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Abstract

The pedestrian loading on civil engineering structures is usually determined by using equiv-
alent load models or by directly measuring the imposed forces on a rigid floor. Direct
measurements are however costly and often only feasible in the laboratory. Additionally,
a pedestrian that moves on a flexible bridge tends to adapt to the bridge motion and the
load models currently available are therefore no longer valid. The objective of this thesis
is to use an inverse dynamic technique to identify the actual loading based on measured
vibrations.

The acceleration measurements are carried out on the Geierlay footbridge in Germany.
These are then analysed to determine the modal properties of the structure, such as the
natural frequencies and the damping ratios.

A joint input-state estimation algorithm is used to identify the pedestrian load, knowing
the output accelerations. Before applying this inverse force identification technique to the
real-world example, it is validated by two academic test cases. The first one is a 7m long,
simply-supported concrete slab, such as in K. Van Nimmen et al. 'Inverse identification of
pedestrian-induced loads’ (ISMA, 2016), where the modal properties are already given as
well as the resulting modal load. The influence of different parameters is also analysed. The
second example is the extension of the former, by using the Geierlays length and its modal
properties.

The method is then applied to the Geierlay footbridge using the measured accelerations.
Finally, the results are compared to existing load models with the goal to propose improve-
ments.
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Résumé

Les charges piétonnes sur les ouvrages du génie civil sont généralement déterminées en
utilisant des modeles de chargement équivalents ou en mesurant directement les efforts im-
posés sur un sol rigide. Cependant, les mesures directes sont souvent cotiteuses et unique-
ment réalisables en laboratoire. De plus, un piéton qui se déplace sur un pont flexible a
tendance a s’adapter au mouvement du pont et les modeles de chargement actuellement
disponibles ne sont donc plus valables. L’objectif de cette these est d’utiliser une méth-
ode d’analyse dynamique inverse afin d’identifier les charges réelles en se basant sur des
vibrations mesurées.

Les mesures d’accélération sont réalisées sur la passerelle Geierlay en Allemagne. Celles-ci
sont ensuite analysées pour déterminer les propriétés modales de la structure, telles que les
fréquences propres et ’amortissement.

Un algorithme appelé "Joint input-estimation algorithm’ est ensuite utilisé. Celui-ci permet
d’identifier les états et I’entrée du systéme en connaissant les accélérations sortantes. Avant
d’appliquer cette technique d’identification inverse a un exemple du monde réel, celle-ci est
d’abord validée a travers deux cas tests. Pour le premier, il s’agit d’une dalle en béton
sur deux appuis simples, qui fait 7m de long, comme celle dans K. Van Nimmen et al.
«Inverse identification of pedestrian-induced loads» (ISMA, 2016), ou les propriétés modales
sont données, ainsi que la charge modale obtenue. L’influence de différents parametres est
également analysée. Le deuxieme cas test est ’extension du premier, en utilisant la longueur
du Geierlay et ses propriétés modales.

La méthode est ensuite appliquée a la passerelle Geierlay a partir des accélérations mesurées
sur site. Enfin, les résultats sont comparés aux valeurs données par les modeles de charge-
ment existants dans le but de proposer des améliorations.

1l
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Natural frequency corresponding to mode i
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P, Covariance matrix of the force and state estimate error (of dimensions ns by n,)

p Input/forces vector (of length n,)
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R Covariance matrix of the measurement noise vector v (of dimensions ng by ng)
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(of dimensions ng by ngof)

Sq Matrix relating the measured displacement or strains to the degrees of freedom of
the model (of dimensions ng by ngor)

Sy Matrix relating the measured velocities to the degrees of freedom of the model (of
dimensions ng by ngf)

S Covariance matrix of the process and measurement noise vectors w and v (of dimen-
sions ng by ng)

v Measurement noise vector (of length ng)

w Process noise vector (of length ny)

X State vector (of length ny)

Specific to the joint input-state estimation algorithm

K Gain matrix (of dimensions ng by n,)
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N Gain matrix (of dimensions ng by ng)
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o) Kronecker delta (equal to 1 for k=0 and to 0 otherwise)
E Expectation operator

Abbreviations
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FFT Fast Fourier transform

GRF Ground reaction force
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Introduction

For several years now, it has become a trend to build slender and elegant bridges with lighter
materials. These are more likely to vibrate than other types of bridges. In particular, one
may see the emergence of footbridges. These fulfil their main purpose of linking two points
often separated by a stream or a valley but are only dedicated to pedestrians.

This work will mainly focus on very flexible footbridges, also called simple suspension
bridges. These are made of various cables which follow the shape of a catenary arc. The
earliest bridges were of this type but made out of vines or ropes. The most recent example
is the new 516 Arouca footbridge in Portugal, named according to its length and location.
It opened on the 29th of April 2021, is suspended at 175m above the Paiva river and is
currently the longest footbridge in the world. The footbridge that will be dealt with here, is
the Geierlay in Germany. Which opened in October 2015 and was at the time the longest
footbridge in the country with a span of 360m.

These footbridges are mainly subjected to wind and pedestrian loads. The latter one is well
defined for a single pedestrian crossing a rigid footbridge. The load is considered periodic
in time and is defined by a Fourier series. For a flexible one, however, the pedestrian tends
to adapt to the bridge motion and the existing loading models may be no longer valid.
When a group or crowd of pedestrians crosses the footbridge it is even more complicated, as
some phenomena of synchronisation between the pedestrians or with the bridge may occur.
Examples in the past already showed lateral synchronisation. These cause discomfort for
pedestrians. Some research has been done on this topic, but it is far from being a solved
problem.

To gain a better understanding of pedestrian loads, the most straightforward way, would
be to directly measure them on the existing footbridges and analyse them. However, this
is rather difficult, such methods exist but are often costly, not very accurate and only
feasible in the laboratory. Luckily, it is well known that measuring accelerations is easy
and accurate. By using a dynamic inverse technique it is possible to identify the loads
from which the measured accelerations originated. One example is the joint input-state
estimation algorithm, which is an extension of the well known Kalman filter and will be
used in this work.

Thus, the purpose of this work is:

« to familiarise with an inverse force identification technique by analysing it on the basis
of two simple test cases,

e to carry out an experimental campaign on site, in order to measure accelerations when



groups of pedestrian cross the footbridge, as well as identify its modal properties, i.e.
natural frequencies and damping ratios,

o to identify the pedestrian loads by applying the inverse force identification technique
to the real footbridge,

« and to compare the identified pedestrian loads to existing loading models to check if
they are realistic or if they need to be improved.

This is a step towards a better understanding of loads due to a group or crowd of pedestrians
and improving the design of footbridges.

This work has the following structure:

Chapter [I] introduces briefly existing pedestrian loads identification methods. These are
classified into direct and indirect approaches and their applicability to flexible footbridges
is discussed. The reasons why the joint input-state estimation algorithm is chosen in this
work are also stated.

Chapter [2] presents the inverse force identification technique chosen for this work. Starting
from the continuous-time equation of motion and the definition of the measurement data
vector, a discrete-time state-space model is derived in the modal basis, which is more con-
venient for the study of vibrations. The system matrices, i.e. state matrix, input matrix,
measurement /output matrix and the feedthrough matrix are also defined. Since a reverse
method and a modally reduced-order system are used, some applicability conditions have
to be verified. Thus a section is dedicated to a brief recall of these conditions.

Chapter |3| starts by describing the Geierlay footbridge which is chosen for the experimental
campaign of this work. Since information about the exact geometry of the footbridge is
missing, various assumptions need to be made. For a better understanding of the measure-
ments, the observations and conditions on site, when these were carried out, are described.
An example of one of the accelerations in the three directions is given and analysed. The
accelerations are then used to extract the modal properties of the footbridge. The natural
frequencies are identified by using the peak-picking method and the damping ratio by using
the covariance-driven stochastic subspace identification method.

Chapter [ is dedicated to the validation and analysis of the joint input-state estimation
algorithm. This is done through two simple, one-dimensional test cases. The influence
of various parameters is analysed. These include the number of measurement data taken
into account, the sampling step, the influence of noise and the number of modes taken
into account. By comparing both test cases, the influence of two ratios is noticed. These
are the structure’s period divided by the sampling step and the time necessary to cross
the structure divided by its period. Since in the last chapter the algorithm is applied to
the Geierlay footbridge and its modal properties are used, it is reasonable to quantify the
impact on the identified modal forces due to an error on the natural frequency or damping
ratio.

Finally, in chapter [5] the algorithm is applied to the Geierlay footbridge in order to identify
the load corresponding to the groups of pedestrians crossing the footbridge at the instant of
measurement. These are compared to the maximum values given by existing loading models
which are recalled in the first section. Improvements based on the results of this work are
then suggested.



Chapter

Existing pedestrian loads identification
methods

Several studies and experiments aim to identify the loads produced by pedestrians in order
to better understand and model them. There already exist several methods to identify
pedestrians loads, that one may class into direct or indirect approaches. The literature
review in [50] and [51] gives a fairly complete list of methods. Some of them and others
are applied in various papers which are referred to in the text. In this first chapter, a
summary of pedestrian loads identification techniques is given and their applicability to
flexible footbridges is assessed.

1.1 Direct approaches

Some approaches allow the direct measurement of contact forces induced by a pedestrian’s
feet on the structure. These are also called the ground reaction forces (GRF). Early research
in this area consisted in analysing a standing feet impression in a plaster or analysing a
printed pressure foot image of a walking person by using an inked fabric and a layer of

paper.

Later the first force plates were invented. An example is shown in figure [1] (b). These
can be integrated into the floor. In order to increase the data acquisition, several force
plates can be placed one after the other. However, force plates create motion constraints
for the pedestrian, who has to target them. This may have an influence on the identified
forces, as the person does not move naturally. In [14] a similar concept is used, but here a
large instrumented force platform is installed. Thus several people are able to walk on it
which allows the derivation of a model for loads induced by a group of pedestrians. In [23]
a long instrumented platform with load cells at the supports is used to study the lateral
forces created by a pedestrian on a rigid footbridge. This is important in the context of
footbridges since these loads already caused some discomfort problems in the past. Due to
the high weight of the platform, inertial effects are predominant over the variation in the
pedestrian-induced lateral forces. Besides, by using load cells at the supports the identified
forces may be influenced by vibrations of the structure.

Instrumented treadmills with force sensors are also often used to identify the GRF. They
have a single belt or a double as in the example shown in figure [I| (¢c). These allow the
measurement of a large number of step cycles and therefore the possibility to observe stride



to stride variations. However, the treadmill imposes a walking velocity which influences
human motion. Such equipment is used in [§] and [43]. By using a treadmill that moves
laterally it is possible to study the pedestrian’s response to that motion and to measure the

induced lateral loads .

Another possibility to measure directly pedestrian loads is to use instrumented shoes with
force sensors or pressure insoles. An example is shown in figure (1] (a). The force amplitudes
are obtained by integrating the distributed pressure over the insole area, which decreases
the precision. This method applied in [10] and , avoids any motion constraints for the
pedestrian, unlike the previous two approaches.

force sensor

st (U o

Figure 1: Examples of equipment for direct measurements of pedestrian load: instrumented
shoes (a) [58], force plate (b) and instrumented treadmill with force sensors (c) [51]

These direct measurement approaches are able to record the three pedestrian load compo-
nents, i.e. in the vertical, longitudinal and lateral direction E| However, they have mostly
been tested on rigid surfaces and the observations may slightly differ for a flexible footbridge.
Except for the instrumented shoes, the force plates and instrumented treadmill should not
be applied on a flexible surface. Since if the underlying floor vibrates, the measured forces
are not simply equal to the GRF. There is an additional component which is the inertial
force due to the mass of the force plate or treadmill. Additionally, these approaches are
often only feasible in a laboratory and costly.

1.2 Indirect approaches

Among the indirect approaches, there is three-dimensional body motion tracking, which can
be optical or non-optical. By assuming a distribution of the body mass and based on the
Newton’s second law of motion, the pedestrian induced load can be identified. The optical
motion tracking is done with a marker-based optoelectronic system. If passive markers are

'More details about single pedestrian induced GRF are given in the first section of chapter
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used, infrared LED’s illuminate the markers and the reflections are then recorded by several
cameras. If active markers are used, they are self-illuminated, an example of equipment
based on active markers is shown in figure The optical motion tracking with markers
can however only be done in a laboratory or another closed environment. It is also possible
to analyse human motion simply by using a camera without any markers. However, this
method is much more complicated and more elaborate software is needed for the post-
processing. The non-optical three-dimensional motion tracking is based on inertial sensors,
as for example the Xsens sensors, shown in figure [2| and which are used in . The
advantage of this latter technique is the possibility to use them outside on real structures
like footbridges for example.

Figure 2: Examples of equipment used for indirect measurements (left: CODA gait analysis
system based on active markers [58]/ right: Inertial Xsens sensors [40])

Other indirect approaches involve solving an inverse problem. From a recorded vibrational
response of a structure, i.e. accelerations, velocities and/or displacements time histories,
these are able to identify the pedestrian loads that were applied on a structure during the
measurements. The main advantage of these methods is that the vibrational response of
a structure can easily be recorded and with high precision. The difficulty is to find an
adequate inversion technique. Several have already been suggested one may distinguish
between methods applied in the frequency domain or in the time domain. One example
of an inverse technique in the frequency domain is given in , which is able to identify
the forces from measured stresses or strains. A method in the time domain is the gradient-
based optimization algorithm presented in . This method seeks to find the optimal time-
dependent force that minimises the difference between simulated and measured accelerations
and displacements, by knowing the coordinates of the applied force at each time step.
Another, is the joint-input state estimation algorithm, which is based on a recursive three-
step filter. It is able to identify the external loads and only requires the vibrational response
of the structure. It has already been tested on several rigid footbridges as in 7 and

[35].
The indirect approaches have the advantage to impose no constraints on human motion.

However, the optical three-dimensional body motion tracking can only be used under certain
light conditions and thus can not be used on real footbridges, which is of interest here. The



non-optical technique on the other hand, in addition to being cheaper, can be used any-
where. Just like the inverse techniques, which are based on the knowledge of the accurately
measurable vibrational response of the structure. These approaches need a software or algo-
rithm to post-process the measurements, this is why they are called indirect. The accuracy
of the identified GRF depends thus on the accuracy of the measurement equipment and the
post-processing technique. As the vibrational response can be measured the most precisely
relative to the cost, this work will concentrate on an inverse technique. The joint-input state
estimation algorithm is a robust method that works well even in presence of noise, which
is important when working on measurements taken on real-world structures. This is not
always the case for other methods like the gradient-based optimization algorithm. There-
fore, it is the method of choice in this work and it will be applied to the flexible Geierlay
footbridge.



Chapter

Joint input-state estimation algorithm

The joint input-state estimation algorithm is an inverse force identification technique. By
knowing the vibrational response of the structure, it enables one to estimate recursively
the pedestrian loads at the origin and the states. The developments done in section 2.1
to obtain the expressions of the system matrices are based on [32] and on the theory of
dynamic analysis [6]. The algorithm is given in [44]. More details may be found in [19] and
[34].

2.1 Definition of the system matrices

The vibrational response of any structure can be described by a differential equation, called
the equation of motion. For a multi-degree of freedom (MDOF) and linear system with
an external excitation p(¢), the continuous-time governing equation discretized in space is
given by:

Mii(t) + Cu(t) + Ku(t) = p(t) (2.1)

where M, C and K are the mass matrix, the damping matrix and the stiffness matrix
respectively. w(t) is the displacement vector. This equation describes the equilibrium be-
tween the inertia (M), the dissipation (C), the potential energy (Ku) and the external
excitation p(t).

In order to see the system matrices appear, i.e. state matrix, input matrix, measure-
ment /output matrix and the feedthrough matrix, a continuous-time state-space model is
deduced from equation and the definition of the measurement data vector given be-
low. After passing to modal coordinates, the system is discretized in time, since it is this
form that is interesting here.

2.1.1 Continuous-time state-space model

The continuous-time state-space form of the equation of motion is developed by introducing

the state vector: "
z(t) = (u ) (2.2)
u(l)

and the trivial identity M — M = 0, so that equation ((2.1)) becomes:



u(t) 0 I u(t) 0
o)~ e o) 0@
ii(t) ~M'K -M~'C| \au(t) Mt

z(t) Acn z(t) Bcn

Where A, and B, are two system matrices.

The model is completed by a second state-space equation established from the definition
of the measurement data vector d(¢). Which is defined as a linear combination of the
displacement, velocity and acceleration vectors, such as:

d(t) = Sau(t) + Syau(t) + Squ(t) (2.4)
Where, S,, S, and Sq are selection matrices.

The state-space form of equation ([2.4) is given by using the equation of motion (2.1)) and
introducing the state vector:

d(t) = Sa (~M'Cu(t) - M 'Ku(t) + M 'p(t)) + Syis(t) + Saul(t)

= [sd ~S.M'K S, — sam—lc} (ZZ;) + [SaM—l} p(t) (2.5)
Geon ——— Jeon

z(t)

Together, equations (2.3) and (2.5) form the continuous-time state-space model for a full
order system:

Z(t) = Ac,nz(t) + Bc,np(t)
d(t) = Genz(t) + Jenp(t)

2.1.2 In modal coordinates

A modal analysis is more convenient for the study of vibrations. As it allows reducing the
number of unknowns and decoupling the MDOF system into independent single-degree of
freedom (SDOF) differential equations of motion. The change to modal coordinates is done
by the following coordinate transformation:

u(t) = ®q(t) (2.6)

Where, q(t) is the vector of modal coordinates and ® contains the mode shapes as columns,
which are normalized to a unit maximum absolute value, such that for mode i at the degree
of freedom j:

max D =1

This is different from the definition used in the scientific papers |19] [34] [44], where mass
normalized mode shapes are used.

