1) + 1

) (112)

lim
η→0

κf = −
(
κ2

1 + 3κ1 − 1
)

sin θm

4Υ
(
χΨ(κ1 + 2) + 3

) (113)

Influences of the angular steering resistance is similar to the influence of the weight-on-bit. Gen-
erally, an increase of the angular steering resistance involves a decrease of the curvature magnitude.
Especially, for extremely high values of χ, the borehole axis becomes straight

lim
χ→∞

κb = lim
χ→∞

κf = 0 (114)

Figure 23 highlights that the combination of parameters corresponding to a holding assembly is
independent of the angular steering resistance. Which is confirm by the expressions (80) and (82)
corresponding to the boundaries between the regions defining the drilling tendency of the assembly.

2.3 Bit Tilt and Over-gauge

The drilling tendency and the borehole curvature are not the only relevant output of the math-
ematical model. Indeed, the bit tilt ψs (or equivalently the penetration inclination βs) constraints
the magnitude of the borehole diameter through the overgauge factor Ξs, see Equation 1. Since the
clearance between the casing and the borehole is to be filled with cement, an important overgauge
may lead to consequent extra costs.

Figure 24 pictures the evolution of the bit tilt with the dimensionless borehole curvature for
varying values of the dimensionless length κ1. Seeing that this relation has a minor dependence
on the type of boundary condition considered at the upper stabilizer, only the case corresponding
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(a) The upper stabilizer is blocked in rotation

(b) The upper stabilizer is free to rotate

Figure 22: Effect of the parameter κ1 on the borehole curvature for various η and for χ = 1 ,
Πc = 25 , Υ = 100 and θm = π/4 . The length λ1 and the curvature K are given for a BHA length
` = 6 m.
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(a) The upper stabilizer is blocked in rotation

(b) The upper stabilizer is free to rotate

Figure 23: Effect of the parameter κ1 on the borehole curvature for various χ and for η = 50 ,
Πc = 25 , Υ = 100 and θm = π/4 . The length λ1 and the curvature K are given for a BHA length
` = 6 m.
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to the upper stabilizer blocked in rotation is presented. However, the chart corresponding to the
upper stabilizer free to rotate is given in Appendix F.1. Moreover, as the influence of the lateral
steering resistance and the weight-on-bit (or similarly Πc) are similar, only the impact of the last
one is studied.

First, we notice that building tendencies, i.e., positive values of the borehole curvature, corre-
spond mostly to negative values of the bit tilt. Moreover, the magnitude of the bit tilt increases
with the borehole curvature. Meaning also that the magnitude of the bit tilt decreases when the
parameter κ1 increases.

The influence of the dimensionless fraction of the weight-on-bit mobilized by the cutting process
is investigate in Figure 24(a). It appears that the impact of this parameter is mainly noticeable
for high values of κ1, i.e., for dropping assemblies. On the opposite, for positive values of the
curvature, the parameter Πc has a weak influence on the relation between the borehole curvature
and the bit tilt.

Figure 24(b) depicts the effects of the dimensionless stiffness on the evolution of the bit tilt with
the dimensionless borehole curvature. At constant curvature and considering a building assembly,
an increase of the BHA stiffness produces a decrease of the magnitude of the bit tilt. On the other
side, considering now dropping assemblies characterized by a low stiffness, it appears that two
different bit tilts (sometimes of opposite sign) can be obtained for the same borehole curvature
only by changing the magnitude of the parameter κ1, i.e., the distance between the bit and the
first stabilizer or the length of the BHA.

Finally, effects of the angular steering resistance are studied in Figure 24(c). As expected, an
increase of the parameter χ involves not only a decrease of the borehole curvature but also of the
bit tilt. For high values of the angular steering resistance and for positive curvature, two different
curvature of the borehole may be obtained for the same bit tilt only by changing the magnitude of
the ratio κ1. Those effects are obviously amplified by high values of the WOB since the angular
steering resistance appears only as coefficients of the parameter Πc.

3 BHA Equipped with a Rotary Steerable System

Consider now the more complex problem of a BHA equipped with a rotary steerable system. As
mentioned earlier, this parametric analysis is led considering that the actuator exerts the force F̆
equidistantly from the two stabilizers and that the two segments λ2 and λ4 have the same length,
or in dimensionless form κ2 = κ4.

Under these assumptions, the equilibrium solution (65) can be, once again, determined for the
two boundary conditions considered at the upper stabilizer remembering the expressions of the F ’s
andM’s coefficients given in Table 1. However, for brevity considerations and since the previous
section highlighted a weak dependence of the solution on this boundary condition, the solution is
only presented in the case of an upper stabilizer blocked in rotation. The solution corresponding to
the upper stabilizer free to rotate is given in Appendix G.1. In this context, the borehole curvature
can be written as

κb =
CΦ,κΦ + Cw,κ sin θm

CΥ,κΥ
(115)

with the coefficients

CΦ,κ = 3(1− κ1 − 2κ2)

(
ηΨ(κ1 + 2κ2 − 1)κ2

1 + 6
(

1− κ2
1 + κ1(κ2 − 4) + κ2

))
Cw,κ = −2

(
ηΨ(1− 3κ1)κ2

1 + 6
(
κ3

1 + 3κ2
1 + 3κ1 − 1

))
(116)

CΥ,κ = 24
(

2ηΨ2χκ2
1 + 3Ψ

(
ηκ1 + 2χ(κ1 + 1)

)
+ 6
)
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(a) For different values of the parameter Πc

(b) For different values of the dimensionless stiffness Υ

(c) For different values of the lateral steering resistance η

Figure 24: Evolution of the bit tilt with the dimensionless borehole curvature for varying κ1

and considering the upper stabilizer blocked in rotation (χ = 1 , η = 50 , Πc = 25 , Υ = 100 and
θm = π/4 )
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Similarly, the penetration inclination read

βb =
CΦ,βΦ + Cw,β sin θm

CΥ,βΥ
(117)

with the coefficients

CΦ,β = 3(1− κ1 − 2κ2)
(
χΨ(1− 3κ1)κ1 − 4κ1 + κ2 + 1

)
Cw,β = −2

(
χΨ
(

2κ2
1 + 3κ1 − 1

)
κ1 + 3κ2

1 + 3κ1 − 1

)
(118)

CΥ,β = 8
(

2ηΨ2χκ2
1 + 3Ψ

(
ηκ1 + 2χ(κ1 + 1)

)
+ 6
)

While the sign and the magnitude of the coefficients CΦ’s and Cw’s depend widely on the
different parameters of the models, it appears that coefficients CΥ’s are always positive, regardless
to the magnitude of the parameters governing the mathematical model.

Solutions presented in the previous section and corresponding to a BHA without rotary steerable
system can be easily recovered by choosing Φ = 0 in the relations above. The influence of the RSS
is then fully determined by the terms CΦΦ and the complete solution can be viewed as the sum
of two terms: the curvature (penetration inclination) obtained due to the gravity field and the
curvature (penetration inclination) obtained due to the application of the load Φ on the shaft.

