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Summary

In this master’s thesis, reinforcement learning (RL) methods are used to learn (near-)optimal
policies to act in several Markov decision processes (MDPs) and partially observable Markov
decision processes (POMDPs). More precisely, Q-learning and recurrent Q-learning techniques
are used. Some of the considered POMDPs require a high-memorisation ability in order to
achieve optimal decision making. In POMDPs, RL techniques usually rely on approximating
functions that take as input sequences of observations with variable length. Recurrent neural
networks (RNNs) are thus a clever choice of such approximators. This work is based on the
recently introduced bistable recurrent cells, which have been empirically shown to provide a
significantly better long term memory than standard cells, such as the long short-term memory
(LSTM) and the gated recurrent unit (GRU). These cells are named the bistable recurrent cell
(BRC) and the recurrently neuromodulated BRC (nBRC). First, by importing these cells for
the first time in the RL setting, it is empirically shown that they also provide a significant
advantage in memory-demanding POMDPs, in comparison to LSTM and GRU. Second, the
ability of the RNN to represent a belief distribution over the states of the POMDP is studied.
It is achieved by evaluating the mutual information between the hidden states of the RNN and
the belief filtered on the successive observations. This analysis is thus strongly anchored in the
theory of information and the theory of optimal control for POMDPs. Third, as a complement
to this research project, a new target update is proposed for Q-learning algorithms with target
networks, for both reactive and recurrent policies. This new update speeds up learning, especially
in environments with sparse rewards.
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Chapter 1

Introduction

In this master’s thesis, the problem of learning near-optimal policies in several Markov decision
processes (MDPs) and partially observable Markov decision processes (POMDPs) is addressed by
using reinforcement learning (RL). Some of these POMDPs require the RL agent to have a high
memorisation ability in order to achieve optimality. MDPs model sequential decision problems
where actions have to be taken based on the observation of the current state of this decision
process. Each action taken in the MDP updates its state. Optimal control in MDPs consists in
computing a policy, such that, when actions are taken according to this policy, the cumulative
reward is maximised. Exact dynamic programming has allowed solving the control of simple
MDPs. However, this method has failed to deal with more complex environments. Indeed, this
approach is inefficient with large discrete state-action spaces and becomes intractable in practice
when dealing with continuous state-action spaces. Moreover, it requires the model of the MDP to
be known. On the contrary to optimal control and dynamic programming, where the model of the
environment allows inferring an optimal policy, RL is concerned with computing a near-optimal
policy in a decision process only through interaction with this environment. Moreover, RL was
shown very successful in learning optimal sequences of actions, even in complex environments
with nonlinear dynamics or large state and action spaces.

However, MDP is a restrictive class of decision processes that is not representative of the full
range of real-world problems. Indeed, some of the decision processes for which we want to find
optimal policies are better modelled by POMDPs, the latter generalising MDPs to the case
where the agent only has access to a partial observation of the state of the process when making
its decision. Despite requiring a model of the environment, optimal control has shown itself a
powerful tool to solve POMDPs with small and discrete state and action spaces, as for MDPs.
Most of these methods consist in maintaining a belief (i.e., a probability distribution over the
states) that is updated using the Bayes’ theorem each time that a new observation is obtained.
Along with this belief filtering, the optimal action for any belief can be computed by solving
linear programs (LPs) iteratively. While Bayesian filtering is a well-known and complex problem
when many variables are involved, computing the optimal action is not less difficult as it may
require the solving of a large number of complex LPs. In addition, when dealing with continuous
state, observation or action spaces, both the filtering and the planning steps become intractable
in practice. Additionally, in most real-life applications, the model of POMDP is not available
to filter the belief and perform planning. The latter limitations are similar to those of dynamic
programming for MDPs. Once again, using RL for solving POMDPs allows overcoming some of
the limitations of optimal control and has also been extensively studied.

The state-of-the-art RL methods rely on the ability of a recurrent neural network (RNN) to
extract and memorise salient information from the past observations in the hidden state, in
order to reconstruct the belief distribution over the states (in model-learning RL, also known
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as model-based RL), the value function (in value-based RL), or to directly produce a policy (in
policy-based RL). Using RNNs in model-free methods have several advantages in comparison to
other methods such as utile suffix memory, finite policy graphs or predictive state representations
(Spaan, 2012), notably because they theoretically allow to represent infinite time-dependencies
while having a finite representation. However, several works showed the inability of current RNN-
based RL techniques to discover optimal sequences of actions in simple but memory-demanding
environments, where the performance of the policy is directly limited by the memorisation ability
of the underlying RNN (Bakker, 2001; Wierstra, Foerster, Peters, & Schmidhuber, 2007; Zhang,
McCarthy, Finn, Levine, & Abbeel, 2016). Aside from that, the bistable recurrent cells were
introduced recently (Vecoven, Ernst, & Drion, 2020). These cells have been shown to exhibit
neural bistability, a mechanism that allows outperforming standard recurrent cells, namely LSTM
and GRU, on several supervised learning benchmarks that require a long-lasting memory. This
master’s thesis is the first work to benchmark these bistable cells in the RL setting.

The first two research questions of this master’s thesis can be summarised as follows: Can the
bistable recurrent cells provide an advantage in comparison to other cells, when used in model-free
RL algorithms for POMDPs? Can the information contained in the hidden states of the RNNs
be related to the belief as defined in control theory? Finally, by observing that the convergence
of the estimators was very slow on environments with sparse rewards, it was concluded that it
came from the low target update rate in the Q-learning algorithms with target networks, such
as the algorithms used in this work. It led to the third and last research question of this work
that writes as follows: How to understand the target network usage in Q-learning algorithms
and how to replace its periodic update with an objective criterion?

The starting point of this research project was to formalise and reimplement the Deep Recur-
rent Q-Network algorithm (DRQN) as proposed by Hausknecht and Stone (2015) that extends
Q-learning to recurrent estimators. Concurrently, the literature on optimal control and model-
free RL for POMDPs has been reviewed. In addition, the functions and approximators that are
manipulated by these algorithms were formalised in the very early stages of this work. Next,
the objective was to reproduce the results from the literature on the different POMDPs that are
considered in this work, using the DRQN algorithm and the LSTM network. Afterwards, the
three research question were studied. Regarding the performance of the bistable cells, this work
studies the ability of these cells to extend the class of recurrent policies that can be learned in RL.
More precisely, it is proposed to study empirically the performance of the recurrent policies when
BRC or nBRC are used as RNN instead of LSTM or GRU. Specifically, this work focuses on en-
vironments that have discrete action spaces and that are moderatly to very memory-demanding.
Regarding the information contained in the hidden states, this research question allows studying
the internal representations learned in the RNNs, instead of only their performance. Indeed,
since the RNNs are responsible for learning the value function of a trajectory — that is defined
to be the value function of the belief filtered from this trajectory, it is assumed that the hidden
states should contain information about this belief. In practice, the question will be to discover
whether there is a high mutual information between the hidden states of the RNN and the belief,
when the RNN is trained to learn the Q-values, and whether this can be necessary to reach
optimality in some environments. Answering in the affirmative to this question would motivate
future works in which particular attention is given to the belief-filtering ability of the RNN archi-
tectures for RL. Regarding the target network, the question is raised by the observed inefficiency
and instability of the Q-learning algorithms in environments with sparse rewards. Despite this
observation, the first two research questions are still answered in the Q-learning setting, without
modifications to the algorithm, to better fit in the literature of model-free RL for POMDPs.
However, the Q-learning algorithms that we consider (i.e., with target network) are adapted
to the Q-iteration setting under the name Online Fitted Q-Iteration (OFQI). This framework,
by providing better theoretical foundations, motivates some changes that notably improve the
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target update strategy. The Q-learning algorithms, corrected to fit in the Q-iteration algorithms,
are shown to provide a greater speed of learning, especially in environments with sparse rewards.

In Chapter 2, RL is described and the state-of-the-art RL techniques for solving POMDPs
are reviewed. In Chapter 3, the required background on POMDPs, RNNs and information
theory is formally introduced. In Chapter 4, recurrent parametric Q-learning is described. The
functions that are approximated, along with their estimators, are thus formally defined and the
learning algorithm is detailed. Afterwards, Chapter 5 describes the experimental protocol and
the environments. The resulting performances of the different agents are displayed, to answer the
first research question. In Chapter 6, the second question is addressed by analysing the outputs
and recurrent states of the different estimators, along with their relationship with the belief.
Finally, the Q-iteration algorithm proposed as an alternative to the Q-learning algorithms with
target networks is described in Chapter 7. Chapter 8 concludes and discusses the constributions
and limitations of this work.
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Chapter 2

Literature review

In the first section of this chapter, the RL field is described, along with the state-of-the-art methods in
model-learning RL, value-based RL and policy-based RL. These state-of-the-art methods nevertheless only
tackle MDPs in which the state is fully observable. In the second section, the state-of-the-art methods in
RL for POMDPs are presented, along with some of their limitations.

2.1 Reinforcement learning

Nowadays, using reinforcement learning (RL) for solving decision-making problems is a common
approach in many domains: robotics (Kober, Bagnell, & Peters, 2013), power network control
(Ernst, Glavic, & Wehenkel, 2004; Vlachogiannis & Hatziargyriou, 2004; Ernst, Glavic, Cap-
itanescu, & Wehenkel, 2008), recommendation engines (Zheng et al., 2018), pricing strategies
(Kutschinski, Uthmann, & Polani, 2003), resource management (Barrett, Howley, & Duggan,
2013), etc. RL is concerned with the learning of optimal policies from interactions with an un-
known environment. The objective is to maximise — in some sense — the rewards collected by
the agent in the long run, by selecting a sequence of actions according to this policy (Wiering &
Van Otterlo, 2012).

As stated in the introduction (Chapter 1), RL is concerned with computing an optimal policy
in a decision process only through interaction with this environment. Note that the interaction
samples used to optimize the policy can be generated by the policy to be optimized (on-policy) or
by a distinct policy (off-policy) such as an exploration policy or a past version of the policy being
optimized. In model-learning RL (also known as model-based RL), a model of the underlying
environment is learned. Afterwards, optimal control theory can be used to compute an optimal
policy on this approximate model (Moerland, Broekens, & Jonker, 2020). In value-based RL,
the objective is to learn the so-called value function without trying to learn the environment
model (Sutton & Barto, 2018). Roughly speaking, the value function represents the quality of
taking an action in a state of the environment. From this value function, we can thus select the
action that is expected optimal. These methods have been widely applied and used to solve many
complex tasks such as playing the ATARI games (Mnih et al., 2015). Value-based RL nevertheless
suffers from a notable problem, it does not scale well to problems with continuous action spaces.
This is not the case with policy-based RL where an optimal policy is directly inferred from the
samples collected in the environment. The state-of-the-art policy-based methods usually infer
optimal parameters of a parametrized policy by performing gradient ascent, a technique known
as policy gradient. These methods have also been widely deployed (Schulman, Wolski, Dhariwal,
Radford, & Klimov, 2017). Value-based and policy-based approaches, including policy gradient,
are grouped under the name model-free. In summary, RL succeeded in learning from experience
how to behave in environments with large (or sometimes infinite) state and action spaces without
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prior information. However, as mentioned in the introduction, most of these successes boil down
to solving MDPs while some of the interesting problems that the RL aims to solve have to be
formalised as POMDPs instead of MDPs. POMDPs generalise MDPs to the case where only a
partial observation of the state of the process is available.

As for MDPs, RL in POMDPs is aimed at learning an optimal policy without requiring a model
of the POMDP. As stated in the introduction (Chapter 1), the computations involved by the
theory of optimal control for POMDPs may be intractable when dealing with large problems. In
this context, sampling-based techniques such as RL are good candidates for solving these issues.
Few RL approaches have been developed until now; they are described in more detail in the
following section. They mainly focus on very simple tasks or on tasks where the environment
is nearly fully observable. So far, they have also been rather poorly analysed, theoretically, in
model-free RL.

2.2 Reinforcement learning in partially observable environments

The problem of optimal control in POMDPs has been extensively studied. This problem consists
in acting optimally in an environment assuming its model (dynamics, reward, and observation
distributions) is fully known by the agent (Kaelbling, Littman, & Cassandra, 1998). The usual
strategy for optimal control is divided into two parts. First, maintaining a belief distribution
over the underlying state of the POMDP given the observations. Second, an action maximis-
ing the expected cumulative reward that will be gathered is planned, for every possible belief.
For POMDPs with discrete state-action spaces and observation spaces, updating the belief is
performed by the straightforward application of the Bayes’ rule (Bayes’ theorem). In addition,
computing the optimal action can be achieved by an iterative computation implying solving mul-
tiple LPs. These two steps are however known to be intractable in practice. On the other side,
the RL strategy gets rid of the possible intractability of these two steps, filtering and planning,
by automatically learning from samples.

The RL setting for POMDPs enables an agent to learn from interaction with the environment,
having access neither to the underlying model nor the underlying states. First, model-learning
approaches were proposed such as (Shankar, Dwivedy, & Guha, 2016) and (Gupta, Davidson,
Levine, Sukthankar, & Malik, 2017). Both applied RL to learn, offline, a model of the environ-
ment on the one hand and learn a planning strategy based on this model on the other hand.
These approaches were nevertheless hybrid in some sense as the state of the environment was
assumed to be observable during the learning process. Perhaps the most notable work carried
out using model-learning RL in POMDPs was performed by Karkus, Hsu, and Lee (2017). They
generalised previous works and introduced the QMDP-Net, a neural network architecture learned
in an RL fashion from which actions can be planned without requiring the observation of the
underlying state during learning. Indeed, end-to-end training is performed as in model-free RL,
except that the underlying computation architecture is constrained to correspond to the belief
update, as in the two previous works.

In model-free RL, the idea of combining an RNN (more precisely an LSTM) with temporal
difference learning to learn the value functions of non-Markovian environments was made popular
by Bakker (2001). In so doing, an approximation of the value function that depended on the
complete history of actions and observations was built. This idea was subsequently applied to
the off-policy setting by extending the successful Deep Q-Network (DQN) (Mnih et al., 2015)
to POMDPs with the Deep Recurrent Q-Network (DRQN) (Hausknecht & Stone, 2015). Using
RNN was also applied in policy-based RL as in (Wierstra et al., 2007). In this work, the
so-called policy gradients were extended to POMDPs and a stochastic policy, depending on
the history of observations and actions, was learned for solving problems requiring long-lasting
memory. The latter work is limited to the on-policy setting in opposition to the Recurrent
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Deterministic Policy Gradient (RDPG) (Heess, Hunt, Lillicrap, & Silver, 2015) that extends
the Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015). In more recent works,
particle filtering was combined with policy gradients to explicitly represent the internal belief
distribution (Igl, Zintgraf, Le, Wood, & Whiteson, 2018).

As an alternative to RNN-based model-free RL for POMDPs, Zhang et al. (2016) propose to
incorporate a memory space that extends the observation space. The agent can then explicitly
decide to store or replace an observation in its memory. This choice is called a memory action.
As a consequence, the agent is trained to take memory actions in addition to the actions taken
in the environment. It can be noted that these methods nonetheless still use a RNN, even if it
does not carry the burden of memorisation alone.

However, the algorithms available in the literature only tackle either simple or low-memory-
demanding environments. Furthermore, off-policy policy-gradient approaches such as the RDPG
introduce a training bias, the importance of which grows with the time-dependencies to be
learned. Finally, model-free algorithms do not have strong convergence proofs, as in MDPs
(Hutter, 2014; Majeed & Hutter, 2018).
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Chapter 3

Background

In this chapter, POMDPs are formally defined, along with the belief and the value function. In the second
section, optimal control theory for POMDPs is briefly introduced. Then, the particle filtering algorithm
is introduced. Next, RNN approximators are described, and the RNNs of interest are formalised, namely
the LSTM, GRU, BRC and nBRC. Finally, the estimation of mutual information between two continuous
random variables is reviewed in the last section.