Transforming the state vector accordingly yields:

® 0 a(t)
x(t)  with x(t) = ( ) (2.7)

z(t) =

0 @ a(t)

8



Consequently, by introducing (2.7) into (2.3)):

® 0] /q(t) 0 I ® 0] [(q(t) 0
N ot p(t) (2.8)
0 ®| \d(t) ~-M'K -M"!C|] |0 @] \q(?) M
& 01"
Equation (2.8)) is now projected into the modal basis by left multiplication with M.
0o @
The left-hand side becomes
& o] [® 0] (4@ M* 0
= x(t) (2.9)
0 & 0 ®| \q(t) 0 M*

where the generalized mass matrix is defined as M* = ®'M® which is diagonal. The time
derivative of the state vector is then isolated, which yields the following equation

%(t) = Aex(t) + Bep*(1) (2.10)

where the system matrix A. is obtained as

-1

M* 0 & 01" 0 I ® 0
A, = M

0o M| |0 @ “M'K -M~'C| |0 @
[ 0 M* 1T MP

| -MITKS M BTCd
[0 I

- __M*—IK* _M*—lc*
[0 1

- (2.11)
-Q* -T

In (2.11)) the generalized stiffness matrix K* = ®"K® is defined, which is diagonal. The

generalized damping matrix C* = ®7C® is also assumed diagonal.

Moreover, the stiffness and damping matrices are related to the generalized mass matrix
and the modal properties of the structure through K* = M*Q? and C* = M*I". The matrix
2 contains the natural frequencies w; on its diagonal and I' contains the terms '2&;w;” on
its diagonal, where §; is the damping ratio related to mode i. The three matrices M*, C*
and K* contain the structural properties expressed in the basis of the normal modes.

The term related to external excitation takes the form

T 0
M[ _]p(t)
M-!

-1

M* 0 ¢ 0

0o M| |0 ®

& p(t) = Bcp*(t) (2.12)

[ 0 ” 0
M '@ MM ! M*!
where p*(t) = ®'p(t) represent the generalized forces.

9



The same coordinate transformation can be done for the measurement data vector:

u(t)

d(t) = [Sa — SaM 'K S, — S,M'C] (W)) +[SaM 1] p(t)

® 0] [=z(t)
= [Sa—S.M'K S, —S,M"'C] ( ( )) + [SaM ™| p(t) (2.13)
Z(t _—

(22

0 @

Where inverse mass matrix is evaluated as
TMP = M~
"M = dM BT
M= (237) @M@ (887)
M = 327 (3M°27) 527

In order to simplify this expression, it is temporary assumed that all modes are taken into
account, such that:

M = dT®T "M 'd ' ®PT
= oM ' @7

The two terms on the right hand side in ([2.13)) become:

(i)

d 0

[sd ~S,M 'K S, — sam—lc}
0 &

— [qu> ~ S, oM '®TK® S, b — SacIJM**1<I>TC<I>}

[Sd<1> S, &M 'K* S, ® — sach**lc*}

[sdqa _ S, M IM*Q% S, P — Sa@M*—lm*F]

Sq® — S, ®#N? S, — S, T
G

(¢}

[SaM | p(t) = [S.®M* ' ®T| = [S,&M* | ®"p(t) = Jcp'(t)

Thus the data vector writes
d(t) = Gex(t) + Jep™(t) (2.14)

Equations (2.10) and (2.14)) form the continuous-time state-space model with modal coor-
dinates:

x(t) = Acx(t) + Bep*(t)
d(t) = Gex(t) + Jep*(1)

10



2.1.3 Discretization

The last step is to discretize in time the previous state-space models, as it is this form that
is used in the algorithm. The sampling rate is taken equal to ﬁ. Equation 1}

x(t) — Acx(t) = Bep*(t)

is a linear, first order and non-homogeneous ordinary differential equation (ODE).

One way to discretize this ODE, for kAt <t < (k + 1)At is to first multiply both sides by
e~A<t which gives:

(k+1)At (k+1)At
/ d(e Pe'x) = / e 2B p*(k)dt
kAL kA

The left hand side integral can easily be calculated and if both sides are multiplied by
eBe(ktDAL the equation becomes:

—Ac(k+1)Al _AckAt DAL i s
e x(k+1)—e x(k) = e'B.p*(k)dt
kAL
x(k 4 1) — e AkRix (k) = s exp[Ac((k + 1)At — t)|B.p*(k)dt
= Jias Pl e cPp

To simplify the right hand side, let us now define 7 such that 7 = (k+1)At—t, thus dr = —dt
and the integration boundaries change into 7 = At and 7 = 0. Consequently,

@ erp[AcT|Bep* (k) (—dT) = /OAt exp|Act|Bep®(k)dT

By inserting this in the previous equation, the system matrices can be defines as:

At
x(k + 1) =AM x(k) + [ explAcr]Bedr p* (k)
— 0
A

B

Where,

At
B = / exp[AcT|Bedr = A B, — A 'B. = [A — TJA.'B,
0

The discretization of the second equation of the model is trivial. Finally, the discrete-time
state-space model is given by:

Xpet1] = Axpy + Bpjy
dpy = Gxp + Ipjy

In general, A is called the state matrix, B is the input matrix, G is the measurement /output
matrix and J is the feedthrough matrix.
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2.2 Consideration of noise

To take into account the noise, two terms can be added to the discrete-time state-space
model found in section 2.1.3, which then gives:

X(k+1] = AXp + Bpjy + wig
d[k] = GX[M + prk] + V[k}

Where wy; is the process noise vector, it is the sum of the noise due to stochastic excitation
and noise due to modelling errors. vy is the measurement noise vector, it is defined as
the sum of a contribution due to stochastic excitation, due to measurement errors and a
contribution due to modelling errors. Both are assumed to be zero mean and white.

Their covariance matrices Q, R and S are known and defined by:

[ W[k} Q S
E ( ) (wiy v[Tl])] = { ! la[k_l] (2.15)
L\ Vi S° R

S
Where, R > 0 and > 0.
ST R]

2.3 The algorithm

The algorithm given in many scientific papers, such as [19] and [34], is divided into 3
steps:

Input estimation

Ry = GPp-)GT + R (2.16)
My, = (I'R;13) IRy (2.17)
Dirik) = My (dpg — Gy (2.18)

P = (ITRGI) (2.19)

Measurement update
Ky = Py 1)G Ry (2.20)
Riegk) = K1) + Kppg (dipg — GRpegpy) — IBpagn) (2.21)
Pogen) = Pagrpp—1) — Ky (R — TP ™) Ky (2.22)
Ptk = Phepy = — K IPorin) (2.23)

Time update

Xi+1(k) = AX[gjr) + BDkji (2.24)
N[k} = AK[H (Ind - JM[k]) + BM[k] (2.25)

P P AT
P, —| A B x[klk] -~ xplk|] +Q—-NjST — SN} 2.26
i = | } [ Poess Pppg | | BT | 7@ TN . (2:26)
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Where the system matrices appearing in the algorithm are defined by the following expres-
sions:

A—eAcAt—eX( 0 !
= = exp

At) (2.27)
-Q* T

-1

0 I 0 I 0
B=[A-TA. 'B.= |exp At| -1 (2.28)
-Q? -T -Q? -T M*!
G =G, = [Sq® — S,80° S, & —S,3T (2.29)
J=1Jc=[S.®M"| (2.30)

Notice the similarity with the well known Kalman filter for the measurement and time
update, which is underlined in [19]. The main difference is that the state estimate is based
on an optimal estimate for the input and no more its exact value. Plus, if B = 0 and
J = 0, then the Kalman filter is obtained. For a deeper understanding of the algorithm, its
formulation is detailed in Appendix A.

2.4 Applicability conditions

As for any inverse technique and especially an instantaneous system inversion as in the case
of the joint input-state estimation algorithm presented in this chapter, some conditions must
be met to assure the invertibility. In [33] these are given by the following:

o Identifiability: In order to be able to identify the wanted forces and states, the mea-
surements must contain sufficient information.

o Stability: The algorithm must be stable to avoid completely false results following a
small perturbation of the data.

e Uniqueness: The results of the algorithm, i.e. the input forces and states must be
unique.

These are briefly specified in what follows for the case of a linear and a modally reduced-
order system. Here and generally in structural dynamics, often only the n,, first modes
of the structure are taken into account for simplicity. For more information about the
applicability conditions, the reader may refer to [32] and [33].

Identifiability

The first condition is respected if the following three requirements are fulfilled. First, the
observability of the system, which asks that, if n,, modes are taken into account, they must
have been excited when taking measurements ie. information about them must have been
captured in the measurements. Additionally, the sensors can not be placed at the nodes of
this mode. A necessary and sufficient condition for the system to be observable is that the
matrix (Sq + Sy + Sa)® has no zero columns.
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A second requirement is the controllability of the system, which is assured if S,” ® has no
zero columns, where Sy, is a matrix containing the locations of the applied forces.

Finally, the third requirement is the direct invertibility of the system, which is respected if
and only if rank(J)=n,, where n, is the number of forces to be identified with n, < ngg,
n4q being the number of acceleration measurements. For a modally reduced model, this
requirement extends to rank(J)=min(ng4, n,, nm) and an additional condition n, < n,, is

added.

Stability

To assure the stability of the system, it can not have any unstable or marginally unstable
transmission zeros. These zeros are complex numbers for which a non zero input gives
a zero output. The finite transmission zeros correspond to the roots of the numerator
of the corresponding transfer function, which for a state-space system is given by [31]:
H(s) = G(sI— A)"'B+J. The transmission zeros are considered stable if they are located
inside the unit circle in the z-domain or equivalently if located in the left half plane of the
Laplace domain. As shown in figure 3] They are marginally stable if they are on the unit
circle or the vertical axis and unstable if they are outside the unit circle or on the right half
plane.

A Im(z) A Im(s)

Figure 3: Stability regions in grey in the z-domain (a) and the Laplace domain (b) [34]

This is verified, if there is at least one displacement /strain measurement, such that rank(J —
G(A — I)"'B)=min(n,,ng). This is the case if n, < ngq, where ny is the total number of
measurements and ng 4 is the number of displacement /strain measurements. This is because
acceleration and/or velocity measurements are insensitive to a constant excitation and do
not enable the identification of the static component of the input forces and states of the
system. It will be shown in chapter [d, when validating and analysing the joint input-state
estimation algorithm.

Uniqueness

To assure a unique identification of the forces and states of the system it should not have
any finite transmission zeros.
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Chapter

Experimental data acquisition and analysis

This chapter presents the experimental part of this work. Vibration measurements were car-
ried out on the Geierlay footbridge in Germany. After a brief description of the footbridgd|
based on , and , the experimental campaign is presented and more particularly
the followed process as well as the conditions on site. The measurements are then analyzed
and interpreted in order to determine the modal properties of the Geierlay.

3.1 Description of the footbridge

The Geierlay footbridge is located in western Germany and links the villages Morsdorf and
Sosberg. It is open to the public since October 2015, after a record construction time of less
than six months. The footbridge, which hovers 100m above the groun(ﬂ and has a span of
360m, offers an exceptional view of the valley, as suggests figure [

"Rt

Figure 4: View of the Geierlay footbridge (right: Mérsdorf / left: Sosberg) ]|

The study, as well as the construction planning of the footbridge, were made by the Swiss

!Note that some information in this section may differ with that given in the previous master thesis
and due to misunderstandings.

2The value of 100m is obtained by taking the difference between the entrance to the footbridge on
the Morsdorf side, which is approximately at a level of 4+321.00m and the lowest point of the valley being
approximately at a level of +220.32m.
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engineer Hans Pfaffen and his engineering office. He provided us with a document that
contains part of the static study which was carried out.

It also contains the composition of the footbridge and the materials that were used. The
Geierlay is made of a successive arrangement of 195 elements of type A (every 1.5m) and 46 of
type B every time the bridge is retained in the transverse direction by cables (approximately
every 7.45m, except at the entries). Both element types are shown in figure

Type A Type B

Figure 5: Elements forming the Geierlay footbridge (adapted from )

Thus, the footbridge consists of several suspended cables, four with a diameter of 40mm at
the bottom (1) and two with a diameter of 34mm on top, which also serve as a handrail (2).
A 50mm by 50mm grid made of cables with a diameter of 4mm is set up at each side on a
height of 900mm for pedestrian safetyﬂ This is reinforced by three ropes of 8mm diameter
at each side, at the bottom, middle and top of the mesh grid (3). Additionally, every 1.5m
there are vertical columns HEA100 (4) or a metal rod (5) at each side inclined from the
vertical. At the same intervals, there are horizontal beams (6) placed on the four bottom
cables, on top of which the floor covering is deposited. It is made of 1.48m long wooden
boards with a section of 200mm by 60mm and are placed in a row of four with a spacing
of 10mm to form a footpath 85cm large (7). At each side, there are wooden borders of the
same length, but with a section of 80mm by 120mm (8). At the ends, the bridge is hooked
to two massif concrete abutments. Moreover, the footbridge is retained transversely mainly
against wind loads by several lateral cables of 14mm diameter (9). These are near the ends
of the bridge directly anchored to the ground and otherwise connected to two long parabolic
cables (10)E|, one at each side of the footbridge. These are of 32mm diameter and their ends
are directly anchored to the ground.

Regarding the properties of the used materials, the reinforced concrete has a self-weight of
25kN/m? and has a resistance class of C30/37. The steel has a self-weight of 78.5kN/m?

3The mesh grid is not visible in figure
4The long parabolic cables on each side of the footbridge are not shown in figure |5, but are visible in

figure [l
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and belongs to the resistance class S355. The used wood is of the type Larch, it has a
self-weight of 7.2kN/m?, to which 10% of its self-weight is added to take into account any
possible water absorption. Thus finally, it has a self-weight of 7.92kN/m?. Three different
types of structural cables are used to build the footbridge, fully locked cables (FLC), open
spiral strands (OSS), both of norm DIN EN 12385-10 and stranded ropes (SR) of norm DIN
EN 12385-4. The properties of the different cables are summarized in table [I}

Cable T Weight Young’s Diameter | Metal cross | Maximum
number | Y P° [kg/m] | modulus [MPa] [mm] section [mm?| | load [kN]
1 FLC 9.2 160000 40 1104 1082
2 0SS 5.8 150000 34 706 702
3 SR 0.3 112500 8 40 24
9 SR 1.0 112500 14 127 74
10 0SS 5.1 150000 32 625 620

Table 1: Properties of the different cables used for the Geierlay footbridge

The footbridge can be considered as a light structure with a total self-weight of 170.3kg/m,
which is obtained by taking the sum of:

o the four suspension cables at the bottom (1) and the two cables above (2):
36.8+11.6=48.4kg/m,

o the mesh grid: 7.2kg/m,
o the three cables at each side (3): 1.8kg/m,
« the wooden boards (7) and wooden borders (8): 15.24+38.0=53.2kg/m,

« ropes and clamps for wind bracing: 16.0kg/m,

and the steel structure (4, 5, 6): 43.7kg/m.

To have a safety margin, the bridge is designed for an exploitation load of 2.5kN/m? which
is higher than the value recommended by the Eurocodd’} As the footbridge has an 85cm
large footpath, the load per unit length is equal to 2.125kN/m. For more information about
the variable loads (snow, wind, temperature), the reader may refer to [48].

The information concerning the sagging deflection of the footbridge lacks precision. The
engineering office Pfaffen [48], only provided us with the additional deflection under four
different load cases, given in table 2l These values are given compared to the shape of the
complete empty footbridge even without any self-weight.

| Load cases | Deflections [m] |
Self-weight + 1.56
Heated by 30°C + 0.48
Cooling by 30°C -0.22
Full load + 2.73

Table 2: Deflections under 4 different load cases

SEurocode recommends an exploitation load of: 2.0 4+ Spalji?)o. Thus, a value of 2.308kN/m? for the
Geierlay footbridge with a span of 360m
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According to the engineer Norman Kratz from the Stadt-Land-plus GmbH office, who was
responsible for the construction management of the footbridge, it’s sagging deflection is
about 21m. This value differs from that given in [15], where a deflection of approximately
25m is given. In this same reference, a maximum entry slope of approximately 27% is also
mentioned. Since [48] indicates that there is a 4m altitude difference between both entries
and knowing that the Morsdorf side is higher, the given maximum slope has to be on that
side, as shown in figure [6]

Sosberg Morsdorf
A x max 27%
mI :

360m

Figure 6: Elevation view of the Geierlay (adapted from [48])

By assuming that the footbridge can be assimilated to a parabola, its shape can be described
by the general equation:
f(z)=az®+bx+c (3.1)

In the frame indicated in figure [6] the Mérsdorf entry has the coordinates (180,0) and the
Sosberg entry (-180,-4). A third condition is added, by demanding that f’(180) = 27%.
Such that the unknown coefficients are: a = 7.1-107%, b = 0.0111 and ¢ = —25.3.

Thus, a slope of 0% is reached at a -7.74m distance from the mid-span. More interestingly,
the maximum deflection relative to Morsdorf entry is |f(—7.74)] = 25.34m, or equal to
21.34m relative to the Sosberg entry. Since it was not possible to have a clarification on that
matter, one can assume that the deflection difference between the value given by Norman
Kratz and [15] are due to a reference to a different entry. Moreover, since the slope of 27%
is said to be a maximum value, one may also assume that the value of 25.34m is achieved
for full loading of the footbridge. Under self-weight only, a value of the deflection equal
to 22.61m relative to the Morsdorf entry may be deduced from table 2l In the following
a mean value of the deflection relative to both entries is taken, thus d = 20.61m under
self-weight only and d = 23.34 under self-weight and full loading. This corresponds to the
value obtained with respect to the line connecting both entries.

