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Abstract

Since its introduction in Goodfellow et al. (2014), the architecture of Generative Adversarial Networks

(GANs) have experienced various evolutions to reach its current state where it is capable to recreate

realistic images of any given context. Those improvements, both in terms of complexity and stability,

enabled successful applications of GANs frameworks in the field of computer vision and transfer learning.

On the other hand, GANs lack of successful applications within the field of Natural Language Processing

(NLP) where models based on Transformers architecture, such as Bidirectional Encoder Representations

from Transformers (BERT) and Generative Pre-Training (GPT), remain the current state-of-the-art for

various NLP tasks.

Given this current situation, this thesis investigates why GANs remain underused for NLP tasks. As

such, we explore some researchers’ proposals within the area of Dialog Systems by using data from the

Daily Dialog dataset, a human-written and multi-turn dialog set reflecting daily human communication.

Moreover, we investigate the influence of an embedding layer of the proposed GAN models. In

order to do so first, we test pre-trained “word-level” embeddings, such as Stanford’s Glove and Spacy

embeddings. Second, we train the model by using our own word embeddings coming from the Daily

Dialog dataset. The Word2Vec algorithm is used in this case. Third, we explore the idea of using

BERT as a contextualized word embeddings. From these experiments it was observed that the use of

pre-trained embeddings, not only accelerates the convergence during the training but also, improves

the quality of the produced samples by the model, to some extents avoiding an early arrival of mode

collapse.

In conclusion, despite their limited success in the NLP area, GAN-trained models offer an interesting

approach during the training phase, as the generator G is able to produce different but potentially

correct response samples and is not penalized by not producing the most likely single correct sequence

of words. This actually follows an important characteristic of the human learning process. Overall, this

thesis successfully explores propositions made to tackle drawbacks of the GAN architecture within the

NLP area and opens doors for critical progresses in the area.
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Chapter 1

Introduction

Conversational agents or dialogue systems are programs that communicate with users through natural

language, which could be speech, text or both1. They are divided into two classes. First, Task-oriented

dialogue agents are used primarily to help the user to complete a task successfully. Current examples

are found in digital assistants such as Google Now, Alexa, Cortana, etc. where task-oriented dialogue

agents can provide information on the weather, traffic status, etc.

Second, Chatbots are systems that can develop extensive conversations and are capable of mimicking

unstructured conversations, also called chit chats, specific to human-to-human interactions. Also,

chatbots can be used in the process of completing a predetermined task but with the specific purpose of

making task-oriented agents more natural.

Within chatbots structure, a specific task, called dialogue response generator, is dedicated to generate

a response utterance both from the dialogue history (previous utterances) and the current query utterance.

This generated response utterance has the characteristic to be not only coherent and fluent, but also

relevant to the given query utterance. Moreover, the response produced by the dialogue response

generator needs to correspond with the information provided in the dialogue history. In conclusion, an

effective chatbot system should be able to generate coherent, informative and diverse responses rather

than generic, short and invariant responses, avoiding as such the safe response problem.

Up to now, neural response generation has benefited from a strong interest from the natural language

research community. The very first approaches were built on sequence-to-sequence learning (Cho et al.,

2014; Sutskever et al., 2014). However, it has been proven that these models tend to suffer from the

safe response problem, failing to produce diverse responses. Next, conditional varitional auto-encoders

(CVAE) models (Shen et al., 2018; Zhao et al., 2017) came up with results that showed an ability to

deal with the problem of the safe response. Nonetheless, similar as the previous case, some studies have

proven that VAE models suffer from the posterior collapse problem (Park et al., 2018; Shen et al., 2018),

according which the decoder ignores the latent variables and therefore, it degrades to a simple recurrent

neural network (RNN) model.

As such, we explore in this work (1) the multi-turn dialogue generator system called DialogWAE, a

novel model trained under adversarial learning, that reported better results than the state-of-the-art

approaches and, (2) the influence on performance of such dialogue system when applying different word

1https://web.stanford.edu/ jurafsky/slp3/24.pdf
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CHAPTER 1. INTRODUCTION 2

vector representations.

As a result of this work, we manage to describe a novel approach for neural dialogue generation and

to evaluate this approach on a popular dialogue data set. In addition, we compare its performance during

experimentations with different word vectors that are the Spacy word vector, our own-trained word

vector and a hybrid one where we tried to use the outputs of a transformer model. Through quantitative

metrics and a qualitative analysis, we demonstrate that the use of a simple word vector trained from the

input data enables the model not only to converge faster but also, to produce informative and coherent

responses in a more diverse way.

This thesis work is organized in the following way:

• Chapter 2 reviews of the main concepts and methods used in this work.

• Chapter 3 describes the architecture of the DialogWAE model, discusses the idea behind its

conception and describes the data set used and, the steps that took place during the preparation

of the training process of each model.

• Chapter 4 presents the details of the results of all the experiments carried on, the model selection

according to specific evaluation metrics and to quantitative and qualitative analysis of the responses

generated by the different models.

• Chapter 5 concludes this thesis by summarizing the work presented in the thesis and by discussing

some ideas to explore in future research.



Chapter 2

Theoretical Background

The objective of this chapter is to describe the different techniques and methods used in this work rather

than offer a complete historical or theoretical background.

2.1 Natural Language Processing

NLP is a branch of the artificial intelligence field that studies the interactions between the computers

and the human language. It deals with the formulation and investigation of computationally effective

mechanisms for the communication between people and machines through natural language, that is, the

languages of the world (english, russian, etc.).

One of the goals of the NLP field is to make computers perform useful tasks for the user through

inputs and outputs in human language like the written text or the speech. Therefore, there are two

large research areas in NLP: Natural Language Understanding (NLU) and Natural Language Generation

(NLG). The former is involved in the identification of the intended semantic of a human language

expression and in the conversion into machine readable format through the use of grammatical rules,

building language metamodels and creating ontologies. NLG, on other hand, is involved in the generation

of coherent and grammatically correct sequences of words from some internal structured representation

into a human readable language.

The architecture of NLG systems falls into two groups: rule-based systems and corpus-based systems.

The former group, conceived since the early days of the NLP field, includes chatbots like ELIZA and

PARRY developed by Weizenbaum (1966) and Colby et al. (1971) respectively. Both are very important

in the history of NLG systems.

The latter group does not use hand-built rules, instead it calculates and develops probabilities for

each word to produce later the conversation. Hence, these systems require large numbers of words to

train. Nowadays, the majority of NLG systems are based on encoder-decoder generators (Sutskever

et al., 2014; Cho et al., 2014), where year after year neural architectures become more sophisticated,

achieving or improving state-of-the-art results (Devlin et al., 2018; Humeau et al., 2019; Brown et al.,

2020).

Moreover, NLG systems can be applied in different applications such as:

3
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Textual summaries - Where the aim of the system consists in processing a large set of data and

creating a subset that represents the relevant information from the given data (Nallapati et al., 2016;

Kryscinski et al., 2019; Liu and Lapata, 2019).

Neural machine translation - Here the system requires understanding a given sequence of words

in one human language and converts it to its equivalent in other language. Some known systems are

Bahdanau et al. (2014); Luong et al. (2015) and Vaswani et al. (2017).

Dialogue generation - The goal of this application is to produce coherent, informative and diverse

responses from a given query utterance (Zhao et al., 2017; Yu et al., 2017). This application interests us

in this work.

2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of artificial neural networks broadly used by the research

community in different tasks. They are an evolution of feed-forward networks, developed to counterpart

the problems involving variable length sequential data such as audio, text, etc. Basically, they are a

network with connections between nodes that form a directed graph along a time sequence (Rumelhart

et al., 1986).

RNNs are used for modeling sequential data where the data element at timestep t of the sequence is

dependent from all the previous data elements until timestep t − 1 in the given sequence. Thus, the

objective of a RNN is to develop the capacity to predict a data element at given timestep t when it

received the entire sequence of length t− 1.

Figure 2.1: One cell of a RNN.

In Figure 2.1, it can be seen an example of one hidden cell of RNN unfolded. The graphical

representation is formalized as follows: xt is the input data at timestep t. Being ot the output at different

timesteps t, it is calculated through the hidden states ht. U,W and V are the weights shared across

the timesteps. And, the hidden states ht are computed using the input data xt at timestep t and the

previous hidden states ht−1 following the equation 2.1, where typically f is a tanh activation function.

ht = f(Uxt +Wht−1) (2.1)
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RNNs were conceived to effective model the input sequential data, typically found in natural language

tasks and used in both NLG and NLU systems.

Moreover, there are two common RNN cells that are being used widely in the research field. Long

short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated recurrent unit (GRU) (Cho

et al., 2014). The former was developed with the idea to counterpart the problem of the vanishing

gradients, a very typical problem in RNNs. And the latter, GRU cells are considered as a light weighted

version of the LSTM cells, that despite the weak performance comparing to LSTM cells, they manage to

achieved great results with less computational complexity.

2.2.1 Gated Recurrent Unit

GRU is the new generation of RNNs, very similar to an LSTM. One of its differences is that it got rid of

the cell state and uses the hidden state to transfer information. Therefore its architecture has only two

gates: (1) a reset gate and (2) an update gate. See Figure 2.2.

Figure 2.2: Representation of GRU unit (Cho et al., 2014).

GRU tackles the vanishing gradient problem through the reset and update gate. Those gates are

basically two vectors that can decide whether the information should be passed to the output or not

(Chung et al., 2014). Another characteristic is that the GRU architecture allows adaptively capture

dependencies of large data sequences without discarding information from previous parts. All thanks

to the gate units that are similar to the LSTM ones. These gates are responsible for regulating the

information to be kept or discarded at each timestep.

Finally, while LSTMs have two different states passed between cells: the cell state and the hidden

state, which carry long and short term memory. GRUs have only one hidden state transferred between

timesteps. This hidden state is capable of maintaining long and short term dependencies at the same

time, due to the restriction mechanisms that the hidden state and input data passes through.
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2.2.2 Regularization Techniques

Overfit and underfit are common problems that a user faces when training a new model. Both problems

are related to the lack of generalization of the model. The former phenomena occurs when the model

begins to memorize the input data rather than learn to recognize specific trends. The latter occurs when

the model cannot capture the characteristics of the input data what leads to misleading predictions.

Therefore, regularization techniques are developed to help increase the model’s ability to output sensible

information of input data that it has never seen before. Three of these techniques are described below.

