
Automatic and on-the-fly Firewalls
Configuration

Vincent Rosse�o

University of Liège - School of Engineering and Computer Science

Master’s thesis carried out to obtain the degree of
Master of Science in Computer Science

by Vincent Rosse�o

Academic Year 2020-2021

Supervisor Pr. Benoit Donnet
Jury Pr. Laurent Mathy

Pr. Guy Leduc

0Abstract

Automation has the potential to improve reliability and e�ciency wherever it

takes root. However, �rewalls are still con�gured manually, which is di�cult

and error prone. As a �rewall is essentially a program that determines whether

incoming tra�c is legitimate or malicious, �rewall con�guration, given a repre-

sentative dataset of recorded tra�c, can be treated as a classi�cation problem,

i.e. a discrete output supervised machine learning problem. The possibility of

using a machine learning framework for automatic �rewall con�guration was

studied. A training dataset, composed both of legitimate tra�c and attacks, was

generated and statistically described both in terms of packets and �ows. With the

guidance of the statistical observations, per-packet and per-�ow features were

de�ned, and the performance of classi�cation algorithms using those features

was evaluated. The bene�ts of a potential feature pre-processing were evalu-

ated. It was found to be useful and even necessary in some cases. A limitation

was found in the use of classi�cation algorithms in the form of their lack of

interpretability. Practical use of �rewalls requires that they can be recon�gured

in the case where they make the wrong decision. Such classi�cation errors

cannot be avoided completely even with a dataset containing enough examples.

This necessity makes the direct use of opaque classi�ers for automatic �rewall

con�guration impossible. In conjunction with performance constraints, the most

realistic solution consists in con�gurating classical rule-based �rewalls. Rule

extraction techniques from opaque classi�ers are discussed. The decision tree

algorithm was used both to extract rules directly from data and from models

built using other classi�cation algorithms. Both approaches yielded a similar

classi�cation performance. Finally, rules were extracted from decision trees and

translated into a valid format to con�gure a �rewall based on mmb (Modular

MiddleBox) using a subset of the per-packet features.

iii

0Acknowledgments

I would �rst like to thank my supervisor Benoit Donnet for giving me the

opportunity to work on this interesting subject. He was always available to o�er

help and advice when I needed it and, for that, I am grateful. He was one of

the most important teachers I had during my time at the University and was

instrumental in my understanding of computer security and computer science

in general.

My thoughts also go to Laurent Mathy, with whom I had the pleasure of

studying many interesting subjects, from operating systems to sophisticated

data structures and programming patterns, and who entrusted me with teaching

the fundamentals of programming to students in the �rst year of their Bachelor

in computer science.

I would also like to thank in particular Guy Leduc, who gave me a taste for

networking problems and protocols, and Pascal Gribomont, who taught me

about the importance of mathematics and rigor in computer science.

I am, more generally, grateful to anyone in the teaching sta� that I had the

pleasure to be guided by during my time at the University and the Monte�ore

Institute. It is my belief that I have received an instruction of great quality

and that I could not have hoped for a better formation in the �eld of computer

science.

Finally, I want to thank my friends and family who were always there for me

in times of need.

v

0Contents

Abstract iii

Acknowledgments v

Contents vii

1 Introduction 1

I Technical choices 5

2 mmb as a firewall 7

II Data Generation 9

3 Testbed description 11

4 Generated tra�ic 13
4.1 Statistical description: introduction 14

4.2 Packet-related statistics . 16

4.3 Flow-related statistics . 18

4.4 Details of attacks . 22

III Automatic configuration 29

5 Candidate and selected features 31
5.1 Discussion of candidate features 32

6 Considered supervised machine learning algorithms 39
6.1 Decision trees . 40

vii

6.2 Naive Bayesian classi�er . 43

6.3 k-nearest neighbors (k-NN) . 45

6.4 Random forests . 46

6.5 Ensemble methods: stacking . 47

6.6 Summary of the di�erent considered techniques 49

7 Supervised machine learning: methodology and results 51
7.1 Model evaluation . 51

7.2 Model selection . 52

7.3 Additional technical details, results, and discussion 55

7.3.1 Implementation details 55

7.3.2 Discussion of the choice of features 55

7.3.3 Hyperparameter tuning 58

7.3.4 Precisions on the stacking classi�er 58

7.3.5 Discussion of potential feature pre-processing 59

7.3.6 Precision on the k-NN classi�er 61

7.3.7 Results and interpretation 61

7.3.8 Considerations on replies in training data 70

7.3.9 Conclusion on the comparative study and outlook . . . 71

8 Practical firewall configuration 73
8.1 Structure of the binary decision tree 73

8.2 Rule extraction from the tree . 74

8.3 Con�gurating mmb with a decision tree 78

8.3.1 mmb rule format . 78

8.3.2 Challenges in con�gurating mmb from a decision tree

and their solutions . 79

8.4 Conclusion: challenges in con�gurating real �rewalls with such

techniques . 95

IV Conclusion 97

9 Conclusions and Outlook 99

Bibliography 105

viii

1 Introduction

Cybersecurity is ever increasingly becoming more relevant. In 2021, global

Internet tra�c is almost 30% higher that is was in 2019. [McK] As we rely more

and more on network applications in our daily lives, it becomes increasingly

important to ensure online security.

In 2020, the FBI reported an increase of 400% in cyberattacks. [Inv] The �rst

line of defence against cyberattacks is the �rewall, which still today, relies on a

di�cult, time-consuming, and error prone manual con�guration. A study by IBM

shows that in 95% of all security breaches, human error is a major contributing

cause. [Ser] Automating �rewall con�guration could help weed out the damages

of human error in an increasingly critical piece of software.

The reason why manual �rewall con�guration is so tedious and error prone is

that the system administrator in charge of con�gurating the �rewall must de�ne

rules specifying explicitly all of the tra�c that is allowed and block everything

else.

The purpose of this thesis is to �nd another way to con�gure �rewalls. Ideally,

they should be able to self con�gure and recon�gure themselves on-the-�y

without any human intervention.

To hope achieving this goal, a precise method is going to be necessary, one

cannot just guess the rules. There have been many advances in the �eld of

arti�cial intelligence recently. In particular, supervised machine learning tech-

niques have been used for a variety of problems and have been quite successful

in dealing with problems that were thought of as di�cult.

A particular sub-type of those techniques is known as classi�cation algorithms.

The objective of supervised machine learning algorithms is, given the input

1

Chapter 1 Introduction

values of a certain function and the corresponding output values, to approximate

the function as best as possible.

In classi�cation algorithms, the function to approximate has a discrete output.

This means that for any given data point, it can be assigned a particular output

class. Given many points, they can all be split in the classes that are assigned to

them by the function.

The similarity between classi�cation problems in general and �rewall con-

�guration is obvious. A �rewall must determine if incoming packets are to

be accepted or rejected based on the belief that they are either legitimate or

malicious. A �rewall is thus approximating a function that associates points in

the "tra�c-space" to the two classes "legitimate" and "malicious".

A �rewall itself can thus be seen as a classi�cation problem. This however does

not mean that there is no challenge in this problem and a simple out-of-the-box

well-known algorithm can be applied to con�gure it.

The �rst issue that directly arises is building an appropriate dataset to train

the machine learning algorithms. In this thesis, a dedicated testbed was used for

tra�c generation. The main idea is to generate labelled legitimate and attack

tra�c to train the algorithms. The testbed that was used consists in two Kali

Linux virtual machines running on the same host and connected via a virtual

link.

This tra�c needs to be generated with particular care to be diverse enough so

that attacks and legitimate tra�c are not trivial to distinguish. Legitimate and

attack tra�c should be similar apart from what constitutes their malicious nature

or lack thereof. In a real use case, one would record from legitimate applications

that must be allowed and they could use tra�c records from previous attacks,

e.g from an Intrusion Detection System (IDS). In the context of this thesis, the

data was generated on the dedicated testbed. To ensure su�cient diversity of

tra�c, several types of network applications were used with a legitimate client

and attacked.

2

Introduction Chapter 1

Once a dataset is available, one must decide what constitutes an interesting

set of input variables (called features) that are to be fed to the algorithms. To try

and achieve this, the tra�c was described statistically in order to �nd out what

are the main di�erences between legitimate and malicious tra�c and how those

can be used to de�ne expressive features.

Two approaches were considered, treating the tra�c per packet or regrouping

packets into �ows. Statistics were performed and described for each approach

in order to de�ne adequate features. The results of the statistics show that,

although attacks and the corresponding application often act similarly, attacks

tend to adhere to protocols less strictly. Sending rates vary greatly depending

on the context, which makes them interesting. Often, only the application layer

distinguishes the attack from the legitimate application.

Many classi�cation algorithms were considered and evaluated in terms of

their respective performance for both approaches. Most algorithms considered

obtained similar results in terms of performance. Only naive Bayesian classi�-

cation reaches poorer results than the others, most likely due to its unsatis�ed

assumptions. However, there are a few obstacles to using these algorithms for

practical con�guration.

Important problems that need to be handled are interpretability and the clas-

si�cation errors. A �rewall is unusable in practice if when it goes wrong, e.g

blocking legitimate tra�c, the system administrator cannot modify it to change

its behaviour. Models of the relationship between tra�c and the associated

output class must thus be understandable and editable.

As it is usually not the the case with classi�cation algorithms, methods to use

such techniques to con�gure a classical rule-based �rewall were studied. This

essentially means that, in order to be able to use a classi�cation algorithm for

�rewall con�guration, one needs to be able to change it into a set of rules. All

algorithms that were considered, with the exception of decision trees, cannot

be directly used to derive rules. Decision trees can be used to derive rules

directly from data or from models built using other classi�cation algorithms.

Both techniques were used on the dataset generated on the testbed and met

3

Chapter 1 Introduction

similar e�ciency. The limiting factor in terms of classi�cation error appears to

be the set of chosen features.

Finally, once all of these problems have been addressed, the extracted rules

must be transformed into a valid format to con�gure an actual �rewall. The solu-

tion that is presented con�gures a �rewall based on mmb (Modular MiddleBox),

which is a generic tool for setting up middle-boxes.

Many of the tasks that were performed in the context of this thesis required

writing some scripts.

All related code can be found here: https://github.com/vinci-r/TFE.

Chapter 2 explains and justi�es the choice to use mmb as a �rewall. Chapter

3 describes in details the testbed’s con�guration. Chapter 4 details the tra�c

generated on the testbed and describes it statistically. Chapter 5 discusses the

choice of features and justi�es it based on the statistical analysis. Chapter 6

introduces the considered classi�cation algorithms and their main characteristics.

Chapter 7 explains the methodology used for machine learning experiments and

presents the results. Chapter 8 explains how extracted rules can be adapted for

practical �rewall con�guration. Finally, chapter 9 concludes this work.

4

https://github.com/vinci-r/TFE

Part I

Technical choices

2 mmb as a firewall

For the task at end, not all �rewalls are interchangeable. There are many crite-

ria that need to be met, and those all belong to the mmb middlebox deployment

tool.

What is required is an e�cient and powerful �rewall, highly con�gurable with

an easy and descriptive grammar. It must be able to work in a stateless fashion for

packet discrimination, but also on a higher-level statefully on reconstructed �ows.

The amount of rules should not have a too heavy impact on tra�c performance

and rules must be able to be added, removed, or modi�ed on-the-�y while the

�rewall is still performing its role. It is quite rare to see a �rewall (or a generic

middlebox tool) checking all of these boxes, but mmb was conceived with these

objectives in mind.

mmb stands for Modular MiddleBox, meaning it is not merely a �rewall but

allows us to write di�erent set of rules for tra�c forwarding in a very generic

fashion. It is actually a tool for con�gurating any kind of middlebox using

user-de�ned rules. [Ede+19][Ede19]

mmb is a plugin for VPP [fdi], the Vector Packet Processing technology, which

is a kernel-bypassing framework. It has a very decent performance, even for

large sets of rules, as it aims to reach line-rate forwarding performance. Relying

on the underlying capabilities of VPP, as I/O batching, low-level parallelism,

e�cient caching, it is competitive in terms of performance. It also reaches

baremetal-like performance on virtual machines thanks to PCIe passthrough

technology. [Ede+19] [Ede19]

Easily con�gurable with a simple CLI, it is very expressive and allows to

express many di�erent types of rules, either statelessly on packets, or statefully

on �ows. It is protocol-agnostic, dealing similarly with TCP and UDP �ows,

on which it can do either stateless or stateful matching. It can operate on both

7

Chapter 2 mmb as a firewall

transport and network layers’ �elds. Upon matching, it can drop, forward, or

modify packets. [Ede+19][Ede19]

Such a performance and �exibility allows an arti�cial intelligence to recon�g-

ure on-the-�y the �rewall accordingly as it has detected an attack. This, being

the objective of this master thesis, will be much more explored later. What can

be said at this point is that this could not be done without such an highly �exible

�rewall which is the cornerstone of all further considerations.

Example of usages of mmb as a firewall
Let us �rst consider a few simple use cases.

vpp # mmb add ip − p r o t o != udp ip − p r o t o != t c p drop

Blocks every IP protocol but TCP and UDP

vpp # mmb add tcp −opt 22 drop

Drops all TCP packets that contain option 22

We can see it is fairly easy to block some unwanted tra�c via a simple command

on-the-�y. If we want however to de�ne a model of what is acceptable tra�c

and block everything else, this can also be done easily and intuitively.

vpp # mmb f l u s h # e r a s e s a l l pre − e x i s t i n g r u l e s

vpp # mmb add− s t a t e f u l ip − p r o t o t c p ip − s a d d r 1 0 . 0 . 0 . 1 0 / 2 4 a c c e p t

vpp # mmb add ip − p r o t o t c p drop

Re�exive ACL that blocks everything but TCP connections initated from

10.0.0.10/24

In this example, we de�ne an ACL (access control list) that allows TCP connec-

tions originated from a particular subnetwork and blocks everything else. We

can see from these examples that, whether we want to exclude a particular type

of tra�c (for example after detecting an attack) or rede�ne entirely our model of

allowed tra�c, this can be done with little di�culty (no advanced programming

required) from a simple command line interface.

8

Part II

Data Generation

3 Testbed description

Designing an AI-powered �rewall poses many challenges among which the

collection of data to design and train said arti�cial intelligence. In order to do so,

a special test environment to create and record legitimate and malicious tra�c

was necessary. The con�guration of this testbed is fairly simple as a simple

network of only two (virtual) machines was su�cient. This con�guration is

designed solely for tra�c generation and capture, hence, it is a fairly simple

con�guration

In the beginning, the emphasis is put on generating legitimate and malicious

tra�c to capture in order to have su�cient data for experimentation, various

tests and for training learning algorithms. No �rewall needs to be active during

this phase. The topology here is made of 2 Kali Linux hosts virtual machines

connected with each other through a virtual link.

The machines are running on the same host machine through the VirtualBox

hypervisor. If Internet access is required for some reason, as for adding some

tools, which should be considered very carefully as there will be malicious tra�c

on the network, a NAT interface can be optionally added to the desired virtual

machine. This allows access to the wider Internet with the host acting as a

software NAT. However, this should be avoided as soon as malicious tra�c

has been generated. The use of virtualization can allow to restore it to a safer

previous state once infected, if Internet communication were needed, before

allowing it Internet access.

As VirtualBox completely isolates machines apart from virtual links, the ad-

dress of the interface connected to the NAT could be the same for the two

machines. It is dynamically assigned through the DHCP protocol by the hypervi-

sor. It does not matter much as the only purpose of these virtual subnetworks is

to o�er Internet connectivity through the hypervisor software acting as a NAT.

11

Chapter 3 Testbed description

Figure 3.1: Data generation testbed network layout

Each virtual machine was allocated 2.5 GB of RAM and a single CPU core.

They both ran under Kali Linux version 2020.3. The choice of Kali Linux as both

attacker and target is motivated. Indeed, it is fairly obvious that a distribution

specially tailored for penetration testing is particularly adequate for the attacker.

The great amount of tools it provides, like the Metasploit framework, makes it

perfect for generating malicious tra�c.

Using it also on the target, apart from the ease brought by the uniformity of

the testbed environment, is also motivated by the fact that a distribution made

specially for the teaching of penetration testing might present (voluntarily) a

little more vulnerabilities to be taken advantage o�. Until fairly recently, every

program on Kali Linux ran as the root user. [Kal] This means that although the

goal is to record the tra�c and not necessarily to infect the target, we are more

likely to see the target comply and thus to record more interesting samples of

malicious tra�c.

In later stages of the thesis, the data generated on this testbed will be used to

con�gure the mmb-based �rewall. This will be described in the corresponding

chapters dedicated to �rewall con�guration.

12

4 Generated tra�ic

The tra�c generated on the testbed has the purpose of being used to train (su-

pervised) machine learning algorithms to establish a model of what is legitimate

tra�c and what is illegitimate tra�c (that is tra�c used as part of an attack).

This gives us two classes of tra�c to detect. These should be the classes the

classi�er algorithm is trained to detect. For this to work, the tra�c will have to

be "featurized", which will be discussed later, but more importantly, it must be

divided in the 2 classes already.

The solution to this problem is actually pretty self-evident. If we generate and

record the legitimate and attack tra�c at di�erent and mutually exclusive period

of times, they are very simple to divide into the 2 classes. More practically, they

are simply recorded into di�erent �les labelled with the type of tra�c recorded.

Let us now discuss the di�erent types of generated tra�c, and the motivations

for generating and capturing it. The �rst thing that needs consideration is

that machine learning techniques are very often opaque. They excel at pattern

recognition, but often, describing said pattern is not an easy feat. What must be

avoided is creating undesired pattern that the algorithm could pick upon.

If we generate many types of attacks that only use UDP, and we generate

legitimate tra�c that is only TCP-based, the machine learning algorithm would

most likely detect that parasitic pattern as a major criterion for discriminating

tra�c,that is if the network protocol is indeed one of the features, and thus

bring nothing of value, discriminating in an inadequate fashion. Worse even,

it might do so silently. If the model considered is completely opaque, let’s say

for example, a neural network, every performance measure of the algorithm

might be excellent, but it would only be due to the undesired patterns in the

considered learning and testing sets and there would be no way of detecting this

silent failure without introducing new data that does not present this pattern.