According to [29], a cable can be assimilated to a parabola, in the case of an inextensible
cable with a large span to deflection ratio L/d (> 10) under a uniformly distributed load,
like its self-weight for example. Or in the case of an inextensible cable with an arbitrary
L/d ratio, but a uniformly distributed load, much higher than the self-weight of the cable.
For the Geierlay L/d = 360/20.61 ~ 17.47. Thus, the first condition is verified and the

footbridge can indeed be assimilated to a parabola.

The length of the footbridge, can now be found by using the formula to calculate the length

of a portion of curve, given by:
1= [ UF (P @) (32)

In this case the integral is computed in the interval z; = —180m and x5 = 180m and yields
a length of [ = 363.90m.
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3.2 Data acquisition

The data acquisition was done on the 3rd September 2020 on site with four high performance
X2-5 accelerometers data logger, illustrated in figure[7] Originally named B45E, A8D2, 4743
and A2DS8, they are called a, b, ¢ and d in the following for simplicity. The accelerometers
are placed on the horizontal steel beams of the footbridge, perpendicular to the walking
path. These correspond to the element number 6 shown in figure The accelerometers
are able to record the accelerations of the footbridge in three directions, i.e transversal (x),
longitudinal (y) and vertical (z).

Figure 7: Exploded view (a) and picture (b) of an high performance accelerometer X2-5,
indicating the sensor’s orientation and the device’s dimensions (adapted from [9])

Based on [9], the accelerometers have a micro-resolution feature that assures a 0.1ms timing
precision. They are considered to have a high sensitivity and to be low noise. It is possible
to select a sampling rate between 4 and 2000H7}, Additionally, they have a 2g and 8g range
modes. It works as a mass storage device and due to its USB connection, the recorded data
can easily be transferred from the device to a computer for post-processing.

Three sets of measurements are carried out, using the same positioning of the sensors for
the first two and a different one for the last set, as shown in figure [
179.97m

165.10m
142.79m

Sosberg Moérsdorf

—
9.01m
23.87Tm
46.16m

Figure 8: Location of the sensors for the data acquisition (blue: 1st and 2nd set / orange:
3rd set) (adapted from [48])

6More precisely, the user can select a sampling rate between 4, 8, 16, 31, 62, 125, 250, 500, 1000 and
2000Hz.
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Note that for the first set, the sensors a and ¢ did not work correctly. This is why the second
set of measurements is done by positioning the sensors at the same location. The aim of
placing the sensors a and b at the same level but on both sides of the bridge is to be able
to capture possible torsion effects.

The approximate duration for each set of measurements has been calculated and they are
given in table [3] which specifies the start and the end time. However, the sensors were not
all set up and picked up exactly at the same moment, as several seconds were needed to go
from one location to another.

‘ Set of measurements ‘ Start ‘ End ‘ Duration ‘

First 11h25 | 12h36 71lmin
Second 13h10 | 14h36 S6min
Third 14h44 | 15h42 5&min

Table 3: Approximate measurements duration

Due to the covid-19 pandemic, some security measures were active at the date of the data
acquisition. Such as, the pedestrians could only cross the footbridge in one direction, which
changed every hour. At odd hours, it was possible to go from the Mérsdorf side to Sosberg
and at even hours the reverse. Plus, the pedestrians were sent by groups of about 20 to 25 on
the footbridge. According to observations made on site and post-processing of a short video
done on site, every two to three minutes a new group is sent, counting from the first person
to set a foot on the bridge, from the previous group to that of the next group. Besides, each
group needs a little more than one minute to be completely on the bridge. In the beginning,
the group is quite compact and begins to split around the middle of the bridge, because the
pedestrians take pictures and because of the beginning of the upward slope. This can be
seen in figure [9]

N
3
3

Figure 9: Capture from video post processing showing two groups of pedestrians on the
footbridge
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The last group was then sent ten minutes before the full hour, to be sure that the bridge is
empty at the moment the pedestrians cross it in the other direction. Actually, one person
takes about 9 minutes to cross the bridge, taking into account a few stops to take some
pictures and admire the view. Consequently, it was not possible to measure a large enough
free response of the footbridge. In fact, the greatest duration is 40s for the second set and
only 30-32s for the first and last one.

An example of the measured accelerations in the vertical, transverse and longitudinal direc-
tion for the second set of measurements done with accelerometer d, are shown in figures
and As a reminder, for the second set, the accelerometers are placed at the beginning
of the footbridge on the Mérsdorf side, as shown in figure [§] The first perturbation corre-
sponds to pedestrians crossing the footbridge from Morsdorf to Sosberg. Thus they face a
downward slope when they pass near the accelerometers. Then the small free response of
approximately 40s can be observed. For the second perturbation, the pedestrians cross the
footbridge in the other direction and they walk on an upward slope near the accelerometers.
As described above, the group of pedestrians sent on the footbridge is quite compact, but
once the ascendant slope begins the group stretches out. Thus, one could expect smaller
acceleration amplitudes for the second perturbation, since the group of people is more sep-
arated. However, this is not the case. Additionally, even if for the second perturbation
the accelerometers are placed on the other end of the footbridge, accelerations are directly
recorded. Due to the flexibility of the footbridge any perturbation is directly captured, no
matter where it is applied.

One may expect that the accelerations measured at the end of the footbridge are slightly
smaller than those measured at midspan for the third set. Due to a higher stiffness at the
ends of the footbridge, where it is hooked to a massif concrete abutment and some lateral
cables are directly anchored into the ground. Again, this is not observed. Notice that the
measurements of the different sets were not recorded at the same time and under the same
conditions and thus can not be compared. In fact, the last measurements were carried
out later that day, where fewer pedestrians were crossing the footbridge. All the measured
accelerations are assembled in Appendix C.

First perturbation Free response Second perturbation
T T Tt T T

Vertical acceleration [m/s?]

| | | | [ | | | | |
2
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [s]

Figure 10: Vertical accelerations recorded with sensor d during the 2nd set
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Figure 11: Transverse accelerations recorded with sensor d during the 2nd set
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Figure 12: Longitudinal accelerations recorded with sensor d during the 2nd set

As expected the vertical accelerations have the highest amplitude. However, even if the
amplitude of the transverse accelerations is smaller, these are important. Synchronisation
problems may occur precisely due to lateral vibrations.

The Sétra guide [1] suggests three comfort zones, where the third one should not be exceeded
without risking discomfort for pedestrians. These are summarised in table [

Acceleration ranges [m/s?]

Vertical | Transversal
Maximum comfort | 0- 0.5 0-0.15
Mean comfort 05-1.0 0.15 - 0.30

Minimum comfort | 1.0 - 2.5 0.30 - 0.80

Table 4: Acceleration ranges corresponding to three comfort zones defined by H
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Appendix A2 of Eurocode 0 [54], also gives maximum acceleration values that should not
be exceeded to ensure the comfort of pedestrians.

o In the vertical direction: 0.7m/s?

o In the horizontal direction for normal use: 0.2m/s? or under exceptional conditions
such as a crowd: 0.4m/s?

The values given by the Eurocode are more restrictive compared to those of the minimum
comfort zone given by the Sétra guide. The measured accelerations exceed them both in the
vertical and transverse direction. Concerning the intervals suggested by the Sétra guide, the
footbridge can be considered to offer only minimum comfort. Indeed, on site, the vibrations
could be felt and we could see that some pedestrians were afraid to cross the footbridge or
at least needed to grab the handrail firmly. According to the engineer Hans Pfaffen [48],
the footbridge is supposed to swing by design. A comfort study has already been carried
out in [30] and similar observations were made.

Additionally, according to the Sétra guide, for horizontal accelerations below 0.10 m/s* the
pedestrians on the footbridge can be considered as random and a synchronisation of only
around 5 to 10% should be expected. However, if this limit is exceeded, the synchronisation
can rise up to 60% or more. In the case of the Geierlay footbridge, this limit is exceeded in
the transverse direction and locally in the longitudinal direction, thus a high synchronisation
is likely in the present case.

3.3 Identification of the modal properties

The modal properties of a structure, such as the natural frequencies and its damping ratios
are important in dynamic analysis. In this section, the modal properties of the Geierlay foot-
bridge are identified. These are necessary in order to apply the joint input-state estimation
algorithm in chapter [4] and [5}

3.3.1 Natural frequencies

The natural frequencies of the footbridge are first identified analytically based on the fun-
damentals of cable dynamics [52] and then based on the acceleration measurements done
on site. These values are finally compared to those obtained in [42] based on a model of
the Geierlay done with the software FinelG, which employs the finite elements method. For
more information, the reader may refer to [20].

Analytical identification

In [52], the identification of the natural frequencies is based on the linear theory of cable
vibrations. Due to the linearisation, the in-plane and out-of-plane motion are decoupled.
Such that this theory is only applicable in the case of small cable vibrations. Additionally,
this theory is used for a rigidly supported cable, under a quasi-static elastic deformation and
a small deflection over span ratio (0 < d/L < 1/8). For the Geierlay footbridge, this ratio is
equal to 20.61/360 ~ 0.057 < 1/8, so the linear theory of vibrations may be applied.

A fundamental characteristic parameter of a suspended cable, also called the Irvine param-
eter \? is defined. It takes into account both geometric and deformational characteristics
and is given by:
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)\ - T : TLe (33)

EAo

where m is the mass of the cable per unit length, ¢ is the gravitational acceleration
(9.81m/s?), T is the tension in the cable of section Ay and a Young modulus E. Two
lengths appear in this expression, [ the cord length and L. is a virtual length of the cable,

defined by:
L(ds\® d\’
Le:/o (Cm) dr =~ 1+8<l>] (3.4)

where ds is the length of a small segment of the cable and d is the deflection of the cable.

The Irvine parameter can be used to verify if a cable is correctly stressed or not. For
instance, a small value of A? represents highly stressed and low sagging cables, whereas a
large value represents low stressed and high sagging cables. Thus, this parameter can be
employed for the inspection of a cable-stayed bridge, where a small value of A2, typically
between 0 and 1 is expected. As shown in figure [16] in that case, the natural frequencies
are multiples of the fundamental natural frequency. If this condition is not verified, the stay
cable has to be tensioned.

In order to verify this parameter for the Geierlay, the footbridge has to be assimilated to
a single cable, but with the corresponding properties. The goal of such a procedure is to
know if the natural frequencies will be multiples of the first one or not. Hopefully, this will
simplify the identification of the frequencies based on the measured accelerations. First,
the various quantities involved in equation (3.3) need to be calculated. The chord length
of the cable and its deflection are taken equal to those of the footbridge, | = 363.9m and
d = 20.61m. Such that, L, ~ 373.24m. The equivalent cable section is taken equal to the
sum of the four suspension cables at the bottom (1), the two cables above (2) and the three
cables of each side (3) which are shown in figure [f Based on table[I] the equivalent cable
section can be calculated as well as the equivalent Young’s modulus. It is taken proportional
to the different cable sections:

Ag=4-1104+2- 706 + 6 - 40 = 6068mm?

d
an & _ 4416160000 + 1412 - 150000 + 240 - 112500

=1 4.33MP
4416 + 1412 + 240 55794.33MPa

As shown in [62], the prestressing forces T in the various cables have a direct impact on the
modal properties of a flexible structure. For instance, a higher prestressing force increases
the natural frequencies. This is why this value appears directly in the definition of the Irvine
parameter.

Depending on whether the cable has supports on the same level or not, a different procedure
has to be followed to determine the tension in a cable. These are given in Appendix B. In
[52], a distinction between horizontal and inclined cables is also done. As already mentioned
above, for the Geierlay, there is a 4m altitude between both entries of the footbridge for
a span of 360m, which gives a global inclination of approximately # ~0.64°. Thus, the
inclination is very small and the influence is negligible as will be shown below. The Geierlay
footbridge can thus be assimilated to a horizontal cable. Hence, the well-known formula for
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the computation of tension in a parabolic cable with supports at the same level as in figure
may directly be applied.

HHHHHHHHip

Figure 13: Scheme of a parabolic cable with supports at the same level (adapted from [29])

The horizontal support reaction is given by:

_pL?

H=" (3.5)

The vertical reaction is simply V' = % and thus the tension in the cable is T' = v H? 4+ V2,
By considering V' small enough compared to H the assumption 1" ~ H is often made.

The tension in the equivalent cable representing the footbridge can be obtained by applying
equation . The lateral parabolic cables, whose dimensions are shown in figure (14| have
been neglected so far. Their favourable effect can however be taken into account by adding
a corresponding load on the equivalent cable, as done in [30] and [42]. The same procedure
is followed here, but by adapting the values.

241.38m

27.00m

24.93m

245.00m

Sosberg Morsdorf

Figure 14: Dimensions of the lateral parabolic cables of the Geierlay footbridge

The initial prestressing force in the lateral parabolic cables is given in [57] and is approxi-
mately equal to T" =100kN. As these cables have different dimensions, their tension may be
slightly different too. Due to a lack of information, the only given prestressing force is used
for both and their mean dimensions are used, such as a span length of . =243.19m and a
deflection of d =26.6m. According to equation , this corresponds to a load of:

T8d
p=— ~0.360kN/m

Lz

These two cables are linked to the footpath through various lateral inclined cables, such that
only a part of the calculated load is transmitted to the footpath. Based on construction
plans from the section of the footbridge given in [48] and shown in figure [I5 an angle
of 35° relative to the horizontal can be measured. Thus the vertical load becomes only
0.360sin(35) = 0.206kN/m or 21.04kg/m.
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Figure 15: Construction plan of one section of the Geierlay footbridge (adapted from )

To take into account both cables, this value is multiplied by two and added to the self-weight
of the footbridge. Thus,

m = 170.30 + 2 - 21.04 = 212.38kg/m

The tension in the equivalent cable modelling the footbridge is then obtained by using

equation (3.5)):
_ pL?*  212.38-9.81 - 3602

H = =
8f 8- 20.61

~ 1637.64kN

Finally, the Irvine parameter for the Geierlay footbridge modelled by a single cable given
by equation (3.3)), yields:

212.38-9.81-363.9\  363.9
2= ( > -~ 120.63

103 " 1637.64-103-373.2
1637.64 - 10 155794.33-6068
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Figure 16: Variation of the natural frequencies of the six first in-plane modes of vibration

with the Irvine parameter (adapted from [52])

A high value of \? is obtained as expected for suspension bridges, where the principal cable
is low stressed and highly sagging. Thus, as shown in figure for the Geierlay one can
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not expect to have natural frequencies multiples from the first one for the in-plane motion,
at least with regard to the symmetrical modes.

The natural frequencies can be calculated analytically based on the formulas derived in [52].
For an out-of-plane motion, these can be obtained by:

nmw H
Wn =7\ (3.6)
where L is the footbridge’s span which is equal to 360m, H = 1637.64kN is the horizontal
component of the tension in the cable under its self-weight and the effect of the lateral
parabolic cables, obtained through equation (3.5)). m = 212.38kg/m has also already been
calculated above. n = 1,2, 3, ... is the nth frequency of vibration. This can also be expressed
as a function of the adimensional natural frequency

W, = nm

with
wy L

\VH/m

To verify the initial assumption, for an inclined cable, the nth adimensional natural fre-
quency is defined as:

Wp =

(3.7)

WinLsn

nie \/ Hin/m

where L, = Lsect and H, = Lsecf. In the case of the Geierlay § = 0.64° and secf ~ 1.
Thus the effect of the inclination can indeed be neglected.

For the in-plane motion, one may distinguish anti-symmetric and symmetric modes. The
first ones, are given by w,, = 2nm or:

2nm H
= — ] — 3.8
w 7 - (3-8)

The natural frequencies corresponding to the symmetric in-plane modes are the roots
of 5 4 o
W w w
Tz _ (= 3.9
2 2 A (2) (3:9)

where A\? is the Irvine parameter already defined earlier and equal to 120.63 for the Geierlay.
To avoid solving equation , the @, /7 values can directly be read from figure For
the given A2, they are approximately equal to 2.7, 3.9 and 5.0s™! for the 1st, 2nd and 3rd
symmetric mode.

The frequency f, expressed in Hz, is finally obtained by

Wn

fo=5_ (3.10)

and the different values for the three first modes for out-of-plane and in-plane motion are
summarized in table[5]l A regular spacing of 0.124Hz is observed for the out-of-plane motion
and of 0.248Hz for the anti-symmetric in-plane motion. As shown above, when calculating
the Irvine parameter A2, there is no regular spacing for the symmetric in-plane motion.
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Mode | Out-of-plane motion In-plane motion
anti-symmetric ‘ symmetric
Ist 0.122 0.244 0.320
2nd 0.244 0.488 0.463
3rd 0.366 0.732 0.593

Table 5: The first natural frequencies [Hz| obtained based on the linear theory of vibrations

Identification based on the measured accelerations

Before identifying the natural frequencies based on the measurements, it is interesting to
verify if the locations for the sensors were well chosen. If a sensor was placed at a node of
the mode, this sensor was not able to collect any information concerning that mode. For
a cable on two supports, if the modes are considered uncoupled, the vertical or transversal
modes which are here of interest can be represented as in figure [17}

1st sym 1st asym
1 : ‘ : : 1 ‘ : :
] \
0 / ~ 0 < s
™ |
4 . . . . L L 4 L L L P D,
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
2nd sym 2nd asym
1 1
: : : ~J : : : :
AN /|
0 0 A
p ‘ ‘ ‘ A ‘ y ‘ ‘ ‘ ‘ d
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
3rd sym 3rd asym
1 . : . . N 1 . . : ; ;
0 \\/ \ . /\/\ /\ |
4 ! ! ! ! A ! ! ! !
0 50 100 150 200 250 300 350 0 50 100 15i 200 250 300 350

Footbridge’s length [m] Footbridge’s length [m]

Figure 17: The three first symmetric and anti-symmetric vertical or transveral mode shapes
and the locations of the sensors, right being the Morsdorf side and left the Sosberg side.
(blue: 1st and 2nd set / orange: 3rd set)

However, notice that the Geierlay footbridge is not only hooked at both ends, it is also
retained transversely by several lateral cables, which are either directly anchored to the
ground or connected to the lateral parabolic cables. The ends of which are then anchored to
the ground. Thus, the mode shapes shown in figure [17] would correspond to the reality only
if the lateral cables had a negligible stiffness. This is not the case, otherwise they would be
useless. Thus the footbridge behaves more like a cable on multiple spring supports, as shown
in figure whose mode shapes depend on the stiffness of the springs and are thus more
complicated to predict. The first mode shapes of the footbridge are provided in Appendix
D, they have been extracted from the model.

| L |
I 1

%éééw

Figure 18: Cable on multiple spring supports representing the Geierlay footbridge
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The natural frequencies can be identified by using the peak picking (PP) method, which
is a frequency-domain spectrum-driven method. It consists in reading the peak values of a
spectrum plot, which is here obtained by doing a fast Fourier transform (FFT) of the time-
domain accelerations. Due to its simplicity, this method is often used in civil engineering
for the identification of the modal properties of a structure. It is based on the assumption
that the frequencies of each mode are well-separated, thus each peak of the spectrum plot
corresponds to a single mode as explained in [47].

