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Abstract

In a context where Intent-based Networking is in fast evolution, techniques to provide
service assurance are becoming more and more important. A project named SAIN, for
Service Assurance in Intent-based Networking, was started and is still in the process of
standardization. The University of Liège has developed the prototype of an agent of this
architecture whose objective is to determine symptoms and health levels of the different
sub-services of a network service.

This agent, named DxAgent, was functional but did not yet have any metrics to assess
the health of network connections. Therefore, the objective of this thesis is to elaborate
the implementation of active measures and thus to be able to assign a health score to the
network but also to determine potential symptoms.

The measurement tool that has been chosen is the One-way Active Measurement Pro-
tocol (OWAMP), which has the advantage of providing one-way measurements. A python
interface of the standard implementation of this protocol was then developed to allow the
retrieval of the metrics.

Then this one was integrated to the DxAgent to extend it to new metrics and thus
widen the agent’s field of view. This extension proved to be a success and the DxAgent
gets even closer to its original goal by allowing to discover symptoms proper to network
metrics (delay, reordering, link failure, etc).

Finally, a use case has been developed to show how these additions work and how
useful they can be. A topology based on Docker containers simulating the network of
a company offering a streaming service has been set up. Moreover, a tool allowing to
automate parameterized scenarios on this architecture has been developed. The results of
the experiments show that the metrics and the detection of various symptoms work well
in a near real-life context.
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Introduction

In a context where network architectures are constantly evolving and diversifying,
managing them has become a real challenge. Among these new ways of imagining the
network, Intent-based Networking (IBN) has been in full expansion and constant evolution
for several years. It is a paradigm that reduces human intervention in the management
of the network to its strict minimum. Indeed, a network operator only needs to define an
intent, in other words, to define the service he wants the network to produce. The intent
is then sufficient for the system to organize itself in such a way as to correspond to the
operator’s request. Once the orchestration has been set up, the system must continuously
verify that the intent is still respected despite potential events in the network in order
to automatically readapt the system. This verification is an essential step to achieve an
automatic and adaptive system. This is called service assurance and it is the main topic
of this thesis.

The Internet Engineering Task Force is currently standardizing a fault detection con-
cept for this type of system. The project is called SAIN, for Service Assurance for Intent-
based Networking. SAIN divides a service (e.g. a tunnel between two peers) into several
sub-services, i.e. into several parts of the network to be assured (e.g. a peer device). The
objective is clear, facilitate the discovery of the root cause of a problem in the network
thanks to its partitioning. By determining a health score and potential symptoms for
each sub-service, SAIN aims to assure the operation of each sub-service independently.
This makes it possible to react at the right place in case of a symptom discovered in a
sub-service. This facilitates the automation of the IBN system to assure a service.

SAIN proposes a specific architecture to operate whose most important component is
the SAIN Agent. The purpose of this agent is to collect and analyze as much information
as possible about a network entity to be provided. The objective is to define a health
score and potential symptoms of the sub-services that compose the machine studied by the
agent. The University of Liege has developed a prototype of this agent called DxAgent.
This implementation was already working correctly when I started my thesis but lacked a
crucial source of information, the active measurement of connections between machines in
the network. This information being very important to determine the state of a service to
be provided involving several machines, it was then proposed to me to implement it.

The active measurement protocol that was chosen in priority is OWAMP (One-way
Active Measurement Protocol). It has the advantage of providing one-way measurements.
For example, it is possible to compute the delay between two machines in one direction
or the other. This specificity of OWAMP makes it a very good tool since it is possible
to have different path characteristics depending on the direction of the traffic. It should
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be noted that this protocol requires that an OWAMP server be present on the machine
from which one wants to retrieve the metrics. However, the DxAgent has been developed
in python and it exists only one implementation of the DxAgent and it is written in C.
So I was asked to develop an interface in python that would communicate with the two
components that are the client and server programs of OWAMP.

The interface that was then developed aims to provide functions to achieve everything
that OWAMP is capable of providing. This project was developed independently of DxA-
gent and is publicly available on GitHub. To summarize, it is about configuring the server
and managing the inputs and outputs of the topology programs. On the other hand, a
scheduler allowing to perform one-way measurements on a number of machines at the same
time at a regular interval has been developed. This functionality was primarily designed
for the integration of the interface into the DxAgent, which was therefore able to be done
smoothly.

The DxAgent has been modified to allow one-way measurements with a number of
machines, with a wide range of configurable options. In addition, a probing tool has been
added, the ICMP ping. It has the advantage of providing a second source of information,
of being easier to access but also of being used as a reference value for the tests that have
been carried out in the context of a use case.

Indeed, a use case has been set up. It is a topology representing the network of a
small company providing a streaming service. The topology has been designed so that the
streaming traffic goes through different paths depending on their direction. This network
of 6 entities was simulated using interconnected Docker containers. Several experiments,
which were facilitated by the creation of a tool developed in python to execute scenarios
in an automatic way were thus carried out with this network. Their objective was to show
how the DxAgent was able to react to the events we made the network undergo. Several
reasons have motivated the development of use cases. First, it was a good opportunity to
show that the new DxAgent metrics work and react well to variations. Secondly, it was
an opportunity to adjust different parameters of OWAMP and DxAgent. Finally, it was a
question of showing that the work that has been done in this project has practical uses in
a case that is close to real life.

The results of the tests have been convincing and very close to what was expected.
The DxAgent is now able to continuously measures link characteristics and then recognize
variations in the initial state of the network and therefore provide accurate symptoms in
case of problems.

This work is divided into 4 chapters that we will briefly present. The objective of the
first chapter is to define the context and the theoretical basis of this work. First, we will
briefly explain the concepts behind Intent-Based Networking. More specifically, we will
explain what characterizes such a system with a slight focus on intent. More importantly
in this work, we will show the key steps of the IBN life cycle to highlight an important
notion: assurance. Then, it will be an opportunity to explain the SAIN project and how
it intends to assure complex network structures. An example of a tunnel service has been
integrated into the explanations in order to illustrate the different concepts. Finally this
chapter will be concluded by a presentation of the SAIN Agent prototype developed by
the University of Liège which is the DxAgent.
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The second chapter will present the OWAMP protocol that has been chosen to serve as
the active network measurement for DxAgent. We will see that the protocol is divided into
two parts: Control and Test. Understanding how these protocols work will be very useful
when it comes to analyzing and understanding the results of the use case experiments that
will be done. This chapter concludes with the presentation of the complete sequence of
actions and messages sent by the protocol.

Chapter 3 aims to explain the implementation that has been done in this work. This
includes explanations of what was done but also the questions we asked and the choices we
made. We will first see the already existing implementation of OWAMP and the way it was
interfaced in python. Then, the extensions that have been integrated into DxAgent will be
explained, including the addition of active measures such as OWAMP and traditional ICMP
ping. Among other things, we will highlight the way in which continuous measurements
have been made while updating the DxAgent metrics. In addition, we will see how these
changes can be used and how they will impact the discovery of symptoms of a system.

The fourth and last chapter will present a use case to show the efficiency and usefulness
of the new DxAgent inputs in a real life case. Then we will explain how the different entities
of the Docker topology that has been imagined have been implemented but also how they
have been connected. Then we will see a tool that has been developed in python to allow the
automation of parametrized scenario execution using the topology. To finish this chapter,
we will highlight the use of the DxAgent through four experiments that will be presented
and analyzed.
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Chapter 1

Service Assurance for Intent-based
Networking

In this chapter, divided into three parts, we will see the context in which this work
is integrated. First of all, we will present what Intent-Based Networking is, since this is
the type of network targeted in this thesis. Then we will explain how networks using this
paradigm assure that their services are working properly. And finally, we will conclude
with an existing implementation of service assurance on which I am involved.

1.1 Intent-Based Networking

In short, Intent Based Networking (or IBN) allows a network administrator to for-
mulate the desired state of the network in a high-level manner and have the network
orchestration done automatically. This network administration is a new research topic in
constant evolution. The first attempts to formalize it by the IETF (Internet Engineering
Task Force) date back to 2017 and a last draft [11] was released in February 2021. This
last document will be used to explain the different principles of this new concept because
there is no standard definition yet. And it is not only in formalization that IBN is new,
it is also in practice. For example, CISCO started developing their first IBN system in
2014 and it will take until 2017 for it to be operational. But they are far from stopping
there, every year Cisco highlights their advances in their IBN systems. This is a topic that
has yet to show its full potential and is therefore constantly evolving. From a marketing
point of view, the IBN market exceeded USD 900 million and Global Marketing Insight
estimates growth to USD 4.5 billion by 2026 [9].

Device-by-device network administration is no longer a possibility today. For years,
the complexity of networks has required more centralized, high-level, and automated con-
figuration. In this context, IBN is trying to provide a solution to configure a network as
a whole but also to adapt to all its changes. But of course, this network automation still
requires an intention, an input. How should the network behave, what should it look like,
this is called the intent. This intent is one of the main points that differentiates IBN from
other existing models such as Software-Defined Networking [33] or Policy-Based Manage-
ment [32] administrations. We are going to see what this intent is really about and what
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is its characteristics.

1.1.1 Intent and Intent-Based Management

Intent, as defined in the RFC7575 [12] on Autonomic Networks is "an abstract, high-
level policy used to operate a network". Even if Intent-Based Management wants to be
as autonomic as possible, it requires an intervention from outside. This intervention, this
intent, is a statement of what the network should meet and what it is supposed to deliver
without specifying how it should be done. The most important point is that an intent
should only specify if there is something to be done and not how to do it. Furthermore,
an intent should keep a certain data abstraction, operators should not take into account
the low level configuration of devices. The IETF draft offers several examples to better
understand what an intent is. For the sake of clarity, these are presented in natural
language. Here are two examples of intents:

• "Avoid routing networking traffic originating from a given set of endpoints (or asso-
ciated with a given customer) through a particular vendor’s equipment, even if this
occurs at the expense of reduced service levels."

• "VPN service must have path protection at all times for all paths."

On the other hand, we can also give an example of a statement that cannot be con-
sidered as an intent:

• "Configure a given interface with an IP address."

This type of rule cannot be considered as an intent, there is no data abstraction, it
is a simple device configuration. Any form of raw configuration or requests explaining
how to get to the desired result are not considered as intent. It is the role of the IBN to
translate an intent into a series of configurations. Ideally, this translation should be done
independently in each machine and each machine must know its role to comply with the
intent. In practice, it is easier if some functions are centralized.

Once the intent concept is integrated, we can put forward the different principles of
Intent-Based Networking.

1.1.2 Intent-based system principles

The different principles that will be stated are essential to characterize the intent-based
nature of a system.

1. Single source of Truth (SSoT). SSoT represents the set of intent expressions that
have been validated. Since this represents the desired state of the network, it is easy
to compare it to the current state. Thanks to the SSoT, it is possible to know what
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actions need to be taken to reach the objective network. Also, it is useful to validate
a network that has been modified and therefore to ensure that the objectives have
been met, in short, the SSoT is the invariance of the intent.

2. One-touch but not one-shot. We can say that the intent-based system is "one-
touch" because the user will express his intent and then the system will take care of
the rest. However, we cannot say that it is a "one-shot" process because it requires
several steps before arriving at a well formed intent. Indeed, the user’s expression may
contain implicit or imprecise parts and it is up to the system to refine the expression
to make it valid. In some cases, the system can propose choices or alternatives to the
user to clarify his request. Finally, the system must of course ensure that the initial
intent does not have any conflicts.

3. Autonomy and supervision. It is important for an intent-based system to offer
some flexibility to the user to formulate his intent. One can imagine a web interface
but also dictate aloud in natural language with a word recognition tool. Moreover, the
system must be as autonomous as possible, it must be able to perform a maximum
of tasks and operations without requiring the intervention of a user. But it must
also provide the right level of supervision to satisfy the user’s needs and report the
relevant information.

4. Learning. An intent-based system is a learning system. It should be remembered
that once the user has given an initial intent, the system must reason. And this
reasoning is done by means of learning. This ability to learn is as useful to refine the
intent as to optimize the way the intent will be rendered. Moreover, the system can
also predict a change in intents or in network conditions, that is why the system is
in continuous learning and optimization.

5. Capability exposure. It is important that the network is expressive enough in
terms of its capabilities, requirements and constraints to be able to respond to the
demands of the intent.

6. Abstract and outcome-driven. As already stated, the user should only focus on
what he wants and not on what has to be done, i.e. on the outcomes.

An intent-based system can also integrate other principles than those described above but
we have seen the main ones. We will now move on to the functionalities of intent-based
Networking.

1.1.3 Intent-Based Networking functionalities

Intent-based Networking integrates a wide range of functions that can be divided into
two categories, which are fulfilment and assurance, which are themselves separated into
different subsets. A representation of these functions and the order in which they are per-
formed is shown in the figure 1.1 below.
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Figure 1.1: Intent-based Networking functions

An explanation of the different concepts of this figure will now be explained starting
with the functions themselves. The order in which they are listed represents the logical
course of events, although cycles can obviously occur.

• Intent fulfillment. These are the functions and interfaces that allow you to retrieve
a user’s intent and perform the necessary actions for the fulfil. These functions also
include the orchestration of configuration operations on the network.

– Intent Ingestion. These are functions to recover the user’s intents through
interactions with the system to establish a clear intent. Research is underway
in this area to make these interactions as natural as possible, so that the system
is able to understand the user better and better.

– Intent Translation. This is the step that translates the defined intent into a
series of actions and network requests to reach the desired state. Moreover, these
functions must be able to learn to choose the best solution, the best heuristic,
the best path, ...

– Intent Orchestration. It is simply the actual configuration and provisioning
that needs to be orchestrated across the network. This is the previous steps
that have determined what needs to be done in this part.

• Intent Assurance. These are the functions that allow the user to validate and
monitor the network to ensure that the intent is properly complied. These functions
also include the analysis of the effectiveness of the fulfillment actions so that the
fulfillment process is trained and optimized over time. In addition, assurance is used
to verify that "intent drift" does not occur. An intent drift is the fact that the system
that evolves over time ends up losing its efficiency to fulfill the intent or worse, do
not meet the intent anymore. Assurance functions are actually the ones that interest
us most about IBN since this is what my work focuses on.

