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Abstract

Once a day, every individual lay down and becomes unconscious. Isn’t sleep a strange thing to do?
Despite the risks associated to it, our ancestors used to sleep too, suggesting that it should provide an
evolutionary advantage. Thus, it rises a fundamental question: why do we sleep? Among all essential
functions of sleep, research has proved its preponderant role in memory formation and consolidation. At
the cellular level, memory is achieved through processes referred to as synaptic plasticity and translating
the remarkable ability of the brain to constantly evolve due to various stimuli. Furthermore, differences
in the neuronal firing patterns have been highlighted between wake and sleep: during sleep, neurons are
bursting while during wake, neurons show a tonic firing pattern.

Memory is an abstract concept, it is not a simple task to understand the processes behind it.
As experimental evidence provides insights about how plasticity is induced, modeling techniques
reproducing experimental data can give insights about memory mechanisms. Literature is broad
concerning plasticity modeling. In this work, a concise review of phenomenological models is conducted.

Then, some of them are implemented in a conductance-based model able to switch from waking
to sleep i.e. from tonic to bursting activity. Compared to simplified spiking neuron model, this
conductance-based model is a powerful tool to be able to faithfully replicate neuronal behavior in a
waking and sleeping period. Reproduction of experimental protocols are carried in tonic mode as well
as the impact of variability in the firing pattern to mimic more in vivo situations. As the ultimate
goal of this thesis is to see the impact of existing models on memory consolidation during sleep, their
robustness and behaviour during a bursting period are investigated. It led to unsatisfactory results
regarding memory consolidation, highlighting the limitations of those phenomenological models. The
behaviour of the models implemented highly depends on the method used to bound the synaptic weight
in-between extreme values. Finally, insights about neuromodulation are suggested as improvements.
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Chapter 1

Introduction

1.1 Motivation: the link between sleep and memory

It has been shown that memories are consolidated in the brain by synaptic changes and that sleep
is essential for memory consolidation. One of the first study linking sleep and memory was realised
by [Jenkins and Dallenbach, 1924], who performed a study in which two men had to learn a list
of syllables with no meaning. The conclusion was clear: the performance of the subjects were
significantly better after sleeping than staying awake during the same amount of time. Since then, a high
amount of studies have been carried out, proving the memory function of sleep and more importantly
its role in the consolidation of memories as an evolutionary process [Diekelmann and Born, 2010,
Vorster and Born, 2015, Rennó-Costa et al., 2019]. As an example, sleep deprivation leads to less
memory performance among other cognition mechanisms [Killgore, 2010].

In parallel, at the cellular level, synaptic plasticity in-between neurons (i.e. change of neuronal con-
nection strengths) is a widely accepted candidate in the recall and storage of information [Stuchlik, 2014,
Martin et al., 2000, Wang et al., 2005]. Modification of synapses by plasticity mechanisms should allow
the brain to store, maintain and retrieve memories [Rennó-Costa et al., 2019, Takeuchi et al., 2014].
Figure 1.1 sketches the concept of memory consolidation in a simplified way.

As experimental evidence keeps growing, computational studies can help deepen the role of sleep in
learning by simulating different theories. Indeed, there is no consensus on a single plasticity rule that
would explain how learning affects the brain [González-Rueda et al., 2018].

Activated neuron Reinforced connection

Figure 1.1 – Concept of memory consolidation (simplified). During the day, learning occurs and some
neurons are activated (left). During the night, the connections between the activated neurons strengthen
so that memory is consolidated (right).

In the context of this thesis which focuses on studying the sleep impact on memory consolidation in
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a computational way, the following questions will be answered:

• What are the neuronal features that can be modeled and how can they be modeled? (Chapter 2)

• What is synaptic plasticity and how can it be modeled? (Chapters 3 and 4)

• Are the models existing from the literature compatible not only with learning during the day
(Chapter 5) but also with the theory of memory consolidation during sleep (Chapter 6)?

1.2 Structure

To answer those questions, this thesis is divided into four main parts:

Part I first introduces neurophysiology fundamentals. The communication between neurons is
investigated as well as the different firing patterns associated to the different brain states at the cellular
level: during sleep, neurons are bursting while during waking neurons are firing in tonic mode. Then,
modeling techniques are presented to describe neuronal activity (Chapter 2).
In Chapter 3, synaptic plasticity basis from a biological perspective is given. Mainly, it investigates
how the connection in-between two neurons is modulated by their respective activities and that the
strength of a synaptic connection can either be depressed or potentiated.

Part II focuses on synaptic plasticity modeling. The literature is broad, models can be either
mathematical or very biologically-detailed. They reproduce experimental plasticity induction protocols.
However, no consensus exists. Models can either be phenomenological or biophysical and this thesis
focuses on phenomenological ones. Thus, in Chapter 4, a systematic and rigorous state-of-the-art has
been realised in order to offer a global vision of the different existing models.

Part III is dedicated to the implementation of phenomenological models taken from the literature
review. The first contribution consists in implementing them into a conductance-based circuit able to
switch from tonic to firing mode. Then, in Chapter 5, different experimental protocols in tonic mode
are carried to check out if the models have been well implemented and fitted to experimental data.
However, no computational protocols have been realised for bursting mode (i.e. during sleep). Therefore,
Chapter 6 focuses on testing the behaviour of those models during sleep to see if they allow memory
consolidation.

Part IV draws the conclusion regarding the implementation of the chosen phenomenological models
in tonic and bursting mode as well as their implication for memory consolidation. As limitations in
terms of robustness and unsatisfactory results are highlighted, investigations of potential perspectives
to improve the models are enumerated.

2
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Chapter 2

Elements of neurophysiology and neuronal
modeling

2.1 Neurons

Neurons are a specific type of cells at the basis of the neural system. They are composed of the same main
components as any cell type: a nucleus containing the genetic information, a plasma membrane isolating
the cell from the extracellular matrix and different organelles such as Golgi apparatus, mitochondria,
etc. having distinct functions

2.1.1 Morphology

Distinction of neurons compared to other cells show its specific function: communication via electrical
signalling. Indeed, neurons show various morphologies, specific organisation of membrane elements and
specific components to allow contacts between each other.
Neurons, to allow their main function which is communication, show a typical morphology with
structural branching, see Figure 2.1 A [Purves, 2004]:

• Dendritic processes : arborisation from the cell body receiving synaptic inputs from other neurons
usually thanks to small protrusions from the membrane called dendritic spines.

• Axon: unique extension from the neuronal cell body conducting information via electrical signalling
(action potential, see A.1 ).

2.1.2 Excitability and electrical signalling

The main characteristic of neurons is their excitability, i.e. they can be excited by an electrical
stimulation. The axon initial segment (called axon Hillock) is the point of initiation of the electrical
wave at the basis of electrical signal transmission: the action potential (AP) (see detailed mechanism
A.1). If the dendritic inputs are large enough, an AP propagates from the axon hillock to the end of
the axon, reaching the postsynaptic neuron and information is transmitted [Purves, 2004] .

Plasma membrane is a key component in neuron signalling machinery. It consists of a phospholipid
bilayer which is permeable to small molecules and water, diffusing mainly following their concentration
gradients or by osmosis. However, it is impermeable to other large molecules and more importantly to
ions. The communication mechanism of neurons mainly relies on ionic flows through the membrane,
thus requiring transmembrane proteins ion channels changing the permeability of the membrane to
specific ions.

7



A

B

axon

dendrites
action potential

EPSP

membrane receptorsvesicles with 

neurotransmitters

synapse

Ca2+

Figure 2.1 – Schematic representation of neurons and communication at an excitatory synapse A. A
presynaptic neuron (blue) sends information through its axon via an action potential until its synaptic
terminal and communicates with the postsynaptic neuron (red) through its dendrites. Signals of all
dendrites are collected and processed in the soma of the postsynaptic neuron and possibly an action
potential is triggered. B. At the synapse, neurotransmitters are released following presynaptic action
potential. Neurotransmitters bind to postsynaptic membrane receptors (red). This results in membrane
potential change (EPSP) in the postsynaptic dendrites. (inspired from [Graupner, 2017])

Since the plasma membrane isolates intra- and extracellular components, each ion has a electrochem-
ical potential and ion flow is driven by electric and chemical forces. On one hand, positive charges are
attracted by negative charges and vice versa. On the other hand, difference in concentration of a specific
ion between the two compartments drives ions to equilibrates the two concentrations. It gives rise to a
difference of intracellular and extracellular potential, called membrane potential (Vm = Vin − Vout).

Electrochemical equilibrium for one specific ion corresponds to a specific membrane potential defined
as the Nernst potential :

VNernst =
RT

zF
ln

[ ion ]out

[ ion ]in
(2.1)

where R is a gas constant, T is the temperature (degK), F the Faraday’s constant and z is the valence.

However, different ions are present in different concentrations across the membrane, mainlyNa+,K+,

Ca2+, Cl−. In addition to the electrical potentials, the concentration gradients result in different Nernst
potentials (see Table A.2 in Appendix A) and the membrane potential results of the mixture of all
of them, depending on the permeability of the different ion channels.

It follows the Goldman-Hodgkin-Katz equation:

Vm =
RT

F
ln

(
PNa+ [Na+]out + PK+ [K+]out + PCl− [Cl−]in
PNa + [Na+]in + PK+ [K+]in + PCl− [Cl−]out

)
(2.2)

where Pion is the permeability of the specific ion channel in the membrane.
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2.1.3 Communication between two neurons

A typical transmission of information between two neurons requires connection between the axon from
a neuron and dendrites from another neuron. This area is called a synapse and the transmitting and
target cells are called respectively pre- and postsynaptic neurons. The communication between the pre-
and postsynaptic terminals can be achieved by chemical synapses or electrical synapses. A schematic
representation can be found on Figure 2.1 B. The ones of interest for this thesis are also the more
common and are chemical. Communication happens through the secretion by the presynaptic cell
of small molecules, the neurotransmitters, binding to receptors in the postsynaptic cell and released
from the presynaptic terminal thanks to calcium entry following an action potential. On one hand,
the main neurotransmitter released by excitatory neurons is glutamate and binds to postsynaptic
receptors called AMPAr (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) and NMDAr
(N-methyl-D-aspartate receptor). On the other hand, inhibitory presynaptic neuron releases GABA
(aminobutyric acid) as neurotransmitters which binds GABAA and GABAB postsynaptic receptors. In
excitatory (resp. inhibitory) synapses, this results in a excitatory post-synaptic potential (EPSP) (resp.
inhibitory post-synaptic potential (IPSP)) in the postsynaptic neuron [Graupner, 2017, Purves, 2004]
(see Table 2.1). This way, information is collected to the dendrites and then processed in the cell body.

Synapse type Neurotransmitter Receptors Postsynaptic response

Excitatory glutamate AMPA
NMDA EPSP

Inhibitory GABA GABAA
GABAB

IPSP

Table 2.1 – Summary of main released neurotransmitters, postsynaptic receptors and response at
excitatory and inhibitory synapses

2.2 Wake/sleep cycle

The brain has been shown to constantly evolve and switch between different cortical states. In 1887,
Caton was the first investigator to observe that the pattern of cortical activity was dependent on
the state of the animal [Caton, 1887]. A state is considered to be a stable recurring set of neural
conditions for a significant period of time. A diversity of cortical states has been established going from
Slow-Wave-Sleep (SWS), REM (Rapid-Eye-Movement) sleep, quiet waking, active waking and attentive
state [Zagha and McCormick, 2014]. In this work, the focus will be made on SWS, active waking and
mainly the transition between those two.

2.2.1 States Characteristics

The characteristics of those states at both network and cellular levels have been well studied. As
it can be seen in Figure 2.2 (a), the electroencephalogram (EEG, displaying the activity of the
neocortex) shows at the network level that SWS is characterised by slow oscillatory UP and DOWN
states of large amplitude (10-20mV) while the waking state shows oscillations of reduced amplitude and
high frequency. The UP-DOWN states observed during SWS are due to synchronisation of pyramidal
cells in the neocortex, switching from silent to active states alltogether. Conversely, during waking,
those cells show reduced synchronisation and thus lower amplitude oscillations at the population level
[Zagha and McCormick, 2014].
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Obviously, this switch does not occur spontaneously. It is controlled by different neuromodula-
tors. Mostly, the releasing of acetylcholine (ACh), noradrenaline (NE ), serotonin (5-HT ), dopamine
(DA) and histamine (HA) are possible mechanisms of state-dependent transitions of activities
[Zagha and McCormick, 2014].

Cortex

Thalamus

Pyramidal cell

nRT

Relay cell

A

B

C

Thalamus, in vitro

Cortex, in vivo

Figure 2.2 – State-dependent changes at the network and cellular level in the neocortex and thalamus.
A. In the neocortex, SWS is characterised at the network level by slow waves (10-12[Hz]) of high
amplitude and by synchronized UP and DOWN states at the cellular level. Waking state, after a
transition phase resulting by augmentation of Ach, NE, 5-HT, Ha, Glu levels, shows lower amplitude
and high frequencies at the network level. This is due to desynchronisation at the cellular level. B.
In the thalamus, nRT cells and relay cells exhibits bursting firing patterns during SWS and tonic
discharge during waking. C. Schematic representation of thalamocortical interactions. Inhibition is
represented in blue and excitation in red. While TRN inhibits relay cells in the thalamus, relay cells
excite cortex and TRN cells. Cortex also shows excitatory connections to the relay cells of the thalamus
[Zagha and McCormick, 2014]. (adapted from [Zagha and McCormick, 2014, Purves, 2004])

However, the wake/sleep switch induction cannot be mentioned without zooming at a deeper level
and introducing the role of the thalamus and its dynamics.

2.2.2 Thalamus

The thalamus is the first relay station for the incoming information from external stimuli. It is composed
of different nuclei - relay nuclei relaying the information to the cortex that have excitatory functions
and nuclei from the thalamic reticular nucleus (TRN or nRT) that are inhibitory neurons.

The relay neurons send excitatory inputs to the TRN and to the neocortex while the TRN sends
inhibitory connections to the relay neurons (Figure 2.2 (c)). In this way, the TRN are able to
influence the flow of information between the thalamus and the cortex. Those interconnections between
the different neurons from different brain areas are at the basis of the mechanism of the generation of
different oscillation rythms in thalamocortical networks. Indeed, depending on the state, they exhibit
different firing patterns (Figure 2.2 (b)) :

• Waking : the EEG shows low amplitude and high frequency rhythm. The cellular level of thalamic
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cells corresponds to a tonic firing pattern, i.e. simple action potential firing.

• Sleep: the EEG shows large amplitude and low frequency. This corresponds to the synchronisation
of burst firing, i.e. high frequency action potentials generation, at the cellular level.

2.2.3 Bursting types

As briefly introduced in the previous section, the concept of bursting can be defined as a distinct firing
mode of the neurons in which action potentials are discharging at a very high frequency, followed by
periods of silence. However, different kind of ’bursting ’ types can be distinguished.

Endogenous bursting

The bursting ability of the thalamic neurons that induces the sleep state (see Figure 2.2 (b)) is due to an
additional ionic current in the membrane. It has been shown that, when the cell is hyperpolarised under
a certain threshold, a calcium current can be measured. This current is called T-Type Calcium current
or low-threshold Ca2+ current [Jacquerie, 2018, McCormick and Bal, 1997, Steriade et al., 1993]. For
more details on the bursting mechanism see Appendix B.

Exogenous bursting

While thalamic cells have intrinsic bursting properties, evidence is lacking concerning the presence of
T-Type ionic currents in pyramidal cells in the cortex. It has been shown that a small portion of cortical
cells have intrinsic bursting ability due to other ionic currents [Franceschetti et al., 1995]. However,
as stated, the slow oscillations in SWS recorded by the EEG at the cortex level are due to UP and
DOWN states, i.e. respectively high activity and silent activity at the cellular level. This dynamics in
cortical cells firing pattern is driven by the thalamic endogenous bursts, whose pattern is passed on to
the cortex thanks to the thalamocortical loop shown in Figure 2.2 (C) [Purves, 2004].

2.3 Neuronal modeling

Biological neurons can be modeled by mathematical structures and equations in order to reproduce the
biophysical characteristics of their membranes and their qualitative properties.

Different modeling techniques can be used for this purpose, focusing either on complete and faithful
representation of neuron behaviour (such as conductance-based models) or either on qualitative aspects
of neurons properties like excitability (such as integrate-and-fire models).The interesting point is that
the first one describes a more biological model while the second one describes a more mathematical
model that separates itself from biological parameters.

2.3.1 Conductance-based models

Neuron, particularly its membrane, can easily be equivalently represented as an electrical circuit using
mathematical modeling (Figure 2.3).
Conductance-based models represent faithful interpretation of excitable cells in which current flows
through the membrane. It was first put forth by [Hodgkin and Huxley, 1952] studying the squid giant
axon.
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Figure 2.3 – Modeling of the membrane as an
electrical circuit. The membrane is modelled
by a capacitance (C), any ion channel is repre-
sented by a dynamic conductance gion and is
driven by its Nernst potential Vion, the applied
current is Iapp and the total circuit has a po-
tential Vm = Vin−Vout which is the membrane
potential [Jacquerie, 2018].

The ions channels can be represented as resistors
with dynamic regulation of their conductance (gion) to
reach open - closed states. Consequently, the flow of
ions gives rise to an ionic current following Ohm’s law
as:

Iion = gion(Vm − Vion) (2.3)

where the term (Vm−Vion) accounts for the electro-
chemical force drove by the electrochemical gradient.
The phospholipid bilayer of the membrane is imper-
meable to ions and acts as a capacitance (C), since it
accumulates ions to its intracellular and extracellular
sides. Change in the distribution of charges across that
capacitance drives a capacitive current defined as :

IC = C
dVm
dt

(2.4)

where dVm
dt is the variation of the membrane potential

per unit of time.
Using Kirchoff law and generalising to a set of n ionic currents, we obtain :

C
dVm
dt

= −
∑
n

gion (Vm − Vion) + Iapp (2.5)

where Iapp is an applied current and represents an external stimulus. Hodgking and Huxley, creators
of the original conductance-based model, identified three types of current:

Iion = IK + INa + Ileak (2.6)

, where Ileak represents the passive movement of ions through the membrane.
Moreover, the ion channels are voltage-gated. Consequently, the membrane permeability to specific

ions is a dynamic process. To model this dynamic, Hodgkin and Huxley introduced activation and
inactivation gate variables that will be dependent on the membrane potential. By voltage-clamp
experiments, they modeled the conductances of ion channels by assuming them to be proportional to
these activation/inactivation gate variables [Hodgkin and Huxley, 1952].
The (in)activation variables are modeled by a system of first-order differential equations (ODE),
considering mion,∞, hion,∞ as the steady-state values and τm,ion, τh,ion as the time constants of
respectively the activation (m) and inactivation variable (h). These two variables are voltage-dependent.