If all the signal of a set of measurements is taken into account, most of it is a result of pedes-
trian loads. Starting approximately from 2Hz, which corresponds to the step frequency for
a normal walk, it can be seen in figures 19 and for the out-of-plane motion and the verti-
cal motion, that it is impossible to clearly distinguish any peaks corresponding to a natural
frequency of the structure. Whereas, in figure 20| for the longitudinal direction it is possible
to identify up to high frequencies. The results for the three sets of measurements shown
hereﬂ can already be used to identify the first natural frequencies of the footbridge.

%107

1st set
2n set | |
3rd set | |

09r

0.8F

0.7 1

0.6
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0 0.5 1 15 2 25 3 35
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Figure 19: FFT of out-of-plane accelerations under pedestrian crossing
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Figure 20: FFT of the in-plane accelerations under pedestrian crossing (left: vertical /right:
longitudinal)

"The FFT for each measurement set is obtained by doing the root mean square (RMS) of the FFT
corresponding to each sensor.
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However, if only the free response part of measurements is used, it should be possible to
identify clearer and higher modes in the vertical and transverse directions. As mentioned
in section it was not possible to measure a free response longer than 30-40s. To verify
if it is long enough to identify the natural frequencies, only a third, then two thirds and
then all the free response signal is used. By comparing the FFT of the three signals, it was
possible to observe similar peaks for the last two. Thus, we can assume that a little bit
longer free response signal would not considerably change the identification of the natural
frequencies. In figures [21] and the FFT of the three sets of measurements are shown.
Only the results of the out-of-plane and vertical accelerations are shown here, as they are
the most interesting: the vertical ones due to their higher amplitudes and the transverse
ones due to a possible origin of a synchronisation problem, which generally occurs in that
direction.

4
x10
5 T T T T T

1st set
45 2n set -
3rd set

0 | 1 | 1 L
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Frequency [Hz]

Figure 21: FFT of out-of-plane free response accelerations (transverse)

4
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Figure 22: FFT of in-plane free response accelerations (vertical)

30



The identification is limited here to a frequency of 2Hz, but it would be possible to identify
higher frequencies based on these signals. As expected more peaks can be identified, includ-
ing those seen in figures, (19 and [20] where the entire signal, also the part under pedestrian
crossing, was kept. Thus these are the ones used to identify the natural frequencies of the
footbridge.

Notice that the natural frequencies identified from the full signal and from the free response
only, are similar, but not exactly the same. In fact, the pedestrians have an influence on the
identified frequencies, which explains the small differences. This effect increases with the
number of pedestrians on the footbridge. In [53], it is shown that the natural frequencies
tend to increase due to pedestrians walking on the structure. As the frequencies are directly

proportional to the ratio y/k/m, they assume that the modal stiffness k increases faster
than the modal mass m. However, in our case, the opposite can be observed. This can be
linked to the fact that the tests in [53] are carried out on a rigid structure. On the contrary,
here the footbridge is flexible. This would mean that for a flexible footbridge the additional
mass due to the pedestrians increases faster than the additional stiffness. The fact that the
natural frequencies of a flexible footbridge decrease due to a human-structure interaction
is confirmed in [3], where the same observations are made based on tests carried out on a
flexible structure.

Additionally, some identified frequencies based on the transverse and vertical accelerations
are very similar. From the linear theory of cable vibrations we already know that the natural
frequencies for the out-of-plane motion are given by a multiple n = 1,2, 3, ... of w/(L\/m/H)
and those for the anti-symmetric in-plane modes are given by a multiple 2n. Thus some of
the identified frequencies should be the same.

Comparison

In this section, the natural frequencies obtained analytically, the ones based on the measured
accelerations and the ones computed by FinelG can be compared.

Notice that the results obtained analytically do not really correspond to those obtained from
the measurements. In fact, the hypothesis of being able to assimilate the bridge to a single
cable having the same behaviour is not verified. Some effects are probably not taken into
account, which explains the difference. The obtained values are recalled in table [6]

Mode | Out-of-plane motion In-plane motion
anti-symmetric ‘ symmetric
1st 0.122 0.244 0.320
2nd 0.244 0.488 0.463
3rd 0.366 0.732 0.593

Table 6: Recall of the natural frequencies calculated analytically

Now the natural frequencies identified from the measured free response accelerations and
those obtained by the model of the footbridge done in FinelG in [42] are compared. These
values are similar, as can be read from table [7] for the first vertical modes. However, for
higher in-plane modes, as well as for the out-of-plane modes, it seems that not all the
information has been measured. Thus, the corresponding natural frequencies can not been
identified. If the footbridge behaved as a cable on two supports, it can be seen from figure

31



that not each sensor individually would be able to capture all the modes. However,
by taking all sensors together, we should have enough information to identify the natural
frequency corresponding to each mode. Provided, the mode was excited when taking the
measurements. This confirms what has been stated above, the footbridge behaves more like
a cable on various spring supports and probably some sensors were placed on or near the
nodes of a given mode. More realistic mode shapes can be extracted from the FinelG model
and are given in Appendix D.

N.a tural Frequencies [Hz] Natural Frequencies [Hz]
FinelG ‘ Measurements ,
WTE 5106 FinelG ‘ Measurements
0.560 0.563 8;23 0.069
0.695 0.633 0‘289 -
0.713 0.733 0'290 -
0.859 0.813 0'312 -
0.877 0.875 0393 -
0.966 0.969 0'352 :
1.036 1050 0.391 0.390
1.064 - 0461
1.107 1.100 . -
0.475 -
1.185 - 0.450
1;3& 1'2_00 0.526 0.550
1.250 1.250 0.622 0.625
1.365 1.375 Table 8: Comparison of the obtained
natural frequencies for the out-of-plane

Table 7: Comparison of the obtained nat-

. . d
ural frequencies for the in-plane modes Hrodes

3.3.2 Damping ratios

The damping ratios are only identified from the measurements. Based on the PP method,
the already identified natural frequencies above can be used. The half-power bandwidth
method (HPBWM) can then be applied to estimate the damping ratio, such that:

Wy —wq

6 = (3.11)

20@1@'

where w; and &; are the natural frequency and the damping ratio corresponding to mode
1. wy and wy are two frequency values left and right from w;, often taken at V2 from the

peak amplitude. However, this method is considered to be not very accurate as mentioned
in [47].

Another simple method is directly based on the time domain free response of the structure.
Its envelope can be assimilated to a decreasing exponential, like e=¢“* from which the value
of £ can be deduced. Here, the measured free responses of the footbridge are too short as
mentioned in section to apply this method.

The covariance-driven stochastic subspace identification method (SSI-COV) is applied in
the time domain and can also be used to identify the modal properties of a structure. As
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explained in [47] and in [49], this method is able to identify a stochastic state-space model,
like
X[k+1] = AX[k} + Wik (3.12)

d[k] = GX[k] + Vg (313)

based on correlations of the given output data, such as the vibrational response of the
structure. The modal properties can then be obtained by an eigenvalue decomposition
of matrix A. This method is used here, especially to identify the damping ratios, as the
natural frequencies have already been identified in the previous section[3.3.1} A stabilization
diagram is first created to see which modes the method was able to correctly identify. One
example is shown in figure [23] where only the first, second and eleventh identified frequency
can be considered stable. Only these are then used to identify the damping ratios, as shown

in figure 24
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4 v 45 % jtr + 2/1.7313Hz |
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Damping ratio [-]
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Figure 23: Example of a stabilization di- Figure 24: Identified damping ratios

agram

This analysis can be done with each acceleration signal recorded in the vertical and trans-
verse direction. However, it was not possible to identify more than the tree frequencies
stated above. The mean values are summarized in table [l

| Frequency [Hz] | Damping ratios [%] |

0.881 1.32 - 1.51
1.731 1.97 - 2.23
6.974 2.53 - 3.02

Table 9: Identified damping ratios for in-plane modes

Similar values are also obtained for the out-of-plane modes.

It has been shown in [21] and in [53] that a human-structure interaction induces an increase
of the damping ratios of the footbridge. This is because humans are able to absorb a part
of the energy and thereby damp the structure’s motion through their knees. These effects
increase with the number of pedestrians on the footbridge, like for the effects on the natural
frequencies. Thus the damping ratio of the footbridge, under self-weight, only is smaller
than the identified values.
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Chapter

Validation and analysis of the algorithm

Before applying the algorithm to a real-world example, it is validated by two academic test
cases which are discussed in this chapter. The first one is based on the example in [44],
where the modal properties are already given, as well as the resulting modal load. The sec-
ond case, is the extension of the former, by adjusting with the Geierlays geometric features
and modal properties. For these two examples, the acceleration measurements are simulated
by using the general definition of a single pedestrian load. In doing so, the loads identified
by the algorithm can be compared to those that generated the simulated measurements. A
reminder about human-induced loads is given in the first section. More information about
this topic may be found in |1} and [6].

4.1 Single pedestrian loading model

A person crossing a pedestrian structure induces a dynamic loading in three directions, i.e.
vertical, transverse and longitudinal, which can be considered periodic. In other words, it
varies in time and repeats at regular intervals.

First, one can distinguish between walking and running, generating a continuous or a dis-
continuous ground contact respectively. By specifying these two main types, table 10| shows
average values of the corresponding step frequency or pacing rate f, and forward speed
Vs.

| | Pacing rate f, [Hz] | Forward speed v, [m/s] |

Slow walk 1.7 1.1
Normal walk 2.0 1.5
Fast walk 2.3 2.2
Slow running (jog) 2.5 3.3
Fast running (sprint) > 3.2 5.5

Table 10: Average values of pacing rates and forward speeds corresponding to different types
of human motion [6]

The Sétra guide 1] doesn’t do this distinction and only gives two ranges of step frequencies,
one for walking from 1.6 to 2.4Hz and one for running from 2 to 3.5Hz.
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In the context of this work, only the cases of slow and normal walking are considered, as they
correspond to the types of motion usually observed on flexible footbridges. Additionally,
according to the Sétra guide, a single running pedestrian crosses the footbridge in a too short
amount of time to cause any problematic phenomena, such as resonance for example.

The dynamical load in the three directions due to a single pedestrian walking can be repre-
sented as in figure 25| However, it is only a schematic representation, indeed the load-time
function depends on various parameters, like the pacing rate, footwear, surface conditions,
the person’s weight and gender or other stepping particularities. Notice that there is always
an overlap of the left and right foot loads, such that there is always at least one foot on the
ground. This is why for walking we talk about continuous ground contact.

left foot
800

— right foot
480 — sum

160 |-

Vertical force [N]

40 -
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Lateral force [N]

160
80 /
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Fore-aft. force [N]

Time |s]

Figure 25: Example of dynamical load in vertical, transverse and longitudinal direction due
to a single pedestrian walking (adapted from [63])

As shown in figure , the period in the vertical T, and longitudinal 7j,,, direction is defined
as the time between two consecutive footsteps. Whereas the period in the lateral direction
Tt is equal to the time of two consecutive right or two consecutive left footsteps. This
is because, the lateral load component is due to the pedestrian’s balance when he changes
legs, such that the steps produce a load in opposite directions. The other two components
create a load in the same direction.

Thus, the vertical pedestrian load for a continuous ground contact is a periodic function,
which can be decomposed into a Fourier series. It is defined by a constant term and a sum
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of harmonic contributions and may be written:

F,(t) =W + ay,Wsin 2n fst) + W Z Qi SIN(27i fst — ;)

=2

(4.1)

where W is the person’s weight, generally assumed equal to 700N or 800N, f, is the pedes-
trian’s step frequency, ¢; is the phase angle of the ith harmonic relative to the first one. The
a;, with i=1,2,....n are coeflicients also called dynamical load factors (DLF) or Fourier coef-
ficients. Multiplied by the weight W, they represent the amplitude of the ith harmonic. The
number of harmonics n taken into account is usually limited to three and sometimes even
to only the first one. Several authors proposed different values for these coefficients. Some
values for «;, and ¢, are summarized in table taken from [7], |22], [26], [41] and [50].
For the vertical load, the Sétra guidelines suggest to use the coefficients from Bachmann et
al.

| Author(s) [ Fourier coefficients/Phase angles [-] |

Blanchard ay = 0.257
et al.
Bachmann | a; =0.4— 0.5, as = a3 =0.1 (for fs = 2.0 — 2.4Hz)
et al. Yo = g =m/2

0y = 037, ag = 0.1, a = 0.12 (for f, = 2.0Hz)
Schulze 1 — 0,04, a5 = 0.08

— 3 7

Kerr ar = —0.265/° + 1.321f% — 1.760/, + 0.761

ap = 0.07, az = 0.05

Seiler et al.

ap = 04, Qo = 015, 3 — 0.1

a; = 0.37(fs = 0.95) < 0.5
g = 0.054 + 0.0044 f,

Young as = 0.026 + 0.0050f,
aq = 0.010 + 0.0051f,
Charles &
Hoorpah o =04
Murray a; = 0.5, ay = 0.2, (for fs = 1.6 — 2.2Hz)
et al. as = 0.1, ay = 0.05
EC5, B -
DIN1074 a1 = 04, g = 0.2
oy = 0.0115f2 + 0.2803 f, — 0.2902
s = 0.0669f2 + 0.1067 f, — 0.0417
(s = 0.0247 f2 + 0.1149f, — 0.1518
— 2 _
Synpex ay = —0.0039f2 4 0.0285 fs — 0.0082

02 = (—99.76f2 + 478.92f, — 387.8)7/180

03 = (—150.88f3 + 819.65f2 — 1431.35f, + 811.93)7/180 (if f, < 2.0H2)
@3 = (813.123 4 5357.6 /2 — 11726 f, + 8505.9)7/180  (if f, > 2.0Hz)
¢4 = (34.19f, — 65.14)7 /180

Table 11: Fourier coefficients for vertical dynamical loading due to walking [7], [22], [26],
[41], (5]

! Advanced Load Models for Synchronous Pedestrian Excitation and Optimised Design Guidelines for
Steel Footbridges (Synpex) is a European research project, on which is based among others [22].
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Even if the horizontal dynamical load due to a pedestrian is smaller than the vertical one, it
may be a problem for footbridges and therefore must be taken into account. The transverse
horizontal and the longitudinal horizontal load for one single pedestrian are given by:

Fla(t) = WZ Qj jqt SIN <2m'J;St — gpi> and  Fiong(t) =W Z Qi long SIN(2Ti fst — ;) (4.2)

i=1 i=1

The horizontal loads are also usually limited to the first harmonic. Note that for the
transverse load, the frequency taken into account is only the half of the step frequency f,,
this is because of the definition of the period which is double in this direction as explained
above and shown in figure 25

The Fourier coefficients «; jo: and a; jong, differ from those given above for the vertical loading
component. Some values are summarized in tables [12] and [L3] based on [22]. However, on
these two coefficients, there is less research carried out and therefore fewer values have been
proposed. For the horizontal loads, the Sétra guidelines suggest using the coefficients from
Charles and Hoorpah.

’ Author(s) \ Fourier coefficients [-] ‘ ’ Author(s) \ Fourier coefficients [-] ‘
Bachmann o — e — 0.1 Bachmann | ay/ = 0.1, = 0.2,
et al. 0= =a =0 et al. as =0.1
Charles & Charles &
Hoorpah a1 =0.05 Hoorpah | '~ 0.2
ap = 0.039, as = 0.01, aye = 0.037, a1 = 0.204,
Schulze asz = 0.043, ay = 0.012, Schulze az/y = 0.026, ap = 0.083,
5 = 0.015 A5/ = 0.024
EC5, -
pINio74 | M T2 =01
Table 12: Fourier coefficients for horizon- Table 13: Fourier coefficients for horizon-
tal transverse load due to walking [22] tal longitudinal load due to walking [22]

The external excitation experienced by the footbridges is composed of a temporal and spatial
contribution and takes the following form:

p(x,t) = F(t)o(z — (1)) (4.3)

where x,(t) = v -t is the the pedestrian position on the structure and F'(¢) is the pedestrian
load defined by (4.1)) or (4.2]). The dirac delta ¢ assures that the forced excitation is equal
to zero, when the pedestrian has left the structure.

As a reminder the modal load p*(z,t) can easily be derived by using the continuous form
of the equation of motion and doing a coordinate transformation to switch into the modal
form, as done in chapter Thus, for a SOF and by integrating it over the footbridge’s
length I:

P (@, t) = /0 " (a)p(e, )z = /0 " B(2) F(H)5(x — () = F(£)D(0t) (4.4)

The definition of the modal load given by (4.4]) is used to obtain the corresponding vibra-
tional response.
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4.2 Vibrational response

The vibrational response of a structure, i.e. accelerations, velocities and displacements, may
be obtained by solving the equations of motion by only knowing the external excitation and
its modal properties. Two different numerical methods have been implemented in this
work.

