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Rémi Raimondi

Supervisor: Prof. Gilles Louppe
Co-supervisor: Pierre Barnabé
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Abstract

During the last decades, the intensive exploitation of natural resources has known a significant
growth due to the increasing need for raw materials. As a consequence, the environment has been
subjected to a lot of damage. Modestly, by improving recycling and waste recovery, this master’s
thesis contributes to a partial solution that could slow down the exploitation of natural resources.
Indeed, this thesis is carried out as part of the Multipick project which is aiming at creating an
industrial demonstrator capable of sorting over 20,000 tonnes of metals per year at a rate of 16
scraps per second thanks to the use of robots and artificial intelligence. More precisely, the objective
of this master’s thesis is to study and assess the potential of deep neural networks to increase the
performance of the actual waste characterization system operating inside a prototype version of
the demonstrator called Pick-it. The innovation of this work lies in the type of input processed
by the deep neural network: instead of using classical RGB images, the deep neural network is fed
with multi-feature tensors composed of eleven 2D images staked together and containing diverse
characteristics extracted from a dual X-Ray transmission sensor, a 3D ranging camera, and a
hyperspectral camera. Leveraging these multi-feature tensors, a fully functional and optimized
Mask R-CNN deep neural network is successfully integrated inside the pioneer Pick-it prototype.
This model has been shown to achieve excellent results in terms of localization but reaches too
low classification accuracy with the prototype to outperform the current waste characterization
method. Nevertheless, the achieved results show great potential and unveil various directions of
future work that could lead to the creation of a deep learning model outperforming the current
characterization method and reaching state-of-the-art performance in the task of multi-sensor
instance segmentation.
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Chapter 1

Introduction

1.1 Context

This master thesis is carried out as part of the Multipick project which aims at building an
industrial demonstrator composed of 16 robots that should eventually sort nearly 20,000 tonnes
of metals per year at a rate of 16 pieces per second: a world premiere. The building of the
Multipick demonstrator is based on a prototype version built previously in the context of another
project called Pick-it (this project ended in 2019). This previous project fitted itself into the
“Reverse Metallurgy” consortium formed in the Walloon Region. This consortium started in
2015 with the aim of promoting recycling in Wallonia. More precisely, its main goals are to
create a pole of expertise in this field, find new valorization streams to boost the economy, and
favor circular economy and autonomy regarding primary and secondary materials. Pick-it was one
component of this broad project which is dedicated to physical separation of waste (mainly metallic
scraps) in several high grades concentrates using robots. To this aim, three sensors (a dual X-Ray
transmission sensor, a 3D ranging camera, and a hyperspectral camera) have been placed above
a conveyor belt to extract data about the scraps. Then, taking these data as input, an algorithm
detects and classifies them. Finally, from these detections and classifications, precise commands
are sent to the robots to sort the wastes into the right container (specific to each category of
material).

This Multipick project is conducted by the GeMMe research team for the Comet group which
is a Belgian industrial group, specialized in trading ferrous and non-ferrous metals and their
derivatives (Group, 2021). Briefly, GeMMe is a research group of the University of Liège that
actively contributes to the development of innovative processes for a more efficient management
of mineral and metallic resources (GeMMe, 2021).
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1.2 Problem statement

Thanks to the use of classical machine learning approaches, the Pickit team has already obtained
great results with their prototype. This has led their industrial partner (Comet Group) to start,
in 2020, the upscaling of the Pick-it technology at their recycling plant through the Multipick
project.

However, their current characterization method is only using the spectral information of the
scraps to classify them and does not exploit any spatial information such as shape and texture.
Because of that, the Pick-it team is convinced that their current solution is very likely to be
suboptimal.

Moreover, due to the non-exploitation of the spatial information, the scope of application of
their current method is limited: for instance, they are unable to distinguish laminated zinc from
zamak, to locate welds, and to recognize batteries.

Therefore, they decided to leverage the deep learning field to increase the performance of their
characterization system by using advanced deep learning architectures that are able to handle
simultaneously both spectral and spatial information provided by the different sensors.

This objective is exactly what this master’s thesis is aiming for: implementing a high-performing
instance segmentation deep learning method end-to-end (from data acquisition to its integration
into the real Pick-it prototype). Due to the physical implementation of the prototype, the instance
segmentation method must be able to make its predictions in less than 500 ms.

1.3 Outline

The main content of this master’s thesis truly begins in Chapter 2 by describing the current
equipment setup and the characterization method currently implemented in the Pick-it prototype.
Then, it proceeds in Chapter 3 with a recall of some key concepts from the deep learning theory and
a detail description of the Mask R-CNN deep neural network. Chapter 4 briefly reviews the current
state-of-the-art deep neural networks in instance segmentation and highlights the contribution of
this master’s thesis. Chapter 5 presents how to build a convenient instance segmentation dataset
from the data acquired on the conveyor belt. Chapter 6 is dedicated to the detail description of
the specific Mask R-CNN architecture that is optimized in Chapter 7 and evaluated in Chapter
8. Chapter 9 concludes with main directions for further researches and improvements. Finally,
Chapter 10 contains the appendices with some relevant auxiliary data.
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Chapter 2

Current equipment and method

Outline

In this short chapter, we introduce the current equipment setup and characterization method
implemented in the Pick-it prototype. More precisely, in Section 2.1, we describe the combination
of sensors currently available and the underlying data generated. In section 2.2, we briefly explain
the current characterization method.

2.1 Equipment setup and available data

To be able to classify the scraps, the Pick-it team has currently installed three types of sensors.
Each of those sensors measures a specific line of the conveyor belt and is continuously triggered by
an encoder. More precisely, this encoder follows the conveyor belt in such a way that it enables at
the end to build multi-feature images.

The first sensor is a 3D profiling camera which captures a millimeter estimation of the top height
profile of the samples. Consequently, this sensor is really useful to segment the scraps.

The second one is a Visible Near-InfraRed (VNIR) hyper-spectral camera from which eight
reflectance intensities are sampled in the range 400 to 1000 nm. The reflectance corresponds to
the percentage of energy reflected in a specific wavelength range. Digitally, it is stored inside an
UINT16 variable: 100 % reflectance is equal to 65535. Roughly, these data enable to discriminate
objects based on their colors.

The third and final sensor is a dual-energy X-Ray Transmission (XRT) detector, which enables
the computation of the X-ray transmission induced by the scraps passing between the X-ray source
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Sensor Spatial resolution (mm) Number of features
3D profile camera 0.5 1
VNIR camera 0.35 8
XRT detector 0.7 2

Table 2.1: Spatial resolution and number of features associated to each sensor operating in the Pick-it
prototype.

and the detector. Thanks to the dual X-ray energy, two transmission energies are measured.
Indirectly, these measures give valuable data about the density of the different scraps.

Table 2.1 describes the spatial resolution and the number of features associated to each sensor.
Figure 2.1 shows a simplify model of the current Pick-it prototype where the Laser-Induced Break-
down Spectroscopy (LIBS) scanning system is the most recent addition to the prototype but is
still currently being calibrated and is therefore not used in the context of this master’s thesis.

Regarding their current dataset, it is composed of approximately 2000 samples which have
been manually sorted using a portable X-Ray fluorescence probe among the following 6 classes
(categories):

• Aluminum

• Copper

• Brass

• Zinc

• PCB

• Nickel

However, in the context of this master’s thesis, the zinc class has been split into the laminated
zinc and zamak classes to perform a finer sorting. The paint and rubber classes have been added
by the Pick-it team after observing that the red painted objects were systematically classified as
copper and the rubber objects as aluminum. Therefore, in this master’s thesis, 9 classes of objects
are considered in total.

Appendix I shows visually several physical samples for each class.

4



Figure 2.1: Model of the current Pick-it prototype with respectively from left to right: the waste
feeder, 3D camera, VNIR camera, XRT module, LIBS scanning system, delta-robots and electrical
boxes.

2.2 Current characterization method

In summary, the current method operates in four main steps.

Firstly, the objects are segmented using the 3D profile obtained via the 3D profiling camera.
More precisely, the method filters out of the 3D profile detections which are smaller than 1 mm.
Then, using a classical blob detection technique, it finds and extracts the different objects. To
avoid false object detections, a blob of pixels is considered as an object if and only if its area is
greater than 300 pixels.

Secondly, the data acquired via the X-Ray module and VNIR camera are mapped onto the
referential area defined by the 3D profile to create for each pixel of each detected object a vector
of features. Concretely, each feature vector is composed of ten elements: the first eight correspond
to the frequency data given by the VNIR camera, while the last two are the dual-energy X-Ray
transmission.

Thirdly, all these vectors are fed into a machine learning algorithm called Support Vector Ma-
chine (Wang, 2005) to classify each pixel.

Finally, for each segmented object, statistics on the corresponding pixel predictions are computed
and then fed into a second Support Vector Machine model to finally predict a class at the object
level.

5



Chapter 3

Background

Outline

In this chapter, we recall some key concepts from the deep learning theory and describe in detail
the Mask R-CNN deep neural network. In Section 3.1, we introduce fundamental concepts on
which deep neural networks build upon. In Section 3.2, we describe what were the important
milestones and concepts that led to the creation of Mask R-CNN, and we explain its working
principle in detail.

3.1 Deep learning basics

The purpose of this section is to recall some key concepts from the deep learning theory upon
which the Mask R-CNN model is based on. Therefore, this section is not a complete overview of
the deep learning theory but an oriented tour of the main concepts that are required to understand
the Mask R-CNN method.

3.1.1 Link between deep and machine learning

Deep learning (DL) is a subset of machine learning (ML) which itself is a subset of the artificial in-
telligence (AI) field. Figure 3.1 illustrates these connections. Artificial intelligence is the discipline
of making machines or programs which are able to reproduce a human reasoning and/or to exhibit
intelligent behavior (Latombe, 2011), while machine learning is concerned with the design and
study of algorithms which are able to learn the parameters of a model from observed data. Deep
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learning is focused on the creation and the analysis of machine learning algorithms that employ
(deep) neural networks.

Figure 3.1: Link between Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL):
DL ⊂ ML ⊂ AI.

3.1.2 Supervised learning

As deep learning is a subset of machine learning, it also requires data to operate. More precisely, in
the context of this master’s thesis, we focus on a supervised learning task. This supervised setting
means that the algorithms learn by exploiting data composed of input-output pairs obtained by
observing (or simulating) the system of interest. That is,

(xi, yi) ∼ P (X, Y ) (3.1)

with xi ∈ X (the input vector), yi ∈ Y (the output), i = 1, ..., N and P (X, Y ) an unknown joint
probability distribution.

Using these data, one goal of machine learning is to solve the inference problem which consists
in finding the conditional probability given by

P (Y = y|X = x) (3.2)

for any new (x, y).

In practice, this inference problem can take several forms: if the output y is a class (Y = ∆C),
it is called a classification problem, whereas if the output y is a scalar (Y = R), it is called a
regression problem.

7



3.1.3 Neural network primitive

Before defining the learning process, let us recall one of the most basic deep neural networks called
multi-layer perceptron.

The main primitive of all neural networks is the neuron

n = σ(wTx + b) (3.3)

where σ(x) = 1
1+exp(−x) (sigmoid function), n ∈ R,x ∈ RP ,w ∈ RP and b ∈ R.

Placing q of these units in parallel allows to form a layer l with q outputs:

l = σ(WTx + b) (3.4)

where l ∈ Rq, x ∈ Rp, W ∈ Rp×q, b ∈ Rq and where σ is extended to the element-wise sigmoid
function.

From these layers, a first family of neural networks can be built by composing them in series:

l0 = x

l1 = σ(WT
1 l0 + b1)

...

lL = σ(WT
LlL−1 + bL)

f(x; θ) = lL

(3.5)

where θ corresponds to the model parameters {Wk,bk, ...|k = 1, ..., L}.

This first family of neural networks are known in the literature as fully connected (feedforward)
networks, fully connected layers or multi-layer perceptron. In practice, this family of networks is
not limited to use the sigmoid as activation function: there exists many other activation functions.

3.1.4 Training a deep neural network

A preliminary step to train and optimize a deep neural network is to split the training set into two
subsets: a training set and a validation set. Another essential preliminary step is to set the num-
ber Np of model and algorithm hyperparameter vectors p to explore and their respective values.
In machine learning, hyperparameters are parameters whose values directly impact the learning
process. For example, very common model and algorithm hyperparameters are the topology of the
neural network and the learning rate respectively. Thanks to that, until the Np hyperparameter
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vectors have been processed or until a sufficiently satisfying score has been obtained on the vali-
dation set, the training of a deep neural network can be summarized as the repetition of the three
following steps:

1. Pick a hyperparameter vector p (which has not been processed yet).

2. Train the deep learning network with these specific hyperparameters on the training set.

3. Evaluate the resulting model using the validation set.

After that, the final model parameters θ are obtained by training on the whole training set
the neural network using the best hyperparameters identified through the previous sequence of
steps. Finally, to measure the performance of the final model on unseen (new) data, this final
model is usually evaluated on another dataset which exclusively contains data that have never
been processed by the network. This extra set is called the testing set or test set.