– Monitoring A first set of assurance functions are used to monitor and observe
the network for its events and performance outliers. It is also a question of per-
forming measurements to ensure that the services are working properly. These
functions serve as a basis for the assurance process.
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– Intent Compliance Assessment These are functions that will compare the
monitored network behavior with the intent held by the SSoT. These functions
continuously assess and validate the effectiveness of the intent fulfillment ac-
tions. These functions also observe if an intent drift will not occur over time.

– Intent Compliance Actions Once an intent drift occurs or the network be-
havior is in an inconsistent state, a series of corrections must be applied: this
is the purpose of these functions. Alternatively, the system can send an alert
to the user to act accordingly. For example, the system could propose a new,
slightly modified intent that would no longer pose a problem in the new network
state.

– Abstraction, Aggregation, Reporting These are the functions that will
report to the user the outcome of the Intent Assurance so that the user can
relate this information with the intent. The low-level setting statistics retrieved
in the previous steps must be up-leveled because the user should only have to
deal with high-level concepts. The aggregation and analysis features should
serve to provide a report on the intent compliance status but also provide an
adequate summary and visualization of the data for human users.

The figure 1.2 provided below better express the life cycle of Intent-based Networking
by highlighting the two loops it contains.

User Space Intent-Based System Space Network Ops Space

Fullfil
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Intent
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Intent
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Intent
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Aggreagte

AbstactReport

Fu
lfi

llm
en

t
As

su
ra
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e

Inner
Loop

Outer
loop

Figure 1.2: Intent-based Networking Life Cycle

We have the inner loop which does not intervene in the User Space and which does
not involve any human. This loop represents the automatic analysis and validation of the
intent based on the analysis of the network operations space. The render functions can
then adjust some parameters to reconfigure the network devices if necessary. This loop,
in addition to avoid intent-drift, allows the system to continuously improve itself without
external input.

Then, the outer loop, which extends to the User Space, involves a human since some
feedback is sent to him. It is also possible for an operator to adjust the original intent
based on this feedback. An intent then has a rather eventful life cycle; it is constantly
modified, adjusted and retracted by these two loops to best suit the service it wants to
provide.

8



In fact, this architecture has as many functions allowing to automate the implemen-
tation of the intent as functions allowing to ensure that it is well respected. Assurance is
an essential part of this new paradigm and that is what this work focuses on.

1.2 Service Assurance for Intent-based Networking

From now on, it is to be expected that companies that want to launch a service on
their network may be interested in Intent-based Networking. As we have seen, this makes
the work of the network operator much easier, as user-network interactions are minimal. In
this context, it is also very important to be able to offer a service assurance that matches
the advantages of IBN. Therefore, we will look at a service assurance that is particularly
well suited to this type of administration: Service Assurance for Intent-based Networking
or SAIN. SAIN is a new project that is still evolving and is not yet standardized. Therefore,
the theoretical concepts we will see come mostly from an IETF draft [13].

When a network operator decides on a service (e.g. by proposing an intent to the
system), the process of configuring the network is started and the system configuration
will be implemented. However, the fact that a configuration is applied does not mean
that the service works correctly. It is necessary to monitor both the configuration and the
operational data of the service.

Observability has became something essential and well spread as we can see when we
look, for example, at the growth of the cloud monitoring market (which was predicted to
grow from $723.8 Million in 2016 to reach $1,976.9 Million by 2022 [19]). But it remains
difficult for operators to correlate service degradation with the network root cause. Being
able to warn the operator of a service slowdown or malfunction is a first step, but it is also
important to know the cause. In fact, it is even more useful to know the opposite, i.e.,
which services will be impacted if a certain network component were to malfunction. For
example, "which application would be impacted by an ECMP imbalance?"

To be able to do such things, SAIN works from an assurance graph, deduced from
the service definition and the network configuration. The root of this directed acyclic
graph is the service to be assured. While the children represent the subservices directly
dependent on the service. A subservice corresponds to a subpart of the network (e.g.
a physical interface) that must be assured. Moreover, these subservice components can
themselves have children, in which they depend, representing subservices that are even
more precise. In order to better understand graph assurance, we can show a simplistic
example for a tunnel service.
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Tunnel Service

Peer1
Tunnel Interface
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Tunnel Interface

Peer2
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Peer2
Device

IS-IS
Routing Protocol

IP Connectivity

Figure 1.3: Assurance Graph - Tunnel Example

We can see on the figure 1.3 that the Tunnel service depends on the two peer interfaces
of the tunnel but also on an IP connectivity which, itself depends on its routing protocol.
We can add to this that the peers’ interfaces depend on their physical interfaces which are
themselves dependent on the devices behind the interface. This example of tunnel service
will be used throughout this section dedicated to SAIN.

One main principle of the SAIN architecture is to maintain a correct assurance graph
despite possible changes in services or network conditions. The SAIN framework is then
able to highlight the problematic component in the graph when a service is degraded. The
hierarchy of assurance graph helps to correlate a service degradation with the network root
cause. Also, SAIN must be able to deduce the number and type of services that will be
impacted by a component problem. This information is very useful because, in addition to
giving easily usable information to the operator, it facilitates a possible autonomy of the
system. These are the very basic concepts of SAIN and we will now detail its functionalities.

1.2.1 Presentation of SAIN and its architecture

The goal of SAIN is to make sure that a service is working well and if not, to specify
what is wrong with it. This is done by means of a health score (an integer between 0 and
100) calculated by SAIN for each service instance. If we go back to our tunnel example,
we can reduce the IP connectivity health score if the delay between the two peers has been
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degraded. If the score is not maximal (i.e. different from 100), it means that the service is
not fully operational and a symptom is then output to explain this score. The symptom
combined with the score is called the health status. The health status is the final product
of a series of steps that we will briefly present.

As explained, the service is decomposed into an assurance graph formed by subservices
linked by their dependencies. After that, each subservice (i.e. each assurance graph node)
is transformed into an expression graph. This is a graph that details how to retrieve
the metrics of the devices and how to compute the health status of these subservices.
We will see in section 1.3 that in practice, it is not necessary to use a graph to retrieve
the metrics, we can simply list the metrics we want to observe and the way to retrieve
them. For example, the peer device subservice can get the CPU idle time metric by
reading at /proc/stat/ file. Then, the expression graphs of the subservices are combined
in order to obtain a service expression graph allowing to compute the health status of
the service. Finally, a global computation graph is built by combining the service
expression graphs. The global computation graph simply represents how to combine the
metrics of the subservices to provide the health score of these subservice. This global
computation graph encodes all the operations necessary to produce the health status of all
services from the collected metrics.

Before detailing all steps of SAIN, it is important to present its architecture which is
presented in figure 1.4 just below.
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Figure 1.4: SAIN Architecture

SAIN is composed of serveral component which are the following :

• Service Configuration Orchestrator. This is the system that implements the
configurations to perform the service setup. Typically, it is an Intent-based system.

• SAIN Orchestrator. The component of SAIN that retrieves the configurations of
service instances and then convert them into an assurance graph.

• SAIN Agent. It is a component allowing to communicate with one or several
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devices (or with another agent) in order to build the expression graph by performing
the necessary computations.

• SAIN Collector. This is the part that retrieves the output of the agents to display
it in a user friendly form (or process it locally).

From the figure 1.4, we can summarize the sequence of operations. First of all, the
service is obviously configured by the Service Configuration Orchestrator on the devices
and the configurations in question are sent to the SAIN orchestrator which will deduce
the assurance graph. The SAIN agents retrieving the assurance graph must then build the
expression graph and calculate (in distributed manner) the health statuses. These statuses
that will be retrieved by the collector will be properly displayed to the user. And finally,
in order to guarantee a closed automation loop, the SAIN collector must send a feedback
to the Service Configuration Orchestrator which may be able to handle the problem.

1.2.2 From Assurance Graph to Expression Graph

As we have seen, a first step in assurance is to decompose services into subservices.
When we refer to subservice, it also implicitly includes its assurance. A subservice, in
addition to corresponds to a subpart of the network is also characterized by a list of
metrics and computations that allow to infer the health status.

The decomposition into subservices is an important step in SAIN, for several reasons.
First, it allows to provide a relational picture of a service instance. But also, it allows to
separate the service into a series of different domains of expertise. This makes it easier to
call the right person or the right tool for the specific subservice that is causing the problem.
Finally, it is very likely that a subservice is used by different services, and we can therefore
reuse the computations already made for a subservice in the context of another service.

It should be noted that the assurance graph must be maintained in all situations.
When a service is added, modified or deleted but also if there is a change of configuration
in the network. Moreover, another job that a SAIN orchestrator must provide is to detect
what is the intent to ensure. If we go back to our tunnel example, it is indeed necessary
that the peers are functional but that is not all. A VPN is expected to have a certain
latency and bandwidth requirement and therefore these elements must also be part of
the components to be assured. This operation is facilitated by the fact that the Service
Configuration Orchestrator and the SAIN orchestrator are most likely combined.

Once the assurance graph has been created, the SAIN agent can now use it to build
the graph expression. The first step is to transform each subservice instance into a set of
subservice expressions. These expressions take as input metrics and constants and produce
as output the status of the subservice (based on some heuristics). Then, for each service
instance, the expressions of the subservices on which a service depends are combined in
such a way as to build the expression of this service. The way the expressions are combined
depends on the type of dependency. We distinguish two types of dependencies: impacting
and informational.

• Impacting: This is the type of dependency where the score impacts the score of the
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parent. In this case, the symptoms are taken into account for the parent (sub)service
as an impacting reason for the score drop.

• Informational: This is the type of dependency where the score does not impact the
parent’s score. However, the symptoms must be taken into account for the parent as
an informational reason.

Finally, a global computation graph is built from the service expressions, it is then the
graph encoding all the operations necessary to produce the health status from the metrics.
This last step concludes the theoretical explanations on Service Assurance for Intent-based
Networking and we are going to see the implementation that has been done and on which
I added a new service analyse.

1.3 An implementation of the SAIN Agent

The University of Liège has launched a project to implement one of the component of
SAIN. It is the SAIN agent which, it should be remembered, the agent responsible for calcu-
lating the health scores by monitoring the devices useful to a service. This implementation
project, developed in python, is called DxAgent1 and is developed by Korian Edeline. His
work is available on the following github: https://github.com/ekorian/dxagent. This
implementation respects the concepts of the draft that has been presented but some choices
as well as the implementation of unspecified elements deserve to be studied in more depth.

The first thing to note is that this agent can be used independently of the other SAIN
components. Indeed, instead of monitoring only the subservices proposed by the assurance
graph sent by the SAIN Orchestaror, the DxAgent retrieves a maximum of data on the
device that runs the program. Therefore, this program could very well be used to know the
health status of any linux device. One just need to run the program on the machine one
want to analyze and a daemon will run to continuously analyze the device information.
The recovered data is then used to calculate the health status which can be displayed
through two different interfaces.

The operation of the DxAgent program is divided into 3 key steps which are as follows:

1. Retrieve input from several sources

2. Normalize data and build the service dependency graph

3. Determine health statuses from user-defined rules

To simplify the explanation of the implementation in the next sections of this docu-
ment, we will use the same names as those used by the DxAgent. These three steps are
respectively called Inputs, Metrics and Rules.

1Dx is an abbreviation for Medial Diagnosis
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1.3.1 The three steps

Even though the three steps will be a bit detailed, only the high level operation will be
explained. If some implementation details need to be highlighted, they will be explained
in the section 3 which is about implementation.

1.3.1.1 Inputs

The first step is to retrieve the data needed to determine the state of the services. This
data can be retrieved from both physical and virtual machines. This option is obviously
very important since virtualization is more and more present in today’s networks. As
for the recovered data, it comes from various sources. For example, a certain amount of
data is extracted from the linux folder managed by the kernel: /proc. Like, for example,
information about the disks, the state of the system, the available network interfaces, etc.
Netlink is also a good source of information when it comes to network activities. Other
sources of information are used by the program but the goal is not to provide an exhaustive
list. However, it is interesting to mention that a new input will be added in the context
of this thesis: OWAMP. Indeed, details on the integration of this input will be revealed
during the section 3.

The purpose of this crucial step is to recover a lot of raw data from the computer. This
data can be for example the number of packets received on an interface, the temperature
of the computer components, the CPU usage, the current idle or sleeping process number,
etc. At the end of this step, we find ourselves with a large amount of raw data and it is
the objective of the second step to bring order to it.

1.3.1.2 Metrics

Once the information is retrieved, it is possible to determine the set of subservices
running on the machine. For example, the list of active network interfaces is retrieved in
the first step, so we can determine that each interface is a subservice. The same applies to
the list of processes, storage disks, etc. Of course, as presented in the theoretical concepts,
the dependencies must also be determined. We have, for example, the CPUS subservice
being the parent node of all the CPUx subservices associated with each CPU of the machine
(with x being the id associated with a CPU in linux). The dependency graph of the
subservices is then built during this step. We can notice a difference with SAIN which
is that the dependency graph is retrieved by a discovery of the DxAgent (i.e. the SAIN
agent). While in the SAIN draft, we have seen that the Assurance Graph (which is similar
to the graph built here) is built and sent by the SAIN Orchestrator to the Sain Agent.
Moreover, the DxAgent does not need to explicitly recreate an Expression Graph. Here,
we have a single graph representing the dependencies between subservices and the health
scores are calculated in each node using rules. We can see an example of a dependency
graph that DxAgent could build on a machine with two CPUs, two storage disks and two
network interfaces in the figure 1.5 below. This is actually a part of the graph, the node
Bare Metal (representing the fact that it is not a virtual machine) has other subservices
in the original program graph.
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Figure 1.5: Example of a Dependency Graph

This second step of the DxAgent is also characterized by the normalization of the
extracted data. It is important to gather data from different sources under the same
variable and the same unit. For example, the number of bytes sent by an interface is
retrieved from different sources depending on whether it is a physical or virtual machine.
Since the next step is to create rules from the metrics, we only need one variable, in other
words, one single metric that we will call rx_bytes for example. This example can be
found in a DxAgent csv file:
rx_bytes ,if ,int ,MB

This means that this metric belongs to the subservice if (for interface), that it is an
integer and is expressed in Megabytes.