The first one is the classical Newmark method, an implicit time integration scheme. The
formulas are recalled here:

Grear = G+ [(1 — 0)de + 0Gryat) At (4.5)

Grear = @ + @A+ [(1/2 — Q)G + s a] AL (4.6)

Where ¢;, ¢; and §; are the displacement, velocity and acceleration respectively, at a given
time t. 0 and « are two coefficients that take different values depending if a constant
acceleration (o = 1/4, 6 = 1/2) or a linear acceleration (o = 1/6, § = 1/2) is considered.
It can be shown that Newmark is unconditionally stable and non-dissipative, if a constant
acceleration is used. Whereas, in the case of a linear acceleration, it is conditionally stable.
Therefore, the first one is chosen. Relations and are then introduced in the

equation of motion at time ¢ + At:

MGerat + CGrynr + KGpar = Perat (4.7)

The solution is then computed iteratively by starting from ¢y, then using (4.5)) and (4.6)
to obtain ¢y a; and g a¢. For the last step, equation (4.7]) is used to obtain a new value of
the iterate Giiaq-

Depending on the chosen time step At, there may be a period elongation, which can distort
the results. To avoid this, the ratio time step over the structure’s period At/T; should be
smaller than 0.10. Note that this method can be extended to solve non-linear problems or
can be rewritten as an explicit scheme. For more details, the reader may refer to |[13] and [61].

The second method uses the discrete-time state-space form of the equation of motion in the
modal basis obtained in chapter

X(+1] = AXpyy + Bpjy + Wi

where the only unknown is the modal state vector xp, as Py can be defined by (4.4]). The

system matrices A and B are defined in chapter [2| and given by ([2.28]) and (2.29). The
modal state vector’s initial value is assumed to be equal to zero. As a reminder the modal
state vector at instant k is defined as
A[k]
Xk =\ .
q[x]

The acceleration is calculated in a subsequent step by a simple centred finite difference:

_ A1)+ A
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4.3 First test case

The first case is based on the application example used in K. Van Nimmen et al. "Inverse
identification of pedestrian-induced loads" [44]. Where a single pedestrian walks over a labo-
ratory structure, which consists of a 7m long, hollow-core pre-stressed and simply-supported
concrete slab. In that work, the measurements are done by using 13 accelerometers and one
optical displacement sensor, which are placed as shown in figure

0.4 e g T R grmT———— [ """"""""" I """""""""" P
— 0.2 z = z = g A
E o ;:g = * = = = X o 5% :
0.2y . : . . - —— : o -

0.4 [ v i ————— i ——— i M s f s s e ——— i —— .

0 1 2 3 4 5 6 7
X [m]

<«———  walking direction

Figure 26: Measurements set up: accelerometers (e), optical displacement sensor (w), line
supports of the slab (——) and identified footstep locations (x). [44]

4.3.1 Definition of the parameters

Several parameters must be given as input in the algorithm, most of them are clearly stated
in [44]. These are:

e the modal properties of the structure, where the two first modes could be identified,
as shown in figure [27]

> $: NI 2 S - NS S
1 2 3 5 4 5 6 1 2 3 % 4 5 6
1 2 3 4 5 6 1 2 3 4 5 6
X X
Mode 1 - f1 =6.05 Hz, &, = 0.39 % Mode 2 - fo = 24.54 Hz, & = 0.99 %

Figure 27: First two modes of the laboratory structure (f; and &; are the natural
frequencie and the damping ratio corresponding to mode ) [44].

However only the modes in the frequency range of 0Hz to 20Hz are considered ie. only
the first one.

o The sensors attached to the pedestrian registered his motion which allows the identi-
fication of his average step frequency found to be f; = 1.98Hz,

o the sampling step is At = 0.01s,

e the noise covariance matrix of the process and measurement noise vectors is taken
equal to S =0,

* ng, = 13 accelerations and ng 4 = 1 displacement are considered with coordinates that
can be read from figure [20],

o and as already mentioned, the slab’s length is L = 7m.
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¢ The initial state estimate vector Xjo—1) and the corresponding error covariance matrix
Pg—1) are both considered equal to zero. This remains maintained for all following
applications

Regarding the measures, we do not directly have access to them. All that is given in [44] is a
graph of the accelerations as a function of time at the midspan, indicating that the duration
of the measurements is 50s. Additionally, a graph of the identified modal loads is also given
It shows that the pedestrian walks on the structure for a duration of approximately ¢t =4s
and therefore has a speed of v, = 1.75hm/s.

Following the procedure presented in section 4.1, the modal load for the first mode of a

shape ®(z) = sin (7F) is given by equation (4.4) and yields:

st
pi(t) = F(t) sin (7“2 ) (4.9)
where, F'(t) is the vertical pedestrian load defined by (4.1]).

Two assumptions must be made concerning the pedestrian’s and the slab’s weight, as these
are not given. The pedestrian’s weight is assumed to be equal to 600N. For the slab, we do
know that it is a hollow-core concrete slab and its mass density of 1909 kg/m? is given. Its
weight is assumed to be equal to 900kg or 128.57kg/m. The modal mass is defined as:

M* = /OL p®*(x)dr = 5 (4.10)

and is equal to 450kg.

Following the guidelines of Sétra [1], the Fourier coefficients appearing in the definition of
the vertical dynamical load are chosen equal to a; = 0.4 and oy = a3 >~ 0.1, which are those
proposed by Bachmann et al. from table Note that these values are for a step frequency
of 2Hz, which is not the step frequency in this case (f, = 1.98H z), but it is close enough to
be considered as acceptable.

The vibrational response is simulated by using the second method presented in section
based on the discrete-time state-space form of the equation of motion. One reason for this
choice is because it is easier to add noise and analyse its impact on the results of the impact.
There is a second reason, which will be clarified when comparing both methods in the next
section [1.3.2]

In the first place, the noise is neglected or at least considered very small. Only in the section
where its influence is analysed, it is taken into account, by adding a process noise vector w
to the state vector x and a measurement noise vector v to the data vector d. These are
calculated based on the standard deviation of the state and data vector. The corresponding
noise covariance matrices Q and R are obtained accordingly.

4.3.2 Discussion of the results

Before showing the results obtained by applying the joint input-state estimation algorithm
to this first case, notice that in contrast to the accelerations used in [44], those used here
are simulated, as we do not have the measured ones. It implies that there may already
be some numerical errors on the vibrational response, before running the algorithm. Even
if a natural frequency of 6.05Hz is used for the first mode as mentioned in the paper,
after simulating the accelerations and doing the fast Fourier transform, the value of the
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natural frequency identified here is slightly different (6.059Hz). This error can be reduced
by decreasing the time step and depends on the method used to obtain the vibrational
response. The accelerations simulated at midspan of the concrete slab are shown in figure
28 Where after 4s the pedestrian has already crossed the structure and the free response
of the structure is observed.

0.3

0.25
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0.15

Acceleration [m/s?]
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gl

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25
Time s Frequency [Hz|

Figure 28: Simulated accelerations as a function of time and its corresponding FFT

The aim here is not only to reproduce the results in [44], even if this allows to validate
the joint input-state estimation algorithm and it ensures thereby that it has been well
implemented. This test case enables also to analyse the influence of various parameters, like
the number of measurements taken into account, a modification of the time step, addition
of noise and the number of modes taken into account. Which will help to identify the

limitations of the algorithm and verify the applicability conditions mentioned in section
of chapter 2]

Influence of the number of measurements

The output vector d of the algorithm contains the different measurements, such as ng4,
accelerations, ng, velocities and/or ng 4 displacements. As in [44], 13 accelerations and one
displacement are used, the results obtained are shown in figure and are in agreement
with those of the paper. The modal load given by the algorithm is not too far from the
exact one. However, if only 13 accelerations are used as for figure 29 the obtained modal
load is not correct, the static component is missing. In fact, by using only accelerations,
the algorithm does not capture very well the low frequencies, as shown in the corresponding
Fourier transform. By adding one (figure or even 13 velocities (figure , the results
are improved but are still worse than those obtained with an added displacement. This
was already expected, according to what is mentioned in section [2.4] about the applicability
conditions. As a reminder, accelerations and velocities are insensitive to a constant load,
such as the constant component of the pedestrian load. Thus, by keeping all the other
parameters presented in section unchanged, at least one displacement is needed to
ensure the stability of the algorithm as well as the uniqueness of the results.

In any case, the algorithm can be used to identify the dynamic component of the pedestrian
load, as shown in figure [33] Which is the most interesting for designing a footbridge since
it is the source that can cause vibration problems. Notice that the identified modal load
still do not perfectly match the exact one, but this will be explained and improved in the
second test case.
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Figure 29: Simulation based on 13 observations (accelerations only) for the first mode with
a sampling step of At=0.01s and its corresponding FF'T
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Figure 30: Simulation based on 14 observations
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first mode with a sampling step of At=0.01s and its corresponding FFT.
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Figure 31: Simulation based on 26 observations (13 accelerations and 13 velocities) for the
first mode with a sampling step of At=0.01s and its corresponding FFT.
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Figure 32: Simulation based on 13 observations (13 accelerations and 1 displacement) for
the first mode with a sampling step of At=0.01s and its corresponding FFT.
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Figure 33: Simulation of the dynamical load component based on 13 observations (accelera-
tions only) for the first mode with a sampling step of At=0.01s and its corresponding FFT.

Influence of the time step

Since it is not always possible to measure a displacement for real world footbridges, it is
interesting to analyse if it is possible to improve the results by keeping only accelerations as
measurements, but by decreasing the sampling step At. As shown through figures [34] and
[35], the results can indeed be improved. By decreasing the sampling step the ratio period T}
over the sampling step At increases from approximately 16.53 by the same factor 10*. This
means that per period there will be much more points containing useful information.

However, notice that the sampling step has to be significantly decreased, which comes with
other problems like an increase of the simulation time. Moreover, the accelerometers may
not be able to record at such small sampling step.
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Figure 34: Simulation based on 13 observations ( accelerations only) for the first mode with
a sampling step of At=0.001s and its corresponding FFT

900 T T T T 35
simulated
exact (unknown)| |

simulated
exact (unknown)| |

30

Modal load [N]

100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 Y ‘ ‘ N s s
4 5 6 7 8 9 10
Time s Frequency [Hz]

o
N
w
~
o
o
~
o
©
)
o
N
w

Figure 35: Simulation based on 13 observations ( accelerations only) for the first mode with
a sampling step of At=0.00001s and its corresponding FF'T

Influence of noise

As mentioned in section [2.2] of chapter [ the state-space model takes noise into account
by adding a measurement noise vector v to the data/output vector d and a process noise
vector w to the states vector x. Both are assumed zero mean and white. So far, as
the measurements are simulated there is no measurement noise or noise due to stochastic
excitation. However, for measurements done on real-world structures, there will be. The
influence of noise on the identified modal loads is analysed by adding a maximum noise of
0.25% and 5% of the standard deviation of the states and data vector. As a reminder, the
noise covariance matrices Q and R are defined as:

Q =E [W[k]W[jlﬂ 5[k—l}

and
R=E [V[k]vﬁ” (5[]@,1]
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It can be seen from figures [36) and [37, that even with heavily noisy measurements, the
algorithm is able to correctly identify the modal load. This confirms the advantage of this
inverse technique compared to others, it deals very well with noise.
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Figure 36: Simulation based on 14 observations (13 accelerations and 1 displacement) for
the first mode with a sampling step of At=0.01s and 0.25% noise.
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Figure 37: Simulation based on 14 observations (13 accelerations and 1 displacement) for
the first mode with a sampling step of At=0.01s and 5% noise.

Influence of the number of modes taken into account

The algorithm is able to take into account an arbitrary number of modes n,,. In this case,
we only have information about the first two. The identified modal loads based only on
accelerations are shown in figure The results for the first mode are slightly improved
compared to those obtained previously by also using only accelerations. However, they are
still far from satisfactory.
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Figure 38: Simulation based on 13 observations (accelerations only) for the first two modes
with a sampling step of At=0.001s.

4.3.3 Impact of a frequency error on the modal forces

The natural frequencies of the Geierlay are obtained based on experimental data acquisition.
Thus there may be errors in the identified values. Chapter |3, already shows that the values
slightly change from set to set and are slightly different from those given by the model of
the footbridge. For this reason, it is interesting to analyse the impact a frequency error
might have on the modal load. At the same time, both methods presented in section to
obtain the vibrational response of the structure are compared, by documenting the impact
of frequency errors for each method. The impact is quantified by using the L2 relative error
norm, given by:

n D)2
Relative error = lel(pj;ft’z 5 D) (4.11)
>ic DPirii

where psp; is the FFT of the exact pedestrian load obtained by the single-pedestrian

loading model presented in chapter 4| and pys; is the FFT of the simulated load given by
the algorithm. An error of -1Hz and +1Hz compared to the exact frequency value of 6.05Hz
for the first mode is analysed.
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Figure 39: Method based on the discrete- Figure 40: Newmark method (method
time state-space form of the equation of 2)

motion (method 1)
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The relative error on the FFT of the modal load is shown in figure 39 by using the method
based on the discrete-time state-space form of the equation of motion. And in figure A0} by
using the Newmark method. As can be seen on the y-axis, the error committed increases
much faster for the Newmark method. This is directly visible in figures [41] and 2], showing
the modal load and its corresponding FFT for three different frequency values. By using
method 1, the error can be considered negligible. Thus this method will be used when
applying the algorithm to the second test case, where the modal properties of the Geierlay
footbridge will be used.

Notice that for the Newmark method, instability is observed. This is because the criteria of
a ratio At/T;<0.10 is not respected. This can be avoided by decreasing the sampling step,
which is not always possible if the measured accelerations have been recorded with a fixed
sampling step.
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Figure 41: Impact of a frequency error on the modal load and its corresponding FFT by
using method 1
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Figure 42: Impact of a frequency error on the modal load and its corresponding FFT by
using method 2
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4.3.4 Impact of a damping ratio error on the modal forces

The same analysis can be done for a damping ratio error, as this modal property is also
identified based on the measurements and is thus not very precise. The impact is quantified
by applying the same L2 relative error norm on the FF'T of the identified modal load, given
by equation . An error of -0.30% to +0.30% compared to the exact value of 0.39% for

the first mode is considered.
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The relative error on the FFT of the modal load is shown in figure 46| and [44] for both
methods. Here again, the method based on the discrete-time state-space form of the equation
of motion is less influenced by an error and the impact can be considered negligible. Even if
the impact is higher for the Newmark method it stays small and the relative error increases
slower as for a natural frequency error. This is clearly shown in figures [45] and [46], were the
differences for the various values are almost not visible.
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Figure 45: Impact of a damping error on the modal load and its corresponding FFT by
using method 1
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Figure 46: Impact of a damping error on the modal load and its corresponding FFT by
using method 2

This analysis, therefore, does not change the choice made above, which is to use the method
based on the discrete-time state-space form of the equation of motion for the second test
case.

4.4 Second test case

The second test case is the extension of the former, by adjusting for the Geierlay’s geometric
features and modal properties. A brief description, as well as the identification of the modal
properties of the footbridge, are already given in chapter [3]

4.4.1 Definition of the parameters

Based on what is presented in chapter [3] the following information is given as input in the
algorithm:

o The first vertical modes are defined by the following natural frequencies: f; = 0.42Hz,
f2 = 0.56Hz and f3 = 0.63Hz.

e The damping ratios have been identified based on the accelerations under pedestrian
load. It was not possible to identify the damping ratio corresponding to each mode,
however as shown in the analysis carried out in section [4.3.4] the identified modal load

is little influenced by the damping ratio value taken into account. Thus a value of
¢ = 1.4% is considered here.

e The footbridge’s length is equal to [ = 363.9m,

« and knowing that a pedestrian needs approximately 9 minutes to cross the footbridge,
it’s velocity is vy = 363.9/540 ~ 0.67m/s.

o The generalised mass of the footbridge are taken from [42] and for the first three modes
are equal to M; = 27.57T, My = 37.12T and M3 = 33.37T.

e Only ng, = 4 accelerations are considered here, corresponding to the number of
accelerometers used for the experimental campaign. Additionally, their coordinates
are taken equal to the locations where the sensors were placed. These are given in
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chapter [3] This allows already to get as close as possible to the data that will be used
when the algorithm is applied to the real footbridge.

The other parameters are defined as for the first test case, to allow a better comparison
between both test cases. Thus, the step frequency is kept equal to 1.98 Hz, the pedestrian’s
weight is 600N and the sampling step is 0.01s. The influence of noise has already been
analysed and is therefore no more taken into account here.

The vibrational response is calculated following the procedure based on the discrete-time
state-space form of the equation of motion, which is described in section and by using
the dynamical load factors suggested by Bachmann et al.