CV̇m = −ḡNam3
NahNa (Vm − VNa)− ḡKm4

K (Vm − VK)− gL (Vm − VL) + Iapp

ṁNa =
mNa,∞(Vm)−mNa

τmNM (Vm)

ḣNa =
hNa,∞(Vm)−hNa

τhM (Vm)

ṁK =
mK,∞(Vm)−mK

τmK
(Vm)

(2.7)

The solution of this system of ODEs is plotted in Figure 2.4 (a) for a constant applied current
from 20 to 75[ms].

Note that the bursting firing pattern introduced in Section 2.2.3 is obtained simply by adding
T-Type ionic current in the conductance-based model. As it can be seen in Figure 2.4 (b) in which a
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(a) Resolution of Hodgkin-Huxley system of equa-
tions. (top) Time course of a step of constant
applied current Iapp = 10[nA] from 20 [ms] to
75[ms]. (bottom) Time evolution of membrane
potential.

(b) Burst and tonic firing patterns. (top) Time
course evolution of applied current. At 3000ms,
an hyperpolarising current is applied (-3 [nA]).
(bottom) Membrane voltage evolution, from tonic
mode to bursting mode.

Figure 2.4 – Resolution of systems of equations of conductance based models based on (a) classical
Hodgkin-Huxley (HH) model and (b) HH model with additional ionic currents sensitive to hyperpolari-
sation (mostly T-Type Calcium channels).

conductance-based model has been implemented with ionic currents sensitive to hyperpolarisation, an
hyperpolarisation of the cell leads to a bursting firing pattern.

One of the advantages of those conductance-based models is that one can add as many ion channels
as wanted. It is therefore helpful to better understand mechanisms contributing to action potential
generation, repetitive firing and bursting, and so on. However, as complexity increases with the number
of differential equations, those models require more computation time and the dynamics of the model
becomes more difficult to understand. Reduction of conductance-based models help to reduce this
complexity and show the same qualitative dynamics.

2.3.2 Integrate-and-fire models

While it has been mentioned that conductance-based models can be highly accurate, they are difficult to
analyse to due to their high complexity. An alternative to lower the complexity is achieved by focusing
on the spiking activity (i.e. the ability to generate action potentials) and getting rid of the ion channel
modeling. This gives rise to simple spiking neurons models. In those models, the action potential is
seen as a discrete event, fully characterised by its firing time. The detailed shape obtained from the
ion interactions is replaced by a mathematical description ("integrate"). As soon as the membrane
voltage reaches a certain threshold, the value is reset to a resting value and spikes ("fire"). However,
the capacitive effect of the membrane is kept.

Integrate-and-fire (IF ) models are a type of simple spiking neurons. They have first been developed
in the work of Lapicque (1907) [Lapique, 1907] that studied the electrical excitation of nerves and have
then been adapted to neurons.

Leaky integrate-and-fire

Leaky integrate-and-fire models are probably the best known example of spiking neuron models.
According to this model, a neuron can be represented by an RC circuit with a threshold potential
driven by an input current, see Figure 2.5 [Gerstner et al., 2014].
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Figure 2.5 – Neuron modeling by a leaky
integrate-and-fire. Accumulation of charges
across the membrane is represented by a capaci-
tance C and the passive leakage of ions through
the membrane is represented by a resistance R.
The membrane has a resting potential urest and
an external current I(t) is injected. (adapted
from [Gerstner et al., 2014])

Using the law of current conservation, the driving
current is thus split in two components:

I(t) = IR + IC (2.8)

Considering membrane impermeability, it can be
modeled by a capacitance C leading to a capacitive
current:

IC = C
du(t)

dt
(2.9)

The resistance corresponds to a leak term reflecting
the diffusion of ions through the membrane and results
to a current:

IR =
u(t)− urest

R
(2.10)

where urest is the resting potential of the membrane.
The driving current is thus

I(t) = C
du(t)

dt
+
u(t)

R
(2.11)

Multiplying the equation by R and introducing the
time constant τm = RC, we obtain the following equa-
tion corresponding to the leaky integrator in electrical
engineering, called the equation of a passive membrane
for the neuroscience field:

τm
du

dt
= − [u(t)− urest] +RI(t) (2.12)

To see the behaviour of this circuit, let’s find the solution of this equation with no input. We assume
as an initial condition that for t = t0 the membrane potential is at urest + ∆u and for t>t0 I(t) = 0.
The solution is therefore: [Gerstner et al., 2014]:

u(t)− urest = ∆u exp

(
− t− t0

τm

)
for t > t0 (2.13)

As it can be intuitively expected, with no input current, the membrane potential u(t) decays
exponentially to its resting state with the characteristic time of the decay given by τm.

Considering now the case where I 6= 0. The current injected is due to spikes coming from
other neurons or artificial stimulus and is accumulating through time, while the voltage is decaying
exponentially due to the leak term. If the threshold voltage θ is reached, the action potential firing
time is kept and the voltage is reset to its resting potential urest:

u(t)→ urest if u(t) = θ (2.14)

The spikes train Si of the neuron is fully represented by its spike times t(f)i :

Si(t) =
∑
f

δ
(
t− t(f)i

)
(2.15)

As an example, applying a constant current I0 leads to a regular firing pattern and leads to
the time course displayed in Figure 2.6 (A). Indeed, resolving the differential equation (2.12) for
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I = I0, with initial condition u(t0) = urest for t = t0 and for a simulation t0 < t leads to the solution
[Gerstner and Kistler, 2002]:

u(t) = urest +RI0

[
1− exp

(
− t− t0

τm

)]
(2.16)

The membrane potential thus increases from its initial value urest to the threshold value (θ) when it
"fires" and is reset to urest. Note that limt→+∞ u(t) = RI0 such that if RI0 < θ, the neuron cannot fire
since the threshold value is never reached [Gerstner and Kistler, 2002].

Increase in the applied current leads to an increase in the firing rate since the voltage accumulation
until the threshold occurs faster. Frequency as a function of constant applied current with or without
refractory period is displayed in Figure 2.6 (B) [Gerstner and Kistler, 2002].

Figure 2.6 – Leaky Integrate-and-Fire dynamics under a constant current. A. Temporal evolution of
the membrane voltage. Potential is accumulated until reaching the spiking threshold θ, then is reset to
its resting potential. B. Firing rate as a function of applied current I0 [Gerstner and Kistler, 2002].

Quadratic integrate-and-fire

While leaky integrate-and-fire’s differential equations are linear, there is also complexification of spiking
neurons by introduction of non-linearity, generally written as [Gerstner and Kistler, 2002]:

τ
du

dt
= F (u) +G(u)I (2.17)

A specific instance, and one of the most used, is the quadratic model written as:

τ
du

dt
= a0(u− urest)(u− uc) +RI (2.18)

where urest is the value at which the membrane potential comes back after reaching the threshold
voltage and parameters a0 > 0, uc > urest. This parameter uc can be interpreted as the voltage needed
for action potential triggering by a short current pulse.

One-dimensional phase plane of equation 2.18 is plotted in Figure 2.7 for different I. This phase
plane is an easy tool to understand the behaviour of the model. The sign of dudt helps to understand
the convergence towards the fixed point and so gives its attraction. Increasing the applied current I
moves upward the nullcline. Therefore, we can study the excitability of the model for different applied
currents. The intersection of the function with the x-axis gives the fixed points, and the surrounding
values of dudt states their stability. As can be seen in Figure 2.7 (A) urest is stable and uc unstable for
I = 0. On one hand, an initial u < urest, the voltage decays to the resting potential ( du

dt > 0 ) and for
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an initial urest < u < uc, dudt < 0 such that u is attracted to the fixed point urest. On the other hand,
for an initial u > uc, the voltage keeps increasing because du

dt > 0 and thus a spike is initiated.

However, for I > 0, the parabolic curve (dudt as a function of u) is displaced in the phase plane in
the positive values such as (for a certain I) du

dt < 0 for all u. This gives rise to repetitive firing (see
Figure 2.7 [Gerstner and Kistler, 2002]).

𝑢𝑟𝑒𝑠𝑡 𝑢𝑐 𝑢 [𝑚𝑉]

𝑑𝑢

𝑑𝑡

−60 𝑢𝑟𝑒𝑠𝑡 𝑢𝑐 𝑢 [𝑚𝑉]−60

𝑑𝑢

𝑑𝑡

A B

Figure 2.7 – Quadratic integrate-and-fire model. One-dimensional phase plane for A. I = 0 B. I 6= 0 (
adapted from [Gerstner and Kistler, 2002])
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2.4 Summary
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Chapter 3

Synaptic Plasticity: from a biological
perspective

Synaptic plasticity is a fascinating property of the brain and has been thought for centuries to play a
role in its early development but also in learning and memory [Citri and Malenka, 2008]. This term
refers to the ability of synapses to modify their strengths. It is a critical aspect of memory. For the last
decades, different hypotheses about the link between plasticity and learning have risen but they all
share a common ground stating that :

"Activity-dependent synaptic plasticity is induced at appropriate synapses during memory for-
mation and is both necessary and sufficient for the information storage underlying the type of
memory mediated by the brain area in which that plasticity is observed." [Martin et al., 2000]

At an excitatory synapse, the strength of the connection between a presynaptic neuron and a
postsynaptic neuron is related to the amplitude of the postsynaptic neuron potentiation (EPSP). It can
be modulated by different parameters acting at different locations in the synapse:

• At the presynaptic level : the number of neurotransmitters released, the pool of neurotransmitters
available, the action potential frequency, ...

• At the postsynaptic level : the number and the efficiency of postsynaptic receptors, gene expression,
...

Plasticity can happen at different time-scales, the term of short-term plasticity refers to changes
that last for seconds to minutes while long-term plasticity refers to synaptic changes that persist for
hours, days or lifetime.

3.1 Short-term synaptic plasticity

Plasticity in a time scale from seconds to minutes is referred to as short-term plasticity. It can express by
synaptic changes increasing efficiency in synaptic transmission, called facilitation, or in a decrease in the
synaptic connection called depression. Short-term plasticity manifests by a change in the post-synaptic
potential. At an excitatory synapse, an action potential in the presynaptic neuron gives rise to an
excitatory post-synaptic potential (EPSP).

A simple protocol to quantify the change in synaptic strength is to stimulate a presynaptic neuron
in such a way that two action potentials are induced at the presynaptic terminal. The consequences
of two close action potentials are explained by the fact that the effects of the first are not completely
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finished when the second one occurs. Precisely, the calcium binding in the presynaptic terminal and the
release of synaptic vesicles require some time before going back to their resting states. However, those
two events have contradictory effects [Meriney and Fanselow, 2019, Citri and Malenka, 2008]:

• On one hand, calcium ion binding increases the number of neurotransmitters released following a
second action potential because new calcium ions entering the nerve terminal add up to the ones
already present in the cell due to the first action potential. Since the release of neurotransmitters
is triggered by those ions, the probability of release increases with the amount of calcium ions.

• On the other hand, the fusion of synaptic vesicles with the membrane has the opposite effect: it
reduces the probability of neurotransmitter release. The recycling or replacing of the synaptic
vesicles carrying neurotransmitters takes some time. Thus, shortly after a first action potential the
vesicles have not been replaced yet and the second action potential triggers less neurotransmitters
release. This phenomenon is known as vesicle depletion.

The relative effect of each of those two factors depends on the initial synaptic efficiency. If in a
short time-scale, two action potentials are firing, two scenarios are possible (Figure 3.1):

1. Facilitation: At initially weaker synapses, the effect of vesicle depletion is relatively lower than
the effect of residual calcium. Thus, a second action potential will increase the probability of
neurotransmitter release.

2. Depression: At initially stronger synapses, the phenomenon of vesicle depletion occurs and
predominates the effect of the calcium. The probability of neurotransmitter release decreases
because of the lack of vesicles available due to the first action potential.

3.2 Long-term plasticity

In the case of long-term memory, long-term plasticity is key. While experiments are made in a reduced
preparation such as a brain slice, how to prove that a link between learning and the observed long-term
plasticity exists? [Martin and Morris, 2002] proposed 4 criteria to assess if learning is based on synaptic
plasticity:

1. Detectability : the synaptic changes occurring after learning should be experimentally detected.

2. Mimicry : learning can be directly induced by changing appropriate synapses in the brain.

3. Anterograde alteration: preventing plasticity should also prevent memory formation.

4. Retrograde alteration: altering synaptic strength after learning should also alter the memory itself.

3.2.1 Properties

Long-term plasticity is bidirectional. Increase in synaptic connection is called long-term potentiation
(LTP) while a decrease is called long-term depression (LTD). Following the idea in the late 19th
century by Ramón y Cajal [Ramón y Cajal, 1894] that learning was associated with the reinforcement
of existing pathways between neurons and the formation of new ones, Jerzy Konorski [Konorski, 1948]
was the first to use the term "synaptic plasticity" and approximately at the same time, Donald Hebb
(1949) gave his famous definition of his interpretation of plasticity, giving rise to what is called now
Hebbian plasticity [Hebb, 1949]:
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Figure 3.1 – Short-term plasticity following two presynaptic action potentials. A. Synapse with an
initially low probability of release. The first AP triggers only a low amount of vesicles fusion and thus
the second action potential can release more neurotransmitters because there were enough vesicles
available. The vesicle depletion effect was weaker than the residual calcium effect. This results in
facilitation. B. Synapse with an initially high probability of release. The opposite scenario happens: the
first AP triggers the release of a lot of neurotransmitters, resulting in vesicle depletion. At the time of
the second AP, not enough vesicles are available. Vesicle depletion effect is higher than residual calcium
effect, resulting in depression (adapted from [Meriney and Fanselow, 2019]).

"When an axon in cell A is near enough to excite cell B and repeatedly and persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency in firing B is increased."

This explains that LTP requires the activity of both presynaptic and postsynaptic cells at a local
synapse. However, several pitfalls indicate that this rule alone cannot explain plasticity on its whole.
Indeed, potentiation alone will cause all synaptic efficacies to saturate at their maximal level and would
be non-selective. Also, several experimental results cannot be explained by LTP on its own. Thus, the
bidirectionality principle [Cooper et al., 1979, Bienenstock et al., 1982]. Hebb postulate alone thus fails
to explain every aspect of plasticity. Introduction of bidirectionality idea in plasticity by the concept of
LTD helps to resolve those limitations and has been demonstrated experimentally (see Section 3.3).

Classical LTP in the hippocampus also exhibits the following properties, illustrated in Figure 3.2:

• cooperativity : the probability to induce LTP increases with the number of afferent neurons
stimulated at the same time.

• associativity : a weak stimulus can be efficient if a strong afferent is applied to the same target
at the same time.

• specifity : LTP is induced only in the afferent neurons submitted to an efficient direct or indirect
stimulation.
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Figure 3.2 – Properties of LTP. (adapted from [Kandel et al., 2000])

It demonstrates that synaptic plasticity can either be homosynaptic (specificity) and heterosynaptic
since weak stimulation in a synapse can lead to plasticity events if a neighbouring synapse is highly
stimulated (cooperativity) or if weak inputs add up (associativity).

3.2.2 Long-term plasticity mechanisms

NMDAr-based plasticity at the postsynaptic site

To understand the molecular mechanism underlying LTP and LTD, it is important to develop the
role of the two main receptors present at the postsynaptic side of excitatory synapses: the glutamate
receptors AMPA and NMDA. AMPA receptors are permeable to Na+ and K+ while NMDA receptors
are permeable to Ca2+,K+ and Na+ ions. Both types bind glutamate but NMDAr is blocked by Mg2+

ions that are released in a voltage-dependent way. Thus, NMDAr are able to detect two coincident
events: glutamate binding and depolarisation of the postsynaptic neuron. If the postsynaptic cell
has depolarised enough thanks to AMPA receptors letting ionic flow following glutamate binding,
Mg2+ is removed from NMDAr. This allows Ca2+ to enter the cell and acting as a second messager,
Ca2+ triggers LTP by a cascade of events (the details are not relevant in the context of this thesis)
[Purves, 2004]. This process relying on the activation of NMDAr is referred to as LTP induction.

The expression phase of LTP relies of synaptic changes in long-term arising from changes in the
sensitivity to the neurotransmitter (glutamate). In excitatory synapses, several observations state
that postsynaptic glutamate receptors (AMPA) are dynamically regulated. Thanks to Ca2+ signalling,
additional AMPA receptors can be inserted into the membrane (see Figure 3.3 B). Similarly, LTD is
associated with the removal of AMPA receptors by internalisation in the postsynaptic cell.

Another form of plasticity expression is the change of biophysical properties of AMPA receptors still
due to calcium concentration. Mainly, an increase or decrease in the conductance of AMPAr increases or
decreases the synaptic strength [Citri and Malenka, 2008]. NMDAr might also be dynamically regulated
but [Ferreira et al., 2017] but strong evidence is lacking regarding this subject.

In order for the synaptic plasticity to last several hours after stimulation (maintenance), modification
in gene expression and synthesis of new proteins are needed and are also triggered by Ca2+ signalisation
[Purves, 2004, Korb and Finkbeiner, 2011].
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Figure 3.3 – Induction mechanism of LTP at excitatory synapses. AMPA receptors are permeable to
sodium ions and NMDA receptors to Ca2+ K+ and Na+ ions. Both are sensitive to glutamate released
by the presynaptic cell but the latter are blocked by Mg2+ ions. A. At resting potential, if glutamate
coming from the presynaptic terminal binds to the receptors, Na2+ enters the cell trough AMPAr. B.
After a certain depolarisation threshold, Mg2+ is removed from NMDA receptors and Ca2+ ions enter
the cells, triggering LTP expression. Illustrated here is one aspect of LTP expression: Ca2+ triggers,
by a cascade of events, the insertion of new AMPAr to the membrane. (adapted from [Purves, 2004])

Presynaptic plasticity

Another type of plasticity coexists with the well-documented NMDA-dependent plasticity explained
above. The latter involves plasticity mechanisms at the postsynaptic site but presynaptic mechanisms
of plasticity involving decrease or increase of neurotransmitter release also exist and are induced by
calcium signalling as well. It has been demonstrated initially at hyppocampal mossy fibers and cerebellar
parallel fibers synapses but the list of other brain regions expressing this kind of presynaptic plasticity
has grown [Yang and Calakos, 2013].