More precisely, to train any deep neural network (step n°2 of the optimization sequence above),
a loss function l has to be defined. A loss function gives a scalar measurement of how far the model
prediction f(x; θ) is from the ground truth output y given by the corresponding input-output pair
(x, y) in the dataset. Usually, in a regression setting, the loss is the squared difference between
the output predicted by the model f(x; θ) tuned by the parameters θ and the true output y. In
the literature, it is referred as the `2 loss. That is:

l(y, f(x; θ)) = (y − f(x; θ))2 (3.6)

In the case of a classification setting and considering that the number of outputs of the neural
network is equal to the number of categories U (also called classes) to classify, the most used loss
is the cross entropy. It is formally defined as follows:

l(y, f(x; θ)) = −
U∑
i

bi log

(
exp(f(x; θ)i)∑U
j=1 exp(f(x; θ)j)

)
(3.7)

where bi is the ith element of the one-hot vector b and is only equal to one if i corresponds to the
class number assigned to y. f(x; θ)i is the ith output of the model f having the parameters θ and
taking the vector x in input.

The argument of the log function is called a softmax operation and enables to produce from the
outputs of the model an estimated probability vector P (Y |x). The cross entropy loss increases as
the predicted probability for the ground truth class is far from one, and is exactly equal to zero if
the predicted probability for that class is one.
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Using this concept of loss, the total training error L(θ) (also called empirical risk in the literature)
committed by the model f(x; θ) can be directly computed by the following averaging of the loss
over all the N input-output pairs of the training dataset

L(θ) =
1

N

N∑
n=1

l(yn, f(xn; θ)) (3.8)

with θ corresponding to the model parameters and f representing the model itself.

The main objective of the deep learning training process is to learn the deep neural network
parameters (also called weights) θ which minimize the error on unseen data (estimated via the
testing set) using the available training data. As the training and unseen data come from the
same joint probability distribution P (X, Y ), the minimum of the training error is likely to be close
to the one of the test error: the inference problem has been turned into a minimization problem.
Consequently, this problem can be solved using numerical optimization techniques such as gradient
descent.

Gradient descent uses local linear information to iteratively go towards a minimum (hopefully
the global one but this is not guaranteed) of the loss function L(θ). More precisely, the model
parameters θ are updated iteratively as follows:

θt+1 = θt − γ∇θL(θt) ∀t (3.9)

with t being an index representing the current iteration, θ0 the initial parameters of the model and
γ a positive scalar called the learning rate.

In the case of a deep neural network model, one may wonder if it is really possible to compute
the gradient of the loss with respect to all the model parameters θ. In practice, it is totally possible
thanks to the fact that the neural network is just a composition of differentiable functions. Indeed,
the total derivatives of the loss required to compute the gradient can be evaluated using the reverse
automatic differentiation procedure. Briefly, this procedure consists to first feed the network with
the input to compute and store all the intermediate results from inputs to outputs. Then, it
evaluates the required derivatives backward by applying the chain rule recursively and using the
intermediate values computed previously.

However, in practice, the update rule expressed in Equation 3.9 is almost never used in deep
learning because it directly depends on the size of the dataset. Indeed, as the size of the datasets
in deep learning is most of the time quite large, the computational cost of using gradient descent
is too high to be used inside a practical application.

Instead, to speed up the computation and reduce the variance of each update, the learning error
expressed in Equation 3.8 is not computed for each input-output pairs inside the training set but for
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subsets of pairs called mini-batches. Even with this extension (called mini-batch gradient descent),
the gradient descent optimizer has a considerable drawback: it computes the gradient exactly. In
others words, it minimizes the empirical risk, although this risk is only an empirical estimation of
the error on unseen data (called generalization error). Consequently, (batch) gradient descent is
not used in practice. Instead, another optimizer called Stochastic Gradient Descent (SGD) with
the following update rule is applied:

θt+1 = θt − γ∇θl(yi(t+1), f(xi(t+1); θt)). (3.10)

where the index i(t+ 1) denotes the input-output pair picked randomly at iteration t+ 1.

Conversely to the previous update rule, as it always computes the loss for a unique random
input-output pair, this new rule is independent of the size of the dataset considered. This SGD
optimizer might seem to lead to bad generalization but it actually achieves very good generalization
performance despite showing bad optimization performance for minimizing the empirical risk.

Over the years, multiple more advanced optimizers have been proposed on top of SGD to increase
the efficiency of the optimization in terms of quality, speed and parameter tuning: nowadays, the
two most used optimizers in deep learning are Adam (Kingma & Ba, 2014) and RMSProp (Hinton,
2014).

3.2 Deep learning and computer vision

For several years, deep learning has been revolutionizing the field of computer vision by achieving
outstanding results in several of its main tasks.

More precisely, among many tasks, deep learning models have reached state-of-the-art perfor-
mance in the tasks of classification, classification plus localization, object detection, semantic
segmentation, and instance segmentation. Figure 3.2 describes graphically the aims of each of
these five tasks.

Briefly, the purpose of the classification task is to assign (among a set of classes) a class to an
object in an input picture, whereas the purpose of the semantic segmentation task is to give a class
to each pixel of the input image without taking into account the possibility of having the presence
of multiple objects of the same class.

The aim of the classification plus localization task is to output in addition of the class, a tight
bounding box around the object pointed by the class. Object detection is the generalization of
the classification plus localization task to multiple objects. In other words, the goal of the object
detection task is to detect every object belonging to a set of classes by delimiting a tight bounding
box and assigning a class to each of them, while the instance segmentation task can be seen as

11



Figure 3.2: Computer vision main tasks (Li et al., 2017) with respectively from left to right: the
classification that aims at assigning a class to the picture, the semantic segmentation that assigns a
class to every pixel of the image, the classification plus localization that classifies and locates through a
bounding box the detected instance, the object detection that extends classification plus localization to
multiple instances and finally, the instance segmentation that merges the goals of semantic segmentation
and object detection by providing different semantic masks for each detected instance.

the merging of the semantic segmentation task and the object detection one. Indeed, it consists
in giving a class to each pixel of each instance (i.e. an object belonging to the set of classes
considered) in the picture. Therefore, one could say that this task is the most complex one among
the five cited.

In practice, researchers have solved theses tasks incrementally: they first solved the simplest one
(classification) and then reused their breakthroughs and tricks to solve increasingly complex tasks
to finally solve the instance segmentation task. Therefore, to deeply understand the state-of-the-
art instance segmentation neural networks, it is required to know how they solved these simpler
tasks and especially what their thinking process was.

3.2.1 Classification

The classification task has been tackled very effectively using Convolutional Neural Networks
(CNNs). As their names suggest, these networks are made of convolutional layers. These layers
have been introduced to solve the inability of the multi-layer perceptron to take advantage of
the structure existing in some large signals. Examples of large structured signals are images and
sounds samples. In the case of images, the key idea behind this new layer is to leverage the prior
knowledge that close pixels are typically correlated to one another to create neural networks that
efficiently learn from these large spatially structured signals.
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Figure 3.3: Visual representation of the convolutional layer principle (Fleuret, 2021): A kernel k ∈
RC×h×w slides across the input x along its width W and height H, such that at each possible overlapping
of k and x, an element wise product between their elements is computed, then the results are summed
up and finally stored inside a 2D output tensor o ∈ R(H−h+1)×(W−w+1). Note that the number of
channels (C) is the same for the input and the kernel.

A convolutional layer implements a convolution operation on an input tensor (representing an
image for instance). Figure 3.3 shows more precisely how it is performed in the case of a 3D tensor
x ∈ RC×H×W . In summary, a 3D tensor k ∈ RC×h×w (called kernel) slides across the input along
its width W and height H, such that at each possible overlapping of k and x, an element wise
product between their elements is computed, then the results are summed up and finally stored
inside an output tensor o ∈ R(H−h+1)×(W−w+1). More formally, this o (also called the output
feature map) is given by

oj,i = bj,i +
C−1∑
c=0

(xc ~ kc)[j, i] = bj,i +
C−1∑
c=0

h−1∑
n=0

w−1∑
m=0

xc,n+j,m+ikc,n,m (3.11)

where k and b are shared parameters to learn.

As mentioned earlier convolutional neural networks (CNNs) are composed of convolutional layers.
However, they also contain other types of layers. Indeed, a convolutional layer is usually followed
by a Rectified Linear Unit (ReLU) activation function, a pooling layer or some Fully Connected
layers (FC).

The ReLU activation is described graphically in Figure 3.4 and is mathematically defined as
follows:

ReLU(x) = max(0, x) (3.12)
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Figure 3.4: Visual representation of the ReLU(x) activation function (Louppe, 2021a): If x ≤ 0, this
function is equal to zero. Otherwise, it corresponds to the identity function.

ReLU (Glorot, Bordes, & Bengio, 2011) are mainly used jointly with a smart weight initialization
to overcome the vanishing gradients phenomenon that occurs in deep neural networks.

In addition to exploiting the correlation between neighbor pixels inside spatially structured
large-dimensional signals (such as images) to reduce the required computational power, a pooling
layer can be used to decrease the dimensionality of the input signal while preserving its general
structure.

Figure 3.5: Illustration of the max and average pooling operation (Yani & Si.M.T.BudhiIrawan,
2019). Briefly, these operators consist of a window that slides over all regions in the input (according
to a step size), computing a single output value for each traversed location.

As its name suggests, a pooling layer implements a pooling operation. In practice, two pooling
operations are widely used: max and average pooling. Assuming a pool area of size h×w and an
input tensor x ∈ RC×(rh)×(sw), the max and average pooling operators
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oc,j,i = max
n<h,m<w

xc,rj+n,si+m (3.13)

oc,j,i =
1

hw

h−1∑
n=0

w−1∑
m=0

xc,rj+n,si+m (3.14)

respectively produce both an output tensor o ∈ RC×r×s. Figure 3.5 also shows these two operations
in a particular case where h = w = r = s = 2 and C = 1. One can notice that the mathematical
expression of the pooling operation is very similar to the one of the convolution. Actually, this is
not a coincidence: a convolution layer can be used to implement a pooling operation by applying
a step size (called a stride) greater than one when moving the kernel across the input signal.

Finally, in the specific case of the classification task, the whole CNN is usually followed by a
softmax activation layer

softmax(o)i =
exp(oi)
U∑
j=1

exp(oj)

, for i = 1, . . . , U. (3.15)

which has the purpose of producing from the outputs o of the CNN a vector of U probability
estimates P (Y = i|o) (where U corresponds to the number of classes considered).

Historically, one of the first successful CNN was the AlexNet which won the 2012 ImageNet
Large Scale Visual Recognition Challenge by outperforming with a large margin all the other
competitors (ImageNet, 2012). This deep neural network is composed of 11 layers: the first 8 are
convolutional and pooling layers and the remaining three are fully connected layers. The output
of this last layer is a vector of 1000 features which is finally fed to a softmax activation function
to produce the probability distribution over the 1000 classes of the ImageNet dataset (Krizhevsky,
Sutskever, & Hinton, 2012).

3.2.2 Semantic segmentation

Contrary to the classification task, the aim of semantic segmentation is not to output one class
(or a probability distribution over the classes) for the entire input image but a class for each pixel
of the input image. Therefore, semantic segmentation does not differentiate instances: it classifies
each pixel independently.

A first straightforward solution to solve this task could be to chop the whole input image into
small patches and apply the CNN used to solve the classification tasks to each of the patches and
thus get a class for each. However, this naive solution is extremely inefficient as it would require
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Figure 3.6: Illustration of the AlexNet deep neural network (Zhang et al., 2021) where FC, MaxPool
and Conv stand for Fully Connected, Max pooling and Convolutional layer, respectively. This first very
famous CNN is only composed of 11 layers: the first 8 are convolutional and pooling layers and the
remaining three are fully connected layers.

for an input image of size w× h to chop the image into w× h patches of 1 pixel size and thus run
the CNN w × h times.

A smarter idea is to not consider the classification of each pixel independently but as whole. It
is what the state-of-the-art techniques in semantic segmentation do by using Fully Convolutional
Networks (FCNs). FCNs are deep neural networks composed of convolutional layers with down-
sampling and upsampling operations inside the networks. More precisely, a FCN takes as input
the whole image C1 ×H1 ×W1 and outputs an C2 ×H1 ×W1 image where the number of output
channels C2 is equal to the number of classes considered: each channel of the output corresponds
to the probability distribution of each pixel belonging to a specific class associated to this channel.
This stack of channels can be finally transformed into a H1 × W1 semantic segmentation map
using an arg max operation on the C2 channels to get the semantic segmentation mapping of the
input image. In practice, as doing convolutional operation at the original input image resolution
is too computationally expensive, FCN usually downsamples the original resolution using pooling
layers and upsamples it to come back to the original resolution at the end of the network using
upsampling layers. A very popular upsampling layer is the transposed convolution layer.

To understand this new layer, one has to notice that the convolution operation (~) can be
expressed as a matrix multiplication between the convolutional kernel k rearranged as a sparse
Toeplitz circulant matrix K (called the convolution matrix) and the input vector x with the
appropriate reshaping v, that is
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h1 = x ~ k ⇐⇒ v(h1) = Kv(x) (3.16)

More precisely, in the particular case of 1D convolution with a kernel of size 3 (and a stride
equals to one), the convolution operation can be expressed as follows:

h1 = x ~ k ⇐⇒


k2x1 + k3x2

k1x1 + k2x2 + k3x3
k1x2 + k2x3 + k3x4

k1x3 + k2x4

 =


k1 k2 k3 0 0 0
0 k1 k2 k3 0 0
0 0 k1 k2 k3 0
0 0 0 k1 k2 k3




0
x1
x2
x3
x4
0

 (3.17)

In this example, as the stride is equal to one, the convolution operation results in an output
with the same resolution as the input x.

