
https://lib.uliege.be https://matheo.uliege.be

Replacing Public Key Infrastructures (PKI) by blockchain IoT devices security management

Auteur : Champagne, Loïc

Promoteur(s) : Leduc, Guy; 12788

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"

Année académique : 2020-2021

URI/URL : http://hdl.handle.net/2268.2/11608

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Replacing Public Key
Infrastructures by blockchain IoT

devices security management

Author:

Champagne Loïc

Supervisors:

Prof. G. Leduc
E. Tychon (Cisco)

Thesis submitted for the degree of
Master in Computer Science with a professional

focus on "Computer systems security"
120 credits

Faculty of Applied Science

UNIVERSITY OF LIÈGE

Academic year 2020-2021

Replacing Public Key
Infrastructures by blockchain

IoT devices security
management

Champagne Loïc

© 2021 Champagne Loïc

Replacing Public Key Infrastructures by blockchain IoT devices security
management

https://matheo.uliege.be/

https://matheo.uliege.be/

Abstract

Champagne Loïc: "Replacing Public Key Infrastructures by blockchain IoT
devices security management."
Master of Science Thesis
University of Liège
June 2021

On the Internet, Public Key Infrastructure (PKI) is the most advanced
credential management system. However, the standard PKI relies on
certificate authorities (CAs) which have delivered certificates to the wrong
people in the past for questionable reasons. Indeed, these CAs represent
a corruptible central point that this work aims to remove. This was done
by adapting the PKI to a decentralized framework based on blockchain
smart contract. This solution is essentially targeted toward the Internet
of Things (IoT) that currently lacks a scalable system for managing keys
and identities (i.e., a standard PKI framework). Unlike CA-based PKIs,
our framework delivers auditability natively which provides a proof of the
framework integrity. In order to adequately test our solution, we designed
and implemented a proof of concept. The smart contract was written in
solidity and is deployed on the Kovan test net. After testing our solution
on an Ubuntu core virtual machine, we found that the solution has a very
small footprint and is therefore adapted to the IoT ecosystem.

Keywords: IoT, PKI, Decentralized, Smart contract, Blockchain, Authentic-
ation, Security.

i

Preface

First and foremost, I would like to express my deepest gratitude to my
supervisors, Prof. Guy Leduc and Emmanuel Tychon, for their precious
advice and for their attentive supervision of this thesis. Thank you for
giving me the opportunity to work on such an interesting topic.

I would also like to kindly thank my friends and family for their support
throughout the year, and especially to my friend Hugo Fooy for his proof-
reading of this thesis, acute critics, and unconditional friendship.

Liège, 27th May 2021

Loïc Champagne

ii

Contents

List of Figures vi

List of Tables vii

Acronyms viii

1 Introduction 1
1.1 C-PKI drawbacks for IoT . 1
1.2 Defining goals . 3
1.3 Research questions . 3

I Background 5

2 Theoretical background 6
2.1 Public Key Infrastructure . 6

2.1.1 CA based PKI (C-PKI) 7
2.2 Blockchain . 9

2.2.1 Proof-of-Work and Consensus 9
2.2.2 Smart contract . 10
2.2.3 Name-Value Storage 10

3 State of the Art 11
3.1 Blockchain based solutions . 11

3.1.1 Certcoin and IoT-PKI 11
3.1.2 Scpki . 12

3.2 CA based solutions . 12
3.2.1 EST over secure CoAP 12
3.2.2 PKI4IoT . 13

II The Framework 14

4 Security requirements and threat model 15

5 Architecture 17
5.1 IoT Controller . 17

5.1.1 Nature of the controller 17
5.1.2 Ethereum nodes . 18

iii

5.2 IoT device . 19
5.2.1 Device life cycle . 19
5.2.2 Lasting certificate for the IoT device 20

5.3 Device enrollment . 21
5.4 Device certificate update . 22
5.5 Device certificate revocation 24
5.6 Device lookup . 25
5.7 Smart contract . 25

5.7.1 Smart contract vs. NVS 25
5.7.2 Data stored on the blockchain 25
5.7.3 Setter/Getter functions 26

5.8 Overall view of the architecture 27
5.9 Possible improvements . 28

III Framework analysis 29

6 Scalability of the framework 30
6.1 The DCS trilemma . 30
6.2 Implication of the DCS trilemma on the framework 30
6.3 Solutions to that limitation . 32

7 Security assessment of the developed framework 33
7.1 Study of the feasibility and security of the enrollment stage: 33
7.2 Study of the feasibility and security of the update and

revocation stages: . 34
7.3 Security limitation . 35

IV The Proof of Concept 36

8 Technologies 37
8.1 Why solidity and public Ethereum 37
8.2 Ethereum Virtual Machine . 38

9 Implementation 39
9.1 Device/controller interactions 39

9.1.1 Device/Controller discovery 39
9.1.2 Device/Controller communications 40
9.1.3 Construction of the custom X.509 certificates 40

9.2 Smart contract . 41
9.2.1 Structure of the contract 41
9.2.2 Deployment . 41

9.3 Improvements . 42

10 Results 44
10.1 Experimental setup . 44
10.2 Device benchmarks . 44

10.2.1 Memory usage . 45

iv

10.2.2 Network usage . 46
10.2.3 CPU usage . 46
10.2.4 Disk usage . 48

V Conclusion 49

11 Discussion 50
11.1 Comparison of the different solutions 50
11.2 Research questions . 51
11.3 Future works . 51

12 Final conclusion 52

Appendices 57

A Ubuntu Core key characteristics 58

B Additional system benchmarks of the device 59

v

List of Figures

1.1 Ranking of IoT Security Weaknesses. Source: IoT Analytics . 2

2.1 Steps to verify the integrity of a message using digital
signature. Source: [46] . 7

2.2 Direct trust vs. third party trust between individuals. 8
2.3 Flow of a certificate request in a C-PKI 8

3.1 The certificate enrollment process using EST. 12

4.1 Classification of threat models for Blockchain. Source [15] . 16

5.1 Chart of the storage needed to run a full node. Source:
Etherscan.io . 18

5.2 Life cycle of the IoT device. 20
5.3 Device enrollment into the PKI (explanation can be found in

the Section 5.3 : Device enrollment) 21
5.4 Device key update (explanation can be found in the Section

5.4) . 23
5.5 Suggested cryptoperiods for key type. Source: section 5.3.6

in the report [3] . 24
5.6 Structure of the data stored on the smart contract hash map 26
5.7 Overview of the whole architecture 27

6.1 Pie chart showing the top 25 miners of the Ethereum
Blockchain. Source: Etherscan.io 31

6.2 Illustration of the DCS trilemma. 31

10.1 Amount of used memory in kilobytes. (This does not take
into account memory used by the kernel itself.) 45

10.2 Amount of memory in kilobytes needed for current work-
load. (This is an estimate of how much RAM/swap is
needed to guarantee that there never is out of memory.) . . . 45

10.3 Amount of Kb sent and received over the network. 46
10.4 Percentage of CPU usage by user processes. 46
10.5 Number of system page fault. 47
10.6 Number of interrupts. 47

vi

List of Tables

11.1 Comparison of our framework with PKI4IOT 50

A.1 Ubuntu Core key characteristics. Source: [13] 58

vii

Acronyms

API Application Programming Interface. 19, 43

CA Certificate Authority. 1, 2, 4, 7, 11, 13, 50–52

COAP Constrained Application Protocol. 12, 13, 28, 40, 51

CPU Central processing unit. 44, 46

CSR certificate signing request. 7, 13

DCS Decentralized Consensus Scale. 30

DNS Domain Name System. 27, 28, 35, 39, 40, 42

DoS Denial of Service. 41

DTLS Datagram Transport Layer Security. 33, 34

ECDHE Elliptic Curve Diffie-Hellman Ephemeral. 34

EST Enrollment over Secure Transport. 12, 13

EVM Ethereum Virtual Machine. 38

HTTP Hypertext Transfer Protocol. 12, 13, 25, 28, 40, 51

IETF Internet Engineering Task Force. 40

IoT Internet of Things. vi, 1–3, 11, 17, 19, 20, 22, 25, 26, 33, 34, 39, 44, 50–52

IP Internet Protocol. 27, 35, 39, 40, 42

NIST National Institute of Standards and Technology. 22

NVS Name-Value Storage. 10, 11, 25, 51

OS Operating System. 45

PKI Public Key Infrastructure. vi, 1, 3, 4, 6–8, 11, 12, 22, 24, 25, 43, 50–52

PoC Proof of Concept. 39, 44, 45

viii

PoS Proof of Stake. 32

PoW Proof of Work. 9, 10, 32

RAM random access memory. 44, 46

RPC Remote Procedure Call. 19

RSA Rivest–Shamir–Adleman. 42, 43

SOTA State of the Art. 50

SSDP Simple Service Discovery Protocol. 39

SSH Secure Shell. 44, 45

SSL Secure Sockets Layer. 34

TLS Transport Layer Security. 12, 22, 33, 34, 40

UDP User Datagram Protocol. 28, 33, 40

UUID Universally Unique IDentifier. 19, 25–28, 35, 41

VM Virtual Machine. 44

ix

Chapter 1

Introduction

The rise of low-cost hardware in conjunction with the strong desire to
simplify our daily tasks tends to put forward new devices in our daily
lives. Those devices are called Internet-of-Things (IoT) devices. They
come in a variety of formats going from connected appliances to wearable
health monitors. As a result, IoT is making our world more efficient and
intelligent. Indeed, the IoT ecosystem is one of the fastest growing. One
projection has more than 100 billion connected devices in use by 2050[22].

This new family of devices also comes with some downsides. The
proliferation of IoT devices implies that those devices may quickly become
a breeding ground for cyber attacks. As a matter of fact, those devices have
far less computational power than modern computers which makes them
far more difficult to secure, creating new needs for dedicated protocols
and specialized personnel. Furthermore, these networked devices have
access to data that can be intensely private, e.g., when you sleep, what
your door lock pin code is, what you watch on TV or other media, and
who and when others are in the house. Moreover, the state of the devices
themselves represents potentially sensitive information. The combination
of all these factors is what really pushes forward the research for new
security protocols targeted at IoT devices.

This thesis will focus on the authentication side of security for
IoT devices. Recently in 2017, an industry report by IoT Analytics
covering the period 2017-2022 gathered input from technologists about
the greatest need for improvement in IoT security, where respondents
ranked authentication/authorization and access control on top of the list
[23] (see Figure 1.1). The current Public Key Infrastructure (PKI) relying
on Certificate Authorities (CAs), referred to as C-PKI in what follows,
provides such critical security functions when IoT devices have CA-signed
certificates. X.509 certificates for IoT device authentication have attracted
industry interest[31] [2].