Structural Plasticity: at both pre- and postsynaptic level

Additionally, dendritic spines at the postsynaptic sites are likely to vary in volume and number
[Segal, 2005, De Vivo et al., 2017]. This phenomenon is called structural plasticity. Thanks to kinase
signalisation, a late phase of plasticity can induce the production either of new synaptic contacts and/or
growing of the spine (associated to LTP) or either pruning of old ones and/or shrinkage (associated
to LTD). The strength of synaptic connection and volume of the dendritic spine seems to be linked
[Bosch and Hayashi, 2012].

An illustration of the different long-term plasticity expression mechanisms can be found in Figure
3.4. All the different plasticity types at different time scales are summarised in Table 3.1.
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LTP

LTD

Figure 3.4 – Long-term synaptic plasticity expression. In blue, changes concerning the presynaptic
site. In red, changes concerning the postsynaptic site. From left to right: change in probability of
neurotransmitter release, change in volume and number of dendritic spines, change in AMPA receptors
number, change in receptor conductance and gene expression.

Locus of plasticity Dominant mechanism Consequences

Short-Term Depression Presynaptic Vesicle depletion ↘ p release
Potentiation Calcium binding ↗ p release

Long-Term Potentiation
(Depression)

Presynaptic Calcium ↗ # NT released
(↘ # NT released)

Postsynaptic
Calcium cascade

↗ # AMPAr
(↘ # AMPAr)

↗ AMPAr efficiency
(↘ AMPAr efficiency)

Kinase cascade gene expression
↗ synaptic contact,
↗ dendritic spines size
(↘ synaptic contact,
↘ dendritic spines size)

Table 3.1 – Summary of synaptic plasticity types and their expression types. p release means the
probability of neurotransmitter release, # the number of NT (neurotransmitters) or AMPAr (AMPA
receptors).
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3.3 Experimental (long-term) induction protocols

Experimental protocols have been realised in order to induce LTP/LTD. This allows obtaining ex-
perimental data by varying one parameter at a time and to see their impact on synaptic strength
change.

3.3.1 How experimental induction protocols are carried?

Typical protocols using extracellular electrodes follow the following steps:

(a) measure of initial EPSP or EPSC (excitatory postsynaptic current) in postsynaptic neuron induced
by an action potential in the presynaptic neuron.

(b) induction protocol specific to the experiment

(c) measure of EPSP or EPSC difference before and after the protocol

Figure 3.5 shows an example of an induction protocol.

Figure 3.5 – Experimental STDP protocol a. experimental measure of the initial EPSP amplitude. b.
Induction protocol: stimulation of the two cells with 15 times 5 spikes at a frequency of 40[Hz] and
a delay of tpost − tpre = 10[ms] c. measure of the difference of EPSP amplitude before and after the
protocol [Sjöström et al., 2001]

.

3.3.2 The main synaptic plasticity drivers

Three main components seem to have importance in initiation of long-term plasticity: the spiking rate,
the voltage of the postsynaptic cell and the spike timing difference between pre- and postsynaptic cell.

A visual summary of the different experimental findings can be found in Figure 3.6.
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Figure 3.6 – Summary of experimental findings using different induction protocol. From
left to right: rate-based [Bliss and Lømo, 1973, Dudek and Bear, 1995] (hippocampus), pairing
protocol [Bi and Poo, 1998] (hippocampus) [Markram et al., 1997] (cortex ), postsynaptic voltage-
clamp[Artola et al., 1990] (cortex ) [Ngezahayo et al., 2000] (hippocampus), frequency change in pair-
ing protocol [Sjöström et al., 2001, Markram et al., 1997] (cortex ) and other various spike pat-
terns [Wang et al., 2005] (hippocampus),[Froemke and Dan, 2002, Nevian and Sakmann, 2006](cortex ).
(blue background) Schematic representation of the experimental protocol, in grey the varying pa-
rameter. (graphs) Experimental curves changes in EPSC amplitude.

Rate-based induction

In 1973, Bliss and Lomo [Bliss and Lømo, 1973] were the first to demonstrate plasticity at a single
synapse experimentally by stimulating hippocampal path. They recorded in the dentate gyrus increase
in synaptic transmission efficiency.

A conditioning stimulus (high-frequency stimulus for a few seconds) is sent to the conditioning
pathway (Figure 3.7 (B) ) while the control pathway is unstimulated. If there is no change in
the control pathway but an increase in the magnitude of the EPSP or EPSC in the conditioning
pathway, homosynaptic LTP in this synapse has been induced (Figure 3.7 (C) ). Since presynaptic
and postynaptic activity in close temporal proximity is required for LTP, this is consistent with Hebb’s
idea.

As it has been previously demonstrated, LTP alone is not sufficient. LTD was also ob-
served in the hippocampus induced by low-frequency stimulus (0.5-10Hz) [Dudek and Bear, 1995,
Mulkey and Malenka, 1992]. Induction protocols of bidirectional plasticity induced by different rates of
presynaptic stimulation are often referred to as rate-based protocols.
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Figure 3.7 – Induction of rate-dependent plasticity. A. Intracellular and extracellular recordings are
carried out in CA1 synapses in the hippocampus. B. Schematic representation of a CA1 neuron
conditioning and control pathways. C. High-frequency stimulation. Only the conditioning pathway
receives HF stimulation. In both pathways, postsynaptic potentials are recorded before and after the
stimulation. LTP is observed only in the conditioning pathway. D. Low-frequency stimulation. LTD is
induced only in the conditioning pathway [Heidelberger et al., 2014]

.

Voltage-clamp induction

Figure 3.8 – Experimental findings of [Ngezahayo et al., 2000] LTP occurs above a certain postsynaptic
voltage, while LTD occurs at lower voltages.

Rate-based protocols do not consider the post-synaptic cell behaviour and other protocols allow the
control of the post-synaptic cell. One of them is a patch-clamp protocol, in which the post-synaptic
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cell is depolarised at a certain voltage by voltage-clamp and is paired to low-frequency presynaptic
stimulation. LTP induction occurs if the postsynaptic cell is depolarised sufficiently while LTD occurs
at lower depolarisation values [Heidelberger et al., 2014]. Such voltage dependence in plasticity has
been shown in rat visual cortex [Artola et al., 1990] and hippocampus and can be seen in Figure 3.8
[Ngezahayo et al., 2000].

Spike Timing-Dependence Plasticity

Figure 3.9 – Experimental findings of [Bi and Poo, 1998] in the hippocampus. Classical STDP windows
depending on the spike timing difference of the pre- and postsynaptic neuron. Pairings were repeated
at 1Hz.

Another very common protocol considering also the control of the postsynaptic cell gave rise to
the well-known concept of Spike Timing-Dependent Plasticity (STDP). In this protocol, the pre- and
postsynaptic cells are stimulated with a certain delay between the two.

In cultured hippocampal neurons, experiments have shown that repetitive firing induces a change
in synaptic efficiency as a function of the time delay and that the direction of the change depends on
the relative timing of the spikes at a millisecond time-scale in the cortex [Markram et al., 1997] and
in the hippocampus [Bi and Poo, 1998]. On one hand, if the pre-synaptic neuron spikes before the
post-synaptic spikes, LTP occurs (see Figure 3.9). On the other hand, if a presynaptic spike occurs
after a post-synaptic spike, LTD is observed. Those observations are in line with Hebb’s postulate.

However, the long-term modification induced by this protocol varies in different brain areas as
experiments in different slices preparations have shown [Abbott and Nelson, 2000]. Differences can be
observed in Figure 3.10.

Also, other spiked-timing protocols have shown that STDP depends on the frequency of the firing
rate in such a way that potentiation increases with firing rate [Sjöström et al., 2001] in the cortex.
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Figure 3.10 – Spike Timing-Dependent Plasticity (STDP) evoked by repeated pre- and postsynaptic
firing in different preparations [Abbott and Nelson, 2000].

Various spiking patterns

Other patterns have been experimentally induced and resulting synaptic change evaluated. Here is an
enumeration of the most common:

• Triplet or quadruplet pairing protocols (three or four spikes instead of two) have also been
experimented in the hippocampus [Wang et al., 2005] and in the cortex [Froemke and Dan, 2002]
(triplets).

• Postsynaptic ’bursts’ (i.e. repetitive AP in a short period of time) of 1, 2 or 3 spikes paired with
one single presynaptic spike induced experimentally in the cortex [Nevian and Sakmann, 2006].
Note that those bursts are not the same as endogenous T-type bursting patterns evoked in
chapter 2.
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3.4 Summary

SYNAPTIC PLASTICITY
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Part II

Synaptic plasticity from a modeling point
of view
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Chapter 4

State-of-the-art

In the field of computational neurosciences, computational models of synaptic plasticity replicating
experimental data are being actively investigated. Two modeling approaches can be distinguished
[Graupner, 2017]:

1. Phenomenological models of plasticity using the times or frequency of action potentials fired by
neurons to estimate the synaptic strength changes. This approach focuses on abstract equations
able to fit experimental data rather than trying to explain the molecular processes underneath.

2. Biophysical models of plasticity using biological variables to track the change in synaptic strength
(such as Ca2+ concentration, a cascade of kinase activation, ...) to explain plasticity.

This thesis only focuses on phenomenological models of synaptic plasticity. As summarised in
Figure 4.1, the goal of this project is to use models, seen as black boxes, taking spike timings or
rates from pre- and postsynaptic neurons as inputs and providing synaptic weight change as output.
Moreover, Chapter 2 provides insights on firing pattern variation between waking and sleep states.
While most common models focus on tonic firing (i.e. wake), the ultimate purpose is thus to see if
those models are compatible with bursting firing mode (i.e. sleep).

Consequently, a review of the literature is built in order to find and classify already implemented
models. The aim of this review is to investigate learning rules used in the literature.

Mainly, phenomenological models can be divided into two subgroups: rate-based and spike timing-
based. The latter are becoming more prominent in the recent literature. Nevertheless, main principles
of rate-based models have been addressed in this review.

Concerning the recent literature, the different rules of spike timing-based models have been intro-
duced, focusing on how they can be mathematically modeled. Then, for each category, the conclusions
of various authors are summarised and the possible limitations of such models are addressed.

The different key-modeling assumptions in the various models have been identified such as:

• The network size: two neurons, small circuit, large network, . . .

• The neuron model: integrate-and-fire model, conductance-based model, . . .

• The definition of the synaptic weight in the model

• The protocol on which their model is fitted

• The mechanism inducing the wake/sleep switch if it is investigated

• The memory task on which the model has been tested : associative memory, . . .
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• The phenomenological learning rule.

Pre j Post i
𝑤𝑖𝑗

Δ𝑤𝑖𝑗

Figure 4.1 – Graphical representation of computational modeling of synaptic plasticity. A presynaptic
neuron is linked to a postsynaptic neuron with a certain weight wij . Computational models (black box )
provide synaptic rules giving a synaptic weight change ∆wij with inputs given by pre- and postsynaptic
neurons: during wake, tonic firing pattern is observed while during sleep, neurons show burst firing.

The plasticity between a neuron j to a neuron i is mathematically represented by a modification of
weight ∆wij , wij giving the efficiency of the connections between the two neurons.
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4.1 Rate-based

One of the simplest model types in line with Hebb’s principle ("Who fire together, wire together" )
[Hebb, 1949] consists of assuming that the rate of pre (ρj) and postsynaptic (ρi) neurons determine the
magnitude and sign of plasticity. Hebbian plasticity has two main aspects [Gerstner et al., 2014]:

1. locality : ∆wij can only depend on local variables at the homosynaptic site. In the case of firing
rate-based models, it means the post and presynaptic rate only. We can thus deduce a general
equation for the synaptic weight change:

∆wij = F (wij ; ρi, ρj) (4.1)

2. simultaneousness : the pre- and postsynaptic neurons have to be active at the same time to induce
synaptic weight change. The function F can be deduced by expanding F in a Taylor series about
ρi = ρj = 0:

d

dt
wij = c0 (wij) + cpre

1 (wij) ρj + cpost
1 (wij) ρi + cpre

2 (wij) ρ
2
j

+cpost
2 (wij) ρ

2
i + ccorr

11 (wij) ρiρj + O
(
ν3
) (4.2)

The ccorr11 term is the term involving both the pre- and postsynaptic neurons and is thus needed to
implement Hebbian’s learning rule. Note that ccorr11 > 0 is necessary to state that the simultaneous
activity of pre- and postsynaptic neurons strengthens the synapse. Else, it would be anti-Hebbian.

Different rules have been defined by the previous formalism. As an example, Oja’s rule [Oja, 1982]
takes ccorr11 = γ > 0 and cpost2 = −γ∆wij and the other parameters = 0. It gives:

d

dt
wij = γ

[
ρiρj − wijρ2i

]
(4.3)

It has previously been introduced that the Hebbian rule alone is unstable since it only allows
potentiation of synapses and leads to saturation, a possibility for decreasing synaptic weights should be
implemented. Oja’s rule normalises the weights to∑

j

w2
ij = 1 (4.4)

such as competition between synapses is implied.

𝜌0 𝜌𝜗 𝜌𝑖

Δ
𝑤
𝑖𝑗

LTP

LTD
0

Figure 4.2 – Bienenstock-
Cooper-Munro (BCM)
rule. adapted from
[Gerstner et al., 2014]

Another known example is the Bienenstock-Cooper-Munro (BCM )
rule that considers a non-linear function φ and an adaptative
threshold ρθ as a function of post-synaptic neuron firing rate ρi
[Bienenstock et al., 1982]:

d

dt
wij = φ (ρi − ρθ) ρj (4.5)

If the postsynaptic neuron fires at the same time as the presynaptic
neuron at a low (resp. high) frequency ρi < ρθ (resp. , ρi > ρθ )the
efficiency of synapses activated by the presynaptic neuron is decreased
(resp. increased) (see Figure 4.2). To avoid stability issues, ρθ is a
function of the average postsynaptic rate. This can be interpreted as
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metaplasticity since the threshold is adaptative, meaning the plasticity
rule itself has plastic properties.

4.2 Spike timing-based

4.2.1 Classical STDP: Pair-based model

Standard STDP (spike timing-dependent plasticity) modeling relies on fitting the model parameters
with experimental data found by induction protocols explained in Section 3.3.2. [Bi and Poo, 2001,
Van Rossum et al., 2000] fitted the experimental curve obtained in [Bi and Poo, 1998] (Figure 3.9
with two exponentials and the synaptic change (∆w) is assumed to be approximated by the following
equations:

∆w(∆t) =

{
A+ exp (−∆t/τ+) ∆t > 0

−A− exp(∆t/τ−) ∆t < 0
(4.6)

where A+ > 0, A− < 0 and ∆t representing the delay between the postsynaptic and presynaptic
spikes, i.e. ∆t > 0 for a pre-post pair and ∆t < 0 for a post-pre pair. In this equation, A+ (resp. A−)
represents the maximal (resp. minimal) amount of potentiation (resp. depression) when ∆t < 0 (resp.
∆t < 0 ). Note that this equation is not able to explain data from GABA-ergic neurons in hippocampal
culture nor neocortex layer-4 spiny stellates, for example (see Figure 3.10). Thus, when fitting model
parameters, attention should be driven to the physiological area that is supposed to be modeled.

A simple way to take into account the contribution of each spike is to consider that each pre- or
postsynaptic spike leaves a trace decaying exponentially and that, each time the neuron spikes this
trace is incremented by one. Those traces are used to low-pass filter the spikes and give dynamics to
the system so it is more physiological. For example, at the presynaptic site, the trace can represent the
decaying amount of neurotransmitters in the synaptic cleft, and the postsynaptic trace the calcium influx
into the postsynaptic cell. However, spike timing models do not require those biophysical interpretations.
Let’s denote xj the trace left by the presynaptic neuron j and tfj its spike timings. Similarly, let’s
denote yi the trace left by the postsynaptic neuron i and tfi its spike timings [Morrison et al., 2008,
Abbott and Nelson, 2000]. As explained above, the dynamics of those local variables can be written in
the following way:

dxj
dt

= −xj
τx

+
∑
tfj

δ
(
t− tfj

)
(4.7)

dyi
dt

= − yi
τy

+
∑
tfi

δ
(
t− tfi

)
(4.8)

As illustrated in Figure 4.3, when the postsynaptic neuron spikes at tfj , the synaptic strength is
decreased proportionally to the value of the postsynaptic trace yi at this time tfi . Similarly, when the
postsynaptic neuron spikes, the snyaptic strength increases proportionally to the trace xj .

∆w+
ij

(
tfi

)
= A+xj

(
tfi

)
∆w−ij

(
tfj

)
= A−yi

(
tfj

) (4.9)
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Figure 4.3 – Implementation of STDP by trace variables. The presynaptic neuron j leaves a trace xj(t)
decaying exponentially and incremented at each presynaptic spike. Similarly, the postsynaptic neuron i
leaves a trace yi(t) decaying exponentially and incremented at each postsynaptic spike. The weight
between the two neurons wij updates at each spike: on one hand, when the presynaptic neuron spikes
at a time t, the update is proportionally to the trace left by the postsynaptic neuron, yi(t) (empty
circles), representing the post-pre pairing depression. On the other hand, when a postsynaptic spike
occurs at a time t the weight update is proportional to the value of xj(t) (filled circles) giving the
amount of potentiation of a pre-post pair [Morrison et al., 2008].

All-to-all models versus nearest-neighbour

In the spike-dependent model explained above, at each spike time, all previous spikes contribute to an
increase or decrease of the synaptic weight. Thus, this is called all-to-all spike interaction. However,
considering only the nearest spike is also a possibility and is called nearest-neighbour interaction. In
other words, the low-pass filtered version of the spikes (the traces) cannot go above a certain value and
are not cumulative in such a way that only the most recent spike has an influence, see Figure 4.4.

Figure 4.4 – All-to-all (top) vs nearest neighbours interactions(bottom) in a pair-based model. (up) all pre-
vious spikes interact with the postsynaptic spike. The trace variable xj accumulates. (bottom) only the
previous presynaptic spike interacts with the postsynaptic spike at tn. The trace variable xj corresponds
only to the low-pass filtered version of the latest presynaptic spike [Sjöström and Gerstner, 2010].
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Hard and soft bounds
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Figure 4.5 – Hard bounds and soft bounds.
Illustration of hard bounds (green) and
linear soft bounds (yellow). The po-
tentiation (resp. depression) parame-
ters (A+) (resp. A−) decreases (resp.
increase) as wij increases in such a
way that wij never reach the maximal
and minimum bounds. (adapted from
[Sjöström and Gerstner, 2010])

The weight parameter should be bounded between wmin <
wij < wmax in order to keep biological interpretation. On
one hand, as the synaptic weight can be interpreted as the
amount of EPSP/EPSC induced by a presynaptic neuron,
there should be a maximal value. Indeed, at a certain
point, there is a biological saturation, for example, due to
the postsynaptic calcium concentration that cannot be infi-
nite [Petersen et al., 1998]. On the other hand, a negative
synaptic weight would be equivalent to change the direc-
tion of the applied current and it would not mathematically
make sense.