1.3.1.3 Rules

Finally, once the service dependency graph and the metrics have been retrieved, it is
possible to calculate the scores and find potential symptoms. The way to determine these
elements is to use user-defined rules written in a config file (with a csv format). These
rules, having a rather high level of abstraction, allow to examine the metrics to ensure the
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normal functioning of the monitored machine. A rule is composed of 4 elements:

1. The Symptom Name.

2. The path to the subservice in the graph.

3. The Severity. There are two possible values : Red (score decrease of 50%) or Orange
(score decrease of 10%).

4. The condition to be evaluated

Here ia an example of rule that has been defined in the project:
"Low Fan Speed",/node/bm/sensors/sensor ,Red ,input_fanspeed <100

This means that a "Low Fan Speed" symptom will be triggered on a "sensor" subser-
vice with a "Red" severity if the fan speed is below 100 RPM.

Two other examples:
"No free memory available",/node/bm/mem ,Orange ,free <50
"No free memory available for 1 min",/node/bm/mem ,Red ,1min(free)<50

Here we check if there is still memory available in a subsevice "mem" (a RAM). The
severity will be "Orange" when there is no more memory available but if it lasts for at
least 1 minute, it will be "Red". We can also notice the use of the 1min() function. It is
indeed possible to use several such constructs to define the rules. This construct of course
wants to make sure that the condition is true for 1 minute.

These rules can be easily created or modified to meet some network operator re-
quirements while keeping a high level of abstraction. Once the calculated scores of the
subservices are at the bottom of the tree, they must be propagated to their parent node
according to the dependency link (informational or impacting). Each node, from the leaf
to the root service, has then a health score (and a symptom if the score is not maximal).

The three steps that we have seen are continuously performed by the DxAgent daemon
in such a way as to guarantee the status of the services.

1.3.2 The interfaces

The DxAgent project is actually composed of 3 programs: DxAgent, DxTop and
DxWeb. The architecture of the project is presented on the figure 1.6 below.
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Figure 1.6: DxAgent Project Architecture [7]

Since the DxAgent runs in the background, it cannot be used as a user interface. That
is why two interfaces (DxTop and DxWeb) have been implemented.

DxTop uses shared memory to communicate with the DxAgent to get useful data to
display. You can see a representation of this program running on my machine:
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Figure 1.7: DxTop - Health tab opened

You can see above the figure 1.7 several tabs, these, except the last one, display the
metrics of the corresponding subservices. The last tab, Health, displays first the symptoms
of the monitored device. On my machine we can see that there are three symptoms of
orange severity specific to the memory. Below, we have the list of subservices with their
health score and a list of metrics (incomplete) associated. However, this interface does not
offer a view of the dependency graph as a whole.

This is why, in addition, a second interface has been implemented to allow a more
graphical view, it is called DxWeb. It is a web interface that displays the dependency
graph as well as the health scores and symptoms. Here is an example of view that we can
observe on the web application:
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Figure 1.8: DxWeb

We can see from the figure 1.8 that there is a node for each subservice. If it is
colored, then the subservice is present on the machine, if it is grayed, then there is no
corresponding subservice. The green portion of the nodes indicates the percentage of
health of the subservice. It is possible to click on the nodes to know the symptoms of the
subservices with a non-maximum health score.

1.3.3 Limitations

The SAIN arhitecture agent that is DxAgent is still in the prototype state and it still
has some limitations. One obvious limitation, which is the focus of this thesis, is the lack
of active measurements from the network perspective. It should be noted that we say that
a measure is active if it creates or modifies traffic on the network. And it is thus, for
the moment, impossible to measure the state of health of network links between machines
(from a same IBN for example) using DxAgent.

The next step is to implement in the DxAgent inputs related to active network mea-
surements. The inputs which will be recovered are those produced by the OWAMP protocol
which we will detail in the following chapter.
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Chapter 2

OWAMP Presentation

An idea that has been imagined to improve the DxAgent is to add active network mea-
surements to establish the health of links with other network machines. The measurements
that have been chosen are those collected by the OWAMP protocol.

First, we will present what OWAMP is and why it is used. Then we will see the
standard architecture of this protocol. Afterwards, the two sub-protocols that compose
OWAMP will be explained separately. Finally, we will finish this presentation by showing
the set of messages that are exchanged during a normal ping made with OWAMP.

2.1 Overview

OWAMP is a protocol standardized in 2006 in the RFC 4656 [10] by the Internet
Engineering Task Force. Its objective is to measure certain unidirectional characteristics
such as one way packet delay and loss (defined respectively in RFC 2679 [25] and 2680
[26]). The advantage of these measures compared, for example, to the round-trip delay
is that it is not uncommon for congestion to occur in only one direction. Therefore, the
information given by these measures is more precise and interesting than those offered by
a classic ping. These measures defined by the IETF IP Performance Metrics (IPPM) [23]
needed to be computed in a standard way, this is the reason why this protocol was created.
And as time sources became more and more present and accessible, it was possible to
calculate more accurate measures than those that existed previously.

In addition to its main objective, the team behind this protocol has set other goals:

• The measurement should be hard to detect in order to minimize interference with
intermediaries in the middle of the network. The test traffic is indeed difficult to
detect because it is a simple UDP stream between ports that have been negotiated
beforehand and that does not contain any static content. If we add to this that
packets have no fixed size and that we can encrypt the traffic, this protocol is as
invisible as possible.

• Another guideline that the team behind OWAMP has given to themselves is to be
able to secure the traffic to prevent unauthorized accesses or man-in-the-middle-
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attack that would falsify the results.. Therefore, it is possible to authenticate and/or
encrypt control and test messages.

• Finally, a last objective was to separate as much as possible the control and testing
functionalities.

2.2 The OWAMP Topology

As it has just been stated, OWAMP is in fact composed of two sub-protocols: OWAMP-
Control and OWAMP-Tests which have two distinct roles:

The first one (OWAMP-control) aims at managing the tests, which means the initial-
ization, the initiation or the closing of the test session. But it also aims to provide the
results when the test session is over. The exchanges of this protocol are done through a
TCP connection opened on port 861. The messages of this sub-protocol are only trans-
mitted before and after OWAMP-test session (with the exception of early stop sessions
message).

The second one (OWAMP-test) which is layered over UDP is used to send test packets
along the Internet path. These packets will then be used as data to measure the quality
of the link.

In addition to the separation of the protocol, OWAMP involves several actors whose
different roles are as follows:

• Session Sender : the endpoint sending the test stream.

• Session Receiver : the endpoint receiving the test stream.

• Server1 : the server that manages the OWAMP-test session, it also handles the
configurations for each session and can return the results.

• Control Client : the entity initiating the request for a new measurement with the
desired configuration.

• Fetch Client : the entity requesting the results from the server.

All these roles can be played by different hosts or a host can have several roles.
Therefore, there are many choices in the configuration of the topology and we will see two
of them.

The first topology represented in figure 2.1 gives the most genericity and control, each
role is played by exactly one host:

1When the word "server" is used with a capital letter in this report, we refer to this role in particular.
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Unspecified Protocol
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OWAMP-Control

Figure 2.1: Topology 1

The problem with the configuration above is that it is difficult to use in practice. Even
if it is possible to imagine the implementation of this kind of topology in a closed network,
we have to admit it is far from the simplicity of a classic ping. In addition, some exchanges
use unspecified protocols and will therefore use proprietary protocols which requires more
elaboration and development. It is much more convenient to have a simple client-server
topology : the client host is playing the role of the Control Client, Session Sender and
Fetch Client while the server is the Server and the Session Receiver. A representation
of this topology is presented below in figure 2.2.

  Control Client 
  Fetch Client 
  Session Sender

  Server 
 
  Session Receiver

OWAMP-Test

OWAMP-Control

Figure 2.2: Topology 2

From now on, we will continue to think with this topology in mind because it is easier
to grasp, especially since it is the only one that has been implemented so far. And indeed,
it is this topology that will be used and integrated in the SAIN project.
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2.3 OWAMP-Control

The aim of this section is not to expose all the details of this protocol, only the
functional base case will be explained. There are several stopping mechanisms at different
stages of the protocol to cancel operations, but also security considerations that will not
be discussed. In addition, since the content of the packets can be quite complex, they will
not be detailed either. The objective here is to synthesize the functioning of this protocol
by listing the different messages that can be sent and their meanings. This reasoning will
remain the same for the test protocol that we will later develop.

Before being able to exchange control commands, it is necessary to establish a connec-
tion between the client and the server. These first exchanges are also intended to authen-
ticate the client, but also to exchange the information necessary to encrypt the messages
according to the server setup. Authentication as well as encryption are not mandatory,
the client indicates the mode it wants (open, authentication, encryption) in these first
messages and the server will respond favorably if it accepts this mode in its configuration.
Note that client authentication and encryption are based on a shared secret in the form of
a passphrase and the encryption is done using a key derived from the shared secret.

These exchanges are actually composed of 4 messages which are the following:

1. Open TCP connection

2. Server Greeting

3. Set up Response

4. Server Start

Client Server

Authenticate 
      client

Figure 2.3: OWAMP connection setup

• 1. Client open a tcp connection

• 2. Authentication Challenge

• 3. Mode chosen and auth proof

• 4. Setup done.

If the connection setup was successful, then depending on the chosen mode, all the
following messages will be authenticated by HMAC and/or encrypted using AES.

From now on, the test session will be done by means of control commands from the
client and the server. The client can send 4 different commands which are as follows:

• Request-session : This message is aimed at indicating all the desired parameters
for a test stream. This includes a lot of information, the most important being, of
course the IP addresses (in version 4 or 6) and the ports chosen for the sender and
receiver. Then there are some test parameters like the number of packets to send, the
chosen schedule and the DSCP value that can be selected. During the same OWAMP
Control connection, it is possible to perform several different tests (i.e several pings),
so a session ID is also communicated. In addition, a timeout indicating the time
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before a packet is considered lost is filled in. Finally, the client has the possibility to
indicate when the test should start (this parameter is named start-time).

• Start-session : After sending one or more requests, the client can start the tests using
this message. If the requests have been accepted, the server must start the test phase
immediately after or at the start-time indicated by the client.

• Stop-session : This message, that should be sent after the test stream is completed,
aims to end the test session. The server will answer with an acknowledgement con-
taining all the sequence numbers of the packets that have been skipped2 if there are
any. Skipped packets can happen for example if the start-session is sent too late or
a stop-session has been sent prematurely.

• Fetch-session : This message which aims to retrieve the results of the stream test
will only be answered if the session has ended successfully. It must indicate a range
of packets, these are the packets from which the client wants to get the results of the
test (it is possible to request the whole test). If the tests went well, the server must
respond with a record per packet containing this information:

– Send Timestamp

– Send Error Estimate

– Receive Timestamp

– Receive Error Estimate

With the information retrieved using the Fetch-session command, it is very easy to
calculate the one way delay (as well as its estimate error3).

The server has a dedicated acknowledgment message for each of the client’s messages.
The only command it can trigger is the Stop-session message to terminate the session
prematurely.

2.4 OWAMP-Test

The messages of this protocol are sent through UDP by the ports negotiated during the
control phase (Request-session message). The encryption mode used in the test messages
will be the one inherited by the controllers (client and server) during the connection-setup.
In addition, the encryption and integrity mode remains the same as the control protocol,
i.e. an HMAC in each packet and an AES encryption of the packets.

We have seen that the schedule can be decided when requesting the server for a
test. Before going further into this new protocol, it is better to specify the nature of this
schedule. It is indeed possible to decide, in addition to the time of the first packet sending
(start-time), when to send the other packets of the stream. A schedule has a number of
time slots where each slot represents a delay to wait before sending a packet. Each slot
has a type and a parameter. The first and simplest type is a fixed quantity, in this case
the parameter is simply the time to wait. The second type is an exponentially distributed
pseudo-random quantity, in this case the parameter is the mean value. When all the slots

2In this case, "skipped" means "not sent by the sender"
3which is not defined and thus implementation dependant
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of the schedule have been exhausted (i.e. a number of packets equal to the number of slots
have been sent), one just has to start the schedule again from the beginning, it’s a cycle.

To have a better view, let’s show an example of a schedule using only fixed values of
2, 1 and 1 (the unit of time is not important to understand the example) with 9 packets
to send. The figure 2.4 below illustrate this example.

Start
Time

Schedule :

Packet sent :

Example with 9 packets to send

Time

2 1 1

t0 t0 +  2 (t0 + 2) + 1

Figure 2.4: Schedule Example

It is important to mention that the algorithm generating the exponential delays has
been determined by the RFC in such a way that it always gives the same delay for a given
mean, whatever the implementation. In this way, the sender and receiver know exactly
when the packets will be sent, which is the very basis of this protocol.

Knowing this, the test protocol is very simple, the sender sends a packet at the time
announced in the schedule with an estimation of the error compared to the sending. The
receiver knows when to receive it and will timestamp and save it as it is. It should be
noted that there are several cases where the packet will be dropped, especially if it is sent
at least one timeout too early or too late. And it is indeed possible to send it "too early"
from the receiver’s point of view if the clocks of the two entities have a synchronization
difference greater than the one-way delay. In this case, the data is saved as it is and it is
the role of the Fetch-Client to use this data as it wants. This protocol is not intended to
calculate the statistics itself but it is the Fetch-Client that will compute what it needs (one
way maximum/minimum/median delay, reordering, packet loss, etc) from the raw data.

2.5 Complete Example

To conclude this chapter and to have a better overview of this protocol, a complete
example will be shown. To do so, all the messages exchanged by the two OWAMP sub-
protocols during a one-way ping will be gathered and put in order to create an example
of the complete process. For the sake of comprehension, we put ourselves in the case of a
ping without error with a basic client-server topology. The figure 2.5 below is a diagram
representing the different actions of an OWAMP ping example.
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1. Owamp Connection Setup

2. Request-Session

3. Accept-Session

4. Start-Session

No Encryption/Auth

Encryption/Auth

5. OWAMP-Test Packets

6. Stop-Session

7. Fetch-Session

8. Fetch-Ack

9. Test Session Data

Client Server

Retreive
wanted

statistics

Timestamp
each packet

Figure 2.5: Complete Example

In order to differentiate the messages coming from OWAMP-test on the figure 2.5,
they are represented in red while those from OWAMP-Control are in black. The sequence
of actions is as follows:

1. The client and server setup the connection and decide on the encryption and authen-
tication modes (see fig 2.3 for more details)

2. The client requests a ping with the parameters it wants for the test

3. The server accepts with a simple Ack

4. The client sends a message to start the test session

5. The test packets are sent at the time specified by the schedule decided in point 2.
Moreover each packet is timestamped by the server.
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6. The client sends a message that the test is finished and tells the server which packets
were actually sent.