3.1 Partially observable Markov decision process

Partially observable Markov decision processes (POMDPs) model sequential decision making
problems under partial observability (Spaan, 2012; Kaelbling et al., 1998). Formally, a POMDP
is a 7-tuple (S,A,O, T,R,O, p0) where S is the state space, A is the action space and O is
the observation space. The probability distribution function p0 gives to all state s0 ∈ S its
probability p0(s0) to be the initial state. A transition probability distribution function T gives
the probability T (st+1 | st,at) to update the state st ∈ S of the process to the state st+1 ∈ S when
taking the action at ∈ A. A reward function R gives the bounded reward rt = R(st,at) obtained
when taking action at ∈ A in state st ∈ S. Finally, the observation probability distribution
function O gives the probability O(ot | st) to observe ot ∈ O when the process is in state st ∈ S.
The execution of such a decision process is illustrated in Figure 3.1 by considering the sequence
of actions chosen a priori (i.e., their conditional dependencies are not represented).

s0

p0(s0)

s1 s2 . . . st st+1

a0 a1 a2 . . . at

r0 r1 r2 . . . rt

o0 o1 o2 . . . ot

O(o0|s0) O(o1|s1) O(o2|s2) O(o3|st)

T (s1|s0,a0) T (s2|s1,a1) T (st|st−1,at−1) T (st+1|st,at)

R(s0,a0) R(s1,a1) R(s2,a2) R(st,at)

Figure 3.1: Bayesian representation of a POMDP execution

After taking t actions in the POMDP, the sequence of observations and actions is called the
trajectory τ0:t = (o0,a0, . . . ,ot−1,at−1,ot) ∈ T0:t, where T0:t is the set of trajectories of length t
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that can be generated in the POMDP. The belief bt at a time t represents the knowledge of the
agent about the POMDP state. Formally, bt(st | τ0:t) is the probability to be in state st given
the trajectory τ0:t ∈ T0:t. The belief bt ∈ B is thus the probability distribution over the states
conditioned on the trajectory τ0:t, and B = {bt(· | τ0:t) | τ0:t ∈ T0:t, t ∈ N} is the set of all possible
beliefs (i.e., the beliefs that can be derived from any valid trajectory from the POMDP). Using
Bayes’ rule, the initial belief writes:

b0(s0 | τ0:0) = Pr(s0 | o0) =
p0(s0)O(o0 | s0)∫

S p0(s′0)O(o0 | s′0)ds′0
. (3.1)

and for t > 0, the belief is given by:

bt(st | τ0:t) =
O(ot | st) Pr(st | at−1, τ0:t−1)

Pr(ot | at−1, τ0:t−1)
(3.2)

Pr(st | at−1, τ0:t−1) =

∫
S
T (st | st−1,at−1)bt−1(st−1 | τ0:t−1)dst−1 (3.3)

Pr(ot | at−1, τ0:t−1) =

∫
S
O(ot | st)

(∫
S
T (st | st−1,at−1)bt−1(st−1 | τ0:t−1)dst−1

)
dst . (3.4)

Indeed, for t > 0, from the Bayes’ rule conditioned on (at−1, τ0,t−1), we have:

bt(st | τ0:t) = Pr(st | τ0:t) (3.5)
= Pr(st | ot,at−1, τ0:t−1) (3.6)

=
Pr(ot | st,at−1, τ0:t−1) Pr(st | at−1, τ0:t−1)

Pr(ot | at−1, τ0:t−1)
(3.7)

=
Pr(ot | st) Pr(st | at−1, τ0:t−1)

Pr(ot | at−1, τ0:t−1)
(3.8)

=
O(ot | st) Pr(st | at−1, τ0:t−1)

Pr(ot | at−1, τ0:t−1)
(3.9)

The probability at the numerator writes:

Pr(st | at−1, τ0:t−1) =

∫
S

Pr(st, st−1 | at−1, τ0:t−1)dst−1 (3.10)

=

∫
S

Pr(st | st−1,at−1, τ0:t−1) Pr(st−1 | at−1, τ0:t−1)dst−1 (3.11)

=

∫
S

Pr(st | st−1,at−1) Pr(st−1 | τ0:t−1)dst−1 (3.12)

=

∫
S
T (st | st−1,at−1)bt−1(st−1 | τ0:t−1)dst−1 (3.13)

where the second probability of (3.12) is obtained from (3.11) by considering that the action
taken at time t− 1 is conditionally independent to the state given the observed trajectory until
time t−1. This hypothesis is reasonable since the policy should only have access to the observed
trajectory τ0:t−1. The probability at the denominator writes:

Pr(ot | at−1, τ0:t−1) =

∫
S

Pr(ot, st | at−1, τ0:t−1)dst (3.14)

=

∫
S

Pr(ot | st,at−1, τ0:t−1) Pr(st | at−1, τ0:t−1)dst (3.15)

=

∫
S

Pr(ot | st) Pr(st | at−1, τ0:t−1)dst (3.16)

=

∫
S
O(ot | st)

(∫
S
T (st | st−1,at−1)bt−1(st−1 | τ0:t−1)dst−1

)
dst . (3.17)
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As a consequence, equations (3.2), (3.3) and (3.4) provide a way to update iteratively the belief
bt once observing new information (at,ot+1) through a forward pass such that:

bt+1 = forward(bt;at,ot+1) . (3.18)

and this, provided that T,O, p0, and thus S,A,O, are known.

A deterministic stationary policy π ∈ Π, where Π is the set of all such policies, is a function
mapping each belief bt ∈ B to an action at ∈ A. Note that, in the following, bt is used to
denote bt(· | τ0:t) without distinction. For a given discount factor γ ∈ [0, 1[, a policy π ∈ Π is
characterised by its value function V π computed as follows:

V π(bt) = lim
T→∞

T∑
k=t

E
st∼bt(·|τ0:t)

sk+1∼T (·|sk,ak)
ok+1∼O(·|sk+1)

{
γk−trk

}
, ∀bt ∈ B (3.19)

where ak = π(bk) is the action selected by the policy π at time k and rk = R(sk,ak) is the
reward computed at time k. In addition, the belief is updated as bk+1 = forward(bk;ak,ok+1).

An optimal policy π∗ ∈ Π is a policy whose value function is maximal given any belief bt ∈ B at
any time t:

π∗ ∈ arg max
π∈Π

V π(bt), ∀bt ∈ B . (3.20)

The Q-function of a POMDP is defined as the expected cumulative reward observed when playing
an action at given a belief bt, followed by an optimal policy:

Q(bt,at) = E
st∼bt(·|τ0:t)

st+1∼T (·|st,at)
ot+1∼O(·|st+1)

{
rt + γV π∗(bt+1)

}
, ∀bt ∈ B,∀at ∈ A . (3.21)

where bt+1 = forward(bt;at,ot+1). Finally, given the definition (3.19) and (3.21), we have that
a policy outputting the action resulting in the maximal Q-value in each belief is optimal:

V (bt) = V π∗(bt) = max
at∈A

Q(bt,at), ∀bt ∈ B . (3.22)

Let v be a real-valued function. This function respects the Bellman equation if it respects the
following equality:

v(bt) = max
at∈A

E
st∼bt(·|τ0:t)

st+1∼T (·|st,at)
ot+1∼O(·|st+1)

{rt + γv(forward(bt;at,ot+1))}, ∀bt ∈ B . (3.23)

In addition, the Bellman operator H is defined as follows:

(Hv)(bt) = max
at∈A

E
st∼bt(·|τ0:t)

st+1∼T (·|st,at)
ot+1∼O(·|st+1)

{rt + γv(forward(bt;at,ot+1))} . (3.24)

The operator H can be proved to be a contraction mapping such that the Bellman equation
v = Hv has a unique solution, the fixed-point of this contraction mapping. Combining (3.21)
and (3.22), it can be seen that this unique solution of the Bellman equation is the optimal value
function V = V π∗ .
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This recursive definition has lead to the development of the value iteration algorithm. This
algorithm consists in computing successive functions V1, . . . , Vn such that Vi(bt) is the optimal
cumulative reward obtained in belief bt with a i-step horizon (i.e., only i actions and reward are
left to take). The computation of Vi is performed by applying the Bellman operator to Vi−1. The
value iteration algorithm is proved to converge in norm to the unique fixed point of the Bellman
equation, that is the optimal value function. The computations of the successive functions Vi is
discussed in the next section, as well as the method for computing an optimal action given Vn.

3.2 Optimal control in partially observable Markov decision pro-
cesses

The problem of control in POMDP consists in finding a policy mapping any belief to an optimal
action. This section focuses on POMDPs with discrete observation spaces. The traditional
approach of optimal control is to maintain the belief as dictated by (3.18) and to derive a policy
from the value function. Let us first consider POMDPs with discrete state spaces. In this case,
the belief bt = bt(· | τ0:t) can be represented by a vector giving the conditional probability
Pr(st | τ0:t) for each state st ∈ S of the POMDP. The dimension of the vector is thus |S|.
It has been shown in (Smallwood & Sondik, 1973) that the value function for the n-step hori-
zon, called Vn, is a piecewise linear convex function (PWLC) on the belief space. This allows
representing Vn by a finite number of vectors, called α-vectors, representing the different linear
pieces. Vn is then modelled by the maximum over these linear functions, making it a PWLC
function. Any PWLC function can indeed be represented in this way. We have:

Vn(bt) = max
k∈{1,...,Kn}

αn,k · bt (3.25)

where bt is represented by a vector, αn,k =
(
α

(1)
n,k . . . α

(|S|)
n,k

)
is an α-vector and x · y represent

the dot product between two vectors x and y. In addition, Kn denotes the number of linear
pieces necessary to represent Vn. In order to approximate V , we can thus iteratively compute
V1, . . . , Vn with n large, by computing a set of α-vectors for each n. Conveniently, for every
n, each of these Kn α-vectors are associated with a certain action. Given a belief, the policy
will thus be simply derived from the value function by choosing the action associated with the
α-vector maximising the value at this belief.

The iterative computation of V1, . . . , Vn goes as follows: The horizon n = 1 value is given by
V1(bt) = maxat∈AQ1(bt,at). And for all at ∈ A, we haveQ1(bt,at) = R(bt,at) = E

st∼bt
{R(st,at)} =∑

st∈S bt(st)R(st,at). It can be verified that V1 has the form of equation (3.25) with K1 = |A|.
Precisely, V1 is defined by the following set of α-vector:

α1,k =
(
R(s

(1)
t ,a(k)) . . . R(s

(|S|)
t ,a(k))

)
, k = 1, . . . ,K1 . (3.26)

where a(k) denotes the kth action and s(i) the ith state. It can be noted that some of these
α-vectors could be dominated on the whole belief space (in the case where some actions are
never worth playing for maximising its one-step return). In this case, they can be pruned from
the representation of V1. The same can be done in the following iterations. For n > 1, Vn is
computed from Vn−1 by:

Vn(bt) = max
at∈A

E
st∼bt

st+1∼T (·|st,at)
ot+1∼O(·|st)

{rt + γVn−1(bt+1)} (3.27)

= max
at∈A

R(bt,at) + γ E
st∼bt

st+1∼T (·|st,at)

 ∑
ot+1∈O

O(ot+1 | st+1)Vn−1(bt+1)

 (3.28)
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= max
at∈A

R(bt,at) + γ
∑

ot+1∈O
Pr(ot+1 | bt,at)Vn−1(bt+1) (3.29)

where bt+1 = forward(bt;at,ot+1) and

Pr(ot+1 | bt,at) =
∑
st∈S

∑
st+1∈S

bt(st)T (st+1 | st,at)O(ot+1 | st+1) . (3.30)

The proof of the piecewise linearity and convexity of Vn can be found in Appendix B. In practice,
computing Vn given Vn−1 thus consists in creating a new set of α-vectors by adding, for all at,
for all ot, all the transformed α-vector from Vn−1. This construction is however known to have
exponential growth in the number of α-vectors, and despite pruning the dominated vectors is
possible, it requires solving a linear program for every possible vector.

The complexity limitation of exact value iteration in POMDP has been addressed by point-based
value iteration methods (Pineau, Gordon, Thrun, et al., 2003). The idea is to maintain a finite
set of belief points b(0), . . . , b(q) and to maintain α-vectors at these points. The exponential
growth in the number of α-vectors is completely alleviated by the fact that the new vectors do
not need to be kept in a set. Only the maximum vector at each belief point bt is kept. In other
words, we refuse to create more pieces in our PWLC value function, but we only keep the vectors
that are dominant at the chosen belief points b(0), . . . , b(q). The only remaining pruning step is
to remove α-vectors that would be shared between several belief points. This technique has an
additional benefit because we do not need to learn the value function of beliefs that are not likely
to be reached. Indeed, the set of belief points can be carefully chosen.

As far as the continuous state space POMDPs are concerned, the belief can no longer be rep-
resented by vectors but should be represented by functions over the state space. Consequently,
the belief space is continuous and infinite-dimensional. In (Porta, Spaan, & Vlassis, 2004), it
is shown that the optimal finite-horizon value function is also PWLC, analogously to the dis-
crete case, over this infinite-dimensional belief state. The value function is also supported by
α-functions that are analogous to the α-vectors in the discrete case. The dot product is replaced
by an integral over the state space of the product of the belief function with the α-function. In
addition, generalisations of the point-based value iteration algorithms exist for POMDPs with
continuous domains.

Both in the discrete and the continuous case, the n-step optimal policy is easily defined from
the α-represented value function Vn. Indeed, each α-vector, or α-function, is associated with an
action at ∈ A. And the policy consists in mapping the belief bt to the action at associated with
the dominant α-vector, or α-function, for this belief bt. This whole approach of optimal control
in POMDPs can only be conducted when a model of the POMDP is available. In this work, the
opposite case is addressed. The value function is learned from samples, without knowing any of
the dynamics of the environment.

3.3 Particle Filtering

As explained in the introduction (Chapter 1), Bayes filtering is a complex problem that becomes
intractable in certain POMDPs. In particular, POMDPs with continuous state space require
to integrate over the state space. Furthermore, in these environments, the belief should be
represented by a function over a continuous domain instead of a finite-dimensional vector. Such
arbitrary beliefs cannot be represented in a digital computer.

To overcome these two difficulties, the particle filtering algorithm proposes to represent an ap-
proximation of the belief by a finite set of samples from the belief distribution. In other words,
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we represent bt : S → R by the following set of N samples:

St = {snt }Nn=1 (3.31)

with snt ∈ S, n = 1, . . . , N being realisations of the probability density function bt(· | τ0:t).

Particle filtering is a procedure that allows to maintain a set of samples such that they follow
the successive distributions b0, . . . , bT . The set is thus updated each time that a new action
at−1 is taken and a new observation ot is observed. Although this procedure does not require
to evaluate expression (3.18), it is necessary to be able to sample from the initial probability
distribution p0(·) and from the conditional transition probability distribution T (· | st,at), and to
be able to evaluate the conditional observation probability O(ot | st). This process, illustrated
in Algorithm 1, guarantees that the successive sets S0, . . . ,ST have (weighted) samples following
the probability distribution b0, . . . , bT defined by (3.18).

Algorithm 1: Particle filtering
Input: A POMDP (S,A,O, T,R,O, p0)
Input: A trajectory τ0:T = (o0,a0, , . . . ,oT−1,aT−1,oT )
Input: The number of samples N

1 Sample s0
0, . . . , s

N
0 ∼ p0

2 η ← 0
3 for n = 1, . . . , N do
4 wn0 ← O(o0 | sn0 )
5 η ← η + wn0

6 for n = 1, . . . , N do
7 wn0 ← wn0 /η

8 S0 = {(sn0 , wn0 )}Nn=1

9 for t = 1, . . . , T do
10 η ← 0
11 for n = 1, . . . , N do
12 Sample l from discrete distribution wt−1

13 Sample snt ∼ T (· | slt−1,at−1)
14 wnt ← O(ot | snt )
15 η ← η + wnt

16 for n = 1, . . . , N do
17 wnt ← wnt /η

18 St = {(snt , wnt )}Nn=1

Algorithm 1 starts from N samples from the initial distribution p0. These samples are initially
weighted by their likelihood O(o0 | sn0 ). Then, we have three steps that are repeated at each
time step. First, the samples are resampled according to their weights. Then, given the action,
the samples are updated by sampling from T (· | snt ,at). Finally, these new samples are weighted
by their likelihood O(ot+1 | snt+1) given the new observation ot+1, as for the initial samples.
As stated above, this method ensures that the (weighted) samples follow the distribution of the
successive beliefs.

3.4 Recurrent neural networks

In this work, we are interested in approximating the Q-function, as defined in Section 3.1. The
Q-function are functions of bt ∈ B and at ∈ A. However, bt = bt(· | τ0:t) is a function of the
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complete observed trajectory τ0:t ∈ T0:t. As will be explained in Section 4.2, computing the belief
explicitly is avoided, such that the approximation of Q will directly take τ0:t as input. This input
being of variable length, it makes RNN a good choice of function approximator for Q.

Neural networks denote a very general class of universal parametric function approximator whose
parameters are typically learned by gradient descent to minimise a certain loss. Generally,
neural networks are used to approximate a function f : X → Y, where X is a p-dimensional
space and Y is a q-dimensional space. However, it happens that the input, the output or both
are sequential. Given a set X , let S(X ) denote the set of all sequences of elements from X ,
that is S(X ) = ∪∞t=0X t+1. In this work, we are interested in modelling f : S(X ) → Y. And
the sequences x0:T ∈ S(X ) that are considered have variable lengths T + 1, which appeals
for using recurrent neural network as function approximator. Indeed, these allow mapping a
variable-length sequential input to an output, by maintaining a hidden state (or recurrent state).
In comparison to other neural networks that consume sequences, they have the advantage of
updating their output efficiently when the sequence grows and not being limited to fixed-length
sequences. Consequently, they can model arbitrarily long time-dependencies, or at least, as long
as their architecture allows remembering.