Dropout

Dropout is nowadays a common regularization technique first introduced by Srivastava et al. (2014),

with the idea to prevent overfitting on the training data. Figure 2.3 shows the concept of Dropout

technique, where in (a) we have a neural network with some hidden layers and in (b) it can be seen

the non-output units of the hidden layers that were frozen, setting their output to 0. This process is

repeated each forward pass where random units are frozen with a p probability. With this technique,

the model reduces inter-dependency between units across layers so that, it becomes more robust since it

is less prone to extract specific trends.

Figure 2.3: Dropout neural net representation (Srivastava et al., 2014).

Batch normalization

Batch normalization is a technique that allows neural networks to train faster and in a more stable

way. Its core idea is to normalize the outputs of the input layer by re-centering and re-scaling the mean

and variance computed on the batch. Batch normalization effectiveness is believed to come from the

reduction of the so called internal covariate shift problem that is defined as the change in the distribution

of network activations due to the change in network parameters during training (Ioffe and Szegedy,

2015). This reduction is calculated through the batch normalizing transformation represented as:

y =
x− E[x]√
V ar[x] + ε

∗ γ + β (2.2)
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where x is the layer inputs, γ and β are trainable parameter vectors of size x.

Early stopping

Early stopping is very simple technique to avoid overfitting. It consists in stopping the training process

the moment values like the validation loss or the accuracy starts increasing or decreasing depending on

the case, while the training loss keeps decreasing.

This algorithm requires the data set to be split into 3 sets: training, validation and testing sets.

While the first set is used to adjust all the trainable parameters of the model, the loss or accuracy results

of the validation set is used as reference during the training (see Figure 2.4) and finally, the testing set

is left to present the results of the evaluation metrics obtained.

Figure 2.4: Early stopping illustration [Source].

2.3 Word Representations

For any model based on neural networks, is necessary to transform the textual information into a

numerical representation so that the network can use it as input or output data, this process is called

tokenization. Roughly, the tokenization process consists in separating the text into tokens by giving a

defined delimiter (space, -, n-characters, etc). This process can be done at three different levels: word,

character and subword (n-characters). Moreover, this is not a trivial procedure given that most common

neural networks architectures (RNN, LSTM, GRU, etc.) receive and process each token from a sentence

in an individual timestep.

Word level tokenization is the most used algorithm that applied to a text corpus, produces different

word-level tokens, forming in turn vocabulary. Actually, word embeddings is not more than a set of

language modeling where words from a vocabulary or in this case tokens, are mapped into vectors of

real numbers.

https://www.doc.ic.ac.uk/~nuric/teaching/imperial-college-machine-learning-neural-networks.html


CHAPTER 2. THEORETICAL BACKGROUND 8

2.3.1 Word embeddings

Along the years, different studies have proven the effect on performance that a words embeddings can

provide to the training process (Bengio et al., 2003; Mnih and Hinton, 2009; Morin and Bengio, 2005;

Mikolov et al., 2013a). Thus, word embeddings represent a key cog in the NLP research field.

A word embedding is composed of vectors that capture the semantic relationships and the different

context of use that a token can have. Nowadays, most of the word embedding techniques are based on

neural network architectures to help capture these semantics.

The word embeddings used in this work are:

Word2Vec It is word embedding algorithm proposed by Mikolov et al. (2013a), which makes use of

unsupervised learning to learn the word associations from a text corpus. As it can be seen in Figure 2.5,

Word2vec uses two model architectures to capture a distributed representation of words: (1) continuous

bag-of-words (CBOW), the faster model to train, that predicts the current word from a given context

window and, (2) continuous skip-gram that predicts the surrounding context window of words given the

current word.

Figure 2.5: Word2Vec models (Mikolov et al., 2013b)

Global vectors Better known as GloVe (Pennington et al., 2014), it is a model that through unsu-

pervised learning learns to capture the distributed representation of the words. The training process is

performed on aggregated global word-word co-occurrence statistics from a given corpus, which results

in linear substructures of the word vector representation (Pennington et al., 2014). In other words,

the training aims to learn word vectors such that the logarithm of the word’s probability equals their

dot-product1.

Spacy This word vector is proposed by Honnibal and Montani (2017) and developed by Spacy2 an

open-source library for NLP tasks. The data set used to train this word vector are the GloVe Common

Crawl1 and OntoNotes-53

1https://nlp.stanford.edu/projects/glove/
2https://spacy.io/
3https://catalog.ldc.upenn.edu/LDC2013T19

https://nlp.stanford.edu/projects/glove/
https://spacy.io/
https://catalog.ldc.upenn.edu/LDC2013T19


CHAPTER 2. THEORETICAL BACKGROUND 9

Designed to be applied in named-entity recognition (NER) tasks, it makes use of convolutional layers

with residual connections and maxout non-linearity to learn the word vector representations. It obtains

a model with better efficiency in terms of balance, size and accuracy than the solutions provided by

bidirectional LSTM models (Honnibal and Montani, 2017).

2.4 Auto-encoders

Auto-encoders are a very popular architecture for neural networks. With the sole objective to copy its

input data to its output4.

The components of its architecture are the encoder and the decoder. During the training time the

encoder learns to encode the original space into a lower dimensional latent space. Then, the decoder

takes this latent space as input and performs a reconstruction to the original space.

Formally, an auto-encoder can be denoted by the combination of the encoder function f and the

decoder function g, where given input x, the corresponding latent space h and the reconstruction result

as x′. We have h = f(x) and x′ = g(h) that is similar to x′ = g(f(x))

The reduced dimension of the latent space h is due to the fact that the model gives priority to

learning the most salient features of input x. This ability to reduce input space makes auto-encoders

suitable for tasks such as “feature learning” (Shi et al., 2015; Cao et al., 2020) or “dimension reduction”

(Wang et al., 2012, 2016).

Popular extensions of this architecture are Variational auto-encoders (VAE) (Kingma and Welling,

2013) and Wasserstein auto-encoders (WAE) (Tolstikhin et al., 2017).

2.4.1 Wasserstein auto-encoders (WAE)

WAE models are proposed as an alternative to the VAE models, given that studies has proven that VAE

models tend to suffer from the so-called posterior collapse problem (Shen et al., 2018; Zhao et al., 2017).

WAE models makes use of Wasserstein distance as regularizer which leads to encoded the training

distribution to match the prior, as opposed to the KL-divergence term used in VAEs.

Figure 2.6: WAE reconstruction cost (Tolstikhin et al., 2017).

4https://www.tensorflow.org/tutorials/generative/autoencoder

https://www.tensorflow.org/tutorials/generative/autoencoder
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WAE models need to minimize two terms: (1) the reconstruction cost and (2) the regularizer

penalizing discrepancy between the prior distribution PZ and distribution produced by the encoder Q.

WAE forces the continuous mixture of the encoded latent space QZ to match PZ , the green zone in

Figure 2.6. This behaviour produces that latent spaces of different examples get a better chance to stay

far from each other, leading to better reconstruction cost (Tolstikhin et al., 2017).

There is another alternative to minimize the reconstruction cost, that is through adversarial learning

proposed by Arjovsky et al. (2017). That will be later reviewed in section 3.1.1.

2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is a deep learning framework based on the minimax two-player

game that has been proposed by Goodfellow et al. (2014).

It is composed of two neural networks, a generator G and a discriminator D that form of a zero-sum

game. And, the training process is perform simultaneously for both networks.

Formally, GANs have been defined as:

min
G

max
D

V (D,G) = Ex∼ pdata(x)[logD(x)] + Ez∼ pz(z)[log (1−D(G(z)))] (2.3)

where we can denote pg as the generator’s distribution over the data x ∈ X. The prior on the input

noise variables is denoted as pz. G(z; θg) represents the mapping to data space, where the generator is a

differentiable function represented by a multi-layer perceptron with parameters θg. And, the second

perceptron is defined as the discriminator D(x; θd) that outputs a single scalar value. D(x) represents

the probability that x was detected as a fake or real sample. The discriminator D is trained to maximize

the probability to detect the correct label to both, the real examples and the ones generated by generator

G. Generator G is trained to minimize the log(1−D(G(z))). Both discriminator and generator follows

the two player minimax game with the given value function V (G,D) (Goodfellow et al., 2014). Therefore,

forming equation 2.3.

Figure 2.7 shows a graphical representation of the training process in the GANs framework.

Overall, GANs are based on training in a “indirect” way through the discriminator D, which in turn

is also updated dynamically. This makes the generator G to be trained to fool the discriminator rather

to minimize the distance of a regularizing function. Which enables the model to learn in an unsupervised

way.

2.6 Transformers

Recurrent neural networks are very popular in the NLP field, being applied in a large number of tasks.

They remain as the way to go in many state-of-the-art approaches. But just as their nature allows them

to process each token in a particular timestep. This in turn, does not allow them to parallelize the

training process. Therefore, they have long training times and they are not able to take advantage of all

the power from a GPU.

Vaswani et al. tackle all this inconveniences with its proposed model called Transformer (Vaswani

et al., 2017). A model based on an encoder-decoder architecture and on attention mechanisms. An
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Figure 2.7: GAN architecture [Source].

important characteristic of Transformers is that input data does not longer required to be fed in sequential

mode. This disables the necessity to process the beginning of a sentence before the end. Therefore, the

Transformer allows for much more parallelization than RNNs what reduces the training time. Also, the

model can learn long-range dependencies, a challenging task for most RNN architectures.

As mentioned, Transformer architecture does not require input data in sequential mode. Nevertheless,

the model requires certain information so that it ca retain the relative position of the words. Positional

encoding is the solution proposed in Vaswani et al. (2017), where a positional encoding vector is included

to the embedding vector. Embeddings vector does not keep the positional information but it encodes

the words in small clusters based on their similarity. Vaswani et al. provided the following formula for

calculating the positional encoding:

PE(pos,2i) = sin(pos/10000
2i

dmodel )

PE(pos,2i+1) = cos(pos/10000
2i

dmodel )
(2.4)

In Figure 2.8 can be seen the Transformer architecture. On left is the encoder part of the architecture

and on the right, the decoder part. In both parts, the initial layer is the Multi-Head attention. This

layer contains 8 heads where each of them consist of four parts: (1) linear layers for query Q, key K and

value V split into the different heads, (2) scaled dot-product attention that enables the model to attend

different words at different positions, (3) the concatenation of the heads and (4) the linear output layer.

The attention function perform at each dot-product attention is

Attention(Q,K, V ) = softmaxk(
QKT

√
dk

)V (2.5)

To denote that in the decoder part, the Multi-head attention layer, makes use of the look-ahead

mask function that is used to mask future tokens in a sequence to prevent positions from attending to

https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian/
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subsequent positions.

Also, one of the key factors of the Transformer models is the use of residual connections that are

connected around each of the sub-layers. Each of the sub-layers output is added to a residual connection

value, to later be normalized.