4.4.2 Discussion of the results

The simulated accelerations are given in figure [{7] This time we clearly see that the ampli-
tude increases when the pedestrian walks to the footbridge’s midspan, where the maximum
is reached and decreases when he walks away.
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Figure 47: Acceleration as a function of time and its corresponding FFT

The aim of this second test case is not to analyse again the influence of the several pa-
rameters, but rather to verify that there are no major complications that might stem from
non-idealised parameters as opposed to the laboratory conditions of the previous test case.
As shown in figure (48] without any surprise, the algorithm still does not capture the static
component of the pedestrian load if only accelerations are used in the data vector d. How-
ever, this time the modal load is already very well identified by only adding one velocity
as proven by figure This can be explained by the difference of the two ratios % and
T%‘l’“, where T is the structures period for the first mode, which is equal to the inverse
of its natural frequency in this same mode, At is the sampling step and T, is the time
necessary for one pedestrian to cross the structure. Their numerical values are given in table

T4
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‘ 1st test case ‘ 2nd test case ‘

T 1/6.05 1/0.42

I | U805 9653 | MO8 o 938 10
Tcro.ss 4 _ 540 _
Tgess | e = 24.20 | 45 = 226.80

Table 14: Comparison of the ratios T} /At and T,,.,ss/71 for both test cases

The ratio T /At indicates that for the second test case, there are approximately 14 times
more measured points per period. Additionally, according to the ratio T..ss/T) there are
approximately 9 times more oscillations measured during the excitation of the second case
which lasts longer. Thus there is much more information for the second test case, which

improves considerably the modal load identification.
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Figure 48: Simulation based on 4 observations (accelerations only) for the first mode with
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As already discussed, only accelerations have been measured on the real world footbridge.
Thus we will only be able to correctly identify the dynamical pedestrian load component.
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Which are for the same reasons stated above improved compared to the first test case, as
shown in figure [50} This is good news since this test case is closer to reality and confirms
that the joint input-state estimation algorithm can be applied to the Geierlay footbridge to
identify the dynamical pedestrian load, which is the purpose of this work.
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Figure 50: Simulation of the dynamical load component based on 4 observations (accelera-

tions only) for the first mode with a sampling step of At=0.01s and its corresponding FFT.

4.5 Limitations of the algorithm

As can be seen from the various results presented in this chapter, the algorithm doesn’t
work always very well. At least one displacement is needed to allow correct identification
of the modal load, as already mentioned in chapter 2 Otherwise only the dynamical load
component can be identified. This is usually not a problem in civil engineering. Most of the
time a displacement can easily be measured and when this is not the case, the dynamical
component is often already very useful.

If possible a ratio Ty /At and T,..ss/T1 of the order 100 should be taken for accurate re-
sults.

Additionally, the measurement noise vector v can not be taken equal to zero to avoid singular
matrix problems. The corresponding noise covariance matrix R appears directly in the first
equation of the input estimation step of the algorithm which defines R by:

Rj) = GPyui—)G" + R

and the reverse of which is then taken. Thus, by initiating the covariance matrix of the state
estimate error Py _y) also too zero, R is close to a zero matrix. This problem does not occur
when the process v noise is taken equal to zero. However, when the algorithm is applied
by using measurements carried out on a real structure, there will always be measurement
noise.
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Chapter

Algorithm applied to the Geierlay
footbridge

The final step of this work is to apply the joint input-state estimation algorithm to a real-
world example, the Geierlay footbridge. But first, a reminder of existing loading models
for a group of pedestrians or a crowd is given. As explained in chapter [3 during the data
acquisition, there were groups of people crossing the bridge and not a single pedestrian as
assumed for the validation test cases. The obtained results are then compared to these
loading models and if necessary some improvements are proposed.

5.1 Loading models for a group of pedestrians or a crowd

In contrast to the single-pedestrian loading models, which were presented in section
loading models for a group of pedestrians or a crowd are not well defined. Current knowledge
of the behaviour of multiple pedestrians crossing a structure is limited and there is still
progress to be made. The difficulty comes from the wide variety of parameters that are
not easy to predict or simulate. Thus tests have to be done by simulating a crowd, where
each pedestrian may have a different step frequency, velocity and self-weight. One may
also take into account the initial phase change between the pedestrians entering at different
moments on the bridge. Additionally, the pedestrians might more or less synchronise with
each other or with the footbridge. The first synchronisation type depends on the pedestrian’s
frequency, his velocity and the number of pedestrians on the footbridge. It is favoured by a
larger number. The second type, also called the "lock-in’ phenomenon, depends additionally
on the frequency of the bridge as well as the amplitude of its motion, as mentioned in [2].
This happens when an initially random crowd feels the motion of the footbridge and to
compensate this feeling of imbalance they gradually adopt the footbridge’s frequency and
become in phase with its motion. This creates a resonance problem that amplifies at the
beginning due to a crowd synchronisation. Once the motion is sufficiently large to prevent
the pedestrians from walking the phenomenon attenuates. So far, the lock-in effect has
only been observed for lateral movements, since in the vertical direction pedestrians can
counterbalance the motion with their knees for example.

There are several footbridges which on their inauguration day started to move so much
that it affected the comfort of pedestrians. This proves that they have not been correctly
designed for a crowd. A well-known example is the Millennium footbridge in London.
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During its opening day in June 2000, the bridge faced a transverse lock-in phenomenon
and needed to be closed two days later. Investigations have been done and several dampers
were added, before reopening almost two years later. Another example is the Léopold-Sédar-
Senghor footbridge in Paris, or better known as the Solférino bridge before it was renamed
in 2006. It opened in 1999 and suffered from the same phenomenon. Further information
on these footbridges can be found in . One last example cited here is La Belle Liégeoise
in Liege shown in figure 51 During its inauguration day in May 2016, there was also an
event nearby at the end of which everybody crossed the footbridge at the same time. This
again caused a lateral lock-in phenomenon. Several tests have been done after that with a
group of approximately 80 pedestrians running or walking, however no accelerations out of
the ordinary have been observed. Thus, the conclusion was that the synchronisation only
occurs for an exceptionally dense crowd and since this is very rare, the project owner decided
not to add additional dampers.

Figure 51: Belle Liegeoise footbridge (Liege, Belgium)

As seen above, it is always a problem of comfort and not of resistance, that may occur during
exceptional events like an inauguration. However, the investigations and modifications on
the footbridge that need to be made afterwards are time-consuming and expensive. Thus
they should be avoided. Several loading models have already been proposed, each having
its advantages and limitations.

Initially, footbridges were designed based on single pedestrian models and by adding several
requirements concerning its stiffness and natural frequencies. As one may imagine, this is
not the optimal way to proceed.

A well-known loading model was suggested by Bachmann and Ammann [6], derived from
the research of Matsumoto et al. [36], it consists in multiplying the dynamical load due to
a single pedestriarﬂ by an enhancement factor k based on the Poisson distribution of the
arrival probability. It is defined as:

k= VAT (5.1)

where )\ is the rate at which the pedestrians enter the footbridge and is given in persons per
second over the deck’s width. For reasons of space, the maximum value is approximately
taken equal to 1.5 persons/s m. T is the time needed for one pedestrian to cross the

LA reminder of single pedestrian loading models is given in section of chapter @
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footbridge and can also be expressed as the total length of the footbridge L divided by a
pedestrian’s speed v. Thus, the product AT defines the number of pedestrians N on the
bridge at a given time. The enhancement factor can be rewritten as k = v/N. This loading
model takes into account an initial phase shift but assumes that each pedestrian crosses the
footbridge with the same frequency and speed.

The loading model used in the Sétra guidelines [1] to design footbridges for serviceability
consists in representing a random crowd, where each pedestrian has a random phase and
frequency by an equivalent number of pedestrians N, which will have the same effect. These
pedestrians are supposed to all have the same frequency and phase. Tests are done using
probability calculations and statistical processes to give each pedestrian a random phase
and a normally distributed random frequency. This frequency is centred around 2Hz and
has a standard deviation of 0.175H. Each pedestrian is assumed to have the same velocity
equal to 1.bm/s. After lots of tests, the following relations have been established:
N { 10.8y/N¢  for sparse or dense crowd
eq —

1.85v/N  for very dense crowd (5:2)

where a crowd is considered sparse if its density is 0.5 pedestrians/m?, dense if it is 0.8
pedestrians/m? and very dense if it is about 1 pedestrian/m?. N is the number of pedestrians
on the footbridge at a given moment and § is the critical damping ratio. The N, pedestrians
are then uniformly distributed on the footbridge and the applied load follows the mode
shape. They create the same maximum acceleration as the corresponding random crowd.
In order to obtain the load created by the crowd, the single pedestrian load is then multiplied
by N¢q and a reduction coefficient ¥ which depends on the natural frequency of the structure
and is shown in figure [52] This coefficient takes into account the probability of resonance
effects. It decreases when there is less chance that the step frequency corresponds to a
natural frequency of a given mode of the structure. The second peak takes into account the
effects of the second harmonic of the crowd.
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Figure 52: Reduction coefficients for the Sétra loading modal (left: for vertical and longi-

tudinal vibration / right: for lateral vibrations) (adapted from [45])

Fujino et al. [1§] suggested a factor for crowd induced lateral forces. Based on tests done
on a two-span cable-stayed bridge. They assume that 20% of the crowd on the bridge is
synchronised, such that the lateral forces induced by a single pedestrian need to be multiplied
by

mp = 0.2N (5.3)
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to obtain the effects of a group of N pedestrians. As mentioned in [1], several tests show
that lateral synchronisation can increase up to 60% or more for a compact crowd and an
acceleration higher than 0.1m/s?.

Another model is given by Ebrahimpour et al. [14] for serviceability design. It is based
on experimental measurements done on a large instrumented force platform. They use the
general formula for the vertical dynamical load produced by a single pedestrian and define
new Fourier coefficients. Depending on the step frequency and the size n of the crowd,
where a crowd of 10 pedestrians is considered as large, they assume that once this number
is exceeded the coefficient remains constant. The coefficients are summarized in the following
table L5k

| Frequency [Hz] | Fourier coefficients [-] |

15 a1=0.18 - 0.05log(n) n<10
' o = 0.13 n>10
175 a;=0.25 - 0.08log(n) n<10
' o1=0.17 n>10
9.0 a1=0.34 - 0.09log(n) n<10
' a1=0.25 n>10
95 a;=0.51 - 0.09log(n) n<10
' a1=0.42 n>10

Table 15: Fourier coefficients suggested by [14]

A loading model suggested by Niu et al. [46] for N persons on the bridge is given by:

N n
Fz,y,t) =Y 6(x —x;5) - 0(y —y;) - |W;+ > Wiy, sin(2mi fjt — ¢;) (5.4)
7=1

i=1

The last term represents the load induced by the single j-th pedestrian, whose position is
given by z; and y;. These are defined by: z; = x¢; + vy; and y; = yo; + vy;. The tuple
(205, Y0;) are the coordinates of its initial position and (v, v,;) is the velocity in the 2D
plane. For this model the position of the pedestrian needs to be known at each time and
is given in a cartesian coordinate system with the origin at the center of the deck, the x-
axis is parallel to the walkway and perpendicular to the y-axis which is according to the
width.

In the field of civil engineering in Europe, the Eurocodes are often used when it comes to
dimensioning. However, the footbridges are only briefly mentioned in some sections as:

o EN 1990 A2: Appendix A2 of Eurocode 0 (Basis of structural design) is about appli-
cations to bridges and among others to footbridges [54].

o EN 1991-2: The second part of Eurocode 1 (Actions on structures) speaks about traffic
loads on bridges. Where, section 5 is devoted to ’Actions on footways, cycle tracks
and footbridges’ [55].

o EN 1995-2: Appendix B of the second part of Eurocode 5 (Design of timber structures)
is about vibrations caused by pedestrians on timber bridges [56].

None of them gives any suggestion for a loading model. There is only a suggestion on how
to calculate the accelerations of a simply supported or truss timber bridge in Eurocode 5.

26



It is worth mentioning here, since it could be possible to extend it to any other type of
footbridge. The accelerations in [m/s?] when several persons are crossing the bridge are
given by:

] 0.23a,1 Nk, for vertical accelerations

B { 0.18ap,1 Nky, for horizontal accelerations (5-5)

where NV is the number of pedestrians. A value of 13 is suggested for a distinct group or
0.6 times the area of the footbridge’s deck [m?] for a continuous flow of pedestrians. k, and
ky, are coefficients that depend on the fundamental natural frequency of the bridge in the
vertical f, and horizontal direction f;,. These are given in figures and . a,1 and ap
are the accelerations in the vertical and horizontal direction for a single pedestrian. For
walking, they are given by:

Mg

%2 for 2.5 Hz < f, < 5.0Hz

and ap; = S0 for 0.5 Hz < fn<25Hz  (5.6)

200 for f, <2.5 Hz
Ay,1 = M¢E

with M the total mass of the footbridge [kg] and ¢ its damping ratio [-].
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Figure 53: Value of the coefficient k, de- Figure 54: Value of the coefficient kj, de-
pending on f, [56] pending on f; [56]

5.2 Definition of the parameters

For the application of the joint input-state estimation algorithm to the Geierlay footbridge,
various parameters are needed.

» The first vertical modes are defined by the following natural frequencies: f,; = 0.42Hz,
fv2 =0.56Hz and f,3 = 0.63Hz.

e This time the lateral motion will also be analysed. The first corresponding modes
are defined by the following natural frequencies: fi,;1 = 0.16Hz, fiqt2 = 0.24Hz and
flat,3 = 0.29Hz.

o For the same reasons as stated above, a damping ratio of £ = 1.4% is considered.
o The footbridge has a length of | = 363.9m.

e Since a pedestrian needs around 9 minutes to cross the bridge his walking velocity is
deduced to be vy = 0.67m/s.
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e The generalised mass of the footbridge for the first modes is equal to M; = 27.57T,
M3 = 37.12T and M = 33.37T according to [42].

e The pedestrian’s step frequency is considered to be of 1.8Hz, which is a mean value
between slow and normal walking.

o The pedestrian’s weight is assumed to be 700N as suggested by the Sétra guide [1].

* ng4, = 4 have been recorded for each set of measurements. Only one data set is given
as input in the algorithm each time, since the various sets have not been recorded
at the same time and under the same conditions, they should not be mixed up. The
corresponding coordinates are taken equal to the locations where the sensors have
been placed on the footbridge. These were given in chapter [3|

This time the real measured accelerations on site are used in the data vector d. These
are not simulated anymore as it was done for the test cases. An acquisition frequency
of approximately 32Hz has been chosen which corresponds to a sampling step of At =
0.0313s.

5.3 Discussion of the results

During the experimental campaign, only accelerations were measured and no displacements
nor velocities. From results shown in chapter |4, we already concluded that the algorithm will
not be stable and nor be able to correctly capture the static component of the pedestrian’s
load.

Several proposals are suggested to solve this problem. These are based on the algorithm
analysis done in chapter [4]

o Create a new acceleration signal with a smaller sampling step based on the measured
ones, by doing an interpolation.

» Generate velocities based on the accelerations, by doing an integration.
e C(Calculate a static displacement.

o Use a high-pass filter on the measured accelerations. As seen on previous results, when
observing the FFT of the identified modal load, the algorithm struggles to capture
the low frequencies when no displacement is used.

Some of these propositions have been tested. Such as the interpolation of the measured
accelerations. However, the identified modal loads seem to be unstable. This is confirmed
by doing an interpolation of the simulated accelerations for the test cases, where the same
effect is observed. The idea was to decrease the sampling step of the measurements already
done without having to do them again. Additionally, depending on the measurement equip-
ment it is not always possible to chose an arbitrary small sampling step. However, by doing
an interpolation, information is created between the known data points, this pollutes the
original measurements and leads to an erroneous modal load identification. A similar effect
is expected for the second proposition. Indeed by integrating the accelerations to generate
velocities, an initial error on the measurements is increased linearly and the obtained ve-
locities may be wrong. By doing a double integration to obtain the displacement, the error
increases even exponentially, this is why this idea is not suggested above. Various methods
have been proposed in the literature to avoid these problems and [5] and [12] are just two
examples.
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The aim of this work is not to analyse or apply a method to obtain displacements or velocities
from accelerations measurements done on site. It is to identify pedestrian loads in order to
compare the obtained values to those given by existing loading models. Since the algorithm
yields accurate results for the dynamic component of the load and since this is precisely the
one that causes problems for certain footbridges. Thus in the following a high-pass filter is
applied on the measured accelerationsﬂ

The identified modal load is shown in the following section and directly compared to the
maximum values suggested by the various loading models. Only the vertical and lateral
loads are analysed here. The former have the highest amplitude whereas the latter have
been the cause of problems in the past.

5.4 Comparison of the identified loads with existing loading
models

The identified modal loads in the vertical and transverse direction are shown in this section.
These are directly compared to the maximum values obtained by applying existing loading
models for a group of pedestrians, which are given in the first section of this chapter [5]

A distinction is made between the load identified based on the second data set done at the
beginning of the footbridge and the one based on the third data set done at mid-span. The
reason is the different local shape of the footbridge at these two measurement locations.
At the entry of the footbridge, the walkway is inclined by approximately 27%, whereas
at midspan the walkway can be considered flat. This has an impact on the amplitude of
the pedestrian load, as will be shown and discussed in the following. However, notice that
both measurement sets were not carried out at the same time, thus these were not recorded
under the same conditions. As already said above the third set was done later that day,
where fewer pedestrians were crossing the footbridge. For the second data set N = 50
pedestrians are considered to be on the footbridge at a given moment, which corresponds to
approximately two groups of 25 people. For the third data set N = 40 pedestrians. These
are only approximate values since the exact number of pedestrians at each moment on the
footbridge has not been recorded.

5.4.1 Vertical direction

The results and comparison for the modal loads in the vertical direction are shown in figure
for the entry of the footbridge and in figure [56| at midspan.

For the vertical direction three loading models are compared:

o The first one is the loading model suggested by the Sétra guide [1]. In this case, a
sparse or dense crowd can be considered. Thus, N, = 10.8y/N¢ with a damping ratio
of approximately 1.4%. A value of Ngand set = 9.05 and N 3,4 set = 8.08 pedestrians
is obtained for both data sets. This equivalent number of pedestrians multiplies the
load due to a single pedestrian. The dynamical load factors of Bachmann et al. are
used as suggested in the guide, which are a; = 0.4 and as, = a3 = 0.1.