In the context of approximating the Q-functions using RNN approximators, we have X = ({0}∪
A)×O and Y = R|A|. More precisely, x0 = (0,o0), and xt = (at−1,ot), t > 0. The approximator
is thus fed with a trajectory as input and outputs approximations of the Q-value for each of the
|A| actions.
Formally, a recurrent neural network is defined by its hidden state update and its output function:

ht = φθ(xt,ht−1) (3.32)
yt = ψθ(ht) (3.33)

where the update function φθ and the output function ψθ are parametrised functions. In other
words, φ and ψ define the architecture of the recurrent cell, and are functions of θ ∈ Θ, where Θ
is the domain of θ, in addition to xt,ht−1 and ht. The parameter space Θ is usually chosen to be
Θ = Rdθ , where dθ denotes the number of parameters. Together with ψθ and φθ, it defines the
hypothesis space. The parameters θ are be optimised such that the cell returns the best outputs,
with respect to certain a loss. This optimisation is typically achieved by gradient descent. As a
consequence, φθ and ψθ are required to be differentiable with respect to θ, for any fixed input.

In this work, where we are interested in modelling f : S(X ) → Y, the output of the neural
network is yT for x0:T ∈ S(X ). In other words, f : x0:T 7→ yT is recursively defined by (3.32)
and (3.33). In the following, only the recurrent part φθ of the architecture is detailed, since ψθ
is identical for all recurrent architectures and is chosen to be:

yt = ht . (3.34)

The most straightforward recurrent neural network is the Elman network that writes:

ht = σ(Whxxt +Whhht−1) (3.35)

with θ = (Whx,Whh) and σ denoting the sigmoid activation function. However, such a simple
architecture has several drawbacks. Indeed, if the activation function and the input are neglected,
the successive hidden states h1, . . . , hT will be successively multiplied by the same matrix Whh,
which would lead the hidden state to converge towards an eigenvector of the matrix Whh after
a few time steps. But without normalisation, or with such a squishing activation function, this
hidden state will also probably explode, or vanish, very quickly. In addition, the gradient could
also vanish or explode in the backward pass, which will prevent to learn large time dependencies
and will introduce instability. A solution to this problem is to use gating.
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Gating consists in introducing pass-through or additive paths between the successive hidden
states (Goodfellow, Bengio, Courville, & Bengio, 2016). This way, the successive hidden states
are not always squished or stretched by the same matrix, but some components of the hidden
state can be partially taken from the previous hidden state, or can even be reset to zero. One
of the most simple and efficient gated RNN is the gated recurrent unit (GRU) introduced by
Chung, Gulcehre, Cho, and Bengio (2014). Its update writes as follows:

zt = σ(Wzxxt +Wzhht−1) (3.36)
rt = σ(Wrxxt +Wrhht−1) (3.37)
ht = zt � ht−1 + (1− zt)� tanh(Whxxt + rt �Whhht−1) (3.38)

We can see that the forget gate, that outputs zt, allows taking a mixture of the updated and the
old hidden state. Since zt is a vector, the mixture proportion can be different for each element of
the hidden state. Similarly, we have the reset gate rt that is able to reset to zero the legacy from
the previous hidden state, or to only take a portion of it. The values zt and rt are computed
from the last hidden state ht−1 and the current input xt using new parameters Wzx,Wzh,Wrx

and Wrh.

Historically, the GRU was introduced to simplify the long short term memory (LSTM) that
was introduced by Hochreiter and Schmidhuber (1997). It has an additional gate, and has two
recurrent states: the hidden state ht and the cell state ct. Its update writes:

ft = σ(Wfxxt +Wfhht−1) (3.39)
it = σ(Wixxt +Wihht−1) (3.40)
ot = σ(Woxxt +Wohht−1) (3.41)
c̃t = σ(Wcxxt +Wchht−1) (3.42)
ct = ft � ct−1 + it � c̃t (3.43)
ht = ot � σ(ct) (3.44)

More recently, a new update was proposed by Vecoven et al. (2020) under the name bistable
recurrent cell (BRC). This update has been carefully chosen such that certain choices of param-
eters allow neurons to exhibit neural bistability, a mechanism the neurons of the human brain
use for storing information at the cellular level on the long term. This property allows the BRC
and nBRC to outperform the state-of-the-art on different supervised learning problems requiring
high-memorisation ability. By introducing the possibility of having natural equilibrium around
certain values, the recurrent cell are able to keep information over a longer period of time. Ac-
cording to the parameters, the input and the last hidden state, bistability can be present or not
for each neuron of the cell, and when it is present, two equilibrium points are present, which
explains the name bistability. The update writes:

ct = σ(Wcxxt + wc � ht−1) (3.45)
at = 1 + tanh(Waxxt + wa � ht−1) (3.46)
ht = ct � ht−1 + (1− ct)� tanh(Whx + at � ht−1) (3.47)

In addition, the cellular memory constraint can be relaxed by allowing the hidden state of a
neuron to influence the bistability of another neuron. This new cell was called the recurrently
neuromodulated BRC (nBRC) and its update is:

ct = σ(Wcxxt +Wchht−1) (3.48)
at = 1 + tanh(Waxxt +Wahht−1) (3.49)
ht = ct � ht−1 + (1− ct)� tanh(Whx + at � ht−1) (3.50)
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It can be noted that this update is very similar to that of the GRU.

The biases have been omitted in all updates for readability. But, to gain a little representa-
tion ability, we can add biases as parameters inside all the activation functions. Finally, as is
sometimes done with RNNs, it is chosen to make h−1 (and c−1 for LSTM), the initial hidden
state, a trainable parameter too. Note that the initial input x0 has been chosen to be indexed
at t = 0 such that the initial hidden states are indexed at t = −1. It was done to harmonise the
indexing convention of the RNN literature with the POMDP literature in which the sequences
of observations start at t = 0. Indeed, as mentioned above, x0 = (0,o0) and xt = (at−1,ot) for
t > 0.

As for standard neural networks, where the backpropagation is very natural, we can make back-
propagation in RNNs very straightforward by unrolling the computation graph. Indeed, we can
consider the pass in the cell at each time step to be successive layers of a deep neural network.
The only difference with deep neural networks is that the weights are shared between each un-
rolled time step. This is handled by summing the gradients obtained for each parameter on all
time steps.

3.5 Mutual information estimation

On the one hand, as suggested by the theory of optimal control and the belief definition of
Section 3.1, the optimal strategy for evaluating the Q-function is to maintain an estimation of
the belief, the latter being updated each time that a new action is taken and a new observation is
received, according to (3.18). The belief bt indeed forms a sufficient statistic from the complete
trajectory τ0:t to correctly estimate the value of the different actions. On the other hand, as
explained in Section 3.4, the successive observations and actions taken in the POMDP will be
fed to the RNN recurrently, such that it outputs the Q-value of this trajectory for all possible
actions. As a consequence, it will be interesting to see if these hidden states reconstruct the belief
in some way. More precisely, the research question of this work is to study the mutual information
between the hidden state of a trained RNN having experienced a certain trajectory, and the belief
filtered from this same trajectory. In this case, we have a random variable τ0:t ∈ T0:t, and we
have two deterministic functions: f : τ0:t 7→ ht that represents the hidden states generated by
the RNN, and g : τ0:t 7→ bt that represents the belief resulting from the trajectory. We are thus
interested in the mutual information between the random variable X = ht and the random
variable Y = bt. For now, it is assumed that the state space of the POMDP is discrete, such
that bt can be represented by a vector.

In contrast to other dependence testing estimators, the mutual information estimator has the
advantage of being strongly rooted in the information theory. In addition, the mutual information
is theoretically able to measure any kind of dependency between the variables. In particular,
the mutual information is invariant to smooth and uniquely invertible mappings of the random
variables (Kraskov, Stögbauer, & Grassberger, 2004). The mutual information between two
jointly continuous variable X and Y writes:

I(X;Y ) =

∫
X

∫
Y
p(x, y) log

p(x, y)

pX(x)pY (y)
dxdy (3.51)

where X and Y are the support of the random variables X and Y respectively, p is the joint
probability density function of X and Y , and pX and pY are the marginal probability density
function of X and Y respectively. The mutual information has the following properties:

I(X;Y ) = h(X)− h(X | Y ) (3.52)
= h(Y )− h(Y | X) (3.53)
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= h(X) + h(Y )− h(X,Y ) (3.54)
= I(Y ;X) (3.55)

where h denotes the differential entropy in the case of continuous variables. The differential
entropy is defined as follows:

h(X) = −
∫
X
f(x) log f(x)dx . (3.56)

These properties imply that the mutual information between two independent random variables
is zero.

Estimating the mutual information between the random variable X and Y thus consists in
estimating I(X;Y ) from a dataset {(xi, yi)}Ni=1 where the samples (xi, yi) are drawn from the
joint probability distribution p. The most straightforward approach for estimating the mutual
information between two continuous random variables X and Y consists in partitioning the
supports X and Y such that the variables are discretised. Then, the mutual information is
estimated by:

Ibinned(X;Y ) =
∑
i

∑
j

f(i, j) log
f(i, j)

fX(i)fY (j)
(3.57)

where f(i, j) = n(i, j)/N , fX(i) = nX(i)/N , fY (j) = nY (j)/N and nX(i) is the number of
samples of X falling into the ith bin of X, nY (j) is the number of samples of Y falling to the jth

bin of Y , and n(i, j) is the number of points in the intersection of these bins. In practice, this
method has been improved by considering adaptive bin sizes. Nevertheless, this simple method
still suffers from systematic errors coming from binning and from the errors in the estimation of
the log probability ratios from the log frequency ratios.

In (Kraskov et al., 2004), the authors propose a new approach for estimating the mutual in-
formation based on k-nearest neighbour (k-NN) statistics. At the time, there already exists an
extensive literature for estimating the entropy using such statistics (Kozachenko & Leonenko,
1987). Instead of estimating p(x, y), p(x) and p(y) from f(i, j), f(i), f(j), using predefined
bins, these estimators estimate p(x, y), p(x) and p(y) by constructing dynamic boxes for each
point. These dynamic boxes are chosen to be the smallest boxes centred around the considered
point such that there is exactly k nearest neighbours in it. Starting from k-NN estimations of
h(X), h(Y ), h(X,Y ) we can estimate the mutual information by (3.54). However, the errors
made in these three entropy estimates would presumably not cancel and the authors propose
an alternative. By defining a certain joint norm in the X × Y space, they succeed in making
the biases in the estimations ĥ(X), ĥ(Y ) and ĥ(X,Y ) cancel out approximately thanks to the
shared length scales in the three estimates. This estimator is chosen for the estimation of the
mutual information in this work and is referred to as the KSG estimator. However, as shown
in (Gao, Ver Steeg, & Galstyan, 2015), the KSG estimator requires a number of samples that
scales exponentially with the true mutual information. Alternative methods have been proposed
in (Gao, Ver Steeg, & Galstyan, 2015; Gao, Steeg, & Galstyan, 2015) to refine the estimator and
provide better estimations in the case of strongly correlated variables. Nonetheless, the resulting
estimators relied on an arbitrarily tuned threshold parameter and had no theoretical perfor-
mance guarantees (McAllester & Stratos, 2020). Since then, it has been proved by McAllester
and Stratos (2020) that the exponential sample complexity is inherent to the measurement of
mutual information no matter what estimator is used.

In view of the difficulty of estimating the mutual information, especially between variables having
a high mutual information, it is decided to develop two simple but interpretable methods that
allow to controlling the results obtained by the KSG estimator. Both these methods use a metric
to evaluate the quality of the mapping that can be constructed between X and Y . The first
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method uses a multilayer perceptron (MLP) approximator trained to map X to Y . Since the
target Y is the space of belief on the discrete states, the cross-entropy loss is used for this problem,
trying to reconstruct the belief Y = bt from the hidden state X = ht. The second one uses a
classification random forest (RF) approximator. For this estimator, the accuracy when trying to
predict the most likely state from the belief is reported. Indeed, this metric will be particularly
interpretable when dealing with environments in which the belief is indicating a single state with
probability 1, such as in the Deterministic T-Maze (see Section A.1).

As far as continuous-state POMDPs are concerned, there is an additional difficulty of mutual
information estimation that arises from the problem of representing the belief. In this case, as
explained in Section 3.3, the belief can no longer be represented by a finite-dimensional vector
but should be represented by a function defined over the state space. This function, in the general
case, can be arbitrarily complex, and it is thus impossible to represent this function exactly in a
digital computer. However, we can select a hypothesis space of functions that are parametrised
by a finite-dimensional real-valued vector ω ∈ Ω, where Ω denotes the parameter space. Since
parametrised functions have been chosen, this parameter space Ω defines the hypothesis space
as follows: {bt(·;ω) | ω ∈ Ω} where bt(·;ω) is the parametrised belief. Such a hypothesis space
allows to identify the belief with a finite-dimensional vector ω, despite bt(·;ω) still represents a
function defined over the entire continuous state space.

As a result of this representation of bt for continuous state POMDPs, instead of the mutual
information between ht and bt, the mutual information between ht and the parameter ω that
parametrises the approximation bt(·;ω) of bt(·) is used. In this work, the hypothesis space
is simply chosen to be the set of piecewise constant functions on a uniform discretisation of
the domain. As a consequence, the parameter ω boil down to the set of constant values of the
approximation for every bin of the discretisation. Now, ω still has to be estimated. For POMDPs
with continuous state spaces, the belief bt is estimated with the particle filtering algorithm, as
explained in Section 3.3. It is thus represented by a set of N samples from the distribution bt(·).
The approximation bt(·;ω) is then built using the frequencies of these samples in each bin of the
discretisation.
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Chapter 4

Recurrent parametric Q-learning

In this chapter, the problem statement is formalised. The latter consists in selecting a parametrised
policy, from a hypothesis space, that maximises the γ-discounted rewards in trajectories sampled from the
POMDP. To do so, the policies are derived from a parametric approximation Qθ of the Q-function. This
recurrent approximation is learned by recurrent parametric Q-learning as explained in the second section.
Finally, the detailed DRQN learning algorithm is introduced in the third section.

4.1 Problem statement

Let us give the POMDP (S,A,O, T,R,O, p0) as defined in Section 3.1 with discrete action space
A. Let us also give the discount factor γ ∈ [0, 1[. We consider the problem of approximating the
optimal policy π∗ ∈ Π by a policy πθ ∈ Π parametrised by the real vector θ ∈ Θ ⊆ RdΘ , where
dΘ is the dimension of the vector. The expected return sampled from the initial state, is given
by:

J(πθ) = lim
T→∞

T∑
t=0

E
s0∼p0(·)

ot∼O(·|st)
st+1∼T (·|st,at),

{
γtrt

}
(4.1)

with at = π(bt(· | τ0:t)) and rt = R(st,at). From the definition of V πθ (3.19), we have:

J(πθ) = E
s0∼p0(·)

o0∼O(·|s0)

{V πθ(b0(· | τ0:0))} (4.2)

= E
s0∼p0(·)

o0∼O(·|s0)

{V πθ(b0(· | o0))} (4.3)

Formally, we want to find θ∗ ∈ Θ such that:

θ∗ ∈ arg max
θ∈Θ

J(πθ) (4.4)

⇔ θ∗ ∈ arg max
θ∈Θ

E
s0∼p0(·)

o0∼O(·|s0)

{V πθ(b0(· | o0))} (4.5)

4.2 Parametric Q-learning in POMDPs

In this work, deterministic policies are derived from Q-functions as suggested by (3.22), this work
is thus anchored in the value-based RL. The Q-function are estimated from samples in the process
through Q-learning, which has the advantage of being off-policy. In the context of RL, because
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of the unavailability of the model, it is not possible to estimate the belief. We thus propose to
define a variant of the Q-function defined in (3.21), which are referred to as Q-function, defined
over the space of trajectories rather than over the space of beliefs. In addition, we introduce the
same variant for the value function V : ∪∞t=0 T0:t → R instead of V : B→ R. This value function
is defined as the optimal discounted return that can be obtained given that we experienced a
trajectory τ0:t. Since this value will be completely determined by the probability of being in each
state given τ0:t, and that this probability is given by the belief bt(· | τ0:t), it is straightforward
that:

V(τ0:t) = Vπ∗(τ0:t) = V π∗(bt(· | τ0:t)) = V (bt(· | τ0:t)) . (4.6)

The Q-function can then be defined by:

Q(τ0:t,at) = E
st∼bt(·|τ0:t)

st+1∼T (·|st,at)
ot+1∼O(·|st)

{rt + γV(τ0:t+1)}, ∀τ0:t ∈ T0:t,∀at ∈ A . (4.7)

where τ0:t+1 = τ0:t ∪ (at,ot+1). In addition, it is easy to see that:

V(τ0:t) = max
at∈A

Q(τ0:t,at) . (4.8)

The Q-function is thus the composition of equation (3.18) applied over the whole trajectory τ0:t

and equations (3.21) and (3.22). From the above definitions, it can also be written:

Q(τ0:t,at) = Q(bt(· | τ0:t),at),∀τ0:t ∈ T0:t,∀at ∈ A . (4.9)

4.3 Learning algorithm

Based on a set of trajectories B, the Q-learning algorithm can be adapted to Q-functions, as
recursively defined by equations (4.7) and (4.8). Let us give a hypothesis space of real parameters
Θ ⊆ RdΘ , where dΘ is the dimension of the space. Let us give Q-functions Qθ parametrised
by θ ∈ Θ. The parameters θ can be updated from the reward rt and the partial trajectory
τ0:t+1 ∈ T0:t+1 of t+ 1 transitions, where τ0:t+1 = τ0:t ∪ (at,ot+1), as follows:

θ ← θ + αδ(rt, τ0:t+1)
dQθ
dθ

(τ0:t,at) (4.10)

δ(rt, τ0:t+1) = rt + γmax
a∈A
{Qθ(τ0:t+1,a)} − Qθ(τ0:t,at) (4.11)

where α is the learning rate and δ(rt, τ0:t+1) is the temporal difference. The partial trajectory
τ0:t+1 is obtained by truncating a trajectory τ0:T ∈ B after time step t such that 0 ≤ t < T . Note
that this update corresponds to performing one gradient step on the loss L (Qθ(τ0:t,at), yt) =
(Qθ(τ0:t,at)− yt)2 with respect to θ, where:

yt = rt + γmax
a∈A
{Qθ(τ0:t+1,a)} (4.12)

is the temporal difference target, considered constant with respect to θ.