Figure 2.8: The Transformer - model architecture (Vaswani et al., 2017).

Then, the normalized outputs of the Multi-head attention layers are later used as input to the point

wise feed-forward network, that basically consists of two linear layers with an activation function in

between.

The Transformer follows the same principle as a standard sequence-to-sequence model with attention

mechanism (Bahdanau et al., 2014; Luong et al., 2015). Where the input sequence passes through the

encoder layers, producing an output for each token, that later is passed to the decoder part of the model

to predict the next word.

Vaswani et al. evaluated the Transformer model on neural language translation tasks where surprised

the research community by achieving state-of-the-art results.

BERT: It is model trained to be a language representation (Devlin et al., 2018). It is designed to

pre-train bidirectional representations from unlabeled data, conditioned on the left and right context.

Bert is a well-know model within the NLP community, where researchers used it to apply in various

tasks such as text summarization (Liu and Lapata, 2019) or to develop more complex models like

SciBert (Beltagy et al., 2019), where they fine-tune Bert for sequence tagging, sentence classification

and dependency parsing tasks.
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2.7 Brief Literature overview

As it was stated in section 2.1, the goal of a dialogue response generation system is to generate response

utterance from a given query utterance in a coherent, informative and diverse way while considering the

dialogue history.

Neural dialogue response generation is an active field of research where the NLP community explores

possible solutions by applying deep learning techniques. The initial approaches adopted the auto-encoder

architecture that was applied under the sequence-to-sequence learning (Sutskever et al., 2014; Cho et al.,

2014). They were first introduced for machine translation tasks and soon after, they were implemented

for dialogue response tasks with certain level of success (Sordoni et al., 2015).

Subsequent investigations showed that auto-encoders based models suffered from the so-called safe

response problem, where utterances like “i do not know”, “that’s ok” or “no, thank you” were frequently

generated. To tackle this problem, Sato et al. (2017) developed the idea of incorporating various types

of situations into the training data and Xing et al. (2017) proposed to include information regarding the

topic within the model to generate more informative and diverse responses.

Currently, VAE (Kingma and Welling, 2014) models are one of the most popular architectures for

dialogue response generation. Although, studies have shown that VAE models suffer from the so-called

posterior collapse problem, where the decoder within the model ignores the latent variables. The latter

leads to the degradation of the model to a vanilla RNN model. Nevertheless, researches presented models,

like VHRED proposed by Serban et al. (2016) to tackle the problem by modeling the encoded utterances

of a dialogue through the use of latent variables at multiple levels. Also, Shen et al. (2018) proposed

a collaborative CVAE model which samples the latent variable with a Gaussian noise transformation.

The DialogWAE model intends to overcome the VAE limitations by training the model with adversarial

learning to sample the latent space.

GANs (Goodfellow et al., 2014) architectures turned out to be difficult to adapt to NLP tasks, all due

to the non-differentiable nature of language tokens (Xu et al., 2017; Shen et al., 2017). Ian Goodfellow

himself proposed some ideas to combine GANs with natural language5 and he was even the co-author

of Fedus et al. (2018) where it was proposed to introduce an actor-critic conditional GAN that fills

in the missing token conditioned on the surrounding context. Yu et al. (2017) proposed a model that

induces a sequence-to-sequence model to learn through adversarial learning, by combining GAN with

reinforcement learning (RL) so that the data generator is modeled as a stochastic policy in RL, bypassing

the generator differentiation problem by performing a gradient policy update. However, studies proved

that training with RL can lead models to be unstable due to the high variance of the sampled gradient

(Shen et al., 2017).

5https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative adversarial networks for text/

https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/


Chapter 3

Experimental Setup

In this chapter, the novel approach taken by the DialogWAE model is described. This model reported

results that overcomes the state-of-the-art approaches. Moreover, this chapter also includes a description

of all the required components of the training steps for each of the experiments.

3.1 Model Architecture

3.1.1 DialogWAE Model

In this section, the reasoning behind DialogWAE model is disclosed. Next, each of the model’s component

is going to be described, to later talk about the data set with which the model is trained and the

evaluation metrics used to assess model experimentations. Finally, we describe the implementation of

the model and the training steps took for each experiment.

We begin by defining and formulating the problem that DialogWAE model faces. We have a dialogue

context c fulfill with uk−1 utterances and a response utterance x = uk which represents the next utterance

to predict. The goal is to calculate the conditional distribution pθ(x|c).
Given that x and c are discrete tokens, it is challenging to find a way to pair them directly. So, the

continuous latent variable z is introduced, a variable that represents the high-level representation of

the response utterance. To generate a response we need first to sample a latent variable z from the

distribution pθ(z|c) on the latent space Z and then the response utterance x is decoded from the variable

z with pθ(x|z, c). It follows that the likelihood of a response is

pθ(x|c) =

∫
z

p(x|c, z) p(z|c) dz (3.1)

As the log probability cannot be computed given the impossibility to marginalize z, we can only try

to approximate the posterior distribution of z as qθ(z|x, c) by calculating it with a neural network called

recognition network. Using the approximate posterior, we compute the evidence lower bound:

log pθ(x|c) = log

∫
z

p(x|c, z) p(z|c) dz

≥ l(x, c) = Ez∼ qθ(z|x,c)[log pψ(x|c, z)]−KL(qθ(z|x, c) || p(z|c))
(3.2)

14
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where p(z|c) is the prior distribution of z given context c, that is modeled by the prior network.

Conditional Wasserstein auto-encoders

Thanks to the work of Makhzani et al. (2015); Tolstikhin et al. (2017) and Zhao et al. (2018), it is known

a possible solution to model the distribution of z through adversarial learning from the latent space.

The idea is to sample the prior and posterior over the latent variables from random noise ε with the help

of neural networks. The prior sample z̃ ∼ pθ(z|c) would be generated by generator G from the random

noise ε̃ and the posterior sample z ∼ qφ(z|c, x) is generated by generator Q from the random noise ε.

Both random noises ε and ε̃ are sampled from Gaussian distributions whose mean and covariance are

calculated from c by a feed-forward neural network. The prior network looks like:

z̃ = Gθ(ε̃), ε̃ ∼ N (ε; µ̃, σ̃2I),

[
µ̃

log σ̃2

]
= W̃fθ(c) + b̃ (3.3)

The posterior network looks like:

z = Qφ(ε), ε ∼ N (ε;µ, σ2I),

[
µ

log σ2

]
= Wgφ(

[
x

c

]
) + b (3.4)

where fθ(·) and gφ(·) are feed-forward networks.

The goal is to solve the following problem:

min
θ,φ,ψ

− Eqφ(z|x,c) log pψ(x|z, c) +W (qφ(z|x, c) || pθ(z|c)) (3.5)

where we try to minimize the divergence of pθ(z|c) and qφ(z|c, x) while maximizing the log-probability

to reconstruct a response utterance from the latent variable z. pψ(x|z, c) is the decoder and W (·||·) is

the Wasserstein distance between the normal distributions (Arjovsky et al., 2017).

The whole architecture of the model can be seen in Figure 3.1. The utterance encoder, context encoder

and the response decoder are all RNN. The utterance encoder converts each of the dialogue utterances

into a vector of real values. The context encoder takes as input the concatenation of a dialogue utterance

with its respective floor value, value that represents 1 if the utterance comes from the speaker, otherwise

is 0.

During the generation of a response, the model samples a random noise ε̃ from the prior network

transforming the context dialogue c through matrix multiplications into the mean and covariance. Then,

the generator G takes as input this transformed random noise and generates the latent variable z̃. Finally,

the decoder takes the generated z̃ and produces a response.

During the training of the auto-encoder phase, the model infers a posterior distribution from the

latent variable z ∼ qφ(z|c, x) given the context dialogue c and the response utterance x. The recognition

network transforms the concatenation of x and c through matrix multiplications into the mean and

covariance. ε is the Gaussian noise sampled from the recognition network with the re-parametrization

trick (Kingma and Welling, 2013; Doersch, 2016). Then, generator Q takes as input this Gaussian noise

ε and transforms it into a sample of the latent variable z by using a feed-forward network. Finally, the

response decoder calculates the reconstruction loss from:
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Lrec = −Ez=Q(ε), ε∼RecNet(x,c) log pψ(x|c, z) (3.6)

To complete the GAN architecture, a discriminator D is implemented with a feed-forward network

taking as input the concatenation of z and c and outputting a real value. The discriminator tries to

match the approximate posterior with the prior distributions of z by distinguishing the prior from the

posterior samples. The discriminator D is trained by minimizing the following loss:

Ldisc = Eε∼RecNet(x,c)[D(Q(ε), c)]− E ε̃∼PriNet(c)[D(G(ε̃), c)] (3.7)

Figure 3.1: Architecture of DialogWAE model (Gu et al., 2018).

From now on, this DialogWAE model is considered in this work as the base model when comparing

with the different experiments.

3.2 Dataset

The DialogWAE model and its different modifications would be trained and evaluated on the DailyDialog

(Li et al., 2017) dataset. DailyDialog is a high-quality multi-turn dialog dataset based on human-written

English language that reflects daily communication, covering several topics about daily life. It is manually

labelled towards communications intention and emotion information, making it less noisy from irrelevant

utterances.

Overall, DailyDialog contains 13 118 multi-turn dialogues with an average speaker turns of 8 per

dialogue and 15 tokens on average per utterance.

3.3 Evaluation metrics

The following evaluation metrics are used to assess the performance of DialogWAE model and the

different experiments with word embeddings. The metrics are computed for each query utterance given

10 responses sampled from the model outputs and then, the average result of it is reported.

BLEU score: The BLEU (BiLingual Evaluation Understudy) score is a metric widely use in the NLP

field. It was first developed by Papineni et al. (2002) to evaluate neural machine translations systems but

rapidly adopted in different NLP tasks. It measures the overlaps of the n-grams between the reference

and the sampled hypothesis; the higher the value, the better the performance of the model.
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For this work, we computed the 3-gram BLEU scores, smoothing the generated responses using

smoothing technique 7 (Chen and Cherry, 2014). In addition, from the given 10 sampled responses was

computed the n-gram recall (R) and n-gram precision (P) following Zhao et al. (2017). The F1 score

from n-gram R and P was computed and included in the report.

Furthermore, we must noticed that after implementing the base model and performing a few training

runs, the model was performing differently from expected as we obtained higher BLEU scores that

the ones reported in Gu et al. (2018). As we could not review the quality of the numerous generated

responses, we started a deep investigation, checking all the details of our implementation. Eventually,

we detected the source of the error, located in the version of the NLTK1 library the authors Gu et al.

used. Indeed, they used the version 3.2.5, where a bug in the smoothing function 42 was reported.