13

Chapter 4 Generated tra�ic

To avoid introducing this kind of unwanted patterns, the legitimate and

undesired tra�cs must look alike as much as possible, that is in every way but

for their "maliciousness" or lack thereof.

The generated tra�c is divided in 4 types of applications and exploitations

thereof: HTTP (web tra�c), FTP (�le transfert), SMTP (mail), and UDP applica-

tions (audio streaming).

For most types of tra�c, no matter whether when generating malicious or

legitimate tra�c, there was always a simple server (not necessarily vulnerable)

running on the target machine and the attacker machine acted as a client. The

presence of a server is often necessary as in its absence, the target does not

respond adequately and the attack is interrupted before any malicious tra�c

can be captured. The server needs not be vulnerable as long as the malicious

tra�c can be captured. The malicious tra�c is mostly generated using the

Metasploit framework, which usually allows to attack regardless of being aware

of a vulnerability and just reports at the end of the attack whether the exploit

was successfully or not.

4.1 Statistical description: introduction

In this section, the generated tra�c is described statistically with respect to the

total number of both packets and �ows per class of tra�c and proportion thereof.

A detailed list of attacks is also provided.

These statistics illustrate similarities and di�erences between attack and le-

gitimate tra�c. The amount of collected data is a prime example of this. The

attacks on a given application generate an often signi�cantly di�erent amount

of tra�c than the actual application. This is an indication we should very much

care about the sending rate when trying to classify our tra�c.

Another interesting detail would be that attack TCP �ows often terminate

wrongly. Although this is interesting, it is unlikely to be usable by a �rewall

which cannot block all packets up to the point of termination, which would

prevent normal communication.

14

Statistical description: introduction Section 4.1

These statistics provide our �rst unanswered dilemma: "Should we classify

tra�c at the �ow or the packet level ?". Some applications, like UDP audio

streaming, will appear as one long �ow whereas some attacks as port scanning,

will create a �ow per couple of packets. Which representation for tra�c will

allow to better recognize those? Would this be adequate for a di�erent kind of

tra�c? As it is unclear which performs better in a general case, classi�cation will

later be done both at the packet and �ow level in an investigative comparative

study.

Almost all malicious tra�c was generated through the Metasploit framework

on the attacker machine. Directly shipped with Kali Linux, this framework

allows to perform easily a number of known attacks on known vulnerabilities of

some software. One just needs to select an attack and pass it basic parameters

as the address of the target machine and the targeted port number. A complete

list of attacks used is available in section 4.4. The attack tra�c that does not

originate from the Metasploit framework is simple port scanning generated

using the nmap tool, which is also provided with Kali Linux.

Legitimate tra�c was generated by genuine use of services running on the

target machine. For HTTP tra�c, the victim machine ran a simple web server in

Python that exposed a few simple HTTP-based forms and pages. The attacker

machine acted as a client, requesting pages and �lling forms through the Firefox

web browser.

For legitimate SMTP tra�c, in a similar fashion, the victim machine ran a

simple SMTP server in Python. The server did not really transfer mails anywhere,

it just received them and did nothing with them. The attacker machine sent a

few emails to the server through a small Python script. The emails’ body, sender,

and receiver were chosen randomly among a pool of predetermined candidate

values. This would be very questionable if we were dealing with spam, but it

shouldn’t matter much here as the considered attacks are very much di�erent

from this legitimate tra�c and this information will not really be used much by

the machine learning techniques considered.

Legitimate FTP tra�c was built with the same approach. The victim machine

ran a simple FTP server written in Python while the attacker machine, with a

15

Chapter 4 Generated tra�ic

similar script, acted as client. The client used the FTP connection to request and

download a list of pictures stored on the attacker’s machine.

Legitimate UDP tra�c was generated in the form of audio streaming. The

victim machine shared an audio �le to the attacker machine by sending it over

UDP on the shared link. The victim and attacker both used the VLC media player

respectively as server and client for this audio application.

The simple servers used for HTTP, SMTP, and FTP legitimate tra�c gener-

ation also ran when generating the malicious tra�c targeting vulnerabilities

of applications using these protocols. The reason is that it was necessary for

the malicious tra�c to be generated and captured. Attacks in the Metasploit

framework do not send anything if they do not receive responses compliant with

the protocol. To capture anything representative of malicious tra�c, one must

thus comply with the protocol.

All tra�c generated, both legitimate and malicious, was captured using tcp-

dump on the victim machine. Each di�erent application and attack was stored

in a di�erent �le. This allows an easier analysis of the composition of the total

captured tra�c for statistical description.

4.2 Packet-related statistics

The statistics in this section come from analyzing the pcpap capture �les

generated with tcpdump with Wireshark. Some of these statistics can be obtained

by merging all of �les related to either legitimate or malicious tra�c into a

single pcap �le (for example by using the mergecap tool). However, the tra�c

generation was interrupted multiple times due to schedule constraints. For

recording minutes worth of tra�c, there is interruption of several days. This

gives an extremely long and mostly inactive time span when analyzing the entire

capture �le. This also yields extremely low average sending rates which are not

representative of the actual network load. This is why table 4.1 gives �gures

calculated on a time span that is calculated as the sum of the time spans of each

capture �le, without accounting for the interruptions. This is referred to as

capture time. Real time is also given as an indication but it really cannot be

interpreted much apart from re�ecting the conditions of the experiments.

16

Packet-related statistics Section 4.2

LEGITIMATE MALICIOUS

Number of packets 44373 31038

Number of TCP packets 37024 26494

Number of UDP packets 7349 4544

Average packet size 6437.62 B 2984.27 B

Number of bytes 285 656 784 92 606 267

Time span (real time) 26.07 days 6.97 days

Time span (capture time) 2748.98 sec 1019.216 sec

Average packets/sec (real time) 0.0197 0.0514

Average B/sec (real time) 126.8 153.65

Average packets/sec (capture time) 16.14 30.45

Average B/sec (capture time) 103 913.73 90 860.29

Table 4.1: Packet-related statistics

From table 4.1, we observe 2 important facets of tra�c: sending rate and packet

size. Indeed, clear di�erences are observed between legitimate and malicious

tra�c on both aspects. Malicious tra�c seems to consist of more smaller-sized

packets sent at a higher rate than legitimate tra�c which sends larger packets

at a slower rate. We should note if legitimate tra�c has a lower packet sending

rate, it also has a larger bitrate, meaning that the sending rate is only lower due

to the bigger transmission time required for bigger packets. Should we conclude

that the sending rate is not important information? That would be too hasty. It

was easy to get this general conclusion from the two statistics but it would have

been impossible, had we ignored the second. The trend might not be the same

for a smaller subset of legitimate and malicious packets and both are needed to

be interpretable in this way.

17

Chapter 4 Generated tra�ic

4.3 Flow-related statistics

Another way to look at the tra�c from the testbed is by looking at �ows.

Flows were extracted from the same capture �les used in the previous section by

using the tshark tool. This tool can be used to directly extract relevant statistics

about the �ows in a capture �le. This is part of what has been done to obtain

the statistics in this section. It can also be used to extract in separate �les the

packets belonging to each �ow. Using a custom Python script, this was used

to extract additional information that was not given by tshark regarding �ow

termination (table 4.3).

These statistics (table 4.2) show that an observation that was made at the

packet level tends to be true also at the �ow level: attack tra�c is often made

of smaller packets sent at a higher rate. An interesting feature of malicious

tra�c is that many �ows are quite short-lived. This is in part due to the port

scanning tra�c but not only. For example, many exploit attacks are very small-

sized: they comply with the application for a little while until they get an

authorization to send a packet containing the malicious payload and then either

the exploit succeeds or not, but communication can end as the attack is already

completed. Even attacks that generate large amount of tra�c tend to generate

many �ows rather than one large �ow. We see that legitimate tra�c prefers

longer-lived �ows. In the particular case of TCP, TCP connections are often

reused. The number of packets (see table 4.1) is higher for legitimate tra�c but

there are nevertheless less �ows. The TCP TTL is always identical because it is

an artefact of the testbed con�guration. TCP RTT does not vary greatly either. It

is interesting to see a signi�cantly shorter RTT in one direction but it is unclear

how to interpret this. This however somewhat consolidates the idea that the

sending rate and delays in general are important characteristics of tra�c.

From the information about the proportion of each tra�c type (tables 4.2

and 4.3), few conclusions can be made but what is easily observed is that the

number of �ows is greatly in�uenced by the application type and whether or

not the tra�c is malicious. This is an indication that the application type will

be important for discrimination. In the subsequent sections, when considering

means of discrimination, �nding ways to identify the type of application must

be a part of the discrimination strategy.

18

Flow-related statistics Section 4.3

Termination statistics (table 4.3) on TCP �ows show that malicious �ows

are much less likely to end in correctly (using the FIN TCP �ag). While this

information mostly cannot be used for discrimination, as we cannot simply wait

for �ows to end before transmitting them without breaking the application, it

illustrates an interesting property of attacks: their compliance to protocols is

minimal: they only comply enough for the attack to work and are not particularly

concerned with complying with standards. This indicates that loose compliance

with protocols is something to look for when trying to identify attack tra�c.

Connection termination cannot be used but network protocols are standardized

in many ways. Deviations from the norm could show patterns that would allow

identi�cation of attacks.

Retransmission and goodput statistics (table 4.3) show that there is no big

di�erence in goodput. Less retransmissions seem to appear in attack tra�c. This

can be explained by the smaller in average size of attack �ows and maybe to an

extent by lack of protocol compliance. This is however somewhat dubious as

many attacks would care about reliable transmission of their malicious payload.

From table 4.4, we see that the amount of tra�c in a single �ow can be

very di�erent between legitimate applications and attacks for a given type of

application. It is interesting but of little practical application for discrimination.

It is however an additional indication that the sending rate is important. This

consolidates the idea that results of per-packet and per-�ow discrimination

might be signi�cantly di�erent and that both should be considered.

19

Chapter 4 Generated tra�ic

LEGITIMATE MALICIOUS

Number of �ows 1546 3466

Average nb of packets / �ow 28.702 8.95

Max nb of packets / �ow 7349 32

Min nb of packets / �ow 10 1

Mode of nb of packets / �ow 10 1

Max nb of KB / �ow 9746.03 4969.59

Min nb of KB / �ow 1.10 0.058

Average nb of KB / �ow 180.44 26.09

Average �ow duration 8.21 ms 5.3 ms

Max �ow duration 765.17 ms 3509 ms

Min �ow duration 0.9 ms 0 ms

Number of TCP �ows 1545 2215

Number of UDP �ows 1 (large audio 1251

streaming �ow)

Proportion of size 1 UDP �ows

among UDP �ows (port scanning �ows) 0 % 100 %

TCP RTT (Attacker→ Victim) 13 ms 52 ms

TCP RTT (Victim→ Attacker) 275 ms 264 ms

TCP TTL 64 64

Number of HTTP �ows 1273 1103

Proportion of HTTP �ows among TCP �ows 82.39 % 49.80 %

Number of FTP �ows 72 8

Proportion of FTP �ows among TCP �ows 4.67 % 0.36 %

Table 4.2: Flow-related statistics

20

Flow-related statistics Section 4.3

LEGITIMATE MALICIOUS

Number of SMTP �ows 200 105

Proportion of SMTP �ows among TCP �ows 12.94 % 4.74 %

Number of port scanning �ows among TCP �ows 0 999

Proportion of port scanning �ows among TCP �ows 0 % 45.10 %

Number of port scanning �ows among UDP �ows 0 1251

Proportion of port scanning �ows among UDP �ows 0 % 100 %

Number of TCP �ows ended with ≥ 1 FIN �ag 1545 1128

Proportion of TCP �ows ended with ≥ 1 FIN �ag 100 % 50.94 %

Number of TCP �ows ended

"normally" with ≥ 2 FIN �ags 1544 124

Proportion of TCP �ows ended

"normally" with ≥ 2 FIN �ags 99.94 % 5.6 %

Number of TCP �ows ended with ≥ 1 FIN, 0 RST �ags 1545 29

Proportion of TCP �ows ended ≥ 1 FIN, 0 RST �ags 100 % 1.3 %

Number of TCP �ows ended with timeout 0 0

Proportion of TCP �ows ended with timeout 0 % 0 %

Average number of unique bytes per TCP �ow 176 833.29 36 223.70

Average number of retransmitted bytes per TCP �ow 433.01 0

Average TCP goodput 99.21 % 98.52 %

Table 4.3: Additional �ow-related statistics

LEGITIMATE MALICIOUS

HTTP 7380.174 66061.99

FTP 3 662 699.33 278.56

SMTP 490.57 292.42

Table 4.4: Average number of bytes per TCP �ow type

21

Chapter 4 Generated tra�ic

4.4 Details of a�acks

A detailed list of attacks, proportion of tra�c they represent and short descrip-

tions are provided below. All attacks are performed except for port scanning are

performed using the default con�guration in the Metasploit framework. Only

essential parameters as target IP address and port were passed as parameters.

nmap was used for the port scanning. For TCP, SYN scan was used (option -sS).

A SYN scan consists in sending the �rst packet to initiate a TCP connection

and wait for a response.[Don19a] The TCP connection is never really initiated

(TCP’s handshake requires an exchange of 3 packets). For UDP, empty (in terms

of payload) UDP packets are sent. If a UDP response is received, a UDP service

is running. If an ICMP noti�cation is received instead, the port is closed or

�ltered.[Don19a] This is done with nmap’s option -sU.

Tables 4.5 and 4.6 illustrate the extent of the variety of the attack tra�c. We

also see that although some attacks generate much more tra�c than others, it is

interesting to see that the proportions vary greatly depending on whether we

analyze tra�c per packet or per �ow.

Name CVE-ID EDB-ID % of �ows % of packets

Easy FTP

bu�er over�ow

N/A 16737 0.028 % 0.058 %

Filezilla FTP Server

Malformed Port DOS

2006-6564

2006-6565

2914 0.028 % 0.09 %

FTP JCL execution N/A N/A 0.057 % 0.12 %

War-FTPd 1.65

Password Over�ow

1999-0256 16706 0.028 % 0.045 %

War-FTPd 1.65

’USER’ Remote

Bu�er Over�ow

2007-1567 3570 0.028 % 0.038 %

Table 4.5: Attacks list (part 1)

22

Details of a�acks Section 4.4

Name CVE-ID EDB-ID % of �ows % of packets

Pure-FTPd-External

Authentication Bash

Environment Variable

Code Injection

2014-3659

2014-3671

2014-7196

2014-7227

2014-7910

2014-6271

2014-6277

34862 0.057 % 0.103 %

Apache Tomcat

Manager-Application

Deployer Authenticated

Code Execution

2009-3548

2009-3843

2009-4188

2009-4189

2010-0557

2010-4094

16317 0.028 % 0.032 %

Apache Tomcat -

CGI Servlet

enableCmdLine

Arguments Remote

Code Execution

2019-0232 47073 0.46 % 0.7603 %

Oracle Weblogic

Apache Connector

- POST Bu�er

Over�ow

2008-3257 18897 0.028 % 0.032 %

Win VNC Web

Server 3.3.3.r7 -

GET Over�ow

2001-0168 16491 0.028 % 0.039 %

Hashtable HTTP

Collisions DOS

module

2011-4858

2011-4885

2011-5034

2011-5035

N/A 28.85 % 82.98 %

Open SMTPd -

MAIL FROM Remote

Code Execution

2020-7247 48038 0.057 % 0.051 %

Port scanning (nmap) N/A N/A 67.37 % 11.01 %

SMTP fuzzing N/A N/A 2.897 % 4.48 %

Haraka SMTP

command injection

N/A 41162 0.028 % 0.09 %

Mercury Mail SMTP

Auth Cram-MD5

2007-4440 16281 0.028 % 0.064 %

Table 4.6: Attacks list (part 2)

23

Chapter 4 Generated tra�ic

A short description of each attack is provided below.

Easy FTP bu�er overflow
This attack exploits a stack-based bu�er over�ow in EasyFTP Server 1.7.0.11

and earlier. The server fails to check input size while parsing ’CWD’ commands,

which leads to a bu�er over�ow. A small payload of roughly 500 bytes is injected

into a 264 bytes bu�er ’�xing’ the return address post exploitation. [Sec] [Rap]

The malicious payload can be chosen. The output of the attack is to make

the server run arbitrary code. Usually, this is used to establish a reverse shell

connection.

Filezilla FTP Server Malformed DOS
This attack triggers a denial-of-service condition in the FTP Server Administra-

tion Interface in version 0.9.4.d and earlier. By sending a procession of excessively

long USER commands, it overwrites the stack and causes an exception. [Sec]

[Rap]

FTP JCL execution
This attack exploits a vulnerability in the FTP server on z/OS mainframes that

allows issuing of JCL jobs to run arbitrary code. z/OS is an operating system

by IBM that was created in 2000 for their newer mainframes. JCL stands for

Job Control Language. It is a collection of scripting languages used on IBM

mainframes to create batch jobs and for starting subsystems. An authenticated

user is able to provide code that will be executed by the server through a JCL

jobs if they can upload �les. [Sec] [Rap]

War-FTPd 1.65 Password Overflow
War-FTPd is a free FTP server for Windows. A bu�er over�ow found in the

PASS command in War-FTPD 1.65 is exploited. A successful exploit makes the

server execute a malicious payload consisting of arbitrary code chosen by the

attacker (usually to initiate a reverse shell connection) but even failed attempts

can bring the service down completely (acting de-facto as DoS). [Sec] [Rap]

War-FTPd 1.65 ’USER’ Remote Bu�er Overflow
A bu�er over�ow found in the USER command in War-FTPD 1.65 is exploited.