In practice, the Q-learning algorithm with parametric functions has been adapted in (Mnih et
al., 2015) to show a better convergence rate, in the case of reactive policies. These adaptations
mainly consist in sampling the trajectories online while applying the update for learning a policy.
A replay buffer of trajectories is used and the gradient is evaluated on a batch of trajectories
simultaneously at each iteration. In addition, the function approximator is differentiated through
auto-differentiation and the parameters θ are updated with the Adam algorithm (Kingma & Ba,
2014). Finally, the use of a target Q-function Qθ′ to compute the temporal difference target —
and only updating the target every C episodes by θ′ ← θ — eases the convergence of Q-learning.
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These ideas have been adapted to Q-function in (Hausknecht & Stone, 2015) with the Deep
Recurrent Q Network (DRQN) using backpropagation through time.

In the DRQN algorithm, the weights θ of the parametric Q-function Qθ are initialised randomly,
and the replay buffer is filled with totally random trajectories. Then, E episodes of Q-learning
are performed using mini-batches of B transitions drawn uniformly from the replay buffer B.
In addition, a new trajectory is generated at each episode and replaces the oldest trajectory in
the replay buffer. A time horizon T is used to prevent generating infinite trajectories. These
trajectory are generated using the ε-greedy policy that choose an action according to the explo-
ration policy with probability ε, and arg maxa {Qθ(τ0:t, a)} otherwise. The exploration policy
E(A) depends on the environment. Finally, a target Q-function Qθ′ is updated by θ′ ← θ every
C episodes only. Using the target network Qθ′ allows the targets of the loss to be more stable,
easing the convergence of the algorithm, as for the DQN. A pseudocode of the training procedure
is provided in Algorithm 2. It can be noted that the parametric estimator Qθ of the Q-function
is fed with the trajectory τ0:t = (o0,a0,o1,a1, . . . ,ot) instead of the sequence of observations
(o0,o1, . . . ,ot) as is done in (Hausknecht & Stone, 2015). Indeed, for the parametric Q-function
to correctly estimate the belief-action Q-function, this estimator has to receive the actions and
observations, as suggested by the belief filtering (3.18). Otherwise, the policy would be subopti-
mal in the general case. This adjustment was initially proposed by Zhu, Li, Poupart, and Miao
(2017).

It is noteworthy that the parametric Q-functions Qθ must be able to process inputs of variable
length τ0:t ∈ T0:t, ∀t ∈ N. As explained in Section 3.4, RNN is a class of neural networks that
consume the input sequentially by producing a recurrent state that is passed recurrently at each
time step. Doing so, we have a network unit, called a cell, that exhibits memory through the
recurrent state. These neural networks are thus ideal candidates for defining parametric functions
which may depend on sequences of an indefinite length. In the following, these are thus used
as function approximators for the Q-functions as proposed in (Hausknecht & Stone, 2015). The
advantage of using RNNs, in comparison to other methods, is that they allow, in theory, to model
dependencies between inputs and outputs that are separated by arbitrary long time intervals.
However, in practice, we are limited by the memorisation ability of the RNN architecture that
conditions its representation power. As explained in the introduction, the representation power
and memorisation ability are compared for different RNN architecture in the following chapter.

The first architectures of interest are the Long Short-Term Memory (LSTM) (Hochreiter &
Schmidhuber, 1997) and the Gated Recurrent Units (GRU) (Chung et al., 2014). Both are
standard networks that have been applied to many supervised learning problems. We compare
these two RNN with the recently introduced Bistable Recurrent Cell (BRC) and recurrently
neuromodulated BRC (nBRC) (Vecoven et al., 2020). The full architecture of the recurrent
parametric estimator is represented in Figure 4.1. The output of the first RNN is passed as input
to the second. Then, the output of the second RNN is passed to two linear layers separated by
a ReLU activation. Finally, it can be noted the reward is passed as input the neural network,
which is just an implementation choice.
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Algorithm 2: DRQN - Epsilon greedy training
1 Initialise weights θ randomly
2 Fill the replay buffer B of capacity N with transitions generated from the exploration

policy E(A)
3 for e = 0, . . . , E − 1 do

// Evaluate policy
4 if e ≡ 0 (mod M) then
5 Evaluate expected discounted reward from R trajectories with the fully greedy

policy

// Update target network
6 if e ≡ 0 (mod C) then
7 θ′ ← θ

// Generate new trajectory
8 Reset environment to s0 and observe o0

9 Set τ0:0 ← (0, 0,o0)
10 for t = 0, . . . , T − 1 do
11 Select at ∼ E(A) with probability ε, otherwise select

at ← arg maxa∈A {Qθ(τ0:t,a)}
12 Take action at and observe rt and ot+1

13 Set τ0:t+1 ← τ0:t ∪ (at, rt,ot+1)
14 Replace oldest transition in replay buffer B by (τ0:t,at, rt,ot+1, τ0:t+1)
15 if ot+1 is terminal then
16 break

// Optimize recurrent Q-networks
17 Sample B transitions (τ b0:t,a

b
t , r

b
t ,o

b
t+1, τ

b
0:t+1) uniformly from the replay buffer B

18 Compute targets yb =

{
rbt + γmaxa∈A

{
Qθ′(τ b0:t+1,a)

}
if obt+1 is not terminal

rbt otherwise

19 Compute loss L =
∑B−1

b=0

(
yb −Qθ(τ b0:t,a

b
t)
)2

20 Optimize θ to minimise L using Adam optimizer with learning rate α
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Chapter 5

Experiments

In this chapter, the first research question of this master’s thesis is addressed. The experimental protocol
is defined, introducing the performance metrics that are used and the class of environments that are
considered, namely environments with terminal states. Afterwards, the considered POMDPs and MDPs
are briefly described and the performances are reported when using the different RNNs as approximator
of the Q-function.

5.1 Experimental Protocol

The DRQN training (Algorithm 2) is applied on the different POMDPs using each RNN architec-
ture. The performance of the DRQN agent are assessed by the cumulative discounted reward of
the fully greedy policy. The latter, in the context of value-based RL, denotes the policy derived
from the learned Q-function as follows:

πθ(τ0:t) = arg max
at∈A

Qθ(τ0:t,at) . (5.1)

If Qθ perfectly approximates Q, then this policy is optimal, according to the Bellman optimality
equation (4.8). Nevertheless, we do not need Qθ to be perfect to get an optimal policy.

5.1.1 Metrics

The performances of the policies are measured every M = 10 episodes by computing the average
discounted cumulative reward over R = 50 Monte Carlo rollouts. For every POMDP, and
every RNN, 3 training sessions will be performed for the T-Maze environments, 4 for the other
environments. The learning curves of these different training sessions are averaged. In addition,
they are smoothed by an exponential moving average with a very short half-life, to improve
readability without losing eventual brief overperformances and underperformances that arise
over the course of learning.

For the environments where the optimal discounted reward or the optimal policy is known (i.e.,
the Deterministic and Stochastic T-Mazes), the following quantities are studied: the speed of
convergence towards the optimal policy (if the latter was reached), the stability of the learning
process, and the highest performance reached throughout training, relatively to optimality.
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5.1.2 Class of environments

In the experiments, POMDPs with terminal states are be considered. A state s ∈ S is terminal
if, and only if: 

T (s′ | s,a) =

{
1 if s′ = s

0 otherwise

R(s,a) = 0

(5.2)

(5.3)

for all s′ ∈ S and for all a ∈ A. It is obvious that the Q-value of a trajectory that reaches
a terminal states is zero for any action. We restrict the class of POMDPs to those where we
can observe if the state is terminal. In other words, we only use environments where it can be
checked whether st is terminal, from the observation ot, as is often silently assumed in the RL
field. As a consequence, the agent only has to learn the Q-values of trajectories that do not have
reached a terminal state yet. Indeed, as can be seen in Algorithm 2, the computation of the
target depends on whether ot is terminal.

In practice, several POMDPs are studied. First, the Deterministic T-Maze environments that
define a POMDP given the length L of the maze. This parameter allows playing on the size
of the time-dependencies between a certain optimal action and a past observation. Second, a
stochastic version of these environments is introduced, with a new parameter λ ∈ [0, 1[ that
allows playing on the stochasticity of the transitions. Next, the agents are compared on the
Mountain Hike POMDP, where the agent should learn to reach the top of the mountain while
staying on the crests. This POMDP has a continuous observation space and the observations
bring relatively less information about the state than it the case of the T-Maze. An even more
difficult version of this POMDP, the Varying Mountain Hike is introduced. Here, the agent starts
its trajectory randomly in one out of four different mountainous terrains and does not receive any
additional information about its state. Only through its partial observations, it has to recognise
the terrain and act accordingly. Finally, a Markov Decision Process is studied. It is known
that using recurrent policies can provide an advantage, even in fully observable environments
(Hausknecht & Stone, 2015). The results will show if one of the RNN can provide a greater
benefit in comparison to the others.

5.2 Deterministic T-Maze

The T-Maze is a POMDP (S,A,O, T,R,O, p0) with discrete state, observation and action spaces.
The state-space is tabular and constituted of two T-shaped mazes, as can be seen in Figure A.1
in Appendix A.1. The T-Mazes are rotated to lie on their right side, such that the T-junction
is at the right. The initial state is drawn randomly from the two initial cells of the two mazes.
The observation in this initial state indicates in which maze the agent lies. The two mazes differ
by the position of the goal: in the first, the goal is located above, while in the second, the goal
is located below. The agent can move around in the T-Maze and it should learn to navigate
towards the T-junction, and then to take the correct direction in order to find the goal. It should
be done by remembering the initial observation that indicates which maze it was in. It receives a
reward of 4 when finding the goal, and −0.1 when taking the wrong direction at the T-junction.
In both cases, it reaches a terminal state. In addition, when the agent bounces onto a wall, it
stands still and receives a reward of −0.1. In all other cases, the reward is 0. This environment
is designed to assess the ability of the different RNNs to bridge long-term dependencies, without
introducing any other difficulties to confound the results (Bakker, 2001). The Deterministic
T-Maze is formally described as a particular case of the Stochastic T-Maze (see Section 5.3) in
appendix A.1. It is noteworthy that any trajectory τ0:t ∈ T0:t allows to determine the exact state
of the process st for this environment. In other words, the belief bt is always zero for all states
except one.
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For this environment, we decided to use an exploration policy E(A) that is tailored to this
problem as the main point is not to study the exploration-exploitation problem. The exploration
policy is such that E(right) = 0.5 and E(other) = (1−0.5)/3 where other ∈ {up, left, down}. This
exploration policy is followed with probability ε according to the ε-greedy training described in
Algorithm 2. The time horizon T has been chosen as the smallest integer such that a random
walk for T time steps in an infinite one-dimensional corridor according to the exploration policy
ends beyond (L, 0) with a probability of at least 0.5.

Figure 5.1 shows the learning curves (i.e., the estimated expected cumulative reward of the fully
greedy policy over the course of training) for the Deterministic T-Maze environments, averaged
over the 3 training sessions. This figure also shows the theoretical optimal discounted reward and
the optimal discounted reward that can be obtained by a stationary policy. The learning curves
are displayed for all four RNNs that are considered in this work. It can be observed, that the
policies are suboptimal during a certain amount of episodes, and then they sometimes converge
towards the optimal policy, depending on the RNN and the length of the T-Maze. During the
early stages of learning, it is common to observe that the policy corresponds to the optimal
reactive policy. Indeed, the optimality of the policy will heavily depends on the ability of the
RNN to learn that the value function at the T-junction depends on the action and on the initial
observation (Qθ(τ0:t,aup) > Qθ(τ0:t,adown) when o0 = oup and ot = ojunction and vice versa by
exchanging up and down). In general, we observe that the bistable cells reach the optimality
sooner and that their performance stays higher than those of the other RNNs. This effect is
even exacerbated for longer T-Mazes, where only the bistable cells seem to achieve acceptable
performances. For L = 240, only the nBRC succeed in outperforming the optimal reactive policy.
The only exception to this trend is the length L = 90 for which the GRU is clearly performing
as well as the BRC, and the nBRC is struggling in terms of stability of learning.

In Figure 5.2a, we can see the number of episodes after which the optimal policy was reached,
averaged over all 3 training sessions, for each RNN and each length. Note that, for all subfigures
of Figure 5.2, the confidence intervals show the maximum and minimum observed values over
the 3 training sessions. We can clearly see that the two bistable cells allow learning the optimal
policy way faster than the other standard recurrent cells. Furthermore, this figure neglects the
fact that many of the training sessions have failed to achieve optimality for the LSTM and the
GRU. Next, Figure 5.2b shows the proportion of evaluations for which the policy was evaluated
optimal over the course of training. The proportion of optimal evaluations is a measure that
reflects both the rapidity (and ability) to reach the optimal policy and the stability of learning.
Again, we can observe that the BRC and nBRC are outperforming all other RNNs in terms
of optimality proportion, and by a large amount as the length increases. Finally, Figure 5.2c
shows the best mean discounted reward obtained over the course of training relative to the
optimal policy. Once again, the BRC and the nBRC are clearly outperforming all other RNNs.
The fact that bistable cells learn faster and more optimal policies should motivate their use in
memory-demanding applications, especially when episodes of interactions are costly to produce.

The better speed of convergence of the bistable cells towards the optimal policy could be ex-
plained by the bistability mechanisms introduced in (Vecoven et al., 2020). Indeed, information
about the initial observation will likely hold out until the agents reach the junction, thanks to
the neural bistability that allows some neurons to keep a stable value. The dependency between
this information present in the hidden state and the Q-value at the junction will be exploited
by the gradient updates to output the correct value. This hypothesis would imply that this
bistability mechanism favours the discovery of long time dependencies. Afterwards, backpropa-
gation through time would allow reinforcing the presence of this information until reaching the
junction. The fact that the other recurrent architectures tend to vanish information about the
initial observation will make the learning of the dependency at the junction harder. Concerning
the better stability, it could once again be explained by the bistability mechanism that probably
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(a) T-Maze of length L = 20
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(b) T-Maze of length L = 40
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(c) T-Maze of length L = 60
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(d) T-Maze of length L = 90
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(e) T-Maze of length L = 120
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(f) T-Maze of length L = 160
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(g) T-Maze of length L = 200
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(h) T-Maze of length L = 240

Figure 5.1: Learning curves for the Deterministic T-Maze
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(c) Best performances obtained during training rel-
atively to optimality

Figure 5.2: Additional analysis of the learning curves for the Deterministic T-Maze

allows keeping a stable value in the hidden states, maybe even after a small weight update (for
the neurons that stay bistable). The recurrent cells would thus heavily rely on this stable value to
output its prediction at the junction. For less stable cells, the footprint of the initial observation
in the hidden state at the junction would presumably change more easily as the network weights
are updated, causing the Q-values to degrade more easily. Indeed, the dependency between the
last hidden states and the output will have to be learned again to a greater extent than with
bistable cells since the distribution of the hidden states would change more easily at these distant
time steps.