Later, we reported this bug to the authors and asked to release an updated version of their article.

Authors answered us that they were aware of the bug but did not plan to release any other version of

their model. Thus, the results reported in Gu et al. (2018) are not included in this work and we report

only the results obtained during our own training passes. Through our investigation, we concluded that

this is not an isolated event as there exists a small number of published articles that, aware or not of

the NLTK library bug, reported BLEU scores with the problematic version 3.2.5. A small list of articles,

collected by us is shown in the appendix A.1.

BOW embedding score: The Bag-of-Words (BOW) embedding metric consists of calculating the

cosine similarity of the reference and the sampled hypothesis. There are three different ways to compute

this metric. The first one, called Average, consists of computing the cosine similarity between the

averaged word embeddings in the two (reference and hypothesis) utterances (Mitchell and Lapata, 2008).

In the second one, Greedy, we greedily match the words of the two utterances based on the computed

cosine similarities and report the average obtained scores (Rus and Lintean, 2012). And the third one,

Extrema, reports the cosine similarity between the largest values from the word embeddings presented in

the two utterances (Forgues et al., 2014). The maximum BOW embedding score from the 10 sampled

utterances, at each evaluation step, for each of the experiments, is reported.

3.4 Methodology

Overall, the experiments that were carried out in this work are the following:

• DialogWAE model: it is considered as the base model and with which the other models are later

compared. This base model already includes GloVe as word vector.

• Spacy word vector: the DialogWAE model uses Spacy as the pre-trained word representations.

• Own-trained word vector: the base model is trained using a pre-trained word vector from the

input data set.

• No pre-trained word vector: the base model initializes the word embedding layer with random

values.

• Bert as word embeddings: the base model is trained using the outputs of the Bert model.
1https://www.nltk.org/
2https://github.com/nltk/nltk/issues/2341

https://www.nltk.org/
https://github.com/nltk/nltk/issues/2341
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3.5 Implementation and training

In this section, the details of the training steps of the DialogWAE model are described. Also, the

different adopted training steps performed for the different experiments are included in this section.

Figure 3.2: Training process (UEnc: utterance encoder; CEnc: context encoder; RecNet: recognition
network; PriNet: prior network; Dec: decoder) K=1, ncritic=5 in all experiments (Gu et al., 2018).

The learning process of the different models was conducted in epochwise form, training the models

until convergence was reached. The training is described in Figure 3.2. The whole process was performed

in two phases: (1) the auto-encoder phase where the reconstructed loss from the decoded responses is

minimized and (2) the GAN phase which focuses on minimizing the Wasserstein distance between the

prior and the posterior distributions over the latent variables.

For the RNN encoders and decoders, the GRU unit (Cho et al., 2014), described in section 2.2.1,

was used. The utterance encoder is a single bidirectional GRU layer (Schuster and Paliwal, 1997) while

the context encoder and decoder layers are unidirectional GRU layers. All the RNN layers have 300

hidden units in each direction. The prior and the recognition networks are typical feed-forward networks

with 200 hidden units.

Generators Q and G, together with the discriminator D, are 3 layers of feed-forward networks with

ReLU as activation function (Nair and Hinton, 2010) and respectively 200, 200 and 400 hidden units.

All initial weights for the feed-forward networks were initialized from a uniform distribution of ±0.02.

Also, we performed a gradient penalty when training the discriminator D as described in Gulrajani et al.

(2017) with the hyper-parameter λ = 10. The maximum number of utterances per dialogue is set to 10

with a maximum utterance length of 40.

All the models were implemented with Pytorch 1.7.13

3https://pytorch.org/docs/stable/index.html

https://pytorch.org/docs/stable/index.html
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Training details of each experiment

All the experimented models were trained in mini-batches of 32 dialogue examples following an end-to-end

learning process. During the auto-encoder phase, the models were trained using SGD activation function

with an initial learning rate of 1.0. This learning rate has a decay of 40% every 10 epoch. On the other

hand, during the GAN phase, the models are updated using RMSprop (Tieleman and Hinton, 2012)

with fixed learning rate of 0.0005 for the generator and 0.0001 for the discriminator.

Base model: This model is the version described in section 3.1.1 (Gu et al., 2018). Therefore, this

model is considered as the control model and serves as a starting point to describe most of the training

processes.

Data pre-processing - When authors of the Dailydialog dataset released the data, they also released

a script that builds and splits the data information into train, valid and test sets with a ratio of 10:1:1

respectively. The full dataset of 13 118 conversations was split into 10 930 conversations for the training

set, and 1 093 for each valid and test sets.

For any NLP tasks the creation of a vocabulary is a compulsory task. To achieve this first, we

applied some pre-processing techniques to our data. As each conversation in the dataset is merged into

a single line using as separator the word “ eou ” (end-of-utterance), we split the conversation at each

appearance of this separator. Afterwards, the whole utterance was transformed to the lower case so that,

words like “church” and “Church” received the same token, as they represent the same domain. Then,

the lower case sentence was tokenized by using the NLTK Word-Punctuation Tokenizer4, turning each

utterance in a set of tokens. Also, as part of the pre-processing, the tokens <s> and </s> were added

to each utterance, indicating the start-of-utterance and end-of-utterance respectively. These tokens are

important given that they allow the model to recognize whether an utterance is complete or not.

Finally, given that we are going to feed several conversations to the model when training, it is

important for the model that we point out when a new conversation begins. This enables the learning

process for each conversation to re-establish. The token that indicates the beginning of a new conversation

is <d>, thus forming the utterance <s> <d> </s>. The latter is added at the top of each conversation.

The resulting conversation looks like the following:

Utterance 1: ‘<s>’ ‘<d>’ ‘</s>’

Utterance 2: ‘<s>’ ‘overseas’ ‘operator’ ‘.’ ‘</s>’

Utterance 3: ‘<s>’ ‘i’ ‘would’ ‘like’ ‘to’ ‘make’ ‘a’ ‘collect’ ‘call’ ‘to’ ‘taipei’ ‘,’ ‘taiwan’ ‘,’ ‘please’ ‘.’ ‘</s>’

Utterance 4: ‘<s>’ ‘your’ ‘name’ ‘,’ ‘please’ ‘.’ ‘</s>’

Utterance 5: ‘<s>’ ‘tim’ ‘chen’ ‘.’ ‘</s>’

Utterance 6: ‘<s>’ ‘what’ ‘” ‘s’ ‘the’ ‘number’ ‘,’ ‘please’ ‘.’ ‘</s>’

Utterance 7: ‘<s>’ ‘the’ ‘area’ ‘code’ ‘is’ ‘2’ ‘,’ ‘and’ ‘the’ ‘number’ ‘is’ ‘2367’ ‘-’ ‘9960’ ‘.’ ‘</s>’

Then, we used the training set to build actually the vocabulary, as it is the most extensive set

regarding to the number of tokens. The raw number of words is 1 469 757 while the number of unique

tokens is 17 716. Therefore, to create the vocabulary, we sort first the tokens according to their frequency

and then, set a limit to the first 10 000 tokens. Despite this cut-off eliminated 7 716 unique tokens, this

4https://www.nltk.org/api/nltk.tokenize.html
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limitation actually removed only 9 931 tokens occurrences given that the deleted tokens had a frequency

of only 1 or 2 words. Therefore, the Out-of-Vocabulary (OOV) rate is 0.006757 indicating that we

eliminated rare tokens that did not bring any useful information to the model learning process.

The resulting vocabulary includes 10 002 tokens given that the auxiliary tokens <pad> and <unk>

were added to the vocabulary. The whole set of auxiliary tokens are the following:

• <s> - represented by 3, means the start-of-

utterance.

• </s> - represented by 4, means the end-of-

utterance.

• <d> - represented by 21, means the beginning

of a new conversation.

• <pad> - represented by 0, used to accommo-

date the utterances of different length sizes.

• <unk> - represented by 1, means the un-

known token that might appear in some utter-

ances due to its rareness and was eliminated

during the cut-off.

Once the vocabulary is built, we proceeded to the encoding of all the utterance’s tokens with their

respective value. Taking the previous conversation example, the encoded conversation would look as

follow:

Utterance 1: [ 3 21 4 ]

Utterance 2: [ 3 1671 3385 2 4 ]

Utterance 3: [ 3 6 60 36 11 113 12 1675 182 11 3434 5 1156 5 75 2 4 ]

Utterance 4: [ 3 30 188 5 75 2 4 ]

Utterance 5: [ 3 2489 1792 2 4 ]

Utterance 6: [ 3 26 10 14 9 248 5 75 2 4 ]

Utterance 7: [ 3 9 794 1654 16 419 5 15 9 248 16 1 61 1 2 4 ]

Let us highlight that the <unk> token replaced the sequences of numbers (namely ‘2367’ and ‘9960’)

found in the utterance 7. This is a clear example of tokens that were suppressed during the cut-off.

Continuing with data pre-processing, each utterance in a conversation must be assigned with its

respective floor value. As mentioned in section 3.1.1, the context encoder layer takes as input the

concatenation of an encoded utterance and its floor value. This value enables the model to learn to

differentiate the type of utterance provided, either a question or a response, to generate later an output

in concordance with the flow of the conversation.

An example of the conversation resulting from all the pre-processing steps is shown below. The floor

value is now added to the encoded utterance array, forming a Tuple5.

Utterance 1: ([ 3 21 4 ], 0)

Utterance 2: ([ 3 1671 3385 2 4 ], 1)

Utterance 3: ([ 3 6 60 36 11 113 12 1675 182 11 3434 5 1156 5 75 2 4 ], 0)

Utterance 4: ([ 3 30 188 5 75 2 4 ], 1)

Utterance 5: ([ 3 2489 1792 2 4 ], 0)

5https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
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Utterance 6: ([ 3 26 10 14 9 248 5 75 2 4 ], 1)

Utterance 7: ([ 3 9 794 1654 16 419 5 15 9 248 16 1 61 1 2 4 ], 0)

Data loader - The way how data is fed to the model is a crucial task by itself. Indeed, to determine

the most optimal way, with minimum padding requirements, comes very useful during the training of

any NLP task, especially models that takes as input variables text data sequences.

Nowadays, most of the trending models like xlnet, bert, roBerta, gpt2, etc., achieve their outstanding

results by feeding their models with a type of sequence bucketing (Khomenko et al., 2016), which is an

algorithm implementation that tries to find the most optimal way to sort the data sequences according

to their length. A visual representation of the sequence bucketing can be seen in Figure 3.3.