Knowing this property, one can now define mathematically the transposed convolution (~T ) by
the following equation

h2 = x ~T k ⇐⇒ v(h2) = KTv(x) (3.18)

Similarly, in the particular case of 1D transposed convolution with a kernel of size 3, the trans-
posed convolution is expressed by the following Equation:

h2 = x ~T k ⇐⇒


k1x1

k2x1 + k1x2
k3x1 + k2x2 + k1x3
k3x2 + k2x3 + k1x4

k3x3 + k2x4
k3x4

 =


k1 0 0 0
k2 k1 0 0
k3 k2 k1 0
0 k3 k2 k1
0 0 k3 k2
0 0 0 k3



x1
x2
x3
x4

 (3.19)

In this 1D example, one can see that the resolution (dimension) of the output of this new
operation is indeed higher than one of the input x: the transposed convolution is an upsampling
operator.

Figure 3.7 illustrates the output of a particular FCN applied to a RGB picture of a dog. From
this figure, one can clearly see that the first half of this network is downsampling the resolution
while the second half is upsampling it to retrieve the original spatial resolution. Thanks to the
downsampling operation, it is possible to use very deep neural networks. Indeed, it enables to
work at a lower spatial resolution for many of the layers inside the network and therefore cuts off
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Figure 3.7: Example of Fully Convolutional neural Network (FCN) composed of a downsampling and
an upsampling part (Noh et al., 2015): the FCN is fed with a RGB picture and outputs the corresponding
segmentation map.

the required computational power. A big advantage of FCN is that the dimension of its output
directly depends on the size of the picture sent in its input. Therefore, as this one is arbitrary,
contrary to fully connected networks, FCN can handle any input dimensions.

3.2.3 Classification plus localization

Sometimes, in addition to classify an object present inside an image (classification task), one also
wants to know where this object is located inside that image. This new task is called classification
plus localization. More precisely, in addition of predicting a class, this task aims at drawing exactly
one bounding box around the region where the object is located inside the input image. The third
picture of Figure 3.2 shows an example of what the classification plus localization task is aiming
for.

To tackle this problem, the community has reused the same machinery as the one learned from
image classification and has treated the localization subtask as a regression problem: the basic
architecture to tackle this problem is to first feed the input image through a CNN to produce a
tractable vector of features and then to use these features as input for two sets of fully connected
layers to output respectively the class of the object present in the picture (or a probability dis-
tribution over all the considered classes) and four scalars which uniquely define the bounding box
around the classified object.

As this new network has two outputs, its training requires two losses. Furthermore, as the two
outputs have not the same type (one is categorical and the other continuous), it requires two
different loss functions: a classification loss and a regression loss. The classification loss allows
to compute the error between the ground truth class and the predicted one. Commonly, the
classification loss used is the cross entropy loss (also called log loss) defined in Equation 3.7. To
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lighten the notations, this loss can be rewritten as follows:

`cls(p, u) = − log pu (3.20)

where pu is the probability value corresponding to the class u in the estimated probability vector
output by the neural network.

Regarding the regression loss, a common one is the `2 loss that measures the dissimilarity (the
error) between the predicted bounding box coordinates t and the actual ground truth coordinates
of the bounding box t∗. Formally, this regression loss can be defined as:

`reg(t, t
∗) =

∑
i∈{x,y,w,h}

(ti − t∗i )2 (3.21)

where t∗x, t
∗
y, t
∗
w, t∗h denote the ground truth bounding box’s center coordinate and its width and

height. tx is for the predicted bounding box (likewise for y, w and h).

Notice that, as one assumes a fully supervised setting with this new network, in addition to the
ground truth class for each of the training images inside the dataset, one also needs to store the
actual coordinates of the bounding box around the labeled object inside each of those images.

Usually, these two losses are combined into a multi-task loss `multi to jointly train the neural
network for classification and bounding box regression:

`multi(p, u, t, t
∗) = `cls(p, u) + λ `reg(t, t

∗) (3.22)

with λ being an hyperparameter that controls the balance between the `cls and `reg losses.

Figure 3.8 describes schematically this new kind of deep neural network.

3.2.4 Object detection

As for the previous tasks, in object detection, one starts with some fixed set of classes that one
wants to detect. However, the goal of object detection is to detect every instance of these classes
present in the input image without knowing ahead of time how many of those are present. More
precisely, each detection should be described by a bounding box around the instance detected
and an associated class (category). Therefore, object detection is clearly the extension of the
classification plus localization task to a multiple and varying number of instances in the input
image.
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Figure 3.8: Example of an architecture to tackle the classification plus localization task with its
associated multi-task loss computation. FC stands for Fully Connected layers, while CNN corresponds to
Convolutional Neural Network (CNN). This network is trained jointly for the classification and bounding
box regression thanks to the used of the multi-task loss `multi. This loss is obtained by combining the
regression loss `reg and the categorical loss `cls.

As one does not know in advance the number of instances, their aspect ratios and their scales in
the input image, using a sliding window approach is intractable. Indeed, a sliding window approach
is equivalent to the process of applying a CNN to many different crops of the input image. Through
this process, the CNN could theoretically classify each of theses crops as a specific object class or
as background. However, one does not know how many crops to take and what should be their
size. Thus, to work properly, this method requires to apply the CNN to a large amount of crops
at various scales, which is extremely computationally expensive.

To solve this computational efficiency issue the community has created two types of deep neural
networks: the one-stage and two-stage neural networks.

One-stage architectures

The one-stage architecture consists in treating the object detection problem as a large regression
problem to make all the predictions all at once (bounding box coordinates and classes) with a
large CNN. For example, a pioneer neural network using this approach is the You Only Look Once
(YOLO) object detector (Redmon, Divvala, Girshick, & Farhadi, 2016). In summary, it divides
the input image into a S × S grid and for each grid cell predicts B bounding boxes with their
associated confidence score, and U class probabilities. All these predictions are output all at once
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Figure 3.9: Architecture of YOLO (left graph): it is composed of 24 convolutionnal layers followed
by 2 fully connected layers. YOLO system overview (right graph): it divides the input image into a
S × S grid and for each grid cell predicts thanks to the neural network B bounding boxes with their
associated confidence score, and U class probabilities (Redmon et al., 2016).

as a S × S × (B ∗ 5 + U) tensor. Figure 3.9 shows the neural network architecture and the model
of YOLO.

The main advantage of the one-stage detectors is their fast inference time. However, their
accuracies usually do not compete with the two-stage detectors.

Two-stage architectures

The main family of two-stage detectors relies on region proposals. A region proposal is a part
of the image which is likely to contain instances. Back in the day, these region proposals were
computed using more traditional signal processing approaches: for instance, by exploiting edges
(Zitnick & Dollár, 2014). A popular method was Selective Search (Uijlings, Van De Sande, Gevers,
& Smeulders, 2013) which gives approximately two thousands region proposals in a few seconds
on a single CPU. Figure 3.10 shows an example of region proposals obtained using such computer
vision techniques.

Thanks to these region proposals, the use of CNN in object detection becomes possible. Indeed,
applying the CNN only to these finite and well defined regions instead of all possible locations and
scales allows to make it computationally tractable. These ideas have been concretely put together
and implemented in 2014 through a complete deep neural network called R-CNN (Girshick, Don-
ahue, Darrell, & Malik, 2014). The authors of this paper called it like that because their network
combines region proposals with a CNN.

In summary, R-CNN works in four steps. Firstly, a region proposal algorithm is fed with the
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Figure 3.10: Example of region proposals (green boxes) obtained using ”classical” computer vision
techniques (Li et al., 2017).

input image and produces around two thousand region proposals. Secondly, these regions are
warped into fixed size images to be fed into the CNN. Thirdly, the CNN extracts fixed-length
feature vectors from each of these warped regions. And finally, for each of these vectors, class-
specific linear Support Vector Machines (SVMs) (Noble, 2006) give the associated predicted class
score and a class-specific regressor module outputs the corresponding bounding box coordinates.
Figure 3.11 summarizes all these steps.

R-CNN achieved the best results on the object detection Dataset VOC2012 (Pascal2, 2012) in
2014. However, this network has several important drawbacks. The main one is that it is still
very computationally expensive due to the independent application of the CNN to each of the two
thousands region proposals: the training and evaluation of this model is very slow (several days
and more than thirty seconds respectively). Moreover, the region proposal locations and qualities
depend on the region proposal algorithm used: this step is not learned and therefore not optimized
during training. This is why the authors of R-CNN created a first improved version called Fast
R-CNN (Girshick, 2015) in 2015.

With Fast R-CNN, instead of processing each region proposal independently, the first step is to
pass the whole input image through a FCN to obtain a feature map of the input image. Then, the
region proposals (also called regions of interests) computed beforehand with the input image are
cropped from the feature map: it allows to do the heavy convolution computation only once instead
of two thousands times. The next step of Fast R-CNN is to reshape the Regions of Interest (RoIs)
cropped from the feature map to be able to feed them afterwards into fully connected layers (which
expect a specific input size). This operation is done (in a differential manner) using a layer called
RoIPool. Finally, for each of these reshaped crops, fully connected layers followed by a categorical
classifier and a bounding box regressor process the extracted features. The categorical classifier
outputs a discrete probability distribution, p = (p0, ..., pU) over the U + 1 classes considered (the
additional class corresponds to the background class), whereas the bounding box regressor outputs
the bounding box regression offsets (associated to the RoI being processed), bu = (bux, b

k
y, b

u
w, b

u
h),

for each of the U classes. A complete visual overview of Fast R-CNN is shown in Figure 3.12.
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Figure 3.11: R-CNN system overview (Kaiming et al., 2017). Firstly, an independent algorithm
extracts from the input image around 2000 region proposals. Secondly, these proposals are warped into
fixed size regions. Thirdly, a Convolutional Neural Network (CNN) computes features for each warped
proposal. Fourthly, a class-specific Support Vector Machine (SVM) classifies each region. Finally, for
each region, a class-specific bounding box regressor predicts a bounding box by performing a Least
Squares Regression (LSR) on the features computed by the CNN.

Figure 3.12: Fast R-CNN system overview (Kaiming et al., 2017). A region proposal algorithm
computes Regions of Interest (RoIs) from the input image. Then, the whole input image is passed
through a Fully Convolutional neural Network (called backbone) to obtain a feature map of the input
image. Following this computation, the RoIs are cropped from this feature map and reshaped to a
fixed feature map to be able to feed them afterwards into fully connected layers. This operation is
done (in a differential manner) using a layer called RoIPool. Finally, for each of the reshaped crops,
fully connected layers followed by a categorical classifier and a bounding box regressor output the class
confidence scores and the corresponding bounding box regression offsets.
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Thanks to this new architecture, Fast R-CNN achieves fast training and testing time while
improving the quality of the detections. More precisely, using VGG16 as CNN, Fast R-CNN
evaluates images 213 times faster than R-CNN and reduces the training time by 9 (Girshick,
2015). Actually, Fast R-CNN is so fast that during evaluation, the region proposal algorithm
dominates the overall run-time. In other words, it is the non-deep learning part of the network
that bottlenecks the entire method. Moreover, as previously mentioned in R-CNN, the quality of
the region proposals is completely tied up by the region proposal algorithm.

Acknowledging this main drawback, the authors of Fast R-CNN reacted few months later with
a new version called Faster R-CNN (Ren, He, Girshick, & Sun, 2015). This new version replaces
the region proposal algorithm with a deep neural network called Region Proposal Network (RPN).
Figure 3.13 describes its working principle.

To be computationally efficient, this network shares a set of convolution layers with the FCN
used to extract features from the input image. Concretely, the region proposals are generated by
sliding a small window over the feature map output by the last shared layer. The output of this
windowing operation is then mapped into a fix feature vector. After that, this feature vector is
fed to two sets of fully connected layers to predict k bounding box coordinates and their 2k scores
that give the probability for each proposal of containing an object or the background. The first
set of fully connected layers predicting the bounding boxes has k independent heads for the k
different considered anchors such that each head is responsible for one aspect ratio and one scale
(they do not share their weights). Anchors are predefined (rectangle) bounding boxes centered at
the current sliding window location and are used as initial object location guesses. The right part
of Figure 3.13 shows some of these k anchors. Doing so, thanks to the anchors, RPN is able to
predict bounding boxes of various sizes even though the features cropped from the feature map
are of fixed spatial size.

In practice, the RPN is implemented as a fully convolutional network by using an n× n convo-
lutional layer to emulate the sliding window process, and the two sets of fully connected layers are
both built by using convolutional layers.

Using shared layers of the FCN (used to extract features from the input image) and implementing
the RPN in a fully convolutional way make this approach translation invariant, both in terms of
the anchors and the functions that compute the proposals relative to the anchors: if an object is
translated in the input image, the corresponding proposal will be translated exactly in the same
way and the same function is able to predict the proposal in either location.