3.1 Drilling Tendency

Since the product CΥ,κΥ is always positive, the sign of the borehole curvature and thus the
drilling tendency is entirely conditioned by the numerator of the expression (115). Consequently,
we can identify four distinct behaviours corresponding to the four combinations of signs for the
two coefficients CΦ,κ and Cw,κ

• CΦ,κ > 0 and Cw,κ > 0: the borehole curvature κs is positive for any positive values of the
RSS force, meaning that the assembly is characterized by a building tendency whatever the
magnitude of Φ, which can be written as κs > 0, ∀Φ > 0.

• CΦ,κ > 0 and Cw,κ < 0: the borehole curvature κs is negative for any negative values of the
RSS force, meaning that the assembly is characterized by a dropping tendency whatever the
magnitude of Φ, which can be written as κs < 0, ∀Φ < 0.

• CΦ,κ < 0 and Cw,κ < 0: the assembly is characterized by a dropping tendency for any negative
values of Φ, thus κs < 0, ∀Φ > 0.

• CΦ,κ < 0 and Cw,κ > 0: the assembly is characterized by a building tendency for any negative
values of Φ, thus κs > 0, ∀Φ < 0.

These four behaviours can be associated to four distinct regions in the space (ηΨ,κ1) which are
presented in Figures 25 and 26. The boundaries delimiting the regions are defined by

ηΨ =
6
(
κ2

1 − κ1(κ2 − 4)− κ2 − 1
)

κ2
1(κ1 + 2κ2 − 1)

(119)

ηΨ =
6
(
κ3

1 + 3κ2
1 + 3κ1 − 1

)
κ2

1(3κ1 − 1)
(120)

if the upper stabilizer is considered as blocked in rotation and by

ηΨ =
6

κ2
1

(121)

ηΨ = −
6
(
κ2

1 + 3κ1 − 1
)

κ2
1

(
κ2

1 − 3κ1 + 1
) (122)
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if it is free to rotate. These boundaries are all independent of the angular steering resistance,
the RSS force and the BHA mean inclination. In the first case, the boundary depends on the
parameter κ2 and the second region (defined by CΦ,κ > 0 and Cw,κ < 0) do not exist for low values
of the κ2, see Figure 25(a).

Typical field assemblies used to drill 81/2 inches diameter boreholes are characterized by values
of the product ηΨ fluctuating between 1 and 102 while the dimensionless distance between the bit
and the first stabilizer ranges from 0.025 to 0.2. Considering this window in the space (κ1, ηΨ)
on Figures 25 and 26, it appears that the two coefficients CΦ,κ and Cw,κ are mostly positive. The
behaviour of such an assembly corresponds then, for the most part, to the first region and the
borehole angle builds up for any positive values of the RSS force. However, if the upper stabilizer
is blocked in rotation, two distinct behaviours may occur in this window. Meaning that, even a
weak variation of one of the parameters (κ1, κ2 or ηΨ), may result in a switch from one behaviour
to another.

These results allow us to affirm that the knowledge of the force orientation is not completely
sufficient to establish the drilling tendency. Indeed, considering an assembly characterized by
CΦ,κ > 0 and Cw,κ > 0 (Region I), a downward force (Φ > 0) produces a borehole curvature
positive, or in other words the borehole angle builds up. If for some reasons the values of the
product ηΨ is modified (modification the weight-on-bit, of the rock properties or of the bluntness
of the bit), the assembly can switch to Region IV and, for the same RSS force, produces a borehole
curvature negative. Finally, considering the same assembly (Region I), the sign of the curvature
produced by the application of an upward load (Φ < 0) cannot be deduced from the sign of the
the coefficients CΦ,κ and Cw,κ but depends also on the magnitude of the ratio Φ/ sin θm.

3.2 Build-Up Rate

The parametric analysis presented below has been conducted considering a 81/2 inches borehole
diameter and for the range of parameters listed in Table 5. Despite all the assumptions and
simplifications made, the complete mathematical model remains relatively complex and involves
several parameters. Unlike the parametric analysis led for the simple case of a BHA without
rotary steerable system (see Section 2), the magnitude of the borehole curvature is not directly
proportional to the sine of the BHAmean inclination but result from a balance between the different
load acting on the shaft (the gravity field and the force applied by the RSS ).

Considering that influences of parameters like the weight-on-bit, the stiffness or the steering
resistances keep the same trend than in the precedent analysis (see Section 2) and since the borehole
curvature can advantageously be expressed as (115), the influence of the different parameters is
studied through the three coefficients CΦ,κ, Cw,κ and CΥ,κ. Only the parameters κ1 is treated
separately, for which the particular behaviour of the BHA for κ1 approaching zero is investigated.

On Figures 27, 28 and 29, values of the numbers κ1 and ηΨ characterizing typical field assem-
blies used to drill 81/2 inches diameter boreholes are framed by a white rectangle.

3.2.1 Influence of the Parameter κ1

Several field data observations and manufacturers specifications suggest that the length between
the bit and the first stabilizer is usually small compared to the length of the BHA assembly.
The general expression of the solution can thus be expand for small values of the parameter κ1,
expression (115) of the borehole curvature becomes

κb = κ0
b +
C′Φ,κΦ + C′w,κ sin θm

C′Υ,κΥ
κ1 +O

(
κ2

1

)
(123)
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(a) The parameter κ2 is equal to 0.05

(b) The parameter κ2 is equal to 0.25

Figure 25: Sign of the coefficients CΦ,κ and Cw,κ and identification of the four regions in the space
(κ1, ηΨ) considering the upper stabilizer blocked in rotation
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Figure 26: Sign of the coefficients CΦ,κ and Cw,κ and identification of the four regions in the space
(κ1, ηΨ) considering the upper stabilizer free to rotate
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while the penetration inclination can be expressed as

βb = β0
b +
C′Φ,βΦ + C′w,β sin θm

C′Υ,βΥ
κ1 +O

(
κ2

1

)
(124)

Where κ0
b and β0

b are the limit borehole curvature and penetration inclination, respectively, for κ1

tending to zero

κ0
b = lim

κ1→0
κb

=
3
(
1− κ2 − 2κ2

2

)
Φ + 2 sin θm

24Υ(χΨ + 1)
(125)

β0
b = lim

κ1→0
βb

=
3
(
1− κ2 − 2κ2

2

)
Φ + 2 sin θm

48Υ(χΨ + 1)
(126)

which are independent of the lateral steering resistance. Similar expressions of the borehole cur-
vature and the penetration inclination can be written if the second stabilizer is free to rotate.
Coefficients C′κ’s and C′β ’s are given in Appendix G.2 for both boundary conditions.