24

Details of a�acks Section 4.4

Successful exploit makes the server execute a malicious payload, i.e. arbitrary

chosen by the attacker (usually to initiate a reverse shell connection). [Sec] [Rap]

Pure-FTPd-External Authentication Bash Environment Variable Code
Injection

This exploits the ShellShock vulnerability, a �aw in how the Bash shell ex-

ploit arguments. The server is often set up to use an external Bash script for

authentication which allows to make use of the vulnerability to make it run a

malicious payload. [Sec] [Rap]

Apache Tomcat Manager-Application Deployer Authenticated Code Ex-
ecution

This attack exploits Apache Tomcat servers with an exposed manager appli-

cation. It uploads a payload as a WAR archive containing a jsp application using

a PUT request. The manager could also be directly attacked using an upload

page in the manager application but this exploit works without doing this. [Sec]

[Rap]

Apache Tomcat - CGI Servlet enableCmdLineArguments Remote Code
Execution

This exploits a vulnerability in Apache Tomcat’s CGIServlet component. When

a certain setting (enableCmdLineArguments) is set to true, a remote user can

make use of the vulnerability to execute system commands, ultimately giving

them the possibility of remote code execution. [Sec] [Rap]

Oracle Weblogic Apache Connector- POST Bu�erOverflow
Weblogic is web server by BEA Systems. There is plugin for this web server

used as a bridge for an Apache server that serves static and dynamic pages to

delegate dynamic pages generation to the Weblogic server. This attack uses a

stack-based bu�er over�ow in the BEA Weblogic Apache plugin that fails to

properly handle some specially crafted HTTP POST requests. This causes a

bu�er over�ow due to improper use of C’s B?A8=C 5 function. [Sec] [Rap]

Win VNC WebServer 3.3.3.r7 - GET Overflow
The AT&T WinVNC web server v3.3.3r7 (and below) presents a bu�er over�ow

25

Chapter 4 Generated tra�ic

vulnerability in certain conditions. If debugging mode with login is enabled, an

excessively long GET request can overwrite the stack. [Sec] [Rap]

Hashtable HTTP Collisions DOS module
This module takes advantage of a common vulnerability in many applications

and programming languages. It generates elements that are going to be placed

in a hash table. These objects, once passed into the hash function, all have the

same output (the hash). This can be used to make a web server get stuck on

parsing the parameters of a single HTTP POST request during up to hours of

CPU time. [Sec] [Rap]

Open SMTPd - MAIL FROM Remote Code Execution
This attack injects a command in the MAIL FROM �eld during SMTP com-

munication with an OpenSMTPD server to execute a command as the root user.

[Sec] [Rap]

Port scanning (nmap)
This application can be used to identify open ports on a given host. Using

a variety of techniques like SYN scanning, ACK scanning, or UDP scanning,

packets are sent on the entire range of available ports and depending on the

response (or lack thereof), a conclusion is made about which ports are open

or likely to be. [Don19a] This information can be further used to start more

malicious attacks. For example, if port 80 is open, one can assume the presence

of a web server.

SMTP fuzzing
Simple SMTP fuzzer. Generates a variety of inputs, in the form of slightly

modi�ed SMTP requests. Depending on the response to such a malformed

request, bugs and vulnerabilities can be revealed. [Rap]

Haraka SMTP command injection
A vulnerability in the extension of the Haraka SMTP server for processing

attachments in versions 2.8.9 and below allows to inject commands that will be

executed by the server.[Sec] [Rap]

26

Details of a�acks Section 4.4

Mercury Mail SMTP Auth-Cram MD5
Sending a specially crafted argument to the AUTH CRAM-MD5 command of

the Mercury Mail Transport System 4.51,which is used to provide the hash of a

combination of the user’s password and data from the server for authentication

purposes, the attacker can cause a stack bu�er over�ow by which he can execute

arbitrary code. [Sec] [Rap]

27

Part III

Automatic configuration

5 Candidate and selected features

With some guidance from the statistical description of both malicious and

good tra�c, it is time to consider how the data is to be "featurized". Let us

explain what it means. Supervised machine learning algorithms function in the

following fashion. They are given as inputs a set of inputs and outputs of a

certain function and in a way speci�c to the algorithm, they approximate to

the best of their possibilities that function by a model they build. This is called

training of the algorithm.

For some machine learning algorithms, like decision trees, that model can

actually be transformed into an interpretable and readable function that is equiv-

alent to the model.[GW19] Some other techniques, called "black-box" algorithms

have no direct translation between the model and some readable function. In

that case, your model is the only exact representation of the approximated

function.[GW19]

When we talk about features, we are talking about the speci�c form of input

variables. They are n-dimensional variables, that is vectors of values. They can

be numerical or qualitative attributes of the data they represent. In the case of

classi�cation, the associated output of each feature vector is a simple label, its

class.[GW19]

In more concrete terms regarding the speci�c problem of automatic �rewall

classi�cation, we want to identify if packets or �ows are either legitimate or

malicious. "Legitimate" and "malicious" would thus be the outputs or classes

and what must be determined now is which set of input variables (the features)

are the most adequate to represent packets and �ows in the context of attack

detection.

Before making choices regarding candidate features, there are few things

that need to be explained. We should keep in mind that the objective is to �nd

31

Chapter 5 Candidate and selected features

models of tra�c legitimacy that can be used to con�gure classical rule-based

�rewalls. Other discrimination strategies could be used, like generating features

evenly spread across the bytes of packets. This strategy has been considered in

other research work and has been somewhat successful for the considered data.

[Ver14]

However, models resulting from such techniques can only be very opaque

and complicated. They also lack in technical motivation and are very di�erent

from the type of rules that are used to con�gure �rewalls currently in use. The

objective of the research performed here is rather to choose features in a way

that will allow to build simpler models from features that are far from random

but are rather originated from a knowledge of cyberattacks’ mechanisms.

The main advantage comes in the form of interpretability. An important

consideration is the practicality of use of an automatically con�gured �rewall.

Let us imagine the �rewall blocking packets due to values present in di�erent

combinations of arbitrary bytes su�ers from a false positive issue, that is, it

blocks packets that should not be. That would create a nigh-impossible situation

for a system administrator tasked to identify which rules have to be removed so

that legitimate tra�c is allowed again.

This is why technical motivation, simplicity, and interpretability are paramount

in the choice of features performed here. In the following section, candidate

features, of common use in �rewall rules and/or of great technical motivation

and interpretability will be discussed. The statistical analysis performed earlier

will also be of great help in assessing the potential decision power harbored by

said features.

5.1 Discussion of candidate features

Per-packet discrimination: source address
This looks like a prime candidate as feature. Indeed, if an attacker is identi�ed,

why should they be allowed to keep sending tra�c to the protected network?

Nevertheless, this approach is too simplistic for several reasons. First, this is quite

ine�cient. An attacker could spoof their IP address, or use one address per few

packets of attack tra�c. Spoo�ng is known to be extremely prevalent. [Don19a]

32

Discussion of candidate features Section 5.1

Secondly, and more importantly, there is a signi�cant risk of denying access

to legitimate users. When possible, security measures should avoid denying

legitimate access, otherwise many attacks are automatically transformed into

denial of service (DOS). In the context of a �rewall, we should remember that

legitimate users are susceptible to be infected by malware. When this occurs,

legitimate users keep on with their legitimate use but also become a proxy for

the attacker to perform attacks. In summary, legitimate users can be attackers,

and thus, their access cannot be simply revoked. This is the reason to reject this

feature in the context of per-packet discrimination.

Per-packet discrimination: destination address
When working at the packet level, an interesting question we may ask is

the direction of tra�c. Are packets leaving the protected network or are they

entering it? It may be interesting to make a distinction between those 2 cases.

The protected subnetwork is mostly assumed to be safe, as the role of a �rewall

is to protect this smaller network from attacks originating from other networks

or the wider Internet. A response to an attack is to be considered an attack itself

(as the attacker may have exploited a vulnerable host), but it does not matter

much as if attacks cannot go through, they won’t get any response. This does not

mean we should not prevent anything from leaving the domain but it is certainly

su�cient enough motivation to keep destinations addresses as features in the

context of per-packet discrimination.

Per-flow discrimination: Addresses of communicating hosts
In the context of per-�ow tra�c discrimination, tra�c is bidirectional. A

request and its response are to be grouped in the same �ow. Source and destina-

tion addresses are thus often permuted, and at the �ow level, we can thus no

longer talk about source or destination but just in terms of pairs of addresses of

communicating hosts. Every reason for not considering source addresses cited

above are still valid. As destination addresses were kept only for the matter

of identifying packet’s direction, which has become meaningless in this new

context, both addresses of communicating hosts are rejected as features for
per-�ow discrimination.

Destination and origin ports
These represent very pertinent information. Indeed, in many applications,

33

Chapter 5 Candidate and selected features

the server uses a well-known port. This is low-level information that can be

used to determine information about the application layer, which is thus very

valuable. The client often uses random port, but it is possible that some attacks

always use the same client port, which could help identify them. In terms

of destination and origin ports, those will be inverted depending on whether

the message is from client to server, or server to client. Nevertheless, in any

case they will correspond to either a client or server port whose usefulness for

discrimination was already argued. These arguments are valid in both per-packet

and per-�ow discrimination. Destination and origin ports are thus to be kept
as features both for per-packet and per-�ow discrimination (as a pair of

communicating ports).

Transport layer protocol The form of tra�c varies greatly depending on

the transport-layer protocol. TCP packets/�ows o�er reliable data transport

and congestion controls, while their UDP equivalent are free to do so at the

application layer if so needed. Describing a �ow without specifying the transport

protocol would be a poor idea as these mechanisms could have an important

impact on the sending rate which could be an important characteristic of many

attacks and legitimate applications. Conformity with the TCP protocol could

also di�er between attacks and legitimate tra�c. In the statistics on generated

tra�c, we observed that most attack TCP �ows were ended wrongly (with RST).

This in particular won’t be usable in a �rewall but maybe these attack �ows take

other shortcuts with the TCP speci�cation. This would go unnoticed if we treat

TCP �ows indi�erently from UDP �ows. The transport layer protocol is to be

kept as feature both for per-packet and per-�ow discrimination.

Per-packet discrimination: TCP/UDP checksum
The checksum is optional in UDP but not in TCP. UDP checksums are poten-

tially more often set to 0 in attack tra�c which more often does not care about

reliable delivery and error correction. When used correctly, both in TCP, or in

UDP (whether by a legitimate application, or an attacker complying with its

application-layer protocol), the checksum contains information derived from

the payload, that is application-layer data. Such a data summary is quite per-

tinent as attacks often target the application and not the underlying network

stack. The TCP/UDP checksum should be kept as feature for per-packet
discrimination.

34

Discussion of candidate features Section 5.1

Per-flow discrimination: TCP/UDP checksum
In a �ow context, talking about the checksum of a singular packet does not

make much sense. Nevertheless, some pertinent information could be derived

from the checksums of packets in the �ow. The proportion of checksums=0

would be interesting. It would allow to identify easily UDP �ows that do not use

the checksum (their proportion would be 100%).

Another interesting derived measurement could be the average checksum. Aver-

aging checksums makes little sense in the context of error correction but this

can create a summary of typical payload data. Similarly to the proportion of

null checksums, this would allow to easily identify UDP �ows which do not

use the checksum as the average would be 0. Information o�ered by these two

measurements would be heavily correlated as they are derived in a similar way

from the same data. As the second encompasses most advantages of the �rst,

it would be wiser to only use it and not the �rst. Dimensionality reduction

is often necessary in machine learning and other types of pattern recognition

when considering too high a number of features. Performance deteriorates past

a certain point due to lack of training samples for each possible combination of

features. This is known as the curse of dimensionality.[Tru79] If two features

are a projection of the same dimension of a physical reality they will be highly

correlated. Keeping the most expressive and rejecting the second is the reason-

able thing to do. Average TCP/UDP checksum is thus kept as feature while

the proportion of 0-checksums is rejected.

TCP flags
ACK, RST, SYN, FIN are used for connection setup and termination. The TCP

connection handshake is mandatory at the beginning of each connection and

termination data is only available when the �ow ends which is potentially very

long after connection setup. A �rewall cannot intercept all packets before con-

nection termination as it would break the application. These are thus irrelevant

and rejected as features as they will be either similar for legitimate and attack

tra�c, or simply unusable.

NS, CWR, ECE, URG are likely to be set by middleboxes on the path rather than

the attacker or application and there is no reason to think they would be used

signi�cantly di�erently in an attack than a legitimate application anyway. They

are thus rejected as features
PSH has no UDP equivalent. It might make some sense in a denial-of-service

35

Chapter 5 Candidate and selected features

attack to avoid all bu�ering by always setting PSH=1. It can be interesting to

considered as a feature precisely because of this eventuality. It can simply be set

as 0 or N/A for UDP packets. The TCP PSH �ag should be used as a feature
in the context of per-packet discrimination. This can be adapted for per

�ow discrimination, for which it is pertinent for the exact same reason by simply

taking the proportion of packets in the �ow with PSH=1. This should be

used as a feature in the context of per-�ow discrimination.

TCP options
TCP options are impractical as features due their optional nature and variable

length. They should thus be rejected as features.

Per-packet discrimination: time since previous packet
The sending rate is an important feature of any network application (e.g.

critical in audio/video streaming) and of many attacks (e.g. �ooding = high

sending rate). The time since the previous packet should somewhat re�ect the

sending rate. It is however not an excellent estimator as it will be in�uenced by

packets unrelated to the �ow the packet belongs to. This is impossible to take

into account without working at the �ow level. For this reason, the estimator

is probably the best we can do in that regard. It should be used as feature for
per-packet discrimination.

Per-flow discrimination: average time between 2 packets
This is a much better estimator of the sending rate and should thus be used

for per-�ow discrimination as a feature.

(Average) payload length
Attacks often target a vulnerable application, not the network stack. Data

pertaining to the application is thus extremely valuable. One of the most basic

ways to describe data is its size. It is thus only natural to use payload length as a

feature. Combined with checksum and port numbers, we easily get an overview

of what is going on at the application layer. Payload length should thus be used

as feature for per-packet discrimination and average payload length for
per-�ow discrimination.

36

Discussion of candidate features Section 5.1

Summary of chosen features
Below is a table summarizing the features chosen for each mode of tra�c

discrimination.

Features for per-packet

discrimination

Features for per-�ow

discrimination

Destination address

Pair of

communicating

ports

Destination port

Transport layer

protocol

Source port

Average TCP/UDP

checksum

Transport layer

protocol

Average time

between 2 packets

TCP/UDP checksum

Average payload

length

Time since previous

packet

Proportion

of packets

with TCP PSH �ag

Payload length

TCP PSH �ag

Table 5.1: Selected features

37

6 Considered supervised ma-
chine learning algorithms

We want to build a model that is able to classify tra�c into two classes:

legitimate and malicious. It is a classical classi�cation problem to which we can

apply supervised machine learning that usually perform well for classi�cation.

There is a major trade-o� that arises from the nature of the following techniques:

interpretability versus e�ciency. Interpretability means the insight that the

derived model gives on the relationship between the features and the output of

the classi�er.

Packet and �ow discrimination is indeed essentially a classi�cation problem

but there is an additional consideration to keep in mind: the objective is to

con�gure a classical rule-based �rewall. If the classi�cation error is minimal

but the model cannot be used to con�gure a �rewall, it is essentially useless.

A �rewall cannot be purely black-box. Aside from very serious performance

considerations, in case of misclassi�cation, legitimate tra�c is blocked. The

system administrator must imperatively be able to bypass the model to restore

legitimate network applications’ functionality. It would be nigh impossible on a

custom �rewall based on an black-box classi�er.

This is why interpretability is paramount. Unfortunately, the most e�cient

machine learning techniques are, when not entirely opaque, di�cultly trans-

formed into a set of rules. This problem is however mitigated by the fact that

there exist techniques and algorithms to change an opaque classi�er into a set of

rules. [HBV07] This is particularly interesting as this allows a study of di�erent

models’ performance without considering the issue of interpretability. However,

it should be kept in mind that these techniques can lose some of the model’s

power as they do not yield a direct translation. [HBV07] Let us now go over a

few candidate algorithms.

39

Chapter 6 Considered supervised machine learning algorithms

6.1 Decision trees

It is not expected that decisions trees perform particularly well compared to

more advanced techniques. However, they should be included regardless because

of their ease of interpretability. Indeed, they allow for a direct translation of the

model built into a set of rules. The idea is to build a tree to classify the data.

Each node contains a set of data points,

that is a pair {Features’ values, Output class}.

The root contains the entire learning set used to build the tree, and the leaves

contain points that will be classi�ed in the same way. The tree is built by

recursively splitting the node into smaller sets that will become their children

according to the value of one of the features. The branches represent that

value, all nodes below that branch are nodes for which the feature used as

splitting criterion exhibits the same value. A path from root to leaf determine a

combination of feature values and the associated class.[HBV07] [GW19] Figure

6.1 shows an example of a simple decision tree that could be learned from packet

data. In this example, the algorithm has detected a simple pattern in which the

only allowed tra�c is HTTP.

Figure 6.1: Example of decision tree

40

Decision trees Section 6.1

One could build such a tree so that every element of the learning set is perfectly

classi�ed. For a set of such points, the tree can be built recursively with the

following procedure[HBV07]:

• If the set contains no element, then it is assigned a class according to some

heuristic.

• If the set contains elements of a single class, then it is assigned that class.

• If the set contains elements from multiple classes, then it is split in multiple

subsets to which the procedure is applied recursively. The split is based

on a single feature’s value.

A somewhat important detail is left to explain, which attribute should be used

to perform the split. An optimal tree would be the smallest tree (in terms of

depth) possible that perfectly classi�es the set. Not all choices can be considered

as this would be too computationally expensive when considering the whole

tree. Finding such an optimal tree is NP-hard. [HBV07] [GW19]

A way to solve this issue is to use a greedy heuristic such as the entropy of a

set. Information theory de�nes the entropy of a set (as

� (() = −
∑
8

?8;>62(?8) (6.1)

where 8 are the values observed in the set and ?8 their frequency of occurrence.

In the case of classi�cation, the values 8 of interest would be the di�erent

classes (/outputs). The best attributes to use as a splitting criterion would be the

one yielding the best reduce in entropy, that is the splitting criterion (/feature)

5 ∗ that maximizes the information gain [HBV07] [GW19]:

�08=((, 5) = � (() −
#∑
:=1

|(: |
|(| � (() (6.2)

5 ∗ = arg max5 Gain((, 5) (6.3)

41

Chapter 6 Considered supervised machine learning algorithms

being the number of subsets for a given splitting criterion 5 , (: being the

di�erent subsets for that criterion 5 .