In order to be able to train the RPN, a binary class label (i.e. being an object or not) is
assigned to each anchor. This assignement depends on the Intersection over Union (IoU) between
each anchor and the ground truth bounding boxes. IoU is a standard performance metric in object
detection and is defined as follows:
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Figure 3.13: Illustration of the Region proposal Network (RPN) (Ren et al., 2015). Region proposals
are generated by sliding a small window (emulated by an n × n convolutional layer) over the feature
map output by the last shared layer with the FCN used to extract features from the input image. The
output of this sliding window is then mapped into a fix feature vector. After that, this feature vector
is fed to two sets of fully connected layers (implemented in practice by two convolutional layers) to
predict k bounding box coordinates and their 2k scores that give the probability for each proposal of
containing an object or the background.

IoU(B, B̂) =
area(B ∩ B̂)

area(B ∪ B̂)
(3.23)

where B̂ and B are the predicted and ground truth bounding boxes, respectively. Figure 3.14
expresses graphically the two terms of this equation.

Coming back to the RPN, if the anchor has the highest IoU or an IoU greater than 0.7 with any
ground truth bounding box, a positive label is assigned to this specific anchor, whereas if the IoU
ratio is lower than 0.3 for all ground truths, a negative label is assigned to this anchor. Anchors
which are neither positive nor negative are just not considered and do not contribute to the loss
computation. Hence, Faster R-CNN minimizes the following multitask loss function to train the
RPN:

`({pi}, {ti})RPN =
1

Ncls

∑
i

`cls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗i `reg(ti, t
∗
i ) (3.24)

where i is the index of an anchor. pi and p∗i are respectively the predicted probability of being an
object for the anchor i and the ground truth label. This ground truth label is equal to 1 if the
anchor is positive and is equal to 0 if the anchor is negative. ti and t∗i correspond to the vector
containing the 4 parametrized coordinates of the predicted bounding box and that of the ground
truth bounding box associated to a positive anchor, respectively. More precisely, the following
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Figure 3.14: Visualization of the intersection (left graph) and the union (rigth graph) between the
ground truth bounding box and the predicted one, respectively. (Fleuret, 2020).

parameterization is applied:

tx = (x− xa)/wa, ty = (y − ya)/ha
tw = log(w/wa), th = log(h/ha)
t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha
t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(3.25)

where x, y, w an h correspond to the box’s center coordinates, its width and height. x, xa, x
∗ are

for the predicted box, anchor box and ground truth box respectively (likewise for y, w and h).

The regression loss `reg is a smooth `1, that is:

`reg(ti, t
∗
i ) =

∑
i∈{x,y,w,h}

smooth`1(ti − t∗i ) (3.26)

in which

smooth`1(z) =

{
0.5z2 if |z| < 1
|z| − 0.5 otherwise

(3.27)

is a loss less sensitive to outliers than the `2 used in R-CNN.

The classification loss `cls is a simple cross entropy loss over the object and non-object classes.
Finally, Ncls and Nreg are simply two normalizing terms and λ is a hyperparameter which balances
the importance of the regression and classification loss in the global multitask loss computation.

By merging RPN and Fast R-CNN into a single network, Faster R-CNN is a complete deep neural
network that can be trained end-to-end. Figure 3.15 describes visually this complete two-stage
detector.

For each region of interest (RoI), the bounding box regressor and the classifier at the end of the
Faster R-CNN are trained jointly thanks to the following multi-task loss:

`faster(q, u,b
u,b∗) = `cls(q, u) + λ(u) `box(b

u,b∗) (3.28)
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Figure 3.15: Faster R-CNN overview (Kaiming et al., 2017). The whole input image is passed
through a FCN (called backbone) to obtain a feature map of the input image. Then, a RPN computes
region proposals from the feature map. Following this computation, the proposals are cropped from this
feature map and reshaped to a fixed feature map to be able to feed them afterwards into fully connected
layers. This operation is done using a layer called RoIPool. Finally, for each of the reshaped crops, fully
connected layers followed by a classifier and a bounding box regressor output class confidence scores
and the corresponding bounding box coordinates.

with λ being a function equal to a hyperparameter that controls the balance between the `cls and
`box losses if u does not correspond to the background class. If the value of u corresponds to
the background class, λ = 0. q corresponds to the estimated probability vector output by the
network classifier and bu represents the predicted bounding box offset coordinates (relative to the
considered RoI) for the ground truth class u. b∗ is the true bounding box regression target: it
corresponds to the ground truth bounding box coordinates specified as offsets relative to the RoI
considered.

In practice, the bounding box regressor and the classifier are implemented by two set of fully
connected layers. More precisely, the set corresponding to the bounding box regressor is composed
of U output heads (one for each class), which output each four offset bounding box coordinates
relative to the considered RoI. When Faster R-CNN is not being trained, the predicted bounding
box coordinates relative to the input image are computed by combining the four offset coordinates
corresponding to the most probable class and the coordinates of the considered RoI.

The `cls and `box are identical to the losses previously defined in Equation 3.20 and 3.26, respec-
tively.

As the RPN shares some convolutional layers with the Fast R-CNN part of the Faster R-CNN,
they must not be trained independently. The solution used in practice consists in performing an
alternating training: first the RPN is trained, and the region proposals obtained are directly used
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to train Fast R-CNN. The FCN network used by Fast R-CNN is then used to initialize RPN, and
the process is repeated many times.

In summary, the RPN part of Faster R-CNN enables it to learn by itself how to quickly produce
highly qualitative regions of interest from the input image. Thanks to these high quality RoIs, the
Fast R-CNN part of the complete network can consider and process much less RoIs while ensuring
accurate object detections: in 2016, Faster R-CNN achieved state-of-the-art object detection per-
formance on PASCAL VOC 2007, 2012 and MS COCO datasets with only 300 regions of interest
considered per image.

3.2.5 Instance segmentation

As described in the introduction, the goal of this master’s thesis is to obtain a high instance
segmentation performance by building and training a deep neural network.

Concretely, the instance segmentation task can be seen as the merging of the object detection
and the semantic segmentation tasks: given an input image, we want to predict the location and
the class of all the instances (among a predefined list of classes) inside this image (object detection
task) but rather than just predicting a bounding box to locate each of the detected instances, we
want to predict a semantic segmentation mask for each of these instances (semantic segmentation
task). In other words, we want to be able to know which pixels of the input image correspond to
which detected instances. The rightmost picture in Figure 3.2 visually shows the expected output
(mapped onto the input image) of an instance segmentation method.

Similarly, to the other tasks, there exists many different networks to tackle this hybrid problem.
Nonetheless, as mentioned at the beginning of this chapter, in this master’s thesis, Mask R-CNN
(He, Gkioxari, Dollár, & Girshick, 2017) is the one chosen to tackle it. The reasons of this choice
are explained in Section 6.1. This deep neural network extends Faster R-CNN by adding a branch
for predicting object mask in parallel with the existing bounding box detection branch. Figure
3.16 shows the resulting network.

More precisely, this new branch (called mask branch) is implemented using a FCN and outputs
a D ×D × U mask from each RoI, which encodes U masks of resolution D ×D: one for each of
the U classes considered. A detailed example of a Mask R-CNN head architecture with D = 28 is
shown in Figure 3.17.

Moreover, the authors of Mask R-CNN replaced the RoIPool layer by a new RoIAlign layer
that fixes the misalignment issue present in the RoIPool layer. Indeed, in Faster R-CNN, the
RoIPool layer allows to extract a small fixed size feature map (e.g., N ×N) from each RoI output
by the RPN. As the RoI coordinates predicted by the RPN are floating numbers, they do not
match the discrete granularity of the MN ×MN feature map given by the last shared layer of
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Figure 3.16: Mask R-CNN overview (Kaiming et al., 2017). This network is identical to Faster
R-CNN (Figure 3.15) except that it also outputs a semantic mask for each RoI thanks to a mask branch
(implemented by a FCN) that directly takes the fixed size feature map in input.

Figure 3.17: Example of a Mask R-CNN head architecture (Kaiming et al., 2017). A mask branch is
added to the two existing heads in Faster R-CNN. U is the number of classes considered. Numbers cor-
respond to spatial resolution and channels. Arrows denote either convolutional, transposed convolution
or fully connected layers and can be inferred from context. ’×4’ denotes a stack of four consecutive
convolutional layers. All convolution layers have a kernel of 3× 3 except the output convolutional layer
which has a 1× 1 kernel. Transposed convolution layer has a stride of 2 with a 2× 2 kernel. ReLU is
used in hidden layers.
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Figure 3.18: Illustration of the bilinear interpolation conducted by the RoIAlign layer. The solid back
lines represent an RoI (with 2 × 2 bins in this example), the dashed blue grid a feature map, and the
black dots the 4 sampling points in each bin. The value of each point is computed by performing
a bilinear interpolation with the four nearby grid points on the feature map (highlighted by the blue
arrows) (He et al., 2017).

the convolutional backbone. Therefore, a quantization operation is performed on each floating-
number x by computing [x/M ], where M is a feature map stride and [.] is the rounding operator.
This quantized RoI is then subdivided into spatial bins that are themselves quantized. Finally,
the feature values covered by each bin are aggregated using max pooling. All these quantizations
directly introduce misalignments between the RoI and the extracted features such that if not
removed, these misalignments will directly prevent a pixel-accurate mask prediction. This is why
this layer has been replaced by a RoIAlign layer which avoids doing any quantization. The [x/M ]
is replaced by a x/M , and a bilinear interpolation is used to compute the values of the features
at 4 regularly sampled locations in each RoI bin. Then, for each bin, the 4 associated values are
aggregated by performing a max or average pooling. Figure 3.18 visually describes the bilinear
interpolation conducted by the RoIAlign layer.

During training, the following multi-task loss is computed on each sampled RoI:

`head = `faster + `mask (3.29)

where `faster is the loss defined for Faster R-CNN in Equation 3.28. `mask is the average binary
cross entropy loss applied on the u-th mask (where u is the integer number corresponding to the
ground truth class associated to the RoI being processed) on which a per-pixel sigmoid has been
applied beforehand. Formally, `mask can be defined as follows:

`mask = − 1

D2

∑
i≤i,j≤D

(
yij log ŷuij + (1− yij) log(1− ŷuij)

)
(3.30)

where yij is the binary ground truth mask associated to the RoI being processed and ŷuij is the
u-th D×D mask output by the mask head of Mask R-CNN on which three operations have been
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performed: first, a per-pixel sigmoid is applied to transform the values of the mask into estimated
probabilities. Then, all these values are binarized at a threshold of 0.5 to produce a binary mask.
Finally, this D×D binary mask is resized using the predicted bounding box position corresponding
to the location of the mask in the input image such that yij and ŷuij have the same dimensions.

Contrary to what was initially done with Faster R-CNN in 2015, the RPN is completely merged
into Mask R-CNN such that they form a single deep neural network. Thanks to that, an end-to-end
training can be applied to train the overall network at each iteration of the optimizer. The forward
pass first produces RoIs which are treated as fixed, precomputed RoIs. Then, the backward pass
propagates the signals as in a classical deep neural network, except that for the shared layers the
signals sent are computed based on a combination of the RPN loss `RPN (defined in Equation 3.24)
and the Mask R-CNN head loss `head (defined in Equation 3.29).

At test time, only the u-th mask output by the mask branch is used, where u is the integer
number associated the class having the highest confidence score with the classification branch. It
is resized to the RoI size and binarized at a threshold of 0.5.

In 2017, Mask R-CNN achieved state-of-the-art results in instance segmentation by outperform-
ing by a large margin the previous state-of-the-art networks (He et al., 2017).
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Chapter 4

Related work

Outline

This chapter briefly describes the current state-of-the-art deep neural networks in instance seg-
mentation and highlights the originality of this master’s thesis subject.

Since several years, the deep learning community is actively trying to solve the semantic segmen-
tation task with classical RGB images. Indeed, as shown in Figure 4.1, a new method is created
almost every year and beat all previous ones in terms of performance (PapersWithCode, 2021).

The current state-of-the-art is a Cascade Mask R-CNN with EfficientNet-B7 as backbone and
NAS-FPN as the feature pyramid. In summary, a Cascade Mask R-CNN is a multi-stage extension
of the Mask R-CNN architecture (Cai & Vasconcelos, 2019). EfficientNet-B7 was the state-of-the-
art CNN in 2019: it achieved state-of-the-art performance in the classification task (Tan & Le,
2019). This CNN architecture has been built by upscaling a baseline model (EfficientNet-B0)
developed using a Neural Architecture Search (NAS) (Tan et al., 2019). Similarly, the NAS-FPN
pyramid network has also been determined using NAS (Ghiasi, Lin, & Le, 2019). Very briefly, a
Feature Pyramid Network (FPN) allows to do multi-scale feature fusion from the features produced
by a CNN (more explanations regarding FPN are given in Section 6.3.3).