Like the curvature and the penetration inclination, the ratio κs/βs can be written as a series
expansion

κb
βb

= 2 + Gbκ1 +O
(
κ2

1

)
(127)

κf
βf

= 2 + Gfκ1 +O
(
κ2

1

)
(128)

where the two coefficients Gb and Gf are expressed as

Gb =
3Φ(1− 2κ2)(χΨ− κ2) + 4χΨ sin θm

3Φ
(
2κ2

2 + κ2 − 1
)
− 2 sin θm

(129)

Gf = −2χΨ (130)

and are generally non negligible, meaning that the terms associated with Fb andMb in the expres-
sions (49) and (50) of the transverse force and moment acting on the bit do not vanish. Finally,
we notice that the ratio between the curvature and the penetration inclination is also constant and
equal to 2 in the limiting case κ1 → 0. Meaning that the ratio κs/βs is not modified by the RSS
force for this limiting behaviour.

As it has already been pointed out, as soon as the bit and the stabilizer become too close, limits
of the mathematical model are met. Indeed, when κ1 tends to 0, the transverse force acting on
the stabilizer becomes too large to consider no penetration of this one and both, the bit and the
stabilizer, have to be viewed as a unique tool.

3.2.2 Coefficient CΦ,κ

The coefficient CΦ,κ is the only term in the expression (115) of the borehole curvature involving
the parameter κ2, meaning that the influence of the dimensionless length κ2 increases with high
values of the RSS force. Figure 27 illustrates the magnitude of the coefficient CΦ,κ in the space
(κ1, ηΨ) for two distinct values of the parameter κ2 and considering the upper stabilizer blocked
in rotation. The case corresponding to the second boundary condition is treated comparably in
Appendix G.3.

The magnitude of coefficient CΦ,κ tends to decrease for increasing values of the parameter κ2.
More specifically, for typical field assemblies characterized by values of κ2 superior to 0.15, the
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(a) The parameter κ2 is equal to 0.05

(b) The parameter κ2 is equal to 0.25

Figure 27: Magnitude of the coefficient CΦ,κ in the space (κ1, ηΨ) considering the upper stabilizer
blocked in rotation
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coefficient CΦ,κ is always positive. Meaning that the borehole angle builds up for any positive
values of the RSS force (Region I). If the upper stabilizer is free to rotate, typical field assemblies
are always in Region I, regardless to the parameter κ2.

For typical field assemblies, the magnitude of the coefficient CΦ,κ ranges values from −5 to 50
for low values of κ2. While, for high values of this parameter, the magnitude of the coefficient run
from 0 to 10.

Finally, in the limiting case corresponding to a length λ2 null, the reactions Φl and Φr of
the outer housing on the transmission shaft are transferred to the stabilizers and vanish from the
transverse equilibrium (31). In this particular case, the behaviour of the RSS becomes similar to
that of a point-the-bit system positioned between the two first stabilizer.

3.2.3 Coefficient Cw,κ

Figure 28 pictures the magnitude of the coefficient CΦ,κ in the space (κ1, ηΨ) considering
the upper stabilizer blocked in rotation. For values of the parameters characterizing typical field
assemblies, the behaviour of this coefficient is quite similar to that of the coefficient CΦ,κ. Moreover,
those two coefficients range similar magnitudes for comparable combination of the number κ1 and
ηΨ, reinforcing the importance of the ratio Φ/ sin θm in the determination of the drilling tendency.

Figure 28: Magnitude of the coefficient Cw,κ in the space (κ1, ηΨ) considering the upper stabilizer
blocked in rotation

On the other hand, for values of the product ηΨ superior to 103, the behaviour of this coefficient
is highly sensitive to variation of the parameter κ1 and especially around 1/3 (0.382 if the upper
stabilizer is free to rotate). While for low values of this product, the magnitude of Cw,κ has a weak
reactivity to variation of κ1.
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3.2.4 Coefficient CΥ,κ

As it has already been pointed out, the coefficient CΥ,κ is always positive whatever the magni-
tude of the different parameters governing the solution. Moreover, unlike the coefficients CΦ,κ and
Cw,κ appearing in the definition (115) of the borehole curvature, the coefficient CΥ,κ involves the
angular steering resistance. Its expression (116) can advantageously be rewritten as

CΥ,κ = 24
(

2ηΨ2χκ2
1 + 3Ψ

(
ηκ1 + 2χ(κ1 + 1)

)
+ 6
)

= 24
(

2 (ηΨ)
2
ακ2

1 + 3
(
ηΨκ1 + 2ηΨα(κ1 + 1)

)
+ 6
)

(131)

where α is defined as the ratio of the two steering resistances χ and η in order to highlight the
influence of the bit gauge height. Indeed, considering the definition (71) of the angular steering
resistance, the number α can be approximated by

α ' 2

3

(
b

`

)2

(132)

and ranges from 0 to 1 for usual height of the bit gauge.

The magnitude of the coefficient CΥ,κ in the space (κ1, ηΨ) is given in Figure 29 for two
distinct values of the number α and considering the upper stabilizer blocked in rotation. The
case corresponding to the second boundary condition is presented in Appendix G.3. For both
configurations, the magnitude of the this coefficient is significantly higher than those appearing in
the expression of the numerator. Indeed, for typical field assemblies, the two coefficients CΦ,κ and
Cw,κ range both values from −5 to 50 while the coefficient CΥ,κ, widely conditioned by the product
ηΨ, can reach values up to 105.

Considering expression (131), we can affirm that an increase of the ratio b/` involves an increase
of the coefficient CΥ,κ magnitude, and thus, a decrease of the borehole curvature. Moreover, both
extremely short (α→ 0) and long (α� 1) bit gauges do not modify significantly the behaviour of
the coefficient CΥ,κ.

Finally, the wide dependence of the coefficient CΥ,κ on the product ηΨ combine to the fact
that the two other coefficients CΦ,κ and Cw,κ fluctuate slightly for typical field assemblies suggests
that the internal parameters of the RSS (bit-rock interactions and BHA parameters) act on the
magnitude of the borehole curvature essentially through the coefficient CΥ,κ.

3.2.5 Sum Up

Table 6 summarises tendencies of the coefficients Cκ’s for typical field assemblies. Remembering
the general expression (115) of the borehole curvature

κs =
CΦ,κΦ + Cw,κ sin θm

CΥ,κΥ
(133)

Upper arrows (↗) denote positive correlations between the coefficient and the parameter, or in
other words that the coefficient magnitude increases with the considered parameter.

We notice that high values of the product ηΨ will generally lead to low values of the borehole
curvature. Moreover, it appears that the coefficient CΥ,κ depends strongly on this number meaning
that even weak variations of the weight-on-bit, the rock strength or the bluntness of the bit may
lead to significant modification of the borehole curvature. On the other hand, an increase of
the length between the bit and the first stabilizer may lead either to an increase of the borehole
curvature or either to a decrease of this one depending on the other parameters.
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(a) The number α is equal to 0.2

(b) The number α is equal to 0.8

Figure 29: Magnitude of the coefficient CΥ,κ in the space (κ1, ηΨ) considering the upper stabilizer
blocked in rotation
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κ1 κ2 ηΨ α Range Range

CΦ,κ ↘ ↘ ↘ − −5 ∼ 50 0 ∼ 3 |Φ|

Cw,κ ↘ − ↘ − −0 ∼ 15 0 ∼ 1 sin θm

CΥ,κ ↘ − ↗ ↗ 102 ∼ 105 245 ∼ 245 Υ

Table 6: Tendencies and ranges of magnitude of the coefficients Cκ’s for typical field assemblies
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Part IV

Case Study

This section investigates the behaviour of a commercialised RSS. Dimensions and properties
corresponding to this real assembly are introduce in the mathematical model in order to reproduce
the performances predicted by the manufacturer, i.e., the maximum dog leg severity.