« The loading modal suggested by Bachmann and Ammann [6] where the single pedes-
trian load using the DLF suggested by the same authors and also used in the Sétra

2The function butter is used for this in Matlab.
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guide is multiplied by a factor k = V/N. In this case, a value of kg, = 7.07 and
k3rq set = 6.32 is obtained.

o A third loading model is suggested by Ebrahimpour et al. [14], where new DLF are
defined. In this case for a frequency of approximately 2.0Hz and with N>10, the value
of a; = 0.25 should be used. Notice that if the definition of a single pedestrian load
is used with only the 1st harmonic and this given DLF, the obtained load is very
small, as they suggest that the DLF is constant when the number of 10 pedestrians is
exceeded. Thus, even if it is not specified this value will be multiplied by N to obtain
a more reasonable value and avoid ruling out this model immediately.
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Figure 55: Comparison of the identified modal loads based on accelerations recorded at

the entry of the footbridge with existing loading models for vertical load due to a group of
pedestrians.
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Figure 56: Comparison of the identified modal load based on accelerations recorded at mid
span of the footbridge with existing loading models for vertical load due to a group of
pedestrians.
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It can be seen in figures 5] and [56] that the existing loading models tend to underestimate
the modal load. In fact, these have been developed based on tests done on flat and rigid
surfaces. The results show that they are no longer valid if applied to a flexible or inclined
surface.

Pedestrians crossing a flexible footbridge tend to adapt to the bridge’s motion, this has a
direct impact on the force profile. For flexible surfaces, the heel strike peak becomes larger
and the toe-off peak smaller as shown in figure Thus, analysing only one step, the corre-
sponding dynamical load factors tend to increase for a flexible footbridge as demonstrated
in [4]. However, if the sum of several strides are analysed the inverse observations are done,
for which slightly smaller DLF are found. Nevertheless, notice that the Geierlay footbridge
can be considered as a more flexible structure as the one used in [4], which is only 7m
long. The GRF may still be different, as well as the DLF. In [3], it is concluded that the
dynamical load component increases for a flexible structure. The idea to keep from these
references is that the flexibility of the surface does have an impact on the vertical dynamic
loads due to walking. Besides, the flexibility of the footbridge can increase the probability
of synchronisation which also has an impact on the load. Up to the author’s knowledge,
there is not much research comparing the pedestrian load on rigid to flexible footbridges
like the Geierlay.
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Figure 57: Vertical dynamical load on a flexible and a rigid walkway (adapted from [4])

Additionally, it is shown in [38], that the slope of the surface also has an impact on the
vertical loads. These tend to increase, whether it is an upward or downward slope, as shown
in figure 58] Approximately the same results are obtained in [11]). These observations have
been done for slopes up to 10%, thus in the case of the Geierlay footbridge with a slope of
approximately 27% at the entries, the effects are probably even more striking.
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Figure 58: Influence of an inclined surface on the vertical load (adapted from [38])
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An inclined surface also impacts the gait parameters of a pedestrian, such as the step
length, its walking velocity and step frequency. Based on [38] and |39], the frequency tends
to increase for a downwards slope and decreases for an upward slope. Concerning the step
length and walking speed, results vary depending on the authors who did tests on this topic.
A fairly complete summary is given in [39]. This has an influence on the loading models, as
the step frequency f, directly intervenes in the definition of a single pedestrian load.

By comparing both identified modal loads based on the set of measurements recorded at
the beginning of the footbridge and at its midspan, it can be seen that the first ones have
a higher amplitude. Two reasons can be put forward. First, the set of measurements at
midspan have been recorded later in the day of the experimental campaign and fewer people
were crossing the footbridge, as already mentioned above. A second reason is due to the
different slope for both locations where the data was recorded. The impact of which has
just been explained.

5.4.2 Transverse direction

The same analysis is done for the load in the transverse direction, which are again compared
to the corresponding existing loading models, as shown in figure for the entry of the
footbridge and in figure [60| for the midspan.

For the transverse direction, one existing loading model from Fujino et al. [18] is used here
for the comparison. However, various values for the dynamical load factors or the rate of
synchronisation are tested.

o The first loading model is used with the DLF suggested by the Sétra guide [1], which
is @y = 0.05 from Charles and Hoorpah. The synchronisation rate is used equal to
20% as suggested by Fujino et al. Thus the single pedestrian load is multiplied by a
value of mp, 2nd set = 10 for the 2nd data set and mp, 2nd set = 8 for the 3rd one.

o Another comparison is done by using the DLF from Bachmann et al. [6], which are
a1 = ag = az = 0.1 and the same rate of synchronisation is used. Therefore, the
factor values do not change compared to the model before.

o A third comparison is done by using the DLF from Bachmann et al., but this time
60% of synchronisation is assumed. This value is more appropriate, as in chapter
it was observed that the acceleration’s amplitude exceed the value of 0.1m/s?. Thus
according to the Sétra guide, the synchronisation can climb up to 60% or even higher.
The factors become mp 2,4 set = 30 and Mpopg set = 24

Similar observations as for the vertical loads can be done. Figure 59| and |60] show that the
original Fujino et al. loading models with only 20% of synchronisation tend to underestimate
the identified modal loads. By using a synchronisation rate of 60% the obtained maximum
value becomes more representative and fits the obtained results better. This is especially
the case for the modal load identified based on the data set recorded at the midspan of
the footbridge. Where the amplitude of the identified modal load is smaller than the one
based on the second data set done at the beginning of the footbridge. The same two reasons
as above can be used here ie. a difference in the number of pedestrians. Additionally,
the fact that the slope can be considered flat at midspan, whereas at the beginning of the
footbridge it is not. This has an impact also on the transverse pedestrian load as will be
shown below.

A direct comparison of the force profile in the transverse direction for a rigid and a flexible
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footbridge could not be found. However, as discussed for the vertical load, the flexibility
of the footbridge may influence also the transverse single pedestrian load which results in
an adaptation of the DLF. Further research on this topic should be done to confirm this
hypothesis.
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Figure 59: Comparison of the identified modal load based on accelerations recorded at the
entry of the footbridge with existing loading models for transverse load due to a group of
pedestrians.
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Figure 60: Comparison of the identified modal load based on accelerations recorded at mid
span of the footbridge with existing loading models for transverse load due to a group of
pedestrians.

The influence of the slope on the transverse load is shown in figure |61{ and discussed in .
In the transverse direction, the impact is even more significant than in the vertical direction.
Thus it has to be taken into account to avoid underestimating the modal load. This can
again be done by increasing the dynamical load factors intervening in the definition of a
single pedestrian load.
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Figure 61: Influence of an inclined surface on the transverse load (adapted from [11])

5.5 Suggestion of improvements

The easiest way to model the load due to a pedestrian group is to rely on the loading model
for a single pedestrian and to multiply it by a given factor. As observed in the previous
section[5.4] the existing loading models tend to underestimate the load. Based on the results
for the Geierlay footbridge, a new factor that fits the modal load better identified in this
work can be suggested. This should be checked more rigorously before applying it to other

footbridges since it is only based on measurements done on the Geierlay and under specific
conditions.

To simplify the problem, only the first harmonic contribution of a single pedestrian is
considered and the static component is not taken into account. Thus, the vertical and
lateral load for a single pedestrian is given by

Fy(t) = a1, - Wsin (27 f,t) (5.7)
and
Flat(t) = aqqr - Wsin (27T];5> t (5.8)

where W is the pedestrian’s weight, «; is the Fourier coefficient of the first harmonic, also
called DLF and f, is the pedestrian’s step frequency.

The first unknown is «, several authors suggested various values. These are summarized in
section of chapter [ and depend on which step frequency is considered. In this case, the
pedestrians cross the Geierlay footbridge with a slow or normal walk, which corresponds to
a step frequency of 1.6-2.0 Hz. In this interval, the coefficient’s values vary from 0.188 to
0.5 for the vertical load and from 0.039 to 0.1 for the lateral load. However, notice that for
inclined and flexible surfaces the pedestrian loads tends to increase as shown above. Thus
bigger values may be taken in that case. The second unknown is the factor k& by which the

single pedestrian load needs to be multiplied to obtain the identified load for a group of
pedestrians.

Based on the upper envelope of the identified modal loads, a histogram indicates which
range of values appears most often. The corresponding cumulative distribution function
(CDF) is then used to determine the modal load that is not exceeded 95% of the time,
as suggested in [22]. This is done for the vertical and transverse load, as well as the load
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identified at the entry and midspan of the footbridge. These are

shown in figures [62] [63], [64]
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Figure 62: Histogram of the identified vertical modal load envelope based on the acceleration
identified at the entry of the footbridge and the corresponding CDF.
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Figure 63: Histogram of the identified vertical modal load envelope based on the acceleration
identified at the mid span of the footbridge and the corresponding CDF.
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Figure 65: Histogram of the identified transverse modal load envelope based on the accel-
eration identified at the mid span of the footbridge and the CDF.

The identified dynamic component of the modal load can be considered symmetric. Thus
only the upper envelope is used and compared to the maximum value of the upper envelope
given by the single pedestrian loading model. Knowing that the modal load is defined
by

pr(t) = F(t)®(vt) (5.9)
Thus,
Pr group = kv » Q1 - Wsin (27 ft) D (vt) (5.10)
i _ . fs
Dlat group = Kiat = 0110t - W sin 27r§ tP(vt) (5.11)

The product k-, can easily be calculated. The obtained values are given in table [16]

Vertical Transverse
Modal load [kN] | k- oy [-] | Modal load [kN] | k- oy []
Inclined walkway 16.973 24.25 7.857 11.23
Flat walkway 8.975 12.82 3.373 4.82

Table 16: Unknown product k - a; corresponding for the identified modal load from the
upper envelope in vertical and transverse direction

As discussed above, the flexibility of the surface as well as its slope have a direct impact
on the ground reaction forces and thus also on the dynamical load factors that appear in
the definition of the load due to a single pedestrian. The values suggested by the various
authors, which are summarized in chapter [4] should be adapted by increasing them. New
DLF should be determined as a function of the surface type and its slope. So far only a
distinction between walking and running is done.

The factor k£ also needs to be adapted. It has to be larger compared to those suggested
at the beginning of this chapter. Due to the high accelerations and the flexibility of the
footbridge, pedestrians are more likely to synchronise. This factor only depends on the
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number of pedestrians on the footbridge at a given moment and maybe on the damping
ratio of the footbridge as suggested by the Sétra guide [1].

If a synchronisation of 60% is considered in the transverse direction and assuming 50 pedes-
trians when the measurements were taken on the inclined walkway and 40 when taken on
the flat walkway, then a value of oy = 0.374 and a; = 0.201 are obtained. These have to
be compared to a; = ay = a3 = 0.1 suggested by Bachmann et al.|6]. However, notice that
only the first harmonic is considered to obtain the values of a4, if more harmonics are con-
sidered the calculated values would be slightly smaller. Besides a mean pedestrian weight
of 700N is considered, the real value may be slightly different. If the same synchronisation
ratio is taken in the vertical direction. A value of oy = 0.808 and «; = 0.534 are obtained,
compared to a; = 0.4 and as = a3 = 0.1 suggested by the same author for a step frequency
of 2Hz.

Additionally, it is shown in [38] and [39], that the slope of the walkway has also an impact on
the gait parameters of the pedestrians, such as its step frequency, step length and walking
velocity. This also has a direct impact on the pedestrian load, which is already taken into
account in the existing single pedestrian loading models, where the step frequency f, ap-
pears. Unfortunately, the step frequency of the pedestrians crossing the Geierlay footbridge
was not measured. Thus it is impossible to quantify the influence in this case.

To be able to suggest a new loading model more precise measurements should have been
taken, by noting the exact weight of the pedestrians, their step frequency and the exact
number of pedestrians on the footbridge at any time. From this analysis, we can conclude
that the dynamical load factors, as well as the enhancement factor, should be increased
compared to those suggested in the literature, but due to a lack of measurement precision,
no exact nor general values may be given in this work.
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Perspectives

As shown throughout this work the joint input-state estimation algorithm works very well
to identify the dynamic component of the load induced by pedestrians on the Geierlay
footbridge. The results are compared with existing loading models and improvements are
suggested based on the obtained results. This is already a step towards a better understand-
ing of loads due to groups or crowds of pedestrians on a flexible footbridge. Nevertheless,
there is still work to do. Therefore, a list of possible ideas for further investigation based
on the work presented in this thesis is provided.

e During the experimental campaign, we had no influence on the pedestrians crossing
the bridge. It would be interesting to do some measurements with multiple groups
with a fixed and known number of pedestrians and to measure their step frequency
and self-weight for more accurate results. This enables also a better analysis and
interpretation of them.

e Another idea is to carry out measurements with different sizes of groups, to analyse if
there is a linear relation between the number of pedestrians and the identified modal
load or not. This could be pushed up to a fully loaded footbridge. So far the existing
loading models for groups of pedestrians consist in multiplying the load due to a single
pedestrian by a constant factor depending on the number of pedestrians present at a
given moment on the footbridge. However, the synchronisation rate depends on this
number and it may not vary linearly. By doing these tests, the relation could easily
be determined and improve understanding of synchronisation effects for example.

o For a better understanding of the pedestrian load on inclined surfaces, measurements
should be taken in the ascendant, descendant and flat walkway part of the footbridge.
As already mentioned, the pedestrian load will be different in these different parts, or
at least for the inclined and flat surfaces. This should enable the immediate suggestion
of new dynamical load factors. To avoid comparison problems as those encountered
in this work, the measurements should be done under the same conditions. This can
be done for a single pedestrian and groups of pedestrians to observe and identify the
differences. These observations are necessary to suggest a loading model that can be
applied on other footbridges with a different shape.

e The ground reaction forces on a very flexible footbridge like the Geierlay and on
a rigid footbridge should be measured and compared. This would allow a better
understanding of the influence of a flexible surface on the pedestrian loads in the
three directions, i.e vertical, transverse and longitudinal. Only little research has
focused on this topic and it would be interesting to dig a little deeper.
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e To have more measurements that can be fed to the algorithm more accelerometers
should be used. Additionally, at least one displacement could be measured to allow
the identification of the static component of the pedestrian load.

o Here the joint input-state estimation algorithm is applied on only one single real
flexible footbridge. For a better understanding and to be able to suggest improvements
to existing loading models, or even suggest a new one that could be applied for every
flexible footbridge, the same study should be done on other flexible footbridges. The
results could then be compared in hopes of finding a trend.
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Conclusion

The goal of this work was to identify pedestrian loads on a very flexible footbridge by using
a dynamic inverse technique. It gives access to them with relative ease compared to other
methods. The loads are then analysed for a better understanding, with the intention of
designing future footbridges more accurately.

First, different existing methods used for the identification of pedestrian loads were pre-
sented. The advantages of an indirect approach based only on accurately measurable accel-
erations are highlighted. Particular attention was given to the joint input-state estimation
algorithm which behaves well in the presence of noise and which was used in this work. It
is a simple and effective method compared to other indirect or direct approaches, which
are less accurate and may even be more costly and/or only feasible in the laboratory. The
algorithm is an extension of the well-known Kalman filter and is based on the discrete-time
state-space model in a modal basis. It was rederived in this work to obtain the definition of
the four system matrices. A small modification compared to other references is introduced
here, in that mode shapes normalized to a unit maximum absolute value were used. The
algorithm is first validated and analysed by means of two simple one-dimensional test cases.
This allowed determining its limitations. The main one is that without the knowledge of
a displacement, it is impossible to capture the static component of the pedestrian load.
Only the dynamical one, which is of greater interest for footbridges anyway, as it is the
cause of high vibration problems, may be obtained from the algorithm. Then the algorithm
was applied to the Geierlay footbridge on which vibration measurements were taken at the
start of the academic year. These were analysed by standard methods as the peak picking
and the covariance-driven stochastic subspace identification methods to identify the modal
properties of the footbridge, such as its natural frequencies and damping ratios. The iden-
tified dynamic load was then compared to existing loading models for groups or crowds of
pedestrians. This comparison showed that these tend to underestimate the load, which can
be explained by various reasons related to the slope and the flexibility of the footbridge.
The existing loading models are based on tests on rigid and flat structures and in this work
it was shown that these are no longer valid for a footbridge like the Geierlay. The dynamical
load factors and the enhancement factor should be increased compared to those suggested
by various authors.

The procedure presented in this work i.e. carrying out measurements on a real footbridge,
identifying its modal properties and applying the joint input-state estimation algorithm can
and should be applied on other existing footbridges. The results may then be compared
to those presented in this thesis to suggest a loading model applicable to any footbridge,
regardless of its shape and its degree of flexibility. Thus the suggested dynamical load
factors should depend at least on these two parameters.
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Appendix

Appendix A - Formulation of the algorithm

The formulation of the algorithm developed in more detail in this section is based on [19]
and [34]. The algorithm derives from the discrete-time state-space model given byE]:

{ Xp1] = AXpy + By + Wi (A. 12)
diy = Gxp + Ipp + vy (A. 13)

And also from the following recursive three-step filter:

Rikjk—1] = ARXpp—1jk—1) + BDpp—1jp—1) Time update (A. 14)
Py = Mg (d[k} - G)Ac[kw,l}) Input estimation step (A. 15)
}Ac[k“c] = }'i[k“g_l] + L[k] (d[k] — Gﬁ[k\k—l]) Measurement update (A. 16)

Where, X and p are estimations of the state vector x and the input vector p respectively.
A, B, G and J are the system matrices assumed to be known and which are defined in
Chapter 2] The matrices M and L have yet to be determined such that * and p are
minimum variance and unbiased estimators (MVUE). An estimator is unbiased when its
average value is equal to the target value and the smaller is its variance, the closer its values
are to the target value [37].

The initial state estimate Xjo—1) is assumed being unbiased and independent of the noise
processes Wi, and vy for all k.

