
https://lib.uliege.be https://matheo.uliege.be

Detection of forest fires using artificial intelligence

Auteur : Cajot, Antoine

Promoteur(s) : Van Droogenbroeck, Marc

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2020-2021

URI/URL : http://hdl.handle.net/2268.2/11670

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Detection of forest fires using artificial
intelligence

Master’s thesis presented
by

Antoine Cajot
to the

School of Engineering and Computer Science

carried out to obtain the degree of
Master’s Degree in Computer Science Engineering

University of Liège
Liège, Belgique

Academic Year 2020-2021

©2021 – Antoine Cajot
all rights reserved.

Thesis advisor: Professor Marc Van Droogenbroeck Antoine Cajot

Detection of forest fires using artificial intelligence

Abstract

With the advent of climate change comes the fear wildfires will become a rising con-
cern in the near future as is hinted by several environmental studies. This fear has
already become a reality for some parts of the globe. This work implements and com-
pares different deep learning architectures for flame semantic segmentation on RGB
images of fires occurring in a natural environment taken from the ground or from an
unmanned aerial vehicle (UAV). The Corsican Fire Database is exploited after com-
paring it to other candidate public datasets. Results are compared in terms of the
intersection over union (IoU), the mean squared error (MSE), the binary accuracy and
the recall metrics as well as their number of network parameters. The implemented
architectures are the FLAME U-Net, the DeepLabv3+ architecture considering the
EfficientNet-B4 and the ResNet-50 backbones, the Squeeze U-Net as well as the ATT
Squeeze U-Net. Notable among the evaluated architectures, the DeepLabV3+ with an
EfficientNet backbone was the one that achieved the best results with an IoU of 0.93
and a recall of 0.967 while exploiting 22M parameters; and the ATT Squeeze U-Net
that scored very decently with an IoU of 0.893, a recall of 0.928 and the least amount
of network parameters (885K). All implementations were made public.

iii

Contents

0 Introduction 1
0.1 A rising concern . 1
0.2 The different types of forest fires . 4
0.3 Towards a problem statement . 5
0.4 Overview . 10

1 Review of recent segmentation methods 12
1.1 Neural networks . 12
1.2 Semantic segmentation . 19
1.3 Deep Learning architectures for Image Segmentation 20
1.4 Frequently employed metrics in Image Segmentation 38

2 Methodology 43
2.1 Data . 44
2.2 Evaluation framework . 49
2.3 Implementation . 52

3 Results 57
3.1 FLAME U-Net . 58
3.2 DeepLabv3+ with ResNet50 backbone 60
3.3 DeepLabv3+ with EfficientNet backbone 62
3.4 Squeeze U-Net . 66
3.5 ATT Squeeze U-Net . 68
3.6 Perspectives . 70

4 Conclusion 74

Appendix A AHI bands 77

Appendix B MODIS bands 78

Appendix C VIIRS bands 80

Appendix D AVHRR bands 81

iv

Appendix E FLAME U-Net layers and parameters 82

Appendix F Squeeze U-Net layers and parameters 85

Appendix G DeepLabv3+ with ResNet50 layers and parameters 90

Appendix H DeepLabv3+ with EfficientNet layers and parame-
ters 103

Appendix I ATT Squeeze U-Net layers and parameters 133

References 144

v

Listing of figures

1 Annual wildfire-burned area (in millions of acres) in the United States from
1983 to 201528 . 3

2 Change in Annual Burned Acreage by State between 1984-1999 and 2000-
201428 . 4

3 Predicted percent changes in the number of days with very high and ex-
treme fire-weather in Australia— 2020 and 2050, relative to 1990, under
the different scenarios hinted by Intergovernmental Panel on Climate Change
(IPCC)66 . 4

4 Projected commercial drone revenue from 2015 to 2025 (in million US dol-
lars).21 Source: Drones for commercial application, statista.com 8

1.1 The models of simple and complex cells proposed by Movshon, Thompson
and Tolhurst (1978) following the works of Hubel and Torsten14 16

1.2 Schematic diagram illustrating the interconnections between layers in the
neocognitron36 . 17

1.3 Architecture of LeNet-5, a convolutional NN, here used for digits recogni-
tion. Each plane is a feature map, i.e., a set of units whose weights are con-
strained to be identical.61 . 18

1.4 Comparison of semantic vs instance segmentation.10 Instance segmenta-
tion distinguishes between different instances of the same object; in this
case chairs. 20

1.5 Long et al.’s directed acyclic graph (DAG) nets learn to combine coarse,
high layer information with fine, low layer information. Pooling and pre-
diction layers are shown as grids that reveal relative spatial coarseness, while
intermediate layers are shown as vertical lines. First row (FCN-32s): Their
single stream net upsamples stride 32 predictions back to pixels in a sin-
gle step. Second row (FCN-16s): Combining predictions from both the fi-
nal layer and the pool4 layer, at stride 16, lets their net predict finer de-
tails, while retaining high-level semantic information. Third row (FCN-8s):
Additional predictions from pool3, at stride 8, provide further precision.65 22

1.6 Overlap-tile strategy for seamless segmentation of arbitrary large images.
Prediction of the segmentation in the yellow area, requires image data within
the blue area as input. Missing input data is extrapolated by mirroring.80 24

vi

1.7 U-net architecture (example for 32x32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of chan-
nels is denoted on top of the box. The x-y-size is provided at the lower left
edge of the box. White boxes represent copied feature maps. The arrows
denote the different operations.80 . 25

1.8 Organization of convolution filters in the Fire module.49 In this case, hy-
perparameters s1×1 = 3, e1×1 = 4 and e3×3 = 4 are used. 27

1.9 Macroarchitectural view of F. Iandola et al.’s SqueezeNet architecture. Left:
SqueezeNet; Middle: SqueezeNet with simple bypass; Right: SqueezeNet
with complex bypass49 . 28

1.10 The Squeeze U-Net architecture. The downsampling units in the contract-
ing path each consists of two fire modules which extract features. The ex-
tracted features are passed down to the next downsampling unit and to the
corresponding upsampling unit. Every upsampling unit in the expansive
path consists of a transposed fire module, a concatenation unit and two fire
modules which in order upsamples their input, extract features, and con-
catenate features to construct the output. US and DS stand respectively
for upsampling and downsampling.8 . 30

1.11 Comparison of convolutions in the contracting path (A and B) and trans-
posed convolutions in the expansive path (C and D) between the original
U-Net implementation (A and C) and the Squeeze U-Net implementation
(B and D).8 . 31

1.12 The ATT Squeeze U-Net architecture. The contracting path uses a SqueezeNet
architecture with eight modified Fire modules. The expansive path incor-
porates three DeFire modules that take the same ideology as the modified
Fire module. Three attention gates at the skip connections concatenate en-
coder and decoder features.117 . 32

1.13 Structure of the the modified Fire module in ATT Squeeze U-Net.117 . . 33
1.14 Structure of the DeFire module in ATT Squeeze U-Net.117 33
1.15 Schematic of the additive attention gate used in ATT Squeeze U-Net117 . 34
1.16 Example of atrous convolutions with different rates15 35
1.17 Atrous Spatial Pyramid Pooling (ASPP). To classify the center pixel (or-

ange), ASPP exploits multi-scale features by employing multiple parallel
filters with different rates. The effective Field-Of-Views are shown in dif-
ferent colors.17 . 35

1.18 3 × 3 Depthwise separable convolution decomposes a standard convolu-
tion into (a) a depthwise convolution (applying a single filter for each in-
put channel) and (b) a pointwise convolution (combining the outputs from
depthwise convolution across channels). In DeepLabv3+, atrous separa-
ble convolution are explored where atrous convolution is adopted in the depth-
wise convolution, as shown in (c) with rate = 2.18 36

1.19 DeepLabv3 architecture. Parallel modules with Atrous Spatial Pyramid Pool-
ing (ASPP) (a), augmented with image-level features (b).15 37

vii

1.20 DeepLabv3+ extends DeepLabv3 by employing a encoder/decoder struc-
ture. The encoder module encodes multi-scale contextual information by
applying atrous convolution at multiple scales, while the simple yet effec-
tive decoder module refines the segmentation results along object bound-
aries.18 . 38

2.1 Composition of the Corsican Fire Database. Out of the 1135 Red-Green-
Blue (RGB) images composing the dataset, 634 of which have near-infrared
(NIR) data. Among the latter, 540 are part of 5 different video sequences
of 5 different fires . 47

2.2 Top 10 most frequent image sizes represented in the Corsican Fire Database 48
2.3 Entity-Relation (ER) database schema used to index samples of the dataset.