The algorithm explained above allows for the perfect classi�cation of a given

set. However, perfect classi�cation is most often not desirable. A common issue

with supervised machine learning algorithms is over�tting.[GW19] Over�tting

means that the model built to approximate the relationship between inputs and

outputs is too close to the sample data, yielding an overcomplicated model that

�ts the data more than the actual link between inputs and outputs. Such a model

is more costly due to its complexity and performs worse than a model without

over�tting.

A solution to avoid over�tting of the decision tree is to stop the splitting

before gaining a perfect classi�cation of the learning set. This approach is no

longer used as it is not the best one. It presents the disadvantage of stopping

with a look-ahead of only one step due to the greedy approach.[GW19] The

modern approach consists in in a separate post-pruning phase on the complete

tree. [HBV07] [GW19]

A very interesting property of decision trees for the particular problem of

�rewall con�guration is that it is a generic method that can be used to extract

rules from any opaque model. One can simply use their opaque classi�er on the

learning set and then use the pairs {Inputs, Outputs from the opaque model} as

training data for a decision tree. Doing so, one generally only keeps the correctly

classi�ed pairs. One can then get rules from the derived decision tree. [HBV07]

Such a generic technique is extremely valuable when it is essential to extract

rules from the model as in �rewall con�guration. Other generic techniques for

rule extractions exist but they mostly come in the form of algorithms similar

to decision trees, that is algorithms that can learn directly from data. [HBV07]

The additional step of deriving a better performing intermediate classi�er thus

only makes sense if the rules derived from the data itself perform worse than

the ones derived from the intermediate classi�er.

However, investigating algorithms that perform better than decision trees is

not worthless. E�ectively separating the building of the classi�er from the rule

42

Naive Bayesian classifier Section 6.2

extraction presents the advantage of modularity. If progress is made either in

the �eld of classi�cation, or in rule extraction, that component can be upgraded

independently from the other. This is the reason why it is important to evaluate

the performance of supervised machine learning algorithms other than decision

trees for packet and �ow classi�cation.

6.2 Naive Bayesian classifier

The Naive Bayesian classi�er is based on the usual assumption of indepen-

dence in bayesian inference. We simply consider all features’ in�uence on the

output to be independent and thus consider the probability of a given output

given di�erent observed values as the product of the probabilities of observing

the same output given each of these values with the probability of said value (see

property 6.4). Such classi�ers have been used with a lot of success in antispam

�lters. [Don19b]

It would be somewhat surprising if similar performance could be observed

in �rewalls as features in both packets and �ows are not independent and

considering them as such could ignore the most interesting patterns. However, it

should be noted that in email �ltering, the words are not independent either and

they still perform well, notably on the important criterion of the false positive

rate. [Don19b]

Let us consider the input vector as a set of random variables. Each feature cor-

responds to a random variable and so does the output class. We can thus consider

frequencies of the possible values for the features over a given learning set. We

can also simply compute the frequency of a given output class conditioned upon

the value of a given feature. Assuming independence of the features, we can

simply compute the probability of a given class conditionally to a set of features

values as proportional to the product of the individual prior probabilities with

the probability of the class itself. [Don19b] [NS11]

43

Chapter 6 Considered supervised machine learning algorithms

% (Class = 2 | - = {G1, G2..., G=})
∝ % (Class = 2) % (-1 = G1 | Class = 2)% (-2 = G2 | Class = 2) ... % (-= = G= | Class = 2)

(6.4)

Classi�cation is thus quite simple. One just calculates the prior probabilities

for each feature value in the learning set and the frequency of each feature’s

value (in the LS). Then, new inputs can be classi�ed by �nding the class with

the maximal probability for that given set of features (/ inputs) values.[GW19]

Mathematically this means maximizing the posterior probability , that is �nding

2∗ such that[GW19]:

2∗ = arg max2 % (Class = 2 | - = {G1, G2..., G=}) (6.5)

This (6.5) can be easily computed by considering each possible value of Class,
applying property 6.4 and normalizing the results so that the sum for the posterior

probabilities of each class amount to 1. The value of �;0BB yielding the maximal

value used as index for this probability vector is 2∗ and will thus be the class

assigned to this set of features.

In terms of interpretability, although the model does not transform directly

into rules, at least not the type of rules that we typically use in �rewalls, it is

not entirely opaque. The classi�er can, for any combination of features, �nd the

output class but can also give a measure of certainty of that result in the form of

its probability.

This may be interesting in the case of binary classi�cation as performed by

a �rewall. One may decide to only drop packets that are assigned the class

"Malicious" if they are assigned that class with a certain threshold of certainty

(e.g. 70%). This would allow to diminish the false positive rate at the price of an

increase in the false negative rate. The reverse trade-o� can obviously also be

done as well.

One is o� probably better not playing with said thresholds as both true and

false negatives can be costly and dangerous but nevertheless, this measurement

44

k-nearest neighbors (k-NN) Section 6.3

is available for interpretation. In case of failure of the classi�er, one may use it

as an indication of what went wrong.

6.3 k-nearest neighbors (k-NN)

In k-NN classi�cation, the class assigned to a given sample is the one that is

the most common among its : "nearest" neighbors. The intuition behind such

an algorithm is that inputs that are close should have a similar output. [GW19]

Several metrics are possible for the distance on which this algorithm relies

heavily. For continuous input variables, Euclidean distance is common. Other

metrics, such as Hamming distance, are more adapted for discrete features.

[NFS12]

Euclidean distance between two vectors x, y can be written as:

3euclid(x, y) =
√∑

:

(G: − ~:)2 (6.6)

The lesser-known Hamming distance is de�ned as:

3hamming(x, y) =
∑
:

(G: ≠ ~:) (6.7)

where we use the usual computer science convention for the predicate, i.e its

value is 1 if true, 0 otherwise. The advantage of this metric is that it measures

"overlap" between the vectors. [NFS12] This is often an adequate choice for

vectors of discrete variables as it often makes little sense comparing discrete

values apart from an equality check.

In its simplest form, the training of the algorithm consists simply in keeping

the learning set in memory. Classi�cation of new inputs is done by �nding the

: points of the LS that are the closest to the features according to whatever

distance metric we are using and taking the mode of the classes of the so-called

neighbors. [GW19] [NS11]

45

Chapter 6 Considered supervised machine learning algorithms

For a given input vector x, and a distance metric 3 , we have:

Neighbors(x, 3) = First(:, Sort(!(, 5 (y) = 3 (x, y))) (6.8)

where 5 (~) is the function used as a key for sorting. Sort is a function returning

the ordered version of a vector ordered using the function f, First(: , x) returns

the �rst : elements of the ordered vector x. [GW19] Once said vector is found,

one only needs to �nd its mode for the class, that is the most output common

value.

As such, the algorithm is limited in performance by the size of the learning set.

Luckily, the algorithm can be used as such in a more scalable fashion by removing

objects from the stored LS that removing does not a�ect (much) the predicted

values and also the points that should be removed due to being statistical outliers.

[GW19] This does not a�ect the procedure in any way apart from this additional

step.

The models originated from this algorithm are easy to use and can have decent

results in terms of performance, although they depend a lot on an adequate

distance metric. It is intuitive that similar inputs yield similar outputs.

However, this somewhat lacks interpretability. Apart from the original intu-

ition, the model itself does not enlighten the relationship between inputs and

outputs in a new way di�erent from this original intuition. Rule extraction

techniques will be precious for extracting additional meaning from this model.

In the case of �rewall con�guration, they will be essential.

6.4 Random forests

Natural extension of decision trees, random forests are built quite intuitively

by constructing several random decision trees on a part of the learning set

and averaging their output (or taking the mode in the context of classi�cation).

[GW19]

These trees are random regarding both the cuto� point used for their depth

and selection of features used as splitting criteria (the splitting criterion is no

46

Ensemble methods: stacking Section 6.5

longer the best, but only the best among a random subset of features). They

usually outperform decision trees [GW19] at the cost of ease of interpretability.

In the case of classi�cation, averaging outputs simply means taking the mode

of the output of the di�erent classi�ers considered. Concretely, to build a random

forest, one builds : random decision trees from part of the learning set[GW19]:

)1,)2, ...): .

To classify a new input, one asks each of the tree classi�ers)1, ...,): to classify

the input G and gets a :-sized output vector y. The most frequent value in the

vector y will be the output associated to G .[GW19] We can write this as:

~ = mode(y) (6.9)

y = ()1(G), ...,): (G)) (6.10)

where we denote the function associating a value and its associated output

according to a tree classi�er)8 as)8 (.).

In terms of interpretability, this model is somewhere between the decision

trees and something completely opaque. It does not translate directly into rules,

but it is composed of decision trees which are each interpretable individually.

6.5 Ensemble methods: stacking

Similarly to what is done with random forests, which combine di�erent models

with an equal weight built on some part of the learning set, a similar technique

can be used with any set of models. Performance could possibly be improved by

combining 2 or more of the best performing considered models. [GW19]

To proceed with this, one must �rst study the performance of di�erent candi-

date classi�ers. Once several best-performing classi�ers have been identi�ed,

one uses one or more of these classi�ers, trained on the entire training set. One

of these classi�ers is to be used as the "�nal" classi�er, that will yield the output

for a given set of input values. The other ("intermediate") classi�ers are used

to strengthen the e�ciency of the �nal classi�er by allowing it to use their

47

Chapter 6 Considered supervised machine learning algorithms

respective outputs as an additional feature to use for training and classi�cation.

[GW19]

Classi�cation is obtained by �rst making each intermediate classi�er predict

the output for the given inputs then �nally ask the �nal classi�er to predict the

output given the original features and the output of the additional classi�er as

additional inputs. This is shown on �gure 6.2. Training is done in the exact same

fashion. Each intermediate classi�er is trained on the entire original training

set, and the �nal classi�er is trained with the same data to which the output

of the intermediate classi�ers for the inputs of each element of the dataset.

[GW19][NS11]

Figure 6.2: Classi�cation by stacking

This simple technique is very powerful as it allows to combine any number of

all types of classi�ers. Such combination can result in better results than any

of the single individual models. It was notably used by the winning team in a

competition by Net�ix in 2009 to rank shows by user interest.[GW19]

Stacking can be one of the most e�ective machine learning techniques but its

e�ciency relies heavily on the combined classi�ers. In terms of interpretability,

it is almost completely black-box. Interpreting the �nal classi�er, when it is

possible, could give some insight on the in�uence of each intermediate classi�er,

but if they are themselves black-box, it would be di�cult to draw any interesting

conclusions.

48

Summary of the di�erent considered techniques Section 6.6

6.6 Summary of the di�erent considered techniques

Table 6.1 contains a summary of the di�erent considered models and their

respective advantages and disadvantages with respect to their possible use for

�rewall con�guration.

At this point, the next logical question to answer is whether decision trees

should be used directly to translate captured packets and �ows data into rules

or if they be used as a rule extraction technique to extract rules from another

better-performing model.

This question cannot be answered without evaluating the performance of

each of these algorithms for classi�cation and the performance of the derived

tree classi�er for every technique but the decision trees themselves. With all of

these measurements, the e�ciency of each technique will be evaluated, and this

will also yield an idea of the cost of rule extraction with decision trees.

If some algorithm outperforms decision trees a lot, but yields poor results after

rule extraction, the question may remain unanswered. We could then maybe

conclude that looking into other rule extraction techniques may be interesting,

but there are few general purpose techniques of the sort, i.e. techniques that do

not assume any particular underlying model. Most research on rule extraction

is actually focused the special of neural networks which are not considered here

due to their heavy computational cost, the di�culty of tuning them, and their

need for very large datasets that are not always available with real captured

tra�c. General purpose rule extraction techniques are few, and rarely outperform

decision trees much. [HBV07]

However, if decisions trees outperform results of other models prior to tree

derivation, it will be obvious that one ought to derive trees directly from the data

instead of using a di�erent classi�er �rst. The following chapter will evaluate the

performance of the classi�cation for each of the considered scenarios. Whatever

the outcome of this performance analysis, the best chosen technique’s derived

tree can be used to derive rules which can be written using the syntax of a

classical rule-based �rewall, e.g. a mmb-based �rewall.

49

Chapter 6 Considered supervised machine learning algorithms

Supervised learning

algorithm

Advantages Disadvantages

Decision trees

- Completely interpretable:

translates directly into

rules.

- Can be used as a rule

extraction technique

for other models.

- Usually

less e�cient

than other

techniques

Naive Bayesian

classi�er

- Has proven e�cient for

the similar problem of

email �ltering.

- Probabilities can be

interpreted.

- Based of unsatis�ed

assumptions: no

theoretical

reason to work

- Requires

rule extraction

techniques

k-nearest

neighbors

- Easy and intuitive.

- Usually performs well.

- Not particularly

interpretable in

any meaningful

way.

- Requires

rule extraction

techniques.

Random

forests

- Usually more e�cient

than decision trees

- Each tree in the forest

is completely interpretable

- The forest itself

is not really

interpretable

- Requires

rule extraction

techniques

Stacking

- Combining several models

that perform well can

yield a model that

performs even better.

- Not interpretable

- Requires

rule extraction

techniques

Table 6.1: Advantages and disadvantages of each supervised machine learning algorithm

considered

50

7 Supervised machine learning:
methodology and results

7.1 Model evaluation

The purpose of the performance study is to determine which technique can be

used to derive the best-performing model for classi�cation. For this purpose, the

need for a performance metric arises. Such a performance metric is the accuracy

of the predictions. This is simply the proportion of well-classi�ed data points

among the available data set.

This metric is adequate if one wishes to limit both the false positive and false

negative rates. Alternatively, for binary classi�cation, any of true positive and

true negative rates could be used as a metric in applications where minimizing

either false positive or false negative rate is more important than the other.

[GW19] [Don19b] In the particular case of tra�c �ltering, both types of errors

can bear a great cost. Accuracy should thus be the metric of choice.

All of these metrics can be derived from the so-called confusion matrix

[GW19][Don19b], which is de�ned as:(
)% �%

�#)#

)
(7.1)

where TP is the number of true positives, FP is the number of false positives,

FN is the number of false negatives, TN is the number of true negatives.

We thus have:

Accuracy =
)% +)#

)% + �% + �# +)#
True positive rate =)%/()% + �#)

True negative rate =)# /(�% +)#)

(7.2)

51

Chapter 7 Supervised machine learning: methodology and results

There is however a point to clarify: which data should be used to compute

these rates. It is not adequate to train a classi�er on the entire available data

set and then see how well the derived model predicts that same data. This

technique introduces an undesired bias and will cause over�tting. [GW19]

[NS11]. Over�tting is a phenomenon where the derived model predicts very well

the available data but will perform poorly on unseen data. This phenomenon

is very common as supervised machine learning techniques derive all of their

knowledge from the available data. [GW19]

To mitigate the problem of over�tting when evaluating the performance of

a model, one can simply randomly split the (shu�ed) data in 2 groups: the

training (or learning) set, and the testing set. The training set is used to train the

algorithm, then the derived model is used to predict the output for the testing

set. The predicted and real outputs for the testing set are then used to compute

an adequate performance metric (e.g. the accuracy). [GW19]

7.2 Model selection

Evaluating the performance of a given classi�cation technique is not enough,

one can derive many models using a same classi�cation algorithm and dataset.

The algorithms used in supervised machine learning always present one or

several parameters whose value can be speci�ed. The chosen values in�uence

the model derivation and can thus lead to models of varying performance. Such

parameters are referred to as hyperparameters. [GW19] [NS11]

When trying to tune these hyperparameters, one may think of training models

with candidate values with the training set, evaluate their performance on the

testing set and keep the better performing one.

This approach is however invalid, as it once again brings bias leading to

over�tting of the testing set. Intuitively, it would be very wrong to choose

values based on their performance at predicting the testing set, then evaluate

the performance of the chosen model with the testing set itself. One must keep

in mind that the objective is not the optimize the performance of predictions on

known data but rather �nd the model that will best perform on unknown data

52

Model selection Section 7.2

and evaluate the capacity of the model to predict this unknown data by using

known data. [GW19]

A simple way to avoid introducing such bias, assuming enough data is available

is to further subdivide (randomly) the learning set into a smaller learning set

and a newer set used for validation. [GW19]

This goes as follows:

1. Randomly subdivide the dataset in 3 parts: learning set (LS),

validation set (VS), testing set (TS)

2. Train models on the LS for candidate hyperparameters values,

3. Select the combination of values that yields the best prediction perfor-

mance on the VS

4. Retrain a model with these hyperparameters with the data from both LS

and VS

5. Evaluate the performance of the model on the testing set. This yields the

estimated model performance.

6. The �nal model is obtained by retraining the algorithm with the selected

hyperparameter values on the entire dataset LS + VS + TS.

This technique was chosen for selecting and evaluating models for per-packet

classi�cation as much more data points are available when considering each

packet individually instead of regrouping them into �ows.

When less data is available, further subdividing the available learning set

is not desirable. Doing so diminishes the statistical power of the data and the

quality of the associated predictions from any derived model. An alternative way

to select hyperparameter values comes in the form of cross-validation. [GW19]

53

Chapter 7 Supervised machine learning: methodology and results

Let us describe the process known as :-fold cross validation. The learning

set is randomly subdivided into : parts. For a given hyperparameter value,

performance is evaluated by training the classi�er with :−1 parts and evaluating

the performance on the remaining part.[GW19] This is done for each part and

the results are averaged.

In this way, the bias of selecting based on performance of the testing test is

avoided while still keeping most of the training set during this evaluation step.

Common values for : are 3 and 10. They are known to yield better performance

than other values. [GW19]

In the case of a very small dataset, it is interesting to consider : = =, which is

known as the leave-one-out [NS11] method as only one data point is excluded

from the training set at each step.

For model selection of per-�ow classi�cation models, 10-fold cross validation

was used as it is more adapted to the smaller learning set obtained by grouping

packets into �ows.