DialogWAE model has a similar implementation: it reshuffles the data and filters the sequences to

keep only the ones with length equal or less than the maximum utterance length value established for

the model. With this sequence size threshold the data has now the following length sequences:

Max length Average length

train set 36 8.84

valid set 32 9.06

test set 27 8.74

Table 3.1: Sequence length for the different sets after filtering out utterances greater than maximum
utterance size.

The batch size was set to 32. Therefore, the training set generated 2374 batches and the validation

set 225 batches to be used in the training process. Each batch was also padded to the longest sequence,

using the <pad> token.

Load word embeddings - The authors of DialogWAE model used a pre-trained word vector represen-

tation provided by the Stanford NLP Group6, that is a word vector trained with GloVe algorithm, see

section 2.3.1. The data fed to this algorithm was taken from a Twitter corpus with 2 billions of tweets

with a total of 27 billions of tokens1. The GloVe word vector has a dimension size of 200.

Having the vocabulary already created, the next step consists in looking after the vector representing

the word from the GloVe vector. If the word is not present in the pre-trained vector then a vector with

normal distribution of size 200 is created. Overall, the word ratio that the pre-trained vector could not

cover is 0.032194, for a total of 322 missed words. The complete list of missed words is available in

appendix A.2. Finally, the obtained word vector contains the weights from our vocabulary ready to be

fed into the embedding layer.

Spacy word vector: This model explores the idea of using another, larger, pre-trained word vector

representation to be fed into the embedding layer. The chosen word vector used for this model was

built and trained by Spacy7, a library dedicated to apply NLP techniques at industrial levels. It has a

dimension of 300 and it is described in section 2.3.1.

This word vector representation was trained combining the GloVe Common Crawl1 and OntoNotes-5

datasets to be optimized later for tasks like Part-of-Speech Tags, parser, Named-entity recognition

6https://nlp.stanford.edu/
7https://spacy.io/models/en

https://nlp.stanford.edu/
https://spacy.io/models/en
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Figure 3.3: An example of sequence bucketing, where each sequence is arranged according to its length.

(NER).

The resulting word vector representation is a very light file of 48mb, of only 684 830 tokens but highly

optimized for specific NLP tasks.

Other steps regarding the vocabulary creation, like the pre-processing of the data, data loader or any

other step are similar to the base model. Hence, once the vocabulary is created we continue to build

the embedding layer’s weights by looking for the word representation in the Spacy vector. If the word

from the vocabulary cannot be found, then a vector with normal distribution of size 300 is created to fill

the missed word. Overall, 51 words were not found in the Spacy vector representing a word ratio of

0.005099, most of the missing words were related to punctuation tokens (e.g. ‘..’, ‘::’, ‘>’). The complete

list can be found in appendix A.2.

Own-trained word vector: In this model the objective is to investigate if a simply word embeddings

trained from scratch with our input data is strong enough to achieve results as the base model.

As it was mentioned in Section 2.3.1, the algorithm used to train our own word embedding is

Word2Vec. Thanks to the help of the Gensim library Řeh̊uřek and Sojka (2010), this procedure can be

easily implemented.

Given that the other word embeddings were trained from millions of different documents or text files.

It seemed fair to us to feed the “train, valid and test” datasets to the Word2Vec model, so that it can

capture the context of a word in an optimal way.
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The data pre-processing procedure for the Word2Vec model, consists on applying the NLTK Word-

Punctuation Tokenizer4 where each word and punctuation symbol is converted to tokens and converting

all the sentences into lower case. After tokenizing all the dataset, we reached a total of 1 491 622 tokens,

where 18 725 are unique ones.

To train the Word2Vec model the following parameters were used:

num_features=300 - there is no a firm consensus on the dimension of the word embedding should

have, longer word embeddings do not add enough information and smaller ones are not capable to

represent the semantics well enough as stated in Mikolov et al. (2013a) hence, a range between 100 or

300 should fit our dataset.

train_algorithm=‘CBOW’ - “Continuous Bag-of-Words” as we want our word embedding to learn

the focus of a word given the surrounding words.

window_context=7 - the authors of Word2Vec suggested a window size of 5 for CBOW8 algorithm,

but after several runs the value that fits better our dataset is 7.

min_count_word=2 - the model was setup to ignore words with a total frequency lower than 2. So

that, extremely rare words are not taken into account hence, now the vocabulary has 13 147 words.

The rest of the hyperparameters of the Word2Vec algorithm remained with their respective default values.

The amount training time of our word embedding was about 0h2m:14s spread over 35 epochs, a

relative short time if we compare with the GoogleNews-vectors-negative300.bin.gz 8 word embeddings

that took days to train in the period it was released. Something to take into account as it will be

demonstrated later.

In addition, given that there is not defined way how to measure the quality of a word embeddings for

a small vocabulary, this case less than 15 000 words and given that the most cited article Schnabel et al.

(2015) only works under assumptions that the word embeddings contains millions of tokens. We decided

not to pursue any study about the quality of our trained word embeddings. Nevertheless, we moved

forward to do a visual analysis with the help of t-distributed Stochastic Neighbor Embedding (T-SNE)

algorithm.

The T-SNE algorithm is a nonlinear dimensionality reduction technique that help us visualize high-

dimensional data, Maaten and Hinton (2008). For this purpose we made use of the library Scikit-learn9,

where the function is implemented. The new distribution of our trained embedding is now represented in

2 dimensions, see Figure 3.4. This new dimension allow us to observe how the word embeddings formed

small clusters with similar context words.

In Table 3.2 and Figure 3.5 can be observed the Top-n most similar words for the weekday Monday

and in the figure, the zoomed area where it is located the cluster of the weekdays. This analysis was

performed several times, computing the cosine similarity score for different tokens and zooming to the

area to perform a visual examination as can be observed in Figures 3.6 and 3.7, more results can be

found in the Appendix A.3.

8https://code.google.com/archive/p/word2vec/
9https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure 3.4: T-SNE representation from the trained word embedding, each dot represents a word token.
The selected area in circle represent the zoomed area, see Table 3.2.

Weekdays Cosine Score

wednesday 0.7909

tuesday 0.7161

thursday 0.6577

sunday 0.6496

friday 0.6314

saturday 0.5741

october 0.5453

september 0.5451

2nd 0.5005

Table 3.2: Top-9 most simi-
lar words of ‘monday’ weekday
word.

Figure 3.5: T-SNE visualization from the zoomed area ‘A’, representing
the weekdays.
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Figure 3.6: T-SNE visualization from the zoomed area ‘B’, where plural words related to people are
represented.

Figure 3.7: T-SNE visualization from the zoomed area ‘C’, where different products related to a cuisine
are represented.

Something to remark is that contrary to the previous word embeddings analysed cases, where in the

situation that a token was not found in the corpus vocabulary it was filled with random values, here

as we used the “train, valid and test” datasets to feed the Word2Vec algorithm, all tokens have their

respective value information. The only ones remaining with random values are the auxiliary tokens, like:

<pad>, <unk>, <s>, </s> and <d>, as they do not appear in the dataset they must be manually

added to the embedding layer.

As result, the trained word embeddings has 10 002 tokens, given a shape for the layer of (10002, 300).
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Once we have a trained word embeddings, the procedure to plug in the vector into the embedding

layer is similar to the previous models. Steps like the vocabulary creation, data pre-processing and the

data loader are similar to base model, too.

No pre-trained word vector: The idea behind this model is to train a DialogWAE model without

any pre-trained word embeddings vector. The purpose is to visualize and analyze whether the base

model has the capabilities to perform as well as the models with pre-trained embeddings.

No special procedure was added to the model. Therefore, all the steps followed in the creation of the

base model are repeated here. As this model is a direct replication of the base model, the dimension for

the word embeddings vector was left to 200. Hence, this model has an embedding layer that initializes

with a normal distribution between 0 and 1.

Bert as embedding layer: This model experiments with the idea to use Bert as sort of word

embeddings vector. Given that Bert uses contextualized embeddings generating different outputs for a

word under different contexts. We believe it is interesting to investigate whether the model can feed on

pre-trained Bert’s hidden states.

We were aware that Bert cannot be used for language modeling tasks, given that during the generation

of a new utterance, we require to sample the probability distribution of the next token given the previous

contexts. This is a task that Bert cannot perform due to its bidirectional nature.

Nevertheless, there exists a model called BertForMaskedLM 10. This is actually a Bert model with a

language modeling head on top that, according to Wang and Cho (2019) can be tweaked to generate

one word at a time, in left-to-right order.

Some modifications needed to be set up before we could train the DialogWAE model using Bert as a

pre-trained embeddings. First, the modifications are related to the data where the tokenization must be

in concordance with the Bert model. Therefore, tokens like <pad>, <unk>, <s>, </s> were modified

to [PAD], [UNK], [CLS], [SEP] respectively, to agree the Bert tokenization system.

Second, the data loader was modified so that it can output the attention mask generated by the Bert

Tokenizer11. This is an array filled with 0s or 1s very important to denote the relevant tokens in a input

sequence passed over the Bert model.

10https://huggingface.co/transformers/model doc/bert.html?highlight=mask%20bert#bertformaskedlm
11https://huggingface.co/transformers/main classes/tokenizer.html

https://huggingface.co/transformers/model_doc/bert.html?highlight=mask%20bert#bertformaskedlm
https://huggingface.co/transformers/main_classes/tokenizer.html
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Figure 3.8: Results of the different ways of grouping the hidden states12.

The authors of the Bert model also investigated the use of different hidden states in order to create

a contextualized embedding working as a feature-based approach that can later be used in different

models of diverse NLP tasks. In Figure 3.8 it can be seen the different proposed combinations of the

hidden states presented in Devlin et al. (2018).

We decided to move forward with the combination of the sum of the last four hidden states to create

our contextualized embedding.

12http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/


Chapter 4

Results

In this chapter, the results from the several experiments performed are presented and then, compared.

As it has been mentioned in section 3.2, all the experiments were carried out with the Daily Dialog

dataset. Also, a foreword dialogue was created so that we can let the different models run it in free-mode.

Those results can be seen in appendix A.5.

The first section of this chapter is divided into five subsections where each embedding layer is analyzed

within the base model in order to assess the impact the layer has on the model performance.

First, the results from the base-model are exposed, as they are used as base control. Second, the

description of the results of each embedding is presented. In the second section, all the evaluation metrics

are summarized to have an overview of the results and the impact of the different embedding layers.

GANs architectures tend to be hardware demanding and adding a NLP task only increases the

demand. We came with the solution that we needed to work with Google Colab platform1. Hence the

entire code was written in Colab notebooks and all the models were trained with the GPU randomly

assigned by this free service.

The notebooks can be found in the following link: https://drive.google.com/drive/folders/1

lzG7IZnnFP7mSpkkOw6ri992PLrvpyjf.