1.1 C-PKI drawbacks for IoT

Despite being usable, the certificates issued by CAs are not well suited for
IoT devices due to the following reasons. First of all, it is difficult for the

1

Figure 1.1: Ranking of IoT Security Weaknesses. Source: IoT Analytics

owner to manage the certificate of its IoT devices as there is no standard
protocol to register, update, or revoke the certificates on those devices.
Secondly, due to limitations and heterogeneity of the devices’ resources,
existing security solutions are not fully adapted to such an ecosystem.
Besides, the combination of multiple security technologies and solutions is
often needed, resulting in high costs. Furthermore if a CA is compromised,
all entities relying on this CA must be updated in order to remove this
trusted CA. This is a very lengthy and laborious process that may lead
to big problems. Finally, not only for IoT devices, the CA ecosystem is
fragile and prone to compromises and operational errors. Several times
in the past, major issues have happened with this architecture all over
the world [9] [39] [32]. Unfortunately, this design has demonstrated both
serious usability and security shortcomings[11]. On top of that, some
CAs have previously delivered certificates to the wrong individuals, or
for questionable purposes. These trusted third parties serve as corruptible
central points of vulnerability, each capable of jeopardizing the Internet’s
credibility and security. This last piece really demonstrates the huge flaw
of relying on a third party to enable trust.

All these major deficiencies are also accompanied by other problems
that make the use of such an infrastructure unusable on a large scale in the
context of the Internet of Things. Those problems are:

• High certificate signing cost. Nowadays certificate price is imprac-
ticable for such a large number of IoT devices. Depending on the CA
and the form of credential required, a single certificate will cost any-
thing from $100 to $1,000[24]. In addition, to attract potential custom-
ers, the price of such devices must be very low. This is not possible
with such expensive certificates.

2

• Slow certificate signing process. Depending on the CA and the form
of certificate required, the standard CA certificate signing process will
take several days1.

• Difficulties in maintaining root certificate lists. IoT devices have
very small storage and therefore a device may not have enough
storage to store the certificate lists. On top of that, these lists are
often modified and thus the devices will need to be updated each
time these lists are changed.

All those problems are what motivates the exploration of new alternat-
ives to the C-PKI infrastructure. In this thesis, we propose a decentralized
alternative that aims at improving the current PKI for IoT devices. On top
of that, a blockchain based PKI is a path toward a community driven trust
store that removes the need of a trusted third party.

1.2 Defining goals

The purpose of this thesis is to assess the feasibility of a decentralized
alternative to the third party dependent Public Key Infrastructure (i.e.,
C-PKI). The two approaches are to be compared by taking into account
the pros and cons of each framework. This comparison should lead
to a conclusion that will state which approach is better suited for
computationally constrained devices (i.e., IoT devices). Furthermore,
another important aspect of this work is to test the resiliency of such an
infrastructure at scale as the IoT ecosystem is envisioned to explode in the
next decades.

In more detail, a decentralized IoT device identity management
framework is sought as the primary goal of this work by achieving the
following objectives:

• Define a decentralized IoT device management framework for iden-
tity, authentication, authorization, and accounting management
based on smart contracts and distributed ledger;

• Design an authentication and authorization framework that is more
user and device-centric with lower computation requirements, and
that enables peer-to-peer IoT applications;

• Provide a framework that enables identity retention with features of
portability and traceability throughout the device life cycle.

1.3 Research questions

The underlying research questions that drive our efforts are:

1Source: https://www.tbs-certificates.co.uk/FAQ/en/120.html

3

https://www.tbs-certificates.co.uk/FAQ/en/120.html

RQ T.1: “Is a blockchain-based PKI a viable alternative to the widely
spread CA based PKI in the context of the Internet of Things?”

RQ T.2: “What can a blockchain-based PKI offer more than a
traditional PKI?”

4

Part I

Background

5

Chapter 2

Theoretical background

2.1 Public Key Infrastructure

In a small definition, a PKI is:

"A public key infrastructure (PKI) is a set of roles, policies, and
procedures needed to create, manage, distribute, use, store, and revoke
digital certificates and manage public-key encryption." [8]

In order to clarify this definition, we need to define several key
concepts:

• Asymmetric encryption is an encryption scheme where an indi-
vidual possesses a pair of keys linked between each other mathemat-
ically. The first key of the pair is the public key which can be shared
with anybody and the other is the private key that must remain secret.
The basis of asymmetric cryptography is that it is mathematically
easy to create such a key pair but very hard to guess the private key
just by having the public key. In mathematics, this is known as the
prime factorization problem. In this scheme, one of the two keys is
used to encrypt the data and only the other key of the key pair can
decrypt this data.

• Hash functions are one way functions that take data as input and
produce a fixed size digest. Those functions are called one way
because it is easy to compute the digest from the data but very hard
the other way around.

• Digital signature is a proof of the integrity of the message as well as
a proof of the message origin. This is done by creating a digest of the
message and encrypting the digest with the private key of the sender.
Therefore, the receiving end can decrypt the digital signature with
the public key of the sender and compare the digest of the message
it received with the decrypted signature. The Figure 2.1 shows this
process.

6

Figure 2.1: Steps to verify the integrity of a message using digital signature.
Source: [46]

• Digital certificate is a digital document that proves the binding
between a public key and a given entity. This proof is the issuer’s
(i.e., Certificate Authority) digital signature which is present on the
document. In a decentralized PKI, the proof is a little bit different
and the confirmation should be asked to the decentralized system.

Now that the background is laid out, we can summarize by saying that
a PKI is the infrastructure that confirms the integrity of digital certificates
and deals with them.

2.1.1 CA based PKI (C-PKI)

There are different types of PKI, the most common being the CA based
PKI. This PKI uses the concept of Certificate Authority to enable trust
between two parties. This concept was first introduced by Kohnfelder in
1978[26]. Despite being old, this concept is still used nowadays by private
PKI companies like Digicert, Verisign and many others.

A CA is a private trusted third party that signs certificates after
verifying the identity of the entity. Therefore as trust between two entities
is enabled by a third party (i.e., the CA), the two entities only have a third-
party trust between each other rather than a direct trust. The difference
between direct trust and third party is shown on Figure 2.2.

The procedure for obtaining a signed certificate from a certificate
authority is as follows (flow can be seen on Figure 2.3):

1. The client generates a public/private key pair and sends a certificate
signing request (CSR) to a trusted certificate authority. This CSR
contains the client’s public key and information. All this information
will be shown on the corresponding certificate if it is authorized;

2. The CA checks to see if the details on the CSR is true. If that is the
case, it creates and signs a certificate with its (the CA’s) private key
before handing it (the certificate) over to the customer.

7

Bob Alice

Direct
trust

Means
A

trusts
B

A B

Bob Alice

Third
party
trust

CA

Figure 2.2: Direct trust vs. third party trust between individuals.

CSR

Issued certificate

Certificate
Revocation list

CA Customer

Figure 2.3: Flow of a certificate request in a C-PKI

8

2.2 Blockchain

Blockchain1 is a data structure that was first used in 2008 with the
introduction of Bitcoin[34]. The idealization of the blockchain was carried
out aiming at a network without a central entity, where several participants,
who run the same code, aim to reach consensus to maintain the integrity
of the data recorded in the structure. In other terms, the blockchain is a
decentralized append only list of records, also called blocks.

A blockchain block is composed of other fields on top of the data, which
are:

• Block number. This is used to find the location of a given block into
the chain.

• Hash of the data. This is a hash of the whole block data.

• Nonce. A nonce is a "number only used once", this number is
included into the blocks in order to solve the computational puzzle
that provides integrity to the blockchain. This concept is known as
the Proof of Work which will be explained in more detail into the
Section 2.2.1.

• Hash pointer. This is what links all blocks together and prevents a
block from being tampered.

2.2.1 Proof-of-Work and Consensus

Contrary to certain beliefs[5], Proof of Work (PoW) is not what enables
consensus into the blockchain. Consensus on the blockchain is obtained
by taking the longest chain as the prevalent chain. In the case of a fork (i.e.,
the case where the chain separates into two separate chains), a peer will
choose either one of the chains as the prevalent one and if the other one
becomes longer (because a majority of nodes have chosen the other one),
the peer will discard its chain and take the other one as the prevalent chain.
That is why a transaction is considered accepted by the consensus into
Bitcoin only when six blocks have been mined after the block containing
that transaction.

PoW is used in blockchain in order to ensure integrity of the chain. The
idea behind PoW is that no individual has enough computational power
in order to falsify the chain. It works by asking to solve a computationally
intensive puzzle in order to be able to submit a block onto the chain. The
peers that compute these puzzles are called miners. The miners have a
monetary incentive to mine these blocks because individuals pay money in
order to have their transactions included into the next block. The miners
may also be rewarded with money by the framework itself. There are

1If you want to play with this concept (i.e., Blockchain), there is a great browser-based
blockchain created by Anders Brownworth at this URL: https://andersbrownworth.com/
blockchain/blockchain

9

https://andersbrownworth.com/blockchain/blockchain
https://andersbrownworth.com/blockchain/blockchain

alternative methods to PoW, such as Proof of Stake2 or Proof of Space3,
that will not be addressed here.

2.2.2 Smart contract

Smart contracts have been democratized in 2014 with the introduction of
Ethereum[53]. A smart contract is a complete Turing machine hosted on the
blockchain. To better illustrate the concept, you can view a smart contract
as an automaton with memory. Therefore, a smart contract waits for events
and reacts to them when it receives them.

The integrity of a smart contract and of its transactions is ensured
by the underlying blockchain technology and therefore a smart contract
inherits from the same properties as the blockchain. Nevertheless, smart
contract transactions are different from regular transactions because they
need to run code and therefore, the mining of these transactions must be
incentivized in a different way. On top of the traditional transaction fee,
smart contracts rely on ”gas” which is an additional transaction fee paid to
the miner for borrowing their computation ability on the blockchain.

2.2.3 Name-Value Storage

NVS is basically a key-value store. This framework has been used by some
blockchain technologies such as Namecoin[10], Emercoin [12] and so on.

2https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
3https://en.bitcoinwiki.org/wiki/Proof-of-space

10

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://en.bitcoinwiki.org/wiki/Proof-of-space

Chapter 3

State of the Art

In the purpose of adequately depicting the related works, we decided to
present all the different flavors available to set up a PKI targeted at IoT
devices. The first section will be focused on the blockchain based solution.
This section will talk about two different paradigms which are the Name-
Value Storage (NVS) based solution represented by Certcoin[18] (and IoT-
PKI [52]) and the other paradigm is represented by Scpki [4] which uses
Smart contract. On the other hand, we have the CA based solutions that
try to adapt the C-PKI infrastructure to match the IoT constraints.