Complete design characteristics of rotary steerable system are usually confidential and some
of the dimensions involved in the mathematical model could not be defined accurately. However,
gathering informations provided by main manufacturers of point-the-bit system and through per-
sonal communications, restricted ranges of those parameters have been defined to perform this
study.

Others parameters, like the WOB and the RSS force, can be adjusted by the driller during
drilling to control the geometry of the borehole. However, ranges of those control parameters are
conditioned by assembly properties. While the hydraulic system embedded on the RSS defined the
greatest force applied on the shaft by the actuator, the tension applied at the hook results from
considerations about bit cleaning, vibrations, rate of penetration or buckling of the assembly.

The point-the-bit system investigated here is the Wel-Guide designed by Gyrodata and espe-
cially the 7-100 Series used to drill boreholes of diameter running from 83/8 to 97/8 inches. Similar
studies and conclusions can be made for the 10-300 Series (borehole diameter form 121/4 to 171/2

inches) or for the Geo-Pilot developed by Halliburton.

Specifications of the assembly under considerations are summarized in Table 7. The length of
the RSS is about 25 feet (see Figure 30) while the stiffness of the RSS specified by the manufacturer
is given in terms of equivalent drill collar, i.e., by the two diameters OD and ID. The drilling bit
is a PDC bit with a diameter of 81/2 inches.

Since a weak dependence of the solution on the boundary condition considered at the upper
stabilizer has been highlighted, this brief analysis is only led for the solution obtained in the case
of an upper stabilizer blocked in rotation. Finally, the number ξ characterizing the interactions
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between the rock and the different part of the bit is chosen equal to 75.

Figure 30: Dimensions of the Well-Guide 7-100 Series designed by Girodata and the free body
diagram considered in the mathematical model

RSS Model: Well-Guide

Constructor: Gyrodata

Length 25 ft

OD 71/4 in

ID 21/4 in

2a 81/2 in

2b 91/2 in

Max. WOB 53, 000 lb

Max. RSS force 7.5 kN

Table 7: Specifications of the assembly under consideration

1 Drilling Tendency

In Section 3.1 of the previous part, we conclude that the knowledge of the force orientation is
not completely sufficient to establish the drilling tendency of an assembly. Considering now the
particular configuration defined in Table 7, the influence of the ratio between the RSS force and
the gravity (through the BHA mean inclination) can be highlighted. Figure 31 establishes the
drilling tendency in the space ( F̆ , θm ) for various length between the bit and the first stabilizer,
two distinct values of the length λ2 (see Figure 16) are considered.

For mean inclinations closed to the horizontal, the borehole curvature is mainly positive meaning
that the borehole angles builds up regardless the magnitude of the RSS force. This tendency is
increased by a low value of the length λ2 and by a long distance between the bit and the first
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(a) The length λ2 is equal to 1.25 ft (κ2 = 0.05)

(b) The length λ2 is equal to 3.75 ft (κ2 = 0.15)

Figure 31: Drilling tendency of the assembly under consideration for a WOB of 17.5 ton and
considering the upper stabilizer blocked in rotation
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stabilizer. Finally, results of simulations highlight a weak influence of the weight-on-bit and the
bit height gauge on the drilling tendency.

2 Dog Leg Severity

The hook load and the RSS force are the only parameters that can be tuned during drilling.
These two control parameters are then, from a driller point of view, of prime importance. Figure 32
relates the dog leg severity of the assembly under consideration to the force F̆ exerted by the
actuator of the RSS and to the WOB considering a mean inclination θm = π/8 radian.

Figure 32: Dog leg severity in degrees per 100 feet for the assembly under consideration
(λ1 = λ2 = 3.75 ft )

Usually, the weight applied on bits used to drill boreholes of diameter running from 83/8 to 97/8

inches ranges from 30 to 40 thousands pounds, i.e., from 13.5 to 18 ton. For this window of the
WOB, the mathematical model predicts dog leg severity around 7.5◦/100 ft while the maximum
dog leg severity predicts by Gyrodata for its Well-Guide 7-100 Series is about 7◦/100 ft depending
on drilling conditions, such as the formation characteristics, the bit properties or the WOB.

According to Gyrodata, a wide range of bit can be used with this RSS since the bit is supposed
to drill only on its front face. Meaning that no side cutting action is required. However, the
mathematical model highlights a relatively large dependence of the curvature (and thus of the dog
leg severity) on the bit height gauge. Figure 33 illustrates the impact of this parameter, all other
parameters being equal.

Figure 33(a) reveals that, for the same window of the WOB, halve the height of the bit gauge
results in a substantial increase of the dog leg severity (approximately doubled). On the other side,
double the height bit gauge decrease the magnitude of the borehole curvature, see Figure 33(b).
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(a) The bit height gauge is equal to 4.25 in

(b) The bit height gauge is equal to 17 in

Figure 33: Dog leg severity in degrees per 100 feet (λ1 = λ2 = 3.75 ft and θm = π/8 )
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Those results are naturally in accordance with the conclusions issued in the parametric analysis
presented in Part III. Indeed an increase of the bit gauge height results in an increase of both
angular and lateral steering resistances and thus in the difficulty to steer the bit.

This disagreement in the behaviour of the assembly equipped with extremely short or long bit
gauge is probably due to the modelling of the bit-rock interactions. Indeed, in this model, the bit
is substituted by a point at the extremity of the BHA. Moreover the over-gauge effects between
the bit and the borehole on the bit-rock interface laws is neglected.

3 Bit Tilt and Over-gauge

The impact of the bit gauge height is depicted in Figure 34 which presents the evolution of the
bit tilt and of the over-gauge factor in function of this parameter and for different values of the
RSS force.

(a) Bit tilt

(b) Over-gauge factor

Figure 34: Influence of the RSS force for the assembly under consideration (λ1 = λ2 = 3.75 ft ,
WOB = 17 500 kg and θm = π/8 )
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First we notice that the assumption of small magnitude of the bit tilt required to write rela-
tion (51) is a posteriori fulfilled and that lateral penetration can thus be neglected compared to
the axial penetration (d ' d1).

As expected, bits with extended gauge are characterised by a greater angular restraint leading
to a lower bit tilt. It appears also that the dependence of the bit tilt on the bit height gauge
is mainly significant for low values of b. Moreover, for a given bit (b is constant) and constant
rock properties (ξ is constant), the lateral force acting on the bit is proportional to the bit tilt,
see equation (52). Meaning that the lateral force acting on the bit is proportional to the force
developed by the RSS.