The only entity is represented in blue and its attributes in orange. 49
2.4 Empirical cumulative distribution of samples according to their count of

flame pixels . 50
2.5 Evaluation methodology diagram . 51
2.6 Customized version of the U-Net showcased in the FLAME paper.88 . . . 53
2.7 Model Size vs. ImageNet Accuracy. All numbers are for single-crop, single-

model. EfficientNets significantly outperform other ConvNets. In partic-
ular, EfficientNet-B7 achieves new state-of-the-art 84.3% top-1 accuracy
but being 8.4x smaller and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x
smaller and 5.7x faster than ResNet-152.97 55

3.1 Training set and validation set -based metrics during training for FLAME
U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d) Mean
squared error (MSE), (e) Intersection over Union (IoU). 59

3.2 Training set and validation set -based metrics during training for DeepLabv3+
with a ResNet50 backbone: (a) loss (binary cross-entropy), (b) accuracy,
(c) recall, (d) MSE, (e) IoU. 61

3.3 Training set and validation set -based metrics during training for DeepLabv3+
with an EfficientNet backbone (dlv3_efficientnet variant): (a) loss (bi-
nary cross-entropy), (b) accuracy, (c) recall, (d) MSE, (e) IoU. 64

3.4 Comparison of train/val-based metrics during training between dlv3_efficientnet
and dlv3_efficientnet_2 described in Section 3.3: (a) loss (binary cross-
entropy), (b) accuracy, (c) recall, (d) MSE, (e) IoU. 65

3.5 Training set and validation set -based metrics during training for Squeeze
U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d) MSE,
(e) IoU. 67

3.6 Training set and validation set -based metrics during training for ATT Squeeze
U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d) MSE,
(e) IoU. 69

3.7 Comparison of outputs between the different implemented network, along
with the input image and associated ground truth 73

viii

Listing of tables

3.1 FLAME U-Net test results (41 epochs) 60
3.2 DeepLabV3+ w/ ResNet50 backbone test results (47 epochs) 62
3.3 DeepLabV3+ w/ EfficientNet backbone test results (65 epochs) 63
3.4 Squeeze U-Net test results (50 epochs) 68
3.5 ATT Squeeze U-Net test results (50 epochs) 70
3.6 Metric comparison table . 71
3.7 Metric comparison table normalized by the scores of the ATT Squeeze U-

Net . 71

A.1 AHI bands. Natural-color component bands are noted with R, G and B53 77

B.1 MODIS bands. Spectral Radiance expressed in Wm−2sr−1µm−1.72 . . . 79

C.1 VIIRS bands. M stands for moderate resolution bands, I for imagery, DNB
for Day-Night Band (or Near Constant Contrast (NCC) band) and natural-
color component bands are noted with R, G and B.20 80

D.1 AVHRR/3 bands.102 . 81

ix

Listing of Abbreviations

ADALINE Adaptive Linear Neuron. 14

AHI Advanced Himawari Imager. 6

ASPP Atrous Spatial Pyramid Pooling. vii, 34–37

AVHRR Advanced Very High Resolution Radiometer. 6

CCTV closed-circuit television. 6, 9

CNN Convolutional Neural Network. 15–17, 19

DAG directed acyclic graph. vi, 22

DSC Dice similarity coefficient. 41, 42, 70

EASA European Union Aviation Safety Agency. 8

EOS Earth Observing System. 6

ER Entity-Relation. viii, 48, 49

FCN Fully Convolutional Network. 21, 23

FLAME Fire Luminosity Airborne-based Machine learning Evaluation. 44, 53, 58,
60, 66, 70, 75

FLOPS floating point operations per second. 54, 55

FPGA Field-programmable gate array. 24

FPS Frames Per Second. 45

GPU graphics processing unit. 23

IEEE Institute of Electrical and Electronics Engineers. 15

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 21

x

INNS International Neural Network Society. 15

IoU Intersection over Union. viii, 39, 42, 51, 52, 57–61, 64–70, 75

IPCC Intergovernmental Panel on Climate Change. vi, 4

IR infrared. 45, 76

MACs Multiplication Accumulation operations. 29

MetOp Meteorological Operational. 6

MODIS Moderate Resolution Imaging Spectroradiometer. 6, 7

MSE Mean squared error. viii, 42, 51, 57–59, 61, 64–69, 75

NIR near-infrared. viii, 7, 8, 44, 46–48

NOAA National Oceanic and Atmospheric Administration. 6

PA Pixel Accuracy. 38, 39

ReLU rectified linear unit. 21, 23, 31

RGB Red-Green-Blue. viii, 8, 10, 44–47, 76

SNARC Stochastic Neural Analog Reinforcement Calculator. 13

UAV Unmanned Aerial Vehicle. 6, 7, 9, 10, 44, 46

VIIRS Visible Infrared Imaging Radiometer Suite. 6

WSN Wireless Sensor Network. 6, 9

xi

I dedicate this work to all who have suffered from wildfires, hoping
it will be even only modestly useful in the fight against them.

xii

Acknowledgments

First and foremost, this work would not have been possible without the precious
advice and guidance of Professor Marc Van Droogenbroeck. The same goes for Renaud
Vandeghen who also allowed me a great deal of time and cues. For their help and their
time I owe them my sincerest and deepest gratitude.

I could not go on without also thanking both of my parents, Isabelle and Olivier,
for their infallible support throughout my studies as well as their constant interest in
my personal affairs. In addition, their ability to put up so tolerably with my nonsensi-
cal behavior should also be recognized.

I want to thank my brother, François, for letting me use and abuse his GPU, in
turn making his bedroom warmer than the unburnt remnants of the Amazonian For-
est (a climate propitious for fungi, for instance); I also have to thank him for barking
louder than our dear canid, Rimbaud, himself with a coat darker than the hearts of
men.

I would also have to thank very warmly the three hooligans who go by the catchy
name of “le Quatuor des zinzins”. Starting with Cédric “Tonton” Mullenders, who
took the time — from inside of his control tower — to check the phrasing, structure
and formatting of this work; continuing with Noémie “DePain” Lecocq and Mattias
“Ange” Gabriel, gracious Easter bunnies who have both watched out a lot for me dur-
ing my endeavors and offered their support on multiple occasions.

Then, I want to thank Johan Browet for his incredible roleplaying skills, his shared
passion for coffee, and his unexpected though very welcome last-minute assistance.