Time update

The time update step estimates the unknown state vector x;; based on the measured output
up to time step k-1. The interest now is to know the error made by using an estimation of
the state and the input. An easy way to define it is to calculate the difference between the
exact vector and the estimate.

Thus, by using equations (A. 12) and (A. 14)), the error on the state estimate becomes:

3Details of the development to obtain this model are given in Chapter [2; Joint input-state estimation
algorithm
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Xiklh-1] = XK — Xpkj—1]
= (AX[kq} + Bpp-1 + W[kq}) - (qumumu + Bﬁ[k71|k71])

=A (X[k:—l] - ﬁ[k—nk_u) - B (p[k—u — f)[k—uk—u) + W—1
= AXp_1jk—1] + BPpe—1jk—1] + W—1] (A.17)

Or by using equations and (A. 16), it becomes :
Xiklk) = X[r) — X[k/K]
=X — (R + Ly (dig — GRpep—yy))
=X — (Rppe1) + Ly (Gxpy + Ippg + vig — GRpege1y) )
= (1-LwG) (xu — Kuw-1) — LigIppy — Lpgvig
= (T— Ly G) Rpe1) — LIy — Ligg vy (A. 18)

The error on the input estimate is defined in the same way and by using equations (A. 13)

and (A. 15):
f)[k|k] = P — f)[k\k]
= P — My (dig — Gy )
= P — My (Gxg + Ippg + vy — GRppje—ny)
= (T— M) ppy — MG (x4 — Kpge1)) — Migviy
= (T=MJ) pp — MgGRp—1) — Mgviyg (A. 19)

Using equation (A. 17) as well as the definition of the noise covariance matrice§’] Q and R,

the covariance matrix of the error on the state estimate X1y is given by:

Pogp-1 = E _i[k|k—1]iﬁ|k_1]}

[ _ _ ~ _ T
=E (AX[k:—1|k—1] + BPpr—1jk—1) + W[k—l]) (Ax[k—1|k—1] + BPg—1jp—1 + W[k;—l])

=E _(Ai[kq\kq] + BPp—1jk—1) + W[kq]) (i[jl;—uk—l}AT + f’%;;_uk_uBT + Wﬂ_u)}

= E [ARp 1k )Xo AT+ AR ppo 1Bl BT+ ARp1p Wiy

+ BBy Kp1jp- A"+ BBp-1p-1B1jp- B’ + BBp-1j-y Wiy
+w[k,1p~<f',;_1|k_1]AT + W[kq]f)%;;_uk—uBT + W[kfllwgi;—ll}

_ [A E [i[kfﬂkfl]i[jl;f”kfl]} E [i[kfl\kfllp[jl;fllkfll] [AT

E oWk
E [f)[k—”k—l]i[jl;—ﬂk—l]} E [ﬁ[k_l‘k_”f)[zl;—ﬂk—l]} BT‘| + [W[k I}W[k 1]}

+ E [Ai[kqmq]wﬁ_u —+ Bf)[k,1|k,1]wl[ll;_1} + W[kfl]i[j,;_”k_l]AT + W[kfl}ls[z];—uk—l]BT]

%

4See Chapter [2} Joint input-state estimation algorithm
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In order to simplify expression (i), one have to look at the properties of the matrices M and
L mentioned above. Knowing that the error on the state estimate X[x—1; does not depend
on the input pp, the state estimate Xy x—1) is unbiased if and only if Xz and Pk are
unbiased for all k.

Let us first introduce the definition of the innovation:
dy = di — GRpgey
= GX +Jpp + Vi GX[k|k 1]
= Ippy + G (% — X[k\k—u) + Vi
= Jppy + GXpir-1) + Vi
= Jpp + e (A. 20)

According to the definition of e, if Xx—1) is unbiased, then [E [e[k}] = 0. Such that, if the
expectation operator is applied to (A. 20)), it yields

E [dy) = JE [pw)| = Ipw (A. 21)

which means that an unbiased estimate of py; can be obtained from the innovation &M.

By introducing (A. 20) in (A. 15):

Pirw = Mg (dpgg — Gy
Mg (dig — (dpg — diw))
= Myq (Ipp + ep)
= Mg Jpp +Mpgep
Thus, if Kpk—1) is assumed unbiased, then Py is unbiased as well, for all py, if and only
if
MyJ =1 (A. 22)

By introducing (A. 20) in (A. 16)), yields:

Ripgi) = Rppgi—r) + Lg (dpyg — Gy
w1 + Lg (Ip + epy)
= Xikfe-1) + Lypg Ip) + Ligepp

N>

In the same manner, X is unbiased for all py if and only if

LyJ =0 (A. 23)

By using the properties (A. 22) and (A. 23)), the equations (A. 18) and (A. 19), as well as

the definition of a matrix N, given by:

Ny = ALy + BMyy (A. 24)
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the term (i) becomes:

E [Ai[k—l\k—l]w[j];_1 + BBkt 1)W1 + Wi—1 X1 g AT + Wik—y B _1pp B’

=E [A (I — Ly G) X[k—1|k—2] W[k ]~ %TTHJPW ALp_q V- 1]W[k 1]
+ B-{T—Mi=nd o=y — BMiy GRpyi— o Wiy — BM vy Wiy

+ W1 ((I — Ly G) i[kfl\k72]>T AT — wp— = )AL

T
= Wik Ve Lo AT+ e = =) B*

T
= Wiet) (M- GRppoape—)) BT — Wiy vy My B”

—E A(I—L,c 1]G> ik (k-2 Wi 1) — BM g GRpj 1k Wiy,

0] 0
+ W1 ((I - L[k—l]G> i[k—uk—z])T AT +wp_q (M[k_1]Gi[k_1|k_2])T B”
0 0
—ALj,_yE [V[k—l]w[jl;—l]} —BMj;_ E [V[k—lJW[jl;—ll]

sT ST
—IE{ Wk 1]v[k 1}] M[k 1}B E[W[k 1]V[k 1]] M[k 1}BT

S S
=—Np_yS" - SN[TL;_”

The terms that cancel each other out is because wy is zero mean and both wy, and Xy
are of the first order.

As a result, the covariance matrix of the error on the state estimate X x—; transforms
into:

Po et Pupe_iko1] [AT
P = |A BJ | lk-tik=t] = eplk—tlk=1] +Q—Ny_;S” — SNZ A. 25
e = | } [Ppm[k—llk—l] P 1k | |B” Q = Nie-y oy (A 25)

Input estimation

This step is used to estimate the unknown input vector py given the measured output up
to time step k. We just showed, the conditions for the estimators Xxx—1), Xk and Ppyy to
be unbiased. However, it still has to be demonstrate, that they are minimum variance.

As mentioned in [25], for a linear model of the form of (A. 20, where py) is the unknown,
an weighted least-squares estimator is given by:

—1 -
Diejr = (JTWJ) J'Wd (A. 26)

where, W is a weighting matrix, and E[Pyx] = Py, based on (A, 21)). According to
the Gauss-Markov theorem, in order to minimize the corresponding force error covariance
matrix Py s, the weighting matrix is chosen equal to R@]l Which is the covariance matrix
of ep, such as:
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Ry = E [epefy]
=E _(Gi[k\kfu + V[k}) (Gi[kw + V[kJ)T]
=E :(Gi[mk—l} + V[k]> (i%k_I]GT + V[j,;]ﬂ
—E _Gi[k‘k,ui[j,;w 1] G’ + Gx k|k,1]vf] + v[k]i[T,dk 1]GT + V[k]VE‘,,;]}
— GE [ Rikelo— 1K [t 1} G"+GE [X[k|k 1]V[kﬂ +E [ [k]i[j,;‘kflﬂ Gl +E [v[k]v[%;ﬂ

0 0

= GPx[k+1|k]GT + R (A 27)

The force error covariance matrix Py, becomes:
Py = E [ﬁ[mk}ﬁﬁ\kﬂ
-~ ~1
= (ITR}3) IR R Ry} (I7R;)
= (IRy3)" (A. 28)

Thus, Py is an MVUE, also called an Gauss-Markov estimator. The definition of the
matrix M, can be deduced from above, as it is the least-squares (LS) solution of (A. 20)),
respecting condition (A. 22). The optimal gain matrix, is then given by:

~ -1 ~
My = (J"R,T) IRy (A. 29)

Measurement update
Estimate of the unknown state vector x given the measured output up to time step k.

The definition of the gain matrix Ly has still to be determined, in order to respect the
property (A. 23) (LjyJ = 0) and such that the estimators are MVU. This matrix Ly can
be obtained by minimizing the trace of the covariance matrix of the error on the state

estimate RKpx. Which is given by using and (A. 27):
P = E [ R Kiou
=E ((I — L G) K1) — Lgvi) ((T— L G) Riprev) - L[k]V[k})T]
= B[ (1 - LwG) K — Ligvin ) (Ko (T— GTLy) = Vi L)

=B (1 200@) ) (S (1= G"140)) — (L) ) Vil
~Ligvig (Ko (T GTLY )) + Ligvigvi Ly

= (1- LG) E [R5, _1] (T- L[k]G) + Ly [viviy | Ly

+E[— ((I — L[k]G) X[k|k— 1]) [ }LE‘,];} — L[k}v[k] (ic[ll;“c_l] (I — GTLE‘,,;])>
0 0

= (1- Ly @) E [Rpu-f ] (1~ LiwG)" + Ly [vivly ] Ly
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(T- LiyG) Pappgp—y (T - Ly G)T + Ly RLj,

= (I-LyG) Popyy (1~ LyG) ' + Ly (Ryg — GPLppyG”) L
= (Puppi—r) = Ly GPppgp-y)) (T - GTLY ) + LygRygLfyy — Ly GPugurap G L
= Pupge—1) — Popp—1)GT Ly — Ly GPopyp 1) + EmGPapmen G

+ Ly Ry Ly — E &Py &y

= LiyR Ly — L GPape—1] — Pape—1G' Ly + Popge—y)

Lagrange multipliers can be used to introduce the constraint (A. 23 in the optimization
problem, given by:

L[k] = arg min (trace {L[k]ﬁ[k]L[j];} — QL[k] GPJUW;C_” + Pa;[k|k—1}} — 2trace {L[k]JA[j,;]})

A linear, two equation system is obtained by saying that the derivative of the Lagrangian
with respect to Ly and Ay have to be equal to zero:

RyyLy — GPypr—y — JAf; =0
The solution of this system gives the optimal gain matrix, equal to:
Ly = Px[k‘k_l]GTR[;]l (I — JMM)

Or,

Ly = Ky (T— IMpy) (A. 30)
With, i

K[k] = Pm[km_l]GTRﬁﬂl (A 31)

By introducing (A. 30) in the definition of Ny (A. 24)), it becomes:
Npy = ALy +BMyy
= AKjy (T— IMyy) + BMy, (A. 32)

Equations (A. 16]), (A. 15) and the definition of Ly (A. 30) can be used to transform the
expression of the measurement update (A. 16)) in:

X(klk) = Awk 1+ Lg (dy — G
i (I IMy) (dig — Gy
= K1) + Kpgy (dig — Gy — IMpgdipg + IM g Gy )
w1 (dpg — Gyege—r) — IMyy (g — Gpegeny))
w (di — GRppji—y) — IDjuiw) (A. 33)
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Finally, by using the definition of Ly (A. 30) and equation ((A. 28)) in the previous obtained
expression of Py gives:

P = LR Ly — Ly GPappp—1) — Pappn—1G Ly + Pogey)
~ T
= Ky (I - JM[k]) Ry (K[k] (I - JM[kl)) — Ky (I - JM[k]) GPo k-1
T T
— Pappe- G (Kppg (T—IMpy)) - + Py
= Ky (R — IMpgRyyy) (T - MyI") Ky — K (F—FMir ) G Py
T T
— Pogr— + Por—1
= Popp—1 + K (R R[k]M[T}J JM[k]R[k] + JM[k]R[k]M[k]J ) (k]
= Pa:[k\k—l] + K[k] (R[ K — R[k] (JT) JT — JJ[klR[k} + JJ ( )[k] JT) (k]

-1
(J R[k] J)

= Popp) — Kpgg (R — IPypd ") Ky (A. 34)

(K]

Using equations (A. 18), (A. 19), (A. 27), (A. 28) and (A. 29), as well as the properties
(A. 22) and (A. 23), the error covariance matrix Py is given by:

Popiir) = E [i[k|k]ﬁ%];\kﬂ
=K [((I — L[k]G> Xklk—1] — L[k}V[k]) (_MGi[k\kfl] _ Mv[k])T}
= (1= Ly G) E Ry iy G"MT = (1= LyyG) E Ry vis| M7
— ———

0
+ Ly B [viu&ly_y] G"MT + LigE [vigviy| M7
—_——
0

— (1= LywG) PoppyyyG™™M” + LiyRM”
= —Pp1yG"™™M" + LjjyGP s 1y G M + LiyRM”
Py GTMT + Ly RyyM”
= -KpRuyM” + Ky (I-IM)RjyM”
= —KpJMM”"
= — K JP (A. 35)

Summary

The first step ’Input estimation’, is formed by equations (A. 27)), (A. 29), (A. 15) and
(A.28)). For the second step "Measurement update’, the equations (A. 31)), (A. 33)), (A. 34
and (A. 35| are used. The last step 'Time update’, consists of equations (A. 14]), (A. 32

and (A-25)
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Appendix B - Tension force in a parabolic cable

A brief summary of how to calculate the tension force in a parabolic cable is given here, for
more information the reader may refer to [29]. As a reminder a cable can be assimilated
to a parabola, in the case of an inextensible cable with a big L/d ratio (> 10) under a
uniformly distributed load as its self-weight for example. Or in the case of an inextensible
cable with an arbitrary L/d ratio, but an uniformly distributed load much higher than the
cable’s self-weight.

For a parabolic cable under uniformly distributed load p and whose supports are at the
same level, as shown in figure [66]

llllllllllllllllip

Figure 66: Scheme of a parabolic cable with supports at the same level (adapted from [29])

The horizontal support reaction can be obtained by the well-known formula:

L2
}{:%E (A. 36)

which is obtained by doing a rotation equilibrium relative to the lowest point on the cable
(at midspan). L is the span of the cable and d is its deflection. Such that if the tension
in the cable increases, its deflection decreases. Thus, it is impossible to have a perfectly
straight cable, as according to equation this would imply an infinite tension.

In this case, the vertical support reaction can easily be calculated by V' = % and the tension

force in the cable is equal to T'= v H? + V2.

In the situation, where the cable’s supports are at different levels, as shown in figure [67 and
as it is the case for the Geierlay footbridge, these equations need to be adapted.

R R

Figure 67: Scheme of a parabolic cable with supports at a level difference of D (adapted
from [29])

The support reactions can be obtained by doing the three following equilibriums:
o Vertical equilibrium: V4 + Vg = pL
« Rotations equilibrium around A: 7%2 =HD+ VgL
» Rotation equilibrium around the lowest point on the cable of coordinates (Zmin, Ymin):

Prnin 4 Hd =V,
) + = VAZmin
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Appendix C - Measured accelerations on the Geierlay foot-
bridge

Three sets of measurements were carried out on the Geierlay footbridge in Germany. Four
accelerometers were used and are here named a, b, c and d. Details about the experimental
campaign are described in chapter [3]
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Figure 68: Vertical accelerations for the three sets and for the four sensors used
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Figure 69: Transverse accelerations for the three sets and for the four sensors used
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Figure 70: Longitudinal accelerations for the three sets and for the four sensors used
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Appendix D - Mode shapes of the Geierlay footbridge

A model of the Geierlay footbridge has already been done in [42]. Here, the first mode
shapes were simply extracted from the software FinelG used for the model. The various
Cablesﬂ from the walkway have been modelled by two equivalent cables. These have been
calculated by following a similar procedure like the one in chapter |3| to find an equivalent
single cable for the analytical identification of the natural frequencies. The wooden boards
and the multiple lateral cables have been taken into account. The supports of the walkway
prevent any translations in the three directions. Whereas only the rotations around the x
and z-axis are blocked, allowing a rotation around the y-axis. The supports of the lateral
parabolic cables are fully clamped. For more information, the reader may refer to . In
the following figures, the displacements have been scaled by a factor 25 for visualisation

purposes.

¥HE FINELE

Figure 71: First mode shape at a frequency
of 0.163Hz (|Disp. max|=1012mm, |Rot.
max|=18.83°)

v FINELE

Figure 72: Second mode shape at a fre-
quency of 0.239Hz (|Disp. max|=1008mm,
|Rot. max|=5.28°)

Y% FINELE

Figure 73: Third mode shape at a frequency
of 0.289Hz (|Disp. max|=1056mm, |Rot.
max|=0.23°)

5Cables 1, 2 and 3 shown in figure 5 from chapter
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Figure 74: Fourth mode shape at a frequency
of 0.290Hz (|Disp. max|=1017mm, |Rot.
max|=0.06°)



v FINELE v FINELE

Figure 75: Fifth mode shape at a frequency  Figure 76: Sixth mode shape at a frequency
of 0.312Hz (|Disp. max|=1265mm, |Rot.  of 0.323Hz (|Disp. max|=1017mm, |Rot.
max|=1.06°) max|=1.93°)

¥HE FINELE YHE FINELE

Figure 77: Seventh mode shape at a fre-  Figure 78: Eight mode shape at a frequency
quency of 0.352Hz (|Disp. max|=1022mm, of 0.391Hz (|Disp. max|=1018mm, |Rot.
|[Rot. max|=6.84°) max|=12.94°)
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Figure 79: Ninth mode shape at a frequency  Figure 80: Tenth mode shape at a frequency
of 0.443Hz (|Disp. max|=1065mm, |Rot. of 0.461Hz (|Disp. max|=1015mm, |Rot.
max|=1.39°) max|=4.97°)
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