Considering now Figure 34(b), it appears that the over-gauge factor defined by

Ξ =
2

π
ν|ψ| (134)

reaches extremely small values, of the order of 10−3 %, while typical field over-gauge ranges val-
ues from 5 to 10 %. This observation highlights the significance of the over-gauge generated by
vibrations (whirl) which are neglected in this model. Those results do not challenge the validity
of the model which focus on the equilibrium points of the dynamical system while vibrations are
non stationary phenomenon. However, they may justify complementary investigations in order to
determine if directional response of the assembly is not affected by this over-gauge.
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Part V

Conclusion

In this work, a mathematical model of a drilling assembly equipped with a point-the-bit system
has been developed. This model of the near-bit region is based on the theory established by
Detournay (2007) and is composed of three interacting components: (i) the equations governing the
geometrical evolution of the borehole, (ii) the laws that link the kinematical bit-rock penetration
variables to the forces on the bit, and (iii) the relationships between the forces on the bit and the
loads on the drillstring.

The problem is reduced to the context of planar borehole trajectories and to the segment of
the BHA between the bit and the second stabilizer. The outputs of the model are the borehole
curvature and the bit tilt corresponding to the equilibrium points of the evolving system, i.e., to
segments of borehole characterized by a constant curvature and by a constant diameter.

It has been shown that the general solution of the problem can be written as the sum of two
terms: the curvature (bit tilt) due to the gravity field and the curvature (bit tilt) due to the
application of the RSS force on the shaft. Meaning that the knowledge of the force orientation
is not sufficient to establish the drilling tendency of an assembly, which results from the balance
between the gravity effects and the RSS load. Moreover some counter intuitive behaviour may
appear, e.g., the application of an upward force (F̆ < 0) may lead to a positive curvature.

The parametric analysis highlighted the weak dependence of the solution on the boundary
condition considered at the upper stabilizer and suggests that taking into account the only two
first stabilisers is probably sufficient to predict the borehole curvature.

The distance between the bit and the first stabilizer is of prime importance in this model. Both
bit tilt and borehole curvature increase when the ratio λ1/` decreases. Moreover, low values of
this ratio result in an amplification of the impact of the other parameters.

While the drilling tendency of an assembly is independent of the angular steering resistance χ,
it appears that both angular and lateral steering resistances decrease the magnitude of the borehole
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curvature. On the opposite, flexible assembly and low values of the weight-on-bit generate sinuous
boreholes.

Through the study of a commercialised point-the-bit system, we showed that the mathematical
model is able to reproduce the tendencies and the order of magnitudes for the quantities typically
met on the field.

Issues and Possible Contributions

Besides the extension form plane trajectories to the complete 3D problem considering the
whole drillstring and the contacts that may occur between the borehole and the drillstring, the
mathematical model can be improved in different ways.

The main developments should concern the interaction laws. Since lateral forces acting on the
bit and the first stabilizer reach similar order of magnitude, stabilizer/rock interaction laws should
be added to the model in order to characterise the stabilizer penetration into the rock. Also,
over-gauge effects, which alter the contact conditions between the borehole and the bit, should be
considered with attention. This distinction between the bit and the borehole diameters may lead to
non-linear bit/rock interaction laws complicating the model. A future step concerns an extension
of the bit-rock interaction law to account for formation anisotropy and non-homogeneity.

Finally, the modelling of the evolving problem is a prerequisite step towards a better under-
standing of directional drilling and the prediction of borehole trajectories characterised by change
in curvature (either sudden or progressive).
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Part VI

Appendix



A Cutter/Rock Interactions

Richard (1999) showed that the action of a rectangular cutter of width w which is steadily
removing rock over a constant depth of cut d (see Figure A.1) can be dissociate in two independent
processes:

• a pure cutting process taking place ahead of the cutting face;

• a frictional contact process mobilized along the interface between the wearflat and the rock.

The force F acting on the cutter can thus be dissociate in two components F c and F f , acting
on the cutting face and on the wearflat, respectively. Moreover, single cutter experiments in the
ductile mode, i.e., without chipping, indicate that the relationship between the forces applied on
the cutter and the depth of cut d is bilinear.

Two regimes can thus be identified, according to Figure A.1(b) they will be denoted as I and! II.
The first regime is characterized by a progressive increase of the contact forces with the depth of
cut while, in the second regime, the contact forces are fully mobilized.

(a) Force acting on a rectangular cutter removing over a
constant depth of cut d

(b) Relationship (F − d), identification of the two
regimes I and II

Figure A.1: Cutter/rock interaction (Richard, 1999)

Defining by n the direction normal to the velocity of the cutter and by s the direction parallel
to the velocity of the cutter, the two forces F c and F f can be uniquely decomposed in their n and
s components. In regime I, the components of the force F are

F In =

(
%
σ

ε
+ ζ

)
εwd = ζ ′εwd (A.1)

F Is =

(
µ%
σ

ε
+ 1

)
εwd = ζ ′′εwd (A.2)

and in regime II the same relations become

F IIn = σw`+ ζεwd (A.3)
F IIs = µσw`+ εwd (A.4)

where % represents the rate of change of the contact length with d, σ is the contact strength
(i.e., the maximum contact pressure that can be transmitted at the wearflat/rock interface), ε is
the intrinsic specific energy of the rock (i.e., the energy required to remove a unit volume of rock
in the absence of frictional contact), µ is a coefficient of friction and the ζ is a number of order
O (0.1 ∼ 1).
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B The Force Method

As it has already been explained, the force method consists in making the beam isostatic by
releasing appropriate boundary conditions and externalize those by forces. Amplitudes of those ex-
ternal forces are determined by imposing consistent deformations according to the released bound-
ary conditions through a system of equations. For the problem under consideration, the boundary
condition at the first stabilizer is realised and externalised by the force FR. The amplitude of this
reaction is computed so that the deflection in ξ = 1− κ1 is null.

Deflections of the beam have multiple origins. If we denote8 by

• uΦl
the transverse displacement at the stabilizer, i.e., in ξ = 1−κ1, due to the concentrated

load Φl acting in ξ = κ4,

uΦl
= −

Φκ2
1κ2

4

(
2 (κ4 − 1)κ4 + κ2 (2κ4 − 3) + κ3 (2κ4 − 3)

)
(κ3 + κ4 − Λ)

6κ3
(B.1)

• uΦ the transverse displacement at the stabilizer, i.e., ξ = 1 − κ1, due to the concentrated
load Φ acting in ξ = Λ,

uΦ = −Φ

6
Λ2κ2

1

(
(2Λ− 3)κ1 − 3Λ + 3

)
(B.2)

• uΦr
the transverse displacement at the stabilizer, i.e., ξ = 1 − κ1, due to the concentrated

load Φr acting in ξ = κ4 + κ3,

uΦr = −
Φκ2

1

(
2κ2

1 + 2 (κ2 − 1)κ1 − 3κ2

)
(κ3 + κ4)

2
(Λ− κ4)

6κ3
(B.3)

• uw the transverse displacement at the stabilizer, i.e., ξ = 1−κ1, due to the distributed load
sin θm and the boundary conditions at the bit and at the second stabilizer,

uw = −κ1 (κ1 − 1)