Last but far from least, I want to bow down and express my heartfelt appreciation
to Maira Valencia, who has been cheering me on daily for the full duration of this the-
sis as well as assisted me in making sure the language of Shakespeare was not being
completely butchered by rereading this manuscript. This work is also hers.

xiii

0
Introduction

0.1 A rising concern

Forest fires — as opposed to other types of wildfires, such as brush fires or grass fire

— are alleged to have been ravaging forests for almost as long as trees have existed,87

id est at least 300 million years.110 They are first and foremost a natural phenomenon

which is far older than mankind itself. Civilisations that preceded our times had to

cope with forest fires or even leveraged them to manipulate the landscape either for

agriculture or town planning. For instance, the Amazon’s ancient inhabitants used

1

forest fires to clean patches of land for agriculture for thousands of years (a practice

still used in the same area as of today). And ere Europe’s settlers colonized the Amer-

icas, indigenous tribes leveraged controlled fires both to shape the landscape as well

as to reduce the risk of wildfires as part of an ongoing maintenance of their natural

reserves.93 Forest fires are also known to help sustain biodiversity (by promoting evo-

lution) and the health of ecosystems (by stimulating rejuvenation).11 55 76 71 However,

with the advent of the Anthropocene and climate change, many are concerned their

frequency will soar in response to higher air temperature, shorter and scarcer rain sea-

sons and more intensive land use, going beyond the natural resiliency of forests. This

could potentially threaten biodiversity, human constructions and lives as well as con-

stituting in itself an economical loss for countries as wood and other types of fuels are

valuable resources. Having more forests turning to ashes is not helping to cut off car-

bon emissions either. Though these concerns still remain very uncertain predictions

in some parts of the globe, they seem to already have become reality in many areas

worldwide.

In the United States, there was a clear increase in forest fires over the recent years,

especially along the west coast, as can be seen in Figures 1 and 2. In Europe, large

forest fires have recently affected several western and northern countries in which

there were not prevalent in the past. In those countries, it was projected there would

be more severe fire weather and, as a consequence, substantial expansion of the fire-

prone area and longer fire seasons, particularly for high emissions scenarios. The sit-

uation is especially concerning for the southern countries around the Mediterranean

Sea.29 In Asia, similar trends have been observed as it was suggested forest fires were

increasing and requiring immediate attention specifically in India, Pakistan and Viet-

nam103; increased temperatures in Siberia’s peatlands as well as increased human ac-

tivity are also correlated with an increase in fires.27 The Amazonian Forest could be

2

at risk of increased vulnerability due to climate change27 on top of the agricultural

land pressure it is already facing. Predictions for Australia are not any more opti-

mistic either since climate change might exacerbate the fire-weather risk of any given

day,66 leading to increased frequency or intensity of extreme fire weather days as de-

picted in Figure 3. In Africa, the situation seems less concerning since some models

predict more humid regional conditions with temperature global increase. Also, many

regions of Africa are already either occupied by deserts or in the grip of desertification;

this lower amount of vegetation to burn of course implies it is less likely to observe

fires in these areas. However, the land (including forested areas) is subjected to an

increasing amount of agricultural pressure.27

Figure 1: Annual wildfire-burned area (in millions of acres) in the United States
from 1983 to 201528

3

-4
-3

-2
-1

-0.2
0.2

1
2

3
4

Figure 2: Change in Annual Burned Acreage by State between 1984-1999 and
2000-201428

Figure 3: Predicted percent changes in the number of days with very high and
extreme fire-weather in Australia— 2020 and 2050, relative to 1990, under the
different scenarios hinted by IPCC66

0.2 The different types of forest fires

Forest fires are generally broadly classified in three categories: crown fires, ground

fires and surface fires.83 Crown fires are the most dangerous and violent type of

4

fire for a forest: they spread swiftly over wide areas and often times kill the trees by

burning them from their trunk to the crown and consuming their foliage entirely.

Ground fires (also known as underground/subsurface fires) are the submarines of

forest fires: they occur in the peaty and humus layers as well as other types of dead

and dry vegetation that are beneath the litter of composed material laying on the for-

est floor. They produce a very intense heat but practically no visible flame. In spite

of their very petty progression speed, their furtiveness may allow them to span wide

areas before blazing up and becoming visible. There have been occurrences of ground

fires smouldering underground for a whole winter before resurfacing in spring, after

prolonged droughts. Eventually, surface fires are the most common type of forest

fire but also the least damaging. They take place on or close to the ground and burn

ground cover, scrub, saplings, etc. Because the combustible is sparse and generally

thin (small branches, leaves and grass), they are easily put out. Their progression

is influenced by wind’s speed and direction. Naturally, these classifications are not

definitive and a surface fire can evolve into a crown fire, for instance, or a fire could

both be a ground and a crown fire at the same time.

0.3 Towards a problem statement

Prevention, prediction, forecasting and post-incident damage assessment are key com-

ponents of the fight against forest fires; however, this work will focus essentially on

detection and ongoing incident damage assessment. In particular, the methods exploit-

ing neural networks will be given special attention since these families of algorithms

have been known to show state-of-the-art performances at many tasks including detec-

tion and assessment. To detect and assess forest fires efficiently, multiple methods that

leverage machine learning have been suggested in the past few years. They can first be

distinguished in terms of the infrastructure that enables them to gather data to base

5

their predictions on; e.g. satellite,98,51,54,60,24,111,104,68,6,95,63,2,62,112 Unmanned Aerial

Vehicle (UAV),19,57,25 closed-circuit television (CCTV)118,116,4 or Wireless Sensor Net-

work (WSN).1,5,90,79,7,45,46,26,115,85 Each of them has its own strengths and weaknesses

which will be reviewed in the following subsections.

0.3.1 Satellites

Satellite-data is generally cheap and widely available since they have already been

deployed in generous amount for various other purposes. A consequent amount of

studies that have been conducted for the purpose of fire detection and damage assess-

ment in the previous decades have used extensively satellite data originating mainly

from the following sensors: a. the Moderate Resolution Imaging Spectroradiometer

(MODIS) sensor (1995)72 aboard the Terra and Aqua Earth Observing System (EOS)

satellites, imaging the entire globe every one to two days together, b. the Advanced

Very High Resolution Radiometer (AVHRR) sensors aboard the National Oceanic and

Atmospheric Administration (NOAA) and the Meteorological Operational (MetOp)

satellites (its first version, AVHRR/1, was first used in 1978 while its latest version,

AVHRR/3, was first used in 199864), c. the Visible Infrared Imaging Radiometer

Suite (VIIRS) sensor (2011) designed to expand upon the data retrieved by the older

MODIS and AVHRR sensor73 and d. the Advanced Himawari Imager (AHI) sensor

aboard Himawari 8 (2015).53

These sensors capture different bands of Earth’s outgoing electromagnetic radia-

tion. Each of these bands captures distinct information — for instance some bands

are more suited to identify bodies of water, smoke or clouds — which can be used to

decide whether or not to include them in the dataset. For reference, a table with the

different bands captured by MODIS and their primary use is detailed in Table B.1.

Therefore, their data can be leveraged to “see” past cloud and smoke covers and focus

6

on wavelengths that are of interest (namely NIR in the case of forest fire).

The main issue that comes with using satellites for the purpose of detection and

ongoing incident damage assessment is that in general, their revisit time — the time

elapsed between their observations of the same point on Earth56 — is too high to al-

low for consistency in the earliness of forest fire detection. For instance, the revisit

time of MODIS (accounting for the combined data both of MODIS sensors) is 1-2

days75 and in 1-2 days there is no telling how the fire incident situation might have

worsened and spread before finally being detected and reported to firefighting units,

depending on the direction and strength of the wind and the dryness of the land cover;

every hour might count.