5.3 Stochastic T-Maze

The Deterministic T-Maze is generalised to present stochastic transitions, with a stochasticity
parameter λ ∈ [0, 1[ that gives the probability to move in a random direction. When λ = 0,
it is equivalent to the Deterministic T-Maze and the T-Maze of Bakker (2001). The stochastic
environment is formally described in appendix A.1. In the following experiments, λ = 0.4 has
been considered, which corresponds to ignoring the action of the agent and simulating a random
action with probability 0.4.

From the learning curves of Figure 5.3, the same learning behaviour as for the Deterministic
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T-Maze can be observed. However, for a fixed T-Maze length, the optimal policies are reached
later for all RNNs. The RNNs also start failing sooner, at L = 40 for the LSTM, L = 60 for
the GRU. However, as for the Deterministic T-Maze, the GRU unexpectedly succeed in reaching
optimality for the length L = 90. Finally, for L = 120, all the RNNs fail except the nBRC
that still achieves optimality. Although it only happened at L = 240 for the Deterministic
T-Maze, it should be noted that the Stochastic T-Maze will lengthen the trajectories by 1

1−λ
on average, which correspond to 1.67 here. This, and the fact that the trajectories fed to the
RNNs are noisier, could explain why they fail twice earlier. In addition, it can be observed that
some discounted rewards exceed the theoretical optimal discounted reward. This is due to the
stochasticity and the fact that the performance is evaluated using R = 50 Monte Carlo rollouts.
The last observation that can be made is that the performances of the policies are less stable
over the training, compared to the Deterministic T-Maze.

We can also see in Figures 5.4a and 5.4b that the bistable cells still surpass the other cells by a
large amount in terms of rapidity and stability of learning. It means that they are both faster to
learn and more optimal on average over the training. Interestingly, it can be seen from Figure 5.4c
that the best performance of the GRU is very close to those of the two bistable RNNs, despite
the GRU takes longer to reach optimality when it does and produces an optimal policy less often.
It probably means that, although the GRU is able to remember the initial observation, it is less
efficient in learning quickly the dependence between this initial observation and the Q-value at
the junction.

To conclude, both on the Deterministic T-Maze and the Stochastic T-Maze, the bistable cells
were found to be able to discover and learn long time-dependencies faster than the standard cells.
In addition, these cells are more stable in their learning. Indeed, they have a far higher ratio of
optimal evaluation over their course of training. Finally, they allow achieving better policies on
harder environments, where the two standard cells completely fail in outperforming the optimal
stationary policy. It already answers in the affirmative to the first research question of this work:
the bistable cells allow extending the class of recurrent policies that we can represent in recurrent
RL.

5.4 Mountain Hike

The Mountain Hike environment is a POMDP with continuous state space. The agent can
move in 4 directions on a 2-dimensional map, with Gaussian noise on the transitions. The only
observation that it makes is a noisy measure of its altitude. The latter is always negative. The
reward is also equal to its altitude plus some noise. Around the highest point of the map, the
states are terminal. The optimal policy consists in going as fast as possible towards these terminal
states while staying on the crests in order to get less negative rewards than in the valleys. The
environment is represented in Figure A.2 in Appendix A.2. This environment is inspired by the
Mountain Hike environments described in (Igl et al., 2018). On the contrary to this environment
where a noisy observation of the position was available, only the altitude is observed in this work,
and with some noise too.

As Figure 5.5a illustrates, all RNNs seem to converge towards the same performance. It can
be seen that the GRU learn faster, followed by the nBRC and BRC. The LSTM, however, is
significantly slower to learn satisfactory policies. As mentioned in Section 5.1.1, Figure 5.5a
displays the smoothed averaged performances from 4 training sessions. Sample trajectories from
the first training session can be visualised in Figure 5.5b. From this figure, we can conclude that
all RNNs are quite good at constantly filtering their position from the noisy altitude observation,
in order to correct their trajectory towards the terminal states.
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(a) T-Maze of length L = 20
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(b) T-Maze of length L = 40
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(c) T-Maze of length L = 60
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(d) T-Maze of length L = 90
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(e) T-Maze of length L = 120

Figure 5.3: Learning curves for the Stochastic T-Maze with λ = 0.4
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(a) Average number of episodes to reach optimality
when the optimal policy was reached
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(b) Proportion of evaluations with optimal policy
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(c) Best performances obtained during training rel-
atively to optimality

Figure 5.4: Additional analysis of the learning curves for the Stochastic T-Maze with λ = 0.4
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(b) Policies derived from the learned Q-values

Figure 5.5: Learning curves and illustration of the final policies for the Mountain Hike
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(b) Best performances obtained during training

Figure 5.6: Learning curves and best performances for the Varying Mountain Hike

5.5 Varying Mountain Hike

The Varying Mountain Hike environment is a simple generalisation from the previous environ-
ment. Instead of having a single mountainous terrain, the terrain is drawn randomly from one
out of four different variations at the start of each episode. The agent does not receive any new
observation in addition to the altitude. These variations consist of the four rotations by 90◦ of
the original terrain. It makes this POMDP a complicated environment in which the agent should
succeed in recognising the terrain from very partial observations and then using the appropriate
directions, while also constantly compensating the noisy transitions.

In this environment, it is clear that the GRU outperforms all other cells by a considerable amount,
including the two bistable ones. This result is thus interesting. As often, the LSTM underper-
forms. Despite the (Varying) Mountain Hike might not require a high-memorisation ability to
correctly estimate the Q-value, we would not have expected the bistable cells to underperform
in comparison to the GRU. The GRU architecture may allow to better filter the position, given
the altitude observations. Indeed, being able to reconstruct the belief — that is, the probability
distribution over the positions — allows to correctly estimate the value of the trajectory. Our
hypothesis is thus that the recurrent architectures of the bistable cells are less suitable than that
of the GRU for the filtering of the belief in the particular case of the (Varying) Mountain Hike
POMDP. This will be studied in Chapter 6.

5.6 Double Inverted Pendulum on Cart

As highlighted in (Hausknecht & Stone, 2015), in fully observable environments, using DRQN
instead of DQN can still provide a better policy, certainly because using RNNs offers a higher
representation capacity for the Q-functions. Because of that, it is interesting to compare the
performance of DRQN to DQN for the Double Inverted Pendulum on Cart (DIPOC) environ-
ment. In addition, it will be interesting to see if the bistable cells still provide an advantage
in the performance and in the rapidity of learning in environments that do not require a high
memorisation ability, such as the DIPOC. However, using recurrent estimators that depends on
the complete trajectory τ0:t would be an overkill for just giving a small boost in performance.
Instead, it is chosen to always feed Qθ with only the last W observations of the state. Con-
sequently, the RNN that represents Qθ takes τt−W+1:t as input, where τt−W+1:t is defined by
(at−W ,ot−W+1, . . . ,ot−1,at−1,ot). For this environment, W was chosen to 8. If t < W , ak and
ok are taken to zero, for all k < 0, such that the RNN always consumes of sequence of length W
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(b) Best performances obtained during training

Figure 5.7: Learning curves and best performances for the Double Inverted Pendulum on Cart

before outputting its prediction. In this fully observable environment, it can also be noted that
ot = st.

As Figure 5.7a shows, the recurrent architectures provide a slight advantage in this environment,
especially in terms of rapidity of learning. Indeed, the feedforward architecture, for which the
two layers of RNNs are replaced by two feedforward layers, reaches the cumulative reward of 800
nearly twice later than the recurrent architectures. Moreover, the two bistable cells are learning
slightly faster than the two standard cells. In terms of the best cumulative return obtained
over the course of training, we cannot use Figure 5.7a to conclude, because of the exponential
moving average filtering. However, Figure 5.7b shows this best performance obtained over the
training, averaged over the 4 training session. This figure also shows the standard deviation of
this best performance. Even if the differences in performance are tiny, it is clear, by looking at
the estimated standard deviations, that the BRC and the non recurrent DQN are slightly better
than the other cells.
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Chapter 6

Belief filtering and generalisation in
recurrent Q-learning

This chapter addresses the second research question of this master’s thesis. Since the policies are derived
from learned Q-function, the quality of some of these functions is studied. In addition, since these
learned Q-function should embed the belief-filtering computation in the successive hidden states, the mutual
information between these and the true belief is studied. The mutual information is assessed by the KSG
estimator, and by the quality of the mappings that can be constructed between the hidden states and the
belief, as explained in Section 3.5. Finally, for the T-Maze environments, the ability of each RNN to
generalise to unseen POMDPs will be studied.

6.1 Description of the analyses

In addition to the second research question studying the belief-filtering ability of the different
RNNs, this chapter analyses the quality of the Q-values. Indeed, the belief is a sufficient statistic
from the trajectory to estimate the Q-values. Although a bad estimation of the Q-function does
not imply that the policy derived from this Q-function is bad, it is interesting to observe these
three metrics in parallel: the mutual information with the belief, the quality of the Q-values and
the performance of the policies. The generalisation over the different lengths of the T-Mazes is
also interesting to study, because, while it is likely that the learned Q-functions do not generalise
well, the policies could generalise well on these similar environments. In addition, the bistability
mechanism could influence this capacity of generalisation.

6.1.1 Q-values

As explained in Section 3.2, computing Q(bt,at) is a complicated task. However, for the first
considered environment, the Deterministic T-Maze, the belief exactly predicts the state (i.e.,
bt(st) = 1 and bt(s) = 0, s 6= st). For this environment, we thus have that the state-action value
function Q(st,at) is equal to the belief-action value function Q(bt,a). The learned Q-function
Qθ(τ0:t,at) will thus be evaluated by comparing it to Q(st,at). The later is easily estimated in
the case of the Deterministic T-Maze. The quality of the Q-values is estimated by computing
the MSE loss between Qθ(τ0:t,at) and Q(st,at) for a dataset of partial trajectories τ0:t generated
according to the ε-greedy policy on the learned Q-function Qθ(τ0:t,at). These trajectories are
thus generated according to the same distribution as during the training process.
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6.1.2 Belief reconstruction

As suggested by (4.9), the Q-function that we learn should embed the filtering of the belief
given the trajectory, in addition to outputting the belief-action value. As RNNs were chosen
as function approximators of the Q-function, they will be responsible to extract and memorise
information from the observations that is relevant to estimate the value of a trajectory. This
information will be conveyed through the hidden state. As (3.21) and (4.6) suggest, a sufficient
statistic to correctly estimate the value of a trajectory is precisely the belief. Note, however,
that partial information about the belief could be sufficient to correctly estimate its value. That
being said, we assume, in the general case, that the hidden state should have a high mutual
information with the belief to correctly estimate the value of the trajectory with the recurrent
cell.

In view of that, we propose to study the mutual information between the hidden state and
the belief with three distinct methods. First, the continuous mutual information between the
hidden state ht and the belief bt will be estimated using the non-parametric mutual information
estimation method known as the Kraskov estimator (Kraskov et al., 2004), as described in
Section 3.5. These algorithms having a high time complexity for large datasets and requiring
exponentially large datasets to correctly estimate the mutual information in the case of highly
dependent variables, we decided to rely on two additional methods to control these results. These
methods, motivated by I(X;Y ) = h(X)−h(Y | X) and the links that exist between maximising
the mutual information and minimising the cross-entropy (Boudiaf et al., 2020), estimate the
quality of the mapping that we can construct between ht ∼ X and bt ∼ Y . The first method
estimates the cross-entropy loss on a test set after having trained a multilayer perceptron (MLP)
to output bt given ht using a training and a validation set. The second, non-parametric, uses
classification random forests to map ht to bt. The classification random forest is trained to
output a state that is drawn according to the belief. In this case, the accuracy of predicting the
most likely state of the belief is reported, this accuracy being computed on a separate test set.
Finally, it can be noted that the dataset of beliefs and hidden states is extracted from trajectories
generated according to the ε-greedy policies, as for the Q-values.

6.1.3 Generalisation to unseen environments

The T-Maze environments, describing a POMDP given a length L of the T-Maze, provide a
family of environments that differ slightly from one another. Although we can easily think of
a recurrent policy that generalises on all length of the T-Maze, it is not as easy to think of
a recurrent Q-value estimation that would do so. Indeed, the Q-value will be very different
and more changing, because of the discount factor, if L is bigger. It is thus likely the policy
derived from the learned Q-values on a T-Maze of length L will not generalise well on other
lengths. However, it will be interesting to see if some of the RNN still succeed in outputting
an optimal policy when changing the length of the T-Maze. In other word, to see if the RNN
is still able to predict Qθ(τ0:t,aup) > Qθ(τ0:t,adown) when o0 = oup and ot = ojunction and vice
versa by exchanging up and down, when the length of the T-Maze has been changed between the
training and the evaluation. It is noteworthy that this analysis will be conducted on the T-Maze
environments only.

6.2 Deterministic T-Maze

It can be seen in Figure 6.1a that the performance of the policies (see Figure 5.2c) are strongly
correlated with the MSE on the learned Q-values. Since the belief (here, the state) is a sufficient
statistic for estimating the value of a trajectory, it suggests that the mutual information between
the hidden states and the belief could also be correlated with the performance. This is studied
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(a) MSE loss on learned Q-values
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(b) Estimated mutual information between ht and
bt
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(c) Residual cross entropy loss of the multilayer per-
ceptron mapping ht to bt
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(d) Accuracy of the random forest mapping ht to ŝt
(the most likely state from bt)

Figure 6.1: Analysis of the outputs and recurrent states for the Deterministic T-Maze

in the following figures.

In Figure 6.1b, the mutual information between the hidden states and the beliefs is reported for
all lengths and all RNNs. It shows that the mutual information between vanishes for RNNs that
fail in producing an optimal policy. We can also see that the decrease in mutual information
starts sooner, in terms of the length of the T-Maze, than the decrease in performance of the
policy. In other words, a drop in the mutual information between the hidden state and the
belief announces the difficulty of the RNNs to produce optimal policies. This suggests that the
(un)ability to maintain a high mutual information between the hidden state and the belief is a
cause of the (non) optimality of the policy. It can also be noticed that the mutual information
is increasing with the length for small lengths of the T-Maze. This is not surprising since the
mutual information is probably high for small lengths because the reconstruction of the belief is
easy. And we know that the maximal mutual information increases as the length increases since
the entropy of bt is higher for bigger lengths. In Figure 6.1c, we can see that the ability of the
MLP to predict the belief is in line with the mutual information that we measured. However, this
analysis fails in discriminating the GRU from the bistable cells that perform better. Finally, since
the T-Maze transitions are deterministic, we are able to estimate the accuracy of a classification
random forest to predict the true state in Figure 6.1d. Once again, the results corroborate those
of the mutual information.
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(b) GRU
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(c) BRC
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Figure 6.2: Generalisation to other lengths for the Deterministic T-Maze

Figure 6.2 compares the performances of the policies, trained on each of the lengths of the
T-Maze, being evaluated on every other length of the T-Maze. For each training length, the
performances are averaged over the 3 training sessions performed on this length. It can be seen
that the BRC provide a better generalisation, with only around three training lengths that do
not generalise on all T-Maze lengths, and that for the 3 training sessions. The nBRC and GRU
are a bit worse at generalising but it is not bad. Finally, the LSTM is not good at generalising,
even for the training sessions that converged towards the optimal policy. The fact that the BRC
is clearly better at generalising than the GRU or the nBRC, despite they all perform similarly,
could be due to its smaller number of parameters. Indeed, a smaller number of parameters imply
a lower hypothesis space, and this could hypothetically prevent the RNN to overfit too much the
Q-value of the environment on which it has been trained.

6.3 Stochastic T-Maze

As mentioned in the previous chapter, for the Stochastic T-Maze, λ has been fixed to 0.4. As can
be seen in Figure 6.3, the results for the Stochastic T-Maze offer exactly the same conclusions
as for the Deterministic T-Maze. Indeed, it is clear, by looking at the Figures 6.3a that the
performances of the agent are correlated with the mutual information between their hidden
states and the belief. Notably, the mutual information of the nBRC diverges from the others at
L = 120, where it is the only one to achieve optimality. In Figure 6.3b, the cross-entropy loss
for the MLP that maps the hidden state to the belief is reported. In Figure 6.3c, the accuracy
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Figure 6.3: Analysis of the outputs and recurrent states for the Stochastic T-Maze

of predicting the most likely state of the belief from the hidden state for the random forest
is displayed. The results of the MLP and the random forest of Figures and 6.3c confirm the
observations from the mutual information estimation, as for the Deterministic T-Maze.

As a conclusion, these results, for both the Deterministic and Stochastic T-Maze, answer in the
affirmative to the second research question of this master’s thesis: in the context of value-based
recurrent RL, the ability of the RNN to filter the belief in its hidden states directly influences
the quality of the learned Q-values, and, as a consequence, the performance of the agent.