Implementation of bounds is illustrated in Figure 4.5
and can be modeled by using :

• Hard bounds: The update rule of wij is used as it is
defined until a wmax or wmin is reached, and then
the update stops at this value.

• Soft bounds: The parameters of the models are
weight-dependent. For instance, the pair-based rule
can be linearly bounded using

A+ (wj) = (wmax − wj) η+ and A− (wj) = wjη−
(4.10)

with η+ and η− positive constant such as the
weight update will keep wij in between the bounds
[Sjöström and Gerstner, 2010].

STDP conclusions and limitations

[Babadi and Abbott, 2016] compare different models at a population level in terms of stability and
competition: Standard STDP (pair-based) model, Triplet model, Suppression model, and NMDAr-based
model (a type of biophysical model not investigated in this review). Regarding the pair-based model,
this paper concludes that STDP implemented with hard bounds only allows partial stability and
Hebbian competition while implementing soft bounds permits obtaining stability but the (Hebbian)
competition is lower.

Even if they have the ability to reproduce spike timing protocols, general STDP with no fur-
ther amelioration failed to explain several experiments such as frequency dependence of spike tim-
ing protocols [Sjöström et al., 2001] or triplets and quadruplets protocols [Froemke and Dan, 2002,
Wang et al., 2005]. Indeed, it shows that increasing the frequency of the pre-post or post-pre pair
in the protocol leads to more potentiation in the cortex. Triplets experiments such as induction of
"post-pre-post" or "post-pre-post" firing as well as quadruplets experiments failed to be represented by
the pair-based model due to its symmetry [Pfister and Gerstner, 2006, Graupner et al., 2016].
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4.2.2 Triplet models

Suppression model

As triplet experimental protocols were demonstrated, [Froemke and Dan, 2002] suggest adapting clas-
sical STDP with factors representing the efficiency of successive action potentials. Indeed, as it was
explained in Section 3.1, the effect of two successive spikes are not simply cumulative, there can be a
vesicle depletion effect. In other words, this model suppresses the effect of the previous presynaptic
(resp. postsynaptic) spike to the second presynaptic (resp. postsynaptic) spike in each spike pair. In
order to take this short-term plasticity event into account, an efficiency factor for the neuron i is defined
as follows:

εi = 1− e−(ti−ti−1)/τs (4.11)

i.e. the efficacy (ε ⊂ [0; 1]) is minimal after each spike, and it increases exponentially back to 1 with
a time constant τs. The final learning rule is

∆wij = εprei εpostj F (∆t) (4.12)

where F (∆t) is the standard pair-based equations in equation 4.6.

Common triplet model

A more common approach to explain several experiments such as frequency dependence of spike timing
protocols [Sjöström et al., 2001] or triplets and quadruplets protocols [Wang et al., 2005] is the general
triplet model. Introduced by [Pfister and Gerstner, 2006] triplet models are also based on spike times.

Similarly to the pair-based model, it is implemented by local variables. However, a presynaptic
spike is modeled by two different quantities r1 and r2 who are low-passed filtered traces of the spike
but with different time constants, respectively τ+ and τx. Namely, τ+ is smaller than τx, i.e. the trace
r1 decays on a faster time-scale than the trace r2. Similarly, a postsynaptic spikes is associated to two
different traces σ1 and σ2 with respectively the time constant τ− and τy and τ− < τy. It gives:

dr1(t)
dt = − r1(t)

τ+
if t = tpre then r1 → r1 + 1

dr2(t)
dt = − r2(t)

τx
if t = tpre then r2 → r2 + 1

dσ1(t)
dt = −σ1(t)

τ−
if t = tpost then σ1 → σ1 + 1

dσ2(t)
dt = −σ2(t)

τy
if t = tpost then σ2 → σ2 + 1

(4.13)

where tpre (resp. tpost) is the timing of a presynaptic spike (resp. postsynaptic). The full model
implemented by [Pfister and Gerstner, 2006] takes into account weight change due to pre-post (with
the constant A+

2 , inducing potentiation) or post-pre pairs (with the constant A−2 , inducing depression)
(similar to classical pair-based model). The improvement over the classic pair-based model is that
triplet of spikes are also considered. Thanks to previously introduced traces σ2 and r2 pre-post-pre
triplets are treated (associated with the constant A−3 , inducing depression) as well as post-pre-post
triplets ( associated with the constant A+

3 , inducing potentiation) (see Figure 4.6). Weight change
goes as follows:

w(t)→ w(t)− o1(t)
[
A−2 +A−3 r2(t− ε)

]
if t = tpre (4.14)

w(t)→ w(t) + r1(t)
[
A+

2 +A+
3 o2(t− ε)

]
if t = tpost (4.15)

It has been shown that this model can be mapped to the BCM rule that is a rate-based model
explaining the selectivity of the postsynaptic neurons [Gjorgjieva et al., 2011]. Moreover, the triplet
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Figure 4.6 – Implementation of Triplet model by trace variables. [Pfister and Gerstner, 2006]

model further generalises it since it is also based on spike timing and adds spatiotemporal correlations
in inputs.

Limitations

On one hand, [Babadi and Abbott, 2016] investigations on the triplet model show partial stability and
only Hebbian competition for a limited range of parameters. On the other hand, the suppression
model shows anti-Hebbian competition and stability when the average weight is high. Comparison with
standard pair-based model and a biophysical model (NMDAr-based model) demonstrates that only
the biophysical model allows coexistence of Hebbian and anti-Hebbian competition depending on the
parameters, as well as stability.

[Graupner et al., 2016] introduces soft bounds in [Pfister and Gerstner, 2006] model. It shows that
considering irregular firing patterns (in vivo-like), synaptic changes induced by AP timing can be
equivalently induced by firing rate modification. This questions the predominant emphasise of precise
spike timing protocols on their own as opposed to more natural patterns.

Moreover, this model shows no proof to be able to explain other experiments such as voltage
experiments since it does not include any postsynaptic membrane potential variable and only recalls on
spike timing.

4.2.3 Voltage-based models

This kind of models aims to be able to reproduce voltage-clamp experiments. Particularly, [Clopath et al., 2010]
design a spike timing-based model taking into account the presynaptic voltage. The synaptic weight
evolves as follows:

d

dt
wji = −ALTDXi(t) [u−(t)− θ−]+ +ALTP [u(t)− θ+]+ xi(t) [u+(t)− θ−]+ (4.16)

where

• ALTD and ALTP are respectively depression and potentiation constant.

• xi(t) is the trace of the presynaptic spike following

τx
dxi(t)

dt
= −xi(t) +Xi(t) (4.17)

• u is the postsynaptic voltage,
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• u+ and u− are postsynaptic voltage traces with two different time constants (τ+ > τ−) following:

τ+/−
du+/−(t)

dt
= −u+/−(t) + u(t) (4.18)

• θ+ and θ− are voltage threshold: respectively the action potential threshold and the equilibrium
potential

• Xi(t) =
∑

n δ(t− tin), tin the presynaptic spike times.

• bxc means that any value x < 0 equals 0

Figure 4.7 – Illustration of voltage-dependent plasticity modeled
by [Clopath et al., 2010] A. LTD is triggered at the spike time
of the presynaptic neuron j if the trace ūi,− is above θ−.B.
LTP is triggered at the spike time of the postsynaptic neuron
i if the membrane potential u is above the threshold θ+ and
the trace ūi,+ is above θ−. The amount of potentiation is
proportionally to the trace x̄j(t) [Gerstner et al., 2014].

The equation is graphically ex-
plained in Figure 4.7. LTP is trig-
gered if the postsynaptic voltage (u)
is above the action potential thresh-
old θ+ and the low-pass filtered poten-
tial u+ is above the threshold θ−. The
amount of potentiation is proportion-
ally to ALTPxi. On the contrary, LTD
is triggered if the low-pass filtered po-
tential u− is above the threshold poten-
tial θ− at a presynaptic spike-time ti

and the synaptic weight is decreased by
an amount proportionally to ALTD.

Additionally to being able to re-
produce a large variety of experimen-
tal protocols ([Sjöström et al., 2001,
Artola et al., 1990, Nevian and Sakmann, 2006]), [Clopath et al., 2010] show the development of con-
nectivity patterns and localised receptive fields. Indeed, bidirectionnality in the connections and clusters
appears under rate coding procedure (neuron stimulated by different rate patterns). However, temporal
coding (neurons firing successively) leads to unilateral connections.

4.2.4 Three-factor rule

STDP alone is too simple to explain every aspect of plasticity. Experimental studies have more recently
investigated the the interaction of neuromodulation and STDP, by controlling the spike timing of the
pre- and postsynaptic neurons together with neuromodulators [Seol et al., 2007, Zhang et al., 2009].
For instance, higher acetylcholine concentrations induce LTD while dopamine would lead to stronger
LTP and a flip from LTD to LTP compared to standard STDP protocols [Frémaux and Gerstner, 2015].
Different neuromodulators applied at the same time interact to give even more diversified results, see
examples in Figure 4.8. Those interactions are very complex and there is so much experimental data
that it is nearly impossible to fit computational plasticity models containing all the experimental results
[Frémaux and Gerstner, 2015]. Thus, it is more realistic to build a mathematical framework than a very
precise model. The introduction of a "three-factor rule" that blends pre- and postsynaptic spike timing
together with neuromodulation would be generally written as follows [Frémaux and Gerstner, 2015]:

ẇ = f(M,pre, post) (4.19)
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with ẇ the synaptic weight change, M the impact of neuromodulation and pre, post the activity of
pre- and postsynaptic cells.

Figure 4.8 – Effects of neuromodulators on STDP window. (left) Effect of dopamine in the hippocampus.
(right) Effect of activation of noradrenaline and acetylcholine pathways in the visual cortex. (taken
from [Frémaux and Gerstner, 2015])

Other components could be pertinent to investigate as third factor in the three-factor rule such as
nitric oxide (NO), brain-derived neurotrophic factor (BDNF ), GABA or even astrocytes that all have
been demonstrated to have the ability to modulate STDP [Foncelle et al., 2018].

Figure 4.9 – Four different STDP curves used
by [Pedrosa and Clopath, 2017]. (blue) DP:
depression-potentiation. Observed in the visual cor-
tex (Ach + NE ) and the dorsal striatum (DA). (red)
PP: potentiation-potentiation. Observed in the vi-
sual cortex (NE ) and hippocampus (DA). (green)
UP : unchanged-potentiation. Observed in the amyg-
dala (DA) (pink) DU: depression-unchanged. Ob-
served in the prefrontal cortex (nicotine).

Computational investigations on this topic are
starting. [Pedrosa and Clopath, 2017] use a sim-
ple neuron model with four different learning rules
corresponding to the impact on the STDP curve
of different neuromodulators, represented in Fig-
ure 4.9. Computationally observing the impact
of those rules with different settings can deepens
the understanding of neuromodulatory effects on
plasticity modulation. Applying the four different
rules to see the impact on receptive field adapta-
tion, [Pedrosa and Clopath, 2017] find that:

• upregulation of learning rate yields sharp-
ening of receptive field,

• upregulation of neuronal activity yields ei-
ther sharpening or broadening of the recep-
tive field.
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4.2.5 Combination of models

In real-life experiments, plasticity occurs at many different time-scales. As previously introduced in
Chapter 3, short-term and long-term plasticity coexist. Additionally, to allow stability in Hebbian
plasticity, homeostasis is often required. Homeostatic plasticity refers to compensatory processes at
various scales (spatial and temporal) allowing stabilisation of neural firing rate. Indeed, stability of
neuronal activity seems to be maintained by homeostatic processes acting dynamically in order to adjust
the strength of synaptic connections [Turrigiano and Nelson, 2004]. Often, it is modeled by synaptic
scaling, i.e. all synaptic connections are divided by the same value, keeping the overall weights stable
while maintaining the ratio between the different connections. This mathematical trick takes only a few
seconds to happen, while it has been shown that the homeostasis process in vivo takes hours or even
days [Zenke and Gerstner, 2017]. Consequently, implementing a combination of various plasticity rules
occurring at different time scales is a relevant approach to better represent natural plasticity conditions.
Different modeling methods at different time-scales can be implemented such as:

• Short-term plasticity: synaptic receptors (g, and particularly gAMPA) can vary depending on
various parameters such as short-term plasticity and weight [Zenke et al., 2015]:

dg

dt
= F (XST , wij) (4.20)

where XST (t) is used to model short-term (ST ) variables. It represents resources parameters
that are depleted after an action potential and recover back to their initial value, schematically
following:

XST (t)

dt
=

1−XST

τST
(4.21)

• Homeostasis: In order to take into consideration homeostasis (i.e. process maintaining stability)
synaptic scaling can be implemented to normalise all the synaptic weights at once, for example
[Nere et al., 2012, Turrigiano and Nelson, 2004]:

wij =
wij
wmax

(4.22)

But as previously explained, it does not match up to in vivo homeostatic process taking way more
time to happen. Homeostatic regulation of LTD / LTP can be implemented by down-scaling
the values of A+(t) /A−(t) (in the specific case of pair-based model) with a really slow temporal
dynamics (τh »» 0).

• Heterosynaptic plasticity: Within the same postsynaptic neuron, plasticity can also occur
at synapses that were not active. This can provide competition and stabilisation of synaptic
weights [Chistiakova et al., 2014]. Mainly, release of Ca2+ in one synapse can trigger change in
the neighbouring synapses [Chen et al., 2013, Bannon et al., 2017].

• Metaplasticity: as introduced by [Bienenstock et al., 1982], plasticity itself is plastic and is not
one specific fixed rule [Benuskova and Abraham, 2007, Yger and Gilson, 2015].

• ...

Excitatory synapses exhibiting different plasticity mechanisms at different time scales: short-term
plasticity, STDP, heterosynaptic plasticity (plasticity induced by cooperativity at unstimulated synapses
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of an excited postsynaptic neuron), and transmitter-induced plasticity in addition to consolidation
and homeostasis have been implemented to allow stability [Zenke et al., 2015]. This model performs
the development of different assemblies and memory recall of those different clusters. It shows that
physiological rules based on synaptic plasticity can be able to classify and recall data in a Machine
Learning way. In addition, the implementation of slow homeostatic processes have shown to facilitate
the learning phase.

Going further

While models complexify, gain insights into stability mechanisms and are able to perform memory tasks,
sleeping mechanisms are still on hold. As it is known that in vivo memory formation happens during
sleep, it seems logical to investigate modeling approaches mimicking or involving sleep.

4.2.6 Sleep adaptation

Sleep can be implemented computationnaly in various ways. A popular opinion is based on SHY
(Synaptic Homeostasis Hypothesis of sleep) which states that sleep decreases synaptic connections to
optimise energy consumption, avoid cellular stress and connection saturation [Tononi and Cirelli, 2014].
Following this hypothesis, sleep is thus induced by a change in the learning rule during the sleep phase
(no potentiation occurs).

Figure 4.10 – Graphical summary of
[González-Rueda et al., 2018]. Synaptic rule
changes according to UP and DOWN states in
sleep.

[González-Rueda et al., 2018] make this as-
sumption to implement a rule that would differ
from waking to sleep. On one hand, a standard
STDP is used during wake and sleep DOWN-
states. On the other hand, an UP-mediated learn-
ing rule is implemented which down-scales the
synaptic weight during UP-states of SWS. Us-
ing this change of learning rule, weaker synapses
are depressed during sleep while synapses with
higher connections are protected and preserved.
Additionnaly, the signal-to-noise ratio is improved
and information is stored throughout several
wake/sleep cycles (see Figure 4.10).

Following the same hypothesis,
[Nere et al., 2012] implement sleep-like phase
which down-scale the synaptic weight and
depression-only sleeping phase occurs. However,
trusting the idea that bursts are highly energetic
events and should contain useful information,
Burst-STDP is implemented during waking such
as only potentiation is happening. Additionally,
neuromodulation effect is added by using reward-based learning principle. This model is able to
perform object recognition and motion anticipation tasks in a highly structured neural network for
a digital neuromorphic hardware design purpose. One year later, [Nere et al., 2013] follow the same
hypothesis and provides computational proof of the beneficial effects of sleep using only depression
during this period. Consolidation of declarative and procedural memories, gist extraction, and the
integration of new with old memories are achieved.
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Nevertheless, SHY is based on the different neuromodulators concentration during the different
brain states but those concentrations are far from being binary as a function of the state. Moreover,
the effects of sleep-wake regulated neuromodulators are not consistent with the fact that STDP would
reverse [Puentes-Mestril and Aton, 2017].

Using the knowledge that acetylcholine levels are different in sleep and waking states,
[Fink et al., 2013] add a slow K+ conductance to modulate the different acetylcholine levels in waking
(high Ach) and sleep (low Ach) states. It shows high synchronous network activity during sleep and the
weights are either up or down-scaled to extreme values.

Finally, [Capone et al., 2019] implements a thalamocortical loop and shows how sleep UP-states
during slow oscillations improve classification task (recognition of MNIST digits). The protocol used is
the following: a training phase implemented with STDP, a retrieval phase during which neurons are
reactivated, a sleep phase with STDP induced manually by non-specific Poisson noise (700Hz) and
increase in spike frequency adaptation. Finally during the post-sleep phase, the classification accuracy
is better and groups of neurons coding for the same digits are strengthened.

4.2.7 Burst

As introduced in Section 2, SWS implies bursting firing pattern at the cellular level in the cortex.
Consequently, finding a learning rule compatible with this bursting mode and allowing memory formation
could be investigated.
Thus far, the impact on synaptic weight of bursting firing pattern as wake/sleep switch mechanism has
rarely been studied. However, bursting patterns have been investigated in other scenarios.

[Gjorgjieva et al., 2009] introduced burst-timing-dependent plasticity, a synaptic rule dependent of
the timing in between bursts but temporally symmetric and with a bigger time-scale compared to
classical STDP. The suggested rule has proven segregation of retinal inputs during the development
(relying on bursting) while classical STDP rule did not give satisfying results.