24

(
κ1

(
24Υ

(
Θ̂ + ¯̄Θ + ψ − 2θm

)
− sin θm

)
−24

(
Θ̂ + ψ − θm

)
Υ + κ2

1 sin θm

)
(B.4)

• uk the transverse displacement at the stabilizer, i.e., ξ = 1− κ1, due to the kink angle θk

uk = 2θkΥ
(
κ2

2 + (2κ3 + 2κ4 − 1)κ2 + κ2
3 + (κ4 − 1)κ4 + κ3 (2κ4 − 1)

)2

(B.5)

• uFR
the transverse displacement at the stabilizer, i.e., ξ = 1 − κ1, due to the concentrated

load FR acting in ξ = 1− κ1,

uR = −FR
3

(
κ2

2 + (2κ3 + 2κ4 − 1)κ2 + κ2
3 + (κ4 − 1)κ4 + κ3 (2κ4 − 1)

)3

(B.6)

we can determine the force FR so that the transverse displacement at the stabilizer is null:

uΦl
+ uΦ + uΦr + uw + uk + uFR

= 0 (B.7)

This linear equation in FR, which involves the superposition principle, can only be written under
the assumptions of small rotations and small displacements by reference to an initial configuration.

8Displacements are only given for the case of a beam fixed at both end. The case of the beam fixed at one end
and simply supported at the other one is treated equally.
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Finally we obtain an expression of the reaction FR, that is easier expressed as a sum of five
terms like it is for the generalized efforts acting on the bit:

FR = RbΥ
(

Θ̂ + ψ − θm
)

+RsΥ
(

¯̄Θ− θm
)

+RkΥθk +Rw sin θm +RΦΦ (B.8)

The R’s coefficients are given in table B.1.

Blocked rotation Free rotation

Rb − 3

κ2
1(1− κ1)

− 6 (κ1 − 2)

κ2
1

(
κ2

1 − 5κ1 + 4
)

Rs − 3

κ1(1− κ1)2 0

Rk
6

κ1(1− κ1)

6 (κ1 − 3)

κ1

(
κ2

1 − 5κ1 + 4
)

Rw
1

8κ1(1− κ1)

3− 2κ1

4κ1

(
κ2

1 − 5κ1 + 4
)

RΦ for the blocked rotation

−
(Λ− κ4) (Λ− κ3 − κ4)

(
2κ3 (Λ + 3κ4 − 1) + (2Λ− 1)κ4 + κ2 (2Λ + 2κ3 + 4κ4 − 3) + Λ + 2κ2

3 + 4κ2
4

)
2 (1− κ1)3 κ1

RΦ for the free rotation

(3− κ1) (Λ− κ4)
(

Λ2 + Λκ4 − κ2
3 − 2κ2

4 − 3κ3κ4

)
(1− κ1)2 (4− κ1)κ1

Table B.1: Coefficients R’s of the reaction FR

C Coefficients F ’s andM’s when the First Stabilizer is Sup-
pressed

The mechanical problem of the drillsting can also be solved when the central stabilizer is
suppressed, meaning that the point of abscissa ξ = 1−κ1 is not constrained to sit on the borehole
axis. In this case, the solution is immediate and the coefficients F ’s andM’s are numbers except
FΦ andMΦ which are still functions of κ3, κ4 and Λ. Those coefficients are given in Table C.1.

D Simplifications for Stationary Solutions

Stationary solutions are the equilibrium points of the dynamical system corresponding to the
borehole evolution problem

d2Θ

dS2
= F (S) and

dΞ

dS
= G(S) (D.1)

they correspond to segments of borehole characterized by a constant curvatureKs and by a constant
diameter As. In this context of steady state, several equations governing the general problem can
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Blocked rotation Free rotation

Fb −6 −3

Fs −6 0

Fk 0 0

Fw
1

2

5

8

Fr − (Λ− κ4) (Λ− κ3 − κ4) (2Λ + 2κ3 + 4κ4 − 3) −1

2
(Λ− κ4) (Λ− κ3 − κ4) (Λ + κ3 + 2κ4)

Mb 4 3

Ms 2 0

Mk 0 0

Mw − 1

12
−1

8

Mr (Λ− κ4) (Λ− κ3 − κ4) (Λ + κ3 + 2κ4 − 1)
1

2
(Λ− κ4) (Λ− κ3 − κ4) (Λ + κ3 + 2κ4)

Table C.1: Coefficients F ’s andM’s when the first stabilizer is suppressed
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be simplified using the knowledge that the borehole segment between the second stabilizer and the
bit is a circular arc.

D.1 Relations Between Angles and Curvature

Figure D.1 depicts a borehole segment of constant curvature κ, the bit is at the point B while
the second stabilizer is at the point A. The amplitude of the angles α1 and α2 can be deduced
from the chord inclination θm, the inclinations of the borehole at the bit Θ̂ and at the second
stabilizer ¯̄Θ

α1 =
π

2
− Θ̂ + θm (D.2)

α2 =
π

2
+ ¯̄Θ− θm (D.3)

Figure D.1: Relations between angles and curvature in the context of the stationary solution

Moreover, considering that the two sides AO and BO of the triangle AOB have the same
length κ−1, those two angles have the same amplitude. We can thus write the relationship

α1 = α2 (D.4)

⇐⇒ Θ̂ + θm = ¯̄Θ− θm (D.5)

to obtain the expression of the chord inclination

θm =
Θ̂ + ¯̄Θ

2
(D.6)

On top of that, in a triangle, the sum of the amplitudes angles is equal to π

α1 + α2 + κ = π (D.7)

⇐⇒ Θ̂− ¯̄Θ = κ (D.8)
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Combining this relation with the relation (D.6) we finally get

Θ̂− θm =
κ

2
(D.9)

¯̄Θ− θm = −κ
2

(D.10)

Considering the Central Angle Theorem which states that an angle inscribed into a circle
measures half the central angle subtending the same arc, we can write that the inscribed angle α3

measures half the central angle 2π − κ and determine the expression of the kink angle

θk =
κ

2
(D.11)

D.2 Transverse Displacement of the First Stabilizer

Figure D.2: Determination of the lateral displacement δ

The transverse displacement of the first stabilizer can be easily determined considering the
general equation of the circle

(x− xO)
2

+ (y − yO)
2

=
1

κ2
(D.12)

represented in Figure D.2 which is scaled by the length of the BHA segment. The length of the
arc

_

AB is then equal to 1 and we can write

α

2
= arcsin

κ

2
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The coordinates of the circle center are given by

xO = 0, 5 (D.13)

yO = − 1

κ
cos

α

2

= −

√
1− κ2

4
κ

(D.14)

and the equation (D.12) becomes

(x− 0, 5)
2

+

y +

√
1− κ2

4
κ


2

=
1

κ2
(D.15)

The transversal displacement δ corresponds to the ordinate y at the abscissa x = 1 − κ1, the
equation of the circle can be written as

κ =
2δ√(

(1− κ1)
2

+ δ2
)

(κ12 + δ2)

(D.16)

Considering that the curvature of the borehole is extremely small, we can affirm that

δ2 � (1− κ1)
2 (D.17a)

δ2 � κ12 (D.17b)

Equation (D.16) can be expressed as

κ =
2δ

κ1 (1− κ1)
(D.18)

Finally the settlement δ can be approximated by

δ =
κ

2
κ1 (1− κ1) (D.19)

as κ�, we may see that the former assumptions (D.17a) and (D.17b) are precisely met.