0.3.2 Unmanned Aerial Vehicles

A UAV, a.k.a. drone, is an aircraft that can be controlled either by a human pilot

or by software that allows it to fly autonomously. This technology is used in many

sectors including the military, the government and for commercial as well as by recre-

ational purposes.77 One of its main strengths is that they are widespread and their

popularity is still rising. As can be seen in Figure 4, drone sale revenue has been soar-

ing for a long time and is still expected to keep rising until at least 2025; likely way

past 2025 thanks to their democratization and continuous improvement over the years.

The fact there are more and more owners, including in the private sector, means it

would be possible to promote their use for fire detection through incentives offered

by the government (e.g. tax cuts, bonuses, ...). For instance, it was suggested dur-

ing the 2019 edition of NASA’s International Space Apps Challenge to use private

drones lent to an association to help prevent and suppress wildfires in exchange for

free battery charging; images collected by NASA satellites and by drones would be

fed to a neural network model to predict higher-risk zones and the direction in which

7

Figure 4: Projected commercial drone revenue from 2015 to 2025 (in million US
dollars).21 Source: Drones for commercial application, statista.com

accessed 17 July 2017

fire would spread as well as help firefighters suppress the fires and restore forests by

sowing.74 Drones are cheap and versatile as many sensors can be easily equipped and

unequipped including RGB or NIR sensors, plus their mobility makes them excellent

candidates to patrol higher-risk areas.

On the other hand, drones have several weaknesses too. First, their popularity is

still fairly new and legislation is still catching up. Legislation needs to take into ac-

count several fundamental issues drones may pose: trespassing, privacy and safety.77

One would need to take a closer look at legislation before organizing such a fire mon-

itoring system. Luckily, in Europe, this has been made easier by EU Regulations

2019/947 and 2019/945, who have set a unified framework for the safe operation of

drones across the whole EU and European Union Aviation Safety Agency (EASA)

Member States.30

8

statista.com

0.3.3 Closed-circuit television

The case of CCTV, a.k.a. video surveillance, is easier to argue. CCTV is fairly cheap

to deploy but it remains at a fixed position, increasing massively the required amount

of hardware to cover an area of land that would more easily be covered by UAV. CCTV

could also possibly be vandalized or damaged by natural hazards, which is certainly

less likely for UAV and satellite.

0.3.4 Wireless Sensor Networks

WSN are carefully chosen sensors that have been disseminated around an area the

condition of which they record and process, often forwarding the data they collect to

one or several processing nodes called sinks. The conditions they observe can be tem-

perature, sound, humidity or lighting levels, wind speed and direction, noise, the pres-

ence of certain gases, etc.101 It is easy to see how this data could be leveraged by a

neural network to predict how likely it is to have a fire (e.g. using humidity levels and

temperature) or to detect to presence of fire rapidly. One very interesting study has

even suggested using animals as biosensors, since their behaviors in case of fire is very

useful to predict the spread and the direction of the spread of the fire (some of them

hide underground, some fly or run away, ...).85

Compared to the other previously mentioned data-gathering infrastructures, WSNs

are relatively expensive, both to deploy and to maintain. However they are arguably

the ones that will provide the most data to work with. Another problem of WSNs is

in case of fire, there are very high chances that nodes will be destroyed and then will

have to be deployed again. They could also arguably be stolen or vandalized easily.

9

0.3.5 Problem statement

Since satellites have this inherently huge revisit time issue making them less valuable

to detect forest fires as soon as possible, because of the huge deploying costs of wire-

less sensor networks plus the upkeep that comes with them and because UAVs are

extremely versatile, widespread, cheap and can cover huge areas easily, this study will

focus only on methods employing UAV data or data similar to UAV data.

Its aim will be to implement and compare different deep learning architectures

for flame semantic segmentation on RGB images of fires occurring in a natural

environment taken from the ground or from unmanned aerial vehicle (UAV); more

specifically, the Corsican Fire database99 will be exploited (the motives behind this

decision will be detailed in Section 2.1.1). Results will be discussed in terms of the

intersection over union (IoU), the mean squared error (MSE), the binary

accuracy and the recall metrics. The implemented networks’ number of parame-

ters will also be compared.

Indeed, segmentation of flames would enable fire units to first assert if a fire is in-

deed present (for instance, a heuristic or algorithm for classification from the results

of segmentation could be studied a posteriori) and alert fire units. Using the predicted

mask paired with the altitude of the drone, fire units or another algorithm could de-

duce the spread of the fire to help organize fire suppression, assert damages, and possi-

bly help decide whether to evacuate citizens in relevant areas.

0.4 Overview

Chapter 1 will focus on reviewing the different methods for image segmentation lever-

aging neural networks that have been researched in the recent years before giving spe-

cial attention to the case of wildfire segmentation in particular. In Chapter 2, the

10

methodology of the work presented in this manuscript will be detailed followed by

Chapter 3, where results obtained will be discussed. Finally, a few steps back will be

taken in the conclusion, where the shortcomings and contributions of this work will be

discussed along with the questions it kindled.

11

1
Review of recent segmentation methods

1.1 Neural networks

1.1.1 Historical perspective

One of the earliest insightful theories about neurons was formulated in 1890 by

American philosopher William James and stated that “The amount of activity at any

given point in the brain-cortex is the sum of tendencies of all other points to discharge

into it, such tendencies being proportionate (1) to the number of times the excitement

12

of each other point may have accompanied that of the point in question; (2) to the in-

tensity of such excitement; and (3) to the absence of any rival point of functionality

disconnected with the first point, into which the discharges might be diverted.”.50 This

inspired many researches afterwards but it was not until 1943 that McCulloch and

Pitts elaborated the first credited neuron mathematical model, providing a baseline to

evaluate the future state of a network or neurons, knowing its present state; “Speci-

fication for any one time of afferent stimulation and of the activity of all constituent

neurons, each an ”all-or-none” affair, determines the state. Specification of the ner-

vous net provides the law of necessary connection whereby one can compute from the

description of any state that of the succeeding state [...]”.67 Their work also proved

that even simple types of neural networks could theoretically compute any arithmetic

or logical function.113 The idea of mimicking the functioning of the brain to design

computers or applications was hinted subsequently by Norbert Wiener and von Neu-

mann.107,106 Influenced by additional works —such as Hebb’s 1949 book The Orga-

nization of Behaviour 44, which notably drafted a learning scheme for the synapses

of neurons— the first neurocomputer was built in 1951 by Marvin Minsky, chris-

tened the Stochastic Neural Analog Reinforcement Calculator (SNARC), using vac-

uum tubes and potentiometers (the latter ones had a role similar to weights in nowa-

days’ neural networks); it was able to learn to solve a maze on its own. Besides simple

tasks such as solving a maze, SNARC was however limited, and the first successful at-

tempt at neurocomputing had to wait until 1957 when the Perceptron was invented

by Frank Rosenblatt — an algorithm for supervised learning of binary classifiers pri-

marily meant for pattern recognition.81 The output of a neuron in the Perceptron al-

gorithm could be described by Equation 1.1, where w is vector of real-valued weights

that have been determined by a learning procedure, x is the real-valued input vector

(for instance, an image) and b is the bias and controls how the decision boundary is

13

shifted away from the origin.

f(x) =


1 if w · x+ b > 0,

0 otherwise
(1.1)

With his Perceptron and his early book on neurocomputing, Principles of Neuro-

dynamics,82 Rosenblatt became the first pioneer of what came to be known as the

first golden age of neural networks, soon followed by Bernard Widrow and his gradu-

ate student Ted Hoff in 1960, who developed Adaptive Linear Neuron (ADALINE) —

which works very similarly to the Perceptron as described in Equation 1.1 but differs

mainly in the learning procedure in that the weights of ADALINE are adjusted before

being multiplied by the inputs and being passed through the activation function109

— and then other researchers. This sparked a considerable enthusiasm within the re-

search community until research hit a wall in 1969 when Minsky and Papert published

Perceptrons. In it, they highlighted how Perceptrons were unable to compute, with ef-

ficiency, certain important predicates such as XOR. The Perceptron could only learn

to separate linearly separable classes, making XOR a seemingly insurmountable bar-

rier. In this work, they also highlighted how multilayer Perceptrons were not feasibly

trainable since evaluating the weights of the neurons spread across the layers, based

on the final output, would take ages to compute .70 And that is how the ten to twelve

quiet years that followed were remembered as “the AI winter”, for neural computing.