Let us detail the process of model selection and evaluation in this case:

1. Randomly divide the dataset in 2 parts: learning set (LS) and testing set

(TS)

2. Randomly divide the LS in 10 equal parts

3. For each set of hyperparameter values considered:

• For each of the 10 parts, train a model on the remaining 9 parts and

evaluate its performance at predicting the remaining part

• Average the 10 performance metrics

4. Train a model with the entire LS using the best performing set of hyper-

parameters values and evaluate its performance at predicting the TS

5. The �nal model is obtained by using the values found to train a model on

the entire dataset LS + TS

54

Additional technical details, results, and discussion Section 7.3

7.3 Additional technical details, results, and
discussion

7.3.1 Implementation details

The packets and �ows data was featurized as described in the previous chapter

using a simple custon script written in Python with the scapy library. This library

o�ers native support for packet capture (.pcap) �les and could thus be used for

going through the list of captured packets and extracting from each packet the

desired information.

For per-packet classi�cation, this only consisted in changing each packet into

the list of its features. All necessary information was found directly in packets.

Time between packets can be computed using the packets’ timestamps.

For per-�ow classi�cation , as �ows were each saved in their own capture

�le, they can be each treated essentially in the same way as what was done

previously. For each packet in the �ow, the needed information (timestamps,

values of �elds...) can be collected directly and any information that needs to be

derived from this value (e.g. averages).

The derived data is saved in csv �les. Each packet/�ow corresponds to a line

of the associated features. The data is stored in a di�erent �le depending on the

associated class (legitimate or malicious).

These �les are provided as input for the classi�cation scripts. Classi�cation

is done with the algorithms provided in the scikit-learn Python framework.

This library o�ers e�cient implementations of each of the algorithms that are

considered in this comparative study.

7.3.2 Discussion of the choice of features

Most candidate features that were kept should have a positive in�uence on

the e�ciency of the classi�cation. This will be shown to be true later in this

section. However, we must never forget the �nal objective which is con�gurating

a �rewall. An opaque classi�er is of no interest as no action can be taken to

55

Chapter 7 Supervised machine learning: methodology and results

rectify its potential mistakes and it cannot be used in the context of classical

rule-based �rewall.

Features for per-packet

discrimination

Features for per-�ow

discrimination

Destination address

Pair of

communicating

ports

Destination port

Transport layer

protocol

Source port

Average TCP/UDP

checksum

Transport layer

protocol

Average time

between 2 packets

TCP/UDP checksum

Average payload

length

Time since previous

packet

Proportion

of packets

with TCP PSH �ag

Payload length

TCP PSH �ag

Table 7.1: Reminder: chosen features

In the case of per-packet classi�cation, two features that are not really ordinary

are the TCP PSH �ag and the delay between packets. These 2 features are

very descriptive of legitimate and malicious tra�c and their di�erences as was

illustrated in the preliminary statistical analysis of tra�c performed in a previous

chapter. Although, those should reduce the classi�cation error, it is unclear

whether they should actually be included.

The inter-packet delay is pretty interesting as it is a re�ection of the sending

rate but it could lead to some unforeseen issues. For example, in case of conges-

tion on the network, it may vary greatly which would result in this criterion

becoming completely unreliable. It is thus only reliable in networks whose use

conditions don’t vary much, which is a dangerous assumption.

56

Additional technical details, results, and discussion Section 7.3

For per-�ow classi�cation, the average delay is more robust due to being an

average, but it presents the same problem. It is thus better to not actually use this

delay for actual con�guration, at least in the case of per-packet discrimination.

Another important consideration is that this is not usually implemented in

�rewalls (e.g mmb) and bears the additional cost of keeping state of inter-packet

time which means saving information for each received packet. This could bear

a cost on classi�cation speed, which is extremely important.

Similarly, the use of the TCP PSH �ag should improve the classi�cation power

as it bears information related to the desired packet bu�ering in the TCP protocol.

Statistics performed in chapter 4 have shown that the control of bu�ering through

the TCP PSH �ag was very di�erent depending on the malicious character, or

lack thereof, of the considered tra�c. However, blocking packets depending on

whether or not the TCP PSH �ag is true may completely break some applications.

If the �ag is set, it means that the sender does not want the packet to be bu�ered,

it ought to be sent directly to the application layer.

The sender application is unlikely to change that behavior upon seeing its

packets being blocked. It will consider them lost and resend them identically,

which will result in packets being dropped until the TCP connection is consid-

ered broken. Thus using this �ag for packet discrimination would result in all

applications using the �ag being essentially blocked, which would be problematic

to say the least. Even though the �ag is susceptible to reduce the classi�cation

error, this metric is computed on saved data. Data that would not exist if the

connections were broken. It would thus probably be better to not keep this

feature for actual �rewall con�guration. This problem does not exist however

when talking about the proportion of PSH �ags per �ow, which is computed for

the entire �ow.

Per �ow-classi�cation should be somewhat more robust. All packets belonging

to a same �ow should in principle be classi�ed in a same way. It indeed makes

little sense to think of a session between a client and server as partly malicious.

This is re�ected in the training data in which all communication emitted during

a same session is marked in the same way (legitimate/malicious).

57

Chapter 7 Supervised machine learning: methodology and results

However, many proposed features are expressed in the form of averages and

proportions. This is not something that is often implemented in �rewalls (e.g

mmb) and keeping track of this additional state could in�uence classi�cation

speed. This presents the advantage of additional robustness, and less risk of

breaking connection-oriented (including all TCP) applications by dropping only

some of their packets. For this to happen, the metrics considered would need to

change greatly over the connection’s life, which could happen but is still much

less likely.

7.3.3 Hyperparameter tuning

Hyperparameters’ values were selected as described in previous section. Only

the most important hyperparameter for each algorithm was considered. For

building decision trees, whether directly or as a rule extraction technique for

other models, this hyperparameter was the depth for post-pruning of the tree.

The parameter is the same for random forests (a cuto� depth for each tree in the

forest). For the k-nearest neighbors technique, this parameters is the number of

neighbors considered.

The stacking classi�er uses the best values found in each of the classi�ers it is

built on top of.

The Bayes �lter does not really o�er any hyperparameter. In the case where

samples can have missing features (e.g. words count in a text), a smoothing

parameter can be introduced when computing likelihoods to avoid null probabil-

ities, but it is useless here.

7.3.4 Precisions on the stacking classifier

The stacking classi�er uses as �nal classi�er the best performing algorithm and

the 2 second best as intermediate classi�ers. This ended up being a decision

tree as �nal classi�er and k-NN and a random forest classi�er as intermediate

classi�ers.

58

Additional technical details, results, and discussion Section 7.3

7.3.5 Discussion of potential feature pre-processing

Some classi�cation algorithms require feature pre-processing. Among those

considered, the naive Bayes �lter requires it. The algorithm considers features

as discrete random variables. If the set of values considered is continuous, they

must be discretized in some way. Time delays were discretized by order of

magnitudes (ranges of powers of 10). It still bears information about the sending

rate, but can be exploited by the algorithm.

Checksums belong to a discrete space, but it is extremely large. A di�erent

discretization is thus a good idea for the Bayes �lter. For example, they can be

replaced by whether or not the checksum is null (0 if null, 1 otherwise). Null

checksums mean the �eld is unused, which is the most important information

of the feature. This was shown empirically during the experiments to improve

e�ciency of each algorithm considered but is essential for the Bayes �lter. Such

pre-processing will also avoid dropping a connection randomly for having an

unusual checksum.

An interesting observation is that with the chosen features as such, decision

trees perform extremely well for per-packet classi�cation (accuracy = 0.997) but

the best depth found through model validation is very large (= 43). This means a

large set of precise rules, which could indicate something went wrong. Looking

at the obtained tree, one sees a lot of tests on the source and destination ports.

Hyperparameter

Per-packet

classi�cation

Per-�ow

classi�cation

Decision tree

maximum depth

43 7

k-NN

#neighbors

1 1

Random

forest maximum

tree depth

35 8

Table 7.2: Best hyperparameter values for models created without port pre-processing

59

Chapter 7 Supervised machine learning: methodology and results

This is particularly bad. Although source and destination ports can help

identify the application, there is no reason they should help classify with that

much e�ciency. The ports alone mean nothing. This phenomenon can be

explained by the fact that the source port (on the client side) is usually random.

This means that in the dataset generated with the data from the testbed, each

�ow will essentially have at least one unique port. Decision trees are thus able

to regroup packets into �ows with port data. This, however, is not really an

actual decision criterion. The source ports are random. They will not be able to

identify an almost identical �ows on unseen data as they will have changed.

There are a few possibilities to avoid this problem. The �rst one is to post-

prune at a "sub-optimal" depth. However, the �rst tests in the tree could still be

inadequate and without data from the validation stage, it is impossible to know

what the adequate depth would be due to over�tting of the testing set.

An alternative would be to stop using port data altogether, but the impact

on performance would probably be far too big to consider. Ports are the most

common criterion used in �rewalls for a good reason. Most common applications

use a well-known port on the server-side. Blocking all unused ports is good

practice. This is impossible without referring to ports.

The most reasonable solution would be to pre-process the dataset both for

packets and �ows. Although the problem is not that blatant in per-�ow classi�-

cation, classi�cation based on random non-reproducible data is always wrong.

Such a pre-processing could be to only keep values of well-known ports (< 1024)

and represent all others with a single value (e.g. 1024) If it is known that a port

outside of this range is in use (non randomly) for some application, it is always

possible to assign it its own value outside of the excluded range.

Table 7.3 shows that the pre-processing of ports solves the issue by removing

entirely the random data.

60

Additional technical details, results, and discussion Section 7.3

Hyperparameter

Per-packet

classi�cation

Per-�ow

classi�cation

Decision tree

maximum depth

10 8

k-NN

#neighbors

4 1

Random

forest maximum

tree depth

10 13

Table 7.3: Best hyperparameter values for models created with port pre-processing

This ensures that no choice is made based on non-reproducible random data.

This allows for correct model validation and selection according to the best

practices in machine learning. This is why this option is preferred. Results

obtained with such pre-processing will later be contrasted with the results

obtained without it. This is a prime example of the pitfalls one must avoid

when trying to infer rules from real data. One should avoid introducing non-

reproducible characteristics as decision criteria. In network data, one must care

for the eventual presence of random data (e.g ports) in the dataset but also for

anything that is dependent on network conditions (e.g congestion).

7.3.6 Precision on the k-NN classifier

The metric used is the Euclidean distance as only some features are discrete,

using something like the Hamming distance does not make sense. Pre-processing

checksums by considering all non-null checksums as 1 allows to avoid nonsensi-

cal comparisons. Closer hashes do not indicate closer data.

7.3.7 Results and interpretation

We can see in table 7.2 that there is a clear over�tting of the training set in

per-packet classi�cation, especially in the case of the random forests and random

trees. The problem is caused by the presence of random ports in the dataset

as mentioned earlier. It is not normal to have such depth in trees, this means

that the rules are fairly intricate. Only looking at a single neighbor in k-NN is

somewhat similar, whatever the closest point in the learning set is for a given

61

Chapter 7 Supervised machine learning: methodology and results

input vector, their output should be the same. For k-NN however, this does not

necessarily indicate something is wrong, but in conjunction with tree depth,

this is an additional reason to look carefully at issues in the produced models.

These results essentially indicate that something was wrong in the considered

learning, testing and validation sets considered so that the testing and validation

data were not really representative of unseen data.

The problem does not appear for per-�ow classi�cation but random data is

still being used for predictions, which should be avoided. The values of tables

7.2 and 7.3 are obtained without using the inter-packet delay and PSH �ag as

features for per-packet classi�cation, but the same problem is observed when

they are included.

Heatmap 7.1 (next page) represents the estimated accuracy for di�erent de-

pending on the classi�cation algorithm, the approach (i.e. per-packet or per-�ow)

and whether this is the accuracy of the classi�er itself or the rules that are derived

from it.

Heatmap 7.1-1 is built with data to which no port pre-processing was applied.

To the contrary, heatmap 7.1-2 was built using the same data to which port

pre-processing was applied.

Heatmap 7.1-3 is built from data from which PSH �ags and inter-packet delays

have been removed, then applying port pre-processing.

Heatmap 7.1-3 show that the accuracy when using the data containing random

ports is very high. Although this cannot be interpreted in any way as a success,

one can see that high accuracy rates can be obtained with such algorithms in

circumstances where the data from which the patterns are inferred is su�ciently

descriptive for each output class.

One should however keep in mind that �rewall con�guration is a di�cult

problem. Attacks often look very much like the usual tra�c from the application

they are targeting. Simple classi�cation, based essentially on �elds in the headers

and other simple information from the packet is unlikely to reach such levels

62

Additional technical details, results, and discussion Section 7.3

Figure 7.1: Heatmaps of the estimated accuracy of models depending on the data used

to build them

63

Chapter 7 Supervised machine learning: methodology and results

of accuracy. What level of accuracy can be achieved in this way is yet to be

determined but results obtained here were too optimistic in nature.

Another observation than can be made immediately is that the Naive Bayes

algorithm is a poor performer, most likely because of its unsatis�ed assumption

of independence of features prevents it from detecting the most complicated

patterns.

Heatmap 7.1-2 contains the estimated accuracy of models built with all se-

lected candidate features, including the PSH �ag and time delay for per-packet

classi�cation (and their equivalent in terms of average/proportion for per-�ow

classi�cation), where port pre-processing has been applied.

The performance with this data which is more realistic and should help better

predict what would happen if an actual �rewall were con�gured using this

technique. It may however seem counter-intuitive that pre-processing data is

the best approach to deriving rules.

First of all, if said (re-)con�guration is to happen on-the-�y, then the pre-

processing must be fairly simple and have a limited impact on con�guration

speed. Secondly, and more importantly, once again, one must not forget the

objective of con�gurating a �rewall.

A good �rewall is a �rewall that does not have a lot of impact on the speed

of the �ows going through it. Ideally, it should operate at line speed. To do so,

it does not have much time to compute anything. This real-time requirement

results in the fact that most �rewalls only accept rules based on data directly

available in the packets. If these criterion are derived data, it is something that

can be derived quickly.

Thus, pre-processing data may seem like it is contradictory since it will result

in rules on derived data rather than what can be found directly in the packet.

However, all pre-processing that was considered is fairly simple (and in particular

the very important port pre-processing that avoids making choices based on

random data). It is thus easy to reverse such processing directly in the deduced

rules to produce equivalent rules that will classify tra�c in the exact same way

64

Additional technical details, results, and discussion Section 7.3

that the original rules but only refer to data that is readily available in packets.

This will be one of the main con�guration issues tackled in the next chapter

dedicated to concrete �rewall con�guration. The computing cost of this pre-

processing is also acceptable and will not hinder con�guration speed as it is

linear with the size of the dataset that must already be considered entirely at

least once, and in practice several times, by machine learning algorithms.

One must however be careful, packets and �ows can only be classi�ed correctly

if the �rewall does not interfere with established connections. The use of PSH

�ags and delays in per-packet classi�cation will de�nitely do so, as explained

earlier.

A similar but less obvious phenomenon could a�ect classi�cation per-�ow.

The features considered mostly come in the form of averages and proportions.

These do not present an obvious implementation as discrimination criterion

and give rise to many di�cult questions to answer for concrete actual �rewall

con�guration. How are these averages and proportions computed, over which

amount of packets?

If an attacker sends a single packet containing a malicious payload and the

average is computed over 10 of these, then can the decision to end the connection

be done before the malicious packet reaches its destination? If the protocol is

connection-oriented, a �rewall cannot wait for 10 packets to arrive as they most

likely will not ever be sent if no response is received.

Criteria that are problematic from this point of view in the case of per-packet

classi�cation are to a lesser degree also problematic with a per-�ow approach. For

example, the PSH �ag and inter-packet delay could cause such problems in the

context of per-packet classi�cation. It is less likely that considering proportions

of packets marked with PSH �ags over a few packets leads to suddenly dropping

the connection, but it cannot be totally excluded. The average delay over a

few packets of the �ow is more stable than a simple inter-packet delay, but if

unusual congestion is observed over the entire duration over which this average

is computed, the exact same problem will occur.

65

Chapter 7 Supervised machine learning: methodology and results

Heatmap 7.1-3 shows what performance can be attained when omitting these

2 criteria from our features. Ports and checksum pre-processing are in use. In

these conditions, no connection should be suddenly interrupted.

What can we learn from tables heatmaps 7.1-2 and 7.1-3 ? First, they show

that both per-packet and per-�ow classi�cations are actually viable. There are

actually convincing reasons to believe that machine learning-based classi�cation

can be applied successfully for the problem of �rewall con�guration.

Another somewhat surprising observation is the impressive e�ciency of

decisions trees. Decision trees yield the simplest and most interpretable models

since they translate directly into rules but they are among the most e�cient

models considered here. Only the random forest and stacking classi�er have such

high accuracy and they both incorporate decision trees in their classi�cation

process. This makes decision trees very e�cient when used as an extraction

technique for the other models.

However, the use of decision trees as an extraction technique, although e�-

cient, seems super�uous compared to building a decision tree directly from data.

E�ectively, using another classi�er prior to building a decision tree only serves

to eliminate some data deemed unrepresentative of the �rst model. If the �rst

model were much more e�cient than the decision tree, it might help with its

accuracy, but in conditions where decision trees perform better or as well as the

original model, it makes little sense.

Nevertheless, using one technique or the other makes little di�erence. Pre-

dictions are made with any classi�er then you extract a tree from it (unless it

already is a tree).

Using models built with decision trees, whether directly, or as an extraction

technique for some other classi�er, is the exact same in terms of outcome. Both

yield a tree to translate into rules. In terms of accuracy of the predictions, both

have shown to be roughly equivalent.

Thus, it does not matter too much if one does one or the other, but since

decision trees are very fast both for training and predictions, and since the

66

Additional technical details, results, and discussion Section 7.3

same is not necessarily true for all algorithms considered (e.g. random forests),

building decision trees directly from the data seems to be the most adequate

course of action.

As was discussed earlier, heatmap 7.1-3 is the most representative of the

accuracy that could be reached using this type of automatic con�guration. Apart

from what was already discussed the most important information that can be

extracted from this table is that the estimated accuracy of per-packet classi�cation

would be 88% while per-�ow classi�cation is estimated to reach 96% accuracy.