7. The client ask for the test results.

8. The server replies with an Ack (specifying the number of packets received and the
number of potential holes in the sending process)

9. The test data is sent to the client, including the receive timestamp of each test
packet received by the server. The client can then deduce the statistics it wants by
comparing the send timestamp and the receive timestamp like one-way delay, loss,
reordering, etc.
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Chapter 3

OWAMP Interface and Integration
in Dx-agent

This chapter is dedicated to the implementation work that has been done. First, we
will see the implementation that has been used for OWAMP. Then we will see the interface
of this implementation that has been developed in the framework of this project. Finally
we will see how the new network metrics were added to the DxAgent

3.1 Existing Implementation

After integrating the concepts of the OWAMP protocol, a usable implementation
had to be found to be able to integrate it into the SAIN project. Only one open-source
implementation [20] can be found on the net, the one developed by the authors of the
RFC of these protocols. This implementation, written in C, is maintained and distributed
within the perfSonar [29] project (a network measurement toolkit managed by the internet2
community [27]). The problem with this implementation is that it is not directly usable in
the SAIN project which is developed in python. That’s why I made an interface in python
to be able to launch and use the topology of the implementation. But before presenting
this interface, a brief presentation of the internet2 implementation is necessary.

3.1.1 The topology

The topology chosen by internet2 is the one presented in figure 2.2. It is therefore the
standard client-server topology that we are used to. Indeed, the interest of this topology is
to make the use of this tool as simple as possible, even if it means less flexibility. While the
protocols allow many possibilities, this implementation can only measure the link between
the client and the server. The use of this implementation is then very close to the traditional
ping. To use it, a host has to run the server, it is then able to receive requests from clients
that want to get the network statistics between them and the server.

The project that can be found on github [8] is particularly complex, once the code
is compiled, it is 10 programs that are built (the server, the client, statistics tools, etc).
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But we are going to focus on only two of them: owampd and owping. Owampd is the
server program while owping is the client that makes the request to the server. These
programs are highly configurable and we will see some of their possibilities. But first, let’s
take a look at these programs’ architecture. As can be seen in the figure 3.1, the owampd
program has been developed as a classic accept/fork daemon. The master daemon listens
for new connections and manages the resources of the child processes. When a connection
arrives, the master daemon forks a child, which will take care of the control exchanges of
the OWAMP-Control protocol. Then, the owampd child process and the owping process
will fork a child process (the test endpoints) which will in turn exchange the test packets
of OWAMP-test protocol.

Initial Connection

Control

Test

Owampd
Master
process

Owampd
[Control]

Owampd
[Test]

Owping
[Test]

Owping
[Control]

spawn
child

spawn
child

spawn
child

Server Client

Figure 3.1: Owamp implementation architecture

3.1.1.1 The server: owampd

Before starting the server, it must be configured, which is done by modifying several
files in the installation folder. We are not going to present each of the options that can be
configured but we will only expose the most important ones. First of all, this implementa-
tion does not forget a key point of the OWAMP protocol: authentication and encryption.
It is indeed possible, by means of policies, to create limit classes. These classes, that sup-
ports inheritance, can have several attributes, such as the authentication mode, bandwidth,
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maximum disk space, etc. Once a limit class has been established, it must be assigned to
either users or network subnets. For specific users, a passphrase must be registered and
only a client (owping) having the passphrase will be able to authenticate and therefore be
assigned to this class. In this way you can for example, create a class for administrators
assigned to user Joe:

1 limit root with \
2 bandwidth =900m, \
3 disk=2g, \
4 allow_open_mode=off
5
6 assign user joe root

Or a class rejecting any access assigned to the "bad" subnet 192.168.1.0/24:
1 limit jail with \
2 parent=root , \
3 bandwidth=1, \ # bandwidth = 1 is similar to rejection
4 disk=1, \
5 allow_open_mode=off
6
7 assign net 192.168.1.0/24 jail

This creation of limit classes allows a high degree of flexibility which can be very
useful.

In addition to the attributes that can be attached to the limit classes, other important
server configurations are possible and some even mandatory with every new installation on
a host. For example: the user running the program, the ports used for control and testing,
timeouts, delays, minimal authentication mode, etc.

3.1.1.2 The client: owping

Among all the options that can be modified to launch the owping program, the most
important are those that influence the type of tests that will be carried out. For example,
it is possible to choose the number of packets for a test session, the DHSCP value, the
stream test schedule, the packet size, the timeout, etc. Of course, the user can also be
specified to be assigned to a limit class of the target server.

Once all options have been chosen, the test will run and return a series of statistics
in the form of the desired output. We can see an example on figure 3.2 of an output that
I retrieved by doing a test on the loopback address.
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Figure 3.2: Owping output

It is therefore possible to recover, among other things, the number of packets sent,
lost, or duplicated. But above all the one-way delay (minimum, median and maximum)
obtained as well as an estimate of its error. Moreover, the number of hops can be retrieved
thanks to the TTL (set to 255 at the time of sending) as well as the information of a
possible reordering.

3.2 Development of an API

3.2.1 Presentation

Instead of just using the programs of the internet2 implementation directly in the
SAIN project, it was more interesting to create a python API that could handle most
of the uses of OWAMP. This library would therefore aim to be flexible enough as the
OWAMP implementation is, and that anyone wishing to use this protocol in a python
project could quickly use it. For this reason my work is available on github at : https:
//github.com/tcarlisi/owamp_wrapper

The interest of such an API would be, besides making this protocol more available,
to be easy to integrate into the SAIN project. However, this kind of realization requires
to take up several challenges which are the following:

• This API must be highly configurable, it would be unfortunate to lose all the flexi-
bility offered by the protocol and its implementation.

• It also requires thinking about a set of functions that is both understandable and,
above all, sufficient. This API should not undergo any modification in order to be
used and should therefore handle the most possible use cases.

• Good exception handling is also very important for anyone wishing to use the API.
Therefore, a set of custom exceptions must be set up to make it easier to understand
potential problems. The fact that the API handles independent programs makes
error handling particularly complicated.

The realized project is thus a python program made up of several classes whose one
is on public display: the API itself. Even if the heart of this work is an interface, it is
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not wrong to call it a program because a main class is provided in the project to present
a use case. Before explaining the interest of these classes and how they work, a class
diagram is available below on figure 3.3 to simplify the understanding of the different class
interactions.

OWAMP API

configure()

start_server()

stop_server()

start_scheduler()

stop_scheduler()

STORE CONFIG

INIT CONFIG

"Public" class "Private" classes

OWAMP SERVER

OWAMP CLIENTSCHEDULER

MAIN

:  Call
Legend:

Figure 3.3: Class Diagram of the OWAMP API project

In order to make this diagram as clear as possible, only the API functions are displayed.
Moreover, to better understand the classes used by the API, the arrows starting from the
API class start from the functions that specifically use the targeted private classes. In
reality, the notion of public and private here has nothing to do with the concepts of object-
oriented programming but simply indicates that a user of this project does not need to use
anything other than the API class.

To summarize the functionalities of this API, it is possible to configure an OWAMP
server, to launch it (and close it) but also to send pings (on a recurring basis if needed)
and to retrieve statistics.

3.2.2 Explanation

We will now proceed to an explanation of the different components of the program
starting from the functions of the interface.

Configure()

As we can see in the class diagram, the first function of the api, configure(), uses
two classes (init_config and store_config) and this makes sense because this function
has two roles. The first one is to retrieve the configuration data of the API user while the
second one is to reintroduce these options in the code and in the OWAMP configuration
files.
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Indeed, the first step is essential if we want to create an interface that is totally de-
tached from the intial C implementation. For this reason, the interface is completely usable
without having to understand anything about how to configure the OWAMP implementa-
tion, which is a good thing since the original configuration is not practical to use. Indeed,
just to be able to launch the server for example, it is necessary to modify several files in
several different folders but also to launch another program to create a password file. This
implementation lacks accessibility and one of the objectives of this api is to remedy this. Of
course, the user configuration retrieval goes through a series of input checks before being
stored in a data structure used by several other classes.

Then, the next step is to modify the implementation files to match the needs of the
interface user. This step therefore involves, among other things, rewriting OWAMP files
to modify some directives.

start_server()

Once the configuration data has been retrieved and the OWAMP implementation
folder has been configured, it is now possible to launch the server. This consists in launch-
ing the owampd program with the right parameters. The standard python subprocesses [6]
library was then very useful because it allows to run a program. Before continuing, it may
be interesting to quickly present the use of this library (because it is used several times in
this project) by means of lines retrieved from my code:

process = Popen(shlex.split(cmd), stdout=PIPE , stderr=PIPE)
stdout , stderr = process.communicate ()
exit_code = process.wait()

The first line is intended to create a process from the shell-like command line cmd1 but
also to indicate that we want to be able to retrieve the standard output and error output.
The second line asks to communicate with the process in order to read the standard
outputs. And finally the last line aims to wait for the end of the process execution and
returns the exit code of the program.

We might think that waiting for the server to finish executing is a very bad idea
because it would block the program entirely, but it is not. In fact, owampd is a bit
particular because it will itself launch another process in background (which will be the
server), then it will write the pid of this server in a file and will close. This is done very
quickly and it is therefore interesting to retrieve, in addition to the outputs, the exit code
in order to be sure of the right execution of the server starting. Finally, closing the server
is quite simple because we know the process pid and we can kill it whenever we want (with
a call of the stop_server function).

1In this case, this is the command to start owampd with the right parameters
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start_scheduler()

Another possibility of this API is to be able to ping a list of hosts on a recurring basis.
For example, a user can configure a list of four host addresses and a frequency of 1 ping
every 20 seconds. And so a ping will be sent to all 4 addresses at the same time every
20 seconds. This kind of use can be very useful when you want to create a monitoring
program like the SAIN project. Of course, it is also possible to ping a single host on a
one-off basis.

To implement this type of operation, the API uses a job scheduler called apscheduler
[1]. This highly configurable library allows to schedule a job at a certain time of the day
or at a certain frequency. In our case, it is the second use that interests us. It could be
interesting to present this library at the same time as showing the different choices that
have been made for its use.

The apscheduler has 4 components:

• schedulers

• job stores

• triggers

• executors

The scheduler is the interface with which the application developer will interact. It
gathers all the components of apscheduler and there are several types of them. The main
ones are the BlockingScheduler and the Backgroundschedduler. The first one can be
useful if it is the only thing that has to run in the program, but this is not our case. So
the second type will be used, this one is not blocking because it runs in parallel with the
calling program.

The job store is what stores jobs as its name implies. Again, there are several types
of job stores, but the one chosen is the default one. Indeed, there are job stores that allow
one to keep the status of the job even after the scheduler has closed or crashed, but this
was not necessary for the use we have in this project.

Triggers are what contain the scheduling logic. In our case, the chosen trigger is simply
a trigger that is activated at a fixed interval (typically seconds).

The executors are the ones who take care of running the jobs. They typically submit
a job that has been triggered to a thread or process pool. Once the job is completed, the
executor can notify the scheduler whether or not the job was successful (and can even give
the return value of the job). It is possible to choose between an executor based on thread
pool or process pool. Since our job is to simply run a ping program and wait for the end
of its execution to recover the return value, a thread pool were sufficient. Process pool
could have been useful to take advantage of several CPU cores in the case of intensive use
of CPU operation but here the job spends most of the time waiting.

As explained, it is possible to be notified when a job has been completed and even to
know if it worked. To take advantage of this feature, the API function start_scheduler
takes as arguments a callback function when a ping is successful and another one when
an error occurred. This leaves a certain amount of leeway to the users. For example, the
success callback can be used to store or display the ping results. While the failure callback
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can be used to raise a custom error or a warning for example.

Now it is time to discuss about the job itself which consists in pinging (using OWAMP
ping style of course) a specified address. There is not much to add about the way the ping
is launched because it is the same as for the server. So, we launch the owping program
with the right parameters and we get the standard outputs and the return value of the
program. However, a notable difference with the server program is that the owping program
only stops when the ping is finished, which can take several seconds. And since we want
to recover the return value, we have to wait for the end of the execution. But this is
not a problem because the waiting is done inside a job that happens to be a thread.
Therefore, even if the program execution is blocking, it is only this particular thread that
will be blocked and thus it does not cause any waiting to the application. Then, once the
execution of the program is finished, the standard output of the process owping is parsed
to fill a data structure available with the API. This structure is then returned as the return
value of the job and can therefore be used directly in the callback function that can be
customized by the user.

3.2.3 Installation and usage

The installation and the use of the API are explained in the github. Moreover an
installation script is provided to setup the directories, install the different components and
perform the necessary steps for authentication. I took a lot of time to understand how to
launch OWAMP and play with the parameters (especially for authentication), so I wanted
to take special care of the ease of use for this python interface.

3.3 Integration in the DxAgent

We now come to the central subject of our work that consists in extending the field of
vision of DxAgent. The git repository containing all the commits done for the integration
is the following: https://gitlab.uliege.be/Thomas.Carlisi/dxagent_owamp. Indeed,
this project already analyses a myriad of inputs but it is not yet exhaustive. Therefore,
it was proposed to me to improve its ability to detect anomalies by adding active mea-
surements from the network point of view. There are of course several types of protocols
allowing to realize active measurements but the choice of OWAMP was a natural choice.
We will analyze in the use case (presented in chapter 4) the differences that this one can
have with other active measurement protocols. In the meantime, we can still highlight its
main advantage which is, as we recall, the measurement of one-way metrics. Indeed, in a
context of Intent Based Networking (or SDN), having the possibility to discriminate the
quality of a connection in one direction or another can have a certain interest. Indeed,
some services might require a more severe minimum acceptable delay in one direction of
the link and not in the other. Therefore, the DxAgent can use different health rules for
the two directions of the same link.