3.1 Blockchain based solutions

3.1.1 Certcoin and IoT-PKI

Both of these solutions are based on NVS blockchain, where an NVS is
basically a key-value store. Despite using the same blockchain paradigm,
those two architectures did not use the same technology. As a matter
of fact, Certcoin is based on Namecoin[10] when IoT-PKI is based on
Emercoin[12]. The idea behind these solutions is to store the public key
as the value and use the domain name (or another identifier) as the
key into this NVS. Nevertheless, this solution cannot be implemented
naively because the whole blockchain needs to be stored in order to
interact with it, which is unfeasible for IoT devices. Therefore, each of
these solutions has a mechanism in place to avoid this problem. In the
case of Certcoin, they proposed the use of accumulators[14] to lower the
storage requirement. Where an accumulator is a digital entity that is used
to test set membership. The accumulator holds tuples of the form (d,
pk), where d represents a domain and pk represents a public key. The
accumulator is then used to see if pk is associated with d. Accumulators
have the advantage of not needing much storage and can be easily used
by computationally constrained devices (i.e., IoT devices). On the other
hand, IoT-PKI use bigger devices to hold the chain and the IoT devices need
to communicate with this intermediary instead of directly communicating
with the blockchain technology.

11

EST Server

Validate client
credentials

(client cert or
HTTP auth)

EST CAEST Client

Request Certificate (3)

..... a doted line means a
changement of communication

protocol. HTTPs

Validate
chain +

Generate
pub/priv
key pair
and CSR

(EST) PKCS#10 Certificate request (2)

PKCS#7 Certificate (5)

Certificate (4)

Not RFC 7030

ServerClient TLS handshake (1)
(+verification of chain of

trust)

Figure 3.1: The certificate enrollment process using EST.

3.1.2 Scpki

In essence, Scpki is an implementation of the Web of trust using smart
contract. The principle is that an individual in this framework is identified
by its Ethereum address and this individual can publish attributes about
itself on the system. Later, other individuals can sign these attributes to
prove that the information is legitimate. Signature can also be revoked if
needed. Therefore in this system, trust is enabled through reputation.

3.2 CA based solutions

3.2.1 EST over secure CoAP

"Enrollment over Secure Transport" (EST) is a protocol that automates the
issuance of x.509 certificates for public key infrastructure (PKI) clients such
as web servers, endpoint devices, and user identities, as well as the related
certificates from a trusted Certificate Authority (CA).

In particular, EST over secure COAP[48] is a proposed adaptation of the
EST over HTTPs protocol[1]. This protocol is still under development and
should only be considered as such until it is included into the standard.

The purpose of this protocol is to port the state of the art C-PKI(i.e.,
EST over HTTPs) to more computationally constrained devices. As a
reminder here is how EST over HTTPs works (The Figure 3.1 will be used
as support):

1. A TLS session is created between the client and the server and the

12

chain of trust of the server certificate is verified by the client.

2. The client creates its key pair and a CSR before sending a PKCS#10
certificate request[35] to the server.

3, 4. The server requests and receives the certificate to the CA.

5. The server then sends the signed certificate to the client in PKCS#7
format[25], which the client can store on its device.

In addition to the certificate enrollment feature, an EST client may send
a re-enrollment request to an EST server to update or rekey the current
client certificate. Additionally, to facilitate other certificate activities,
additional optional requests can be transported via EST.

The main differences between EST over HTTPs and EST over COAPs
are the application and the security layer protocols. Apart from this, the
two protocols are very similar.

3.2.2 PKI4IoT

PKI4IoT[20] is a solution based on EST over COAPs with few additional
features. The features include a new lightweight certificate format called
XIOT which is backward compatible with x.509. PKI4IoT also proposes a
way of dealing with initial authentication by using factory certificates.

PKI4IOT is a more polished version of EST over COAPs that has been
tested on resource-constrained devices. Nevertheless, this solution is still
under development as it is not part of the standard.

13

Part II

The Framework

14

Chapter 4

Security requirements and
threat model

Security for such a framework is required as any correspondence between
the individuals involved may be eavesdropped by an attacker. They may
block or change messages, or store and replay any message sent, with the
intention of masquerading as a trusted entity or to get hold of any secret
message content in plain text.

On top of that, blockchain-based systems also have some shortcomings.
In more details, on the Figure 4.1, you can see the different families

of attack that a blockchain technology should be ready to face and few
examples for each family. The five families are:

• Identity-based attacks: are attacks where an attacker forges its identity
to masquerade as another device or even create multiple illegitimate
identities in the networks;

• Manipulation-based attacks: are attacks where the purpose is to
manipulate the data to intentionally trigger external events that can
be capitalized on;

• Cryptanalytic attacks: are a family of attacks where the purpose is to
break the cryptographic algorithm and expose its keys. In this way,
an adversary can sign unauthorized transactions and forge the valid
signature of users;

• Reputation-based attacks: are attacks where an agent manipulates his
reputation by changing it to a positive one;

• Service-based attacks: are attacks where attackers aim either to make
the service unavailable or to make it behave differently from its
specifications.

It is essential that all these attacks be taken into account when a
new framework is developed on the blockchain. A discussion about
how previous work dealt with those attacks can be found in [15] and a

15

Treat
model

Identity
-based attacks

Manipulation
-based attacks

Cryptanalytic
attacks

Reputation
-based attacks

Service
-based attacks

Key attack [21]

Replay attack
[29] [21]

Impersona-tion
attack [29] [21]

Sybil
attack [36]

False data
injection

attack [28]

Tampering
attack [51]

Overlay
attack [51]

Modification
attack [29] [21]

MITM attack
[29] [21]

Quantum
attack [54]

Hiding Blocks
attack [36]

White-
washing [36]

DDoS/DoS
attack [29]

Refusal to Sign
attack [36]

Double-
spending
attack [51]

Collusion
attack [19]

Figure 4.1: Classification of threat models for Blockchain. Source [15]

discussion about how the framework proposed deals with those attacks
can be found in Section 7.

It is crucial that the proposed framework withstands these types of
attacks and still offers authentication, confidentiality and integrity.

16

Chapter 5

Architecture

This chapter will display the architecture of the developed framework.
In this architecture, we have three partakers which are the IoT device,
the controller and the smart contract. Each of those components will be
explained into their respective section.

5.1 IoT Controller

An IoT controller is a bigger appliance than the IoT device that will be
used to compensate the lack of power of the IoT device. Unlike previous
work[49], the controller will not fully manage the certificate of the device
but rather will be there helping the device in the management of its
certificate. The controller is also there to enable communication between
the device and the smart contract. It is important to note that in this
framework the controller will never be able to impersonate the device as
the device remains the only one in control of its private key. To be more
precise, the controller will be mainly responsible for verifying the validity
of the certificate created by the device, converting the device data into a
format understandable by the smart contract and providing randomness to
the device (if needed) to create the key pair associated with its certificate.

5.1.1 Nature of the controller

There are two possibilities for the implementation of the controller:

• A dedicated bridge/box that will deal with the certificates of several
IoT devices located in different networks;

• A dedicated app on the user phone that will act as the controller.
The problem with this type of controller is that it may not always be
available and this can cause problems if the device needs to update
its certificate while the controller is not available.

Due to the shortcoming of the last solution, we decided to opt for the
first solution in this work.

17

Figure 5.1: Chart of the storage needed to run a full node. Source:
Etherscan.io

5.1.2 Ethereum nodes

In the purpose of communicating with the smart contract, the controller
should run an Ethereum node or at least the controller should be able to
communicate with a node. Nodes are clients of the blockchain technology.
More precisely, a node is a device/program that communicates with the
Ethereum network.

There are three types of nodes in the Ethereum blockchain:

• A full node has a copy of the entire Ethereum blockchain state
and performs any transaction that is mined, taking up to 600GB1

(See Figure 5.1) of storage and at least 4 GB of memory. A
full node will take several hours to join the network and become
fully synchronized. (Source: https://ethereum.org/en/developers/
docs/nodes-and-clients/)

• A light node has only the minimal amount of state to make sense of
things while communicating with full nodes. This type of node will
only need a few hundred megabytes of storage and 128-512MB of
memory. A light node’s purpose is to be small enough to operate on
a phone or embedded devices. A light node will almost immediately
join the network and we can directly start using it. This is assuming
that it can find a full node with a light node slot available. This is due
to the fact that a light node relies on a trusted full node to gather the
needed data. (Source: [38])

• An archive node is a full node that preserves the entire history of
transactions (i.e. an archive node is a full node running in archive

1https://etherscan.io/chartsync/chaindefault

18

https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://etherscan.io/chartsync/chaindefault

mode). In the absence of archive mode, a full-node will prune created
state to save disk space. This reduces the time it takes for a node to
sync, as well as the cost of storage and computation. Because of the
way Ethereum handles account and contract storage, only an archive
node can serve API requests for RPC methods older than 128 blocks.

It seems obvious that the better suited type of node for the IoT controller
is the light node. The light node provides the needed basic functionalities
to the controller in order for it to be able to submit requests to the smart
contract. The only drawback with this approach is that a light node
relies on a full node and there may be no available full node for each
controller. A solution to this drawback is for the controller manufacturer
to run some full nodes or to pay cloud services to run full nodes for its
controllers. This solution also brings some benefits: if the full node is
hosted by the manufacturer, the manufacturer can have a better feeling of
the trustworthiness of these nodes. This will provide a strong guarantee
that the controller will always have a full node available.

5.2 IoT device

The IoT device is the central piece of this work since it will be the
user of the framework and will use it to be authenticated. In order to
distinguish each device from each other, the IoT devices should have
a UUID. Ideally, this UUID should be of the version 4[37] where this
version is the randomly generated UUID. The UUID should be generated
with a cryptographically secure pseudorandom number generator in a
trusted manufacturer environment, for example when installing the initial
firmware to be used. These recommendations are there to avoid that an
attacker can too easily guess the id of a device and set up a denial of service
attack on this device (i.e. by recording this UUID on the smart contract
before the device). This UUID will be used throughout the whole life cycle
of the device to be identified. Due to the latter, the UUID should ideally
be stored on a tamper proof memory. This UUID is what will later be
authenticated by the framework.

5.2.1 Device life cycle

This section displays at high level the different states of the life cycle of the
IoT device in this framework. The Figure 5.2 shows the different states and
how these states interrelate with each other.

This life cycle can be decomposed into three phases. The first phase is
the bootsrapping phase which can be defined as the process by which the
state of an IoT device changes from not operational to operational. This
phase can be seen as the initialization of the device. The generation of the
UUID, the set-up of the device by the manufacturer and the initial boot up
of the device are all regrouped in this phase.

19

Operationnal Device
EnrolledBootstrap (Re)Enrollment

Update

Revocation

Expiration

Generation
of the UUID

Figure 5.2: Life cycle of the IoT device.

The next phase is the enrollment phase by which the device will have
its identity confirmed. This phase will make the device fully usable and
authenticatable.