Although we used GRU cells with the default parameters to enable the use of CuDNN backend2 for

a faster and optimized training, the times to train a RNN remain extensive. Thus, each model was run

from 3 to 6 times before selecting the one to be described in this chapter.

4.1 DialogWAE Model

In this section, we include the training results as well as the results of the evaluation metrics.

4.1.1 Base Model

Model training and evaluation process

During the training process, the validation loss and the BLEU score are the metrics used to monitor by

the Early Stopping algorithm.

1https://research.google.com/colaboratory/faq.html
2https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#features-of-rnn-functions

28

https://drive.google.com/drive/folders/1lzG7IZnnFP7mSpkkOw6ri992PLrvpyjf
https://drive.google.com/drive/folders/1lzG7IZnnFP7mSpkkOw6ri992PLrvpyjf
https://research.google.com/colaboratory/faq.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#features-of-rnn-functions
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In most general GAN models, the loss value is not a reliable metric when assessing whether training

has converged. Moreover, there is no general consensus regarding the metric to use in order assess when

to stop training a GAN model (Borji, 2019). Nevertheless, Borji (2019) indicate that models trying

to minimize the Wasserstein distance between the distribution of real and generated sequences might

use the loss value, since a reduction in distance value can be interpreted as an improvement towards

convergence. Therefore, the patience parameter of the Early Stopping algorithm was set to 20, enough

epochs to observe whether exists any improvement in either the BLEU score at each evaluation step or

the validation loss.

The whole training process lasted 4h:16m:1s and the model trained for 86 epochs, performing an

evaluation step on the validation set every 4 epochs. In general, each epoch took ∼1m:41s to complete

and the epochs with an evaluation took ∼6m:48s. This long evaluation time is due to the fact that the

BLEU score is computed using the NLTK library. Hence, it does not use the high computing capabilities

of a GPU, making it an expensive procedure in terms of learning time.

Training and validation loss

The training curves can be seen in Figure 4.1. This base model reaches its lowest validation loss at epoch

65 with a value of 2.6226. Around epoch 30 the training loss reaches the level of the validation loss.

Several explanations can justify the initial lower validation loss but overall, the size of the validation

set seems the most reasonable one. Indeed, the validation set is 10 times smaller than the training set,

where one assumes that hard/unique sequences are less present.

Figure 4.1: Training and validation loss evolution from the base-model.

The loss progression from each training step can be seen in Figure 4.2. Both the generator G and

discriminator D begin with a rapid loss increase, going in opposite direction, as expected due to the

adversarial nature of the GAN models. Figure 4.2 shows that after a certain number of steps, the model

stabilizes, letting the generator and discriminator converge to a certain level of equilibrium. Convergence

seems to dissipate slightly in the later epochs where the model starts to overfit.
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Figure 4.2: Loss progression for the discriminator and generator throughout the training steps. On the
left the discriminator’s loss and on the right the generator’s loss.

Evaluation results

The evaluation metrics discussed here represent the quantitative analysis performed during the learning

process.

At each evaluation step, the results for the BLEU and BOW embedding metrics were calculated. BLEU

F1 score was the one used to be monitored by the Early Stopping algorithm as it represents the harmonic

mean between the recall and precision, previously detailed in section 3.3.

The Figure 4.3 shows the evolution of both scores during the training time. If we consider the BLEU

F1 score, the maximum value was obtained at epoch 60, while the minimum validation loss was reached

at epoch 65. This demonstrates the difficulty of choosing which model would be the most optimal.

Figure 4.3: Evaluation metrics for the base model, trained with GloVe word embeddings. On the left,
the BLEU score and on the right, the BOW embeddings score.

Regarding the BOW score, as it was used the GloVe word representation the three different metrics

(extrema, average and greedy) achieved great results, improving slightly thanks to the fact that it

continued training with the model.

Later in this chapter, we compare all the evaluation results of the different models thanks to

quantitative and qualitative analysis.
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4.1.2 Spacy word vector

Model training and evaluation process

The whole training process took 3h:50m:20s and complete 74 epochs, with similar times to the base

model for each epoch and evaluation step.

Training and validation loss

The model reaches its lowest validation loss at epoch 54 with a value of 2.5880 (see Figure 4.4). With

this pre-trained word embeddings this model reached a decent loss with less epochs than the base model.

This improved performance could be attributed to the fact that the Spacy word embeddings contain

more information –a larger dimension– and to its high optimization for different NLP tasks.

Regarding the backpropagated loss through the generator G and discriminator D the loss progresses

with some instability for a short number of training steps. Similarly to the base model, the loss stabilizes

as training increases reaching certain level of equilibrium between the generator and discriminator(see

Figure 4.5).

Figure 4.4: Training and validation loss evolution from the model trained with Spacy word representation.
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Figure 4.5: Loss progression for the discriminator and generator throughout the training steps. On the
left the discriminator’s loss and on the right the generator’s loss.

Evaluation results

The evaluation metrics are shown in Figure 4.6. With respect to the BLEU F1 score we can mention

that it reached the maximum possible value at epoch 28. Comparing with the base model, it achieved

that result relatively faster. When considering the validation loss, the model converge to its minimum

result much before that the base model. However, if we look in more details, at epoch 60, there is

another evaluation step where a relatively similar BLEU F1 score was achieved.

This result arrives a few epochs later than the minimum validation loss is reached. This indicates

that there is an epoch where the model could be optimal too, hence further investigation is needed. A

more detailed review is discussed further in this chapter.

Figure 4.6: Evaluation metrics for the model, trained with Spacy word representations. On the left, we
have the BLEU score and on the right, the BOW embeddings score.

Similarly to the base model, the results for the three metrics (average, extrema and greedy) in the

BOW embedding score, show gradual growth as training increases. Nevertheless, if we compare these

results with the base model, a slightly decrease in performance can be observed, especially on extrema

and greedy metrics.
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4.1.3 Own Trained word vector

Model training and evaluation process

The whole training process took 4h:27m:29s and the model completed 89 epochs.

Training and validation loss

In Figure 4.7, can be appreciated the learning loss curve over the training and validation sets. The

model achieves its lowest value of 2.5640 for the validation loss at epoch 69. The training loss reaches

the level of the validation loss around the epoch 22, which indicates that by using a larger dimension

embedding layer, the model gets to benefit from it. A tendency similar to the word embedding from

Spacy,

Figure 4.7: Training and validation loss evolution from the model with the own-trained word embeddings.

On Figure 4.8 is appreciated the progression of the loss backpropagated for both generator G and

discriminator D. Similar to previous models both losses had their period of instability during the first

training steps, to later approximate to certain equilibrium between the generator and discriminator.

Also, can be observed that having a our own-trained word embedding produces a more stable

backpropagated loss as the graph shows when comparing to the previous models where the convergence

to an equilibrium is not as stable as in this model.



CHAPTER 4. RESULTS 34

Figure 4.8: Loss progression for the discriminator and generator throughout the training steps. On the
left the discriminator’s loss and on the right the generator’s loss.

Evaluation results

As the metrics in Figure 4.9 reflects, the BLEU F1-score reaches its maximum value at epoch 28, far

from the epoch of the minimum validation loss that is 69. Being BLEU score an important metric for

language modeling, both epochs (28 and 69) were analyzed over the testing set and its results discussed

later on the chapter. This situation demonstrates once again the unstable nature of the training process

of GAN networks.

Figure 4.9: Evaluation metrics for the model trained with our own-trained word embeddings. On the
left, the BLEU score and on the right, the BOW embeddings score.

Regarding the BOW embedding metric, the three results (extrema, average and greedy) show a

gradual growth along with the increasing of the training epochs.

At first glance, when we compare these values with the pre-trained word embeddings models they

do not stand out much. This could be a consequence of the size of the corpus in which the own-word

embeddings was trained or the simple fact that the word2vec algorithm is not as strong as the results in

Pennington et al. (2014) suggest.
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4.1.4 No Pre-trained word vector

Model training and evaluation process

The model completed 85 epochs among 4h:4m:55s. Despite the model trained for the same number

of epochs as the base model, the difference in time can be explained due to the randomness from Colab

at the moment of setting the CPU for the virtual machine.

Training and validation loss

The training and validation loss can be observed in Figure 4.10. This model reaches is minimum

validation loss at epoch 65 with value 2.8065.

Unlike previous models that use pre-trained word embeddings, the moment when the training loss

reaches similar levels as the validation loss occurs at epoch 47, relatively late.

Regarding the loss progression, this model reflects the greater instability towards the equilibrium

when comparing to other models (see Figure 4.11).

Figure 4.10: Training and validation loss evolution from the model without any pre-trained word
embeddings.
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Figure 4.11: Loss progression for the discriminator and generator throughout the training steps. On the
left, the discriminator’s loss and on the right, the generator’s loss.

Evaluation results

As the results of the metrics shown in Figure 4.12, the maximum BLEU F1 score was reached at

epoch 32 with value 0.3298. However, this value is the lowest of all the models presented previously, a

result that is explained by the lack of a pre-trained word vector. Similar to previous models (Spacy and

own-trained words vector), the long distance that separates the highest BLEU score with the lowest

validation loss requires further investigation, detailed later in the chapter.

Also, Figure 4.12 shows that, as the training progresses, the BLEU score decreases in all the computed

measures (recall, precision and F1). This behaviour is not reflected in the BOW embedding metric as it

only starts to decrease when the model begins to overfit. This continuous reduction on BLEU score can

be explained by the fact that as the training progresses, the model learns to generate longer responses.

This could reduce the match number of n-grams overlaps from the hypothesis, as the results presented

in appendix A.4 suggest.

Figure 4.12: Evaluation metrics for the model trained without any pre-trained word embeddings. On
the left, the BLEU score and on the right, the BOW embeddings score.
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4.1.5 Bert as embedding layer

Model training and evaluation process

It turns out that the training process for this model is quite extensive, taking approximately ∼40m

to complete one epoch.

Training and validation loss

Since we used Bert as a feature extractor and we plugged it in directly to the model, it can still

benefit from the training process where the DialogWAE model keeps track of the gradients that would

be updated later during the backpropagation of the loss.

Therefore, we decided to take two different approaches on the training process. In the first approach,

the Bert model is not frozen, letting it take advantage of the learning process and the computed loss. In

the second approach, the trainable layers of the Bert model are frozen which indicates that Bert only

will produce the hidden states from its pre-trained weights, forcing the main model to learn how to

handle the outputs from the Bert model.

The training and validation of the first approach can be seen in Figure 4.13. This model trained

for 7h:59m:53s completing 9 epochs. This extensive training time is due to the 143 184 295 trainable

parameters that the model contains due to its combination with the Bert model.