Finally, we can observe the same patterns of (non-)generalisation across the lengths of the T-
Maze in Figure 6.4. As for the Deterministic T-Maze, the performances are averaged over the 3
training sessions performed, for each training length. The BRC is clearly outperforming all other
RNNs in terms of generalisation to other lengths, even more than in the Deterministic T-Maze.
Furthermore, it is observed that, for the Stochastic T-Maze, the nBRC seems to better generalise
than the GRU. It is coherent with the observation that the GRU had a very high performance
on the Stochastic T-Mazes, but often slightly suboptimal (see Figure 5.4c and 5.4b).
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Figure 6.4: Generalisation to other lengths for the Stochastic T-Maze
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(a) Illustration of the successive samples St repre-
senting the successive beliefs bt
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Figure 6.5: Illustration of particle filtering and belief parametrisation for the Mountain Hike

6.4 Mountain Hike

For the Mountain Hike, as explained in Section 3.5, the belief is approximated by a piecewise
constant function over a uniform discretisation of the state space. An illustration of the particle
filtering of the belief and the parametrised belief is available in Figure 6.5. This approximation is
constructed from samples derived from the particle filtering procedure described in Algorithm 1.

The best performance obtained over the course of training is displayed in Figure 6.6a. In the
following subfigures of Figure 6.6, the same analysis than for the T-Mazes is performed to evaluate
the mutual information. The results on the mutual information are not as conclusive as for
the T-Maze environments. Figure 6.6b shows a mutual information that is roughly aligned
with the performances summarised in Figure 6.6a, except that the bistable cells have a slightly
higher mutual information relatively to their performances. This could be explained by the very
comparable performances of the different policies on this environment. Indeed, even if there is
a slight difference in performance, it is not as drastic as for the T-Mazes, such that the mutual
information does not allow to discriminate the performances of the different RNNs. Concerning
the results of Figure 6.6c and Figure 6.6d, it can be noticed that they are not exactly aligned
with the mutual information estimation, especially for the accuracy. It can be explained by
reminding that the cross-entropy loss, or the accuracy, can be very low if Y is easy to predict
without implying that Y convey much information about X and vice versa (e.g., Y is a constant
value). Indeed, these metric are rather proxies for h(Y | X) than for I(X;Y ) = h(Y )−h(Y | X).

6.5 Varying Mountain Hike

The Varying Mountain Hike is treated exactly like the Mountain Hike. This environment, having
four possible mountainous terrains, has a parametrised belief that is defined on the concatenation
of the four discretisations of these four possible terrains. As for the Mountain Hike, the belief is
represented by the frequencies of the particles in every bin of the concatenated discretisations.
The particle filtering and parametrised belief are illustrated in Figure 6.7 for the Varying Moun-
tain Hike. It can be noted that, after a few time steps, the particle filtering allows one to predict
the terrain with high confidence. It can also be noticed the lower variance of the transitions in
this environment, compared to the classic Mountain Hike.

As for the Mountain Hike, the mutual information estimation in Figure 6.8b is not really corre-
lated with the performance of the policies from Figure 6.8a. Moreover, the results of Figure 6.8c
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Figure 6.6: Analysis of the performance and recurrent states for the Mountain Hike
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Figure 6.7: Illustration of particle filtering and belief parametrisation for the Varying Mountain
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and 6.8d do not corroborate the results. Indeed, as for the Mountain Hike, the mutual informa-
tion is unexpectedly high for the LSTM and is also higher for the bistable cells relative to their
performances. These disappointing results could be explained by the fact that the quality of the
policies is not necessarily correlated with the quality of the Q-functions. However, the estimation
of the true Q-functions being really hard in this environment, we are not able to conclude on the
quality of the Q-values learned by each of the RNNs, and thus to conclude on this hypothesis.
The only thing that can be observed is that the learned Q-function have not reached convergence
yet after 32 760 episodes, with a loss still quite high, as can be seen in Figure 6.8e, suggesting
indeed that the quality of the current Q-functions is not very good.
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Figure 6.8: Analysis of the performance and recurrent states for the Varying Mountain Hike
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Chapter 7

Online Fitted Q-Iteration

In this chapter, independently of the rest of the research project, we highlight the lack of theoretical
motivation for the presence of the target Q-network in Q-learning algorithms such as Deep Q-Network
(DQN) (Mnih et al., 2015). In addition, we suggest that using a target Q-network defines a Q-iteration
algorithm instead. We propose to extend the Fitted Q-Iteration algorithm (Ernst, Geurts, & Wehenkel,
2005) to the online learning setting, by introducing the Online Fitted Q-Iteration algorithm. The latter has
key differences with the DQN algorithm, allowing to show a better convergence rate and better stability,
especially in environments with sparse rewards. Finally, this algorithm gets rid of the target update period
hyperparameter in favour of an objective update criterion.

7.1 Q-iteration and Q-learning

In this chapter, MDPs are considered, with states x ∈ X, actions u ∈ U , bounded rewards r ∈ R.
In addition, if x = xt, it is conveniently chosen to denote xt+1 by y. On the one hand, the classic
Fitted Q-Iteration algorithm as proposed by Ernst et al. (2005) learns the Q-function from a
set of transitions T = {(xk, uk, rk, yk)}K−1

k=0 . The idea is to successively learn approximations of
Q1, Q2, . . . , QN , namely Q̂1, Q̂2, . . . , Q̂N . The function Qi is the Q-function with horizon i, as
defined in Section 3.2. The approximations are learned using the following successive datasets:

Sn =

{(
(xk, uk), rk + γmax

u′∈U
Q̂n−1(yk, u

′)

)}K−1

k=0

for n = 1, . . . , N and with Q̂0(x, u) = Q0(x, u) = 0, ∀(x, u) ∈ X × U . This algorithm is known
to be very stable in comparison to vanilla Q-learning with function approximators. Specifically,
divergence to infinity is impossible for a certain class of kernel (tree) estimators, and convergence
can be ensured thanks to the normalizing condition for some of these estimators. This algorithm,
initially proposed with trees and random forests as function approximators, was adapted by
Riedmiller (2005) to use neural networks as function approximators.

On the other hand, Q-learning is a classic model-free algorithm in reinforcement learning that
allows learning the Q-function from observed transitions. The algorithm consists in updating
our approximation Q̂, initialised at 0 for all (x, u) ∈ X × U , each time that a new transition
(xk, uk, rk, yk) is encountered, by the following rule:

Q̂(xk, uk)← (1− αk)Q̂(xk, uk) + αk

(
rk + γmax

u′∈U
Q̂(yk, u

′)

)
.

This algorithm can be shown to converge under approximate hypotheses on αk and on the gen-
erated transitions. Parametric Q-learning allows approximating the Q-function by a parametric

43



function approximator Qθ in large state space, where it would be non-tractable to maintain
an approximation for all (x, u) ∈ X × U . This algorithm consists in successively updating the
approximation Qθ as follows:

θ ← θ + α

(
rk + γmax

u′∈U
Qθ(yk, u

′)−Qθ(xk, uk)
)
∇θQθ(xk, uk) .

which corresponds to one gradient step with respect to θ on the mean squared error loss between
the temporal difference target rk + γmaxu′∈U Qθ(yk, u

′) and the current estimation Qθ(xk, uk),
with the temporal difference target considered fixed with respect to θ. The update for parametric
Q-learning is known to be unstable, due to the fact that the temporal difference target rk +
γmaxu′∈U Qθ(yk, u

′) is moving for any fixed (xk, uk) as the network is updated. Note that this
moving target is not observed when regressing in the Fitted Q-Iteration algorithm, where the
target is fixed, as in supervised learning, for each n. In other words, Q-learning is updated
using its current estimation, while Q-iteration is updated using a well-defined estimation that
has already converged.

The most successful application of parametric Q-learning is the Deep Q-Network algorithm (Mnih
et al., 2015) in which the instability was addressed by introducing a target network Qθ′ whose
parameters θ′ are only updated once every C parameters updates to the value of θ. It eases
the convergence by keeping the temporal difference target fixed for long periods. In addition,
this algorithm makes use of a replay buffer from which to sample transitions, such that the
successive transitions used in the update are not necessarily correlated. It also allows increasing
the sample efficiency of the algorithm. However, the performance of the DQN heavily relies on
the introduction of the target Q-network. We claim that the introduction of this target network
makes DQN close to an (online fitted) Q-iteration algorithm and not a (temporal difference)
Q-learning algorithm because the introduction of the target is not theoretically motivated in the
context of Q-learning while it is the essence of Q-iteration. A direct consequence of understanding
DQN as a Q-iteration algorithm is that the policies derived from the Q-functions learned by DQN
after k target updates are at best k-steps greedy policies. As C is usually chosen very big to
keep the algorithm stable (10 000 is a standard value), the convergence towards an optimal policy
instead of a greedy one is very slow for DQN.

Finally, it should be noted that, on the contrary to Q-learning, the Fitted Q-Iteration algorithm
is currently offline only. In other words, it requires a fixed set of transitions to learn from. In
some applications, we do not have an approximate policy from which to generate interesting
transitions and we have to rely on random exploration. However, generating a large set of
transitions according to a random policy can be costly and we might prefer to learn online, such
that we generate better and better transitions (in the sense that there is more to learn from
them than from totally random transitions because they explore a more rewarding part of the
state-action space). Consequently, online learning typically reduces the number of transitions
needed to converge towards a near-optimal policy. It motivates the introduction of an online
version of the Fitted Q-Iteration algorithm. In addition, if DQN should indeed be understood as
an (online fitted) Q-iteration algorithm to give grounds to the target network, some adaptations
have to be done to make it a correct fitted Q-iteration algorithm, and we propose the Online
Fitted Q-Iteration algorithm that includes these adaptations. Anchoring the Online FQI in the
Q-Iteration algorithms thus justifies the existence of the target Q-Network, and motivates two
differences with the DQN that should improve the stability of the algorithm and the speed of
convergence. Conversely, some choices in the design of the Online Fitted Q-Iteration are inspired
by the DQN, which is known to perform very well in complex environments.
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7.2 Online Fitted Q-Iteration

To generalise the Fitted Q-Iteration to the online case, several choices are possible. The most
straightforward choice would be to generate a set S1 of S � K transitions and learn Q̂(1)

N over
this set. And then, we could discard this set and start over by sampling a second set S2 of
S � K transitions from the ε-greedy policy derived from Q̂

(1)
N in order to learn Q̂

(2)
N . The

successive set S1,S2, . . . should progressively include better transitions. And we continue until
convergence of the policy. However, this method has two drawbacks. First, we have to learn
all successive approximators Q̂(i)

1 , . . . , Q̂
(i)
N from scratch for all new set Si. It would be better

to learn the N estimators throughout the generation of the successive datasets. Second, some
data is discarded and we only keep the transitions generated from the ε-greedy policy Q̂(i−1)

N ,
possibly losing information about less optimal trajectories that were present in the first sets of
transitions. Here, it would be better to use a growing batch of transitions, or replay buffer, in
which all transitions are added but are not discarded.

In the resulting algorithm, the successive Q̂1, . . . , Q̂N functions are learned successively while
new transitions are added to the replay buffer. The estimator Q̂n is trained on the transitions
sampled from the replay buffer using Q̂n−1 as target Q-network. The target network Q̂n−1 is
updated to Q̂n when convergence is reached for Q̂n. At this moment, we can start to approximate
Q̂n+1.

Two additional choices can be performed. First, we have to choose the Q-function from which
we derive the behaviour policy, typically a ε-greedy policy. Two natural choices are Q̂n, the
Qn-function being learned or Q̂n−1, the Qn−1-function that has reached convergence and that is
used as target network. To be similar to the DQN algorithm, we choose to use Q̂n. In addition,
there is more exploration when using Q̂n since it is updated and changes during its training while
Q̂n−1 is fixed. Second, as we use neural networks as function approximators in this work, each
time that we increment n, we can either reinitialise the weights θ randomly to estimate Q̂n, or
we can keep θ at its value of convergence for Q̂n−1. We choose the second alternative, because
the distance between Qn and Qn−1 is bounded in the case of bounded rewards (i.e., Qn is close
to Qn−1). In addition, strengthens the similarity with DQN.

The Online Fitted Q-Iteration algorithm is detailed in Algorithm 3 and can be compared to
the Deep Q-Network (Algorithm 4) and the batch-mode Fitted Q-Iteration (Algorithm 5). The
OFQI and FQI algorithms are only detailed for parametric function approximators, but the
adaptation to other approximators is straightforward, using batch-mode approximators for FQI
and online approximators for OFQI. The differences between DQN and OFQI are highlighted
in grey. As far as the differences with batch-mode FQI are concerned, we have two main ones.
First, the amount of data available to fit the estimators Q̂n increases as n increases. Second,
the data available to fit the estimator Q̂n will not be generated by a single exploration policy,
but by a sequence of policies, each of them being modified at each gradient step, going from an
(i − 1)-steps greedy policy to an i-steps greedy policy, for i = 1, . . . , n. This is comparable to
the DQN algorithm. In comparison to batch-mode FQI, we are also limited to online estimators
such as neural network, or online random forest (e.g., Mondrian Forests such as proposed by
Lakshminarayanan, Roy, and Teh (2014)).

A natural objection to the Online Fitted Q-Iteration algorithm is that the first estimators are
trained on few data in comparison to the amount of data that will be generated over the course
of training. Since all the following estimators will recursively use the previous estimators to
compute their targets, the bad quality of the formers could worsen the quality of the latter.
However, as n increases, the influence of the first estimators vanishes, and the Q-functions
should converge towards the unique solution of the Bellman equation. In other words, the OFQI
algorithm should mainly speed up the convergence during the early stages of learning, despite
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having a worse approximation of the last rewards of a trajectory, that are heavily discounted
in the cumulative reward as n increases. But in the final stages of learning, this algorithm
should converge towards the Q-function thanks to the Q iterations that should be more and
more frequent.

Algorithm 3: Online Parametric Fitted Q-Iteration
1 Initialise weights θ randomly to represent Qn
2 Initialise weights θ′ such that Qθ′(x, u) = 0, ∀(x, u) ∈ X × U to represent Qn−1

3 Add S transitions from a random policy to the replay buffer
4 Reset environment and observe initial state y
5 Set n← 1
6 Set s← 0
7 for t = 0, . . . , T − 1 do
8 x← y
9 Select u ∼ U(U) with probability ε, otherwise select u← arg maxu∈U {Qθ(x, u)}

10 Take action u and observe r and y
11 Store (x, u, r, y) in the replay buffer
12 Sample B transitions (xb, ub, rb, yb) from the replay buffer

13 Compute target yb =

{
rb + γmaxu′∈U{Qθ′(yb, u′)} if yb is terminal
rb otherwise

14 Compute loss L =
∑B−1

b=0 (yb −Qθ(xb, ub))
15 Optimise θ to minimise L using Adam optimiser with learning rate α
16 if y is terminal then
17 Reset environment and observe initial state y

18 if Qθ has converged then
19 θ′ ← θ
20 n← n+ 1

7.3 Experiments

As mentioned in the previous section, the target update of the OFQI algorithm is performed
when convergence is detected. In practice, we propose to implement this by introducing a new
hyperparameter U that replaces the target update period C present in the DQN algorithm. This
hyperparameter U , typically chosen between 10 and 50, concludes for the convergence of Qn if
no improvement of the MSE loss has been observed on the last U mini-batches. This is just one
possibility for concluding on the convergence of Qn. Note that the results are averaged from 4
training sessions in the following figures, as for the Mountain Hike environments.