The last phase is the expiration/revocation phase. The last stage comes
either when a certificate expires or when an administrator revokes the
device certificate prior to the expiry date. A security infrastructure must
cope with the revocation of trust if access to properties can no longer be
given to a previously trusted individual for some reason.

This life cycle provides an overview of a certificate management
framework for constrained devices.

5.2.2 Lasting certificate for the IoT device

In this framework, the lasting certificate of the IoT device will be a
self-signed X.509[45] certificate where the identity of the device will be
confirmed by the smart contract. In order to be complete, this certificate
will contain the controller identifier. The controller identifier is a unique
number that will be used similarly to identify the controller responsible of
the device. This inclusion is used to provide a proof of the binding between
the controller and the device. This binding is necessary as the controller
will be the one responsible for the update and the revocation of the device
certificate. As the certificate is self-signed, the IoT device also confirms the
binding.

We have to take into consideration that the controller may disappear.
Therefore, the controller should implement some kind of key sharding 2

where the controller stores its shards into separate locations in order to be
able to be replaced by a new controller in the case where this controller
disappears or is broken.

We must nevertheless be careful that X.509 certificates may be con-
sidered heavy for some IoT devices[17]. If not dealt carefully, this may
cause significant overhead when this solution will be ported to more
resource-constrained IoT devices. Previous work has shown that the X.509
format can, however, be used on small devices, but naively using existing
X.509 certificates may cause problems [40]. Hence in the case of very small
devices, a new lightweight format that does not break X.509 compatibility

2This is a process where a private key is split into pieces (i.e., shards)

20

IoT controller
(+light node)

Verify the
validity of the

certificate

Server

Smart contractIoT device

Client

Generate
pub/priv key

pair
 +

corresponding
self-signed
certificate

(containing
controller uuid
+ device uuid)

DNS query of
the controller

URL

Check
transaction

Query the controller ID (1)

Tamper proof
memory:

UUID

TLS handshake (3)

Query response (2)

Register(UUID, Cert IoT hash) (5)

(without verifying chain
of trust)

{CER1 || certificate} (4)

1. CER: certificate enrollment
request.

{ } it means that a message is sent
over TLS.

..... a doted line means a
changement of communication

protocol.

HTTPs

UDP

Final State
UUID, pub/priv key
pair and certificate

Final State
Information about the

device

Final State
Hash of the device

certificate

Figure 5.3: Device enrollment into the PKI (explanation can be found in the
Section 5.3 : Device enrollment)

may be needed. XIOT [20] is such a format. The paper presenting XIOT
claims that the certificate size is reduced by more than 50%. Therefore,
XIOT is a viable alternative to X.509 if the device lacks memory.

5.3 Device enrollment

The enrollment of the device can be seen step by step on the Figure 5.3.
Following, we have an overview of what is performed at each step:

1. The first thing that a device needs to do is to find the ID of its
controller. As a reminder, the device needs the controller ID to
generate its certificate as explained in Section 5.2.2. We decided that
the device should be the one to begin the transaction for the simple

21

reason that there can be several candidate controllers in the network.
The fact that the device begins the transaction allows it to choose
between controllers.

2. Once the device receives the ID, it will generate its certificate with the
corresponding public/private key pair. If the device is not random
enough3 to generate the asymmetric key pairs associated with its new
certificate, it is possible to add a step between the steps 3 and 4 where
the controller sends a random number that will be used as a seed by
the device in order to gather enough entropy. It is important that
the device generates its own certificate to avoid impersonation by a
malicious controller.

3. When the device has chosen a controller, they need to perform a TLS
handshake [42], where the client is the device and the server is the
controller. In this step, the controller will also verify the validity of
the device certificate.

4. The certificate enrollment request displays the request of the device.
The certificate sent at this step is the newly created certificate of the
device.

5. If the certificate is valid, the certificate of the IoT device is forwarded
to the smart contract by calling the smart contract function Register
which is described in detail into the Section 5.7.4

6. As soon as the transaction is mined on the blockchain, the device can
check that its data appears on the transaction ledger.

5.4 Device certificate update

Device certificate update in a PKI framework is primordial to avoid overuse
of the related key pair. The longer a key pair is used, the further it increases
the attack surface. It makes the certificates and keys an attractive target for
malicious actors attempting to hack a credential, as it allows them access for
longer periods of time. Recommendation on cryptoperiods5 from the NIST
can be found in Figure 5.5. Due to those recommendation, we decided to
add to our framework an update feature.

This update protocol can be visualized in Figure 5.4. The different steps
of this protocol are:

3Embedded devices are typically cheap and without security hardware, such as a
Trusted Platform Module and a Physical Unclonable Function. Furthermore, they often
cannot gather enough entropy due to short boot times. Therefore, their random number
generators may not be cryptographically secure.

4NB: calling a smart contract function is actually a multicast message sent to the full
nodes of the blockchain technology (i.e., Ethereum).

5A cryptoperiod (sometimes called a key lifetime or a validity period) is a specific time
span during which a cryptographic key setting remains in effect.

22

IoT controller
(+light node)

Verify the
validity of the

certificate
and the

signature

Smart contract

Verify that the
controller is the

lawful manager of
the device

IoT device

Generate pub/priv
key pair

 + corresponding
signed (with its old

private key)
certificate

(containing
controller uuid +

device uuid)

Check
transaction

Update(UUID, Cert IoT hash) (2)

{CUR1 || certificate} (1)

HTTPs

1. CUR: certificate update request.

{ } it means that a message is sent
over TLS.

..... a doted line means a
changement of communication

protocol.

Final State
UUID, new pub/priv
key pair and new

certificate

Final State
Information about the

device updated

Final State
Hash of the device
certificate updated

Figure 5.4: Device key update (explanation can be found in the Section
5.4)

23

Figure 5.5: Suggested cryptoperiods for key type. Source: section 5.3.6 in
the report [3]

1. As the device already has the controller ID from its original registra-
tion, it can directly send the certificate to the controller. Upon recep-
tion, the controller will check the validity of the certificate and verify
that the certificate is signed with the old private key of the device.
This last mechanism is used to avoid impersonation of the device. If
the controller is offline, the device should back off and try later. A bet-
ter solution would be to implement some kind of instant messaging
technology where messages are stored while the controller is offline
and when the controller goes back up, it can retrieve the messages
sent.

2. If the certificate is valid, the hash of the certificate will be sent to the
smart contract. The smart contract will then check if the controller is
the lawful manager of the device by comparing the sending Ethereum
address (i.e., the Ethereum address of the controller), to the one stored
with the certificate data (i.e., the owner address stored in the smart
contract). If the check succeeds, the hash of the certificate will be
updated into the smart contract.

5.5 Device certificate revocation

Certificate revocation is an essential PKI component as the certificate can
be compromised. In that case, action should be taken immediately after the
discovery in order to avoid as much damage as possible. As a matter of

24

fact, a compromised certificate can lead to a leak of precious information
and to impersonation. Revocation can also be useful to deal with access
control.

In this framework, device certification revocation is managed by a
simple function call on the smart contract. If we want to revoke a device
certificate, the controller simply needs to call the Revoke (more information
can be found in Section 5.7.3) function on the smart contract. As for the
update function, this function can only be called by the lawful manager
(i.e., the responsible controller) of the device. This constraint ensures that
no attacker can revoke a valid certificate.

5.6 Device lookup

A device can lookup the data stored on the smart contract by making an
HTTPs GET request on a controller where the path of this GET request is
the UUID of the targeted device (i.e., from which you want the data) and
the controller will just forward to the device the output of the "lookup"
function from the smart contract.

5.7 Smart contract

The smart contract is a central piece of this framework as it acts as the trust
store for this PKI. The role of the smart contract is mainly to maintain an
up to date status of all device certificates.

5.7.1 Smart contract vs. NVS

Lots of decentralized PKI in the literature use Name-Value Storage
(NVS)[52] because it makes the implementation trivial (you store the
certificate as value (or hash) and the id is the key). But despite being easy to
use, it is hard to verify what is pushed on the blockchain with an NVS. This
is why we decided to use smart contracts instead. Smart contract permits
to verify the certificate before being pushed on the chain. For example, the
contract can verify that the key pair associated with the certificate is strong
enough, that the expiration date of the certificate is not too long, and so on.
Furthermore, smart contract makes the upgrade of the system far easier
as new functionalities can directly be added on the smart contract. In the
case of NVS, new functionalities must be implemented on the client side
(i.e. the IoT device) which makes the update more difficult as NVS lacks of
flexibility and IoT devices are computationally restrained.

5.7.2 Data stored on the blockchain

The data of the device certificates is stored in a private hash map where the
key is the device UUID and the value is a structure (can be seen on Figure
5.6) that represents this data. A smart contract private field acts the same

25

way as a private field in object oriented classes, therefore only the smart
contract can access this hash map.

The data stored into the hash map is shown on Figure 5.6 where the
fields are:

• Hash of the IoT certificate: It is the hash of the device certificate. It can
be requested by anybody in order to verify the integrity of a received
certificate;

• Controller Ethereum address: This is used to identify the manager
of the device and therefore authorize or not an update and/or a
revocation of the device certificate;

• Status: The status of the certificate is used to state if the certificate is
either valid or revoked.

0 → Struct Data of UUID 0

1 → NULL

2 → Struct Data of UUID 2

Struct Data contains
Hash of the IoT certificate;
Controller Ethereum
address;

Status;
// Other things (if

needed)
end

Figure 5.6: Structure of the data stored on the smart contract hash map

5.7.3 Setter/Getter functions

(string, int) Lookup(UUID)

This function can be used by anybody to request the hash of a certificate
identified by the UUID given as a parameter. This function will return the
status of the certificate with the certificate hash.

void Register(UUID, hash of the device certificate)

This function is used to register the lasting certificate of the IoT device
on the smart contract. This function will store the UUID and the hash into
its private map.

void Update(UUID, hash of the device certificate)

26

Cert

Cert

DNS

Device

Device

Cert

Cert

Device

Device

Internet

Ethereum

Controller

UDP
server

HTTPs
server

Gateway

Gateway

Figure 5.7: Overview of the whole architecture

This function is called when the controller needs to make a key rotation
for the device. If the message sender address corresponds to the manager
Ethereum address stored with this UUID, the smart contract will replace
the certificate hash with this new hash into its hash map.

void Revoke(UUID)

This function will change the status of the UUID from valid to revoked.
As for the update function, this function will only be executed if the
message sender address matches the manager address.

5.8 Overall view of the architecture

The overall architecture can be seen on Figure 5.7. Where the different
components are:

• The DNS server is used by the devices to request the controller IP;

• The devices located in different networks;

27

• The controller with its two components (UDP server and the HTTPs
server). The first one is used to request the controller id and the
second one is used to receive the device certificate and communicates
with Ethereum.