More recently, exploiting hyper-spectral images has gained more and more attention thanks to
the ability of deep learning to handle very high-dimensional inputs. The most current application
is the processing of satellite or medical images. In satellite imaging, the sensors usually capture
a broad range of the light spectrum for each spatial position, habitually about 200 different re-
flectance intensities. All these intensities can be placed into a 3D volume to embed intuitively
the spatial information. Using this large 3D volume, several methods have been proposed in the
literature. For instance, in the paper “Segmenting Hyperspectral Images Using Spectral-Spatial
Convolutional Neural Networks With Training-Time Data Augmentation”, the authors have man-
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Figure 4.1: Highest mask Average Precision (see Section 7.1.2 for a complete description of this
metric) since January 2016 obtained in the task of instance segmentation on the COCO test-dev
dataset (Lin et al., 2014). This graph has been built using the data collected in the PapersWithCode
website (PapersWithCode, 2021). The terms inside parentheses correspond to the deep neural networks
used as backbones. One can observe that a lot of progress has been achieved since 2016 and that the
discovery of new state-of-the-art models keeps accelerating.

aged to classify in real time each spatial location of hyper-spectral satellite images using 3D
convolutional layers (Nalepa, Tulczyjew, Myller, & Kawulok, 2019).

However, the Pickit multi-feature images are actually neither spectral nor RGB images. Indeed,
thanks to the three sensors, the Pickit multi-feature images embedded depth, spectral and atomic
density data for each spatial location through 11 channels. Nowadays, aside from RGB and large
hyper-spectral images, there are very few deep learning researches about multi-feature images
containing completely different spatially correlated data and having more than 3 channels.

Therefore, we can clearly state that this master’s thesis is a completely original work and that
in addition to contributing to the Multipick project, it directly contributes to the deep learning
community.
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Chapter 5

Dataset

Outline

In this chapter, we describe the creation of the instance segmentation dataset from the multi-
feature images acquired on the conveyor belt (Section 5.1) and how its size has been augmented
thanks to several data augmentation techniques (Section 5.2).

5.1 Dataset creation

The first concrete step of this master’s thesis is to create an instance segmentation dataset. Indeed,
to train a supervised deep neural network, it is required to have the ground truth masks, bounding
boxes, and classes associated with all inputs.

As mentioned in Chapter 1, the inputs of the deep neural network are multi-feature images.
More precisely, each of those inputs can be seen as a 3D tensor x ∈ RC×H×W , where C (Channel),
H (Height), and W (Width) are respectively equal to 11, 1000 and 1096. In fact, each input can be
seen as a stack of 11 2D images, where each 2D image contains a different type of features. Table
5.1 precisely describes the type of features associated with each channel (2D image) of the input.
Figure 5.1 shows visually three channels of one multi-feature image drawn from the dataset. The
whole 11 channels of this multi-feature image are displayed in Appendix II.
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Figure 5.1: Overview of the first, second, and fourth channels of one dataset sample: those 3 channels
contain completely different features. The first one gives the height of the sample in millimeters, while
the second one encodes the low energy X-Ray transmission from 65535 (full transmission) to 0 (full
absorption). The last depicted channel corresponds to the percentage of the energy which is reflected
(called reflectance) at a bandwidth wavelength close to 433 nm: 100 % reflectance is associated to the
number 65535 and 0 % to 0.

Channel n° Feature type
1 Height
2 Low energy X-ray (40-80 keV) transmission
3 High energy X-ray (80-110 keV) transmission
4 Reflectance at λ = 433 nm
5 Reflectance at λ = 497 nm
6 Reflectance at λ = 561 nm
7 Reflectance at λ = 626 nm
8 Reflectance at λ = 691 nm
9 Reflectance at λ = 778 nm
10 Reflectance at λ = 866 nm
11 Reflectance at λ = 955 nm

Table 5.1: Description of the input in terms of its 11 channels and the associated features (λ
corresponds to the wavelength): each channel contains a different type of features.

As the first channel of each input gives the heights in millimeters of each sample above the
conveyor belt, we can use it to build the ground truth bounding boxes and masks. More precisely,
in this master’s thesis, the ground truths have been computed for each input by applying the
following procedure:

1. We extract the first channel from the 11 channels forming the input.

2. We transform the resulting image into a binary one by assigning 1 to every pixel having a
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height greater than 1 millimeter and 0 otherwise. This threshold enables to not consider the
roughness of the conveyor belt as scraps.

3. We apply the Difference of Gaussian (DoG) method using the blob dog function of the Skim-
age library (Scikit-image, 2021) to find blobs in the binary image.

4. Finally, for each detected blob, we use its approximate position and size obtained with DoG
to compute a precise bounding box and mask.

To ease the creation of the ground truth classes, the samples have been sent to the conveyor
belt class by class such that each multi-feature image acquired contains scraps of only one specific
class. Thanks to that, the generation of the ground truth classes is straightforward.

To retrieve easily all the ground truths corresponding to a specific multi-feature image, this work
followed the COCO format applied in the COCO challenge (Yin, Tsung-Yi, Matteo, & Alexander,
2020) with a slight modification regarding the encoding of the masks.

In this format, all the ground truths (also called annotations) are stored into a JSON file
(Introducing JSON , n.d.). This file is defined as a collection of “info”, “categories”, “images”,
“annotations” and “licenses” objects. That is:

{
” i n f o ” : i n f o ,
” l i c e n s e s ” : [ l i c e n s e ] ,
” c a t e g o r i e s ” : [ category ] ,
” images ” : [ image ] ,
” annotat ions ” : [ annotat ion ] ,
}

The “info” object is composed of high level data about the dataset:

i n f o {
” year ” : i n t ,
” v e r s i on ” : s t r ,
” d e s c r i p t i o n ” : s t r ,
” con t r i bu to r ” : s t r ,
” u r l ” : s t r ,
” da t e c r ea t ed ” : datet ime ,
}

The “licenses” object list contains the licenses (if any) that are applied to the images present
inside the dataset:
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l i c e n s e {
” id ” : i n t ,
”name” : s t r ,
” u r l ” : s t r ,
}

The “categories” object list encodes all the classes (called categories) considered inside the
dataset. Its general form can be defined as follows:

c a t e g o r i e s [ {
” id ” : i n t ,
”name” : s t r ,
” supercategory ” : s t r ,
} ]

“images” object list contains all the image names considered in the dataset with some relevant
information about each one. This object has the following data structure (coco url, flickr url, and
date captured are just for reference, they are not necessarily required):

image{
” id ” : i n t ,
”width” : i n t ,
” he ight ” : i n t ,
” f i l e name ” : s t r ,
” l i c e n s e ” : i n t ,
” f l i c k r u r l ” : s t r ,
” c o c o u r l ” : s t r ,
” date captured ” : datet ime ,
}

Finally, the object list “annotations” is composed of all the annotations (ground truths) asso-
ciated with the images present inside the dataset. Each object ”annotation” (described below)
is composed of a series of fields, including the category id (which corresponds to the class id),
the image id of the image corresponding to this annotation and the segmentation mask of the
instance. The format of this segmentation depends on whether the instance represents a single
object (iscrowd = 0) or a collection of objects (iscrowd = 1). In the context of this master’s
thesis, each instance represents a single object. Therefore, the segmentation mask of each object
instance should be encoded with a list of polygon vertices. However, in practice, this thesis devi-
ated from this standard by providing the pixel coordinates of all non-zero elements present inside
the segmentation mask. By doing this, the mask encoding and decoding are greatly facilitated.
Regarding the bounding box, it is provided for each annotation through four scalars: the top-left
coordinates of the mask, its width, and its height.
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Figure 5.2: Illustration of the division of the initial dataset into 3 parts: the Learning Set (LS), the
Validation Set (VS) and the Test Set (TS). The scalars in parentheses correspond to the number of
multi-feature images contained inside each set.

annotat ion {
” id ” : i n t ,
” image id ” : i n t ,
” c a t e go ry i d ” : i n t ,
” segmentat ion ” : RLE or [ polygon ] ,
” area ” : f l o a t ,
”bbox” : [ x , y , width , he ight ] ,
” i scrowd ” : 0 or 1 ,
}

Creating the dataset using this format enabled us to use the COCO API (COCO API , 2021)
to access and manipulate the annotations and the images very easily.

In practice, to provide a proper performance estimation of the final deep neural network, three
distinct sets from the initial dataset (acquired on the conveyor belt) have been created. In total,
this dataset contains 453 multi-feature images. More precisely, this initial dataset has been divided
into 3 sub-datasets:

1. A Learning Set (LS) (223 images).

2. A Validation Set (VS) (117 images).

3. A Test Set (TS) (113 images)

This division is shown graphically in Figure 5.2 and the resulting class distribution within each
set is described in Table 5.2. Building these 3 sub-datasets enabled us to apply the well-known
“test set method” (Geurts & Wehenkel, 2020). This method allows to properly determine a good
model and estimate its performance by performing the following procedure:

1. Fit the models to compare on the learning set, using different neural network architectures
or different hyperparameters.
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Classes
Total

Copper Laminated zinc Paint Brass Aluminum PCB Nickel Rubber Zamak

S
e
ts

LS 293 80 14 212 469 40 89 17 352 1566
VS 171 66 6 176 194 33 46 7 135 834
TS 112 60 17 112 262 13 45 9 137 767

Table 5.2: Class distribution inside the original Learning, Validation, and Test Sets: the three sets
are imbalanced in terms of class.

2. Based on its performance on the validation set, select the best one.

3. Retrain this model on a new dataset built by merging the learning set and the validation set
together.

4. Compute an estimation of the performance of this resulting model on the test set.

5. Retrain this model on the whole initial dataset (LS + VS + TS) to obtain the final model.

5.2 Dataset augmentation

To improve the overall performance, we can apply data augmentation to increase the size of the
Learning Set (LS). Indeed, it is been proven in the deep learning literature that suitable data
augmentation increases the model performance (Miko lajczyk & Grochowski, 2018).

The data augmentation performed in this work has been implemented using the transform class
of the TorchVision library. More specifically, 4 new datasets have been created by applying 4
different processes on each image of the original LS.

To create the first and second new datasets, all images of the initial LS have been flipped
horizontally and vertically, respectively.

The third new dataset has been obtained by applying an affine transformation to all images of
the original LS. More precisely, each multi-feature image is rotated randomly with an angle between
-180◦ and +180◦ and is then translated with random horizontal and vertical shifts between 0%
and 40% of the width and the height of the multi-feature image, respectively.

The last new dataset is composed of patchwork multi-feature images. Each of those patchwork
images has been generated by performing the following process:

1. An artificial multi-feature image is created by assigning to each channel a specific constant
value that corresponds to the feature value acquired when there is no object on the conveyor
belt.
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2. The number of objects to integrate to the initial multi-feature image is drawn randomly in
the range [2, 10].

3. While this amount of objects has not been integrated in the artificial multi-feature image, an
object is randomly extracted from the initial LS and is patched in the multi-feature image (if
it does not overlap with any already patched object, otherwise another object is randomly
picked).

Thanks to this new dataset, the initial LS is extended with multi-feature images containing objects
of different classes.

It is important to note that we only got new images that are meaningful and possible to encounter
in practice in the Multipick application.

Once these four new datasets have been built, they have simply been added to the original LS
to form an augmented LS. Figure 5.3 highlights the three augmentations performed to build the
first three new datasets. Figure 5.4 visually shows the resulting augmented dataset.

Original image Horizontal flip

Vertcial flip Affine transformation

Figure 5.3: Visualization of three data augmentations performed on the same original image (upper
left image). The depicted pictures correspond to the channel n°1 of the multi-feature images.
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Figure 5.4: Illustration of the augmented dataset. The scalars in parentheses correspond to the
number of multi-feature images contained inside each set. Compare to the original dataset (Figure
5.2), the Learning Set (LS) size has been multiplied by 5 thanks to the addition of 4 new sets (in
orange) obtained by performing 4 different data augmentation techniques.
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Chapter 6

Method

Outline

In this chapter, we describe in detail the specific Mask R-CNN architecture that will be tested in
the next chapter. In Section 6.1, we motivate the choice of using Mask R-CNN in the context of
this master’s thesis. In Section 6.2, the required data preprocessing is briefly explained. Finally,
in Section 6.3, the different Mask R-CNN backbones used in the next chapter are described.

6.1 Method selection

The use of Mask R-CNN to tackle this work is mainly motivated by the three following reasons:

1. Mask R-CNN achieves great instance segmentation performance. Even the current state-of-
the-art deep neural network in instance segmentation (Cascade Eff-B7) is based on Mask
R-CNN (Ghiasi et al., 2020) (see Figure 4.1).

2. Mask R-CNN is highly flexible and modular. Indeed, the backbone of Mask R-CNN can be
any CNN and the head of the network can also be replaced very easily by another architecture.
This great advantage of Mask R-CNN is directly visible in Figure 4.1: Mask R-CNN achieved
state-of-the-art result multiple times thanks to the used of more and more efficient backbones.
Furthermore, Mask R-CNN can be extended in cascade to form a larger deep neural network
called Cascade Mask R-CNN (Cai & Vasconcelos, 2019).

3. Mask R-CNN architecture and working principle are described in details in the literature: it
is possible to get a deep understanding of it.
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Channel n°
1 2 3 4 5 6 7 8 9 10 11

Mean 0.16 64593 64404 2014 1911 2502 2479 2318 2281 2200 2187
Standard deviation 1.73 3390 3003 1335 858 474 417 404 414 453 554

Table 6.1: Means and standard deviations of the 11 channels computed on the original learning set.

6.2 Preprocessing

To have an effective training, the input data x is normalized channel-wise. That is, each channel
of the input is normalized according to the corresponding channel mean and standard deviation of
the original learning set. The channel means and standard deviations of the original learning set
are shown in Table 6.1.