With an experimental protocol, [Delattre et al., 2015] investigate the effects on timed bursts (high
frequency spikes) on STDP. Experimental results showed some flips from LTP to LTD or LTD to LTP
depending on the exact timing of the bursts. This gave rise to the notion of Network timing-dependent
plasticity (NTDP) where local STDP of individual synaptic pathways is regulated by the timing of
synchronous bursts generated by the network. Making the hypothesis that the flip from LTP to LTD
is due to the depletion of critical resources needed for LTP, they implement a resource-dependent
regulation of STDP.

4.3 Modeling specifications

All modeling assumptions of the mentioned models are summarised in Table 4.1 and the Figure
4.11 includes all abbreviations used. As it can be seen, models are mainly implemented using
less or more complex integrate-and-fire neuron models [Gjorgjieva et al., 2009, Delattre et al., 2015,
Clopath et al., 2010, Zenke et al., 2015, González-Rueda et al., 2018]. In this case, the weight between
two neurons is usually defined by a simple abstract value that is not taken into account in the
strengthening of the connection between the neurons. However, [Zenke et al., 2015] use an IF model
with spike-frequency adaptation in which the synaptic weight value is actually used to modulate the
AMPA conductance efficiency. [Pedrosa and Clopath, 2017, Nere et al., 2012, Nere et al., 2013] use an
IF model in which w modulate a synaptic current Isyn.
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For their triplet or suppression model, [Pfister and Gerstner, 2006, Gjorgjieva et al., 2011,
Froemke and Dan, 2002] only use the spike timing (event-based modeling) to fully model the neu-
rons without differential equation.

[Fink et al., 2013] uses a conductance-based model in which the weight is associated to a synaptic
current from a presynaptic neuron to a postsynaptic neuron.

Synaptic rule Neuron model Network Shape

Definition w

Protocol

Memory task Sleep Switch

STDP

Triplet

BTDP

Voltage

NMOD

Conductance-based 

Event-based

Integrate-and-fire

Leaky

Non-Linear

2-9 neurons

Medium 10-100

Large 100-1000

Extra Large > 1000

Feedforward

Abstract weight

Weight on synaptic 

current

EPSP strength

Conductance strength

Hippocampus

[Wang et al. , 2005]

[Ngezahayo et al., 2000]

Cortex

[Sjöström et al. , 2001]

[Froemke et al., 2001]

[Artola et al. , 1990]

Thalamus (retina)

[Lee et al. , 2002]

Associativity

Retinal  response

Development

Manually induced

Conductance change

Synaptic rule change

S

M

L

XL

C

LIF

IF FW

Suppression-model

Burst-STDP

Combination

UP-mediated

Resource-dependent 

STDP (r-STDP)

H1

H2

C1

C2

C3

R

C

H

EB

S

Isyn

w A

R

D

CS

Figure 4.11 – Abbreviations of modeling specifications used in Table 4.1
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Table 4.1 – Computational phenomenological models of synaptic plasticity. List of the different computational models used for synaptic plasticity.
Displayed with authors and years, the name of the synaptic rule, the neuron model, the network size, the definition of w, the protocol used for
parameters fitting, the memory task, the switch mechanism and a short description. Separated by (a) Wake and (b) Sleep. NS means Not stated and
ND Not Determined.

Authors Synaptic
rule

Neuron
Model

Network
Size

Definition
w Protocol Memory

task Switch Brief Summary

(a
)

W
ak

e

[Gjorgjieva et al., 2009] BTDP IF M
FW w R D

Introduction burst-timing-dependent plasticity to overcome STDP
limitations and explain the segregations of ON/OFF retinal inputs
during development.

[Pfister and Gerstner, 2006] Triplet EB S
FW w C1

H1 /
Introduction of the Triplet model to overcome STDP limitations.
The authors provide proof that the model reproduces more experi-
mental protocols compared to classical STDP.

[Delattre et al., 2015] r-STDP IF L w C /
The standard STDP curve is altered by application of network-
generated bursts. A resource-dependant STDP may explain those
results.

[Zenke et al., 2015] Combination IF XL CS NS A
Implementation of synaptic plasticity with combination of models
at various time scale. An associative task is performed and the
model is to recall memories.

[Clopath et al., 2010] Voltage IF M w
C1
C3
H2

A
Voltage-dependent STDP model able to reproduce a large panel
of experimental data. Connectivity reflecting neural coding in a
neuron network is shown.

[Froemke and Dan, 2002] Suppression EB S w C2 / Experimental triplet protocol explained by a suppression model us-
ing short-term dependent plasticity principles.

[Gjorgjieva et al., 2011] Triplet EB M EPSP C1
H1 R Triplet model (spike-timing based) can be rewritten to generalize

the BCM model (rate-based)

[Pedrosa and Clopath, 2017] NMOD LIF M Isyn NS D
Investigation of four different model with different STDP. Each rep-
resents the impact of different neuromodulators. The computational
study examines the receptive field formation and adaptation by dif-
ferent.

(b
)

S
le
ep

[González-Rueda et al., 2018] UP-
mediated LIF S

FW w C / synaptic rule
change

Following SHY hypothesis, use of a standard STDP during wake
and an UP-mediated learning rule during sleep which down-scale the
synaptic weight during up-states of SWS. This allows preservation
of biggest synaptic weights and depression of the others.

[Fink et al., 2013] STDP C L Isyn NS / conductance
change

Addition of a slow K+ conductance to model the different Ach lev-
els in waking and sleep states. High synchronous network activity
during sleep is shown and sleep period either depresses or potenti-
ates to extreme values the different weights.

[Capone et al., 2019] STDP IF L w NS A manually
induced

Implementation of a thalamocortical loop and reproduction of slow
oscillations sleep to improve classification accuracy (digits recogni-
tion).

[Nere et al., 2012] Burst-STDP LIF L Isyn NS A synaptic
scaling

Following SHY, sleep-like phase down-scale the synaptic weight (de-
pression only). Making the assumptions that bursts are highly ener-
getic events and should contain useful information, Burst-STDP is
implemented during waking such as only potentiation occurs. Neu-
romodulation effect is added by using reward-based learning prin-
ciple. The model is able to perform object recognition and motion
anticipation tasks.

[Nere et al., 2013] Burst-STDP IF L Isyn NS A synaptic
scaling

Similarly to the previous article, sleep-like phase down-scale the
synaptic weight following SHY hypothesis. The model is able to
explain the beneficial effects of sleep on various tasks: the consoli-
dation of both procedural and declarative memories, on gist extrac-
tion, and on the integration of new memories with old ones .

47



4.4 Summary

[Hebb, 1949]

[Oja, 1982]

[Bienenstock et al., 1982]

Rate-Based

Frequency-Based

Phenomenological models

STDP

Triplet

Voltage

NMOD

Combination

Burst

Sleep

Fundamental Models Applications/Extensions

[Abbott and Nelson, 2000]

[Van Rossum et al., 2000]

[Morrison et al., 2008](R)

Literature Review of Phenomenological Models of Plasticity

[Pedrosa and Clopath, 2017]

[Frémaux and Gerstner, 2015] (R)

[Foncelle et al., 2018] (R)

[Pfister and Gerstner, 2006]

[Gjorgjieva et al., 2011]

[Clopath et al., 2010]

[Zenke et al., 2015]

[Zenke and Gerstner, 2017] (R)

[Gjorgjieva et al., 2009]

[Delattre et al., 2015]

[González-Rueda et al., 2018]

[Capone et al., 2019]

[Fink et al., 2013]

[Nere et al., 2012]

[Nere et al., 2013]

[Puentes-Mestril and Aton, 2017] (R)

(R) : Review

Model Comparison

[Babadi and Abbott, 2016]

[Graupner et al., 2016]
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Part III

Computational study
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Chapter 5

Integration of synaptic rule in a switching
network: validation in tonic mode

After reviewing different types of models from the literature, some of them were implemented in a
conductance-based model. As the ultimate goal of this project is to test the compatibility of plasticity
rules with memory consolidation during sleep, a switching network able to switch from tonic to burst is
needed. This conductance-based circuit therefore allows a better physiological representation. An ECI
circuit of three neurons was used: one excitatory cortical (E) neuron connected to a cortical neuron
(C) (with AMPA connection) as well as an inhibitory neuron (I) sending inhibitory connections to
the two other cells (with GABAA and GABAB connections), see Figure 5.1 (A). The latter sets the
pace of the circuit. Indeed, a high-frequency tonic rhythm puts the two others in silent mode, while a
burst in the inhibitory neuron drives the whole circuit in bursting mode. Thus, the switch is obtained
by hyperpolarising I only with an artificial current Iapp,I . In this chapter, in order to recreate spike
timing-based protocols, pulse currents were applied to the pre- and postsynaptic neurons in such a way
that spikes were initiated at a given frequency with a given delay ∆t = tpost − tpre (Figure 5.1 (B)).

A B

E

I

C

𝐼𝐸

𝐼𝐶

𝐼𝐼
5

-1

0

0

𝑤𝑖𝑗

Pre j Post i

𝐼𝑎𝑝𝑝,𝐼

𝑔𝐴𝑀𝑃𝐴

𝑔𝐺𝐴𝐵𝐴,𝐴
𝑔𝐺𝐴𝐵𝐴,𝐵

𝑔𝐺𝐴𝐵𝐴,𝐴
𝑔𝐺𝐴𝐵𝐴,𝐵

Figure 5.1 – ECI circuit and achievable firing patterns. A. Schematic representation of the ECI circuit,
showing excitatory connection from cell E to cell C and inhibitory connections from cell I to cells E
and C. B. Time course of the membrane voltage [mV] of the ECI circuit and the applied currents [nA]
showing three firing patterns for cells E-C (top and middle): silent mode thanks to inhibition from cell I
(bottom) which fires at high-frequency, tonic mode at a given frequency with ∆t = tpost− tpre = 20[ms]
and bursting mode in all cells driven by hyperpolarisation of cell I.
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The connection between E (pre) and C (post) is where the plasticity will take place and be
investigated during both tonic and bursting mode (next chapter) thanks to the switching network. As
previously seen in the Chapter 4, different plasticity types are observed. In this model, the plasticity
modulates the efficiency of the AMPA receptor from the cortical cell, controlling the strength of
the connection in-between cells E and C. For more details on the conductance-based modeling, see
Appendix C.

5.1 Model integration in conductance-based circuit (ECI)

Three models taken from the literature review will be further investigated:

• The pair-based model from [Abbott and Nelson, 2000] and reproduced by [Graupner et al., 2016].

• The triplet model from [Pfister and Gerstner, 2006] and also reproduced by [Graupner et al., 2016].

• The voltage-dependent model from [Clopath et al., 2010].

First, all those learning rules are implemented in-between the pre- (E) and postsynaptic (C) cells in
the switching ECI circuit.

5.1.1 Pair-based model from [Abbott and Nelson, 2000, Graupner et al., 2016]

As already introduced in Chapter 4, pair-based model can be implemented thanks to the following
equations:

dxj
dt

= −xj
τx

+
∑
tfj

δ
(
t− tfj

)
(5.1)

dyi
dt

= − yi
τy

+
∑
tfi

δ
(
t− tfi

)
(5.2)

representing the trace from presynaptic spikes (xj) and postsynaptic spikes (yi) with dynamics τx, τy
and tfj , t

f
i respectively the timings of a pre- and postsynaptic spike. Then, synaptic weight changes

following:
∆w+

ij

(
tfi

)
= A+xj

(
tfi

)
∆w−ij

(
tfj

)
= A−yi

(
tfj

) (5.3)

where A+ > 0, A− < 0.

In this chapter, the synaptic weight will be either hard or soft-bounded such that w ∈ [0 : 1].

The conversion from integrate-and-fire to conductance-based neuron model was simply put forth by
defining a spike at time t when the cell membrane voltage U(t) crosses a threshold taken as 0[mV ], i.e.
U(t) > 0[mV ] and U(t− 1) < 0[mV ].
Parameters used as well as resolution of the different differential equations (voltage, traces, weight) can
be found in Appendix D.
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5.1.2 Triplet model from [Pfister and Gerstner, 2006, Graupner et al., 2016]

The following equations were used to implement the triplet model:

dr1(t)
dt = − r1(t)

τ+
if t = tpre then r1 → r1 + 1

dr2(t)
dt = − r2(t)

τx
if t = tpre then r2 → r2 + 1

dσ1(t)
dt = −σ1(t)

τ−
if t = tpost then σ1 → σ1 + 1

dσ2(t)
dt = −σ2(t)

τy
if t = tpost then σ2 → σ2 + 1

(5.4)

where tpre (resp. tpost) is the timing of a presynaptic spike (resp. postsynaptic). Weight change
goes as follows:

w(t)→ w(t)− o1(t)
[
A−2 +A−3 r2(t− ε)

]
if t = tpre (5.5)

w(t)→ w(t) + r1(t)
[
A+

2 +A+
3 o2(t− ε)

]
if t = tpost (5.6)

The difference between [Pfister and Gerstner, 2006] and [Graupner et al., 2016] models is that the
latter fits the model parameters implementing soft bounds (w ∈ [0 : 1]) while [Pfister and Gerstner, 2006]
model is not bounded. However, in this thesis, hard bounds are added to stay in physiological range.
Note that [Pfister and Gerstner, 2006] found that their model was able to reproduce experimental data
with fewer parameters, calling it minimal models. In the following sections, minimal models will be
used. All parameter sets can be found in Appendix D.

Similarly to the pair-based model, the conversion from simplistic integrate-and-fire to conductance-
based neuron model was realised by defining spike timing when the membrane voltage U(t) crosses a
threshold (0[mV ]) i.e. U(t) > 0[mV ] and U(t− 1) < 0[mV ].
Parameters used as well as illustration of temporal evolution can be found in Appendix D.

5.1.3 Voltage-dependent model [Clopath et al., 2010]

In the voltage-dependent model, weight change goes as follows:

d

dt
wji = −ALTDXi(t) [ū−(t)− θ−]+ +ALTP [u(t)− θ+]+ xi(t) [ū+(t)− θ−]+ (5.7)

The voltage-based plasticity rule from [Clopath et al., 2010] failed to be converted into the conductance-
based model.
First, the threshold values θ+ and θ− were originally taken as respectively the integrate-and-fire firing
threshold and resting membrane potential (θ and urest in Section 2.3.2). In a more physiological
model such as conductance-based model, such exact values cannot be known in advance since it depends
on the neuronal type, the afferent connections, etc. Moreover, [Clopath et al., 2010] voltage-dependent
model increases the synaptic strength wij when the membrane potential is above the threshold θ+.
While for a non-linear integrate-and-fire model this corresponds to an infinitely small period of time, the
dynamic of a physiological action potential reproduced by a conductance-based model is much slower.

For those reasons, the fitted parameters (accurate for an IF model) are unlikely to lead to satisfying
results in a conductance-based model.

5.2 Experiments

Two plasticity rules were successfully implemented in this conductance-based model:
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• The classical pair-based model from [Abbott and Nelson, 2000].

• The Triplet model from [Pfister and Gerstner, 2006] (hard-bounded) and the one from [Graupner et al., 2016]
(soft-bounded).

To clarify the reading, papers corresponding to experimental protocols on which model parameters
are fitted are indicated with ◦. Moreover, Table 5.1 summarises which experimental protocols the
different models have been fitted on as well as the corresponding brain areas.

Model Author Fitted on experimental protocol ◦

Pair-based [Abbott and Nelson, 2000] [Bi and Poo, 1998] ◦ (H)
[Graupner et al., 2016] [Bi and Poo, 1998] ◦ (H)

Triplet [Pfister and Gerstner, 2006] [Wang et al., 2005] ◦ (H)
[Sjöström et al., 2001] ◦ (C)

[Graupner et al., 2016] [Sjöström et al., 2001] ◦ (C)

Table 5.1 – Summary of different models that will be further investigated. The circ (◦) is for experimental
protocols and (H) stands for hippocampus, (C) for cortex.

The following sections show the successful (or not) implementation of those plasticity rules by
reproduction of experimental protocols based on spike timing (introduced in Section 3.3): STDP
protocol as well as the behaviour with variability in the firing pattern and frequency dependence of
STDP protocol.

5.2.1 Reproduction of STDP protocol

As already introduced in Section 3.3, spike timing-dependent plasticity was observed following protocols
during which the precise timings of pre- and postsynaptic spikes were controlled [Bi and Poo, 1998] ◦.
The experimental results show asymmetric potentiation and depression in the hippocampus. Significant
potentiation was induced when a postsynaptic spike followed a presynaptic spike within a time window of
20[ms], whereas significant depression was observed when the presynaptic spike followed a postsynaptic
spike within a window of 20[ms]. The first experiment realised on the ECI circuit (summarised in
Figure 5.2) was to reproduce the STDP curve by introducing the different plasticity rules in-between
pre and postsynaptic neurons. When parameters from the hippocampus were available, the repetition
of pairings were realised following the experimental protocol, i.e. 60 pairings for each ∆t at a frequency
of 1 [Hz].
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Spike timing difference  (Δt)
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C

∆𝑡

1/𝜌

Reproduction of STDP protocol

w

1

Figure 5.2 – First experiment on plasticity rules. Pairings at a given frequency were realised with
∆t = tpost − tpre in order to reproduce the classical STDP curve. For each ∆t, 60 pairings were realised
and the percentage of w change was computed following wf−w0

w0
∗ 100.

Pair-based

This plasticity rule was first put forth by [Bi and Poo, 2001] after their well-known experimental spike
timing-based protocol [Bi and Poo, 1998] ◦ described above. [Bi and Poo, 2001] provided a model
fitting the exponential parameters from Equation 4.6 on those experimental data.
Figure 5.3 shows the reproduction of [Abbott and Nelson, 2000] model (implemented with traces
from Equation 5.1) together with experimental results. As expected, the model reproduces the
experimental trend. This proves that the model was implemented correctly.

Figure 5.3 – Reproduction of STDP curve for the pair-based model. Large open circles represent experi-
mental data while small filled circles are the computational data obtained following the experimental
protocol from [Bi and Poo, 1998] ◦, i.e. 60 pairings repeated at 1 [Hz].
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Triplet model

The same approach as pair-based model is taken concerning triplet models: verification of experimental
results is first realised by reproducing STDP protocol.

As already stated in Table 5.1, the parameters from [Pfister and Gerstner, 2006] were fitted for
two different protocols:

• [Sjöström et al., 2001] ◦ showing the frequency dependence of STDP in the visual (C).

• [Wang et al., 2005] ◦ demonstrating the effects of triplets and quadruplets experiments in the
hippocampus (H).