However, one must note that these numbers do not tell the whole story. As

explained, the criteria used for per-�ow classi�cation are based on averages and

proportions. When predicting on the considered dataset, these averages were

pre-computed using the entire �ow. In practice, this is impossible to do for a

�rewall, that will need to compute such values based on a subset of packets.

This is worrying for several aspects, e.g. stability, reproducibility, and loss of

accuracy.

Using a per-�ow classi�er for �rewall con�guration would likely require

many modi�cations to an existing �rewall to incorporate discrimination based

on moving averages (or �nding di�erent criteria that bring similar e�ciency).

One would also need to deal with the imprecision brought by those moving

averages (sudden need to close a connection, the issue of the �rst packets needing

to go through and its potentially terrible consequences).

As such, to recommend a per-�ow approach rather than a per-packet approach,

it would be necessary for the per-�ow approach to perform very signi�cantly

better than the per-packet approach. Let us look at the results we got in heatmap

7.1-3 and try to draw a conclusion.

With accuracy as our e�ciency measure, let us consider the error rate.

error rate = 1 − accuracy (7.3)

67

Chapter 7 Supervised machine learning: methodology and results

The error rate corresponds to the proportion of packets (resp. �ows) that

are misclassi�ed. Heatmap 7.1-3 gives an error rate of roughly 12% at best for

per-packet classi�cation and at best an error rate of roughly 4% for per-�ow

classi�cation. Considering both �gures as comparable, one would conclude that

per-packet classi�cation makes 3 times more errors than per-�ow classi�cation.

This would however be unfair as the estimate for per-�ow classi�cation

performance does not account for the very important issues concerning the

feasibility of implementation. Both �gures can be seen as an upper bound on

performance, but the �gure concerning per-packet classi�cation should be a

tighter one.

Let us state an obvious fact. Both �gures are too high. Allowing 4% of attacks

in is too much, and blocking 4% of legitimate tra�c also is. When both can

have terrible �nancial consequences, one wants to avoid these errors as much as

possible. What can one do confronted with such a fact?

A possibility would be to give up completely on machine learning-based

classi�cation for �rewall con�guration. This is obviously the most uncharitable

interpretation of these results.

A more reasonable outlook at the situation would be to argue these results

could still be improved. Machine learning is an ever evolving �eld from which

the experiments performed only scratched the surface. Neural networks were

not really investigated due to their complexity and their heavy computational

requirements, but if one were to look into neural networks, many research is

oriented towards translating such networks into rules. [HBV07]

Maybe another featurization could be considered since it would seem that

performance here is mostly limited by the expressivity of rules expressed with

such features as the contrast between heatmaps 7.1-1 and 7.1-2 illustrates.

Modern �rewalls may perform deep packet inspection. This is much more

complicated than what was considered in this performance study but if one were

to extract information related to the application layer, this information may be

used to create very expressive features to describe tra�c.

68

Additional technical details, results, and discussion Section 7.3

It would be wrong to look at the error rates and conclude that they are too

high for the techniques developed here to have any practical interest. It is true

that as such, the imprecision of tra�c discrimination of the con�gured �rewall

would be too high to rely on. Nevertheless, it is a good starting point. One

may generate such rules from known legitimate application tra�c and previous

attacks and then check into a test environment if the �ltering is adequate.

If some rule is too strict or too lenient, the system administrator may change

it accordingly. This is not ideal, true automatic con�guration should be done

without trade-o�s and human intervention, but this would require unreasonably

low error rates that most likely cannot be attained without more advanced

techniques.

If this is not a reasonable fully automatic �rewall con�guration method, it is

almost certainly already a decent technique to diminish the burden of �rewall

con�guration. From desired allowed and denied tra�c examples, an administra-

tor can easily generate a reasonable amount of rules. The best tree depth found

was 10.

The number of rules extracted from a binary decision tree (e.g built by scikit-

learn) is upper-bounded by the number of leaves in the tree. Since the whole

packet space is covered by the decision tree, one only needs to keep all rules

regarding either accepted or blocked packets (resp. �ows). The number of leaves

is itself bounded with respect to the tree’s depth. For a full binary tree, the

number of leaves is related to the depth of the tree by this formula:

#leaves = 2
depth − 1 (7.4)

This is the upper bound on the number of leaves. This means that for a

decision tree of depth 10, the upper bound on the number of rules is 1023. In

practice, since only roughly half of them need to be kept and since decision trees

aren’t usually full, the actual number would be lower than this. A tree of depth

10 generated from the per-packet data considered for the experiment has 171

leaves, 101 of which are ACCEPT rules. Depending on the approach chosen, this

would yield either 101 or 70 rules used to con�gure the �rewall.

69

Chapter 7 Supervised machine learning: methodology and results

The number of rules considered is in practice relatively easy to review ex-

haustively for a system administrator looking for a particular issue. There is no

doubt that if complete automation is not yet attained, the proposed techniques

can at least be used to heavily simplify the con�guration task.

7.3.8 Considerations on replies in training data

In everything that was done previously, the training data contained both

requests and replies. It makes sense to consider the reply to a malicious request

as malicious tra�c since it could lead to sending information to an attacker.

However, detecting the reply to a malicious request is more di�cult than

detecting the malicious request itself. A legitimate application will send very

similar responses to most requests, including those originated from attacks.

When considering a per-�ow approach, replies must be considered, since the

entire concept of using �ow-related data is to view tra�c as exchanges between

two communicating hosts. Replies are thus important.

In contrast, in the per-packet approach, the presence of replies in the dataset

is more questionable. Replies to malicious requests are harder to detect that

the requests themselves. Since they are very similar to replies to legitimate

requests, they do introduce a form of noise that could increase the error rate.

Additionally, working only with requests to build the rules cannot result in any

new trade-o�. Indeed, it is obvious that no response can be sent to a request that

was not received. Thus, blocking all malicious requests is enough to also block

all malicious replies by preventing them from ever existing.

Thus, it is interesting to check if the intuition that only working with requests

in the training data actually reduces the error rate. The per-packet classi�cation

error rate is of 12% when considering all tra�c. Only considering requests,

which is easy to do since one host acted as a server while the other acted as

client/attacker, the error rate drops to 9% (for decision trees).

While this is not a panacea, it would seem that not considering replies helps

the accuracy of the predictions, and by extension the derived rules. One should

70

Additional technical details, results, and discussion Section 7.3

however note that separating requests and replies is not always obvious if all

communicating pre�xes contain servers and clients. However, in the common

case of protecting a data-center from incoming attacks, it makes sense to only

consider incoming tra�c for training in the case of per-packet classi�cation.

7.3.9 Conclusion on the comparative study and outlook

What we can conclude from this performance analysis is that automatic

�rewall con�guration is actually possible. Decision trees are an e�cient and

simple way to derive rules from featurized packet and �ow data. They work

well in comparison with other classi�cation algorithms and can also be used in

conjunction with them as a rule extraction technique. This was however not

found to be signi�cantly better than building trees directly.

Per-�ow classi�cation was found to be somewhat more e�cient than per-

packet classi�cation on the data considered. However, both are not directly

comparable as per-packet classi�cation can be implemented without much addi-

tional concerns given a �rewall can be con�gured with rules using combinations

of equality and inequality constraints on the considered features while per-�ow

con�gurations would require building �rewalls keeping track of moving averages

which present many challenges and would be very sensitive to the considered

"packet-window" on which the average would be computed.

However, due to the many problems of this approach (�rst packets always

go through, di�culty of choosing a window...), it is unlikely this could be used

as such in practice. Maybe some hybrid approach could be considered. Per-

packet classi�cation could for example be enabled in conjunction with per-�ow

classi�cation with moving averages. This would avoid allowing the �rst packets

always going through while still taking advantage of �ow data.

Considering all of this, a per-packet approach seems to be the way to go. Nev-

ertheless, given a �rewall that can handle rules based on moving averages, both

approaches would essentially be equivalent. How the actual con�gured �rewall

would handle incoming tra�c would of course be very di�erent, but con�gura-

tion itself would be almost identical. The decision tree would be translated into

conjunctions of equality and inequality constraints and the associated action,

71

Chapter 7 Supervised machine learning: methodology and results

which is equivalent to the output of the classi�er for the given conjunction. For

combinations considered malicious be the classi�er, the associated action would

be DROP, otherwise ACCEPT.

Then, the last step would be to translate these derived rules into rules that

are syntactically valid for the �rewall of interest. None of these techniques are

inherently dependent on the type of classi�cation (per-packet / per-�ow) chosen.

This technique is actually very generic and could essentially be used to consider

any �rewall given the �rewall actually allows su�cient expressivity for writing

conjunctions of inequality and equality constraints on the chosen features.

The method is also totally independent from the actual choice of features. If

one wanted to con�gure some advanced �rewall based on deep-packet inspection,

the technique can be used unchanged given one can incorporate application-layer

data into the featurization.

Considering that the per-�ow approach presents too many problems to be

implemented as such, while the simpler per-packet approach can be, and also

taking into account that the per-packet approach is the �rst step towards hybrid

approaches, it only seems natural to put the emphasis on per-packet classi�ca-

tion.

The remainder of this thesis will be devoted to deriving rules from the per-

packet decision trees and using them for con�gurating the mmb-based �rewall.

72

8 Practical firewall configuration

8.1 Structure of the binary decision tree

The approach chosen for rule derivation is to use decision trees. The tree can

be built directly or with the help of another opaque classi�er, but the output is

the exact same: a binary decision tree.

Figure 8.1: Example of a binary decision tree for packets

Let us discuss the structure of binary decision trees. To each non-terminal

node is associated an attribute (feature) and a given threshold for said attribute.

The left child is a tree containing all data points (of the considered learning set)

for which the given attribute is lesser or equal to the given threshold, while the

73

Chapter 8 Practical firewall configuration

right tree contains all points for which the attribute is greater than the threshold.

The leaves contain the class that is associated to each point that follows the path

the root to the leaf, i.e. points of the learning set that meet all of the constraints

of the branches on that path.

The training set used to build the tree is considered representative of the

entire state space. New data is classi�ed exactly like the data used to build the

tree. A given data point is classi�ed by placing it at the root of the tree and then

following the path determined by the point’s attributes values. It eventually

reaches a leaf which is labelled with the class that is assigned to that given point.

8.2 Rule extraction from the tree

Each leaf e�ectively determines a rule. The form of any of these rules is as

follows:

constraint1 ∧ constraint2 ∧ ... ∧ constraint: =⇒ action (8.1)

The constraints in the conjunction are equality and inequality constraints

on the path from the given leaf to the root of the tree and the action is either

accept or drop the packet depending on the leaf value (respectively legitimate or

malicious).

Such a form is typical in �rewall con�guration in which it is common to

describe all characteristics of a given packet and what the associated action

should be.

In �rewalls, however, it is typical to have priorities in the rules. If several

rules apply, then the �rst one in the list of rules is the one that has precedence

over the other.

This does not really matter here as the rules really never overlap. As rules

correspond to the constraints on the path from a given leaf to the root, they at

least have one contradictory constraint when compared to another rule in the

rule set. If they did not, that would mean that both compared rules correspond

74

Rule extraction from the tree Section 8.2

to a same path in the tree (i.e. conjunction of constraints) and thus they could

not originate from di�erent leaves.

The following pseudocode describes an algorithm for extracting the complete

set of rules from a binary decision tree.

1 f u n c t i o n g e t _ r u l e s (t r e e)

2

3 r u l e s = R u l e S e t ()

4

5 f o r l e a f i n t r e e . l e a v e s

6

7 r u l e = Rule (a c t i o n = l e a f . c l a s s)

8 node = l e a f

9 p a r e n t = l e a f . p a r e n t

10

11 whi l e p a r e n t i s not None

12

13 i s L e f t C h i l d = True

14

15 i f p a r e n t . r i g h t C h i l d == node

16 i s L e f t C h i l d = F a l s e

17

18 i f i s L e f t C h i l d

19 r u l e . a d d C o n s t r a i n t (

20 a t t r i b u t e = p a r e n t . a t t r i b u t e ,

21 type =" <=" ,

22 t h r e s h o l d = p a r e n t . t h r e s h o l d)

23 e l s e

24 r u l e . a d d C o n s t r a i n t (

25 a t t r i b u t e = p a r e n t . a t t r i b u t e ,

26 type = " > " ,

27 t h r e s h o l d = p a r e n t . t h r e s h o l d)

28 node = p a r e n t

29 p a r e n t = node . p a r e n t

30

31 r u l e s . addRule (r u l e)

32

33 r e t u r n r u l e s

75

Chapter 8 Practical firewall configuration

Once the rules recovered, they can be used for con�gurating an actual �rewall.

However, this presents some additional challenges. First of all, these rules are

not yet written in the actual syntax of the given �rewall of interest. They need

to be translated into something that is valid in that context.

This could be as simple as replacing the features’ names by their correct

name in the context of a given �rewall’s syntax, printing things in the right

order, and adding a few required keywords. However, there can be additional

considerations to take into account before being able to generate the rules in

such a simple fashion.

The features that were chosen could for example not be entirely expressible

with the grammar of the �rewall of interest. In such case, there is a need for an

additional translation into criteria that do exist in that context.

Maybe some feature does exist as an available attribute in the �rewall’s gram-

mar but only equality constraints are allowed while inequality comparisons are

not possible.

In the previous chapter, the bene�ts of pre-processing training data, in partic-

ular regarding ports, were discussed. From such pre-processing can arise new

challenges. If one builds a tree based on features that are pre-processed, then

the rule apply to pre-processed data and not to the original data. A strategy to

deal with rules from derived data is thus necessary. Two scenarios are possible.

The �rst possibility is to use the rule as such and the �rewall must perform

itself the necessary derivations on incoming tra�c to apply the rule on the

derived data. This is possible but requires the �rewall to o�er the functionality

to write rules on such derived data, which is rarely the case.

One could modify the given �rewall to incorporate said criteria but this

presents limitations. This approach is complicated as it requires modifying

the �rewall software itself, and it may not always be possible. If one wants to

con�gure a �rewall for which the source code is unavailable or it is illegal to

modify, it will not be an option. The derivations that have to be performed must

76

Rule extraction from the tree Section 8.3

also be quick enough to avoid introducing new bottlenecks that would reduce

the operating speed of the �rewall.

The other possibility is to translate the rule back into one or several rules

that are actually expressible using the criteria that are already available in the

�rewall’s grammar. This approach does not require any modi�cation of the

underlying �rewall software.

It bears the limitation of needing to be able to reverse the rules to apply to the

original data, which could be non-obvious or even impossible with a complex

pre-processing. If however, this is possible, this probably is the best bet as it

is almost certainly easier that modifying the �rewall itself, and the �rewall

software’s optimization to deal with the criterion that it o�ers is taken advantage

of.

There are still however a few obvious drawbacks to this approach. The type of

rules with constraints on pre-processed data from which rules on original data

can be derived are a smaller subset of possibilities. This is e�ectively a limitation

of the expressivity of the feature space.

Another potential problem could come in the form of unreasonably increasing

the number of rules. If one rule on pre-processed data can be expressed with

a much larger number of rules on the original values, then number of all rules

using that criterion will be multiplied by that large constant.

Once all of these additional considerations addressed, con�guring the �rewall

truly consists in simply writing all of the rules so that they follow a valid syntax

for the �rewall of interest. This is straightforward but non-generic. Even given

two �rewalls that allow writing rules as inequality constraints with the exact

same attributes, if their syntax di�er, one will need to respect it.

The remainder of this chapter will be devoted to to con�guring a mmb-based

�rewall while dealing with the pre-processing that was described in previous

chapter.

77

Chapter 8 Practical firewall configuration

8.3 Configurating mmb with a decision tree

8.3.1 mmb rule format

What is needed is to be able to express a conjunction of equality and inequality

constraints and associate with an action: ACCEPT or DROP.

With mmb, this can be done easily with the following syntax [Ede+19]:

To add a rule and associate with an action, one uses the command

• mmb <add-keyword> <match> [<match> ...] <target> [<target> ...]

Let us detail this form. The rule consists of a single <add-keyword>, one

or several <match> elements, which correspond to the constraints and one or

several <target> elements which correspond to the action to be taken upon

matching.

The <add-keyword> element indicates whether the rules are to be applied on

a per-packet (add, add-stateless) or on per-�ow basis (add-stateful). [Ede+19]

• <add-keyword> = add | add-stateless | add-stateful

As mmb is not merely a �rewall but also a generic middlebox con�guration

tool, many values are possible for <target>. In this context however, the only

relevant possible values are accept and drop.

The <match> element has the following de�nition.

• <match> = <�eld> [[<cond>] <value>]

Each <match> item corresponds to a comparison between a �eld and a possible

value. <cond> can be either "<", "<=", ">", ">=", "==" in most cases. In speci�c

cases, where inequality comparison is uncommon because it makes relatively

little sense, only "==" is available. This is the case for IP addresses and pre�xes

for which only equality can be checked.

78

Configurating mmb with a decision tree Section 8.3

8.3.2 Challenges in configurating mmb from a decision tree and
their solutions

An algorithm was described to extract a set of rules. Each rule’s individual

form is a conjunction of equality and inequality constraints associated with an

action. This format is very close to what is required by mmb’s syntax. Let us

discuss all di�culties in going from the former to the latter.

Features and corresponding mmb a�ributes

The main di�culty in con�gurating a �rewall using mmb from a decision tree

comes in the form of being able to express the rules that have been extracted from

the tree using only the attributes that are readily available in mmb’s grammar

and the comparison operations that apply to them.

Luckily, we can express rules in a format that is close to what can be extracted

from a decision tree, as we can associate an action and associate with a combina-

tion of equality and inequality constraints. The potential for issues comes �rst

from the potential pre-processing and secondly from the possibility of missing

attributes or inequality comparison operators on these attributes.

Feature

mmb
attribute

Inequality

available?