6.3 Mask R-CNN backbone

As mentioned in Section 3.2.5, the first part of Mask R-CNN is a CNN backbone. In the context of
this master’s thesis, two families of advanced CNN architecture have been evaluated inside Mask
R-CNN: ResNet-FPN and ResNeXt-FPN. These two families correspond to the popular ResNet
and ResNeXt architectures on which a Feature Pyramidal Network (FPN) has been applied on
top.

6.3.1 ResNet

ResNet stands for Residual Network because this CNN is composed of a sequence of building
blocks called residual blocks. A residual block is a stack of convolutional layers with an identity
shortcut connection. Hence, instead of directly fitting the desired function H(x), the stacked layers
fit another function F(x) := H(x) − x that has been empirically proven to be much easier to
optimize. The intuition behind is that if the desired function is the identity one, it would be easier
to push the residual F(x) to zero than to fit the identity function by a stack of nonlinear layers.
A generic residual block is shown in Figure 6.1.

Figure 6.2 describes the different ResNet architectures when used as feature extractor.
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Figure 6.1: Residual block used inside ResNet. It is a stack of convolutional layers with an identity
shortcut connection (He et al., 2016).

Figure 6.2: Architecture of different versions of ResNet when used as feature extractor (He et al.,
2016). Residual blocks are shown in brackets with the numbers of blocks stacked. In practice, down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 6.3: Equivalent ResNeXt building blocks with a cardinality equal to 32. (a) Aggregated
residual transformation formulation. (b) Early concatenation formulation. (c) Grouped convolutions
formulation. A layer is denoted as (# input channels, filter size, # output channels) (Xie et al., 2017).

6.3.2 ResNeXt

ResNeXt is a variant of ResNet. The difference lies in the building block used. As in ResNet,
the ResNeXt building block has a shortcut connection. But, instead of just stacking convolutional
layers in series, it aggregates a set of independent stacked convolutional layers with the same topol-
ogy. Figure 6.3 visually illustrates this building block with three equivalent formulations. The last
formulation is the one used in practice. In this reformulation, all the first 1× 1 layers are replaced
by a single wider layer, and the splitting is performed using a grouped convolutional layer. Briefly,
a grouped convolutional layer is a layer that divides its input channels into groups and performs
an independent convolution on each of those groups. Its output is formed by concatenating the
results of all convolutions.

This new building block exposes a new dimension, which is called “cardinality” . This dimension
corresponds to the number of stacked layers used in parallel.

Thanks to this new building block, ResNeXt outperforms ResNet while maintaining the same
complexity. Figure 6.4 describes a ResNeXt architecture when used as feature extractor.

6.3.3 Feature Pyramid Networks

Principle

In summary, the goal of a Feature Pyramid Network (FPN) is to build high-level semantic feature
maps at all scales using a CNN backbone. It takes an image of an arbitrary size as input and
outputs multiple feature maps of proportional size. The performed process is independent of the
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Figure 6.4: ResNeXt with 50 layers and using the building block formulation depicted in Figure 6.3
(c) (Xie et al., 2017). ResNeXt building blocks are shown in brackets with the numbers of blocks
stacked. C = 32 refers to a grouped convolution operation with 32 groups, while 4d means that each
of the 32 convolutionnal layers composing the grouped convolution operation has a width of 4.

CNN backbone used and can be decomposed into 2 phases: the bottom-up phase and the top-down
phase with lateral connections.

Bottom-up phase This phase corresponds to the feed-forward pass of the CNN backbone.
Thanks to this pass, several feature maps at various scales are computed. Making the hypothesis
that the backbone can be decomposed into successive blocks (called stages) such that the layers
inside each stage generate feature maps of the same size. The FPN uses the last feature map
of each stage as its initial set of feature maps. In the specific case of ResNet (and ResNeXt), it
corresponds to the output of the last residual blocks of conv2, conv3, conv4 and conv5 (see Figure
6.2). In the literature, these outputs are commonly denoted as {C2, C3, C4, C5}.

Top-down phase with lateral connections. This second and final phase starts with C5 on
which a 1 × 1 convolution is performed to produce the coarsest feature map. Then, the spatial
resolution of this feature map is upsampled by a factor 2 and merged with the corresponding
bottom-up map (which has been fed to a 1 × 1 convolution to reduce channel dimensions, be-
forehand) by element-wise addition. This process is iterated until the feature map with the finest
resolution is created. Figure 6.5 visually illustrates this procedure. Finally, the enhanced set of
feature maps (called {P2, P3, P4, P5}) is obtained by applying a 3×3 convolution on each merged
feature map.
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Figure 6.5: Illustration of the upsampling and merging operations taking place during the top-dwon
phase of a Feature Pyramidal Network (Lin et al., 2017).

FPN for RPN

In the original RPN design (described in Figure 3.13), a small FCN with two heads is evaluated
on 3 × 3 windows over a single scale feature map to perform binary classification and bounding
box regression with respect to a set of anchors. The anchors enable to detect object with various
shapes and scales even if the RPN is using a single scale feature map.

However, thanks to FPN, the RPN performance can be improved: it is performed by replacing
the single feature map by the {P2, P3, P4, P5} feature maps produced by FPN. The small FCN
is now attached to each level of the feature pyramid and each anchor of a single scale is assigned
to the feature map corresponding to that scale: anchor areas of {322, 642, 1282, 2562} pixels are
defined on {P2, P3, P4, P5}, respectively. As in the original implementation, anchors of multiple
aspect ratios are used at each level. This enhanced RPN can be naturally trained and evaluated
in the same fashion as in the original implementation described in Section 3.2.4.

FPN for Mask R-CNN head

Most commonly, the head of Mask R-CNN makes its predictions by extracting features from a RoI
(given by the RPN) defined on a single-scale feature map.

Thanks to the FPN, it is possible to map RoIs of different scales to the set of feature map of
different scales generated by the FPN. More precisely, a RoI of width w and height h is assigned
to the level Pk of the FPN by evaluating the following empirical equation:
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k = bk0 + log2(
√
wh/224)c (6.1)

where 224 is a scalar that has been proven to provide good results, k0 is the target level on which
a RoI with w × h = 2242 should be mapped into. In practice, k0 is set to 4.

Using this mapping, features from the Pk feature map are pooled to a fixed size feature map
and processed in the same way as in the original implementation.
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Chapter 7

Mask R-CNN optimization

Outline

In this chapter, we carry out the optimization of Mask R-CNN. More precisely, in Section 7.1,
we describe the different metrics that have been used to evaluate the performance of Mask R-
CNN. In Section 7.2, we describe the baseline Mask R-CNN model used as a reference and the
evaluation of its performance. Finally, in Section 7.3, we express the optimization procedure that
has been followed to determine the best Mask R-CNN model and the underlying experiments.

7.1 Evaluation metrics

In this master’s thesis, the quantitative evaluation of the Mask R-CNN models has been performed
using the concept of contingency table and mean average precision.

7.1.1 Confusion matrix and contingency table

A very popular and useful tool to evaluate the performance of a binary classification algorithm is
the confusion matrix C. Each line of the matrix corresponds to the instances in an actual class,
while each column represents the instances in a predicted class. Figure 7.1 illustrates such a table
with a positive and negative class. By definition, each element Cj

i of the table is equal to the
number of inputs known to be of class i and predicted to be of class j. Therefore in the case
of a binary classification, the count of true positives (TP) is C0

0 , false negatives C1
0 (FN), false

positives C0
1 (FP) and true negatives C1

1 (TN). These four quantities are extremely useful because
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it is possible to compute several performance metrics by combining them. For instance, the recall
and precision can be computed as follows:

recall =
TP

TP + FN
(7.1)

and

precision =
TP

TP + FP
. (7.2)

This concept of confusion matrix trivially extends itself to more than two classes. Such a matrix
is then called a contingency table. In that case, if the elements of such table T are denoted by tij.
Then, the precision and recall for the class k are defined by

recall =
tkk∑
j tkj

(7.3)

and

precision =
tkk∑
i tik

. (7.4)

respectively.

Figure 7.1: Illustration of a confusion matrix where TP, TN, FP and FN correspond to the true
positive, true negative, false positive and false negative counts, respectively (Stardat, 2021).

And the accuracy A is defined as

A =

∑
k tkk∑
ij tij

. (7.5)
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Likewise, the error rate ERR is trivially defined as

ERR = 1− A. (7.6)

7.1.2 Average precision and mean average precision

A popular metric in objection detection to compare the performance of different algorithms is the
Average Precision (AP). This class metric is the area under the precision-recall curve of a given
class and is computed for each class in 5 steps (COCO, 2021a):

1. Each prediction on the test (or validation) set is classified as true positive or false positive.
Concretely, a prediction (composed of the bounding box coordinates, and a class with its
confidence) is classified as true positive (TP) if the IoU between the bounding box defined
by the prediction and the one of the corresponding ground truth is greater than a specific
threshold. Otherwise, the prediction is consider as false positive (FP). Furthermore, in the
case where there are more than one prediction overlapping a ground truth, only the prediction
with the highest IoU is considered as TP: all the others are considered as FP.

2. All predictions are sorted in descending order by their class confidence score.

3. After that, the accumulated TP and FP can be computed for each prediction.

4. From these accumulated values, the precision and recall for each prediction can be calculated.
Plotting all these precision and recall values gives the precision-recall curve.

5. The final step is to compute the area under the obtained precision-recall curve. In practice, to
be fast, this area is approximated in the COCO challenge by averaging the precision at a set
of 101 equally spaced recall levels (from zero to one). Each precision value at a specific recall
level is interpolated by taking the maximum precision value whose recall value is greater or
equal than the next recall level. Figure 7.3 shows an example of a possible precision-recall
curve obtained by applying such interpolation to a set of 11 recall levels and considering
an IoU threshold of 0.75 on a toy set of cat detections summarized in Figure 7.2 (Padilla,
Passos, Dias, Netto, & da Silva, 2021).
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Figure 7.2: Precision and recall computations for a set of bounding box detections, considering a
total of 12 ground truths and an IoU threshold of 0.75 (Padilla et al., 2021). ΣTP (τ) and ΣFP (τ)
are the accumulated TPs and FPs, respectively, whose corresponding confidence levels are larger than
or equal to the confidence τ . Knowing that TP + FN = P (the number of ground truths), Precision
Pr(τ) and recall Rc(τ) values are calculated based on Equations 7.2 and 7.1 respectively .

Figure 7.3: Average precision metric computation using 11-point interpolation with the precision and
recall values of Figure 7.2 (IoU threshold of 0.75) (Padilla et al., 2021).

Another very popular scalar metric to evaluate object detection neural networks is the mean
average precision (mAP). However, even if this metric is very popular, its definition varies through
the deep learning literature. In the context of this work, I decided to use the definition given in
the COCO challenge (COCO, 2021b): the mAP is the AP averaged over all classes and 10 IoU
thresholds (from 0.5 to 0.95 with a step size of 0.05). This metric allows to compare very easily
the global performance of different object detection algorithms.
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Hyperparameter Value
Training
Optimizer SGD with a momentum of 0.9 (Pytorch, 2021)
Learning rate 0.01
Number of epochs 100
Batch size 4
Weight decay 10−4

Training dataset Original learning set (no data augmentation)

Anchors
Sizes of each anchor (in pixels) {8, 16, 32, 64, 128}
Aspect ratios for each anchor size {0.5, 1, 2}

Neural networks
Backbone ResNet-18 with FPN on top (Lin et al., 2017)
Head Same as Figure 3.17
RPN Same as Figure 3.13

Hardware
Number of GPU used 2
GPU type NVIDIA RTX 2080 Ti
Amount of CPU memory used 8 GB of memory

Table 7.1: Main Mask R-CNN baseline hyperparameters and neural networks.

In the context of instance segmentation, the computation of the AP and mAP metrics are
unchanged except for the IoU evaluation, which is performed over masks instead of bounding
boxes.

7.2 Baseline model

Concretely, ResNet-18 has been used as Mask R-CNN backbone to study and determine its best
hyperparameters. Table 7.1 describes the main baseline hyperparameters used.

Using these baseline hyperparameters and neural networks, the loss and mean Average Precision
(mAP) curves shown in Figure 7.4 have been observed. These loss curves ` have been obtained by
computing after each epoch e the following expression:

53



0 20 40 60 80 100
Epoch

0

1

2

3

4

`

Mean validation

Mean training

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

m
A

P

Box

Mask

Figure 7.4: Loss curves (left graph) and mean average precision (right graph) obtained by Mask
R-CNN using the baseline hyperparameters and neural networks described in Table 7.1. The validation
loss and the mean average precision have been computed using the validation set: it reached a maximal
mAP of 0.404 and 0.359 for its bounding box and mask predictions, respectively. In the left graph, the
dark curves correspond to the average of the sum of the `head losses (see Equation 7.7) for each epoch.

`e =
1

|D|
∑
i∈D

∑
j∈imagei

`ijhead (7.7)

where j corresponds to the jth RoI detected in the ith input image of the dataset D considered
(|D| is the size of the dataset D). `ijhead is the loss previously defined in Equation 3.29.

The validation loss and the mAP have been computed using the Validation Set (VS): the baseline
deep neural network reached a maximal mAP of 0.404 and 0.359 for its bounding box and semantic
mask predictions, respectively. From Figure 7.4, we can also observe that both training and
validation loss curves are never increasing (in global trend) with the number of epochs: this points
out that the model has not overfitted the training data.