Before going into the implementation details of the OWAMP integration in the Dx-
Agent, it would be wise to illustrate the use of their combination. As explained, the
implementation of OWAMP requires the use of a client and a server. Therefore, these
two components had to be integrated. Therefore, the DxAgent integrates both a server
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and the client functionalities, i.e. the sending of measurement requests. The figure 3.4
below presents an example of different possible uses with this combination of OWAMP
and DxAgent

DxAgent

Owamp Server

Owamp Server

DxAgent

DxAgent

Owamp Server

DxAgent

Owamp Server

OWAMP Ping

1 2 3

4 5

Figure 3.4: OWAMP and DxAgent Combination

As it is possible to see on the figure 3.4, the use of the server as well as the sending of
request is completely optional. It can be seen on machines 2 and 5, it is entirely possible to
have a server running without DxAgent or a DxAgent not integrating an OWAMP server.
This freedom of use leaves a network operator free to choose the way in which the DxAgents
will communicate with each other. The arrows in red on the figure show simply which
machines decide to ping which other machine(s), it is not about network communication.
The most basic use case is represented by machines 1 and 4 running DxAgent with the
OWAMP server. They ping each other and are therefore both able to retrieve information
about their link characteristics (delay, loss, etc) at any time. Moreover, we remind that
the interface that has been developed in the frame of this work allows to send a ping to
several servers at the same time from the same machine (as machine 2 does). For these
reasons, it is possible to imagine all sorts of topologies and uses.

3.3.1 The DxAgent Implementation

As already explained, the DxAgent project was realized by a third party at the Univer-
sity of Liege. A first step that I had to realize was to understand the scope of this project.
I had to understand the whole project and all the code by myself before I could imagine
any modification. This crucial step proved to be quite difficult, it takes time to get into
a code of this scale with very few initial clues. In the same way that I had to understand
this project to integrate OWAMP, it is important to briefly present this implementation
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before presenting my additions. Of course, only the essential elements I worked on will
be presented (some classes and features not really relevant of the DxAgent will not be
presented).

The easiest way to understand and present a project of this size is to present the
different classes and the way they fit together. A diagram of the different classes that will
be presented is available in the following figure 3.5.

DxTop DxWeb

DxAgent

Core classes

BmWatcher

Health Engine Symptom

metrics.csv

start

uses

start
uses

DxAgent

rules.csv

Communicate with

parses parses

Figure 3.5: DxAgent class diagram

Without going into the implementation details, it may be interesting to briefly explain
the interest of these classes.

• DxAgent: This is the main class that will contain all the actions (comparable to a
main). Mostly, it is about launching the input analysis (by starting the Bm Watcher)
and then initiating the transformation into metric and the creation of symptoms (by
starting the Health Engine). Once the sequence of actions input → metric → rule
that we have already presented is finished, they are scheduled again after a period
of 3 seconds and so on. By the way, it should be noted that if the DxAgent is
configured to launch the OWAMP server, it will be done in this class before the
scheduled process is started.

• Core classes: These are the classes that allow the DxAgent to be launched as a
daemon as well as the definition of certain data structures. The most important
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one is the ringbuffer. Indeed all inputs and their metrics equivalent are stored in
a dictionary of ringbuffer dictionary. The first dictionary refering to the type of
input to retrieve and the second key refers to the input. The value of this embedded
dictionaries is the ringbuffer of the data collected for the input. The purpose of the
ringbuffer is to keep in memory the old values of the inputs/metrics to be able to
analyze them through time. Moreover, the core classes include a class allowing to
interact with the inputs/outputs of the program. This class allowed me, for example,
to link in a single configuration file the options of DxAgent and OWAMP.

• BmWatcher: This is the class that allows one to retrieve the baremetal inputs (i.e.
the inputs of the physical machines). The input() function of this class, which is
called every 3 seconds, retrieves data from interfaces, CPUs, memory, etc. It is mostly
about reading files (contained in /proc, /sys, etc.) or retrieving data by means of
programs (interfaced by python libraries) like ethtool [31] for example.

• HealthEngine: The interest of this class is twofold, first of all to select and trans-
forms the inputs to be normalized in metric. Note that all inputs are not necessarily
transformed into metrics, some inputs are just interesting to recover the name of an
interface, the time of the data recovery, etc. In reality, the set of metrics, retrieved
from metrics.csv is almost four times smaller than the set of inputs. Secondly, the
purpose of this class is to create the dependency graph or to update it. It is then a
matter of determining which subservices are active but also of determining potential
changes. For example, it is possible that an interface is deactivated after the launch
of DxAgent, so the update function must remove the node linked to the subservice
in question. It is also this class that initiates the analysis of the rules defined in a
health.csv (parsed by the Symptom class) to determine a potential change in health
score.

• DxTop and DxWeb: These two interfaces are programs that can communicate
with an instance of the DxAgent. I had to modify them slightly in order to introduce
the input, metrics and health data specific to OWAMP. Moreover I modified DxTop
so that it can better manage the display when the number of CPU is not an exponent
of 2 (which was the case of my personal computer).

3.3.2 Integrate OWAMP as Input/Metric/Rule

Now that the structure of the program is known, it is easier to show the additions
that have been made. To do this, we will proceed by separating the explanation into three
parts, which are Input, Metric and Rule.

3.3.2.1 Input

The first of the three actions that occurs in the DxAgent consists, as we recall, in
recovering the inputs of the machine under study, which will be used to evaluate the state
of health of a subservice. In our case, the subservice that we want to integrate is the
communication between the machine that is being monitored and other machines (of a
same or different subnet). This subservice is interesting because it is not rare for an IBN
(or SDN) to have network requirements within its network. The objective of the study of
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this subservice is to recover network link information such as reachability, delay, packet
loss, etc. In our case, we retrieve all this data by means of OWAMP pings, we just have
to find a way to send them to the DxAgent.

Handle the schedulers

We should remind that the input recovery is scheduled at a frequency fixed by the
DxAgent. Once the cycle of the three actions of the DxAgent is completed (input/met-
ric/rule), it is rescheduled at a fixed number of seconds later (3 by default). Moreover, as
we have seen in the API, OWAMP pings are also scheduled by a fixed frequency scheduler
(which can be modified in config file). However, this scheduler will take place at the set
frequency, no matter how long it takes to complete the action. The difference is clearer
when we look at the figure 3.6 that will be presented below. We clearly see that the time
of next input retrieval depends of the time of the current retrieval.

The fact that we have two different schedulers in different processes creates some
complexity but is also essential. Indeed, it leaves a lot of flexibility on when and how
often the pings will be executed. Furthermore, it would be unreasonable to think that the
pings are performed in the same thread as the DxAgent. Since pings take a long time to
complete, this would considerably increase the input retrieval. For this reason, the pings
are executed in a thread pool managed by the scheduler. The figure 3.6 below shows an
example of these two schedulers if they are set to 3 seconds for the DxAgent and 7 seconds
for the OWAMP pings. In the example, the number of different addresses to ping is set to
3, so there will be three threads in the pool.

Scheduler containing 3 threads

Dx
updateDxAgent Init

Ping address a.a.a.a

Ping address b.b.b.b

Ping address c.c.c.c

DxAgent

Init

Dx
update

Dx
update

Dx
update

7 seconds

Ping address a.a.a.a

Ping address b.b.b.b

Ping address c.c.c.c

7 seconds

Ping address a.a.a.a

Ping address b.b.b.b

Ping address c.c.c.c

7 seconds

Dx
update

3 secs 3 secs 3 secs 3 secs

time

:    Sleep

thread 1 :

thread 2 :

thread 3 :

Figure 3.6: Schedulers organization
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On the figure 3.6, is represented in red the course of DxAgent course of actions over
time. We notice that it starts with an initialization phase in which the OWAMP ping
scheduler is started. Then, once the operations allowing to update the state of health of
the machine is finished, the DxAgent passes by a phase of waiting of 3 seconds then starts
again an update and so on. What is represented in yellow corresponds to the OWAMP
scheduler which starts every 7 seconds a new ping in each of its 3 threads, whatever the
time taken by the previous ones. Note that it is preferable to choose a frequency that
allows a complete ping to be executed, otherwise the ping will be delayed and the next
pings will become desynchronized. If there is desynchronization of the pings, this does
not pose any problems to the programs, but it is preferable for the user that the DxAgent
recovers the information from all the pings during the same input update. We can see that
these two programs are completely independent, so we have to find a way to communicate
between them.

Possible pings scenarios

Before explaining how the DxAgent retrieves information from OWAMP, it is impor-
tant to present all the scenarios that can happen with the pings scheduler.

• It is possible that the DxAgent does not require any ping, in this case, it is obviously
not necessary to start a scheduler or to retrieve input specific to OWAMP

• The DxAgent can target one or several addresses to ping. It is then necessary to
differentiate and recover the information specific to each address.

• It is possible, and even almost certain that the first input retrieval takes place before
the end of the first ping, in this case, the display in the DxTop as well as the creation
of links requires a certain vigilance.

• An address may be accessible for a while but the ping stops in the middle because,
for example, the OWAMP server is stopped. The OWAMP program will not detect
this as an anomaly, so it is up to the DxAgent to manage the recovered values and
to handle them as best it can (notably by ignoring them if they have not had time
to send and receive a single packet).

• If an address is no longer available, one must indicate the user and also manage the
various inputs which no longer make sense (delay, los, etc.).

• An address which was no longer accessible becomes accessible again. This case does
not pose a problem given the way in which the OWAMP input retrieval has been
implemented.

It was necessary to think about all these possibilities during the whole integration, as
well for the input retrieval, as for the creation of the dependency graph or for the display
on DxTop.
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Input retrieval by file reading/writing

The input retrieval itself is done by means of a file that will contain the ping OWAMP
information. The callback function, contained in the DxAgent, sent to the OWAMP API
scheduler will ask the scheduler to start writing the output to a file (one file per different
addresses to ping). In this way, when an input retrieval is scheduled by the DxAgent, it
is enough to read this file. The choice of read/write files to associate the DxAgent and
OWAMP was natural. First of all, thanks to the way it was implemented, it is not necessary
to synchronize the two programs in any way. In addition, the DxAgent gets almost all of
the input by means of file reading. Using any other method, such as shared memory
or message passing, would not only complicate the procedure by adding synchronization
concerns, but would be inconsistent with the way DxAgent works. In this way, the process
is simple and does not require any modification of the OWAMP API, which was developed
independently from DxAgent.

In order to better understand how the two schedulers are organized and how the data
retrieval takes place, a diagram is shown below in figure 3.7

OWAMP scheduler

Dx
updateDxAgent Init

Ping address a.b.c.d

Init

Dx
update

Dx
update

Dx
update

7 seconds

Ping address a.b.c.d

7 seconds

Ping address a.b.c.d

7 seconds

Dx
update

3 secs 3 secs 3 secs 3 secs

time

DxAgent

a.b.c.d_input.txt a.b.c.d_input.txt a.b.c.d_input.txt

no input

:    Write

:    Read

Figure 3.7: Input Retrieval using file reading/writing

The example shown in figure 3.7 represents only one thread (and thus only one address
to ping) but the reasoning remains the same if one increases the number of threads. The
file writing takes place as soon as the ping is finished. While the DxAgent tries to read
this file at each update. If one exists, the values will be updated if it is a new ping. If
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there are several updates before a new file is written, as in the example, the values will
remain the same in the DxAgent until the next write. It is noted that the creation of the
ping-related subservice is only created the first time the file exists. This technique allows a
high flexibility in the choice of frequencies of the two schedulers. One can also imagine to
perform 3 pings between two updates of the DxAgent (only one will be read in this case)
or on the contrary only one ping per day. To summarize this operation, when a new value
is ready, this is the one that will be read at the next DxAgent update.

However, there is a problem to be aware of with regard to reading and writing. Indeed,
we have to make sure what would happen if the reading of the DxAgent took place at the
same time as a writing by the OWAMP scheduler. The chosen way to remedy to it is the
use of atomic writing. There is a python library named python-atomicwrites [30] able to
realize this type of writing. The way it works is rather simple. The writing takes place in
a temporary file and when the writing is finished, the temporary file is renamed by the file
one wants to overwrite. And, as mentioned in the official documentation, the system call
rename is atomic: "If newpath already exists, it will be atomically replaced, so that there
is no point at which another process attempting to access newpath will find it missing.
However, there will probably be a window in which both oldpath and newpath refer to the
file being renamed" [17]. We can therefore deduce that the DxAgent will read either the
old file or the new one and not a file with indeterminate content.

But the problem is not over yet, we have to make sure what happens when the
OWAMP input file is renamed (and thus replaced) during a write. Actually, this con-
cern is solved by the way the open system call works: "A call to open() creates a new open
file description, an entry in the system-wide table of open files. The open file description
records the file offset and the file status flags [...]. A file descriptor is a reference to an
open file description; this reference is unaffected if pathname is subsequently removed or
modified to refer to a different file" [16]. Therefore, if a write of new contents occurs during
a read, DxAgent will continue to read the old file. This one is only unlinked and will really
be deleted when calling the close system call: "if the file descriptor was the last reference
to a file which has been removed using unlink(2), the file is deleted" [15].

The display in DxTop

Finally, once the data has been retrieved, it must be entered into an input dictionary
so that it can be analyzed in the next step.

At the same time, the dictionary has been added (by means of a shareable buffer)
to the Network category of DxTop thinking of all possible scenarios again. Indeed, the
refreshment of the DxTop display being also scheduled every 3 seconds, it was necessary to
think about several particular cases (as the first ping done late compared to the dxagent
scheduler, the ping stopped in the middle, etc). A representation of the new integrated
inputs displayed by the DxTop is present on the figure 3.8 below. It should be noted that
the accessibility input is not really an input that OWAMP gives but rather an input that
can be inferred from the output of the ping program.
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Figure 3.8: DxTop - OWAMP Inputs

The address 127.0.0.2 is the one for which we see the link inputs, one just need to scroll
down to see the inputs for other addresses. The inputs starting with the prefix to refer
to the values calculated by OWAMP from the monitored machine to the target address.
While the inputs with the prefix from refer to the information specific to the return path.