Neural computing research lost traction and went underground under other premises

such as pattern recognition or biological modeling.113

It did not start thawing out before 1982 when John Hopfield published an article

about a recurrent architecture now known as the Hopfield Net47 —which consists of

a single layer containing fully connected recurrent neurons— and Japan announced it

14

would start funding Neural Network research again at the US-Japan Kyoto conference

on Competition and Cooperation in Neural Nets.3 Soon after in 1987, the Institute

of Electrical and Electronics Engineers (IEEE) International Conference on Neural

Networks took place in San Diego and lead to the formation of the International Neu-

ral Network Society (INNS). The INNS then founded the Neural Networks journal in

1988, followed by Neural Computation in 1989 and finally the IEEE Transactions on

Neural Networks in 1990.113 International interest in neurocomputing research had

been rekindled and it has been in the spotlight since then.

1.1.2 Convolutional Neural Networks

The very first modern implementation of Convolutional Neural Network (CNN),

called LeNet-5, was published in 1998 by Yann LeCun et al.61 LeCun and his team

were however inspired by Dr. Kunihiko Fukushima’s research in the eighties, itself

inspired by the work of David Hubel and Torsten Wiesel in 1962.

The latter had redefined simple and complex cells present in the primary visual cor-

tex, the two types of cells for visual pattern recognition : “while a simple cell can only

respond to a vertical bar located in the upper section of a scene, a complex cell can re-

spond to vertical scenes that are located anywhere in the scene.”.14 Complex cells can

achieve this location-independent capability by summing the information from several

simple cells as represented in Figure 1.1.

So is it that Dr. Kunihiko Fukushima afterwards imagined an artificial neural net-

work that mimicked the same concept of simple and complex cells which is described

in his neocognitron research published in 1982.36 It leveraged S-cells, the artificial sim-

ple cells, and C-cells, their complex counterpart. The main idea of his research is easy

to grasp and again similar to the one introduced in the previous paragraph: capture

15

Figure 1.1: The models of simple and complex cells proposed by Movshon,
Thompson and Tolhurst (1978) following the works of Hubel and Torsten14

complex patterns (for instance a parrot) using complex cells that aggregate data from

lower-level complex cells or simple cells, themselves identifying simpler patterns (for

instance feathers or a beak), organized in a hierarchy like portrayed in the Figure 1.2.

LeCun’s CNN combines three main ideas to make extracted features invariant to

shift, scale and distortion: local receptive fields (the equivalent of simple cells), shared

weights and weight replication. It uses the same idea of combining the elementary fea-

tures such as corners, edges, etc. coming from local receptive fields into higher order

features: each unit in a layer receives inputs from a set of units that are located in a

reduced neighborhood of the preceding layer. To make elementary features detectors

useful not only on distinct small areas of the image but rather generalize better across

its whole surface, they force a set of units whose receptive “cells” are perceiving differ-

ent areas of the input image to share the same weight vectors.

16

Figure 1.2: Schematic diagram illustrating the interconnections between layers
in the neocognitron36

So, LeCun’s CNN layers’ units are organized in “flat” planes within, which all neu-

rons share the same set of weights to make them work on detecting the same features,

independently where they are in the image and if they were distorted or scaled. The

output of such a plane of neurons is called a feature map: it is really the synthetic in-

formation computed by the plane. A convolutional layer is the composition of mul-

tiple feature maps (each of them with a distinct weight vector and bias) in a way that

different types features can be extracted at each location of the image. This principle

is illustrated in the first layer of Figure 1.3.

Therefore, it works as if each feature map “scanned” the input image with a single

unit that has a local receptive field, and its resulting states while it combs the image

are stored at the respective locations in the feature map. We can directly perceive why

they are christened convolutional layers: they are the equivalent of a mathematical

convolution that has been chained with an addition to a bias which result is passed

17

Figure 1.3: Architecture of LeNet-5, a convolutional NN, here used for digits
recognition. Each plane is a feature map, i.e., a set of units whose weights are
constrained to be identical.61

through a squashing function (such as a sigmoid for instance).

Subsequently, after features have been detected in a convolutional layer, their ex-

act location becomes of less importance; what matters more is their relative positions

compared to other features. To help the reader understand, in a handwritten number

recognition system, if we understand our input image is made of a roughly horizon-

tal segment in the upper left area, a corner in the upper right area, a roughly vertical

segment stretching to the lower area then we can deduce the image corresponds to

the number seven. Knowing the accurate position of all of these features is not only

useless, but could also lead to not generalizing as well to other types of instances of

the number seven since their exact position could vary. So, in order to reduce but

not completely nullify the precision with which the position of different features is

recorded in the feature map, a possible approach (the one taken here) is to reduce

the spatial resolution of the feature map: this is the purpose of what are called sub-

sampling layers (also sometimes referred to as pooling layers) in a convolutional

network. Each of them conducts a local averaging and a subsampling, which has the

effect of making the result more resilient to shifts and distortions. Also, in a subsam-

pling layer, contrarily to a convolutional layer, the contiguous receptive fields of con-

18

tiguous units do not overlap.

That is why convolutional and subsampling layers are generally alternated in CNNs:

at each occurrence of a combination of convolutional and subsampling layer, the num-

ber of feature maps increases and the spatial resolution decreases. And thus, an im-

portant amount of invariance to geometric transformation of the input is achieved

by compensating the progressive reduction of spatial resolution with a progressive in-

crease of the richness in the representation (i.e. the number of feature maps).

CNNs have, since then, been the most used feature extractor for image tasks.

1.2 Semantic segmentation

Semantic segmentation, sometimes referred to as image segmentation or simply

segmentation, is the task of determining which class (e.g. door, human, background,

dog, ...) each pixel of an image belongs to.38

Using image segmentation to speak of semantic segmentation is, however, a misuse

of language. Indeed, image segmentation could also be instance segmentation, for

example, which goes a little further than semantic segmentation since it also distin-

guishes between different instances of the same object.114 A comparative example is

given in Figure 1.4.

Another widespread type of segmentation, especially in the recent years, is panop-

tic segmentation which combines the information of instance and semantic segmen-

tation: the output of panoptic segmentation enables you to distinguish between differ-

ent instances of the same object but also provides pixel-wise class information.58

This manuscript will solely focus on semantic segmentation, however, and will there-

fore use the terms segmentation and semantic segmentation interchangeably.

19

Figure 1.4: Comparison of semantic vs instance segmentation.10 Instance seg-
mentation distinguishes between different instances of the same object; in this
case chairs.

1.3 Deep Learning architectures for Image Segmentation

Recent deep learning architectures that have been researched in the field of image seg-

mentation include:69

• Fully convolutional networks

• Convolutional models with graphical models

• Encoder-Decoder based models

• Multi-scale and pyramid network based models

• R-CNN based models (for instance segmentation)

• Dilated convolutional models and DeepLab family

• Recurrent neural network based models

• Attention-based models

• Generative models and adversarial training

• Convolutional models with active contour models

20

It is worth mentioning that these categories are not absolute. For instance, the

DeepLab family also uses an encoder-decoder structure as well as pyramid networks16,17,15,18

or, some architectures based on encoder-decoder architectures also use attention mech-

anisms.117

This review will however focus on examining the segmentation architectures that

have been studied on the Corsican Fire database99 or similar datasets.