5.9 Possible improvements

Here is a list of improvements that can be made to this framework:

• Develop an instant messaging system to log requests made on offline
controllers. Therefore, a controller will be able to see what requests it
received while offline;

• Put in place key sharding6 and store the key shards into different
locations to be able to recover lost or broken controllers without
losing the certificate binding between the device and the controller;

• Make the framework more lightweight by switching from HTTPs to
COAPs;

• Switch from simple DNS to DNSsec in order to be certain to have a
legitimate controller (More details into Section 9.3);

• Switch from classical device UUID to secure UUID to enable initial
authentication of the device. Where a secure UUID is a simple UUID
with a private key linked to the UUID (the UUID acts as the public
key and have a private key linked to it to prove UUID ownership).

6This is a process where a private key is split into pieces (i.e., shards)

28

Part III

Framework analysis

29

Chapter 6

Scalability of the framework

This framework mainly relies on the blockchain and therefore inherits
from the blockchain problems. In the purpose of adequately discussing
the biggest blockchain flaw, we have to take a step back and define the
trilemma that each system has to face in one way or another.

6.1 The DCS trilemma

The Decentralized Consensus Scale (DCS) trilemma[47], which is also
called the blockchain trilemma, is a trilemma that states that a system can
only have two of the following properties at the same time. Where the three
properties are:

1. Decentralized. In systems theory, a decentralized system is one in
which lower-level elements operate on local knowledge to achieve
global objectives. In such system, there is no single point of failure or
control.

2. Consensus. It means that different entities in a peer to peer system
communicate with each other (through a consensus algorithm) in
order to update the state of the system in a consistent manner
between each other.

3. Scale. It ensures that the system can handle the transactional
demands of any rival system that provides the same service to the
same random group of consumers all over the world ("at scale").

This trilemma can be visualized on Figure 6.2 (a system must choose
an edge of the triangle). The proof of this claim (i.e, a system can only have
two of these properties at the same time) can be seen in the paper [47].

6.2 Implication of the DCS trilemma on the frame-
work

As the system used in this framework is Ethereum and this technology
chooses "Consensus" and "Decentralization" over "Scale". This means that if

30

Figure 6.1: Pie chart showing the top 25 miners of the Ethereum Blockchain.
Source: Etherscan.io

Consensus Decentralized

Scale

Figure 6.2: Illustration of the DCS trilemma.

31

a similar framework was used where we change the smart contract in favor
of a centralized system, will always be faster than the proposed framework.
Nevertheless, the implication of using a centralized system is that we must
have blind trust in that system (i.e., we lose decentralization).

On top of that, we can already see that as Ethereum becomes bigger
and bigger, it tends toward a centralized system. As a matter of fact, the
bigger the blockchain becomes the more resources are needed to be part
of the consensus. This has the impact of reducing the number of parties
participating into the consensus (i.e., tends toward a centralized system).
The evolution of the blockchain size can be seen on Figure 5.1.

Miners that do not have enough resources to store the whole blockchain
collude into pools where a master node dictates to those miners what the
state of the chain is. We can see those pools on the Figure 6.1. In the
past, we have seen the impact that a single mining pool had on the Bitcoin
framework when one of the biggest mining farms was lost due to flooding
in China in August 2020[41]. The impact of this loss was a 20% hashrate
Losses for Chinese Bitcoin Miners. The fact that this farm had such a big
impact on the Bitcoin PoW is one more hint that these systems tends toward
centralization at scale.

6.3 Solutions to that limitation

Solutions to these problems are already in development and hopefully will
be released before damage is done. As a matter of fact, the next version of
Ethereurm (i.e., Ethereum 2.0) will have features that mitigate that problem.
Ethereum 2.0 will switch to a Proof of Stake (PoS) blockchain and will
use sharding. In a PoS system, block producers are in charge of checking
transactions. Block producers are selected at random, but their chances of
being one rise in direct proportion to the amount of tokens they own. Block
producers are required to bind a number of tokens to their decisions while
submitting a block, and they can be penalized if they act maliciously. The
purpose of switching from PoW to PoS is to remove the need of having
massive resources to participate in consensus. We can already see that
this is only a mitigation as few people can have most of the tokens, which
will have the consequence of also centralizing the system. Sharding 1 is
the principle of cutting the main chain into smaller independent chains.
This will have the consequence of eluding the scale factor of the trilemma.
Ethereum 2.0 will be divided into 64 shards.

1This is system sharding which is different from key sharding explained in the previous
chapter.

32

Chapter 7

Security assessment of the
developed framework

7.1 Study of the feasibility and security of the enroll-
ment stage:

To better illustrate our study, we will use as support the Figure 5.3. We can
see that for the first two steps that the messages are sent over UDP which
means that there is no integrity, no confidentiality and no authentication.
On the point of confidentiality, since everyone can request the id, there is
no need for confidentiality.

The question becomes a little bit more tricky on the topic of integrity
and message origin. The only thing that can happen in the case where the
device receives a wrong ID is that the controller will not respond later to
the device request and therefore will cause a denial of service on the device.
In this work, we consider that this is an acceptable shortcoming compared
to the load that needs to be added in order to provide integrity on these
steps.

For all the other communication between the device and the controller,
a digital signature is included. This ensures to both parties the integrity
and source of the messages exchanged. Confidentiality is achieved by
encrypting each message with the symmetric key exchanged in the TLS
handshake.

The main purpose of TLS is to provide privacy, data integrity and
authentication for communication between a client and a server. A security
analysis of this protocol can be seen in more detail in the paper[33].

The problem with using TLS for IoT devices is that some smaller
devices may the lack of computational power. The solution to this problem
resides in the usage of lightweight implementations of TLS or even using
DTLS. Currently, there are multiple lightweight implementations of the
TLS protocol available to meet the constraints of low-powered IoT devices.
The open-source DTLS Toolkit 1 (formerly MatrixSSL) can be configured to

1https://www.rambus.com/security/software-protocols/secure-communication-toolkits/
tls-toolkit/

33

https://www.rambus.com/security/software-protocols/secure-communication-toolkits/tls-toolkit/
https://www.rambus.com/security/software-protocols/secure-communication-toolkits/tls-toolkit/

a code footprint of only 66KB, and even smaller footprints are possible with
manual optimization. wolfSSL 2, another open-source SSL/TLS library,
advertises a minimum footprint size of 20-100KB, and runtime memory
usage of 1-36KB. Clearly, these numbers are already achievable even for a
device with very modest specifications such as the Firefly3, and we can
expect to see further optimization of software combined with increased
power at lower cost for embedded devices going forward.

Furthermore, a recent study [43] has judged that IoT devices can benefit
from the latest version of TLS/DTLS without the need to upgrade the
hardware. But using (D)TLS protocol improvements comes at a price
as we can see from their experiments. Compared to version 1.2, their
measurements indicate 20% code footprint increase with TLS/DTLS 1.3.
Further measurements on the RAM indicate no significant impact on
stack requirements, and limited impact on peak heap footprint (max 25%
increase for some configurations in one implementation, and for the other
implementation, even 30% decrease, for Elliptic Curve Diffie-Hellman
Ephemeral configurations).

For function call to the smart contract, the integrity, the authentication
and basic confidentiality is provided by Ethereum. Ethereum relies on
the controller wallet4 to identify the controller and to sign messages. On
the topic of confidentiality, Ethereum provides it by only sending byte
code to the smart contract. This form of confidentiality is not optimal as
the byte code can still be reverse engineered. On top of that, Ethereum
transactions are also protected from replay attack by using a transaction
count in each transaction. It should also be noted that every full node
verifies the execution of the smart contract function, therefore Ethereum
also protects the smart contract code and data integrity.

7.2 Study of the feasibility and security of the update
and revocation stages:

For these stages, the communication between the controller and the device
is performed on top of TLS and therefore receives the same benefits as for
the enrollment phase. The communication between the controller and the
smart contract is also protected by Ethereum on these stages. The difference
in terms of security on these stages is that we need to verify in the smart
contract that the update/revoke request originates from the controller that
manages the device. This was done by checking that the Ethereum sender
address is the same one used to register the device. In practice this is
done by storing the manager Ethereum address with the certificate hash
on the smart contract. On top of that, the updated certificate of the device
is signed with the previous key (of the device) in order to avoid device
impersonation.

2https://www.wolfssl.com/products/wolfssl/
3https://github.com/Zolertia/Resources/wiki/Firefly
4As a reminder, an Ethereum wallet is a public/private key pair used to sign transactions

34

https://www.wolfssl.com/products/wolfssl/
https://github.com/Zolertia/Resources/wiki/Firefly

7.3 Security limitation

In the current framework, the controller identity is not verified. An
attacker could therefore trick a device to communicate with him instead
of a legitimate controller. The consequence will be that the attacker will be
able to register the device UUID on its name, which will lead to a denial
of service on the device as the device will never be able to register its
certificate with its UUID (because the slot on the smart contract is already
taken by the attacker). However, the device can easily find this out as the
device can request the smart contract data to another controller and see
that the data is not what it published. This problem can easily be solved by
using DNSsec instead of classical DNS to gather the controller IP.

35

Part IV

The Proof of Concept

36

Chapter 8

Technologies

For the development part of the Proof of Concept (POC), we have
decided to use the Solidity1 language with the public Ethereum blockchain.
Solidity is an object-oriented, high-level language for implementing smart
contracts. This language is statically typed, supports inheritance, libraries
and complex user-defined types among other features. This means that
complex programs can be implemented with this language. For example,
Solidity has already been used to create contracts for uses such as voting,
crowdfunding, blind auctions, and multi-signature wallets[44][50][30].
Those smart contracts are run on the Ethereum Virtual Machine (EVM)
(More information in Section 8.2) and are accessed by contract address2

which ensures code immutability once published on to the Ethereum
blockchain.

8.1 Why solidity and public Ethereum

We have decided to use Solidity simply because it is the most used smart
contract language[16] and therefore also the one with the most support.
One downside of this pick is that Solidity is a new programming language
and therefore Solidity will undoubtedly undergo major changes and newer
versions of this language are not always backward compatible.

As for the choice of the Ethereum public blockchain, this is mainly
due to the fact that this one of the oldest blockchains (July 30, 2015)
and therefore most of the early stages vulnerabilities have already been
patched. Public Ethereum is inevitably faster due to more participation,
something that just cannot be said for other distributed ledger solutions.
Public Ethereum is also used by lots of developers and by big companies
which means that if vulnerabilities are found, they will be quickly patched.

1https://docs.soliditylang.org/en/latest/
2An Ethereum smart contract address is a unique key (public key) used to invoke that

contract on the blockchain network.

37

https://docs.soliditylang.org/en/latest/

8.2 Ethereum Virtual Machine

Ethereum virtual machine, in essence, provides a layer of abstraction
between the running code and the running system. This layer is needed to
increase device portability and to ensure that applications are isolated from
one another and from their host. Basically, the EVM translates Ethereum
op_code into runnable instructions on the host machine.