3.3.2.2 Metric

As explained in section 1.3.1.2, this step consists in selecting and normalizing the
inputs of the previous step. In my case, I don’t need to normalize the data because they
all come from the same input source i.e. the OWAMP API. The selection of the metrics
among the inputs was rather simple, once the timestamps and addresses were removed
from the inputs, only important information for the health of the link remained. We can,
for example, see the list of metrics chosen from a screenshot of the DxTop program showing
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the values of these metrics for a loopback address of my computer on the following figure
3.9.

Figure 3.9: DxTop - OWAMP Metrics

A second operation that takes place during this step is the update of the dependency
graph, i.e. adding or removing nodes from the graph. It was obvious that I should add
the metrics of OWAMP in a subservice of the net subservice. Before the integration
of OWAMP, the net subservice was only composed of if (for ’interface’) subservices,
collecting, for each interface, data specific to it. We can see an example of this graph from
DxWeb with the interfaces (eno1 and lo) of my computer on the figure 3.11.
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Figure 3.10: DxWeb - net node example

However, I thought that it would not be interesting to add the inputs that I integrate
to these if subservices because it is rather the health of a communication between two
machines we want to establish regardless of the interface. Therefore, a link subservice is
created for each address whose connection status we want to analyze. This subservice is
completely optional. In fact, as long as no ping information (whether it is a hit or not) is
retrieved, no link node is added to the graph. We can see an example of this graph when
we want to establish the health score with three target addresses.
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Figure 3.11: DxWeb - Net nodes examples with three links

We can see on the figure 3.11 that the links have a health of 80%, which is normal
given the rules that were in force at the time of the screenshot. Moreover, we can notice
that the name of these 3 link instances represents the addresses targeted by the pings.

3.3.2.3 Rule

This last step in the Dxagent process is not really something that needs to be im-
plemented because it is up to the network user to know what he wants. Indeed, this last
step consists in choosing a set of rules allowing to establish the health of the links and to
introduce them in a csv file. Thus, the rules that we want to apply depend largely on the
infrastructure that we have and the services that we want to provide. However, it would
be interesting to present different ways of creating rules with the metrics I have integrated.

Let’s just remember that the rules have a format similar to the operations useful for
conditions that can be performed in Python (==, <, >=, etc). There are also constructs
which ensure that a condition is true for a given time :1min() or 5min(). And finally,
one can embed a metric of the function dynamicity so that it is the dynamicity that is
analyzed (i.e. the average of the variable through time). Finally, the gravity color (red
or orange) must be associated with it. Here is a list of rules that we can imagine for the
OWAMP metrics:

• The first rule is essential and rather obvious, it is simply to ensure the reachability
of the target address. We could assign an orange severity if it occurs for less than
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five minute and a red serverity when it exceeds 5 minutes.
Address not reachable : owamp_accessible == "no"
Address not reachable (>=5 min) : 5min(owamp_accessible == "no")

• We can also indicate an anomaly when there is at least one case of duplicated or lost
packets on the path to the target machine. We can also make sure that there is no
reordering on this path.

Path TO : Packet loss : to_pkts_lost > 0
Path TO : Packet duplication : to_pkts_dup > 0
Path TO : Packet reordering : to_reordering == "true"

• We could also assure, for example, that there is never a delay on the path from the
target machine greater than 1 second otherwise a symptom of red severity will be
released.

Path FROM : Maximum delay exceeded : from_ow_del_max > 1.0

• But it is obviously also possible to create rather complex rules. For example, one
can imagine that one wants the sum of the averages of the median one-way delays in
both directions to be greater than 2 seconds for at least 5 minutes.

5min(dynamicity(to_ow_del_med) + dynamicity(from_ow_del_med )) > 2

Of course, these are only examples, but it could allow a network operator to be inspired
by these few ideas in order to realize his own rules meeting his desired criteria.

3.3.3 Discussion about OWAMP

After having learned about the OWAMP protocol and how to integrate it with DxA-
gent, I think it is important to come back to the strong and weak points of this measurement
tool.

First of all, I think it is important to remind how useful it can be to get different delays
and information depending on the direction of the packets (given a possible assymetry in
the network). The accuracy of the protocol and its "one-way" aspect make it a remarkable
tool. Another important point of this protocol is the ability to authenticate ping requests
and thus to allow pings only to authorized users. In the case of DxAgent, it is enough
to share a passphrase between the different OWAMP entities of an infrastructure, the
developed API takes care of the authentication.

However, the obligation to have a server on a machine one wants to target makes
the number of accessible machines very small. Especially since OWAMP is far from being
present on all machines. Furthermore it is possible that the ports required for OWAMP-
Control (in TCP) and OWAMP-test (in UDP) are filtered and will therefore create even
more complications. If a network operator decides to have one OWAMP server per entity
in his network and does not need information from other machines, this will suffice. But if
they need to know the delay or reachability of an external machine (e.g. an external cloud
server), OWAMP will not be able to meet this need. That’s why I decided to add another
probing tool to DxAgent: the ICMP ping.
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3.3.4 Integration of ICMP pings in the DxAgent

In addition to being a good complement to OWAMP, as just explained, ICMP ping
will be a good candidate for comparison with OWAMP.

Since all the steps required to integrate OWAMP into DxAgent have already been
presented, it is not necessary to explain them again in the case of ICMP ping. The method
used for ICMP pinging is almost the same as for OWAMP except that it has been directly
integrated into DxAgent without the need to implement an independent API. Instead, it
would be more interesting to explain the few small differences from the implementation
point of view.

The fping program [15] is used to perform the pings, it is a program able to ping
several addresses at the same time (with a round-robin principle) and to give the result of
all the pings in stdout. The number of options in the program is quite large and I chose
the output options carefully to get the statistics. Once again, I leave the choice of the
probing options (number of probes, size, timeout, ping interval, etc) to the user in the
configuration file.

And so, to integrate it to the DxAgent, I launch a thread from the DxAgent which is
actually a scheduler that will execute the fping process and write the data atomically and
periodically into a file. By repeating the steps already done for the integration of OWAMP,
we can retrieve the list of inputs (figure 3.12) as well as the list of metrics (figure 3.13)
which are available just below:
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Figure 3.12: DxTop - ICMP Inputs

Figure 3.13: DxTop - ICMP Metrics

It may be interesting to note how these pings fit into the DxAgent dependency graph.
In fact, these are also embedded in the link subservice, just like OWAMP. Of course, it is
quite possible to ping both OWAMP and ICMP at the same time, so the subservice will
contain both sets of metrics. This is interesting because it is for example possible to have
data redundancy. Let’s imagine that a machine is both probed by OWAMP and ICMP, we
can then make sure that a machine is not reachable if neither of the pings can access it. It
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is possible that the OWAMP ping does not hit because the server is off, and therefore the
ICMP ping can still reach it. But the opposite is also possible, if for example the OWAMP
server is well accessible but the ICMP echo request packets are blocked by a firewall. The
rule below could be more reliable than having only OWAMP or ICMP pings:

Address not reachable : (owamp_accessible == "no") and (icmp_accessible == "no")

We will see even better in the next chapter, which deals with a use case, the interest
of having these two different sources of information.

3.3.5 Testing and Limitations

The interface as well as the integration into the OWAMP DxAgent was extensively
tested manually during the whole process. But a tool I developed for the use case we will
present in the next chapter allowed me to observe and fix several bugs. This tool allows
to automate DxAgent scenarios in a rather complex topology. So I just had to realize
different scenarios varying the different parameters of the program to test its efficiency in
a case as close to reality as possible. The way it works will be well explained in the next
section.
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Chapter 4

Use Case Demonstration

In this chapter, we will show how the integration of OWAMP with DxAgent works
through a use case. This use case will show how and why DxAgent combined with OWAMP
can be useful in a real and practical case. We will see that it can be very well integrated
into a network architecture in order to quickly diagnose anomalies. Moreover, this use
case will be the occasion to test the program in order to test a large part of its different
uses. By varying the parameters of the program in the face of different simulations of
anomalies, we will be able to ensure that it works properly. All the work realized for
this use case is present on the following github repository: https://gitlab.uliege.be/
Thomas.Carlisi/dxagent_use_case

4.1 Use Case Presentation

The use case that has been chosen is that of a small network architecture offering a
service to its customers. This service could be anything, but let’s take the case of a video
streaming service for the example. We are then in the case of a company that has to provide
video streaming to its customers and therefore has certain network requirements to meet.
The way in which the service has been set up does not change the use case but we can
imagine that it is an Intent-based Networking architecture and that the streaming service
has been set up using an intent. Therefore, we would like to show that the DxAgent
can observe if an intent drift is present or about to appear by analyzing the network
continuously. That is, to determine if the intent that was decided upon is not compromised
due to a change in network conditions. The network topology has been defined in order to
show several interesting cases and it is presented on the following figure 4.1.
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Figure 4.1: Streaming service Topology

The first thing that is important to note in relation to this figure is that the entities
present in the architecture of the streaming provider could represent only a subset of the
entities of the network enterprise. The goal here is not to create a complete topology or
one that is completely consistent with reality, but to show a use case that will highlight
the main asset of OWAMP, which is the retrieving of one-way metrics. This is why the
diamond formation composed of the three routers (R1, R2 and R3) and the server has
been imagined. It can also be noticed that the server (or the data center to see the bigger
picture) that provides streaming to the client integrates a DxAgent. It is indeed in this
entity that the measurements will be initiated and retrieved. While an OWAMP server
is present in the router at the exit of the service provider network to analyze the traffic
between this router and the server.

It would be interesting to imagine the intent that could have been involved for such a
service in order to have what we want to assure. In this use case, the intent, expressed in
common language, would be for example the following:

"One wants a connection between the server and R3 such that outgoing packets
go through a different path than incoming packets and whose outgoing one-way
delay does not exceed 50 ms".

For this reason, Figure 4.1 shows a topology where outgoing packets pass through R1
and incoming packets pass through R2. Furthermore, we notice that the intent example
that was given shows a delay requirement only in the direction of packets leaving the
server. This might make sense because the service provider wants to ensure that video
packets are received quickly while it is potentially less important that the delay for client
acknowledgement packets be as low. Of course, this is just an example and we will see in the
demonstration that it is possible to assure other parameters with DxAgent and OWAMP
such as reordering for example. Moreover, we can note that the delay between the server
and the client is not observed and this is reasonable. The intent and its assurance only
concern what can be managed, i.e. the internal network entities. If the delay deteriorates
significantly once the packets are outside the internal network, this is not something the
service provider can influence.

We will therefore see through several experiments the different use cases of the active
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network metrics recovered by DxAgent. But first it is interesting to present the way this
topology and these experiments have been set up and implemented.

4.2 Use Case Setup

The implementation of the topology is done by means of docker containers [24] (one
container per machine) that communicate with docker bridges [4] that are created and man-
aged by Docker-Compose [5]. It seems important to briefly summarize these technologies
in order to better understand how they could be used to implement the topology.

4.2.1 Creation of Docker Containers

First of all, a Docker image is a standalone software package that allows one to run an
application with everything it needs. This includes all libraries (system or not), programs,
code, parameters required to run the application. Then, when this image is run on a Docker
Engine, we say that it is a Docker container. Without going into details, the Docker
Engine is the technology allowing to run in a consistent way the containers on different
platforms. The main interest of Docker is therefore to be able to deploy an application using
a container without having to worry about all the problems of dependencies depending on
the platform. One just needs to create an image that contains everything one needs to run
an application and this application can then be run on a number of different systems in a
consistent way and without additional installation.

For my part, I use it above all to simulate the different entities of my topology. The
use I make of it allows me first to simulate a network of several machines on a single
physical machine. And secondly, given the consistent nature of Docker, it allows me to
create a use case and experiments that are very easily reproducible. Moreover, in addition
to being easy to reproduce, the experiments are easy to automate.

The specification of the Docker image that will be built is done through a Dockerfile.
The purpose of this file is to state the different steps necessary to launch the application.
The first step is the choice of the base image, it is a basic software package allowing not to
have to specify the whole of the dependencies (in particular the very many needs at system
level). In my case, I chose the Ubuntu image but any other version of Linux was possible
(to run the DxAgent). From this image, one just has to install some programs (fping,
iproute, etc) and libraries necessary for DxAgent and experiments. Then, it is enough to
inform in the Dockerfile the files of the code of DxAgent so that it is copied and then to
launch the application.

So I had to specify one Dockerfile per machine in my topology. The routers are not
really routers but simply linux machines configured to forward packets and whose appli-
cation is simply a program that waits indefinitely. However the "router" at the exit of
the network must also launch an OWAMP server (configured by my python API). The
fact that it is a simulation of a linux computer and not a router makes this possible. In
addition, a series of modifications had to be applied to the DxAgent so that it could run in
a container. The DxAgent reading some files from /proc which are not part of the Ubuntu
image of Docker, it was necessary to remove some inputs. Other little adjustments had to
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be made so that the DxAgent could work inside a container. To provide an example of a
Dockerfile, here is a simple one used to launch the router being at the exit of the network
(the one that integrates OWAMP):

FROM ubuntu :20.04

COPY owamp /app/
COPY run.sh /app/
COPY close_server.sh /app/

WORKDIR /app

RUN apt -get update -y && \
apt -get install -y net -tools && \
apt -get install -y iproute2 && \
apt -get install -y traceroute && \
apt -get install -y iptables

CMD /bin/bash run.sh

The Dockerfile keywords are explicit and it is quite easy to understand what is going
on. One just has to note that instead of launching the OWAMP server, it is a run.sh
script that is launched. Indeed, the server being a daemon, once started by the script, one
has to wait indefinitely so that the container does not stop its execution.

4.2.2 Connecting the Docker Containers

Being able to launch all the containers is a first step but then you have to be able to
make them communicate with each other and using the right routes. To do this, I used
Docker-Compose, a tool able to configure (by means of a yaml [34] file) then launch several
containers at the same time. Among what can be configured with Docker-Compose, the
most important for this project is the Docker Networks. The way the network is managed
by Docker is rather particular and it seems important to explain it briefly.