7.3 Optimization procedure

To build a Mask R-CNN reaching very high performance, its optimization has been divided into
two successive steps.

First, the best Mask R-CNN hyperparameter values have been determined with a fixed and
relatively small CNN backbone. Using a small CNN backbone reduces the time required to train
Mask R-CNN, and therefore enables the testing of several hyperparameters values in a reasonable
amount of time.
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Aspect ratios mAPbox (%) mAPmask (%)
{0.5, 1, 2} 40.4 35.9
{1, 2, 3} 33 29.7
{0.5, 1, 1.5, 2, 2.5, 3} 35.6 31.8
{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} 42.3 39.3
{0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} 40 35

Table 7.2: Performance result of Mask R-CNN on the validation set using different settings of anchor
and the others baseline parameters defined in Table 7.1. mAPbox and mAPmask are the mean average
precision computed by using the bounding boxes and the masks, respectively. The set of aspect ratios
in bold font achieved the best mAPs.

Then, using these Mask R-CNN hyperparameter values, a set of CNN backbones have been
evaluated to determine which one is leading Mask R-CNN to achieve its best performance.

7.3.1 Hyperparameter optimization

To determine the best Mask R-CNN hyperparameter values with ResNet-18 as CNN backbone,
the following hyperparameters have been sequentially tuned and evaluated on the VS : the aspect
ratios for each anchor, the optimizer, and the data augmentation. By sequentially, it means that
once a suitable value for an hyperparameter has been determined, this hyperparameter value has
been used and left unchanged during the tuning of the other hyperparameters.

Anchor aspect ratios As shown in Table 7.2, the set of aspect ratios {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}
achieved the best mAPs: this set of aspect ratios has been used in all the next experiments of this
master’s thesis.

Optimizer In addition to the SGD optimizer, the Adam (Kingma & Ba, 2014) and AdamW
(Loshchilov & Hutter, 2017) optimizers have also been tested. Table 7.3 summarizes the results
and highlights that the Adam optimizer led to the best performance in terms of mAPs. Therefore,
the Adam optimizer is the optimizer that has been used in all the next experiments of this master’s
thesis.

Data augmentation As explained in Section 5.2, we performed data augmentation to increase
the size of the learning set. To see the impact in terms of performance on the validation set,
ResNet-18 with the best hyperparameters identified so far has been trained on an incrementally
growing learning set. The results of this experiment are displayed in Table 7.4: the learning
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Optimizer mAPbox (%) mAPmask (%)
SGD 42.3 39.3
Adam 43.3 39.7
AdamW 41.9 38

Table 7.3: Performance result of Mask R-CNN on the validation set using different optimizers. To work
properly with Adam(W), the learning rate had to be decreased down to 0.0001. mAPbox and mAPmask
are the mean average precision computed by using the bounding boxes and the masks, respectively.
The optimizer in bold font achieved the best mAPs.

Learning Set mAP
Original Horizontally flip Vertically flip Affine Patchwork Box (%) Mask (%)

X × × × × 43.3 39.7
X X × × × 43 39.1
X X X × × 42.5 38.2
X X X X × 43.3 40.3
X X X X X 41.7 38.4

Table 7.4: Performance result of Mask R-CNN on the validation set with the best hyperparame-
ters identified in the previous experiments using different (augmented) learning sets. The different
augmentations are described in Section 5.2. The best mAPs are highlighted in bold font.

set composed of the original, horizontally flip, vertically flip, and affine datasets achieved the
best performance. However, even if the performance of the complete learning set (containing all
datasets) did not reach the best performance, it has still been used in all the next experiments
of this master’s thesis. Because, as the performance measurement is done on the validation set,
the obtained mAps are just rough estimations of the real performance. In practice, the complete
learning set could reach higher performance than the best one obtained in this experiment. This
scenario is even highly probable as the Patchwork dataset is the only dataset having multi-feature
images that are very likely to be encounter in reality. Indeed, its multi-feature images contain
objects of different classes.

7.3.2 Backbone optimization

Once the best Mask R-CNN hyperparameter values have been determined with ResNet-18-FPN as
CNN backbone, several other CNN backbones have been tested to determine which one is leading
Mask R-CNN to achieve its best performance. More precisely, upscale versions of ResNet and
another family of CNNs called ResNeXt have been tried. Sections 6.3.1, 6.3.2, and 6.3.3 describe
ResNet, ResNext, and FPN respectively.
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Backbone mAPbox (%) mAPmask (%)
ResNet-18-FPN 41.7 38.4
ResNet-50-FPN 51.2 45.6
ResNet-101-FPN 19.8 19.9
ResNeXt-50-32×4d-FPN 51 48
ResNeXt-101-32×8d-FPN 53.9 48.7

Table 7.5: Box and mask mAPs on the validation set. ResNeXt-101-32×8d with FPN on top achieved
the best performance with a mAPbox and mAPmask of 53.9 % and 48.7 %, respectively. ResNet-50-
FPN, ResNeXt-50-32×4d-FPN and ResNeXt-101-32×8d-FPN have been trained with a learning rate
of 10−4, while a learning rate of 9 · 10−5 has been applied for ResNet-101-FPN.

Hyperparameter Value
Training
Optimizer Adam
Learning rate 10−4

Number of epochs 100
Batch size 4
Weight decay 10−4

Training dataset Augmented learning set

Anchors
Sizes of each anchor (in pixels) {8, 16, 32, 64, 128}
Aspect ratios for each anchor size {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

Neural networks
Backbone ResNeXt-101-32×8d with FPN on top
Head Same as Figure 3.17
RPN Same as Figure 3.13

Hardware
Number of GPU used 2
GPU type NVIDIA RTX 2080 Ti
Amount of CPU memory used 16 GB of memory

Table 7.6: Main characteristics of the efficient Mask R-CNN model determined throughout Section
7.3. The augmented learning set is the set depicted in Figure 5.4.

Table 7.5 shows the results obtained testing 5 different backbones: ResNeXt-101-32×8d with
FPN on top reached the best performance with a mAPbox and mAPmask of 53.9 % and 48.7 %,
respectively.

57



7.3.3 Optimized model

Thanks to the optimization procedure described and conducted in Section 7.3, a very efficient
Mask R-CNN model has been determined. Table 7.6 summarizes its main characteristics.
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Chapter 8

Performance evaluation

Outline

In this chapter, we carry out an evaluation of the performance of the Mask R-CNN model
designed in Chapter 7 and we discuss the results. More concretely, in Section 8.1, we present
how the estimation of the theoretical performance has been computed and describe the obtained
values. In Section 8.2, we proceed with the computation of the real performance estimation
using a real set of scraps and we discuss the results.

8.1 Test set evaluation

Once we have determined the best hyperparameters and the CNN backbone (see Chapter 7), we
can train a new Mask R-CNN model with this fine-tuned setup on a new dataset obtained by
merging the complete augmented learning set with the validation set: this new dataset contains
1232 multi-feature images. Thanks to the test set previously defined in Section 5.1, we have a
proper way to estimate the performance of this new model.

Figure 8.1 shows the loss and mean average precision curves. From this figure, we can observe
that the loss curves both decrease up to the 40th epoch. This points out that the model has stopped
learning after this 40th epoch. As the validation loss (green curve) computed on the test set is
never increasing (in average), we can also state that the model has not overfitted the training data.
Finally, the right graph shows that the model has reached a maximal mAP on the test set of 54
% and 47.1 % for its bounding box and mask predictions, respectively.

Using the test set, a contingency table can be computed. Table 8.1 shows the complete contin-
gency table. Thanks to this table, we can evaluate the theoretical accuracy and the precision/recall
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Figure 8.1: Loss curves (left graph) and mean average precision (right graph) obtained by the
optimized Mask R-CNN model using the hyperparameters and neural networks described in Table 7.6.
The test loss and the mean average precision have been computed using the test set: it reached a
maximal mAP of 54 % and 47.1 % for its bounding box and mask predictions, respectively. In the left
graph, the dark curves correspond to the average of the sum of the `head losses (see Equation 7.7) for
each epoch.

per class. Table 8.2 shows the obtained values with the percentage of missed object and the average
inference time (i.e. the time taken by the model to produce the box, class and mask predictions
from a multi-feature image given in input): the Mask R-CNN model achieved a really good es-
timated accuracy of 89.5 %. More precisely, the copper and aluminum classes obtained excellent
results by reaching a precision and a recall greater than 90 %, whereas the paint and rubber classes
got a recall score smaller than 60 %. These low recall values are a direct consequence of the under
representation of these two classes inside the acquired dataset. In terms of detection, the Mask
R-CNN model reaches excellent performance by detecting 95.2 % of the objects present inside the
test set.

Predicted classes
Copper Laminated zinc Paint Brass Aluminum PCB Nickel Rubber Zamak

A
ct

u
a
l

cl
a
ss

e
s

Copper 102 0 0 5 0 0 0 0 0
Laminated zinc 0 46 0 0 0 0 0 0 12

Paint 1 0 9 0 4 2 0 0 0
Brass 6 0 0 92 3 0 4 1 2

Aluminum 0 0 1 3 242 1 1 0 3
PCB 0 0 0 1 1 10 0 0 0

Nickel 0 0 0 3 2 0 33 0 4
Rubber 0 1 0 1 2 0 0 5 0
Zamak 2 5 0 1 2 0 3 0 114

Table 8.1: Contingency table computed using the optimized Mask R-CNN model on the test set
defined in Section 5.1.
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Precision (%) Recall (%)

C
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s

Copper 91.9 95.3
Laminated zinc 88.5 79.3

Paint 90 56.3
Brass 86.8 85.2

Aluminum 94.5 96.4
PCB 76.9 83.3
Nickel 80.5 78.6

Rubber 83.3 55.6
Zamak 84.4 89.8

Accuracy (%) 89.5
Missed objects (%) 4.8
Inference time (ms) 149

Table 8.2: Theoretical accuracy estimation, precision/recall per class, percentage of missed object, and
average inference time using the optimized Mask R-CNN model on the test set: the model achieved a
really good estimated accuracy of 89.5 %. The precision, recall, and accuracy values have been obtained
by only taking into account the detections of the model having a classification confidence score higher
than 75 %. The average inference time has been measured with a batch size of 1 on a NVIDIA Quadro
RTX 6000 GPU.

Some visual Mask R-CNN results on the test set are shown in Figure 8.2. As the test set is
exclusively composed of multi-feature images containing objects of the same class, we can observe
that the predictions are excellent but not perfect. For instance, the model has detected an object
of the brass class inside the upper-left picture, while in practice the corresponding multi-feature
image only contains copper scraps. Moreover, we can also see that some parts of several objects
have not been detected.

8.2 Deployment and evaluation

Once the test set evaluation of the optimized Mask R-CNN model has been performed, we can
build the final Mask R-CNN model with the fine-tuned setup determined in Chapter 7 on a new
dataset obtained by merging the complete augmented learning set with the validation and test sets:
this new dataset contains 1345 multi-feature images and corresponds to the “augmented dataset”
shown in Figure 5.4.

61



copper
1.0

copper
1.0

copper
0.999

copper
0.999

copper
0.999 copper

0.998

copper
0.99

brass
0.97

aluminium
1.0

aluminium
1.0

aluminium
1.0

aluminium
1.0

aluminium
0.999

aluminium
0.999

aluminium
0.999

aluminium
0.999

aluminium
0.999

aluminium
0.999

aluminium
0.998

aluminium
0.998

aluminium
0.998

aluminium
0.997

aluminium
0.996

aluminium
0.994

aluminium
0.992

aluminium
0.987

aluminium
0.941

Figure 8.2: Mask R-CNN results on the test set showing detected scraps on the conveyor belt. These
results are based on the optimized Mask R-CNN model, achieving a mask mAP of 47.1 % and running
at 6 fps. Masks are shown in color on top of the scraps displayed in white, and bounding boxes, classes,
and confidence scores are also displayed. Each color corresponds to a specific class: some parts of
several objects have not been detected and one object has been misclassified.

8.2.1 Model integration

The current solution (from the acquisition to the grasping of the detected objects) used in the
Multipick project is fully implemented in C++. In contrast, the final Mask R-CNN model is fully
implemented in Python. Therefore, with the Multipick team, we had to find a way to integrate
the Python model into the existing C++ pipeline.

We first tried to convert the Python model into a format that can be imported and interpreted
directly in C++. In theory, the ONNX (ONNX, 2021) and TorchScript (PyTorch, 2021) formats
are well suited to perform this operation. The Pytorch Python library enables to convert easily
the model to these formats and there exist C++ libraries to import the model in these formats
and interpret it. However, in practice, the final Mask R-CNN Python model uses recent functions
and modules that are not yet supported in the Windows C++ libraries. Therefore, we had to find
another way to integrate the Python model.

The solution that we finally found consists in making the Python model and C++ pipeline
coexist through a TCP/IP client and server. More precisely, the computer inside the Pick-it
prototype is creating a client in C++ and a server in Python, which communicate with each other.
The communication between the client and server operates as follows:
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Figure 8.3: Illustration of the mix of scraps (called real test set) used to evaluate an estimation of
the real performance of the final Mask R-CNN model: the objects have various shapes and the class
distribution is completely unknown.