1.3.1 Fully Convolutional Network

Though the original Fully Convolutional Network (FCN) idea is older, it was first used

for segmentation in 2015 by Long et al.65 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) classification architectures (namingly AlexNet,59 GoogLeNet96

and VGG-1689) were used as backbone they augmented with a prediction head con-

sisting of in-network upsampling. They afterwards added skip connections between

layers to merge information at local, coarse and semantic levels. This is illustrated in

Figure 1.5.

1.3.2 U-Net

The U-Net architecture was designed in 2015 by Ronneberger et al. originally with

biomedical image segmentation in mind and gets its name from its shape as illustrated

in Figure 1.7, where the expansive path (on the right) and the contracting path (on

the left) are somewhat symmetric.80 The U-Net was designed upon the foundations

laid by Long et al. and their FCN segmentation architecture with the intent that it

would yield more accurate results as well as require a lot less of training samples to

reach this result compared to the FCN. The contracting path is similar to any other

convolutional architecture: it consists of the repetition of blocks composed successively

by two 3x3 convolutions (unpadded) with rectified linear unit (ReLU) activation and

21

Figure 1.5: Long et al.’s DAG nets learn to combine coarse, high layer informa-
tion with fine, low layer information. Pooling and prediction layers are shown as
grids that reveal relative spatial coarseness, while intermediate layers are shown
as vertical lines. First row (FCN-32s): Their single stream net upsamples stride
32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the pool4 layer, at stride 16, lets their
net predict finer details, while retaining high-level semantic information. Third
row (FCN-8s): Additional predictions from pool3, at stride 8, provide further
precision.65

22

a 2x2 max pooling that is used for downsampling, with a stride of 2. After each of

those downsampling blocks, the number of feature channels is doubled. The expansive

path is also made of repetitions of an “upsampling block”. The latter is made of an

upsampling of the feature map fed to a 2x2 convolution — which role is to divide the

number of feature channels by two — followed by a concatenation with the relevant

feature map in the contrating path and two 3x3 convolutions with ReLU activation

again. The output of the expansive path is fed to a 1x1 convolutional layer to allow to

map its feature vectors to the studied number of classes. The main difference between

the U-Net and the FCN put forward by Long et al. is that in the U-Net’s upsampling

path, a larger number of feature channels are used so that the context information

can be propagated to higher resolution layers. Another important difference is that

absence of fully connected layers in U-Net. Instead, only the valid part of each con-

volution is used, in other words, the segmentation map contains only the pixels the

context of which is present in the input image; this approach enables to segment ar-

bitrarily large images without having to worry about graphics processing unit (GPU)

limitations. In order to predict masks for the areas along the border, the non-existing

context data is hypothesized by mirroring the input image. This overlap-tile and mir-

roring process is illustrated in Figure 1.6. It is required that the input size of the net-

work (the “tiles”) are such that every 2x2 max-pooling operation is applied to a layer

with even x and y dimensions in order for the tiling of the output segmentation map

to be seamless.

The U-Net, at the time of publication, outperformed all other architectures exam-

ined by the authors on various biomedical segmentation tasks. The authors were also

convinced, which has been shown to be true, that their architecture could be used

on numerous other tasks than their biomedical focus. Indeed, U-Net architectures

remain, as of today, a popular architecture for countless image segmentation tasks

23

Figure 1.6: Overlap-tile strategy for seamless segmentation of arbitrary large
images. Prediction of the segmentation in the yellow area, requires image data
within the blue area as input. Missing input data is extrapolated by mirroring.80

such as road segmentation119, audio separation52,94 or, more interestingly relatively

to the scope of this work, on vegetation segmentation34,108 and fire/smoke segmenta-

tion.33,100,117,49

1.3.3 Squeeze U-Net

The Squeeze U-Net8 is a hybrid between the U-Net introduced in the previous sub-

section and SqueezeNet drafted by F. Iandola et al.49 Since we have already said a few

words about U-Net, let us have a glimpse of the SqueezeNet architecture researched in

2016, which is originally a classification architecture.

The SqueezeNet design goals were to achieve a lightweight model size, inference

time, and number of parameters, while still reaching near-state-of-the-art performances

in order to make models more easily deployable over the network and on less powerful

hardware such as Field-programmable gate array (FPGA). To achieve this level of

compression and lightness, three strategies are leveraged. First, replace (most of) 3× 3

filters with 1 × 1 filters (which results in 9× less parameters). Second, decrease the

24

Figure 1.7: U-net architecture (example for 32x32 pixels in the lowest resolu-
tion). Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower
left edge of the box. White boxes represent copied feature maps. The arrows
denote the different operations.80

25

number of input channels to the remaining 3× 3 filters since total count of parameters

in such a layer would be equal to

ninput_channels · nfilters · 33 (1.2)

The number of input channels to 3 × 3 filters is reduced, thanks to the squeeze layers

described further on. These two first strategies’ aim is merely to reduce the number of

parameters in the network without sacrificing (too much of) accuracy. Third, down-

sample (with strides > 1 in convolution or pooling layers) as late as possible so that

convolutional layers have larger activation maps. Their intuition is that maintaining

large activation maps throughout the network by delaying downsampling (since de-

laying downsampling will lead to a greater number in the architecture having larger

activation maps) is able to yield better accuracy, if all else is held equal; this phe-

nomenon is indeed observed in the work of K. He and H. Sun, where they compared

several CNN architecture by delaying downsampling further and further and in each

case led to an improved accuracy.41 This third and last strategy therefore aims to op-

timize the accuracy with a constrained number of parameters.

The two first strategies mentioned in the previous paragraph are combined in what

F. Iandola et al. called the “Fire module”, the core building block of the SqueezeNet

architecture. The Fire module is represented in Figure 1.8. It is composed of a squeeze

convolution layer, containing exclusively 1×1 filters (as per the first strategy), followed

by an expand layer which leverages both 1×1 and 3×3 filters. The Fire module can be

fine-tuned using three hyperparameters: s1×1 — the number of filters in the squeeze

layer and e1×1 and e3×3 — the number of 1 × 1 and 3 × 3 filters in the expand layer,

26

Figure 1.8: Organization of convolution filters in the Fire module.49 In this case,
hyperparameters s1×1 = 3, e1×1 = 4 and e3×3 = 4 are used.

respectively. The second strategy is applied by enforcing the following criterion

s1×1 < (e1×1 + e3×3) (1.3)

so that indeed the squeeze layer makes sure to limit the number of input channels to

the 3× 3 filters present in the expand layer.

The full SqueezeNet architecture is illustrated in Figure 1.9. It is compared with

two variants where bypass connections have been included so that the outputs of two

layers can be summed element-wise before being fed to the next. The only require-

ment in that case is that the the number of input channels has to be equal to the

number of output channels. This case is referred to as simple bypass by the authors,

since it does not include additional convolutions, it does not involve extra parameters.

In order to bypass the same number of channels limitation, the authors imagined a

27

Figure 1.9: Macroarchitectural view of F. Iandola et al.’s SqueezeNet archi-
tecture. Left: SqueezeNet; Middle: SqueezeNet with simple bypass; Right:
SqueezeNet with complex bypass49

complex bypass connection including a 1 × 1 convolution accustoming to the required

number of output channels by employing an equal amount of filters. However, whereas

their simple bypass did not clutter the architecture with additional parameters, the

complex bypass does. Surprisingly enough, the complex bypass also did not perform

better than the simple bypass, which scored the best performances amongst their three

variations of the SqueezeNet.