Docker’s networking subsystem is pluggable using drivers. Among the different drivers
proposed by Docker, the one that best suited my use case is the bridge. A bridge network
allows containers connected to the same bridge to communicate while it provides isolation
from containers that are not connected to the bridge. The docker bridge driver will take
care of setting up the rules on the host machine to allow the connection and/or isolation
of containers. By default, docker containers are connected to the default bridge network,
and therefore are all connected to each other. The following figure 4.2 shows the default
behavior of the network if we launch 3 containers.
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Figure 4.2: Bridge Default behavior

However, given the topology that is targeted for this use case, we want to isolate
the containers 2 by 2 in order to simulate the links between the different entities of the
topology. The following figure 4.3 shows what we would like to have with three containers
which can, for example, represent the link between the server, R1, R2 R3 of figure 4.1.

Container 1 Container 2 Container 3

Bridge 1

C1 C2

C3

Bridge Network Representation Topology Visualization

Bridge 2

Figure 4.3: Bridge wanted behavior

Since it is possible to create user-defined docker bridges, it is sufficient to create a
bridge for each link to connect the containers 2 to 2. Therefore, if a container must be
connected to three others for example, it will have three interfaces, one for each of the
three bridges connecting it to the three containers. Moreover, it is possible to determine
the IP addresses of each interface of the containers and thus have a relatively high control
over the topology that we want to achieve.

The topology that has been realized is not really the one that has been presented,
especially because the clients are not present because they would not bring anything to
the experiments that will be done. Moreover, two routers have been added to simplify the
network configuration which is already not obvious on Docker. These two routers aim to
avoid a problem that was present with OWAMP and ICMP pings. This problem is that,
due to the initial topology and the mandatory asymmetry of the path between outgoing
and incoming packets, OWAMP/ICMP packets were sent by one interface and received by
another, which prevented pings from taking place. A simple solution was to add routers so
that the server and the outgoing router sent and received packets over a single interface.
There are more elegant solutions to this problem (such as using loopback addresses), but
in addition to being simple to implement, this solution allows more flexibility in the choice
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of experiments to be performed (because there are more links). Once the bridges have
been created, the IP addresses chosen and the routing tables configured, we find ourselves
with the topology shown in the following figure 4.4.
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Figure 4.4: The realised docker topology

From now on, we will always use this topology and its names as a reference for the
following because this is the one that has been realized in practice. So we have one bridge
per pair of containers that must be connected. Moreover, the bridge subnets and the
interface addresses have been determined in such a way that they are not chosen randomly
but are always consistent. It is quite easy to convince oneself that defining a default
gateway per interface is sufficient to set up the desired routing. Indeed, when a container
is not directly connected to another by a bridge, it must always reach the other containers
by a single path, given the asymmetry that we want to achieve. Remember that the
objective is to analyze the path between the server and the border router, i.e. the router
that is directly connected to the Internet. In the end, the path that the OWAMP and
ICMP packets will take is the following:

Server → R0 → R1 → R3 → Border Router

Then,

Border Router → R3 → R2 → R0 → Server

To see how this was done in practice, let’s take the example of R3 communicating
with R1, R2 and the Border Router. The part dedicated to R3 in the yaml file for docker-
compose is the following:
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r3:
depends_on:

- server
- r0
- r1
- r2

container_name: r3
build: ./r3/
sysctls:

- net.ipv4.ip_forward =1
networks:

r1-r3:
ipv4_address: 10.3.0.2

r3-br:
ipv4_address: 10.6.0.2

r3-r2:
ipv4_address: 10.4.0.2

The dependencies are simply used to choose the order in which the containers will be
started, the build directive indicates the folder in which R3’s Dockerfile and the files it
needs are contained. The sysctls directive is used to configure R3 to forward ipv4 packets,
which is required to simulate a router. And finally, the networks refer to the docker bridges
that have been created beforehand with the addresses assigned to each of its bridges (i.e.
its interfaces). Then we can see the creation of the networks associated with it and the
change of the default gateway below:

### Before images built

docker network create --subnet 10.3.0.0/24 r1-r3
docker network create --subnet 10.6.0.0/24 r3-br
docker network create --subnet 10.4.0.0/24 r3-r2

### After containers started

# r3 redirects to r2
docker exec --privileged r3 route delete default
docker exec --privileged r3 route add default gw 10.4.0.4

It should be noted that the change of route is not done at the creation of the docker
image but after the creation of the container because it is an operation that is only possible
by extending the privileges of the container. This is why we execute the route command on
a container already started with the ––privileged option. The main part of the operations
that allowed to make the different containers communicate have been presented, we will
quickly see how the experiments could be automated.
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4.2.3 Automation of experiments

As stated, using Docker makes it easy to automate the startup of the topology and
the flow of actions. But before one can automate anything, it is important to be able to
retrieve data. The DxAgent has two graphical interfaces that give real time results but
these results are difficult to use. Moreover, the containers are launched in background,
so we need another way to retrieve the metrics and symptoms from the DxAgent in an
easily usable format. To do this the DxAgent has been modified to produce a csv file, at
each update of the program (every 3 seconds), giving the timestamp of the update, all the
metrics and symptoms that can be returned from the OWAMP and ICMP inputs.

Once it is possible to get the data from the DxAgent, it is possible to imagine the
automation of the experiments. To do this, a python script has been written. The script
takes as a parameter of the program a scenario, that is to say a series of events that must
take place in the different containers, and it returns the output that was delivered by the
DxAgent during the whole scenario. In addition to the scenario, a series of parameters
can be entered in a configuration file and the script will take care of modifying certain
variables of the DxAgent and OWAMP/ICMP parameters using preconfigured jinja2 [28]
templates. It is therefore possible to create all sorts of scenarios by playing with all possible
parameters easily (without needing to understand anything about DxAgent, Docker, etc).
Once the parameters have been modified in the DxAgent files, the script will take care
of creating the Docker networks, creating the images, starting the containers, configuring
the routes and link delays and then starting the bash scenario entered as the program
parameter. Once the scenario is finished, the output is copied from the server container to
the host machine and the networks and containers are stopped and deleted.

Let’s imagine a very simple scenario, written in bash, that waits for 30 seconds, then
changes the delay of one link and waits for another 30 seconds:

sleep 30

docker exec --privileged r1 tc qdisc \
replace dev eth1 root netem delay 50ms

sleep 30

Let’s take advantage of this script to explain a tool that will be widely used in the
experiments that will be presented: tc qdisc [18]. This linux command allows to change
the queuing discipline of the packet that will be transmitted. In our case, we use netem
[22] which offers Network Emulation features such as changing the delay, loss percentage,
reordering percentage, duplicates percentage, etc. Thus, the command presented above
will force R1 to wait 100ms before sending its packets.

Then, one just has to modify the configuration file created specifically for the use case
and then launch the python script with the above scenario as parameter. And the topology
will be started, the scenario executed and a csv file will be generated with the symptoms
and metrics of the DxAgent collected during the 60 seconds of the scenario. All this being
done in background, the user investment has been reduced to its strict minimum to make
it simple to perform a whole series of experiments that are easily reproducible.
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4.3 The Demonstration

It is now possible to perform all kinds of experiments to test the different parameters of
DxAgent, OWAMP and ICMP. Furthermore, we can demonstrate that the inputs that have
been added to the DxAgent work properly and can react to different situations that may
be useful in a real case. For each experiment we will perform, the scenario, the objective
that is aimed at, the chosen parameters and the DxAgent rules used will be exposed.
Given the number of events that are applied to the network and the large list of inputs
added to the DxAgent, the number of experiments to be performed is immensely large.
Four experiments showing the most important and interesting aspects to be discussed have
therefore been carefully chosen.

It is important to first present the initial state which is the same for each experiment.
The 6 entities of the topology with their links and routes which were presented on the figure
4.4 are started. And a delay of 2ms is emulated (thanks to netem) on each and every link.
The original delay is very short and unpredictable because everything takes place on the
same machine, therefore a delay of 2 ms has been set. And thus, if delx_y represents the
one way delay from x to y, the expected (minimum) delay between the server and the
border router is the following (since the packets go through 4 links in both directions):

delS_BR = delBr_S = 4× 2 = 8ms

Interval between pings

Before presenting the different experiments, there is a point that it is important to
discuss, it is the maximum time to realize a ping in its entirety. Indeed, it is important to
take this time into account because a ping must be performed in its entirety for the result
to be recovered by the DxAgent. Moreover, it is important to know this time in order
to decide on the interval between each complete ping. It is important to remember now
the difference between the time of the OWAMP API scheduler between each ping and the
schedule to define for the ping. The first one represents the time between each complete
ping while the second one corresponds to the time between each packet sent within the
same session, i.e. the same ping. Let’s now analyze this time for OWAMP and ICMP.

For OWAMP, in the implementation that has been made, it starts the test phase (i.e.
the ping) with a certain delay, this is called the delay start. This delay is useful to make
sure that the test session starts after the setup protocol is completed. This configurable
delay is minimum 1 second (plus 2 to 3 RTTs), we will leave it at this default value for
the experiments. In addition to this, it is obvious that we have to wait for the number of
test packets multiplied by the time interval between each packet sent, which is called the
schedule. Finally, the OWAMP protocol waits for a time equal to the configurable timeout
before ending the session. Of course, this is only an estimate, one should also take into
account the time for the OWAMP-Control session to be completed as well as the writing
of the results. But this estimate is sufficient to choose the adjustable interval between each
complete ping to be performed.

So we have the following result:
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timeping ≈ delay start+ timeout+ pkts number× schedule

Considering that in our case the two to three RTTs of the delay start is insignificant
(in the use case, it is between 32 and 48 ms). If we perform a ping with a timeout of 0.5
seconds, a number of packets equal to 5 and a schedule of 0.3, we have :

timeping ≈ 1 + 0.5 + 5× 0.3 = 3s

It is easy to check this result by testing these parameters with the owping program
because it gives an estimate of the ping time in output. Here is the result predicted by
owping on figure 4.5:

Figure 4.5: owping example estimate

Of course, this is only an estimate, but it allows us to choose the minimum interval
between each ping. In the example we gave, we could simply take a margin of error of
0.5 seconds and therefore choose an interval of 3.5 seconds between each ping. Obviously,
we could choose 20 seconds, 100 seconds, or even one ping per day, depending on the
use we want to make of DxAgent. For the experiments to follow, we will always take an
interval close to the time to perform a complete ping in order to perform a maximum of
new measurements in a minimum of time. Remember that the shorter the interval between
pings, the more often the DxAgent will retrieve new values during its updates. Moreover,
a short ping interval allows to give values as close as possible to real time. It is obvious
that if DxAgent updates its metrics every 3 seconds and if a ping is scheduled every hour,
DxAgent will at some point have values that are almost an hour old.

In addition, the time to ping with ICMP is similar to the one that can be done with
OWAMP. The difference is that there is no mandatory 1 second start delay. Now that the
problem of the interval between pings has been discussed, we can explain experiment 1
which is directly linked to it.

A word on parameters

It is possible to influence several parameters of OWAMP and ICMP ping but those
influence weakly the experiment to be interesting to highlight. Indeed, the first experiment
was tested by varying all the parameters (schedule, packet number, packet size, timeout)
but it makes almost no change. By taking values that make sense, there is almost no
variation in the delay measurements nor in the DxAgent symptom observations. However,
when taking nonsensical (absurdly large) values for the parameters such as sending 100
packets per second of 10,000 bytes for 10 seconds, we observe a little change in the median
delay from 16.5 to 16.7 ms. Since these values are sensless for a simple ping and the effect
is still very small, these parameters will not be varied in the experiments. Therefore, we
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will use a arbitrary but reasonable parameter values (close to the default values of the ping
protocols) for all experiments which are the following:

• schedule = 0.1 seconds

• packet size = 100 bytes

• timeout = 0.5 seconds

Only the number of packets per ping will be adjusted so that packets are continuously
sent during the whole scheduler interval.

4.3.1 Experiment 1 : Delay and ping interval

The first experiment aims at demonstrating that the DxAgent reacts well to delay
changes on the network but also to show the importance of the choice of the time interval
between pings. We would like to observe how this interval can influence the observations
of the DxAgent.

Presentation

The scenario that will be studied in this first experiment is represented in the following
figure 4.6:

1

50ms
50ms

BRR3 100ms
100ms

BRR3

Initial State Initial State

60s 60s 60s 60s

START END

time

2 3 5 6 7

25s 25s10s

2ms
2ms

BRR3

Initial State

4

Figure 4.6: Scenario 1

The states 1 and 7 correspond to the delay of the initial state (i.e. 2ms for each link).
For states 2, 4 and 6, the link transmission delay between R3 and the border router (BR)
is replaced by 50 in both directions. While states 3 and 5 correspond to an even greater
delay rise of 100ms in both directions. The choice of this scenario is motivated by the fact
that the DxAgent should able to determine a higher or lower delay rise and also to detect
the return to normal which should be materialized by an absence of symptom. Moreover
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the 3 fast changes represented by states 3, 4 and 5 have for objective to see how a long
ping interval could manage fast changes in the network

The DxAgent rules that will be used are the following:

Owamp rtt > 100 : (from_ow_del_max+to_ow_del_max <=200) and
(from_ow_del_max+to_ow_del_max >100)

Owamp rtt > 200 : from_ow_del_max+to_ow_del_max >200
Icmp rtt > 100 : (max_rtt >100) and (max_rtt <=200)
Icmp rtt > 200 : max_rtt >200

It is simply a matter of returning a symptom of orange severity when the maximum RTT1

of a ping (OWAMP or ICMP) exceeds 100 ms and of red severity if it exceeds 200ms.