1. The C++ client sends to the Python server the multi-feature image acquired on the conveyor
belt.

2. The Python server receives the multi-feature image, preprocesses it, and feeds it to the Mask
R-CNN Python model.

3. The outputs of the model are postprocessed by the Python server and sent to the C++
client.

4. The C++ client decodes the data sent by the server and computes some useful information
to properly grasp the objects such as the center of gravity of each detected object.

5. Finally, the C++ client sends the corresponding commands to the delta-robots to grasp and
sort in the associated containers the detected scraps.

8.2.2 Real performance estimation

After successfully integrating the final Mask R-CNN model inside the Pick-it prototype, we assessed
its real performance on the prototype by feeding the waste feeder (see Figure 2.1) with a real mix
of scraps having an unknown class distribution. Figure 8.3 shows a picture of this mix.

Figure 8.4 illustrates the sorting of some of these scraps by the delta-robots thanks to the
predictions of the final Mask R-CNN model.

By counting by hand the resulting number of scraps in each container, a contingency table can
be built. The complete contingency table is shown in Table 8.3. In the current real prototype, the
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Figure 8.4: Illustration of the delta-robots grasping some scraps on the moving conveyor belt during
the real assessment. We can observe that the conveyor belt is saturated with scraps.

Predicted classes
Copper Zinc Brass Aluminum Nickel

A
ct

u
a
l

cl
a
ss

e
s

Copper 72 21 60 15 0
Laminated Zinc 2 185 4 3 1

Paint 0 0 1 0 0
Brass 5 32 132 7 3

Aluminum 2 2 6 299 5
PCB 0 0 1 0 0

Nickel 0 1 16 4 32
Rubber 0 0 1 1 0
Zamak 0 0 22 0 0

Table 8.3: Contingency table obtained using the final Mask R-CNN model on the real test set with
the Pick-it prototype. In the current real prototype, the laminated zinc and zamak objects are sorted
inside the same container (called zinc). The PCB, rubber and paint objects are ignored.

laminated zinc and zamak objects are sorted inside the same container (called zinc), and the PCB,
rubber and paint objects are ignored. This why this contingency table has only five columns.

From this table, the same metrics as the ones calculated in the theoretical assessment (Section
8.1) are computed, but only for the copper, zinc, brass, aluminum, and nickel classes. Table 8.4
summarizes the results: the final Mask R-CNN model achieved a good estimated accuracy of
77.1 %. To maximize the activity of the delta-robots, the conveyor belt is saturated with scraps:
the percentage of missed (not detected) objects is therefore not meaningful anymore in terms of
detections. From Table 8.4, we can notice that the inference time is different from the one obtained
in Table 8.2: it is perfectly normal as the GPU used in practice is different from the one used for
the test set evaluation in Section 8.1. This inference time being under 500 ms, the final Mask
R-CNN model remains sufficiently fast to run properly on the Pick-it prototype.
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Precision (%) Recall (%)
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Copper 88.9 42.9
Zinc 77.1 94.9
Brass 54.3 73.7

Aluminum 90.9 95.2
Nickel 78 61.5

Accuracy (%) 77.1
Inference time (ms) 160

Table 8.4: Real accuracy estimation, precision/recall per class, and average inference time using the
final Mask R-CNN model on the real test set. The precision, recall, and accuracy values have been
obtained by only taking into account the objects sorted by the robots using the detected objects having
a classification confidence score higher than 75 %. The average inference time has been measured with
a batch size of 1 on a NVIDIA Leadtek RTX2080 GPU.

Precision (%) Recall (%)

C
la

ss
e
s Copper > 93 > 60

Zinc > 90 > 60
Brass > 70 > 60

Aluminum > 85 > 60

Table 8.5: Description of the different requirement values for the copper, aluminum, brass, and zinc
classes currently set by the Comet Group. Each class precision and recall requirement expresses the
thresholds after which the sorting of that particular class becomes profitable. These values have been
computed by Comet Group through a complete market analysis.

To be able to assess whether the obtained precision and recall values are sufficiently high or not,
let us compare their values with the precision and recall requirements currently set by the Comet
Group. Each class precision and recall requirement expresses the thresholds after which the sorting
of that particular class becomes profitable. Table 8.5 shows the existing requirement values for the
copper, zinc, brass, and aluminum classes. All the values are in % in mass, while all the precision
and recall values computed in this master’s thesis are in % of classified objects. Therefore, in
theory, we can not do a direct comparison between these values. However, in practice, we will do
an approximation and compare these different values: by comparing Tables 8.4 and 8.5, we can
observe that the final Mask R-CNN model only reaches the requirements for the aluminum class.
Therefore, we can state that the achieved results are good but not yet sufficient to be profitable.
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8.3 Discussion

8.3.1 Real versus theoretical

From Tables 8.2 and 8.4, we observe a gap of 12.4 % between the theoretical and the real accuracy
estimations. This gap can be mainly explained by the following reasons:

• Distribution shift and overestimation of the theoretical performance. The the-
oretical performance has been evaluated on the test set which contains only 767 objects
drawn from the same distribution as the one on which the Mask R-CNN model has been
trained. In contrast, the real test set has been drawn from the true distribution of ob-
jects. This distribution is very likely to be quite different from the distribution on which
the model has been trained on because the data are extremely diversified and the training
dataset used is small. Indeed, as shown in Figure 8.3, the objects have a large number of
different shapes. Moreover, as they come from different sources (automobile, pipes, ...), the
objects also have a large range of atomic concentrations. Therefore, during the real assess-
ment, the Mask R-CNN model has encountered a large amount of objects with new shapes
and atomic concentrations that differ by a significant margin from the ones on which it has
been trained on: this directly leads to many wrong classifications and thus a drop in terms
of accuracy. Furthermore, as the theoretical assessment has been performed on a test set
drawn from the same distribution as the one on which the model has been trained on and
as the size of this test set is small, the theoretical performance estimations are overestimated.

• Class overlapping. The brass being an alloy of copper and zinc, there is an overlapping
between the copper, zinc and brass classes. Similarly, zamak is an alloy with a base metal of
zinc and alloying elements of aluminum, magnesium, and copper: there is a second overlap.
These overlaps are directly visible in Table 8.3 where all zamak and many copper scraps
and have been wrongly classified in the brass container. Having such overlapping increases
significantly the complexity of the classification task.

• Heterogeneous object classes. The acquired dataset used to train and test theoretically
the deep learning model is only composed of multi-feature images containing objects of
the same class. However, most of the time in practice, the multi-feature images sent to
the model contain objects of multiple classes. The “pacthwork” augmentation described
in Section 5.2 directly tackles this issue but there is no guarantee that this augmentation
solves it completely: the model might still experience some difficulties to handle multi-feature
images with heterogeneous object classes.

• Change of the acquisition conditions. The acquisition conditions of the multi-features
images might have changed between when the dataset was acquired in October 2020 and
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Precision (%) Recall (%)

C
la

ss
e
s

Copper 90.8 68
Zinc 82.6 97.4
Brass 68.6 78.7

Aluminum 93.6 93.9
Nickel 77.6 24

Accuracy (%) 81

Table 8.6: Real accuracy estimation, precision/recall per class of the current characterization method
used in the Pick-it and Multipick projects. These values have been computed by the Comet Group on
a real test set having a total weight of 99.415 kg.

when the real assessment was performed in May 2021. This change could have been due to
multiple factors: change of some parameters in the X-ray module, in the VNIR camera, in
the illumination of the conveyor belt under the VNIR camera, ... If this acquisition change
has occurred, it impacts directly the quality and the values of the features embedded inside
the multi-feature images, it can thus mislead the model.

8.3.2 Current ML model versus final DL model

The performance of the current characterization method (based on a Support Vector Machine
method) used in the Multipick project is shown in Table 8.6.

By comparing Tables 8.4 and 8.6, we can observe that except for the nickel class, the deep
learning Mask R-CNN model has not outperformed the current characterization method in the
classification task. Nevertheless, in terms of accuracy, the two approaches differ only by 3.9 %.

However, as mentioned in Section 1.2, CNN based models (such as Mask R-CNN) have in-
trinsically a great potential to outperform the current characterization method thanks to their
exploitation of the spatial information existing between pixels. Indeed, conversely to the CNN
based models, the current characterization method classifies each pixel individually and it does
not leverage the spatial information existing between pixels to make its pixel predictions.

Another advantage of the Mask R-CNN model over the current characterization method is its
completeness. The Mask R-CNN model detects and predicts the class, position, and precise profile
of each detected object all by itself. On the contrary, the current characterization method requires
an upstream segmentation method to transform its pixel predictions into object level classifications.
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Chapter 9

Conclusion

Due to the non-exploitation of the spatial information provided by the sensors, the current charac-
terization method of the Multipick demonstrator is very likely to be suboptimal and has a limited
scope of application. However, reaching the highest performance possible is of great importance
as it directly translates into a higher waste recovery.

In this master’s thesis, we have investigated the potential of deep neural networks to outperform
the current characterization method by exploiting simultaneously both spectral and spatial infor-
mation provided by three sensors (a dual X-Ray transmission sensor, a 3D ranging camera and a
hyperspectral camera).

At the end of this thesis, we have finally succeeded to show the great potential of deep learning
to perform multi-sensor instance segmentation by integrating a fully functional and optimized deep
neural network inside the real and pioneer Pick-it prototype.

While the results obtained with the deep learning model in terms of localization are excellent,
the classification accuracy obtained with the Pick-it prototype is too low to be profitable and to
outperform the current waste characterization method.

Nevertheless, this preliminary work shows the great potential of the exploitation of the spa-
tial information existing between pixels and unveils various directions of future work that could
lead to the creation of a deep learning model outperforming the current characterization method.
Concretely, here are five possible avenues (sorted by decreasing order of potential in terms of
performance improvement) that could be implemented to achieve this goal:

1. Train on more data. The most effective and simple way of improving the performance of
the Mask R-CNN model is to train it on a much larger dataset. Doing so, the deep learning
model will encounter a larger variety of object shapes with diverse atomic concentrations,
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from which it will be able to fit a much more accurate model. As all the codes required to go
from the acquired dataset to the training and the integration of the trained model into the
Pick-it prototype have already been implemented, this improvement is really straightforward
to put in place and could by itself achieve the goal.

2. Use a more complex classification head. As shown in Figure 3.17, the classification
head of the Mask R-CNN model used in this master thesis is quite simple: replacing it by
a more complex set of layers could significantly improve the accuracy of the predictions. As
the Mask R-CNN model is fast (160 ms to produce the box, class and mask predictions from
a multi-feature image given in input), we could replace the current classification head by a
fast and effective CNN such as MobileNetV3 (Howard et al., 2019).

3. Use a more effective backbone. Instead of using the ResNeXt-101-FPN as Mask R-
CNN backbone, we could use the brand new EfficientNetV2-M (Tan & Le, 2021) CNN that
achieves state-of-the-art results in the classification task (with a FPN on top), while having
an acceptable inference time for the Pick-it application. As the feature maps produced by
the backbone are the main components of the Mask R-CNN model, a backbone producing
more valuable features will directly improve the Mask R-CNN predictions.

4. Extend Mask R-CNN. Instead of using the Mask R-CNN with FPN architecture pre-
sented in this master’s thesis, we could use its extension called Cascade Mask R-CNN (Cai
& Vasconcelos, 2019). As shown in Figure 4.1, this deep neural network significantly outper-
formed Mask R-CNN and achieved state-of-the-art results in 2020. However, this extension
leads to an increase of the inference time. But, in practice, this increase might be sufficiently
small to be acceptable in the Multipick application.

5. Train on heterogeneous images. As mentioned in Section 8.3.1, training a Mask R-CNN
model on a dataset exclusively composed of multi-feature images containing objects from the
same class could have a negative impact on the performance (even though a “patchwork”
data augmentation is performed). Therefore, a direct improvement would be to acquire multi-
feature images containing heterogeneous object classes. It has not been performed in this
master’s thesis because this makes the creation of the ground truths quite difficult. However,
in practice, this could be done and automated thanks to the use of a laser-induced breakdown
spectroscopy scanning system that would enable to precisely determine the ground truth class
of each object during the acquisition of multi-feature images on the conveyor belt.
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Chapter 10

Appendices
I Overview of the 9 classes

The 9 classes of scraps to detect and sort are illustrated with several physical samples for each
class in the following figure:

Figure 10.1: Overview of the 9 classes of scraps considered in this master’s thesis. First row: copper,
laminated zinc and paint samples. Second row: brass, aluminum, and PCB scraps. Third row: nickel,
rubber and zamak objects.
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II Input channels overview

The following figure represents the 11 channels of one of the multi-feature images present inside
the dataset:

Input channel n°1 (Height) Input channel n°2 (Low X-ray transmission) Input channel n°3 (High X-ray transmission)

Input channel n°4 (Reflectance at 433.08 nm) Input channel n°5 (Reflectance at 497.12 nm) Input channel n°6 (Reflectance at 561.52 nm)

Input channel n°7 (Reflectance at 626.26 nm) Input channel n°8 (Reflectance at 691.36 nm) Input channel n°9 (Reflectance at 778.71 nm)

Input channel n°10 (Reflectance at 866.67 nm) Input channel n°11 (Reflectance at 955.26 nm)
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Figure 10.2: Overview of the 11 channels of one sample of the dataset.
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