The idea to adapt the SqueezeNet to a U-Net architecture (aptly christened Squeeze

U-Net) had to hold until recently, in 2020.8 SqueezeNet’s Fire modules were used in

the contracting path. For downsampling, instead on relying on max or average pooling

28

like in the original U-Net architecture, stride 2 convolutions are used instead, since it

is mentioned that striding improves the expressiveness of the network.92 In the expan-

sive path, their transposed version of the Fire module consists of a 1 × 1 transposed

convolution, followed by two parallel transposed convolutions (2 × 2 and 1 × 1 respec-

tively), each with half of the output channels of the transposed Fire module. Their

result is concatenated to form the output. The full Squeeze U-Net architecture is rep-

resented in Figure 1.10 and a comparison of the upsampling and downsampling blocks

between Squeeze U-Net and the original U-Net architecture is offered in Figure 1.11.

Squeeze U-Net achieved 12× fewer parameters and 3× fewer Multiplication Accumula-

tion operations (MACs) than U-Net. It also trained 69% faster and had a 17% shorter

inference time. As a trade-off, the accuracy dropped from 86.9% for U-Net to 78% for

Squeeze U-Net when evaluated on a fraction of the CamVid Database.12,13

1.3.4 ATT Squeeze U-Net

Another alteration of the SqueezeNet architecture, introduced independently from

the Squeeze U-Net of Beheshti and Johnsson8, also saw the light of day in 2020. This

time it also involved attention mechanisms (drawing its inspiration from both the

work of Oktay et al. in 2018 (Attention U-Net)78 and the original SqueezeNet pa-

per49); it was very appropriately called ATT Squeeze U-Net.117

The main idea of the ATT Squeeze U-Net is to use the SqueezeNet as a feature ex-

tractor and use additive attention gates at the skip connections of the U-Net archi-

tecture. The general architecture is represented in Figure 1.12 and the attention gate

used at the skip connections is illustrated in Figure 1.15. However, Zhang et al. also

modified the SqueezeNet’s Fire module in order to improve feature communication

and reduce computational cost by replacing the 3×3 convolutional layer in the original

29

Figure 1.10: The Squeeze U-Net architecture. The downsampling units in the
contracting path each consists of two fire modules which extract features. The
extracted features are passed down to the next downsampling unit and to the
corresponding upsampling unit. Every upsampling unit in the expansive path
consists of a transposed fire module, a concatenation unit and two fire modules
which in order upsamples their input, extract features, and concatenate fea-
tures to construct the output. US and DS stand respectively for upsampling and
downsampling.8

30

Figure 1.11: Comparison of convolutions in the contracting path (A and B) and
transposed convolutions in the expansive path (C and D) between the original
U-Net implementation (A and C) and the Squeeze U-Net implementation (B
and D).8

Fire expand module by a depthwise convolution (which secures good feature learning

abilities while decreasing required computations) followed by a channel shuffle (to al-

low inter-channel information flow). This is illustrated in Figure 1.13. The equivalent

of the transposed Fire module present in the Squeeze U-Net architecture responsible

for the upsampling steps in the U-Net was, in ATT Squeeze U-Net, called the DeFire

module. Like the transposed fire module, it is made of an extend layer followed by a

squeeze layer; the extend layer is composed of 1 × 1 and 3 × 3 filters in parallel and

passed through a ReLU activation, the squeeze layer is made of a 1 × 1 convolution

filter, followed by a resampling layer that is fed through a 3 × 3 filter. The DeFire

module is illustrated in Figure 1.14.

The Corsican Fire DB was used as dataset in this study. They obtained an accu-

racy of 0.907 and a Dice coefficient of 0.8750 with a reduced number of parameters

compared to other architectures evaluated in that paper (7.96M). Their implementa-

31

tion was not publicly disclosed.

Figure 1.12: The ATT Squeeze U-Net architecture. The contracting path uses a
SqueezeNet architecture with eight modified Fire modules. The expansive path
incorporates three DeFire modules that take the same ideology as the modified
Fire module. Three attention gates at the skip connections concatenate encoder
and decoder features.117

1.3.5 DeepLabv3+

The DeepLab family of network architectures is a series of incremental improve-

ments upon a first architecture called DeepLab first published in 2014,16 followed by

its second version in 2016,17 and its third declination in 2017.15 The latest flavor of

DeepLab, called DeepLabV3+, arrived in 2018.18 Only the latter version will be re-

viewed in this subsection. The different components of DeepLabv3+ will now first be

described before its architecture is in turn presented.

32

Figure 1.13: Structure of the the modified Fire module in ATT Squeeze U-
Net.117

Figure 1.14: Structure of the DeFire module in ATT Squeeze U-Net.117

33

Figure 1.15: Schematic of the additive attention gate used in ATT Squeeze
U-Net117

Atrous convolutions

Atrous convolutions (from French “à trous” which roughly translates to “with holes”),

also sometimes referred to as dilated convolutions or hole algorithm, are a generaliza-

tion of standard convolutions where it is possibly to use a distance, called the rate,

between elements of the kernel. The output of such a convolution can be written

y[i] =
∑
k

x[i+ r · k]w[k] (1.4)

where y is the output, w is a filter of length K, x is the input feature map and r is

the atrous rate, akin to a sampling stride applied on the input signal. Using r equal

to 1 comes down to performing a vanilla convolution. Changing the value of r can be

interpreted as adjusting the field-of-view of the filter. It also allows to compute the

response, at any resolution desired, of any layer in a network, without changing the

number of filter parameters or the number of operation per position.17 A visualization

of the functioning of atrous convolutions is given in Figure 1.16.

Atrous Spatial Pyramid Pooling

ASPP is the approach that helped DeepLabv3 (and therfore DeepLabv3+ of which

it is a component) to better handle scale variability. Inspired by the R-CNN spatial

34

Figure 1.16: Example of atrous convolutions with different rates15

pyramid pooling method of He et al,42 ASPP consists of several atrous convolutional

layers performed in parallel with different rates (which allows to resample the input

features at different scales), the result of each of which is handled independently in a

separate branch before being merged all together to generate the output; this process

is illustrated in Figure 1.17.

Figure 1.17: Atrous Spatial Pyramid Pooling (ASPP). To classify the center
pixel (orange), ASPP exploits multi-scale features by employing multiple parallel
filters with different rates. The effective Field-Of-Views are shown in different
colors.17

35

Depthwise separable convolution

The depthwise separable convolution’s aim is to reduce computation complexity of

convolutions without harming the quality of the result. To do so, a vanilla convolution

is emulated by combining in order a depthwise convolution with a pointwise convo-

lution. A depthwise convolution is a type of convolution that keeps a separate filter

for each input channel, the channel are therefore convolved independently.48 A point-

wise convolution is simply a 1 × 1 convolution that is leveraged to combine the out-

put of the depthwise convolution (to, this time, use the information present in differ-

ent channels). The authors use atrous convolution in the depthwise convolution, and

christened the result atrous separable convolution. A representation for depthwise con-

volution, pointwise convolution and atrous separable convolution is provided in Figure

1.18.18

Figure 1.18: 3 × 3 Depthwise separable convolution decomposes a standard con-
volution into (a) a depthwise convolution (applying a single filter for each input
channel) and (b) a pointwise convolution (combining the outputs from depth-
wise convolution across channels). In DeepLabv3+, atrous separable convolution
are explored where atrous convolution is adopted in the depthwise convolution,
as shown in (c) with rate = 2.18

DeepLabv3 encoder

The DeepLabv3 architecture is used as encoder in DeepLabv3+ and is represented in

Figure 1.19. Their ASPP (modified in comparison to the first version of the ASPP

36

Figure 1.19: DeepLabv3 architecture. Parallel modules with ASPP (a), aug-
mented with image-level features (b).15

drafted in DeepLabv2) is made of one 1 × 1 and three 3 × 3 convolutions with rates

(6, 12, 18), all with 256 filters and batch normalization as well as image-level features.