38

Chapter 9

Implementation

In order to prove the feasibility of our framework, we decided to develop
a Proof of Concept (PoC). The construction of the PoC is subdivided into
two different parts. The first part is the interaction between the IoT device
and its controller. This first part can be further divided into smaller parts
which are :

• Device/Controller communications;

• Construction of the custom X.509 certificates;

• Device/Controller discovery.

As for the second part, it concerns the interaction between the controller
and the smart contract. Each part uses its own set of protocols and operates
separately.

9.1 Device/controller interactions

This section aims at explaining how the controller and the device commu-
nicate between each other.

9.1.1 Device/Controller discovery

In this framework Device/Controller do not know each other at first.
Therefore there should be a way for each other to automatically discover
each other. In this purpose, we decided to use Domain Name System
(DNS). This is done by creating a custom URL for the controllers that each
device could access. We also tried alternatives such as using the Simple
Service Discovery Protocol (SSDP). Essentially, this protocol permits the
controllers to emit a beacon containing their respective ID and IP address.
Once the beacons are set up, the devices can listen to the beacons and
choose a controller to operate with. This solution had the advantage that it
provides the id of the controller in the beacon but the big drawback of SSDP
is that it only works in local networks and therefore it makes the need of a
controller arise in each local network where a device is present.

39

The DNS solution also has a drawback which is that the id of the
controller is not communicated with the IP address. Nevertheless, we
decided to still use DNS due to its massive advantage: a controller can
be responsible for several subnets. To solve the drawback of DNS, we
decided to create a UDP server that the devices can query to get the ID
of the controller.

9.1.2 Device/Controller communications

The communication between the device and the controller is performed
over the Hypertext Transfer Protocol (HTTP) with TLS. As a reminder,
within this framework there is no need for authentication between the
device and the controller because the controller can be authenticated later
by the smart contract if needed or the device can use DNSsec to acquire the
IP address of the controller. In practice, this is done by using a self-signed
certificate for the controller (server) and no certificate for the device (client)
into the TLS handshake.

These two entities communicate mostly to transfer certificates from the
device (client) to the controller (server). This transfer is performed by a
HTTP PUT method.

An alternative to HTTP for smaller devices has also been explored,
this alternative used the Constrained Application Protocol (COAP). The
communication process for the two protocols was essentially the same. The
difference was that with COAP, we had to deal ourselves with the packet
fragmentation. This limitation is what motivated the use of HTTP instead
of COAP.

Indeed, a COAP packet should fit in exactly one IP packet. This
assumption is made by the COAP protocol in order to make it lightweight.
The consequence of this is that the certificate should be cut into pieces
and sent over several PUT messages. The certificate should then be
reconstructed at the receiving end. In order to permit that, the certificate
is first cut into pieces and a header is added to each piece. This header
contains a sequence number and the certificate size. A more general
solution could implement this IETF draft [7]. It extends core COAP with
new options for transferring multiple blocks of information from a resource
representation in multiple request-response pair. Therefore COAP may
become better suited in this case if the draft is later included into the
standard.

9.1.3 Construction of the custom X.509 certificates

In the purpose of binding the device with the controller, we decided to use
custom certificates for the devices.

As part of the standard, X.509 v3 permits to add custom fields to the
certificate. In this case, the custom field added is the unique identifier of the
controller responsible of the device. This solution has been put into place
by writing an openssl configuration file that must be used to generate the
custom certificates.

40

9.2 Smart contract

The smart contract is the core of this framework, it acts as the trusted
authority. The contract provides a secure storage to store information about
the devices.

9.2.1 Structure of the contract

The trusted store in the smart contract is in practice implemented by a
private map that is only accessible by the contract functions that are later
described in this section. The mapping in this contract is a mapping
between a device UUID and the device information. The UUID is
represented here by a uint256 to mitigate collision and thus provide faster
access to the mapping and also to limit as much as possible the impact of a
corrupted controller1.

To modify/access the smart contract data, there are four public
functions which are:

1. lookup: used to request the hash and the status of a device certificate
associated with a given UUID;

2. register: used to register a device into the system;

3. update: used to update the information of the device on the system;

4. revoke: used to revoke the device certificate.

The lookup function is a little bit different from the three other functions
as it is the only function that does not modify the smart contract data.
Therefore, this function has been implemented as a "view" function and
is the only function that does not cost any gas.

The update and revoke functions require that the message sender
(identified by its Ethereum address) is the same as the one that previously
registered the given device. This constraint is what ensures identity
retention for the registered device.

9.2.2 Deployment

In order to test the framework, the contract had to be deployed. For the
deployment two steps were taken, first the contract was deployed locally
in order to quickly debug the code and to make basic unit tests on the
different functions. This allowed us to to verify that the contract had indeed
the expected behavior. Unfortunately, this deployment solution has lots of
drawbacks.

First of all, a local deployment does not reflect the latency that can be
encountered on the main net (Ethereum) and local deployment makes you

1A corrupted controller could in theory register a major part of the identifiers available in
order to make the system unusable (DoS attack) but this type of attack is mitigated by using
uint256 to represent the UUID because the amount of gas (and thus money) to implement
such an attack would be huge

41

able to run anything without any constraint (in terms of gas for example)
which is not true on the main net. This is why the second step was to deploy
the smart contract on a test net. As a reminder, a test net is a real network
for test purpose similar to the Ethereum main net but with worthless
Ethers. The chosen test net for the deployment is Kovan2. The deployed
contract can be seen on Kovan Etherscan at this address3. Kovan is the best
way to get a simulation as close as possible to the real deployment[6].

Another tool, Infura4, was used to solve one of the biggest problems we
had encountered while deploying on Kovan. The problem is that a light
node needs to be linked to a full node to interact with Ethereum but from
time to time there are no more light node slots available (on the full nodes)
and therefore the light node is not able to interact with the smart contract,
in this case. The solution was to use Infura which is a full node provider
that ensures accessibility of the smart contract. As a matter of fact, without
a full node provider, we cannot be certain that there will be a light node slot
for our controller available on a full node. In conclusion, Infura ensures that
we can always access the smart contract provided that the number of daily
transactions allowed by the free version is not exceeded. Moreover, Infura
does not question the validity of the test since it only manages access to the
smart contract and nothing else. So Infura will not be able to impersonate
a controller or modify messages as they are signed by the sender (i.e., the
controller).

9.3 Improvements

Even if this proof of concept is ready to be deployed, the current version
of it is far from perfect. As a matter of fact, lots of things can still be
improved. Here are few things that can be improved (on top of the
framework improvements listed in Section 5.9):

Code integrity In the current version, the owner of smart contract has no
proof that the code executed is really the code that has been published.
This verification can be done in the future by adding the smart contract
code to the Etherscan’s token information. Etherscan will then verify that
the contract code is exactly what is being deployed onto the blockchain and
this will also allow the public to audit and read the contract code.

Controller identity verification Currently, the controller identity is never
verified which might be a problem as an attacker can act as a controller
and put in place a DOS attack on a device. Some solutions were explored
to circumvent this problem. The easiest solution is for the device to use
DNSsec instead of DNS to get a controller’s IP. Another solution would
be to authenticate the controller in the scope of the smart contract. The
most obvious way of doing that is by verifying the RSA signature of

2https://kovan-testnet.github.io/website/
3https://kovan.etherscan.io/address/0x2dde419f1369a4ef6b6408245479589cab4ff974
4https://infura.io/

42

https://kovan-testnet.github.io/website/
https://kovan.etherscan.io/address/0x2dde419f1369a4ef6b6408245479589cab4ff974
https://infura.io/

the controller’s certificate into the smart contract. Unfortunately at the
moment, the RSA library has still to be implemented in the standard.
Another solution would be to use "oracles" (i.e., query an external API to
the smart contract to do this work). So even if it is possible to use oracle, this
solution cannot be used in this work because it would go against the main
goal of this research which is to propose a decentralized solution (since
the external API is a centralized element and so if used, it would be like
implementing a classical PKI).

Then, there are also implementations of RSA not using the "BIG
Number" library created by some users. The problem of using this code
is that it is not maintained and works only with very old versions of
Solidity. Then, the most important point is that these implementations
work only with keys of very small size (Max 256bits in practice given that
the calculation for bigger keys would be much too expensive in terms of
"gas"). So this solution is only valid for a "toy example". 5.

Another possible solution for this problem would be to add an access
list (on the controller’s Ethereum addresses) on the contract that the device
manufacturer would be responsible for managing.

5Source: https://github.com/axic/ethereum-rsa (https://github.com/ethereum/EIPs/
issues/74: thread explaining that this code has been made obsolete by the introduction of
the big num library)

43

https://github.com/axic/ethereum-rsa
https://github.com/ethereum/EIPs/issues/74
https://github.com/ethereum/EIPs/issues/74

Chapter 10

Results

The purpose of this evaluation is to determine the suitability of this
framework for the Internet of Things. Indeed, the IoT devices are intended
to be as small and cheap as possible in order to be attractive to the
consumer. Therefore in order for this framework to be used, it must be
as transparent as possible for the devices.

10.1 Experimental setup

The Proof of Concept was developed and tested on a "Manjaro Linux
x86_64" machine with an "Intel i5-8250U (8) @ 3.400GHz" CPU and 8Gb
of RAM. As a matter of facts, the IoT device did not have all the resources.
The device was hosted on a Virtual Machine running "Ubuntu Core 18".
Ubuntu Core is a light weight version of Ubuntu targeted to constrained
devices (The key characteristics of this operating system can be seen in the
Table A.1). The big advantage of such a setup is that we can play with the
VM resources. For testing, we decided to allocate one CPU Hyper thread1

and 1Gb of RAM to the VM. We choose these numbers in order to be as
close as possible to a standard Raspberry pie 2. The controller used the rest
of the resources (i.e., 7 hyper threads and 7Gb of RAM).

10.2 Device benchmarks

All the data used in the following benchmarks was gathered using the "sar"
command. The data points were taken at the same time and at the same
time interval (each second). Therefore, these benchmarks constitute an
overall picture of the device while running the "register" phase of the Proof
of Concept. It should be noted that the only processes that were running
on the device at the monitoring time were the proof of concept, the SSH
session (used to interact with the device), and some unrelated background
tasks. (If needed, there are additional benchmarks in Section B.)

1Hyper-Threading is Intel’s term for simultaneous multithreading (SMT). This is a
process where a CPU splits each of its physical cores into virtual cores, which are known as
hyper threads.

2https://www.raspberrypi.org/

44

https://www.raspberrypi.org/

Figure 10.1: Amount of used memory in kilobytes. (This does not take into
account memory used by the kernel itself.)