E Limiting Behaviour of a Three Supports Beam

The behaviour of the RSS when the length λ1, between the bit and the first stabilizer, decreases
is of primary importance. The goal of this short section is to improve the understanding of
this limiting behaviour of the RSS through the study of a simple beam lying on three supports.
Deflections and support reactions of the beam are approached in the general context of the beam
theory before being transposed to the more specific context of limiting behaviour of the RSS.

E.1 Formulation

The beam presented in Figure E.1(a) is loaded by the weight per unit length, w, while its
rigidity, EI, is constant along the beam. The coordinate system (x, y) is defined with its origin on
the left support and with the x-axis coinciding with the beam. Any deformation of the beam is
reflected by a transverse deflection U(x), taken positive in the direction of the y-axis.
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(a) Beam on three supports uniformly loaded

(b) Cantilever beam with one supports uniformly loaded

Figure E.1: Limiting behaviour of a three supports beam when `2 → 0

Considering that shear deformations can be neglected compare to bending deformations, as it
is usual with circular or tubular cross sections, transverse deflections of the beam are expressed
in the framework of the Euler-Bernoulli theory. According to the assumptions of small rotations
and small displacement by reference to its initial configuration, the elastic response of the beam is
given by the governing equation

EI
d4U

dx4
+ w = 0 (E.1)

which can be integrated in order to obtain the expression of the deflection of the beam

U(x) = − wx4

24EI
+ C4x

3 + C3x
2 + C2x+ C1 (E.2)

This expression involves four integration constants determined based on four boundary conditions.
The slope θ(x), the bending moment M3(x) and the shear force F2(x) of the beam are of prime
importance in the computation of the those integration constants. They are obtained by derivation
of the transverse deflection

θ(x) =
dU

ddx
(E.3)

M3(x) = EI
d2U

dx2
(E.4)

F2(x) = −EI d3U

dx3
(E.5)

The beam presented in Figure E.1(a) involves five boundary conditions

• Two at the left support: the deflection and the moment are both equal to zero;

• Two at the right support: the deflection and the moment are both equal to zero;

• One at the central support: the deflection is equal to zero.
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The beam is overdetermined and we cannot impose the five boundary conditions using only four
integration constants. An alternative is to consider two sub-beams and restore the continuity
by imposing, in addition to the usual boundary conditions, the same rotations and moments at
the junction. Finally we obtain a system of eight equations and eight unknowns, which are the
integration constants of the governing equation. If we denote by U1(x) the deflection of the left
beam of length `1 and by U2(x) the deflection of the right beam of length `2, the eight equations
corresponding to the configuration presented in Figure E.1(a) are

U1(0) = 0 (E.6)

d2U1

dx2

∣∣∣∣∣
x=0

= 0 (E.7)

U1(`1) = 0 (E.8)

dU1

dx

∣∣∣∣
x=`1

=
dU2

dx

∣∣∣∣
x=`1

(E.9)

U2(`1 + `2) = 0 (E.10)

d2U2

dx2

∣∣∣∣∣
x=`1+`2

= 0 (E.11)

U2(`1) = 0 (E.12)

d2U1

dx2

∣∣∣∣∣
x=`1

=
d2U2

dx2

∣∣∣∣∣
x=`1

(E.13)

Transverse deflections of those sub-beams are then given by

U1(x) = −
wx(`1 − x)

(
`31 + `21(`2 + x)− `1

(
`22 − `2x+ 2x2

)
− `22x

)
48EI`1

(E.14)

U2(x) = −
w(`1 − x)(`1 + `2 − x)

(
`31 + `21(3`2 − x) + `1`2(`2 − 3x) + `2x(2x− 3`2)

)
48EI`2

(E.15)

The transverse deflection of the total beam is the combination of the deflection U1(x) for x ∈ [0, `1]
and the deflection U2(x) for x ∈ [`1, `2]. This can be written as

Utot(x) = U1(x) (H0 −H`1) + U2(x) (H`1 −H`1+`2) (E.16)

where H` denotes the Heaviside step function in x = `. Deflections of the beam are presented
in Figure E.2 for different values of the ratio `2/`1 and for two different configuration of the
beam. Figure E.2(a) depicts the behaviour of the three supports beam uniformly loaded shown in
Figure E.1(a). While Figure E.2(b) pictures the behaviour of the beam when a fixed end substitutes
the right support, i.e., if Equation (E.11) is replaced by

dU2

dx

∣∣∣∣
x=`1+`2

= 0 (E.17)

E.2 Limiting Behaviour of the Beam

The goal of this section is to analyse the behaviour of the beam when the length `2 becomes
small compare to the length `1, i.e., when the ratio `2/`1 become smaller than 1 and specifically
when this ratio tends to zero. For both configurations, the rigidity of the right beam segment
increases gradually when the ratio `2/`1 decreases. The influence of the right beam segment on
the left beam segment can be replaced by a torsional spring whose rigidity is proportional to the
rigidity of the right beam segment:

EI

`32
(E.18)

Therefore when the ratio `2/`1 decreases the rigidity of the torsional spring increases gradually
compare to the rigidity of the left beam segment. If we take the limit for `2 → 0, the rigidity of
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(a) Three supports

(b) Three supports and one blocked rotation

Figure E.2: Deflection of the beam for different values of the ratio `2/`1
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the torsional spring tends thus to the infinity and the right beam segment can be finally viewed as
a fixed support.

The limiting behaviour can be obtained taking the limit

Ulim(x) = lim
`2→0

Utot(x) = −wx(`1 − x)2(`1 + 2x)

48EI
(H0 −H`1) (E.19)

Which corresponds exactly to the deflection of the beam presented in Figure 1(b). The central
and right supports degenerate thus to a unique fixed support.

The convergence of the total deflection Utot(x) to Ulim(x) when the length `2 tends to 0 is
presented in Figure E.3. This graph depicts how the error between those two deflections evolves
with the ratio `2/`1. The error is determined by

max
06x6`1

∣∣∣∣Ulim − Utot
Ulim

∣∣∣∣
For both configurations, the error committed by considering the limit solution instead of the general
solution when `1 > 25`2 is already lower than 5%.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

5%

10%

15%

20%

25%

30%

Three supports beam

Two supports and one �xed end beam

Figure E.3: Convergence of the total deflection Utot(x) to Ulim(x) when `2 tends to 0

Considering now the three reactions acting on beam, they are given by the variation of the
shear force F2(x) at supports:

R1 = −EI d3U1

dx3

∣∣∣∣∣
x=0

(E.20)

R2 = −EI

 d3U2

dx3

∣∣∣∣∣
x=`1

− d3U1

dx3

∣∣∣∣∣
x=`2

 (E.21)

R3 = EI
d3U2

dx3

∣∣∣∣∣
x=`1+`2

(E.22)

Rlim = EI
d3Ulim

dx3

∣∣∣∣∣
x=`1

(E.23)
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Reactions for the configuration presented in Figure E.1(a) are shown in Figure E.4 for different
values of the ratio `2/`1, behaviours of the reactions when a fixed end substitutes the right support
are similar.