7.3.1 Double Inverted Pendulum on Cart

The first considered environment is the Double Inverted Pendulum on Cart, as introduced in
Section 5.6 and formally described in Appendix A.4. In Figure 7.1a, a classic choice of C = 1000
is made for the DQN algorithm, and U = 10 is chosen for the OFQI algorithm. It is clear
that the slow target update completely delays the DQN convergence. Indeed, we can see in
Figure 7.1b that the losses for the OFQI algorithm are far higher than for the DQN algorithm
while still being reasonable. It suggests that the OFQI is constantly trying to learn as soon as it
has converged, by updating the target, instead of idly waiting for the next target update. This
is precisely the desired behaviour for the OFQI algorithm.
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Algorithm 4: Deep Q-Network
1 Initialise weights θ randomly
2 θ′ ← θ
3 Add S transitions from a random policy to the replay buffer
4 Reset environment and observe initial state y
5 for t = 0, . . . , T − 1 do
6 x← y
7 Select u ∼ U(U) with probability ε, otherwise select u← arg maxu∈U {Qθ(x, u)}
8 Take action u and observe r and y
9 Store (x, u, r, y) in the replay buffer

10 Sample B transitions (xb, ub, rb, yb) from the replay buffer

11 Compute target yb =

{
rb + γmaxu′∈U{Qθ′(yb, u′)} if yb is terminal
rb otherwise

12 Compute loss L =
∑B−1

b=0 (yb −Qθ(xb, ub))
13 Optimise θ to minimise L using Adam optimiser with learning rate α
14 if y is terminal then
15 Reset environment and observe initial state y

16 if e ≡ 0 (mod C) then
17 θ′ ← θ

Algorithm 5: Parametric Fitted Q-Iteration
Input: Set of K transitions

1 Initialise weights θ randomly to represent Qn
2 Initialise weights θ′ such that Qθ′(x, u) = 0, ∀(x, u) ∈ X × U to represent Qn−1

3 Reset environment and observe initial state y
4 for n = 1, . . . , N − 1 do
5 while Qθ has not converged do
6 Sample B transitions (xb, ub, rb, yb) from the set of transitions

7 Compute target yb =

{
rb + γmaxu′∈U{Qθ′(yb, u′)} if yb is terminal
rb otherwise

8 Compute loss L =
∑B−1

b=0 (yb −Qθ(xb, ub))
9 Optimise θ to minimise L using Adam optimiser with learning rate α

10 θ′ ← θ
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However, we can try to improve the DQN algorithm by choosing a less standard but more
adapted parameter. Indeed, we can try with C = C̄U where C̄U is defined as the average update
period performed by the OFQI algorithm with hyperparameter U . For the DIPOC, we observed
that C̄10 ≈ 18. Since the OFQI algorithm is good with this average update period, we might
think that it is a good period for the DQN algorithm. However, as Figure 7.1c shows, the DQN
algorithm with C = 18 is not as good as the OFQI algorithm. This is very interesting since
it suggests that the better performance of the OFQI is not only due to its automatic tuning of
the parameter C, but also probably to the fact that it updates the target at the right moment.
In addition, and this was the main reason for the introduction of the target Q network in the
DQN algorithm, the DQN algorithm is not stable at all when having a too high target update
frequency. We can indeed see in Figure 7.1d that the losses have exploded at one point for the
DQN algorithm with C = 18, while they have not for the OFQI with U = 10 and C̄10 ≈ 18.
However, we can also see in Figure 7.1c that an adequate choice of the parameter C = 100 for
the DQN algorithm allows getting similar performance to the OFQI algorithm. This, however,
has required to tune C for this particular environment.

Finally, Figure 7.1e shows all training sessions together, such that they can be compared. We
can also see that the OFQI algorithm with U = 20 achieve a similar performance than with
U = 10. Furthermore, the DQN algorithm with C = 5 has shown an even worse explosion in the
losses, as can been seen in Figure 7.1f. As suggested in the previous section, we can also notice
in Figure 7.1c that the OFQI advantage is especially present in the early stages of training.

7.3.2 Car on the Hill

The second environment is the Car on the Hill environment. This environment is taken exactly
the same as in the original FQI paper (Ernst et al., 2005), where it is described very precisely in
the Appendix C.2. In this environment, a car is travelling on a hill, and the agent has two actions
available: full acceleration and full deceleration. The reward is 1 in the terminal state that is on
top of the hill. There are also terminal states when the car goes out of the road or exceed the
speed limit of 3, with a −1 reward in both situations. In all other states, the reward is 0. The
goal of the agent is thus to reach the top of the hill as soon as possible given these constraints.
The dynamics of the system are such that the car cannot just climb the hill straightforwardly.
Indeed, the car has to gain so momentum in order to succeed in climbing the hill.

All the results, averaged over the 4 training sessions, are displayed in Figure 7.2a. In this case,
as can be seen in Figure 7.2b, no explosion in the losses was observed. This is probably due to
the very sparse rewards in this environment. In this context, it can be seen that the DQN can
still suffer from slow convergence when the hyperparameter C is badly chosen. However, here,
without risk of explosion in the loss, we can observe that using the DQN algorithm with C taken
to C̄10 ≈ 18 provide a very good learning process. In this case, we can thus conclude that the
OFQI algorithm is not offering much more than an automatic tuning for the parameter C.

Finally, it should be noted that these analyses are quite limited, and focus on rather simple
environments, that are known to require a lower target update period. But these analyses
motivate future research on the target update and can be seen as glimpses of the benefits that
could be brought by this OFQI algorithm in some environments. Moreover, it is reasonable to
say that the OFQI advantages would probably be more dramatic in more complex environments,
where C is typically chosen very large just to ensure stability over the course of learning, possibly
losing thousands of gradient updates overfitting the successive Qi-functions.
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(b) Losses for a classic choice of hyperparameters
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(c) Learning curves for tuned hyperparameters
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Figure 7.1: Learning curves and losses for the Double Inverted Pendulum on Cart
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Figure 7.2: Learning curves and losses for the Car on the Hill

7.4 Online Recurrent Fitted Q-Iteration

As for the DQN whose adaptation to DRQN is rather straightforward, the OFQI algorithm
can be adapted to the recurrent case, which results in the Online Recurrent Fitted Q-Iteration
(ORFQI). The algorithm is derived from the DRQN algorithm by introducing the same changes
that those highlighted in grey in the OFQI (Algorithm 3). During the research project, the
ORFQI algorithm was experimented in the Deterministic T-Maze environment. It was compared
to the DRQN algorithm described in the previous section with C = 1000, a hyperparameter
that had been manually tuned on the Deterministic T-Maze environment. As stated in the
introduction (Chapter 1), it was chosen to use the DRQN algorithm in the experiments of
Chapter 5 and Chapter 6 and not the ORFQI algorithm. As mentioned in Chapter 4, the
target update period for the DRQN algorithm was chosen to 25. This aggressive target update
period corresponds in fact to the average observed C̄10 of the ORFQI algorithm on the different
Deterministic T-Maze environments. It can be noted that this update period, automatically
tuned by the ORFQI algorithm, is very far from the manually tuned value of C = 1000.

In Figures 7.3, 7.4 and 7.5, one learning curve is displayed for different length of the T-Maze, for
the DRQN algorithm with C = 1000, for the ORFQI algorithm with U = 10 and for the DRQN
algorithm with C = C̄10 = 25. The training sessions have been repeated with each of the four
RNNs considered in this work. The results are dramatically better for the ORFQI algorithm. It
is hypothesised that the effect of the new target update strategy is even more important in the
recurrent case than in the reactive case because of the weight sharing that exists in the RNN.
Indeed, as long as the network has not converged, having important losses around certain time
steps and performing gradient steps can perturb the outputs at other time steps, because of
the weight sharing in the RNN. It probably hurts the stability of the learning process (i.e., the
stability of the performance over the course of training). Here, by having an environment with
very sparse rewards, rarely updating the target in the DRQN algorithm slows the propagation
of these sparse rewards, and thus the convergence. The ORFQI algorithm precisely addresses
this problem by allowing a faster propagation of the rewards, and then ultimately a more stable
process for learning Q. In addition, it can be seen that the learning curves of the ORFQI are
equivalent to those of the tuned DRQN with C = C̄10. However, since a single training session
has been performed here, this last observation should be taken carefully.
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(a) Untuned DRQN with C = 1000, L = 20
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(b) Untuned DRQN with C = 1000, L = 40
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(c) ORFQI with U = 10, L = 20
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(d) ORFQI with U = 10, L = 40
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(e) Tuned DRQN with C = Ĉ10 = 25, L = 20
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(f) Tuned DRQN with C = Ĉ10 = 25, L = 40

Figure 7.3: Comparison of DRQN and ORFQI for the Deterministic T-Mazes of length L = 20
and L = 40
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(a) Untuned DRQN with C = 1000, L = 60
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(b) Untuned DRQN with C = 1000, L = 90
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(c) ORFQI with U = 10, L = 60
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(d) ORFQI with U = 10, L = 90
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(e) Tuned DRQN with C = Ĉ10 = 25, L = 60
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(f) Tuned DRQN with C = Ĉ10 = 25, L = 90

Figure 7.4: Comparison of DRQN and ORFQI for the Deterministic T-Mazes of length L = 60
and L = 90
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(a) Untuned DRQN with C = 1000, L = 120

0 2500 5000 7500 10000 12500 15000
Number of episodes [-]

-3
-2

-1

0

1

N
or

m
al

is
ed

d
is

co
u

nt
ed

re
w

ar
d

[-
]

LSTM
GRU
BRC
NBRC
Optimal discounted reward
Optimal reactive discounted reward

(b) Untuned DRQN with C = 1000, L = 160
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(c) ORFQI with U = 10, L = 120
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(d) ORFQI with U = 10, L = 160
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(e) Tuned DRQN with C = Ĉ10 = 25, L = 120
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(f) Tuned DRQN with C = Ĉ10 = 25, L = 160

Figure 7.5: Comparison of DRQN and ORFQI for the Deterministic T-Mazes of length L = 120
and L = 160
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Chapter 8

Conclusion

This work tackled the problem of planning in POMDPs when the model is not available. Specifically, it
studied the effect of using bistable cells in Q-learning methods for POMDPs. The performances of these
cells (BRC and nBRC) were compared on several problems to two standard cells (LSTM and GRU).
In addition, the internal states of the RNN and their belief-filtering ability were heavily studied in close
relationship with the theory of optimal control. Finally, an independent study on the target update strategy
in the DQN algorithm lead to the introduction of a new algorithm, the OFQI algorithm.

8.1 Contributions

First of all, the methods, algorithms, functions and approximators that are used in RNN-based
model-free RL for POMDPs have been extensively described and formally defined.

Second, to study the memorisation ability of the bistable cells in the RL setting, a suitable
environment has been chosen: the T-Maze environment. Indeed, this environment is simple
enough such that the results on the memorisation ability of the agents are not confounded by other
difficulties. Furthermore, it allows playing very precisely on the size of the time-dependencies
that we want the RNNs to learn. Despite having the most simple environment to measure the
memorisation ability of the RNNs was important, it was also interesting to see how the results
generalise to increasingly complex environments. This was done by generalising the T-Maze
environment to the stochastic case and by introducing two other environments with continuous
state spaces, namely the Mountain Hike and Varying Mountain Hike. These environments are far
less observable, and the varying one was a difficult problem. This work has shown the superiority
of the bistable cells in the RL setting, in terms of rapidity of learning and stability of learning,
for environments requiring a high-memorisation ability, such as the T-Mazes. The bistability
mechanism was hypothesised to provide this advantage, notably by helping in discovering long-
term dependencies. In addition, it has been shown that the bistable cells could compete with
the GRU in less memory-demanding but more complex environments, while the LSTM was not
as good. Finally, these bistable cells have also been shown to provide a higher speed of learning
in a fully observable environment, compared to the other cells and the reactive policy.

Third, a new research question was introduced. Indeed, motivated by the theory of optimal
control, the RNNs were studied for their ability to embed the belief filtering throughout their
recurrent states. This analysis required the development of several methods for estimating the
belief, representing it and estimating the mutual information between the hidden states and
the beliefs. The results have been very conclusive for the T-Maze environments, in which the
ability to filter the belief seemed clearly correlated with the performance of the agent and the
quality of the learned Q-values. Once again, the bistable cells had significantly higher mutual
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information between their hidden states and the beliefs in memory-demanding environments.
However, we know from the theory of optimal control that belief filtering is a computation
that is dependent on the dynamics of the environment. It means that the better ability of
the bistable cells to reconstruct the belief is not generalisable to other environments. Indeed,
the belief-filtering ability was not particularly better in the Mountain Hike environments. In
addition, the generalisation of the policies to other T-Maze lengths was studied. The bistable
cells have clearly shown an advantage in comparison to the other cells, especially for the BRC
in the stochastic environments.

Fourth, an observation was made on the low speed of convergence of the Q-learning algorithms,
especially in sparse reward environments. This slowness, imputed to the target network update,
lead to the development of another learning algorithm, adapting the DQN algorithm to the Q-
iteration setting, and adapting the Fitted Q-Iteration algorithm to the online-learning setting.
This new algorithm, called the Online Fitted Q-Iteration algorithm, has shown itself capable, in
simple environments, to achieve better performance than the DQN algorithm when no hyper-
parameter tuning is performed. In addition, despite the better performance of this algorithm
rely on its ability to automatically finding a good target period update, it was observed that the
algorithm was offering more than just an automatic tuning of the target update period. Finally,
this algorithm comes with a justification for the existence of the target Q-network.

8.2 Limitations

First of all, despite this first benchmark of the bistable cells in the RL setting is encouraging by
showing their ability to represent better Q-function and recurrent policies in memory-demanding
environments, it was also observed that they were outperformed by the GRU in some environ-
ments. These environments (Mountain Hike and Varying Mountain Hike) were nevertheless not
particularly memory-demanding, while the bistable cells have been specifically designed for this
purpose.

On the other hand, while the study on the belief-filtering ability of the different recurrent cells
was very informative in the case of the T-Maze and the Stochastic T-Maze, the results were
not conclusive for the more complex environments. This could be due to the estimation of the
belief via particle filtering, or due to its representation by a piecewise linear function over a
uniform discretisation of the continuous state space. This could also be linked to the difficulty
of estimating the mutual information between continuous variables.

Finally, the OFQI algorithm presented in Chapter 7, despite being motivated theoretically, was
not extensively studied empirically. This small study was a preview of the benefits that this
algorithm could bring to the value-based RL field. Despite it does not allow to draw concluding
observations, it appeals for a more thorough study of this new algorithm. A more complete
empirical study of the OFQI algorithm would indeed be a very interesting research project.
More precisely, it would be interesting to focus on more complex, high-dimensional environments,
where the stability of Q-learning was, until now, addressed by using a huge target update period.
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Appendix A

Formal description of the environments

In this appendix, the five main environments of this master’s thesis are described, namely the
Deterministic and Stochastic T-Mazes, the Mountain Hike and Varying Mountain Hike, and the
Double Inverted Pendulum on Cart. The Car on the Hill environment, chosen identical to the
one described in (Ernst et al., 2005), is not formalised here (see Appendix C.2 of this article for
a precise description).

A.1 Deterministic and Stochastic T-Maze

Given a length L > 1 and a stochasticity parameter λ ∈ [0, 1[, the T-Maze environment defines
a POMDP (S,A,O, T,R,O, p0) with discrete state, observation and action spaces S,A and O.
The agent can move in this T-shaped tabular environment. Bouncing onto the wall gives a
negative reward. In the initial cell, it observes the position of the goal that is either up or down
in the bar of the T. Then, it should remember this initial observation to take the correct direction
at the crossroad, where it receives a positive reward in this case. The discounted factor defining
the value function that we want to maximise is γ = 0.98. This environment is a generalisation
of the Deterministic T-Maze initially proposed by Bakker (2001), the later corresponding to the
case where λ = 0. The environment is represented in Figure A.1.

g = (L, 1)

c=(0,0) c=(1,0) c=(2,0) c=(3,0) c=(4,0) c=(5,0) c=(6,0) c=(7,0) c=(8,0) . . . c=(L,0)

c=(L,1)

c=(L,−1)

g = (L,−1)

c=(0,0) c=(1,0) c=(2,0) c=(3,0) c=(4,0) c=(5,0) c=(6,0) c=(7,0) c=(8,0) . . . c=(L,0)

c=(L,1)

c=(L,−1)

Figure A.1: T-Maze environment - Initial states in blue, terminal states in gray, and goal states
hatched
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State space The discrete state space S is composed of the possible cells for the goal G and the
possible cells for the agents C, both are expressed in a Cartesian coordinate system. Formally,
we have:

S = G × C (A.1)
G = {(L, 1), (L,−1)} (A.2)
C = {(0, 0), . . . , (L, 0)} ∪ G (A.3)

A state st ∈ S is thus defined by st = (gt, ct) with gt ∈ G the cell in which the goal is and
ct ∈ C the cell in which the agent is. Let us also define F = {st = (gt, ct) ∈ S | ct ∈ G} the set
of all terminal states. Terminal states are defined as states from which taking an action does not
change the state, and yields a zero reward. Here, these states correspond to the states where the
agent is in one of the possible cells of the goal.

Action space The discrete action space A is composed of the four possible moves that the
agent can take:

A =
{

(1, 0), (0, 1), (−1, 0),
(
0,−1

)}
(A.4)

that correspond to right, up, left and down respectively.