Since experimental results from [Bi and Poo, 1998] ◦ (STDP protcool) were obtained in the hip-
pocampus, the set of parameters used is the one corresponding to this brain region. As can be seen
from Figure 5.4 (a), [Pfister and Gerstner, 2006] model fitted on [Wang et al., 2005] ◦ (H) is able
to reproduce experimental results from [Bi and Poo, 1998] ◦, i.e. pairing for different time differences
∆t = tpost − tpre at 1[Hz].

The parameters from [Graupner et al., 2016] triplet model were only fitted on cortical data. Thus,
it makes no sense to reproduce the protocol observed on the hippocampus and expect to get the same
result. Indeed, as it will be developed in the next section, [Sjöström et al., 2001] ◦ (C) observed that
the amount of potentiation and depression in the cortex varies in function of the frequency. However,
Figure 5.4 (b) shows, as an example, that the trend is preserved for a frequency of 10[Hz].

(a) (b)

Figure 5.4 – Reproduction of STDP curve for the triplet model from (a) [Pfister and Gerstner, 2006]:
open circles represent experimental data from [Bi and Poo, 1998] ◦, filled circles the computational
data in the ECI network obtained following the experimental protocol from [Bi and Poo, 1998] ◦ (60
pairings at 1[Hz]). (b) [Graupner et al., 2016] : filled circles are the computational data obtained with
60 pairings repeated at 10 [Hz]. No experimental data is shown since [Bi and Poo, 1998] ◦ experiment
is realised in the hippocampus and [Graupner et al., 2016] parameters are for the cortex.

Note that the curve seems to be shifted since depression is observed for high values of ∆t > 0. This
feature will be explained in section 5.2.2.
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5.2.2 Adding variability

Spike timing difference  (Δt)

E

C

∆𝑡

1/𝜌

𝜎2

w

Adding variability to STDP protocol2

Figure 5.5 – Second experiment on plasticity rules. In order to see the impact of firing variability on
the STDP curve, pairings were simulated with a presynaptic spike firing at given frequency (20 [Hz])
and postsynaptic spike firing following a Gaussian distribution with ∆t = tpost − tpre: ∆t ∼ N (µ, σ),
µ = ∆t, σ ∈ [0.1 : 10]. For each σ and each ∆t, 60 pairings were realised and the percentage of w
change was computed following wf−w0

w0
∗ 100.

In vivo firing patterns are far from being as regular [Softky and Koch, 1993]. Here, the plasticity
rule was tested by adding variability to the firing pattern. The presynaptic neuron was firing at a given
frequency of 20[Hz] but irregularity in the delay of the postsynaptic neuron was added. Taking the
period T = 1

f and n = 1, 2, 3, ... the nth-paired presynaptic spike, the firing time of the postsynaptic
cell (n ∗ T + ∆t) was randomly computed, ∆t following a Normal distribution

∆t ∼ N (µ, σ)

where µ = ∆t is the mean of the Normal distribution and σ ∈ [0.1 : 10] the standard deviation.

Figure 5.5 summarises this experiment. For each σ value, the STDP curve was reproduced and
for each ∆t, 60 pairings were realised. Parameters from cortical data were used for the triplet models.

Pair-based

As can be observed from Figure 5.7 small Gaussian mean (µ = ∆t) were sensitive to variations of
σ while for higher values of µ the impact was less important. This seems logical since increasing the
Gaussian width for small ∆t increases the probability of shifting positive ∆t (pre-post pairs) to negative
values (post-pre pairs) and inversely. An illustration of the different Normal distributions for a small
µ = ∆t is shown in Figure 5.6. In addition, the window for small values of |(∆t)| is the one in which
biggest synaptic change occurs, while for bigger |(∆t)| the change is much lower.

Interestingly, increasing the Gaussian width does not only decreases the maximum of potentiation
and depression but shifts them to higher values of |∆t| (see Figure 5.7). The maximum depression
and potentiation values can be found in Table 5.2. Some values are outliers of the main trend but this
is due to the fact that the protocol only considers 60 pairings for each ∆t. Some noise thus appears in
the data.
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Figure 5.6 – Different Gaussian distribution centered in µ = 5, for 5 values of σ ∈ [0.1 : 2.45 : 10].
Increasing σ leads, in increasing order,to the curves represented in : blue, purple, red, yellow and light
blue curves. For small µ such as this one, increasing the σ results in increasing the probability of having
∆t < 0, resulting in depression. In the same way, small µ < 0 would result in a non-zero probability of
having ∆t > 0, resulting in potentiation.

std 0.1 2.5 5 7.5 10

minimum [%] -67.8 -56.7 -44.8 -35.0 -26.7
peak timing [ms] -2.55 -6.63 -9.69 -13.77 -10.71

std 0.1 2.5 5 7.5 10

maximum [%] 83.4 59.6 42.6 33.1 22.8
peak timing [ms] 2.55 4.59 7.65 9.69 11.73

Table 5.2 – Maximum (potentiation) and minimum (depression) of the STDP curve for the pair-based
model with variability. Increasing the variance decreases the values and shifts the extrema to higher
|∆t|.

Figure 5.7 – STDP curve with firing variability for the pair-based model. For each curve and each ∆t, 60
pairings were repeated at 20 [Hz]. Postsynaptic neuron fires with a time difference ∆t with probability
following a Normal distribution: ∆t ∼ N (µ, σ) where µ = ∆t and σ ∈ [0.1 : 10]. The different σ are the
different curves: blue, purple, red, yellow and light blue curves (increasing σ in this particular order).
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Note that for value of approximately ∆t > 20, the relative synaptic change goes under 0 (Figure
5.7), which is not observed for experimental protocols at 1[Hz] as it can be seen from Figure 5.3. Since
the model is implemented by traces decaying exponentially, it seems logical that for high frequencies
like this one, the trace from one spike is not completely restored to its initial value when another spike
appears. Indeed, the value of τ+ (relative to the exponential decrease of the trace x for the presynaptic
spike) is lower than τ− (relative to the exponential decrease of the trace y for the postsynaptic spike),
i.e. the presynaptic trace decays faster than the postsynaptic one. This results in more depression than
potentiation. It can be illustrated in Figure 5.8 taking only τ+ and τ−.
The same effect is observed for the triplet model (Figure 5.4 and 5.9): using the minimal model,
potentiation is proportional to σ2 (τy) and r1 (τ+) and depression to σ1 (τ−). Thus, when ∆t is higher,
pre-post-pre triplets have less impact because τ+ << τ− leading to more depression. Illustration is
shown in Figure 5.8 taking the three traces into account.

E

C

𝜏+= 16.8 

𝜏𝑦 = 56.38 𝜏− = 33.7

Potentiation Depression

𝜎1𝜎2

𝑟1

Figure 5.8 – Scheme illustrating that less potentiation is observed for the triplet model (high ∆t).
Amount of potentiation is proportional to r1, σ1 and depression to σ. r1 decays faster and for high
value of ∆t, the potentiation amount is way lower.

Triplet

Similarly to pair-based model, increasing the variance decreases and shifts the maximum of depression
and potentiation (see Figure 5.9). The maximum values from [Pfister and Gerstner, 2006] are much
higher because hard bounds are applied.

std 0.1 2.5 5 7.5 10

minimum [%] -40.4 -34.1 -28.9 -25.5 -19.7
peak timing [ms] -2.55 -5.61 -6.63 -9.69 -13.77

std 0.1 2.5 5 7.5 10

maximum [%] 31.8 23.7 17 9.6 3.6
peak timing [ms] 2.55 4.59 8.67 9.69 15.81

Table 5.3 – Maximum (potentiation) and minimum (depression) of the STDP curve for the
[Graupner et al., 2016] triplet model with variability. Increasing the variance decreases the values
and shifts the extrema to higher |∆t|.
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std 0.1 2.5 5 7.5 10

minimum [%] -90.9 -73.7 -58.3 -48.2 -41.2
peak timing [ms] -2.55 -5.61 -9.69 -13.77 -12.75

std 0.1 2.5 5 7.5 10

maximum [%] 98.0 80.7 59.8 44.1 25.3
peak timing [ms] 2.55 4.59 7.65 9.69 5.61

Table 5.4 – Maximum (potentiation) and minimum (depression) of the STDP curve for
[Pfister and Gerstner, 2006] triplet model with variability. Increasing the variance decreases the values
and shifts the extrema to higher |∆t|.

(a) (b)

Figure 5.9 – STDP curve with firing variability for the triplet model from (a) [Graupner et al., 2016]
(b) [Pfister and Gerstner, 2006]. For each curve and each ∆t, 60 pairings were repeated at 20 [Hz].
Postsynaptic neuron fires with a time difference ∆t with probability following a Normal distribution:
∆t ∼ N (µ, σ) where µ = ∆t and σ ∈ [0.1 : 10]. The different σ are the different curves: blue, purple,
red, yellow and light blue curves (increasing σ in this particular order).
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5.2.3 Reproduction of frequency effect on STDP protocol

Reproduction of frequency effect in STDP protocol

w

Frequency (ρ)

Δ t > 0

Δ t < 0

E

C

∆𝑡

1/𝜌

3

Figure 5.10 – Third experiment on plasticity rules. For ∆t = 10 and ∆t = −10, 60 pairings were realised
and the percentage of w change was computed following wf−w0

w0
∗ 100.

[Sjöström et al., 2001] ◦ show that spike timing protocol results in different synaptic changes as a
function of the spiking rate in the cortex. In other words, for a given ∆t, the result of a spike timing
protocol is different, meaning that the STDP curve varies as a function of the pairing frequency. The
results of [Sjöström et al., 2001] ◦ suggest that

• amount of potentiation increases with frequency, even for ∆t < 0.

• at very low frequencies, no potentiation is observed.

The curves originating from the different models in Figure 5.11 (in a IF model) are reproduced in the
conductance-based circuit (ECI) in Figures 5.12 and 5.13 by following the experiment illustrated in
Figure 5.10. On those figures, two distinct protocols will be represented (which are summarised in
Table 5.5):

• The exact experimental protocol followed by [Sjöström et al., 2001] ◦ (grey). In this original
protocol, presynaptic spikes are paired with postsynaptic spikes advanced by ∆t = 10ms or
delayed by ∆t = −10ms. For ρ = 0.1Hz, 50 pairs were induced while for ρ > 0.1Hz 5 pairings
followed by time breaks were repeated 15 times.

• Authors protocols differing as depending on the model, see description of the protocols on each
section (orange).

61



ρ [Hz]ρ [Hz] ρ [Hz]

Δwൗ𝑤 𝑤0 ൗ𝑤 𝑤0

Pair-based from

[Graupner et al, 2016]

Triplet from

[Pfister et al., 2006]
Triplet from

[Graupner et al., 2016]
A B C

Figure 5.11 – Original curves of different models simulating the frequency effect of STDP with
IF spiking neurons. A. Pair-based model from [Graupner et al., 2016] B. Triplet model from
[Pfister and Gerstner, 2006] C. Triplet model from [Graupner et al., 2016].

Author Author protocol Experimental protocol from
[Sjöström et al., 2001] ◦

Graupner 2016
(pair-based) No matter the frequency, 75 pairings For ρ > 0.1 [Hz] : 5 * 15 pairings

separated by time breaks.
For ρ = 0.1 [Hz]: 50 pairings

without break

Graupner 2016
(triplet)

Pfister 2006
(triplet) No matter the frequency, 60 pairings

Table 5.5 – Summary of protocols. Authors computational protocols are compared with the experimental
protocol followed by [Sjöström et al., 2001] ◦.
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Pair-based

As can be seen in Figure 5.12, the classical pair-based model fails to reproduce such results. First,
even at very low frequency, when a postsynaptic spike follows a presynaptic spike, the amount of
potentiation is never equal to 0 because the only potentiation term depends on A+. This value cannot
be negative since it fits STDP results from [Bi and Poo, 1998] ◦. Second, increasing the frequency
means that pre-post pairs are getting closer. Thus, the postsynaptic spike of one pair is approaching the
presynaptic spike of the next one and it induces depression (as a new post-pre pair). This is opposite
to experimental results.

The orange curves reproduce results from [Graupner et al., 2016] using the pair-based model with
soft bounds, simulating 75 pairings without time breaks and no matter the frequency. This difference
does not drastically change the trend of the curves if applied to the exact protocol (grey).

Note that [Graupner et al., 2016] implement soft bounds in the pair-based model but use model
parameters from [Bi and Poo, 2001] which is not implemented with soft bounds.

Figure 5.12 – Reproduction of pair-based protocol at different frequencies [Sjöström et al., 2001] ◦ using
pair-based model. Filled circles ∆t = tpost − tpre = +10ms and unfilled circles ∆t = −10ms (grey)
Following the exact protocol by [Sjöström et al., 2001] ◦, i.e. for ρ > 0.1Hz 15 repetitions of 5 pairings
followed by breaks and for ρ = 0.1Hz 50 pairings without a break. (orange) following method by
[Graupner et al., 2016], i.e. each for each frequency 75 pairings without a break. Grey squares represent
experimental data plus standard deviation.
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Triplet

Conversely, triplet models from [Pfister and Gerstner, 2006] and [Graupner et al., 2016] are able to
reproduce the experimental observation from [Sjöström et al., 2001] ◦. First, setting A+

2 (i.e. the
potentiation term linked to a pre-post pair) to a low value enables the absence of potentiation at low
frequency. In the minimal model, A+

2 is even set to 0. Then, increase of potentiation with frequency is
achieved because the potentiation parameter A+

3 has a bigger impact than the depression term A−3 .
The synaptic weight changes for both models as a function of the frequency are shown in Figure 5.13.
As for the pair-based model, the orange curve reproduces the authors’ results while the grey curve is
obtained after following the exact protocol.

On one hand, [Pfister and Gerstner, 2006] simulate 60 pairings no matter the frequency and without
a break. On the other hand, [Graupner et al., 2016] use a similar method but with 75 pairings (Table
5.5). However, using the fitted parameters to reproduce the exact protocol (grey curves) the results are
much different, especially for [Pfister and Gerstner, 2006] model. Indeed, since exponentially decaying
traces are used to implement the synaptic weight change, making time breaks in between sets of pairings
makes a difference. The traces have thus the time to decay and differences are expected. Consequently,
the models do not fit the exact experimental data.

(a) (b)

Figure 5.13 – Reproduction of pair-based protocol at different frequencies [Sjöström et al., 2001]◦ using
triplet model from (a) [Graupner et al., 2016] (b) [Pfister and Gerstner, 2006]. Filled circles ∆t =
tpost − tpre = +10ms and unfilled circles ∆t = −10ms (grey) Following the exact protocol by
[Sjöström et al., 2001] ◦, i.e. for ρ > 0.1Hz 15 repetitions of 5 pairings followed by breaks and for
ρ = 0.1Hz 50 pairings without a break. (orange) following method by [Graupner et al., 2016], i.e.
each for each frequency 75 pairings without a break or by [Pfister and Gerstner, 2006] 60 pairings
without a break. The convention of the original papers are taken for the y-axis to exactly reproduce
the curves. Grey squares represent experimental data plus standard deviation.
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5.3 Summary
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Chapter 6

Compatibility of plasticity rules with
memory consolidation during sleep in
bursting mode

As memory consolidation occurs during sleep, it is of obvious interest to find a learning rule that is
compatible with sleep firing pattern, i.e. bursting. Now that learning rules taken from the literature
have been reproduced in a switching circuit, let us investigate their behaviour when neurons show burst
firing. Two hypotheses can be expected:

• SHY, already introduced in Section 4.2.6: learned memories during wake (resulting in bigger
weights) are preserved during sleep while smaller weights are depressed [Tononi and Cirelli, 2014].

• Active system consolidation : learned memories during wake (resulting in bigger weights) are re-
played during sleep and thus consolidated while smaller weights are depressed [Klinzing et al., 2019,
Feld and Born, 2017].

Thus, this chapter finds out if the implemented learning rules are compatible with one of those
hypotheses of memory consolidation during sleep, i.e. during a period of burst (illustration in Figure
6.1).

The same ECI circuit is used. Note that, compared to usually used IF neuron model, the conductance-
based neuron model implemented is a powerful tool to constrain bursts to behave like physiological
ones. In order to reproduce different sleep rhythms, different hyperpolarisation steps have been applied
to the inhibitory cell Iapp,I ∈ [−3.9 : 0.1 : −4.7] ([nA]). This results in different burst patterns in cells
E-C with different parameters:

• Intraburst frequency (IBF): IBF ∈ [42.4 : 69.2][Hz]

• Interburst period (PER): PER ∈ [198 : 333][ms]

• Spikes-per-burst (SPB): SPB ∈ [2 : 3]

Those values are the same regardless of w0. Exact parameters values for each Iapp,I can be found on
Appendix E.1.

To mimic the situation in which new information has been learned during the day, different initial
weights (w0 ∈ [0. : 1.]) are taken to imitate the different memory levels after the waking state. Then,
the different sleep rhythms are induced by applying different hyperpolarisation steps Iapp,I on cell I.
The final value of w after a sleep (i.e. bursting) period is extracted to check whether or not the model
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is able to consolidate memory during sleep. This protocol is first applied in a perfect world in which
the pre- and postsynaptic cells are identical. The bursting ability from the pre- and postsynaptic cells
are similar and have always the same properties for every Iapp,I . Then, this protocol is applied in a
realistic world in order to mimic variability between neurons by adding 1% of variability into intrinsic
conductances (gions) of the two neurons. The pair-based and triplet models are evaluated applying
both hard and soft bounds.

Pre- and postsynaptic neurons are connected through an AMPA conductance (see Appendix C):

gAMPA = gEC ∗ w

While the synaptic weight w can be seen as the efficiency of the receptors, differences between weak
( ¯gEC = 0.01) and strong ( ¯gEC = 0.5) AMPA conductances is evaluated, i.e. synapses with respectively
low and high connectivity.

6.1 In a perfect world

The computational experiment is illustrated in Figure 6.1.

E

C

PER

w

IBF

I
t

high 𝑤0

low 𝑤0

𝐼𝑎𝑝𝑝𝐼 ϵ [-3.9: -4.7]

3 SPB

}

(i)
(ii)

Figure 6.1 – Computational experiment: plasticity rules tested in bursting activity. Different Iapp,I are
applied to the inhibitory cell, driving the whole circuit in bursting mode with different bursting features
(intraburst frequency IBF, interburst period (PER), spikes per burst SPB) mimicking different potential
sleep patterns. The impact of a bursting (i.e. sleep) period on the synaptic weights is evaluated to
investigate whether or not the different models can reproduce one memory consolidation hypothesis,
i.e.(i) Active system consolidation: big weights are potentiatied and small weight depressed (ii) SHY:
big weight are preserved while small weights are depressed.