Figure 10.2: Amount of memory in kilobytes needed for current workload.
(This is an estimate of how much RAM/swap is needed to guarantee that
there never is out of memory.)

10.2.1 Memory usage

The Figure 10.1 depicts the amount of memory used by the device. Due
to the fact that the memory available (1Gb) is huge compared to the peak
memory usage (530Kb for the user and +- 100Mb for the OS), we consider
that this Figure represents the maximal memory usage of the framework
(+ the SSH session used to launch the program). On the other hand, an
estimation of the minimal memory usage can be seen on the Figure 10.2.
As we know that these Figures depict the whole memory usage of the user,
we decided to also monitor it after the PoC was done running (i.e., after
the fourth data point). This was made in order to subtract the memory
usage from other processes and therefore find the memory usage of the
framework. The result is that the memory footprint of the framework is
about 20Kb in both cases (i.e., 527Kb - 507Kb = 20Kb and 178Kb - 154Kb =
24Kb).

45

Figure 10.3: Amount of Kb sent and received over the network.

Figure 10.4: Percentage of CPU usage by user processes.

10.2.2 Network usage

On the Figure 10.3 we can see the total number of kilobytes received
(i.e., rxkB/s) per second and the total number of kilobytes transmitted per
second (i.e., txkB/s). On this graph, we see that the other user processes
are not sending or receiving over the network. Therefore, we can conclude
that the framework sends at most 22Kb/s and receives at most 15Kb/s.

10.2.3 CPU usage

The Figure 10.4 shows the CPU usage while running the framework.
The CPU peak at the first data point is mainly due to the cryptographic
operations performed to create the certificate coupled with the page faults
(due to the loading of the certificate in RAM). The interrupts burst and the
page faults can be seen on Figure 10.6 and 10.5.

46

Figure 10.5: Number of system page fault.

Figure 10.6: Number of interrupts.

47

10.2.4 Disk usage

The disk usage of the framework is about 6Mb. This number can be further
reduced by using a more lightweight certificate format like XIOT[20].

48

Part V

Conclusion

49

Chapter 11

Discussion

11.1 Comparison of the different solutions

In this section, we will compare the proposed framework with the State
of the Art (SOTA) which is exposed in Section 3 and we will especially
focus on PKI4IOT [20] due to the purpose of this thesis (i.e., propose a
decentralized alternative to the C-PKI).

Firstly, the major difference between our framework and PKI4IOT is
that our framework is decentralized and thus does not rely on centralized
entity like the Certificate Authority. The main benefit of our solution is that
trust relies on the framework itself rather than on a private entity (i.e., the
CA) which serves as corruptible central point of vulnerability. On top of
that, a decentralized framework offers auditability which permits to each
party to verify transactions. It is also possible to obtain such a feature with
C-PKI, for example there is the log-based PKI from Google[27]. However,
unlike for our framework it is an additional feature that adds weight on the
IoT device.

Furthermore, we are going to discuss one by one the different
drawbacks of C-PKI (exposed in Section 1.1) and we will compare with
our framework in these different cases:

Our framework PKI4IOT1

Certificate signing cost: ∼0.28$2 100-1000$
Certificate signing process time: ∼1.2min3 few days

Table 11.1: Comparison of our framework with PKI4IOT
For information, the signing cost has been obtained by taking the

average cost of the transactions on the deployed contract 4 multiplied by
the current Ether price and the processing time is the average time needed
to validate a transaction in Ethereum.

1Due to their point in their Section 5.4 explaining that current certificate prices and
certificate delivery time are unacceptable. We assumed that their current solution followed
the CA pricing range and delivery range exposed in Section 1.1

2Assuming a price of the Ether of 2500$ and a gas price of 3 Gwei (0.000000003 Ether)
36*13sec = 78sec (6 blocks to confirm a transaction times the median time to mine a block.

Source: https://etherscan.io/chart/blocktime)
4https://kovan.etherscan.io/address/0x2dde419f1369a4ef6b6408245479589cab4ff974

50

https://etherscan.io/chart/blocktime
https://kovan.etherscan.io/address/0x2dde419f1369a4ef6b6408245479589cab4ff974

Nevertheless, PKI4IOT due to its centralized nature could scale far
more easily as explained into the Section 6 and PKI4IOT has the advantage
of being more lightweight than our solution. However, our solution impact
on the resources can be further reduced by implementing some of the
improvements5 listed in Section 9.3.

Compared to Name-Value Storage (NVS) based solutions, our solution
has the advantage of being able to evolve far more easily. Indeed, the
smart contract paradigm offers the possibility to add a large variety of
features (due to its Turing completeness) when an NVS solution is difficult
to modify. Otherwise the two solutions are similar in terms of perks.

11.2 Research questions

The results and the solutions comparison hereabove enables us to answer
the original research questions.

Is a blockchain-based PKI a viable alternative to the widely spread
CA based PKI in the context of the Internet of Things? The numbers
shown into the results section are easily achievable by a wide variety of
devices. Furthermore, our solution managed to circumvent the C-PKI
shortcomings. However, our solution brings the scalability problem to the
table and the proposed framework needs to be further analyzed in order to
see if it meets the IoT security requirements. Nevertheless, we are confident
that this solution is a strong path toward a viable alternative to the CA
based PKI.

What can a blockchain-based PKI offer more than a traditional
PKI? The answer to that question is that a blockchain based PKI offers
auditability natively and essentially removes the need for a corruptible
central point (i.e., CA) to enable trust. On top of that, a blockchain solution
is far cheaper and faster as shown in table 11.1.

11.3 Future works

Future works should firstly focus on enabling a path toward standardiza-
tion. On top of that, future works should port this solution to embedded
operating systems like zephyr6, contiki7 and many more. Finally, future
research should aim at including the improvements, listed in Section 5.9,
into the framework.

5i.e., using COAP instead of HTTP and switching to XIOT instead of X.509 certificates
6https://docs.zephyrproject.org/latest/
7https://www.contiki-ng.org/

51

https://docs.zephyrproject.org/latest/
https://www.contiki-ng.org/

Chapter 12

Final conclusion

This thesis purpose was to put forward a viable alternative to the Public
Key Infrastructure based on Certificate Authority in the context of the
Internet of Things. This research is motivated by the fact that certificates
have been distributed to the wrong people in the past by some CAs for
questionable reasons. Indeed, the CAs represent a corruptible central point
that this work wants to remove. We started by examining the different
solutions available and we created a framework that adapts the state of the
art PKI to a decentralized solution. Then, we designed and implemented a
proof of concept in order to adequately test our solution.

We found through the results that the solution was adequate for the
Internet of Things while solving the shortcomings of the standard C-PKI.

Further research should aim at standardizing the solution while porting
it to embedded operating systems. However, future works should also take
into consideration the scalability issue of the blockchain.

We are convinced that this work is a way to make the CAs obsolete. We
hope that this work will drive research toward a new PKI paradigm.

52

Bibliography

[1] "D. Harkins" "M. Pritikin" "P. Yee". Enrollment over Secure Transport.
RFC 7030. IETF, Oct. 2013. URL: https://tools.ietf.org/html/rfc7030.

[2] Amazon. ‘Amazon web services iot’. In: (2017).

[3] Elaine Barker et al. Recommendation for key management: Part 1:
General. National Institute of Standards and Technology, Technology
Administration, 2020.

[4] Mustafa Al-Bassam. ‘SCPKI: A smart contract-based PKI and identity
system’. In: Proceedings of the ACM Workshop on Blockchain, Cryptocur-
rencies and Contracts. 2017, pp. 35–40.

[5] Stefan Beyer. Proof-of-Work is not a Consensus Protocol: Understanding
the Basics of Blockchain Consensus. Apr. 2019. URL: https : //medium.
com/.

[6] Francis Boily. Explaining Ethereum Test Networks And All Their Differ-
ences. May 2018. URL: https://medium.com/.

[7] C. Bormann and Z. Shelby. Block-wise transfers in CoAP draft-ietf-core-
block-17. Mar. 2015. URL: https://tools.ietf.org/html/draft- ietf- core-
block-17.

[8] Kenneth Choi. Introduction to PKI (Public Key Infrastructure). May
2018. URL: https://medium.com/.

[9] Comodo. ‘Comodo fraud incident’. In: (March 2011).

[10] Vincent Durham. NAMECOIN. 2010.

[11] Carl Ellison and Bruce Schneier. ‘Ten risks of PKI: What you’re not
being told about public key infrastructure’. In: Comput Secur J 16.1
(2000), pp. 1–7.

[12] Emercoin. 2009. URL: https://emercoin.com.

[13] CANONICAL UBUNTU ENGINEERING and SERVICES. Ubuntu
Core - Security Whitepaper. Nov. 2018.

[14] Nelly Fazio and Antonio Nicolosi. ‘Cryptographic accumulators:
Definitions, constructions and applications’. In: Paper written for
course at New York University: www. cs. nyu. edu/nicolosi/papers/accumulators.
pdf (2002).

53

https://tools.ietf.org/html/rfc7030
https://medium.com/
https://medium.com/
https://medium.com/
https://tools.ietf.org/html/draft-ietf-core-block-17
https://tools.ietf.org/html/draft-ietf-core-block-17
https://medium.com/
https://emercoin.com

[15] Mohamed Amine Ferrag et al. ‘Blockchain Technologies for the
Internet of Things: Research Issues and Challenges’. In: IEEE Internet
of Things Journal 6.2 (Apr. 2019), pp. 2188–2204. ISSN: 2372-2541. DOI:
10.1109/jiot.2018.2882794. URL: http://dx.doi.org/10.1109/JIOT.2018.
2882794.

[16] Hard Fork. ‘These are the top 10 programming languages in block-
chain’. In: (2019). URL: https://thenextweb.com/hardfork/2019/05/24/
javascript-programming-java-cryptocurrency/.

[17] Filip Forsby et al. ‘Lightweight X.509 Digital Certificates for the
Internet of Things: Third International Conference, InterIoT 2017,
and Fourth International Conference, SaSeIot 2017, Valencia, Spain,
November 6-7, 2017, Proceedings’. In: July 2018, pp. 123–133. ISBN:
978-3-319-93796-0. DOI: 10.1007/978-3-319-93797-7_14.

[18] Conner Fromknecht, Dragos Velicanu and Sophia Yakoubov. ‘A
Decentralized Public Key Infrastructure with Identity Retention.’ In:
IACR Cryptol. ePrint Arch. 2014 (2014), p. 803.

[19] Yunhua He et al. ‘A blockchain based truthful incentive mechanism
for distributed P2P applications’. In: IEEE Access 6 (2018), pp. 27324–
27335.

[20] Joel Höglund et al. ‘PKI4IoT: Towards public key infrastructure for
the Internet of Things’. In: Computers & Security 89 (2020), p. 101658.
ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.2019.101658. URL:
http://www.sciencedirect.com/science/article/pii/S0167404819302019.