Figure E.4: Reactions acting on the three supports beam in terms of the ratio `2/`1

Reaction R1 remains relatively constant which means that the left reaction is weakly dependant
on the configuration of the right beam segment. While the central reaction R2 remains positive,
the right reaction R3 changes sign. Both magnitudes of these reactions increase quickly when
`1 > 5`2 and tends to infinity for `2 → 0. On the other side, the sum of these two reactions tends
linearly to the reaction Rlim, i.e., the right reaction of the beam presented in Figure E.1(b). This
observation allows to state that the moment created by the couple of reactions

MR2R3
= −`2R2 = `2R3 (E.24)

has a finite value (regardless to the value of the ratio `2/`1) and tends to the moment Mlim taken
by the fixed end of the beam presented in Figure E.1(b).

F BHA without Rotary Steerable System

F.1 Evolution of the Bit Tilt with the Dimensionless Borehole Curva-
ture, Upper Stabilizer Free to Rotate

In the context of a BHA without RSS and considering that the upper stabilizer is free to
rotate, the relation between the bit tilt and the dimensionless curvature of the borehole is depicted
in Figure F.1.
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(a) For different values of the parameter Πc

(b) For different values of the dimensionless stiffness Υ

(c) For different values of the lateral steering resistance η

Figure F.1: Evolution of the bit tilt with the dimensionless borehole curvature for varying κ1 and
considering the upper stabilizer free to rotate (χ = 1 , η = 50 , Πc = 25 , Υ = 100 and θm = π/4 )82



G BHA Equipped with a Rotary Steerable System

G.1 Expression of the Borehole Curvature and the Penetration Inclina-
tion, Upper Stabilizer Free to Rotate

Considering that the upper stabilizer is free to rotate, the borehole curvature can also be
written as

κf =
CΦ,κΦ + Cw,κ sin θm

CΥ,κΥ
(G.1)

with the coefficients

CΦ,κ = 3(1− κ1 − 2κ2)2
(

6− ηΨκ2
1

)
Cw,κ = −2

(
ηΨ
(
κ2

1 − 3κ1 + 1
)
κ2

1 + 6
(
κ2

1 + 3κ1 − 1
))

(G.2)

CΥ,κ = 8
(
ηΨ2χ(4− κ1)κ2

1 + 3Ψ
(
η(2− κ1)κ1 + 2χ(κ1 + 2)

)
+ 18

)
Similarly, the penetration inclination read

βf =
CΦ,βΦ + Cw,β sin θm

CΥ,βΥ
(G.3)

with the coefficients

CΦ,β = 9(1− κ1 − 2κ2)2(χΨκ1 + 1)

Cw,β = 2

(
χΨκ1

(
κ3

1 − κ2
1 − 9κ1 + 3

)
+ 3

(
κ3

1 − κ2
1 − 3κ1 + 1

))
(G.4)

CΥ,β = 8
(
ηΨ2χ(4− κ1)κ2

1 + 3Ψ
(
η(2− κ1)κ1 + 2χ(κ1 + 2)

)
+ 18

)
Analogously to the solution considering the upper stabilizer blocked in rotation, the general

expressions of the solution (G.1) and (G.3) can be expand for small values of the parameter κ1

κf = κ0
f +
C′Φ,κΦ + C′w,κ sin θm

C′Υ,κΥ
κ1 +O

(
κ2

1

)
(G.5)

while the penetration inclination is expressed as

βf = β0
f +
C′Φ,βΦ + C′w,β sin θm

C′Υ,βΥ
κ1 +O

(
κ2

1

)
(G.6)

Where κ0
f and β0

f are the limit borehole curvature and penetration inclination, respectively, for κ1

tending to zero

κ0
f = lim

κ1→0
κf

=
3 (1− 2κ2)

2
Φ + 2 sin θm

8Υ(2χΨ + 3)
(G.7)

β0
f = lim

κ1→0
βf

=
3 (1− 2κ2)

2
Φ + 2 sin θm

16Υ(2χΨ + 3)
(G.8)
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G.2 Coefficients C ′κ’s and C ′β’s

Coefficients C′κ’s and C′β ’s involved in the expressions (123), (124), (G.5) and (G.6) of the
asymptotic behaviour of the solution for small values of the parameter κ1 are given by

C′Φ,κ = 3

(
ηΨ
(

2κ2
2 + κ2 − 1

)
+ 2

(
3χΨ(3κ2 − 2)− 2κ2

2 + 8κ2 − 5
))

C′w,κ = −2 (ηΨ + 8Ψχ+ 6) (G.9)

C′Υ,κ = 48 (Ψχ+ 1)
2

and

C′Φ,β = 3

(
ηΨ
(

2κ2
2 + κ2 − 1

)
+ 2

(
χ2Ψ2(1− 2κ2) +

(
2κ2

2 + 6κ2 − 5
)
χΨ + 7κ2 − 5

))
C′w,β = −2

(
ηΨ− 2χ2Ψ2 + 6χΨ + 6

)
(G.10)

C′Υ,β = 96 (χΨ + 1)
2

if the upper stabilizer is blocked in rotation or by

C′Φ,κ = 3(1− 2κ2)
(
ηΨ(1− 2κ2) + χΨ(5− 2κ2) + 6

)
C′w,κ = 2(ηΨ + 7χΨ + 9) (G.11)

C′Υ,κ = 8(2χΨ + 3)2

and

C′Φ,β = 3(1− 2κ2)

(
ηΨ(1− 2κ2) + 2

(
χ2Ψ2(1− 2κ2)− χΨ(2κ2 + 1) + 3

))
C′w,β = 2(ηΨ + 7χΨ + 9) (G.12)

C′Υ,β = 8(2χΨ + 3)2

if it is free to rotate.

G.3 Coefficients CΦ,κ, Cw,κ and CΥ,κ, Upper Stabilizer Free to Rotate
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(a) The parameter κ2 is equal to 0.05

(b) The parameter κ2 is equal to 0.25

Figure G.1: Magnitude of the coefficient CΦ,κ in the space (κ1, ηΨ) considering the upper stabilizer
free to rotate
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Figure G.2: Magnitude of the coefficient Cw,κ in the space (κ1, ηΨ) considering the upper stabilizer
free to rotate
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(a) The number α is equal to 0.2

(b) The number α is equal to 0.8

Figure G.3: Magnitude of the coefficient CΥ,κ in the space (κ1, ηΨ) considering the upper stabilizer
free to rotate
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