Transport protocol ip-proto Yes

Destination address ip-daddr No

Destination port

tcp-dport

udp-dport

Yes

Source port

tcp-sport

udp-sport

Yes

TCP/UDP checksum

tcp-checksum

udp-checksum

Yes

Payload length None N/A

Table 8.1: Features and corresponding mmb attributes

79

Chapter 8 Practical firewall configuration

Table 8.1 lists the di�erent features, their mmb equivalent attribute if there is

any, and whether or not inequality comparison are possible (equality always is).

We will only consider the features of the �nal model of per-packet classi�cation

that was discussed in chapter 7.

It is easy to see that, although most attributes can be used as such (after

considering a few caveats relative to pre-processing), there are still a few features

that will require some additional translation of the rules to be expressible with

mmb’s attributes.

Each necessary transformation of the rule set will now be addressed, no matter

whether if it is due to the reversal of some pre-processing or due to the limitations

of mmb’s expressivity.

IP destination address

IP addresses are treated by the decision tree algorithm as if they were integer

numbers. While this makes perfect sense, as IP(v4) addresses are technically

32-bit integers, it is rare to think of an IP address is being smaller or bigger than

another. (The same reasoning remains valid with IPv6.)

That sort of comparison is never really made because there are no many

situations where this would be meaningful. However, the only way that the

binary decision tree algorithm reduces the state space is by introducing inequality

constraints.

What is commonly done with IP addresses, is regrouping them into meaningful

pre�xes. A given range of IP addresses can be expressed by a certain pre�x (its

�rst bits). Fixing the �rst bits of an IP address to a certain value is equivalent

to setting a lower and upper bound on that number. With su�cient tests on

the address, the decision tree algorithm could attain isolate a given pre�x. Such

comparisons are thus not meaningless, just fairly uncommon, as specifying the

pre�x is much more natural when manually dealing with IP pre�xes.

80

Configurating mmb with a decision tree Section 8.3

If modifying the �rewall code is possible, then such comparisons can be

introduced and no other action is required. This is however not the approach

that is chosen here.

It is always possible to enumerate all IP addresses (or pre�xes) in the considered

dataset that are actually encompassed by a given rule and creating as many

rules as there are addresses/pre�xes and checking for equality, leaving all other

constraints on other attributes and the associated action unchanged.

This is obviously equivalent if and only if the training data set actually en-

compasses all possible values. In the dataset created on the testbed, only two

addresses were possible, in which case the solution is obvious.

However, even with a dataset containing many IP addresses, this solution is

also possible. It mostly relies on a choice of pre-processing. For the results to be

meaningful and the number of rules to remain reasonably low, there must not

be too many possibilities.

One could imagine regrouping all external addresses under a single value.

Internal addresses could also be regrouped into meaningful pre�xes (e.g. the

di�erent departments of a company’s network). In this way, the number of

pre�xes/addresses to enumerate remains low and the rules that are created bear

an obvious meaning about the origin of the tra�c they apply to, which is good

for interpretability.

Decision tree: continuous values in the rule set

A small problem with the binary decision tree algorithm, as implemented

in the Scikit-learn library, is that it consider all features as having continuous

values. This means that the values of the thresholds in the extracted constraints

may sometimes have a fractional parts. While it is mathematically valid to de�ne

an integer in comparison with a real-valued constant, it is not something that

anyone would expect to be implemented in a �rewall’s grammar.

81

Chapter 8 Practical firewall configuration

Two forms of constraints are possible:

1. attribute ≤ C

2. attribute > C

For both type of constraints, the integer points that satisfy them are exactly

identical if the threshold C is rounded down. They can thus be rewritten.

1. attribute ≤ bCc

2. attribute > bCc

Rounding all of the constraints’ thresholds does not change the semantics of

the rules but it is a necessary operation for con�gurating �rewalls that do not

handle real values (e.g mmb).

Multiple tests of the same a�ributes

There is no real problem with having several constraints on a same attribute.

If a feature is very expressive, it is possible that most constraints in a given

extracted rule concern the corresponding attribute. This is a direct consequence

of the structure of a decision tree.

However, it means that some rules can be simpli�ed. Let us consider the

following set of constraints.

• {ip-proto == 6, tcp-dport < 50, tcp-sport ≤ 25, tcp-sport ≤ 23,

tcp-sport > 10}

It is easily observed that one constraint can be removed while still describing

the same set of packets.

• {ip-proto == 6, tcp-dport < 50, tcp-sport ≤ 23, tcp-sport > 10}

This can be done because if more than one upper or lower bound is imposed

onto a given variable, then it is perfectly equivalent to only keep the stricter one.

82

Configurating mmb with a decision tree Section 8.3

Each rule can thus be simpli�ed by removing all redundant constraints. For

each attribute in the rule’s constraint set, two bounds must be found: the maximal

lower bound and the minimal upper bound. All constraints involving other

bounds are redundant and can be omitted from the constraint set.

Rules involving constraints on the transport layer protocol

Depending on the transport layer protocol in use, the tra�c has a very di�erent

form and characteristics. It is natural that the transport layer protocol appears in

most extracted rules’ constraints sets as they are one of the most basic essential

features of tra�c. For example, to allow HTTP tra�c on a simple �rewall, one

allows TCP on port 80.

There are 2 main transport layer protocols: TCP (ip-proto=6) and UDP

(ip-proto=17). Those are the only values for ip-proto considered in the dataset

generated on the testbed.

It is entirely valid, and accepted by mmb, to have a constraint of the forms

{ip-proto ≤ t} or {ip-proto > t}. However, this is inconvenient, as it includes a

large set of protocols which are not really relevant for con�gurating a �rewall.

Application tra�c is generally either TCP or UDP and if something else is

needed, this typically for a speci�c reason that requires some manual con�gura-

tion (e.g. setting up an IP in IP tunnel, allowing the machine to be pinged through

ICMP). Such scenarios are dealt with manually by a network administrator.

As ip-proto values other than TCP and UDP are not relevant to automatic

�rewall con�guration, they can simply all be dropped with the exception of the

ones that are manually permitted.

The constraints on ip-proto in the rules that are extracted from the decision

tree are however inequality constraints. Each rule can only contain at most one

of these due to the nature of the decision tree algorithm. Splitting the training

set more than once using this criterion would not improve classi�cation, so it is

never done.

83

Chapter 8 Practical firewall configuration

When present, the constraint regarding ip-proto for a given rule will only

be satis�ed by either TCP (ip-proto = 6) or UDP (ip-proto = 17). It can thus be

replaced by an equality constraint with the one of these 2 values that satisfy the

inequality constraint.

This presents only positive consequences as this excludes unwanted protocols

from the extracted rules. The decision tree could not possibly produce the same

result as it only produces inequality constraints and no example of these other

values were present in the dataset. The relevant tra�c remains classi�ed in the

same way.

Rules wihout constraint on the transport layer protocol

It is entirely possible that some rules extracted from the decision tree present

no constraint on the transport layer protocol. However, most features (e.g ports,

checksum, payload length) correspond to a di�erent �eld in the packet depending

on whether TCP or UDP is used.

While it is acceptable to treat those in the same way for machine learning, the

�rewall needs to know what value it is testing against the constraints of a given

rule.

A simple solution comes in the form of replacing each rule that does not

contain a constraint on the network protocols by two rules: one only for TCP

and one for UDP. The new rules have exactly the same constraints with the

addition of either {ip-proto = 7} or {ip-proto = 16}.

Specialization of features into actual a�ributes

The extracted constraints are independent of whether TCP or UDP is used as a

transport layer protocol. However, as explained above, to con�gure mmb, they

need to be speci�c to either TCP or UDP. Due to the modi�cations discussed

above, all rules now have a constraint on the transport layer protocol: either

{ip-proto = 7} or {ip-proto = 16}.

84

Configurating mmb with a decision tree Section 8.3

Each attribute can thus simply be replaced by its specialized version (e.g

checksum becomes tcp-checksum or udp-checksum depending on the value of

the constraint on ip-proto).

Pre-processing of checksums

Processing checksums prior to using them for machine learning removes

nonsensical comparisons between them. Closer checksums does not give any

indication that the packets are actually closer in content. The pre-processing

that was proposed consists in representing non-zero checksums by 1, and 0-

checksums by 0. This was shown to improve the classi�cation accuracy.

However, the rules derived apply on pre-processed checksums, not checksums

themselves. Let’s go over what could potentially go wrong and how this can be

dealt with.

Four possible constraints are possible (after rounding).

Three of them are {checksum ≤ 0}, {checksum > 0}, {checksum > 1}. The �rst

two pose no problem whatsoever because they have the exact same meaning

whether the checksums are pre-processed or not.

It should be noted that {checksum > 1} should not appear as a constraint

since it would be a bad split for the tree since no (pre-processed) training data

respects that constraint. For this exact reason, any rule with this constraint can

be discarded as it cannot describe any valid pre-processed packet. This means

that the constraint is meaningless as it applies to tra�c that cannot exist

Similarly, the last possible constraint {checksum ≤ 1} should not appear either.

It is a bad split as it is complementary to {checksum > 1} (all packets satisfy

this constraint). This means that at a given node in the tree checking for this

threshold for the checksum, all training data would go to the left son and nothing

to the right son.

85

Chapter 8 Practical firewall configuration

If the constraint were to be chosen anyway, for example by deriving similar

rules on data that was pre-processed in the same way with an other algorithm

than binary decision trees, then it is not really di�cult to deal with.

The constraint {checksum ≤ 1} means that the checksum is either 0 or greater

(because of the pre-processing of anything non-null into 1), that is {checksum ≥
0}. The constraint can thus be rewritten in this way or removed entirely. This

e�ectively means that this is valid independently of the checksum, which is

exactly why this would be a bad split.

In practice, this means that rules based on pre-processed checksums can be

used without (or almost without) any modi�cations.

Pre-processing of ports

Port pre-processing was shown to be important to ensure the validity of the

predicted models and associated rules. Without pre-processing port data, random

ports are present in the training dataset.

This phenomenon is due to the fact that in a communication between a client

and a server, the client’s sending port is generally random while the port that

server is listening to is generally a well-known standardized port.

If a model is built from data containing such random ports, it is likely that the

exact same packets sent from a di�erent random port would not be treated in

the same fashion. Since this is highly undesirable to introduce such inaccuracies

of unknown impact, a simple solution was proposed, in the form of simple port

pre-processing.

The simplest form of such a processing is to assimilate all non-standard port

values into a single value. For example, all non-standard ports (≥ 1024) are

represented by the single value 1024.

In this way, all non-meaningful random data is eliminated from the training

dataset in an interpretable fashion. All standard ports are used for machine

86

Configurating mmb with a decision tree Section 8.3

learning while randomly generated ports are considered equivalent in the ab-

sence of additional information.

Once again, similarly to how the checksum pre-processing in�uenced the

semantics of the constraints on checksums, this also modi�es how the constraints

on port are to be interpreted. As always with constraints extracted from a binary

decision tree, two forms are possible.

1. port ≤ C

2. port > C

The possible thresholds C always lie within the range of values that are found

in the training dataset. As the tree is built on pre-processed data, this means

that we strictly have C ∈ [0, 1024]. Since all thresholds that represent integer

numbers are to be rounded down, we only need to consider all C ∈ {0, ..., 1024}.

The good news is that it is very easy to modify the rules so that they apply to

unprocessed ports. One must �rst notice that for C 8= {0, ..., 1023}, the meaning is

unchanged for both types of rules.

It is worth noting that, similarly to the observations made for checksums,

using 1024 as threshold would be a bad split and should never happen by using

a binary decision tree algorithm. All (pre-processed) data points would satisfy

the constraint of type 1 (port ≤ 1024) while none would satisfy its counterpart

(port > 1024).

However, if some other rule extraction algorithm were to derive such con-

straints from data that was pre-preprocessed in this way, then it can also be

easily dealt with.

The possible constraint (on pre-processed data) {port > 1024} describes a class

of tra�c that does not exist, any rule involving it can thus be simply discarded.

The complementary constraint {port ≤ 1024} matches all tra�c and can thus

be replace by {port ≥ 0} or simply removed from any rule it appears in.

87

Chapter 8 Practical firewall configuration

This simple pre-processing can thus be used with little to no modi�cation of

the derived rules. However, one may argue that although this pre-processing

allows to derive rules from data with random ports, it may lose some information

about non-random use of non-standard ports.

A solution was proposed to this problem. If such non-standard ports are in

use for some application, then it is known to the system administrator that

would be in charge of the self-con�gured �rewall. They can be excluded from

the pre-processing of ports and thus have a distinct value each.

This is a little more complicated than the simpler variant, but few modi�cations

of the derived rules are also necessary. If a rule contains constraints such as {port

> C1, port ≤ C2}, then it must be replaced with one or several rules corresponding

to which non pre-processed ports this interval actually represents.

What this means is dependent of the actual non-standard ports that were not

assimilated to 1024 and of the thresholds C1 and C2 but the modi�cations to the

rule set remain fairly few and simple.

Payload length

It was shown that constraints on any �eld that is found in packet headers, and

thus consequently in mmb, can be expressed as valid packet constraints, even if

some of the corresponding features are pre-processed prior to feeding them as

input to a machine learning algorithm.

However, a feature that is of great interest is the TCP/UDP payload length.

This feature is not something that is found directly in packet headers. Its in-

terest resides in the fact that it is one of the few low-level and simple pieces of

information related to the application layer. No matter whether if it is legitimate

or not, tra�c is usually sent to an application.

Attacks targeting an application may have a typical behaviour at any network-

ing layer below the application. Their only di�erence could consist in the form

of the application payload. Do they contain typical data for the application, too

much of it to cause a bu�er over�ow attack, or is maybe the request malformed

88

Configurating mmb with a decision tree Section 8.3

in some way to make the receiving application crash? All of these are possible

and could be invisible at the transport layer.

Payload length is a very descriptive low-level feature about the application

layer. It is not directly a �eld in packet headers but it can be derived from data

that is found in such headers. It likely would not be very di�cult to allow writing

rule with this criterion by modifying the �rewall’s code and grammar.

This is not the approach that was chosen here but what follows will make

clear how this could be achieved anyway. Computing this feature is very much

dependent on the actual transport protocol. The distinction between TCP and

UDP tra�c is primordial here.

The key principle is that the payload starts where the TCP/UDP header ends.

Where exactly this header ends is and the length of what remains is information

that can be derived from information that is is readily available in IP, TCP and

UDP headers.

Payload length: UDP packets

Let us start with the case of UDP packets, as it is the simpler of the two cases.

The reason it is simpler is two-fold, the UDP header has an explicit length �eld

and its header’s size is �xed.

0 15 31

Source port Destination port

Length Checksum

Figure 8.2: UDP header

The UDP header can be observed on �gure 8.2. We can see that the UDP

header is made of 4 �elds of 2 bytes (16 bits) each. A �eld which is of great

interest is the length �eld.

89

Chapter 8 Practical firewall configuration

This �eld is not equivalent to the payload length. It corresponds to the length

of the entire UDP datagram including the UDP header.

This means that the payload length can be expressed directly as a function of

this �eld. More precisely we can write:

payload-length = udp-length − 8 (8.2)

This means that for constraints of the form,

• payload-length ≤ C

• payload-length > C

we can write equivalently:

• udp-length ≤ C + 8

• udp-length > C + 8

This is a simple transformation of the rules extracted from the tree into

equivalent rules using only attributes that are available in packet headers and

consequently inmmb. There is thus no real drawback to the approach of keeping

the �rewall unchanged for rules about UDP tra�c.

Payload length: TCP packets

The case of TCP tra�c is more complicated. TCP’s header size is variable, so

it is impossible to treat it as a constant like it was done for UDP. Furthermore,

the TCP header does not have any length �eld comparable to the one found in

UDP’s header.

To be able to express TCP’s payload length, we will need information from

both TCP and IP headers. Both headers are of variable length, which complicates

the matter. They are displayed next page (�gures 8.3 and 8.4).

90

Configurating mmb with a decision tree Section 8.3

Figure 8.3: IP(v4) header, inspired and adapted from the �gure in

https://en.wikipedia.org/wiki/IPv4 in the header structure section

Figure 8.4: TCP header, inspired and adapted from the �gure in

https://en.wikipedia.org/wiki/Transmission_Control_Protocol in the TCP segment

structure section

91

https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Chapter 8 Practical firewall configuration

Figures 8.3 and 8.4 illustrate how the content of these 2 headers can be used to

derive the length of the payload that follows. Three �elds that are of particular

interest are highlighted in red.

In the IP header, the two �elds of interest are:

• The IP total length (ip-len in mmb’s formalism): this 16-bit �eld’s value

represents the total length of the IP packet in bytes (including the IP

header)

• The IHL (Internet Header Length, ip-ihl in mmb’s formalism): this repre-

sents the IP header’s length in 32-bit words.

In the TCP header, a last �eld of interest for the task at end is found:

• The data o�set (tcp-o�set in mmb’s formalism): represents the TCP

header’s length in 32-bit words.

It is possible to recover the TCP payload length by subtracting the length of

both the IP and TCP headers from the total IP length. This is a consequence of

the structure of the IP packet used in the context of TCP, this is illustrated on

�gure 8.5.

Figure 8.5: Structure of the IP packet in the context of TCP

92

Configurating mmb with a decision tree Section 8.3

We can thus formally write:

payload-length = ip-length − ip-header-len − tcp-header-len. (8.3)

Using only values that are available in the TCP and IP headers (and conse-

quently in mmb’s grammar), this can be rewritten as:

payload-length = ip-length − 4 ip-ihl − 4 tcp-data-o�set. (8.4)

This is an easy way to compute the payload length that could easily be done

by a �rewall to allow writing rules with the payload length as an attribute on

which constraints can be set.

However, it is still possible, without modifying the �rewall, to rewrite rules

containing constraints on the TCP payload length by making use of the inequality

shown above.

Let us say that we have the following subset of constraints in a given rule.

{tcp-payload-length ≤ 0, tcp-payload-length > 1} (8.5)

This is equivalent to (due to identity 8.4):

{ip-length − 4 ip-ihl − 4 tcp-o�set ≤ 0, ip-length − 4 ip-ihl − 4 tcp-o�set > 1}
(8.6)

The IP IHL �eld has a minimum value of 5, and, as it is a 4-bit �eld, its

maximum value is 15. The exact same goes for the TCP data o�set. This means

that if we consider all of the possible pairs of values for these 2 arguments, there

are 11 × 11 = 121 possibilities.