Regardless of the few epochs that this model trained, it was able to reach the validation loss of

0.3278, that is the lowest value from all the models described in this chapter. This great improvement in

loss terms is mainly due to Bert model being able to update its weights at each forward pass, showing

thus its great capacity for adaptation.

Figure 4.13: Training and validation loss evolution from the model using Bert under the first approach.

The losses for the second approach are found in Figure 4.14. In this approach the Bert model was

frozen which left us with 33 669 997 trainable parameters. This reduction enabled us to have shorter

training times for each epoch with ∼23m10s each. Thus, this model completed 18 epochs in 7h:46m:55s.
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The model achieved its lowest validation loss at epoch 16 with value 6.2299. This value is greater

than we expected, being the highest one comparing with rest of the trained models. This clearly shows

us that the DailogWAE model needs to modify its architecture in order to follow this approach. However,

due to the long training times we decided to stop investigating this approach, since it seemed obvious

that the model struggled to handle the contextualized embeddings produced by the Bert model.

Figure 4.14: Training and validation loss evolution from the model using Bert under the second approach.

Evaluation results

Despite the effort in trying to implement the proposed approaches (parallel sequential generation,

sequential generation and parallel generation) expressed in Wang and Cho (2019), the model trained

on the first approach failed to generate relevant sequences of utterances. Indeed, in the majority of

the cases the generated sequences did not follow the context previously given to the model. Thus, the

results of this model are not going to be taken into account when we analyze and compare the results of

all the trained models.

Some examples of the generated responses from this model can be found in appendix A.6.

One can attribute the flaw of the generated responses to the nature of the masked language modeling

that predicts a word given its left and right context. Hence we suggest that in this auto-encoder

context where decode/generate a response from Bert model is still an open question that requires further

exploration which is left for future investigation.

4.2 Comparison of the different approaches

In this section we summarize the results obtained from the different models described previously and

evaluate their performance on the testing set.
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4.2.1 Quantitative analysis

Similarly with the learning process, we sampled 10 responses with greedy decoding so that the randomness

comes from the latent variables.

We present the results of the evaluation step performed over each epoch from each model, see Tables

4.1 to 4.4. Given that BLEU score is the most relevant metric, we used it to justify our model selection.

Finally, Table 4.5 contains the grouped evaluation results of all selected models.

Base model

This model achieved the highest BLEU F1 score and minimum validation loss, in relatively near epochs.

As results indicate in Table 4.1, the model at epoch 60 obtained the highest BLEU score, thus it was

selected as the optimal one.

Epoch
BLEU BOW embedding

R P F1 A E G

60 0.4121 0.2833 0.3310 0.9416 0.6077 0.8664

65 0.4082 0.2781 0.3261 0.9421 0.6090 0.8643

Table 4.1: Evaluation results over epochs 60 and 65 (R: Recall, P: Precision, A: Average, E: Extrema,
G: Greedy).

Spacy word vector

For this model three different epochs were evaluated, where two of them achieved similar results for the

BLEU score and the third was the one with the lowest validation loss.

Epoch
BLEU BOW embedding

R P F1 A E G

28 0.4115 0.2790 0.3283 0.8935 0.5466 0.8124

54 0.4080 0.2745 0.3240 0.8989 0.5474 0.8110

60 0.4014 0.2742 0.3225 0.9014 0.5504 0.8113

Table 4.2: Evaluation results over epochs 28, 54 and 60 (R: Recall, P: Precision, A: Average, E: Extrema,
G: Greedy).

Following the results presented in Table 4.2, model trained at epoch 28 is selected as the optimal one.

Own-trained word vector

This model has the characteristic of having a long distance between the minimum validation loss and the

maximum BLEU F1 score. Results in Table 4.3 shows that the model at epoch 28 is the optimal one.

Epoch
BLEU BOW embedding

R P F1 A E G

28 0.4211 0.2794 0.3312 0.4926 0.2331 0.6289

69 0.4254 0.2719 0.3268 0.4972 0.2280 0.6346

Table 4.3: Evaluation results over epochs 28 and 69 (R: Recall, P: Precision, A: Average, E: Extrema,
G: Greedy).
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No pre-trained word vector

Similar as previous model, this one also has a significant distance between validation loss and BLEU

score. Taking into consideration the results on Table 4.4, we selected model at epoch 32 as the optimal

one.

Epoch
BLEU BOW embedding

R P F1 A E G

32 0.4087 0.2787 0.3274 0.3917 0.2738 0.5924

65 0.4031 0.2772 0.3246 0.3829 0.2646 0.6093

Table 4.4: Evaluation results over epochs 32 and 66 (R: Recall, P: Precision, A: Average, E: Extrema,
G: Greedy).

Table 4.5 shows the performance of the different models on the testing set, where it also was added

the average length of the response generated and the epoch which the model reached those results.

Model
BLEU BOW embedding

L Epoch
R P F1 A E G

Base model 0.4121 0.2833 0.3310 0.9416 0.6077 0.8664 9.1 60

Spacy 0.4115 0.2790 0.3283 0.8934 0.5455 0.8117 10.9 28

Own-trained 0.4211 0.2794 0.3312 0.4926 0.2331 0.6289 10.7 28

No pre-trained 0.4087 0.2787 0.3274 0.3917 0.2738 0.5924 11.8 32

Table 4.5: Performance comparison from the different models (R: Recall, P: Precision, A: Average, E:
Extrema, G: Greedy, L: Average length).

In terms of BLEU score, all models achieved more or less similar values. We denote that the

“own-trained” word vector model where the recall result is slightly higher than the rest of the models.

Both Spacy and our own-trained word vector favored to the model with its large dimension, where

not only it was possible to obtain optimal results within fewer training steps but it also favored the

generation of more extensive responses.

Regarding BOW embeddings metric, the base model achieved the best results. Results can be

explained by the use of the GloVe vector that was pre-trained in a much more extensive corpus.

The model with no pre-trained word vector obtained the worst results, as expected. Although, its

BLEU scores are not too far from the other models. This tells us that the DialogWAE model has a good

architecture capable of taking advantage of adversarial learning and that the boosting in performance a

pre-trained vector can offer does not represent a great part of its achieved results.

4.2.2 Qualitative analysis

In each table, we present three generated responses sampled from the models. In each of them the

informative content of the dialogue context was gradually increased, leaving Table 4.9 with a dialogue

context that is not found in any set (training, validation or testing). As such, we can appreciate the

behaviour of the models reacting to an unknown sequence.
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Context thank you for calling world airline, what can i do for you?

R
e
sp

o
n
se

s

Base model Spacy Own-trained No pre-trained

Ex1: yes. sure. do

you have the reserva-

tion available?

Ex1: what would you

like to have a look?

Ex1: oh, no. i’m sorry

to hear that. what’s

the matter with you?

Ex1: hello, please. may

i help you?

Ex2: yes please go to

the airport.

Ex2: in a single room. Ex2: yes, please fill out

the application form.

Ex2: yes, please. may

i have your name,

please?

Ex3: do i do? Ex3: no, thanks. Ex3: look, it’s just that

i’ve got to go.

Ex3: let me have a look

at the menu.

Table 4.6: Examples of the responses generated by the models.

Context i would like to invite you to dinner tonight, do you have time?

R
e
sp

o
n
se

s

Base model Spacy Own-trained No pre-trained

Ex1: yes. do you want

to go to the concert?

Ex1: what’ would you

like for a drink?

Ex1: oh, yes. i’m sorry

to hear that. but i’m

afraid i can’t find any-

thing to eat.

Ex1: go ahead. what

time do you want to

go?

Ex2: do please take a

seat.

Ex2: of a year, please. Ex2: yes, come in. Ex2: yes. may i have

your name, please?

Ex3: do you want to

go?

Ex3: no, thanks. Ex3: haven’t seen you

for ages?

Ex3: just two weeks

ago.

Table 4.7: Examples of the responses generated by the models.

Context I heard you have found a new job. eou Yes, I am now working in a company . eou So you’re quite

happy with your new job?

R
e
sp

o
n
se

s

Base model Spacy Own-trained No pre-trained

Ex1: i like it very

much.

Ex1: that’s the most

important thing to me.

Ex1: i’m not interested

in working with my

company. i’m not sure

i’ll be able to take care

of it.

Ex1: not at all?

Ex2: how do you plan

to work?

Ex2: i do, but i have to

work overtime.

Ex2: what a problem. Ex2: i don’t know. i

am going to be late for

a long time.

Ex3: yes, i know, i am. Ex3: yes, i’m going to

have a try. i need to

get a new job.

Ex3: she had a very

good reputation.

Ex3: not at all of our

company. we’ve got to

go to the beach.

Table 4.8: Examples of the responses generated by the models. eou indicates a change of turn for the
speaker.
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Context how much for the extra luggage? eou the price is $100 per suitcase.

R
e
sp

o
n
se

s

Base model Spacy Own-trained No pre-trained

Ex1: ok? would you

like the money in the

room?

Ex1: what is the price

rate for this position?

Ex1: ’s good. Ex1: do you want to go

with me?

Ex2: please drive a taxi

station.

Ex2: in a single room,

sir?

Ex2: any fees? Ex2: do i have to pay

extra charge?

Ex3: would you like to

pay?

Ex3: well, a single

room, please.

Ex3: look at it. Ex3: do you have a

good time?

Table 4.9: Examples of the responses generated by the models. eou indicates a change of turn for the
speaker.

Most of the responses generated by the models show a coherence that covers multiple probable

aspects. We noticed that responses generated by the “own-trained” model produces longer responses

that exhibit informative content. Also, the samples from the base model show a tendency to produce

positive and interrogative questions. Moreover, it is observed that the longer the context of the dialogue,

the more interesting responses the models can produce.

In addition, it is surprising to observe how the “no pre-trained” model produces responses that in

some cases, would be chosen as the most accurate by a human evaluator.

Finally, regarding to the sampled responses for the unknown dialogue, most of the models were

successful to create sequences that show some level of coherence related to the dialogue context. Although

the luggage context was lost, the issue of payment is current in the generated responses.
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Conclusion

In this work, we studied and reviewed a novel model for neural response generation that outperformed

previous state-of-the-art approaches. DialogWAE is a conditional Wasserstein auto-encoder that models

the distribution of latent variables by training a GAN. This language model learns to encode the dialogue

history and thanks to the GAN discriminator, a generator fed with this encoded query is trained to

produce responses conditioned by the dialogue history. We detailed the reasoning behind this model

and provided a description of the different phases of the training process. We evaluated this model on

DailyDialog data set (Li et al., 2017).