Results

The first action that was done was to measure when a symptom was detected by
the DxAGent and what its nature was. This measurement, which uses a ping interval
of 3 seconds, was carried out with OWAMP and then ICMP and gave vigorously equal
results. For this reason, we will only show the OWAMP result. The objective of this first
measurement is to show that the DxAgent reacts well to network changes. Here is a graph
made from the csv output file that was generated during the experiment:

1 2 3 4 5 6 7

Figure 4.7: Symptoms - experiment 1 (OWAMP)

What can be directly observed on figure 4.7 is that the symptoms are indeed observed
when changes of delay take place. However, we can notice that the symptoms are discovered
with a small delay. This result is obvious, the DxAgent performs updates of its metrics
every 3 seconds and OWAMP independently performs measurements every 3 seconds.
Therefore, there will always be a small delay between the change in the network and the
moment when the DxAgent notices it. For the same reason, the DxAgent stops reporting a
symptom for a while when it should not. These results were quite expected and satisfactory,
the DxAgent reacts well to changes in the network in a real case.

In addition to having carried out this experiment with 3 second intervals, it was also
carried out with other values which are 6, 9 and 12. The objective was to see how this

1For OWAMP, the RTT is the sum of the one way delay in both path directions
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interval can modify the discovery by the DxAgent of changes in the network. We are sure
that when there is a change of delay, the associated symptom (orange or red severity) is
returned by the DxAgent. It would therefore be more interesting to show the round trip
time measured by the two measurement tools. Let’s take the case of OWAMP first:

1 2

3 4 5

6 7

Figure 4.8: Maximum delay - experiment 1 (OWAMP)

If we observe on the graph presented on figure 4.8 a single curve, for example the
green curve (3 seconds between pings), we notice as expected that the maximum delay
undergoes an increase or a decrease at each network event with a short delay. The three
approximate RTT values that can be extracted from the observed measurements are: 17,
113 and 213 ms.

First of all, the initial delay of 17ms was expected, indeed, the packets between the
server and the border router pass through 4 hops in one direction and 4 in the other. Since
the transmission delay of these 8 entities is delayed by 2 ms, the minimum delay is 16 ms.
But this is of course not the only one delay to take into account (propagation, processing,
queuing delay must also be considered), so an RTT of 17 seconds is coherent.

Then, the transmission delay of two of these 8 links has been replaced by 50, so we
have 6×2+2×50 = 112. Once again, within one millisecond of delay, we have a reasonable
result. Finally, when the transmission delay is changed from 50 to 100 for both links, we
have 6× 2 + 2× 100 = 212 (and therefore close to 213).

What we can then observe on figure 4.8 is the difference between the 4 curves. The
bigger the ping interval, the more delay there will be to detect an anomaly. Even worse,
when the change lasts only 10 seconds (state 4), an interval of 12 seconds does not even
detect the delay modification. Since this is the maximum delay, only one value close to
213 ms is measured during the 12 seconds of probing for the maximum delay to be close to
this value. A first solution to this problem would be to use the median delay instead, but
this would not solve the problem entirely. It is obvious that if two network changes take
place during the same probing, the result will not be consistent. The second and better
solution is then to choose an interval between pings as short as possible (close or equal
to the interval of the DxAgent updates) when we want to observe short perturbations in
time. From now on, all experiments will be executed using a three second interval.

If we observe the same measurements for the same experiment but in the case of
traditional pings, we only notice one difference:

64



1 2

3 4 5

6 7

Figure 4.9: Maximum delay - experiment 1 (ICMP)

This difference, that is clearly visible on figure 4.9 is the presence of higher maximum
delays in the case of the first measurement. This due to the facts that the docker entities
does not know MAC addresses of their neighbors and must then send Address Resolution
Protocol (ARP) requests to resolve the destination IP addresses to a destination MAC
addresses in order to properly forward the packet. The reason this does not affect OWAMP
is that these ARP requests occur at the time of the TCP connection setup (OWAMP-
Control) and therefore do not create any delay for the test packets.

4.3.2 Experiment 2 : Duplicates and reordering

The second experiment consists in checking other OWAMP metrics to make sure they
are working properly. This involves checking that the DxAgent is able to determine when
duplicate or reordering is taking place.

Presentation

The scenario which is then set up is the one presented on the figure 4.10 below:

1
R3R1 R3R1

Initial State Initial State

60s 60s 60s 60s

START END

time

2 3 5

60s

4
#4 Initial State#3#3 #4 #3 #5

Duplicates Reordering

Figure 4.10: Scenario 2

States 1, 3 and 5 simply correspond to the initial case (no reordering or duplicate),
they serve as base cases. One minute after the start of the experiment, every second
packet from R1 is duplicated, this is state 2. Moreover, after the third minute, every
second packet is delayed by 100 ms in order to create reordering. It should be noted that
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these modifications in the behavior of R1 were once again performed with the tc qdisc tool
combined with netem.

The DxAgent rules that will be used are the following:

Owamp Duplication : to_pkts_dup >0
Owamp Reordering : to_reordering >0

These two rules ensure that if at least one packet is duplicated or reordered, the
corresponding symptom will be reported by the DxAgent. It is noted that, R1 being on
the path from the server to the border router, it is the one-way duplicate and reordering
of this direction that is observed.

Results

Once the experience has been performed and the timestamp of the symptoms retrieved,
they can be displayed in a graph which is presented in figure 4.11 below.

1 2 3 54

Figure 4.11: Symptoms - experiment 2 (OWAMP)

The purpose of the experiment was to demonstrate that the DxAgent enhanced with
OWAMP input is indeed able to determine when reordering or duplication occurs. The
graph above shows the expected behavior, although again a slight delay in problem dis-
covery and resolution occurs.

4.3.3 Experiment 3 : Link failure discovery

The third experiment aims to demonstrate that we can use the new DxAgent inputs
to find out if links are dead. Since we have two sources, it is possible to verify that a link
is dead in two different ways. Multiplying different sources allows us to better define the
reason of a problem and we will see why.
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Presentation

The scenario that will be analyzed, putting to the test both pings is the following:

ENDSTART

Initial State Initial State Initial State Initial State
BR

OWAMP
server

ICMP

BR BR

1 2 3 4 5 6 7
restart server stop rejecting restart machine

60s 60s 60s 60s 60s 60s 60s10s

shutting down BRclose OWAMP server reject ICMP

Figure 4.12: Scenario 3

As before, states 1, 3, 5 and 7 are intended to serve as a reference state between the
various anomalies that we will introduce into the network. The first link failure (state
2) is simply the shutdown of the OWAMP server located on the Border Router before
being turned on again 60 seconds later. The second anomaly (state 4) is to test the ICMP
ping for 60 seconds by simply blocking the echo-request packets at the firewall. The last
anomaly (state 6) is to shut down the container representing the border router. Shutting
it down takes some time (close to 10s); the real time has been calculated and is visible on
the graph 4.13.

The DxAgent rules used for this scenario are rather explicit, they determine when a
ping fails to reach the target machine:

Owamp - not reachable : owamp_accessible =="no"
Icmp - not reachable : icmp_accessible =="no"

Results

By running this test on the docker topology and putting on a graph the recovered
information, we obtain the following:

1 2

3 4 5

6 7

10.6s

Figure 4.13: Symptoms - experiment 3 (OWAMP and ICMP)

As expected, when the OWAMP server is off, OWAMP pings do not reach their
destination while ICMP pings do not encounter any problems. But when the echo-request
is blocked, it is the opposite. Finally, the most interesting case to analyze is when the
router is turned off.
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First of all and fortunately, neither of the two pings reach their destination. This
result is interesting because by multiplying the sources we can establish a better vision of
the network that we want to diagnose. Indeed, we have shown that, for example, cutting
the OWAMP server is enough to make the machine inaccessible for OWAMP. However, it
is still accessible, so having a second source is a good idea. We could then improve our set
of rules in this way:

Owamp - not reachable : owamp_accessible =="no" and icmp_accessible ==" yes"
Icmp - not reachable : icmp_accessible =="no" and owamp_accessible ==" yes"
Machine not reachable : owamp_accessible =="no" and icmp_accessible =="no"

Of course, the fact that the machine is not accessible for both protocols does not
necessarily mean that the machine is off, but we are getting closer to the truth than
with only one source. Moreover, we notice that OWAMP observe more quickly that the
machine has been turned off and takes more time to realize that it has started up compared
to traditional pings. My intuition is that the OWAMP server should be shut down before
the machine is turned off (due to the shut down process) and that the server should turn
back on some time after the machine is turned on.

4.3.4 Experiment 4 : The Interest of one-way metrics

The purpose of the last experiment is to show the interest of OWAMP and the reason
why it was chosen in priority. By comparing the OWAMP results of this fourth scenario
with those of the traditional ping, we will show the value of retrieving one-way metrics.

Presentation

The figure below shows the scenario that was used for the fourth and final experiment.

START

Initial State Initial State Initial State

1 2 3 4 5

60s 60s 60s 60s 60s

50ms

50ms

R1
R3

R2

R1
R3

R2

END

Figure 4.14: Scenario 4

This scenario takes advantage of the asymmetric topology, which was actually made
that way for this reason, to add delay in one direction of the path and then in the other.
The figure 4.15 provided below shows the docker topology in a more fundamental way than
the one already presented. We can easily see that the packets leaving from R1 belong to
the path starting at the server and arriving at the border router, let’s call this path the to
path. While those leaving from R2 belong to the return path, let’s call this path from.
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Figure 4.15: Simplified topology - The two path

The DxAgent rules has been chosen to simulate a possible requirement of a streaming
service provider:

Owamp - not reachable : to_ow_del_med >50
Icmp - not reachable : avg_rtt >50

Let’s imagine that the network operator of this streaming company knows that the
most important thing for his network is that the packets sent from the server to the client
are sent in a minimum of time but the client’s acknowledgments may arrive with a greater
delay. In this case, he could for example determine the first rule above. This one makes
sure that the path to does not exceed a median of 50ms. However, for the path from, he
could put no rule or put a rule with a larger maximum delay (example: 100 ms). This
possibility is only available because OWAMP allows one-way metrics. Besides, we have
also added a similar ICMP rule (except that it is the average RTT). In this case it is not
possible to choose a delay requirement for a specific path and this is precisely what we
want to demonstrate.

Results

This time, in addition to displaying the times when symptoms were discovered by the
DxAgent, the graphic presneted in figure 4.16 displays the delay metrics. For OWAMP this
is the median delay and for ICMP the average delay. Since the OWAMP implementation
does not calculate the average delay, we will use the median delay, which is similar to the
average delay in this case since delays only evolve in fixed stages.
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1 2 3 4 5

Figure 4.16: Delay and Symptoms - experiment 4 (OWAMP and ICMP)

The first thing we can compare is the difference between the dashed curves. Since
the traditional ping is only able to calculate the RTT and not the one-way delay, its curve
always shows a delay 8 ms (delay due to the from path) greater than the OWAMP curve for
the initial states. But the most interesting thing to observe is the difference between these
two curves at state 4, i.e. the moment when the delay on the from path has been increased
by 48 ms. We notice that the OWAMP curve has not been influenced because it calculates
the to path. This is exactly the result we wanted to obtain. This shows that the choice of
one-way metrics for the DxAgent is very good if one needs different requirements depending
on the direction of the traffic. With a probing tool that can only compute RTTs (like the
traditional ping), a symptom is discovered by the DxAgent regardless of the direction of
the path on which a network event occurs. This can be seen on the graphic (figure 4.16)
where we notice that only the rule related to ICMP has been validated. Moreover, we can
recall that delay is not the only metric to benefit from the "one-way" interest, there are
also all the other OWAMP metrics: dupliactes, rordering, etc.

70



Conclusion

The objective of this master thesis was to extend the angle of view of DxAgent by
adding active network measurements. We can say that this goal has been achieved.

First, an API for the OWAMP protocol had to be built in python and it is functional
and publicly available to provide a parameterizable one-way metric tool. It was not an
easy task as the implementation of this protocol is absurdly complex to use and poorly
documented. Moreover, interfacing several programs through a scheduler managing a
thread pool does not facilitate the implementation of this interface. This newly developed
API has allowed the integration of new estimable metrics in the DxAgent. On the other
hand, an interface to start ICMP pings with several machines with a frequent interval has
also been developed.

This step of integrating the active network metrics into DxAgent also proved to be
rather complicated since it was necessary to understand and dissect all the pre-existing code
before imagining any improvement. Several challenges had to be overcome, such as how to
trigger measurement tests and synchronize the results with the DxAgent scheduled update.
In addition, a number of cases had to be handled to allow a high degree of flexibility in the
combined use of OWAMP and DxAgent. The result is that it is now possible to retrieve
metrics with a constant frequency from several machines in the network and to analyze
potential anomalies.

Then, in order to show the efficiency, the functioning and the usefulness of these
new measures, a use case was imagined. By imagining a small topology (of 6 machines
anyway), we wanted to show the usefulness of the new additions. The implementation of
these entities and the way to connect them proved to be a real challenge. We had to learn
the concepts of Docker but also its inter-container communication system. But once the
script allowing to automate scenarios was done, experiments could be done.

We could first show that the DxAgent is able to retrieve the delay of the studied
path but also to display the right symptoms at the right time. It was also the occasion
to see the impact of the different parameters of OWAMP and we noticed that they have
a very minimal impact on the experiments. Then two other experiments allowed us to
demonstrate that DxAgent is able to ensure some network properties of a path. The
detection of duplicates and reordering proved to be fully functional and are therefore good
additions to the detection agent. Furthermore, link failure detection was shown and we
noticed how the use of two input sources (OWAMP, ICMP) can be very useful to detect
a more precise symptom. Finally, the last experiment was aimed at showing the interest
of one-way measurements using an asymmetric delay between the server and the target
machine. This was an opportunity to show a concrete case where OWAMP can be valuable.
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Before, this agent was very useful to detect symptoms specific to the studied machine.
Now, it is armed with many other metrics related to network connections. Therefore, it
will be even better adapted to a network based service. Of course this agent is, for now,
only able to notify the network operator of symptoms of its service without automatic
corrections. But it is not difficult to think that it could very well be integrated into a more
autonomous system. Thanks to its new metrics, DxAgent is even closer to its initial goal
of detecting service anomalies in an Intent-based Networking context.

Intent-based Networking and service assurance, in general, is in full evolution. Its
operation makes it a very powerful and practical tool for a network operator. And I
can’t wait to see how these systems will develop and how they could revolutionize network
architectures. I am glad that this thesis allowed me to learn about this subject and to have
integrated a project highlighting it.
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