Observation space The discrete observation space O is composed of the five partial observa-
tions of the state that the agent can perceive:

O = {up, down, corridor, junction} (A.5)

Initial state probability distribution function The two possible initial states are sup
0 =

(gup
0 , cup

0 ) = ((L, 1), (0, 0)) and sdown
0 = (gdown

0 , cdown
0 ) = ((L,−1), (0, 0)), according to the fact

that the goal is located up or down respectively. The initial state is drawn with uniform proba-
bility, such that:

p0(s0) =


0.5 if s0 = sup

0

0.5 if s0 = sdown
0

0 otherwise
(A.6)

Transition probability distribution function Let us first define the deterministic transition
function f : S ×A → S. This function defines the transitions in the case where λ = 0:

f(st,at) =

{
st+1 = (gt, ct + at) if st 6∈ F , ct + at ∈ C
st+1 = (gt, ct) otherwise

(A.7)

with st = (gt, ct) ∈ S,at ∈ A and st+1 = (gt+1, ct+1) ∈ S.
In the general case, the transition probability distribution function T : S × A × S → [0, 1] is
defined by the following probabilities:

T (st+1 | st,at) =



1 if st ∈ F , st+1 = st

0 if st ∈ F , st+1 6= st

1− λ+ λ/4 if st 6∈ F , st+1 = f(st,at)

λ/4 if st 6∈ F ,∃a ∈ A \ {at} s.t. st+1 = f(st,a)

0 otherwise

(A.8)

with st = (gt, ct) ∈ S,at ∈ A and st+1 = (gt+1, ct+1) ∈ S.
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Reward function The reward function R : S ×A → R can be defined as follows:

R(st,at) =



0 if st+1 = f(st,at), st 6∈ F , ct+1 6∈ G, ct 6= ct+1

−0.1 if st+1 = f(st,at), st 6∈ F , ct+1 6∈ G, ct = ct+1

4 if st+1 = f(st,at), st 6∈ F , ct+1 ∈ G, ct+1 = gt+1

−0.1 if st+1 = f(st,at), st 6∈ F , ct+1 ∈ G, ct+1 6= gt+1

0 if st ∈ F

(A.9)

with st = (gt, ct) ∈ S,at ∈ A.

Observation probability distribution function The observation probability distribution
function O : S ×O → [0, 1] is defined by the following probabilities:

O(ot | st) =



1 if ot = up, ct = (0, 0),gt = (L, 1)

1 if ot = down, ct = (0, 0),gt = (L,−1)

1 if ot = corridor, ct ∈ {(1, 0), . . . , (L− 1, 0)}
1 if ot = junction, ct ∈ {(L, 0), (L, 1), (L,−1)}
0 otherwise

(A.10)

with st = (gt, ct) ∈ S and ot ∈ O.

A.2 Mountain Hike

The Mountain Hike is a POMDP (S,A,O, T,R,O, p0) with continuous state and observation
spaces and discrete action space. The state of the agent is its position on a two-dimensional
map. The agent only has access to a noisy observation of its altitude. Its reward is also equal
to the altitude plus some noise. The altitude is always negative, such that there is an incentive
to terminate the trajectory as soon as possible. In addition, the states that are at less than
a certain distance of the highest point of the map are terminal states. Finally, the agent can
take four actions, corresponding to North, West, South and East. Taking an action results in a
translation of fixed length in this direction, plus some Gaussian noise. The standard deviation
of this Gaussian noise is half the step size. Figure A.2 shows the state space and altitude of
this environment. The discounted factor defining the value function that we want to maximise
is γ = 0.99. The environment is thus described by an altitude function h : S → R− = O. This
environment was inspired by the Mountain Hike environment proposed by Igl et al. (2018) in
which the agent had a noisy information about its position, instead of the altitude only.

State space The continuous state space is the set of position on the two dimensional map
S = [−1, 1]2 ⊂ R2. The set of terminal states is F = {s ∈ S | ||s− (0.8, 0.8)|| < 0.1}.

Action space The discrete action space A is composed of the four possible moves that the
agent can take:

A =
{

(0.1, 0), (0, 0.1), (−0.1, 0),
(
0,−0.1

)}
(A.11)

that correspond to North, West, Down and East respectively.

Observation space The continuous observation space is O = R−.

Initial state probability distribution function The initial state is always s = (−0.8,−0.8),
such that:

p0(s0) =

{
1 if s0 = (−0.8,−0.8)

0 otherwise
(A.12)
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Figure A.2: Mountain hike altitude function h

Transition probability distribution function The transition probability distribution func-
tion T : S ×A× S → [0, 1] is defined by the following probabilities:

T (st+1 | st,at) =



1 if st ∈ F , st+1 = st

0 if st ∈ F , st+1 6= st

φ(st+1 | st + at, 0.052) if st 6∈ F , st+1 ∈]− 1, 1[2∫ −1
−∞ φ(st+1 + (x, 0) | st + at, 0.052)dx if st 6∈ F , st+1 ∈ {−1}×]− 1, 1[∫∞
1 φ(st+1 + (x, 0) | st + at, 0.052)dx if st 6∈ F , st+1 ∈ {1}×]− 1, 1[∫ −1
−∞ φ(st+1 + (0, y) | st + at, 0.052)dy if st 6∈ F , st+1 ∈]− 1, 1[×{−1}∫∞
1 φ(st+1 + (0, y) | st + at, 0.052)dy if st 6∈ F , st+1 ∈]− 1, 1[×{1}∫ −1
−∞

∫ −1
−∞ φ(st+1 + (x, y) | st + at, 0.052)dxdy if st 6∈ F , st+1 = (−1,−1)∫∞

1

∫ −1
−∞ φ(st+1 + (x, y) | st + at, 0.052)dxdy if st 6∈ F , st+1 = (−1, 1)∫ −1

−∞
∫∞

1 φ(st+1 + (x, y) | st + at, 0.052)dxdy if st 6∈ F , st+1 = (1,−1)∫∞
1

∫∞
1 φ(st+1 + (x, y) | st + at, 0.052)dxdy if st 6∈ F , st+1 = (1, 1)

0 otherwise
(A.13)

where st ∈ S,at ∈ A and st+1 ∈ S, with φ(st+1 | µ, σ2) that denotes the probability density func-
tion of a bivariate normal distribution with mean µ and diagonal covariance matrix of standard
deviation σ. This complicated expression simply means that the next state st+1 corresponds to
st + at +N (0, 0.052), except when it corresponds to a point outside of S = [−1, 1]2, in this case,
st+1 is the closest point to st + at +N (0, 0.052) that lies inside S.

Reward function The reward function R : S ×A → R can be defined as follows:

R(st,at) =

{
0 if st ∈ F
h(st) +N (0, 0.12) otherwise

(A.14)

with st ∈ S,at ∈ A. This reward function can be visualised in Figure A.3.

Observation probability distribution function The observation probability distribution
function O : S ×O → [0, 1] is defined by the following probabilities:

O(ot | st) = φ(h(st), 0.1
2) (A.15)

with st ∈ S and ot ∈ O, and where φ denotes the probability density function of a Gaussian
random variable.
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Figure A.3: Expected immediate rewards obtained in the state space S of the Mountain Hike
environment

A.3 Varying Mountain Hike

Despite being a difficult problem, the Mountain Hike can be made even harder by introducing
variations of the mountainous terrain. This problem is called the Varying mountain hike. As for
the classic mountain hike, only the altitude is observed, but at each environment initialisation,
one terrain is from one out of four variations of the original terrain. Note that the information
about which terrain has been drawn is not given to the agent, it is only able to deduce it from
the altitude observations. The four variations are constituted of the four rotations of the original
terrain around C = (0, 0). Note that the initial position of the agent and the position of the
terminal states are rotated along with the terrain.

The environment description can be straightforwardly adapted from the Mountain Hike environ-
ment by adding a variable identifying the terrain i ∈ {1, . . . , 4} in the state. This variable is
sampled uniformly in p0, and never change afterwards. The observation and reward functions
are now given by hi(st) instead of h(st), where h1, . . . , h4 denote the four variations of the ter-
rain. Since this environment is harder, the Gaussian noise on the transitions is chosen to have a
standard deviation of 0.02 instead of 0.05 as for the Mountain Hike.

A.4 Double Inverted Pendulum on Cart

The Double Inverted Pendulum on Cart is an MDP (S,A, T,R, p0) that we solve for a reward
discounted by γ = .99. The double inverted pendulum starts in the upright position, and the
agent is responsible for applying force on the cart. The agent observes the state of the physical
system and has to take actions such that the environment does not reach a terminal state and
it stays the closest to the upright position. The cart horizontal position cannot move outside of
[−1, 1].

State space The state space S = [0, 1] × R × [0, 2π] × R × [0, 2π] × R is composed of the
following components:

• x, the horizontal position of the cart

• ẋ, the horizontal velocity of the cart

• θ1, the angle between the upright and the lower pole

• θ̇1, the angular velocity of the lower pole
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• θ2, the angle between the upright and the upper pole

• θ̇2, the angular velocity of the upper pole

·
x

u

l1

l2

θ1

θ2

Figure A.4: Double inverted pendulum on cart environment

We can also note that some states are terminal state, these states are reached when the double
pendulum is a less than 70% of its maximal height. More precisely, denoting by (x2, y2) the
position of the upper tip, a terminal state is reached when

y2 = l1 cos θ1 + l2 cos θ2 ≤ 0.7 (A.16)

with l1 = l2 = 0.5.

Action space The action space is a 1-dimensional space A = [−1, 1], defining the fraction of
the maximum force that is applied to the cart. This action space is discretised in practice to
make it compatible with Q-learning.

Dynamics The dynamics are not covered here, but they follow the laws of motion from the
Lagrangian mechanics. Note that the joints have damping such that the energy brought by the
work of the force a is dissipated by the system.

Reward function The reward function R : S ×A → R is defined in the following way:

R(st,at) = 10 + (0.01 x2)2 + (y2 + 0.3− 2)2 (A.17)

where st = (x, ẋ, θ1, θ̇1, θ2, θ̇2), and (x2, y2) = (l1 sin θ1 + l2 sin θ2, l1 cos θ1 + l2 cos θ2).
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Appendix B

Piecewise linearity and convexity of the
value function in the discrete case

The piecewise linear and convex (PWLC) nature of the value function in POMDPs has been
proved in (Smallwood & Sondik, 1973) initially. This proof is detailed and explained in this
appendix. As explained in Section 3.2, the horizon n = 1 value is given by V1(bt) = maxat∈A∑

st∈S bt(st)R(st,at). As a consequence, the value function V1 is the maximum of |A| linear
functions, which corresponds to a PWLC function. It can be verified that V1 has the form of
equation (3.25) with K1 = |A|. Precisely, V1 is defined by the following set of α-vector:

α1,k =
(
R(s

(1)
t ,a(k)) . . . R(s

(|S|)
t ,a(k))

)
, k = 1, . . . ,K1 . (B.1)

where a(k) denotes the kth action and s(i) the ith state.

For n > 1, Vn is computed from Vn−1 by:

Vn(bt) = max
at∈A

E
st∼bt

st+1∼T (·|st,at)
ot+1∼O(·|st)

{rt + γVn−1(bt+1)} (B.2)

= max
at∈A

R(bt,at) + γ E
st∼bt

st+1∼T (·|st,at)

 ∑
ot+1∈O

O(ot+1 | st+1)Vn−1(bt+1)

 (B.3)

= max
at∈A

R(bt,at) + γ
∑

ot+1∈O
Pr(ot+1 | bt,at)Vn−1(bt+1) (B.4)

where bt+1 = forward(bt;at,ot+1) and:

Pr(ot+1 | bt,at) =
∑
st∈S

∑
st+1∈S

bt(st)T (st+1 | st,at)O(ot+1 | st+1) . (B.5)

It can be noticed that Vn is the maximum over any action at, of a function of two terms. The
first term is R(bt,at) that is linear (and thus PWLC) over the belief. The second term is a
weighted sum of Vn−1 evaluated at each possible next belief bt+1, resulting from each possible
next observation. If this second term is PWLC over the belief space of bt, it is thus straightforward
that Vn is PWLC, since it is the maximum of linear combinations of PWLC functions. It should
be understand that we do not need only Vn−1 to be PWLC in its argument, but we need
Vn−1(bt+1) = Vn−1(forward(bt;at,ot+1)) to be PWLC in bt.

And it can indeed be proven that this second term is PWLC in the belief bt. It is proved by
induction, knowing that V1 is PWLC in its argument. Assuming that Vn−1 is PWLC in its
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argument (bt+1), we can write:

Vn−1(bt+1) = max
k∈{1,...,Kn−1}

αn−1,k · bt+1 (B.6)

= max
k∈{1,...,Kn−1}

∑
st+1∈S

α
(st+1)
n−1,k

∑
st∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)∑

st∈S
∑

st+1∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)

(B.7)

=
∑

st+1∈S
α

(st+1)
n−1,l(bt,at,ot+1)

∑
st∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)∑

st∈S
∑

st+1∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)
(B.8)

=
∑
st∈S

bt(st)
∑

st+1∈S
α

(st+1)
n−1,l(bt,at,ot+1)

T (st+1 | st,at)O(ot+1 | st+1)∑
st∈S

∑
st+1∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)

(B.9)

where l(bt,at,ot+1) ∈ {0, . . . ,Kn−1} gives the index of the α-vector supporting Vn−1 at bt+1 =
forward(bt,at,ot+1). By substituting (B.9) and (B.5) into (B.4), we get:

Vn(bt) = max
at∈A

R(bt,at) + γ
∑

ot+1∈O∑
s′t∈S

∑
s′t+1∈S

bt(s
′
t)T (s′t+1 | s′t,at)O(ot+1 | s′t+1)

∑
st∈S

bt(st)

∑
st+1∈S

α
(st+1)
n−1,l(bt,at,ot+1)

T (st+1 | st,at)O(ot+1 | st+1)∑
st∈S

∑
st+1∈S bt(st)T (st+1 | st,at)O(ot+1 | st+1)

(B.10)

= max
at∈A

R(bt,at) + γ
∑
st∈S

bt(st)
∑

ot+1∈O

∑
st+1∈S

α
(st+1)
n−1,l(bt,at,ot+1)T (st+1 | st,at)O(ot+1 | st+1)

(B.11)

In this last equation, the second term of (B.4) has been rewritten as the dot product of bt with
another vector. This vector gives, for every st, a weighted sum (over all possible st+1 and ot+1) of
the values that support the α-vector that maximises Vn−1 at bt+1 = forward(bt(· | st);at,ot+1),
with bt(· | st) that denotes the belief assigning probability 1 to state st. It has the consequence
of making this second term a linear combination with weights bt, making it linear with respect to
bt on each piece having a different l(bt,at,ot+1). In addition, since the α-vector selected in each
element of the weighted sum is chosen to be the maximising α-vector, by definition of l, Vn−1

naturally describes a convex function. As explained before, it proves the piecewise linearity and
convexity of Vn(bt) since it is the maximum over at of linear combinations of R(bt,at), PWLC
in bt, and Vn−1(bt+1) evaluated at several bt+1 = bt+1(· | at,ot+1), which is also PWLC in bt.
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Appendix C

Training hyperparameters

The general training hyperparameters for the DRQN algorithm are those of Table C.1. It is
noteworthy that they have thus be chosen identical for all environments. The hyperparameters
that are not displayed here have been discussed directly in the different sections.

Description Name Value
Number of stacked RNNs S 2

RNNs hidden size H 32

Exploration rate ε 0.2

Replay buffer capacity N 65 536

Mini batch size for updates B 128

Target update period C 25

Adam learning rate α 5× 10−4

Evaluation period M 10

Number of Monte Carlo rollouts R 50

Table C.1: General hyperparameters

Only the number of generated episodes has changed from one environment to another. These
different numbers of episodes E are reported in Table C.2. It can be noted that the number
of episodes is different for the Double Inverted Pendulum on Cart when used in the DRQN
algorithm and when used in the OFQI and DQN algorithms. It comes from the fact that a single
gradient step is performed at each generated episode in this environment, while one gradient step
is performed at each generated transition in the DQN and OFQI algorithms.

Environment E

Deterministic T-Maze 16 384

Stochastic T-Maze 16 384

Mountain Hike 16 384

Varying Mountain Hike 32 768

Double Inverted Pendulum on Cart (with DRQN) 16 384

Double Inverted Pendulum on Cart (with OFQI and DQN) 2048

Car on the Hill (with OFQI and DQN) 2048

Table C.2: Number of episodes generated for each environment

In Table C.3, the time horizon T used in each environment is given. In addition, when BPTT
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was truncated after a few time steps, this window size W is indicated.

Environment T W

Deterministic T-Maze (L = 20) 59 -
Deterministic T-Maze (L = 40) 119 -
Deterministic T-Maze (L = 60) 179 -
Deterministic T-Maze (L = 90) 269 -
Deterministic T-Maze (L = 120) 359 -
Deterministic T-Maze (L = 160) 479 -
Deterministic T-Maze (L = 200) 599 -
Deterministic T-Maze (L = 240) 719 -

Stochastic T-Maze (λ = 0.4, L = 20) 99 -
Stochastic T-Maze (λ = 0.4, L = 40) 199 -
Stochastic T-Maze (λ = 0.4, L = 60) 299 -
Stochastic T-Maze (λ = 0.4, L = 90) 449 -
Stochastic T-Maze (λ = 0.4, L = 120) 599 -

Mountain Hike 80 -
Varying Mountain Hike 80 -

Double Inverted Pendulum on Cart (with DRQN) 1000 8
Double Inverted Pendulum on Cart (with OFQI and DQN) 1000 /

Car on the Hill (with OFQI and DQN) 1000 /

Table C.3: Time horizon for each environment
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