It is thus possible to express a rule with constraints on the TCP payload length

as 121 rules in which these constraints have been replaced by constraints on

the total IP length by considering the value of the IP IHL and TCP data o�set as

constants.

93

Chapter 8 Practical firewall configuration

For example, if we assume ip-ihl = 5 and tcp-o�set = 5 (minimum values),

then 8.6 can be rewritten as:

{ip-length ≤ 0 + 40, ip-length > 1 + 40, ip-ihl = 5, tcp-o�set = 5}. (8.7)

Although this is obviously equivalent, one should note this has an important

impact on the number of rules. Any rule with one or more constraint on the

TCP payload length is replaced by 121 rules. If the number of such rules is high,

it could result in an excessive number of rules.

However, the impact of this method was acceptable on the example considered.

Using rules extracted with a decision tree from the data generated on the testbed

using only data pertaining to requests and the features from table 8.1, the initial

number of extracted rules (prior to all the modi�cations discussed in this section)

was 39.

After applying everything that was discussed in this section including the

potentially costly modi�cation discussed above, the number of rules was 4604.

This is much bigger but can easily be handled by mmb which was designed

with scalability in mind and can handle 10
5

rules without a signi�cant impact

on performance [Ede+19].

One must also note that the rule set is redundant (as it covers the entire packet-

space), only considering either DROP or ACCEPT rules is su�cient. Considering

only DROP rules, only 1819 rules remain.

This covers all that is needed to con�gure the mmb-based �rewall by using

decision trees with the features of table 8.1.

This shows that it is possible to con�gure a �rewall by deriving rules from

labelled tra�c data. Feature pre-processing was shown to have interesting

applications to improve the quality of the derived rules and it was shown that, as

long as there is an obvious way to rewrite rules on pre-processed data, applying

such pre-processing is not problematic.

94

Conclusion: challenges in configurating real firewalls with such techniques Section 8.4

8.4 Conclusion: challenges in configurating real
firewalls with such techniques

The �rst challenge comes in the form of the expressivity of the available

features. As the simple example of the payload length illustrated very well,

it may be possible but somewhat di�cult to express a chosen feature with

the attributes that are readily available to express constraints in the �rewall’s

grammar.

However, realistically, the rule format is too restrictive to permit writing rules

that are equivalent to features which correspond to even a slightly complicated

function of the attributes which are readily available.

This limitation illustrates very well, that when considering what can and

cannot be a feature of tra�c, what the �rewall o�ers is very well the limiting

factor. As the di�erent scenarios considered in the machine learning experiments

have shown, the error rate with simple features such as the ones considered here

is too high to be used for truly automatic �rewall con�guration.

This remains true regardless of hyperparameter tuning by following the best

practices in machine learning and remains true for every classi�cation algorithm

that was considered.

What was however shown to reduce greatly the classi�cation error is to use

better features. Delays and PSH �ags were not used because they may disrupt

normal communication and are thus not really usable as such in practice, but

they did help reduce the classi�cation error. Similarly, �ow-based models using

averages as features presented many problems to be usable in practice, but their

error rates were smaller.

Since con�guration based on rules using features that are not available on the

�rewall of interest is either di�cult and impractical or straight-up impossible,

the only realistic solution is for the �rewall itself to o�er the ability to write

constraints directly on all features considered by the classi�er.

95

Chapter 8 Practical firewall configuration

The other main issue is the important reliance on the format of the rules. The

techniques that were studied will only ever work for con�gurating a �rewall

accepting a very strict format. One must be able to associate an action with a

conjunction of inequality and equality constraints. Any other rule format is

inadequate and would require a �rewall-speci�c translation that may or may

not be possible.

At this point, it is very clear that the automatic con�guration techniques

that are discussed in this thesis, are very much reliant on the capabilities and

grammar of the con�gured �rewall.

If such techniques are to be used and relied on, major developments regarding

standardization are going to be needed. This essentially calls for a standardization

of a rule format that is similar to the one of mmb.

However, since classi�cation performance is still an issue, there is little moti-

vation for such a standard to be adopted.

Automatic �rewall con�guration is possible but much more research is going

to be needed in order to obtain acceptable error rates, so that this con�guration

can really be performed automatically and on-the-�y.

Two problems have been shown to be critical to the adoption of such tech-

niques:

1. Finding features of tra�c that will lead to an acceptable error rate and

being able to build a �rewall that can use constraints on said features.

2. The con�gured �rewall must accept a speci�c rule format (conjunction of

inequality and equality constraints.

There is no doubt that if such techniques work e�ciently, the associated rule

format will also eventually be adopted. It would thus most likely be interesting

for further research to focus on �nding better features that can be computed fast

enough for a �rewall to use them and still operate at line-speed.

96

Part IV

Conclusion

9 Conclusions and Outlook

The objective of this master thesis consisted in �nding techniques to con�gure

�rewalls automatically in order to avoid the error prone process of �rewall

con�guration. Traditionally, �rewalls are con�gured by a system administrator

de�ning explicitly every type of tra�c that is allowed to go through it. In order

to avoid manually writing such rules, �rewall con�guration was reformulated

in a supervised machine learning framework.

This research and its results answer a lot of questions on how it is possible to

use machine learning techniques to con�gure a �rewall and which techniques can

be used to achieve this objective. A generic technique to achieve this objective

was found, in spite of the many di�culties speci�c to �rewall con�guration. Let

us go over the learning outcomes that were highlighted in this work. Several

matters need discussion.

A �rewall consists in a program classifying packets in two categories: legiti-

mate or malicious. In possession of labelled dataset, i.e. a set of packets for which

the category is known, this looks very much like a typical classi�cation problem,

for which a variety of well-known algorithms already exist. The approach that

was studied consists in treating �rewalls as a classi�cation problem to see how

classi�cation algorithms can be re-purposed for �rewall con�guration.

The �rst question one might ask is if there are any problems obtaining such a

dataset. Obtaining legitimate examples is easy and straightforward. One may

just record the tra�c from legitimate applications they want to pass through

the �rewall.

Obtaining examples of what is not allowed could seem more di�cult. It

consists in pretty much all tra�c that is not emitted by a legitimate application.

In practice, to record tra�c of the sort, one may use recorded tra�c from previous

attacks, which could for example come from an Intrusion Detection System (IDS).

99

Chapter 9 Conclusions and Outlook

Building representative data of both classes of tra�c is thus not conceptually

di�cult but one must note that nothing that is not found illustrated in this data

will be picked up on by the �rewall. This means that if some new attack is

di�erent in every way from known attacks, it is unlikely to be considered by

malicious by an automatically con�gured �rewall.

If we now assume that such a dataset exists and is representative of both

classes of tra�c, one may assume that this pretty much comes down to a simple

classi�cation problem and applying out-of-the-box supervised machine learning

algorithms, it is directly possible to con�gure a �rewall from these examples.

In reality, this is much more complicated, and these techniques cannot possibly

be applied as such without solving many problems that are speci�c to �rewalls

and tra�c data. Let us go over these and how they were addressed.

The �rst signi�cant issue to address is how recorded tra�c is to be rewritten

as a set of features. Two approaches were proposed: a per-packet and a per-

�ow approach. The main di�erence between both approaches is what will be

considered as a data point by the classi�cation algorithm. In the former, a data

point is a packet, and in the latter, a data point is a �ow.

De�ning what is a data point is not enough, one must change it into a set of

features, which is essentially a vector of input variables. What are exactly those

variables is very important for the performance of the classi�er.

Once the problem of changing data into pairs of features and output class is

solved, comes in the very important issue of interpretability. Most classi�cation

algorithms o�er little to no interpretability. This means that once "trained" from

a set of labelled data, they become a sort of opaque classi�er object that can

be used from a vector of inputs (the features) can infer the output. What they

however do not o�er is insight on the relationship between inputs and outputs.

However, �rewall con�guration is not just another typical classi�cation prob-

lem. In �rewall con�guration, interpretability is key. An opaque classi�er

cannot simply be incorporated into a �rewall. If one were to do it, this would

100

Conclusions and Outlook Chapter 9

require building a �rewall speci�cally to work with such classi�ers. The classi-

�er would need to be called for each new incoming packet, which could make

high-performance tra�c discrimination di�cult depending on the underlying

algorithm.

If it is not enough to warrant the necessity of interpretability, the issue of

error handling must be considered. If something goes wrong with the automatic

con�guration process and some tra�c gets handled di�erently than it ought

to, let us say some legitimate tra�c is wrongfully blocked, how is a system

administrator supposed to rectify that issue if there is no useful way in which

the classi�er structure can be understood and edited?

One may suggest to retrain the algorithm with data that is more representative

of that particular type of tra�c. This may or may not work. There is indeed

no guarantee that the training dataset is itself perfectly classi�ed. In the cases

where it does not work, there would be no way to rectify the situation. It is

unacceptable in practice to have that little control. There is thus an actual need,

both for performance and practicality reasons, for such techniques to be used

only for con�gurating classical rule-based �rewalls.

However, as pointed out, most classi�cation algorithms are opaque and do

not o�er any possibility of being translated into rules. Rule extraction from

opaque models is possible but is a relatively new �eld and there are not many

truly generic techniques. Most of these techniques are generally speci�c to a

particular type of classi�er and most research in that domain has been about

neural networks. Neural networks were not addressed in this thesis due to the

di�culty of tuning them and their high computational complexity, which is

problematic in the context of �rewalls. This could however be an interesting

subject for further research.

An algorithm that can be used easily to build rules from data is the decision

tree algorithm. It has the ability to learn rules directly from data. This means

that it can be used directly as a classi�er using the training data or as a generic

extraction technique for other classi�ers.

101

Chapter 9 Conclusions and Outlook

Both approaches were considered, but no signi�cant advantage was found in

using it to extract rules from another classi�er than using it directly. The idea of

splitting the problem of con�guration in two sub-problems that are classi�cation

and rule extraction is however interesting. This additional modularity of the

solution could allow improvements in any of those �elds to improve the quality

of the overall solution.

Whatever approach is chosen, the outcome is almost exactly the same: a deci-

sion tree that can be translated into rules of a very speci�c format: a conjunction

of equality and inequality constraints on the features’ values. This format is

adequate to con�gure a �rewall and an example for con�gurating a solution

based on mmb (Modular MiddleBox) was proposed.

Several possible sets of features were proposed, both for the per-packet and

per-�ow approach. The error rate was shown to depend greatly on the set of

features. The per-�ow approach presented many obstacles to generate an usable

con�guration. The per-packet approach was shown to be usable in practice.

Although its error rate was somewhat higher, some of the machine learning

experiments that were performed have shown that the error rate improves

greatly when using more expressive features.

The set of features that was used to build a valid con�guration for the mmb-

based �rewall does not allow for an acceptable error rate. However, including

additional features like TCP PSH �ags and packet delays reduce greatly the

error rate. These were not used because this would result in preventing normal

communication in some cases, but this illustrates that a more expressive feature

set allows for smaller error rates.

Although these results are encouraging, none of them can be applied as such in

real-world networks. What currently lacks is better set of features and �rewalls

that accept them in their grammars. Finding features that are expressive enough

so that they can yield acceptable error rates will certainly be challenging.

The main reason why the current error rates are unacceptable is because the

features are not descriptive enough to be able to distinguish legitimate and attack

tra�c in all relevant cases. That information is found mostly at the application

102

layer. It is thus likely that improving the feature set relies on deep packet

inspection (DPI), which is even more complicated in the context of encrypted

tra�c, i.e. 85% of web tra�c nowadays.

What the future of automatic �rewall con�guration is made of will be a com-

bination of several factors. It is relatively obvious that any improvements both

in classi�cation algorithms and rule extraction techniques for such algorithms

will be of great help for the speci�c problem of automatic �rewall con�guration.

However, improvements in the related sub-�elds of arti�cial intelligence will

not be enough to make manual �rewall con�guration a thing of the past. Much

more research dedicated to �nding better features of tra�c and building �rewall

that can use rules based on them is going to be necessary. Unsupervised machine

learning techniques such as clustering would also deserve some investigation as

they may allow an easier creation of labelled data for training the algorithms.

Automatic and on-the-�y �rewall con�guration and recon�guration will one

day be a reality but the road ahead both in arti�cial intelligence and in this brand

new �eld is still very long.

Future works could focus on �nding more expressive features, for example

based on Deep Packet Inspection, to describe tra�c e�ciently. Using them would

require modifying an existing �rewall, or tool that can be used as a �rewall (e.g

mmb), in order to take advantage of such features while still operating at line

speed.

Another subject that could be of interest to future works could be the use of

clustering and other unspervised machine learning algorithms to build labelled

training datasets from unlabelled data. Being able to rely on unlabelled data

would make the con�guration process even simpler as it would permit con�gu-

ration from any recorded tra�c data, without initially knowing which packets

are legitimate or not.

103

9Bibliography

[Don19a] B. Donnet. Lecture: INFO0045: Introduction to computer security, Part 2,
Chapter 4: Network attacks. Université de Liège. 2019.

[Don19b] B. Donnet. Lecture: INFO0045: Introduction to computer security, Part 2,
Chapter 5: Spam. Université de Liège. 2019.

[Ede+19] K. Edeline, J. Iurman, C. Soldani, and B. Donnet. mmb: Flexible High-
Speed Userspace Middelboxes. In: Proc. ACM Applied Networking Re-
search Workshop (ANRW). July 2019.

[Ede19] K. Edeline. Characterizing and Modeling of Transport-Based Mid-
dleboxes. PhD thesis. Université de Liège, Oct. 2019.

[fdi] fd.io. What is VPP? In: https:// wiki.fd.io/ view/VPP/What_is_VPP%3F .

Modi�ed: May 2017, Accessed: October 2020.

[GW19] P. Geurts and L. Wehenkel. Lecture: ELEN062-1: Introduction to machine
learning. Université de Liège. 2019.

[HBV07] J. Huysmans, B. Baesens, and J. Vanthienen. Using rule extraction to
improve the comprehensibility of predictivemodels. SSRN Electronic
Journal (2007).

[Inv] Federal Bureau of Investigation. 2020 Internet Crime Report. https://www.

ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf. Published: March

2021, Accessed: May 2021.

[Kal] Kali.org. Kali Default Non-root User. In: https://www.kali.org/news/kali-
default-non-root-user/ . Published: 2019-12-31, Accessed: 2020-09-20.

[McK] Martin McKeay. Parts of a whole: e�ect of COVID-19 on US Internet tra�c.
Akamai blogs, https://blogs.akamai.com/sitr/2020/04/parts-of-a-whole-

e�ect-of- covid-19-on-us- internet- tra�c.html. Published: April 2020,

Accessed: May 2021.

[NFS12] M. Norouzi, D. Fleet, and R. Salakhutdinov. Hamming Distance Metric
Learning. In: 25th International Conference on Neural Information Process-
ing Systems. NIPS’. 2012, 1061–1069.

[NS11] M. Narasimha Murty and V. Susheela Devi. Pattern Recognition: An
Algorithmic Approach. Springer, 2011.

105

https://wiki.fd.io/view/VPP/What_is_VPP%3F
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.kali.org/news/kali-default-non-root-user/
https://www.kali.org/news/kali-default-non-root-user/
https://blogs.akamai.com/sitr/2020/04/parts-of-a-whole-effect-of-covid-19-on-us-internet-traffic.html
https://blogs.akamai.com/sitr/2020/04/parts-of-a-whole-effect-of-covid-19-on-us-internet-traffic.html

[Rap] Rapid7. Metasploit framework manual pages. https://docs.rapid7.com/

metasploit/. Accessed: February 2020.

[Sec] O�ensive Security. Exploit Database. https://www.exploit-db.com/. Ac-

cessed: February 2020.

[Ser] IBM Managed Security Services. IBM Security Services 2014 Cyber Security
Intelligence Index. Published: June 2014, Accessed: May 2021.

[Tru79] G. V. Trunk. A Problem of Dimensionality: A Simple Example. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-1:3 (1979).

[Ver14] R. Verbruggen. Creating �rewall rules with machine learning tech-
niques. Published in Radboud University’s online article repository. MA

thesis. Nijmegen Netherlands: Kerckho�s institute Nijmegen, 2014. url:

https://www.ru.nl/publish/pages/769526/roland_verbruggen.pdf.

106

https://docs.rapid7.com/metasploit/
https://docs.rapid7.com/metasploit/
https://www.exploit-db.com/
https://www.ru.nl/publish/pages/769526/roland_verbruggen.pdf

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	I Technical choices
	2 mmb as a firewall

	II Data Generation
	3 Testbed description
	4 Generated traffic
	4.1 Statistical description: introduction
	4.2 Packet-related statistics
	4.3 Flow-related statistics
	4.4 Details of attacks

	III Automatic configuration
	5 Candidate and selected features
	5.1 Discussion of candidate features

	6 Considered supervised machine learning algorithms
	6.1 Decision trees
	6.2 Naive Bayesian classifier
	6.3 k-nearest neighbors (k-NN)
	6.4 Random forests
	6.5 Ensemble methods: stacking
	6.6 Summary of the different considered techniques

	7 Supervised machine learning: methodology and results
	7.1 Model evaluation
	7.2 Model selection
	7.3 Additional technical details, results, and discussion
	7.3.1 Implementation details
	7.3.2 Discussion of the choice of features
	7.3.3 Hyperparameter tuning
	7.3.4 Precisions on the stacking classifier
	7.3.5 Discussion of potential feature pre-processing
	7.3.6 Precision on the k-NN classifier
	7.3.7 Results and interpretation
	7.3.8 Considerations on replies in training data
	7.3.9 Conclusion on the comparative study and outlook

	8 Practical firewall configuration
	8.1 Structure of the binary decision tree
	8.2 Rule extraction from the tree
	8.3 Configurating mmb with a decision tree
	8.3.1 mmb rule format
	8.3.2 Challenges in configurating mmb from a decision tree and their solutions

	8.4 Conclusion: challenges in configurating real firewalls with such techniques

	IV Conclusion
	9 Conclusions and Outlook
	Bibliography