General results

Figure 6.2 summarises the different temporal evolution for both hard (HB) and soft (SB) bounds
applied to the pair-based and triplet models and for low and high connectivities (gEC). The analysis of
the different cases will be investigated here under.
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Figure 6.2 – Temporal evolution of the weight values (w) for both pair-based and triplet models imple-
mented with hard (HB) and soft bounds (SB) and for different connectivity strengths (gEC). Different
colors represent the different Iapp,I values.

6.1.1 Synapse with low connectivity

Pair-based model

Figure 6.2 (top, left) exposes the temporal evolution of the synaptic weights (w) for the pair-based
model implemented with hard and soft bounds and for low connectivity, i.e. ¯gEC = 0.01. As a reminder,
hard bounds are added by imposing a maximum and minimum value that can not be exceeded , as
implemented in [Pfister and Gerstner, 2006] triplet model. By contrasts, soft bounds are obtained
adding a weight dependence to the potentiation and depression parameters (see section 4.2.1), as
implemented by [Graupner et al., 2016] triplet model:

A+ (w) = (wmax − w) η+ and A− (w) = wη−

Using the same model but changing only the bound has drastic consequences:

• Hard bounds: The weights all go to extreme values with a rate depending on Iapp,I regardless
the initial value of w0 (at the beginning of the sleep stage). In Figure 6.2, lines of the same
colors correspond to a given Iapp,I . One can observe that the lines are parallels meaning that the
rates are similar regardless of w0 and thus wF will be identical.

• Soft bounds: The weights reach a steady-state value depending on Iapp,I in-between the two
extrema. This seems logical given the definition of soft bounds: the closer the weight to wmax = 1

(resp. wmin = 0), the more preponderant depression (resp. potentiation).
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In both cases, the value taken by Iapp,I determines the final value of w. Those values are summarised
in Table 6.1. Consequently, it means that small weights as well as big weights have exactly the same
behaviour during sleep. After a bursting period, the synaptic weights resulting from learning during the
day are all reset to the same value. As this model was already flawed in tonic mode, it is definitively
not a plasticity rule compatible with the hypothesis of memory consolidation during sleep.

Iapp,I [nA] -4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9
HB 1 1 1 1 1 1 1 0 1
SB 0.813 0.723 0.794 0.805 0.808 0.66 0.66 0.28 0.86

Table 6.1 – Final value of the weight depending on Iapp,I for the pair-based model with (HB) hard
bounds (SB) soft bounds, no matter the value of w0.

Triplet model

The exact same protocols have been applied to the triplet model from both [Pfister and Gerstner, 2006]
(hard bounds) and [Graupner et al., 2016] (soft bounds). The results are surprising: the behaviour of
the models in bursting mode are strangely similar to the behavior of the pair-based model with hard
and soft bounds, see Figure 6.2 (top, right) and Table 6.2:

• Hard bounds [Pfister and Gerstner, 2006]: The weights also evolve towards extreme values
with a rate depending on Iapp,I . However, after 30 [s] the final value has not always been reached yet
compared to the pair-based model. This makes sense considering that [Pfister and Gerstner, 2006]
triplet’s potentiation parameter (A+

3 ) is smaller than the potentiation parameter of the pair-based
model.

• Soft bounds [Graupner et al., 2016]: The weights stabilise to a fixed point depending on
Iapp,I in-between the two extrema. The stabilisation is faster than for the pair-based model
because [Graupner et al., 2016] have chosen bigger potentation and depression parameters. (A3

+

and A2
−). The steady-states values are also varying from one model to another because of those

different parameters.

Iapp,I [nA] -4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9
HB 1 0.92 1 1 1 0.67 0.77 0 1
SB 0.76 0.66 0.75 0.77 0.78 0.56 0.58 0.3 0.77

Table 6.2 – Final value of the weight depending on Iapp,I for the triplet model with (HB) hard bounds
[Pfister and Gerstner, 2006] (SB) soft bounds [Graupner et al., 2016], regardless of the value of w0.

Furthermore, one can wonder why for the pair-based (resp. triplet) models with hard bounds
(Figures 6.2 (top, left), resp. (top, right)) only one value of Iapp,I decreases all the weights
to 0 (resp. smaller values) while all the other reach the maximum weight (resp. higher values). As
shown in Figure 6.3 (example for the triplet model), an hyperpolarisation step of Iapp,I = −4.2[nA]

leads to potentiation while the only value leading to depression is Iapp,I = −4[nA]. This is due to the
fact that the presynaptic spikes are slightlty delayed or advanced, respectively. A similar conclusion
can be drawn for the pair-based model and reveals robustness-deficiency of the models since they are
highly sensitive to very small variability. As the applied current corresponds to modulations to switch
in sleeping mode, it shows variability in vivo. Thus, since a small variation leads to completely different
synaptic weights, it is not compatible with more realistic situations. A same weight will be either
completely depressed or either completely potentiated with a slightly different sleeping mode.
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(a) (b)

Figure 6.3 – Robustness deficiency of triplet model. Presynaptic (blue) and postsynaptic (pink) bursts
for different Iapp,I (a) Iapp,I = −4.2 [nA], resulting in potentiation because the postsynaptic burst is
slightly delayed while for (b) Iapp,I = −4. [nA], resulting in depression because the postsynaptic burst
is slightly advanced.

6.1.2 Synapse with high connectivity

Pair-based model and triplet model: General Conclusions

Figure 6.2 (bottom, left) and (bottom, right) expose the temporal evolution of the synaptic
weights (w) for the pair-based model and triplet model, respectively. Here under we look at the conse-
quences of having bigger connectivity, i.e. gEC = 0.5. When compared to the previous section with
smaller connectivity, the conclusions are similar for both models:

(a)

(b)

Figure 6.4 – Burst difference with (a) low (gEC =
0.01) and (b) high (gEC = 0.5) connectivity (a)
Presynaptic (blue) and postsynaptic (pink) bursts
are similar while (b) presynaptic burst induces
new spikes in the postsynaptic burst. (Iapp,I =
−4.5[nA]).

• Hard bounds: The weights all evolve towars
the maximum value without exception. In-
deed, since the connectivity between the pre-
(E) and postsynaptic (C) neurons is higher,
the activity of the cell E drives the activity
of the cell C and more spikes are initiated
in the bursts, see Figure 6.4. Indeed, gEC
represents conductance relative to the synap-
tic current. Consequently, while a low gEC
value will only induce a EPSP in the postsy-
naptic cell, an higher value like gEC = 0.5 will
allow spike generation in the postsynatpic neu-
ron. Those spikes will add up to the intrinsic
bursting ability. This bursting ability is inde-
pendent of the pre-post connectivity because
it is driven by the activity of the inhibitory
cell (I). If the connectivity is higher, the ac-
tivity of the cell C is simultaneously driven
by the inhibitory cell as well as the spikes in-
duced by the excitatory cell and the pre-post
connectivity.
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• Soft bounds: The weights also reach a steady-state value depending on Iapp,I in-between the
two extrema, still due to the effect of the soft bounds. However, since post-synaptic bursts are
composed of more spikes, the steady-state value is different and is reached faster than for a low
connectivity (gEC = 0.01).

6.2 In a realistic world

Even if the previous simulations are not conclusive, they lack an important realistic dimension: the
firing patterns in-vivo are far from being that regular and variability in-between neurons is required to
obtain more realistic and physiological patterns. Thus, in this section, 1% variability is added to the
ionic conductances of the conductance-based model such as the three neurons from the circuit are not
exactly the same anymore, meaning that the bursting patterns will slightly differ from one simulation
to another. Ten circuits are simulated in which gion values are varying by 1%, i.e. gion ∈ [gion - 1%

gion; gion+1% gion]. For example, gNa initially equals to 170 so each circuit will be built by randomly
picking a value of gNa in [169.3: 171.7] [mS/cm2] (see Figure 6.5).
As already shown in Figure 6.3, the lack of robustness of the models have been demonstrated, so only
n = 10 is sufficient to draw conclusions. Once again, low and high connectivity have been evaluated.

E

C

I
𝐼𝑎𝑝𝑝𝐼 ϵ [-3.9: -4.7]𝑔𝑖𝑜𝑛

+/- 1% 10x

Figure 6.5 – Computation experiment to test plasticity rules in bursting activity with variability added
in ionic conductances gion. Different Iapp,I are applied to the inhibitory cell, driving the whole circuit
in bursting mode. Variability in intrinsic conductances gion is added mimicking more physiological
neurons and 10 circuit are simulated.

For each Iapp,I and each w0, the mean over the 10 simulations is taken such as in Figure 6.6. The
mean hides the behaviour of w that can be extreme (w → 1, w → 0) from one simulation to another.

General results

Figure 6.7 summarises the different temporal evolution for both hard (HB) and soft (SB) bounds
applied to the pair-based and triplet models and for low and high connectivity (gEC). Figure 6.8
summarises the different mean final weights for the different models, bounds, connectivity as well as
their standard deviation. The analysis of the different cases will be investigated here under.
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(a) (b)

Figure 6.6 – Time courses for one Iapp,I and w0 = 0.4 of w for the 10 different set of ionic conductances
values (shade of grey) and the mean of those 10 curves (orange). Example for the triplet model from
(a) [Pfister and Gerstner, 2006], hard bounds (b) [Graupner et al., 2016], soft bounds.
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Figure 6.7 – Temporal evolution of the mean final value (mean(wF )) for both pair-based and triplet
models implemented with hard (HB) and soft bounds (SB) and for different connectivity strengths (gEC).
In a realistic world, i.e. n=10 differents circuit are taken with 1% variability added between the different
cell conductances. Different colors represent the different Iapp,I values.
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Figure 6.8 – Mean final value (mean(wF )) and standard deviation (std) for both pair-based and triplet
models implemented with hard and soft bounds and for different connectivity strengths (gEC). A.
mean(wF ): For both models, low connectivity (gEC = 0.01) results in more heterogeneous final weights
(top). High connectivity (gEC = 0.5) results in homogeneous final values, around 0.8 for the soft bounds
(SB) and 1 for the hard bounds (HB) (bottom). B. std: For all models, low connectivity (gEC = 0.01)
results in very high standard deviation for the hard bounds (around 0.5) and smaller for the soft bounds
(around 0.25) (top). However, high connectivity (gEC = 0.5) results in almost no standard deviation
(bottom).

6.2.1 Synapse with low connectivity

Pair-based and Triplet Models: General Conclusions

Once again, similar conclusion can be drawn for the pair-based model and the triplet model with hard
and soft bounds and gEC = 0.01. Table 6.4 indicates the resulting figures for the two models tested
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with the two types of bounds.

Temporal evolution mean(wF ) std wF
Pair-based Triplet Pair-based & Triplet

HB Figure 6.2 A
(top, left)

Figure 6.2 A
(top, right)

Figure 6.8 A
(top, left)

Figure 6.8 A
(top, right)SB

Table 6.3 – Results obtained for the different plasticity rules with hard and soft bounds after a bursting
period for a low connectivity (gEC = 0.01). (HB) hard bounds and (SB) for soft bounds, wF final weight
when 1% variability is added.

• Hard bounds: adding variability makes the models very fragile. Indeed, for both pair-based and
triplet models, the standard deviation can be very high (up to 0.5, see Figure 6.8 B ) i.e. from
one simulation to another, the weights can either be potentiated or depressed towards one of the
extrema. The mean of synaptic weight is thus in-between the minimum (0) and the maximum (1).

• Soft bounds: as in the previous section, the synaptic weights are all converging towards the
same range of values. The standard deviation is lower than for hard bounds which makes sense
since the soft bounds force the weight to evolve toward the same direction, away from the extrema.
Thus, the final values are less spread compared to the hard bounds which stops the final values to
the extrema.

6.2.2 Synapse with high connectivity

Pair-based and Triplet Models: General Conclusions

Looking now at the consequences of having a bigger connectivity between pre- and postsynaptic cells
(gEC = 0.5), similar conclusion can once more be drawn for the pair-based model and the triplet model
with hard and soft bounds. Table 6.4 indicates the resulting figures for the two models tested with
the two types of bounds.

Temporal evolution mean(wF ) std wF
Pair-based Triplet Pair-based & Triplet

HB Figure 6.2 A
(bottom, left)

Figure 6.2 A
(bottom, right)

Figure 6.8 A
(bottom, left)

Figure 6.8 A
(bottom, right)SB

Table 6.4 – Results obtained for the different plasticity rules with hard and soft bounds after a bursting
period for an high connectivity (gEC = 0.5). (HB) hard bounds, (SB) for soft bounds, mean(wF ) for
mean final weight when 1% variability is added.

• Hard bounds: adding variability do not change the results at all when gEC is high. Indeed, for
both pair-based and triplet models, the standard deviation is this time equals to 0 i.e. all weights
are all the time potentiated to the maximum value (i.e. the maximum weight) because of the
better coordination of the bursts. As previously observed, when the connectivity is higher, bursts
of the postsynaptic cell are composed of more spikes resulting in more potentiation.

• Soft bounds: as in the previous sections, soft bounds force the synaptic weights to converge
towards the same range of values. However, the steady-state values are reached faster and at
higher final values. The standard deviation is also much lower. Once again, this is due to the
better coordination of the pre-post spikes.
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6.3 Summary and conclusion

The main conclusion highlights the varying behaviour between the different bounds: on one hand, the
same model implemented with soft bounds always converge to a steady-state value, regardless of the
initial weight. On the other hand, under an implementation with hard bounds, the weights reach the
extremes values. Absolutely no conclusion can be drawn from both the pair-based and the triplet
models concerning memory consolidation during sleep.

The plasticity rules behaviours during a bursting period gives different results as a function of gEC :

• Low connectivity : the models are less robust and the results are heterogeneous. The standard
deviation is high because the behaviour of the model varies from one simulation to another.

• High connectivity : if the bursts are more correlated, the models all lead to more potentiation in a
homogeneous way, regardless of the values of w0 or Iapp,I (standard deviation low).
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Part IV

Conclusions and Perspectives
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Chapter 7

Conclusion and perspectives

7.1 Thesis summary

This thesis aimed to understand synaptic plasticity in the context of memory consolidation during sleep,
using phenomenological models. The following elements have been highlighted:

• What are the neuronal features that can be modeled and how can they be modeled? (Chapter 2)
Mainly, neuronal features can be modeled thanks to integrate-and-fire models, reproducing the
spiking aspect of neurons or thanks to conductance-based models providing more physiological
representation. In particular, bursting firing pattern arising during sleep can be better depicted
by conductance-based models as well as the switch from tonic firing (wake) to burst firing (sleep).

• What is synaptic plasticity and how can it be modeled? (Chapters 3 and 4)
Synaptic plasticity has been well documented and occurs at different time scales, either at the
pre- or postsynaptic sites. Different factors driving plasticity have been discovered thanks to
experimental protocols: the frequency, the voltage of the postsynaptic cell and the spike timing. A
literature review has been realised to clarify and classify different computational phenomenological
models that aim to reproduce experimental protocols and/or to perform a memory task and/or
to validate a sleep hypothesis.

• Are the models existing from the literature compatible not only with learning during the day...
(Chapter 5)
Three phenomenological models have been implemented in a conductance-based switching 3-cells
network:

– Pair-based model from [Abbott and Nelson, 2000, Graupner et al., 2016] has been success-
fully implemented.

– Triplet model from [Pfister and Gerstner, 2006, Graupner et al., 2016] has been successfully
implemented

– Voltage-based model from [Clopath et al., 2010] failed to be implemented in the circuit. This
highlights the possible difficulties to adapt a model from a simple spiking neuron model such
as an IF to a more complex and physiological one as well as its lack of robustness.

In the first two models, experimental protocols of spike timing-dependent plasticity (hippocampus)
as well as the frequency dependence of STDP (cortex ) have been reproduced in tonic mode.
Reproduction of those experimental results showed their successful implementation and highlighted
the flaws of the pair-based model to not being able to reproduce the frequency effect.
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Moreover, this thesis reveals that the parameters fitting of the authors do not strictly follow the
experimental protocols.

• ... but also with the theory of memory consolidation during sleep (Chapter 6)?
The same model implemented in tonic mode (pair-based, triplet) have been tested in burst firing to
investigate whether or not they could potentially be compatible with memory consolidation during
sleep. Additionnaly to the fact that both models are robust-deficient and are not compatible
with memory consolidation, the bounds (either hard or soft bounds) applied on both models
completely determine the outcome. Indeed, the same model with either hard or soft bounds gives
different results:

– Hard bounds: Initial weights acquired during learning all saturate to extreme values.

– Soft bounds: Initial weights acquired during learning stabilise at a fixed point in-between
the extrema.

Additionally, a slightly different behaviour is observed when the connectivity strength between
the pre- and postsynaptic cell is changed:

– Low connectivity: the models are less robust and the results are heterogeneous.

– High connectivity: the bursting ability of the postsynaptic cell is enhanced by the presynaptic
activity since action potential are induced by a higher synaptic current. The bursts are
consequently more correlated and the models all potentiate in a more homogeneous way,
regardless of the values of w0 or IappI .

In any case, as each of the initial weight evolves towards one value, the models are not compatible
with memory consolidation during sleep since sleep would reset all the connections and not keep
their differences.

7.2 Perspectives

7.2.1 A variety of models

As it has been reviewed, a large amount of models are already implemented and could be potential
candidates for memory consolidation during sleep. A first alternative could be to add more timescales
to the plasticity and combine different models [Zenke et al., 2015, Zenke and Gerstner, 2017].
However, even if only two models have been tested in this thesis, classical phenomenological models
showed difficulties in their implementation in more physiological neuron models (like [Clopath et al., 2010]
model that failed to be implemented). Thus, considering biophysical models of plasticity could be an
interesting alternative to better represent the molecular processes.
In this thesis, only efficiency of the conductance was considered as a mechanism of plasticity. In
Chapter 3, different mechanisms have been summarised, such as presynaptic plasticity, the number of
receptors or, at a longer timescale, spine formation and protein synthesis. All those processes could be
put together.

7.2.2 The importance of neuromodulation

STDP coupled with neuromodulation
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As it has been briefly introduced in Part II, a variety of neurotransmitters or other neuronal
components has the ability to shape, stabilise or modulate classical STDP. Considering only two factors
(pre- and postsynaptic neurons) is restrictive compared to the large variety of experimental results.
Adding those components as a third factor to the learning rules is called neo-Hebbian plasticity and
could explain the different STDP patterns recorded in the different areas (see Figure 3.10). In
[Fink et al., 2013], modeling of different acetylcholine levels are added in a conductance-based model
thanks to an additional K+ conductance. Indeed, the increase of concentration of this neuromodulator
is thought to lead to the closure of specialized K+ currents in cortical and thalamic neurons inducing
the shift from sleep to waking. Reducing this conductance would depolarise the neurons towards
firing threshold and increase the excitability of the cells [Zagha and McCormick, 2014]. Adding this
dimension in the conductance-based would be of special interest to reproduce neuromodulatory effects.