[21] Xiaohong Huang et al. ‘LNSC: A security model for electric vehicle
and charging pile management based on blockchain ecosystem’. In:
IEEE Access 6 (2018), pp. 13565–13574.

[22] IBM. ‘Device democracy’. In: IBM Institute for Business Value (2015).
URL: https://www.ibm.com/downloads/cas/Y5ONA8EV.

[23] IoT Analytics. ‘IoT Security Market Report 2017-2022’. In: (2017).

[24] Desiree Johnson. How Much Does a SSL Certificate Cost? Dec. 2019.

[25] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC
2315. http://www.rfc-editor.org/rfc/rfc2315.txt. RFC Editor, Mar. 1998.
URL: http://www.rfc-editor.org/rfc/rfc2315.txt.

[26] Loren M Kohnfelder. ‘Towards a practical public-key cryptosystem.’
PhD thesis. Massachusetts Institute of Technology, 1978.

[27] B. Laurie, A. Langley and E. Kasper. Certificate Transparency. RFC
6962. RFC Editor, June 2013.

[28] Gaoqi Liang et al. ‘Distributed blockchain-based data protection
framework for modern power systems against cyber attacks’. In:
IEEE Transactions on Smart Grid 10.3 (2018), pp. 3162–3173.

[29] Chao Lin et al. ‘BSeIn: A blockchain-based secure mutual authentic-
ation with fine-grained access control system for industry 4.0’. In:
Journal of Network and Computer Applications 116 (2018), pp. 42–52.

54

https://doi.org/10.1109/jiot.2018.2882794
http://dx.doi.org/10.1109/JIOT.2018.2882794
http://dx.doi.org/10.1109/JIOT.2018.2882794
https://thenextweb.com/hardfork/2019/05/24/javascript-programming-java-cryptocurrency/
https://thenextweb.com/hardfork/2019/05/24/javascript-programming-java-cryptocurrency/
https://doi.org/10.1007/978-3-319-93797-7_14
https://doi.org/https://doi.org/10.1016/j.cose.2019.101658
http://www.sciencedirect.com/science/article/pii/S0167404819302019
https://www.ibm.com/downloads/cas/Y5ONA8EV
http://www.rfc-editor.org/rfc/rfc2315.txt
http://www.rfc-editor.org/rfc/rfc2315.txt

[30] J. Martins et al. ‘Fostering Customer Bargaining and E-Procurement
Through a Decentralised Marketplace on the Blockchain’. In: IEEE
Transactions on Engineering Management (2020), pp. 1–15. DOI: 10 .
1109/TEM.2020.3021242.

[31] Microsoft. ‘Azure iot suite’. In: (2017).

[32] Microsoft. ‘Erroneous VeriSign-issued digital certificates pose spoof-
ing hazard.’ In: (March 2001).

[33] P. Morrissey, N. P. Smart and B. Warinschi. ‘A Modular Security
Analysis of the TLS Handshake Protocol’. In: Advances in Cryptology -
ASIACRYPT 2008. Ed. by Josef Pieprzyk. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 55–73. ISBN: 978-3-540-89255-7.

[34] Satoshi Nakamoto and A Bitcoin. ‘A peer-to-peer electronic cash
system’. In: Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf 4 (2008).

[35] M. Nystrom and B. Kaliski. PKCS #10: Certification Request Syntax
Specification Version 1.7. RFC 2986. RFC Editor, Nov. 2000.

[36] Pim Otte, Martijn de Vos and Johan Pouwelse. ‘TrustChain: A Sybil-
resistant scalable blockchain’. In: Future Generation Computer Systems
107 (2020), pp. 770–780.

[37] P. Leach, M. Mealling, R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122. IETF, July 2005, pp. 1–30. URL: https://
tools.ietf.org/html/rfc4122.

[38] Andrey Petrov. An economic incentive for running Ethereum full nodes.
May 2018. URL: https://medium.com/vipnode/an-economic-incentive-
for - running - ethereum- full - nodes - ecc0c9ebe22#:~ : text=A%20full%
20node%20has%20a,memory%20(some%20actual%20stats) .&text=
A%20light%20node%20has%20only,while%20talking%20to%20full%
20nodes..

[39] "H. Prins et al. ‘Black Tulip: Report of the investigation into the
DigiNotar certificate authority breach.’ In: (August 2012).

[40] Shahid Raza et al. ‘SecureSense: End-to-end secure communication
architecture for the cloud-connected Internet of Things’. In: Future
Generation Computer Systems 77 (2017), pp. 40–51. ISSN: 0167-739X.
DOI: https : //doi . org/10 . 1016/ j . future . 2017 . 06 . 008. URL: http : //
www.sciencedirect.com/science/article/pii/S0167739X17312360.

[41] Jamie Redman. Excessive Flooding in Sichuan Causes 20% Hashrate
Losses for Chinese Bitcoin Miners. Aug. 2020. URL: https://news.bitcoin.
com / excessive - flooding - in - sichuan - causes - 20 - hashrate - losses - for -
chinese-bitcoin-miners/.

[42] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. IETF, Aug. 2018, pp. 24–77. URL: https://tools . ietf .org/html/
rfc8446.

[43] Gabriele Restuccia, Hannes Tschofenig and Emmanuel Baccelli. Low-
Power IoT Communication Security: On the Performance of DTLS and TLS
1.3. 2020. arXiv: 2011.12035 [cs.CR].

55

https://doi.org/10.1109/TEM.2020.3021242
https://doi.org/10.1109/TEM.2020.3021242
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22#:~:text=A%20full%20node%20has%20a,memory%20(some%20actual%20stats).&text=A%20light%20node%20has%20only,while%20talking%20to%20full%20nodes.
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22#:~:text=A%20full%20node%20has%20a,memory%20(some%20actual%20stats).&text=A%20light%20node%20has%20only,while%20talking%20to%20full%20nodes.
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22#:~:text=A%20full%20node%20has%20a,memory%20(some%20actual%20stats).&text=A%20light%20node%20has%20only,while%20talking%20to%20full%20nodes.
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22#:~:text=A%20full%20node%20has%20a,memory%20(some%20actual%20stats).&text=A%20light%20node%20has%20only,while%20talking%20to%20full%20nodes.
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22#:~:text=A%20full%20node%20has%20a,memory%20(some%20actual%20stats).&text=A%20light%20node%20has%20only,while%20talking%20to%20full%20nodes.
https://doi.org/https://doi.org/10.1016/j.future.2017.06.008
http://www.sciencedirect.com/science/article/pii/S0167739X17312360
http://www.sciencedirect.com/science/article/pii/S0167739X17312360
https://news.bitcoin.com/excessive-flooding-in-sichuan-causes-20-hashrate-losses-for-chinese-bitcoin-miners/
https://news.bitcoin.com/excessive-flooding-in-sichuan-causes-20-hashrate-losses-for-chinese-bitcoin-miners/
https://news.bitcoin.com/excessive-flooding-in-sichuan-causes-20-hashrate-losses-for-chinese-bitcoin-miners/
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://arxiv.org/abs/2011.12035

[44] Y. Rosasooria et al. ‘E-Voting on Blockchain using Solidity Language’.
In: 2020 Third International Conference on Vocational Education and Elec-
trical Engineering (ICVEE). 2020, pp. 1–6. DOI: 10.1109/ICVEE50212.
2020.9243267.

[45] S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280. IETF, May 2008, pp. 1–147. URL: https://tools.ietf.
org/html/rfc5280.

[46] Meruja Selvamanikkam. Digital Signature Generation. Feb. 2018. URL:
https://meruja.medium.com/digital-signature-generation-75cc63b7e1b4.

[47] Greg Slepak and Anya Petrova. The DCS Theorem. 2018. arXiv: 1801.
04335 [cs.DC].

[48] Peter van der Stok et al. EST over secure CoAP (EST-coaps). Internet-
Draft draft-ietf-ace-coap-est-09. http://www.ietf.org/internet-drafts/
draft- ietf-ace-coap-est-09.txt. IETF Secretariat, Feb. 2019. URL: http:
//www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-09.txt.

[49] Pei-Yih Ting, Jia-Lun Tsai and Tzong-Sun Wu. ‘Signcryption method
suitable for low-power IoT devices in a wireless sensor network’. In:
IEEE Systems Journal 12.3 (2017), pp. 2385–2394.

[50] I. Vakilinia, S. Badsha and S. Sengupta. ‘Crowdfunding the Insurance
of a Cyber-Product Using Blockchain’. In: 2018 9th IEEE Annual
Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON). 2018, pp. 964–970. DOI: 10.1109/UEMCON.2018.8796515.

[51] Qin Wang et al. ‘Preserving transaction privacy in bitcoin’. In: Future
Generation Computer Systems 107 (2020), pp. 793–804.

[52] J. Won et al. ‘Decentralized Public Key Infrastructure for Internet-
of-Things’. In: MILCOM 2018 - 2018 IEEE Military Communications
Conference (MILCOM). 2018, pp. 907–913. DOI: 10 . 1109 /MILCOM .
2018.8599710.

[53] Gavin Wood et al. ‘Ethereum: A secure decentralised generalised
transaction ledger’. In: Ethereum project yellow paper 151.2014 (2014),
pp. 1–32.

[54] Wei Yin et al. ‘An anti-quantum transaction authentication approach
in blockchain’. In: IEEE Access 6 (2018), pp. 5393–5401.

56

https://doi.org/10.1109/ICVEE50212.2020.9243267
https://doi.org/10.1109/ICVEE50212.2020.9243267
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://meruja.medium.com/digital-signature-generation-75cc63b7e1b4
https://arxiv.org/abs/1801.04335
https://arxiv.org/abs/1801.04335
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-coap-est-09.txt
https://doi.org/10.1109/UEMCON.2018.8796515
https://doi.org/10.1109/MILCOM.2018.8599710
https://doi.org/10.1109/MILCOM.2018.8599710

Appendices

57

Appendix A

Ubuntu Core key
characteristics

This table depicts the key characteristics of Ubuntu Core.

Minimum requirements
500 Mhz single core processor
256 MB RAM
512 MB Storage

Container runtimes and orchestration

Snapd
Docker, AWS Greengrass, Azure IoT Edge
Kubernetes via Microk8s
LXD

Application security

Isolation via AppArmor and Seccomp
TPM support
Secure boot support
Full disk encryption

Updates
Automatic over the air update
Atomic updates
Roll-backs on failure

CPU support 32 bit / 64 bit, x86 / ARM

Table A.1: Ubuntu Core key characteristics. Source: [13]

58

Appendix B

Additional system benchmarks
of the device

This chapter provides additional benchmarks of the device while comput-
ing the register phase. (State of the device depicted on Figures below)

59

60

61

62

63

64

65

66

67

68

69