Furthermore, we experimented the model with different word vectors representations, in order to

assess the impact a word vector has on performance of the model. Through the quantitative analysis,

we observed that word vector mainly influenced the training times and to a lesser extent, the evaluation

metrics. However, from the qualitative analysis was possible to observed that even the simplest word

vector trained from the input data, was producing longer response utterances, richer in information and

in content diversity, than the base model.

Moreover, we unsuccessfully explored the idea of combining a transformer model within a GAN

architecture, either by making use of its outputs or by fine-tuning the transformer through adversarial

learning. This idea was motivated by the publication of Wang and Cho (2019) and the released of the

BertForMaskedLM 10 model.

Overall, despite GANs frameworks are successfully applied to Image generation tasks, Chatbots with

GAN architectures remain a very limited field of research, mostly due to their challenging nature at

the implementation and training time. Nevertheless, we believe that models like DialogWAE shows a

promising future for GAN architectures since it demonstrates that adversarial learning characteristics

can be applied to the field of neural response generation. This is important given that GAN architectures

does not sample the closest approximation to the real target but rather, they minimize the overall

distance between the generated and real sample, generating thus less constraint responses.

Limitations and future work

This work experiences some limitations that give avenue for future research. For instance, during the

experimentation stage, different word vectors were tested within the model. We focused on evaluating

the performance of embeddings pre-trained at a word level. Future research can extend this experiments

and use character level like ELMo(Peters et al., 2018) and Flair(Akbik et al., 2018) or subword level like
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fastText(Bojanowski et al., 2017).

Also, recent publication of articles, such as Croce et al. (2020); Shin et al. (2020) open doors for

scholars to keep exploring the idea to combine a transformer model with GAN architecture.

Finally, regarding to the DialogWAE model, some scholars can perform a deep investigation related

to the model selection given that it was computationally expensive to perform an evaluation step at

every epoch. In this work, the evaluation step was performed every 4 epochs but it could be possible

that some epochs may have obtained better values between that range.



Appendix A

Complementary information and

results

A.1 List of articles with buggy BLEU scores

• Improving neural conversational models with entropy-based data filtering. Csaky, R., Purgai, P., &

Recski, G. (2019)

• Variational hierarchical user-based conversation model. Bak, J., & Oh, A. (2019, November)

• Conditional Response Generation Using Variational Alignment. Khan, K., Sahu, G., Balasubrama-

nian, V., Mou, L., & Vechtomova, O. (2019)

• Plato: Pre-trained dialogue generation model with discrete latent variable. Bao, S., He, H., Wang,

F., Wu, H., & Wang, H. (2019)

A.2 Comprehensive list of missed tokens from the word em-

beddings

Base model

The GloVe vector used in the base model did not contain the following 322 tokens:

<pad>, <unk>, </s>, <d>, ..., 10, 2, 3, 5, 30, 000, 7, 6, 1, 20, 00, 15, 9, 8, 100, 4, 50, 12, 200, 500,

25, 11, 40, .., 300, 24, 80, 150, 16, 60, 90, 13, 120, 18, 45, 14, 0, 400, 17, 800, 250, 15th, webtracker, 75,

36, 35, 1st, 70, 32, 95, 2nd, 19, 22, nonsmoking, 3rd, 1000, 5th, 18th, 42, ::, 21st, 555, 600, 25th, 21,

mp3, 55, 20th, 2000, 900, acknowledgments, 14th, 16th, 7th, 27, wangfujing, 12th, 65, 180, 23, 2002, 26,

29, 6th, 59, mp4, 260, 507, 850, 2008, 123, 350, 201, 110, xxxxxxxxxx, pilferage, 17th, 101, 27th, 8th,

82nd, periodicals, 5000, 1234, 160, 401k, 05, 38, 4000, 1050, xiangqi, 78, 41, 34, 10th, noirin, 2004, 3000,

palmistry, 1500, 66, hebes, 98, 1886, 31, 85, telegraphic, m25, 56, 48, 130, 700, nanchang, 64, 39, 86, 20s,

125, 261, 4th, 9th, 37, 19th, 325, 911, 11th, 43, 750, 28th, 360, 486, thirtieth, 24th, chequing, 308, 626,

1739, zhongshan, 92, 88, discomgoogolation, 84, 456, 5558929, airsick, 1996, 2001, 1980, 99, sandstorms,
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moblogging, westernized, pilgrimages, 550, 1997, 650, 23rd, rikknen, airsickness, 320, 0n, 2006, 235,

telephoned, 28, grangerfield, 345, richton, 513, 215, 57, iccc, 1218, anmen, jingshan, bankbook, 256, 87,

268, 1021, teahouses, 789, 6000, 232, balista, idiomatic, 1995, 58, 1960, 1985, 3g, magadize, 1978, 2005,

1963, 80s, literatures, 287, abacuses, 1999, 306, 29th, micropower, 51, 102, carlsborg, 8p, picnicking,

onxiu, jinyuan, 103, 01, 68, 210, 402, 818, refitted, 267, stenography, 304, 1106, reconfirmed, consignee,

guiling, 138, );, 508, huangshan, 31st, minored, 212, g3, 401, 502, 1019, 83, xeroxing, jd185649000023, 713,

455623, varietal, 725, 105, zhilian, zhaopin, typewriting, leisured, 1920s, 880, huanghe, 225, 560, 6pm,

209, 275, wudaokou, cloisonn, 207, danshui, 505, outstealing, noncommercial, 1808, lvan, desertification,

vernassa, 282, decrescendo, pianissimo, accidentals, 1y, weightlessness, 1994, poesy, baymler, tailband,

txyb, neuroanatomy, bankrupts, overcoats, discombobulate, 9p, 2003, turnbow, lavigen, 46, floatier,

marquet, premedical, hemline, dormitories, spanishpod, chettri, 2010, 40c, 1980s and longly.

Spacy word vector

The following 51 tokens were not found in the Spacy word vector representation.

<pad>, <unk>, <s>, </s>, <d>, .., webtracker, mustn, ::, noirin, discomgoogolation, 5558929,

moblogging, rikknen, grangerfield, richton, iccc, anmen, jingshan, bankbook, yarning, magadize, trusten,

micropower, carlsborg, onxiu, jinyuan, guiling, );, jd185649000023, 455623, beancurd, zhilian, zhaopin,

huanghe, wudaokou, cloisonn, danshui, outstealing, lvan, vernassa, baymler, tiao, tailband, txyb, turnbow,

lavigen, floatier, marquet, spanishpod and chettri.

A.3 Trained word embeddings visual analysis

Set of images taken from the plot generated by the T-SNE algorithm from our self-trained word

embedding, discussed in section 4.1.3. The images helped us to make a visual assessment of the quality

of our word embeddings.

Figure A.1: Zoomed area where words related to ‘computer’ are represented.
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Figure A.2: Zoomed area where the months of the year and some dates are represented.

Figure A.3: Zoomed area where different words related with the verb ‘playing’ are represented.
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Figure A.4: Zoomed area where different body parts are represented.

A.4 BLEU score reduction in “no pre-trained” model

This section shows the results of the investigation related to the reduction of the BLEU score presented

at the training time of the model without pre-trained word vector.

Epoch Average Length BLEU F1 score

20 8.6 0.3234

32 11.8 0.3274

46 13.7 0.3218

66 13.8 0.3235

86 15.6 0.3193

Table A.1: Average length of the generated responses at different epochs.

As the results shown in Table A.1, we conclude that the cause of the decrease of the BLEU score is

due to the model generates more extensive sequences length as long as the training steps keep increasing.

A.5 Dialogue produced by the different models

The dialogues presented here were generated by applying the foreword dialogue “this saturday i’m

thinking to go to the beach eou that’s wonderful, are you going with your family?”, extracting the

next token through greedy decoding and run the model in free mode.

Base model

floor 0 : <d>

floor 1 : this saturday i’m thinking to go to the beach
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floor 0 : that’s wonderful, are you going with your family?

floor 1 : yes. let me go to the beach and the beach.

floor 0 : do you have any other?

floor 1 : what’s up ??

floor 0 : yes, go straight and see a movie.

floor 1 : would you like to have a drink?

floor 0 : no, don’t you? the food is so fresh.

Spacy embeddings

floor 0 : <d>

floor 1 : this saturday i’m thinking to go to the beach

floor 0 : that’s wonderful, are you going with your family?

floor 1 : that’s the best i want to do.

floor 0 : for a while, i’m sure i’ll be able to get you a little longer.

floor 1 : oh! oh, tell me about that. i think i’ll have to go to the gym with you.

floor 0 : well, what if there’s a party on the first floor of the road?

floor 1 : no, right. let me see. oh, no, it’s a bit too long.

floor 0 : ok, ok, but...

Own-trained embeddings

floor 0 : <d>

floor 1 : this saturday i’m thinking to go to the beach

floor 0 : that’s wonderful, are you going with your family?

floor 1 : i’m in a hurry.

floor 0 : the new york?

floor 1 : many people are in the same city.

floor 0 : ok.

floor 1 : haven’t been able to get a new one?

floor 0 : have anything else?

Without pre-trained embeddings

floor 0 : <d>

floor 1 : this saturday i’m thinking to go to the beach

floor 0 : that’s wonderful, are you going with your family?

floor 1 : not much than mine.

floor 0 : anything else?

floor 1 : not a long time. we’ll be able to get a better’s next week.
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floor 0 : i am not sure.

floor 1 : just take your left. the only thing is to be the best of the city.

floor 0 : but there’s nothing wrong with it.

A.6 Bert responses

Context do you know the circulation of this magazine? eou you mean this month?

R
e
sp

o
n
se

s

Bert as embeddings

Ex1: ##s ugly robert ya surgery begun ya ya statue ##gon ##ish sucks

abby foster elect ##bby ##ve chatting kobe pajamas pajamas peas bloom

gp ##bly commitment athletes ##lf

Ex2: tones worms lifelong worms worms worms worms lifelong worms lifelong

worms worms lifelong worms lifelong worms worms worms worms worms

lifelong worms worms worms worms worms worms worms striped worms

worms striped

Table A.2: Examples of generated responses using Bert model. eou indicates a change of turn for the
speaker.

Context i wonder if you could help me, i’m looking for a room. eou well, i have got

a vacancy.

R
e
sp

o
n
se

s

Bert as embeddings

Ex1: abby m robert ya moon ya scottish ya statue ##gon ##ish critical

bloom foster pajamas pajamas ##igen foster pajamas ##ad billy necessarily

organizing target ##ty horn ya

Ex2: based ugly cancelled ya surgery begun ya ya statue ##gon titanic

’critical abby foster

Table A.3: Examples of generated responses using Bert model. eou indicates a change of turn for the
speaker.
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