Synaptic Homeostasis Hypothesis of Sleep (SHY)

• Concept

One of the hypothesis that could result from the different neuromodulatory states is a change in the
STDP kernel.

Figure 7.1 – Computational results from
[González-Rueda et al., 2018] proving memory
consolidation using SHY hypothesis. Bigger
weights are preserved while smaller weights are
depressed.

As stated in the section 4.2.6, SHY hypothe-
sis ([Tononi and Cirelli, 2014]) states that during sleep,
thanks to those different neuromodulatory effects, con-
nections are down-scaled in such a way that bigger
weights are preserved and smaller weights depressed
(see Figure 7.1) and improving the signal-to-noise
ratio [González-Rueda et al., 2018].

Consequently, it would be of interest to investigate
whether or not this hypothesis is also compatible with
bursting firing mode during sleep. To test this hypothe-
sis, preliminary computations have been performed us-
ing [González-Rueda et al., 2018] UP-mediated learn-
ing rule in the ECI circuit, i.e. in a physiological
conductance-based neuron model able to switch. This
rule only enables depression to occur during sleep UP-
states (see details on modeling in Appendix D.4).

• Implementation in the conductance-based ECI circuit

A similar protocol than in Chapter 6 is followed:

1. Starting with different inital weights and for different inital AMPA conductances (gEC) representing
the level of connectivity between the pre- (E) and postsynaptic (C) cells:

gAMPA = gEC ∗ w

This allows to see the impact of w in different situation, the cells being more or less connected.
A bursting period is applied in a perfect world, i.e. the pre- (j ) and postsynaptic (i) cells are
exactly alike.

2. Starting once again with different initial weights and gEC , a bursting period is applied in a realistic
world, i.e. the pre- and postsynaptic neurons have slightly different ionic conductances (differing
from 5%).

83



• Results

In a perfect world, similar results than [González-Rueda et al., 2018] (IF neuron model) are obtained
with the physiological circuit. Figure 7.2 (A) shows for one connectivity value (gEC = 0.3) the relative
weight change for each initia l weight value w0 ∈ [0.1 : 0.9]. The trend is similar to the one obtained by
[González-Rueda et al., 2018] in Figure 7.1. However, here the conclusion is binary Figure 7.2 (a):
"big" weights are preserved (no relative weight change) while "small" weight are completely depressed
(relative weight change = −1).

Figure 7.2 (B) shows the behaviour for the different gEC values. One can observe that the notion
of "small" and "big weights is different from one conductance (gEC) value to another. Indeed, increasing
gEC shifts to smaller values the minimum initial weight that is preserved during sleep. Given the
definition of the excitability conductance gAMPA = gEC ∗w, it makes sense that increasing (gEC) has a
similar effect than increasing wij . Nevertheless, this allows to take into consideration various initial
conditions. For values of gEC ≤ 0.2, all weights are depressed and this dichotomous behaviour is not
observed.

In a realistic world (Figure 7.2 C), the results are similar. The weights are also either depressed
or either potentiated in a binary way and the standard deviation is low for gEC > 0.2, meaning that
this model is at first glance robust (note that only n = 5 simulations have been run) and that SHY
hypothesis could be a potential explanation of memory consolidation.
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Figure 7.2 – Implementation of SHY hypothesis in the ECI circuit. A. Relative synaptic weight change
(∆w/w0) for different initial weights (w0) and one AMPA conductances (gEC = 0.3) using UP-mediated
learning rule from [González-Rueda et al., 2018]. Increasing gEC shifts the curve to the left, in such a
way that smaller initial weights are preserved (i.e. weights for which relative weight change = 0). B. In
a perfect world (cells E, C are the same), bigger weigths are preserved (yellow) and smaller weights
are depressed (blue). Increasing gEC increases the amount of preserved weights. The line relative to
gEC = 0.3 is highlighted referring to the preceding graph. C. In a realistic world (cells E, C different)
the same behaviour is observed and the standard deviation is low for gEC > 0.2 (n = 5). For all
simulations, the relative weight change is taken after T = 1000 [s].

Learning during the day

Finally, it is important to take into account the context of learning. Indeed, learning is often due to a
rewarding information or a surprise/novelty [Frémaux and Gerstner, 2015]. STDP alone would miss
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that crucial information for learning selectivity.

In reward learning, the actual delivery of reward by neuromodulators occurs later than the
rewarding action, a phenomenon known as the temporal credit assignment problem. It therefore
raises a question of how the reward is integrated at the synapse. Do neuromodulators shape
existing plasticity or do they allow plasticity expression? The concept of eligibility traces has
been raised, representing tags set by Hebbian plasticity and transformed later by neuromodulation
[Ziegler et al., 2015, Seibt and Frank, 2019, Frémaux and Gerstner, 2015, Foncelle et al., 2018].
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Appendix A

Neurophysiology basis

A.1 Action potential mechanism

Figure A.1 – Action potential mechanism. (left) Action potential generation. Time evolution of the
membrane potential for an external stimulation. (right) Ionic channels dynamics. (A) Resting-state.
V −m is around -70[mV]. Activation gates are closed but the inactivation sodium gate is open. (B)
After external stimulation, the membrane voltage increases. (B’) If it reaches a certain threshold,
activation sodium gate opens(voltage-dependent) and the membrane is strongly depolarised almost to
the sodium Nernst potential. (C) Potassium activation gate opens and sodium inactivation gate closes
because they have a slower dynamics than the sodium activation gate. Potassium goes out of the cell.
(C’) The membrane is hyperpolarised and reach the potassium Nernst potential. (D) The membrane
potential recovers its stead-state value and the gates go back to their initial position. [Jacquerie, 2018]

Neurons communicate between each other thanks to the propagation of signals through the axon
towards synapses. The movement of ions (mainly sodium and potassium)through voltage-dependent
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channels described in the previous section is at the core of the mechanism of the action potential
generation. It can be described in four steps, as it can be seen in Figure A.1:

1. At rest, the membrane is hyperpolarised (-70mV) as the cell is slightly more permeable to
potassium than sodium.

2. Depolarisation: As an external stimulus is applied, two scenario are possible:

• The stimulus is not large enough to make the membrane potential reach its threshold value,
i.e. the voltage at which the sodium voltage-gated channels will open. The cell thus recover
its resting state.

• The stimulus is large enough for the membrane potential to reach its threshold value. The
sodium channel is activated and consequently sodium rapidly flows into the cell, resulting in
a strong depolarisation towards the Sodium Nernst potential.

3. Hyperpolarisation: The activation gate of the potassium channel has a slower dynamics and is
opening and closing delayed compared to the sodium channel. While the depolarisation inactivates
the sodium channel, potassium flows out of the cell resulting in the hyperpolarisation of the
membrane at a slightly lower value than the resting state potential, reaching the potassium Nernst
potential.

4. Repolarisation: The membrane potential recovers its resting-state value.

A.2 Nernst Potential of main ions

Ion Nernst potential (mV)
Na+ 51
K+ -97
Ca2+ 120
Cl− -42

Table A.1 – Nernst potentials of main ions across the membrane in human cells. VNernst = RT
zF ln [ ion ]out

[ ion ]in
[Jacquerie, 2018].
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Appendix B

Thalamus mechanisms during sleep

B.1 T-Type current

The bursting ability of the thalamic neurons that induces the sleep state is due to an additional ionic
current in the membrane. It has been shown that, when the cell is hyperpolarised under a certain
threshold, a calcium current can be measured. This current is called T-Type Calcium current or
low-threshold Ca2+ current [Jacquerie, 2018].

Associated to this current, the T-type calcium channel possess one activation gate and one slower
inactivation gate. The activation one opens when the cell is depolarised and the inactivation one when
it hyperpolarises. Additionally to this current, another one leads to the bursting firing pattern in the
thalamus: an hyperpolarisation activated cation current, IH . The following mechanism describes the
interaction between those different ionic current coupled to the classical sodium-potassium currents
that leads to burst in a relay neuron Figure B.1 (B)):

• The relay neurons are inhibited by the TRN, leading to an hyperpolarisation and thus an opening
of the inactivation gate of T-Type calcium channel.

• This hyperpolarisation induces the activation of the IH current leading to a slow depolarisation.

• Around -65mV, the depolarisation leads to the opening of the activation gate of the T-Type
calcium channel, allowing Calcium to freely enter the cell and depolarises the membrane. After
reaching the threshold for classical action potentials (-55mV), this allows classical Na/K spiking
mechanism to occur.

• After approximately 100ms, the T-type calcium channel inactivation occurs and the calcic current
stops, leading to a hyperpolarisation. IH also de-activates.

• The hyperpolarisation leads again to the same mechanism.

In a modeling point of view, the bursting firing pattern is thus simply simulated by adding ionic
currents in the conductance-based model.

B.2 Spindles

The thalamus and notably the TRN thanks to their inhibitory connections influence the flow of
information between the thalamus and the cerebral cortex. Particularly, during the transition from
wake to Slow-wave-sleep, a phenomenon called spindles occurs and is induced by thalamic rhythms.
Spindles are fast 7-14 Hz oscillations separated by 3-10 s. They are the result of rhythmic (7-14 Hz )
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Figure B.1 – Thalamocortical neurons recordings A. Oscillatory mode (bursting mode) appears
when the cell is hyperpolarised. A depolarisation current injection switch the cell in tonic mode.
B. Bursting mechanism and the underlying ionic current dynamics involved. C. Tonic discharge.
[McCormick and Bal, 1997]

bursts in the TRN generated by T-Type Ca2+ spikes. Those bursts inhibits thalamocortical cells and
give rise to rhythmic IPSPs. The hyperpolarisation thus leads to the mechanism described in 2.2.3.
One one hand, the relay neurons sends excitatory inputs to cortical neurons the bursts leads to EPSPs
in pyramidal cells and results in EEG spindles. On the other hand, the excitatory inputs sent in the
TRN facilitates their rhythmic oscillations [Steriade et al., 1993] [McCormick and Bal, 1997].
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Appendix C

Conductance-based model

All computations were performed using Julia programming language. A conductance-based model is
used and follows the equation from [Drion et al., 2018]:

CmV̇m = −INa − IK − ICaT − IK,Ca − IH − Ileak + Iapp (C.1)

• Ileak = ḡleak (V − Vleak ) is a leaky current,

• INa = ḡNam
3
NahNa (V − VNa) is a transient sodium current,

• ICa,T = ḡCa,Tm
3
Ca,ThCa,T (V − VCa) is a T-type calcium current,

• IK,D = ḡK,Dm
4
K,D (V − VK) is a delayed-recctifier potassium current,

• IK,Ca = ḡK,CamK,Ca([Ca]) (V − VCa) is a calcium-activated potassium current,

• IH = ḡHmH (V − VH) is an hyperpolarisation-activated cation current,

• Iapp an externally applied current.

where m represents activation variable and h inactivation variable. Thus, it leads to the following
equation, with parameters values summarised in Table C.1:

CmV̇m =− ḡNam3
NahNa (Vm − VNa)− ḡK,Dm4

K,D (Vm − VK)− ḡCa,Tm3
Ca,ThCa,T (Vm − VCa)

− ḡK,CamK,Ca∞(Ca) (Vm − VK)− ḡHmH (Vm − VH)− ḡleak (Vm − Vleak ) + Iapp
(C.2)

Model parameters
Cm 1 gL 0.055
VNa 50 gNa 170
VK -85 gKd 40
VCa 120 gH 0.01
VL -55 gK,Ca 4
VH 20 gCa,T 0.55
Kd 170 k1 1e-1

k2 0.1e-1

Table C.1 – Conductance-based model parameters. Left. global parameters. Rigth. cell parameters,
identicals for each cell of the ECI circuit. Potentials are in [mV], conductances in [mS/cm2] and
capacitance in [/cm2]
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The activation (m) and inactivation (h) variables dynamics of the voltage-gated channels are
modeled using the following equations:

mX,∞ =
1

1 + exp((V +A)/B)
τX = A− B

1 + exp((V +D)/E)
(C.3)

The parameters for the different channels are summarised in the following table:

Param. A B Param. A B D E
mNa,∞ 35.5 - 5.29 τmNa 1.32 1.26 120 -25
hNa,∞ 48.9 5.18 τhNa

(0.67/(1 + exp((V + 62.9)/− 10.0))) ∗ (1.5 + 1/(1 + exp((V + 34.9)/3.6)))
mKd,∞ 12.3 -11.8 τmKd

.2 6.4 28.3 -19.2
mCaT,∞ 67.1 -7.2 τmCaT 21.7 21.3 68.1 -20.5
hCaT,∞ 80.1 5.5 τhCaT

410 179.6 55. -16.9
mH,∞ 80. 6. τmH 272. -1149. 42.2 -8.73

C.1 Connection between cells

Excitatory connection

IAMPA = gAMPA ∗ sAMPA ∗ (V − 0) (C.4)

where sAMPA is a AMPA gate whose dynamics depends on the presynaptic potential VPre:

˙sAMPA = 1.1τm(VPre) ∗ (1− sAMPA)− 0.19 ∗ sAMPA

Inhibitory connection connection

IGABAA
= gGABAA

∗ sGABAA
∗ (V − VCl) (C.5)

IGABAB
= gGABAB

∗ sGABAB
∗ (V − VK) (C.6)

where sGABAA
sGABAB

are GABAA,B gates whose dynamics depend on the presynaptic potential
VPre:

˙sGABAA
= 0.53τm(VPre) ∗ (1− sGABAA

)− 0.19 ∗ sGABAA

˙sGABAB
= 0.016τm(VPre) ∗ (1− sGABAB

)− 0.0047 ∗ sAMPA

and
τm(VPre) =

1

(1 + exp(−(VPre − 2)/5))

Plasticity implementation

In the ECI circuit, plasticity occurs between cell E and cell C and changes the AMPA conductance.

gEC = ¯gEC ∗ w (C.7)

where gEC is gAMPA between cell E and cell C and ¯gEC is a constant multiplied by the synaptic
weight w. In Chapter 5, very small connectivity gEC = 0.01 is taken such as no spike is initiated
from pre- to postsynaptic cell.
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Appendix D

Plasticity rules and computational details

D.1 Pair-based model

Parameters used

A+ A− τ+ τ−
0.0096 0.0053 16.8 33.7

Table D.1 – Pair-based parameters from [Bi and Poo, 2001]

Time course illustration

Figure D.1 – Temporal evolution of pre- (E) and postsynaptic (C) voltage, spikes traces (xj (pre), yi
(post)), and weight change. ∆t = 30[ms] and ρ = 10[Hz]
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D.2 Triplet model

Parameters used

Model A+
2 A+

3 A−2 A−3 τx τy

(C) Full model 5e−10 6.2e−3 7e−3 2.3e−4 101 125
Minimal model 0 6.5e−3 7.1e−3 0 114

(H) Full model 6.1e−3 6.7e−3 1.6e−3 1.4e−3 946 27
Minimal model 5.3e−3 8e−3 3.5e−3 0 40

Table D.2 – Triplet parameters from [Pfister and Gerstner, 2006]. Fitted on [Sjöström et al., 2001] (C)
and [Wang et al., 2005] (H). τ+ = 16.8 and τ− = 33.7 were always the same

Model A+
2 A+

3 A−2 A−3 τx τy

(C) Minimal
model 0 0.0165746 0.00826477 0 56.38

Table D.3 – Triplet parameters from [Graupner et al., 2016]. Fitted on [Sjöström et al., 2001] (C).
τ+ = 16.8 and τ− = 33.7 were the same as pair-based model.

Time course illustration

Figure D.2 – Temporal evolution of pre- (E) and postsynaptic (C) voltage, spikes traces (r1, r2 (pre),
σ1, σ2 (post)), and weight change. ∆t = 30[ms] and ρ = 10[Hz]
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D.3 Voltage-dependent model [Clopath et al., 2010]

Parameters used

Exper. θ−(mV ) θ+(mV ) ALTD (mV )−1 ALTP (mV )−2 τx(ms) τ−(ms) τ+(ms)

(C) −70.6 −45.3 14e−5 8e−5 15 10 7
(H) −41 −38 38e−5 2e−5 16

Table D.4 – Voltage-dependent model parameters from [Clopath et al., 2010] for different protocols

D.4 UP-mediated learning rule from [González-Rueda et al., 2018]:

Following SHY,synaptic weights were updated such that presynaptic spikes alone led to depression
while pre- action potential followed within 10 [ms] by a postsynaptic spike restored the previous weight.
Thus, a presynaptic trace xj was reset to 10 for every presynaptic spike and decayed linearly otherwise
[González-Rueda et al., 2018]:

xj → 10 if presynaptic neuron j fires
τ
dxj
dt = −1 otherwise,

(D.1)

where τ = 1[ms] and the weight is updated following:

wj(t)→ wj(t)−A if t = tpre

wj(t)→ wj(t) + A (xj(t) > 0) if t = tpost (D.2)

D.5 Dynamical evolution of the synaptic weight

In order to implement the synaptic weight change in a dynamical way, i.e. following:

w → w + ∆w

A differential equation is implemented:

dw

dt
=

(w + ∆w)− w
τw

(D.3)

with τw = 0.01 in Chapter 5. For Chapter 6, the evolution is assumed instantaneous and w = w+∆w

is taken.

D.6 Variability in ionic conductances

The variability is added in the following way:

gion = gion ∗ (1− 2 ∗ γ ∗ (rand(1)− 0.5))

where, gion is the ionic conductance, γ the percentage of variability ∈ [O : 1] and rand(1) is a random
number ∈ [0 : 1].
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Appendix E

Supplementary results

E.1 Bursts parameters for the different simulations

In a perfect world, low connectivity (gEC = 0.01)
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Figure E.1 – Burst parameters for the cell E when the connectivity is low (gEC = 0.01) for the different
Istep,I = Iapp,I . The parameters are similar for cell C.

In a perfect world, high connectivity (gEC = 0.5)
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Figure E.2 – Burst parameters for the cell C when the connectivity is high (gEC = 0.5) for the different
Istep,I = Iapp,I . More spike-per-bursts and intraburst frequency are expected in cell C compared to cell
E (which has the same parameters than in Figure E.1.
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