Resulting features from all branches are then concatenated before being fed to another

1 × 1 convolutions right before the final 1 × 1 convolutions outputting the last logits.

And that is how they employ atrous convolutions to extract dense features from their

backbone (they used ResNet43). The map right before the final 1 × 1 convolutions is

used as encoder output.

Decoder

The decoder is designed similarly to the U-Net expansive path, with upsampled fea-

tures being concatenated with the corresponding low-level features from the backbone

that share the same dimensions to help recover object segmentation details. After the

concatenation, a few 3 × 3 convolutions are applied before jumping into the next up-

sampling block.18 The final encoder/decoder resulting architecture is illustrated in

Figure 1.20.

Application to the Corsican Fire Database

Even though the original DeepLabv3+ architecture was tested on the PASCAL VOC

2012 semantic segmentation benchmark,31 it was also leveraged by Harkat et al. in

37

Figure 1.20: DeepLabv3+ extends DeepLabv3 by employing a encoder/decoder
structure. The encoder module encodes multi-scale contextual information by
applying atrous convolution at multiple scales, while the simple yet effective
decoder module refines the segmentation results along object boundaries.18

2020 on the Corsican Fire Database using a ResNet-50 backbone.40 However neither

their research nor their implementation was made public and it was therefore impossi-

ble to compare it further with other works.

1.4 Frequently employed metrics in Image Segmentation

1.4.1 Pixel Accuracy

Pixel Accuracy (PA) corresponds to the ratio of pixels that have been correctly classi-

fied averaged over the total number of pixels. If we consider K classes (including the

background class), if we set down the number of pixels of class i that have been pre-

dicted has belonging to class j as pij , then PA can be written

PA =

∑K−1
i=0 pii∑K−1

i=0

∑K−1
j=0 pij

(1.5)

38

From there, one can define mean PA (then usually written MPA) as the PA aver-

aged over the total number of classes.

MPA =
1

K

K−1∑
i=0

pii∑K−1
j=0 pij

(1.6)

1.4.2 Intersection over Union

The IoU, also sometimes referred to as the Jaccard Index, is one of most frequently

metrics used in image segmentation tasks; it can be formulated as the overlapping area

between the predicted mask and the ground truth weighted by the inverse of the area

of union between the predicted mask and the ground truth. If the predicted mask area

is set down as Apred and the ground truth area as AGT , then the IoU can be written

as:

IoU =
|AGT ∩Apred|
|AGT ∪Apred|

(1.7)

Just as for the MPA, the IoU (then called the mean IoU) can also be averaged over

all classes.

1.4.3 Precision

Precision is the proportion of positive identifications that were actually correct. It can

be formulated as

Precision =
TP

TP + FP
(1.8)

where TP is the number of true positives and FP is the number of false positives.

As can be seen more clearly in this formulation, only the number of false positives

negatively impacts this metric.

39

1.4.4 Recall

Like precision, recall is a metric that is also derived from the confusion matrix and

corresponds to the proportion of actual positives that were identified correctly. It can

be written

Recall =
TP

TP + FN
(1.9)

if TP denotes the number of true positives and FN the number of false negatives.

Maximizing recall leads to minimizing the number of omission of true positives. It

is therefore clear that to assess properly how effective a model is, both precision and

recall must be evaluated; however these metrics are conflicting with each other and it

often happens that improvements on recall lead to reductions on precision and vice-

versa.

1.4.5 Accuracy

Accuracy is a metric that is conceptually easy to grasp and therefore always nice-to-

have, even if it does not suffice on itself to capture how effective a model is. It corre-

sponds to the number of correct predictions over the total number of predictions. Or,

if one musts formulate it using the confusion matrix again, then

Accuracy =
TP + TN

TP + TN + FP + FN
(1.10)

where TP, TN, FP and FN are respectively the number of true positives, true neg-

atives, false positives and false negatives.

40

1.4.6 F1-Score

The F1-score, also called F1-measure, is the harmonic mean of precision and recall.86

It can be written

F1 =
2

recall−1 + precision−1
= 2 · precision · recall

precision+ recall
=

TP

TP + 1
2(FP + FN)

(1.11)

The F1-score, though widespread, has been condemned for giving equal importance

to precision and recall since their weight against one another is part of the formulation

of the problem: a discussion to prioritize one or the other will lead to tailoring models

that are more adapted to specific situations.39

1.4.7 Sørensen–Dice coefficient

The Sørensen–Dice coefficient, most commonly referred to as Dice’s coefficient or Dice

similarity coefficient (DSC), is a metric that was reimagined twice and independently

by two botanists: Thorvald Sørensen and Lee Raymond Dice in 1948 and 1945 respec-

tively; hence its name.91,23 It can be used to assess how similar two sets are and, in

the case of segmentation, can be formulated as

DSC =
|AGT ∩Apred|
|AGT |+ |Apred|

(1.12)

When applied to boolean data, the DSC is actually the same as the F1-score, as

indeed it can then be expressed as

DSC =
TP

TP + 1
2(FP + FN)

(1.13)

using the same notations as introduced earlier.

41

The DSC is very similar to the IoU: they both range from 0 to 1, are positively cor-

related and, what is more, one can be determined from the other using the following

relation:

IoU =
DSC

2−DSC
(1.14)

They are still different metrics however and one of their main differences, in prac-

tice, is that IoU tends to penalize small classification errors more than DSC.

1.4.8 Mean squared error

The MSE is a metric originally introduced by Gauss37 and literally measures the av-

erage of the squares of the errors: it is derived from the Euclidean distance between

the predicted value and the correct value. In the case of pixel-wise binary classifica-

tion, which corresponds to a segmentation task with only one class, if one sets down

the predicted value of the i-th pixel of the j-th image as pij and its correct value as

cij , then the MSE of the predictions over the images in the test set could be written as

MSE =
1

M

N∑
i=0

M∑
j=0

(pij − cij)
2 (1.15)

where M is the number of images in the test set and N is the fixed number of pix-

els in input images/predicted masks. It is a positive quantity that decreases with the

error. The MSE is in fact the second central moment of the error and therefore ac-

counts for the variance of the model as well as its bias, it is in this sense a valuable

metric.

42

2
Methodology

This chapter will focus on detailing the methodology behind the implementations

this manuscripts is based on. First, considerations pertaining to the dataset will be

weighted in Section 2.1. Second, the evaluation framework that allows to compare re-

sults meaningfully will be described in Section 2.2. Third and last, the implementation

of architectures will be discussed in Section 2.3.

43

2.1 Data

2.1.1 Choosing a dataset

According to the scope of this work, several candidate datasets were contemplated.

The criteria used to select a relevant dataset in accordance with the problem state-

ment (described in Section 0.3.5) are:

• the presence of RGB images of fires occurring in a natural environment;

• the inclusion of shots taken from UAV or at a distance from the fire equivalent

to the altitude of one;

• the presence of manually delimited ground-truth masks.

There could also be other discriminating factors such as the number of pictures they

contain, their resolution, the diversity of fires (in size and position) as well as of natu-

ral environments in which they occur or the presence of additional data in the dataset

that could present an interest to help create more accurate predictions when used as

input in the model such as UAV flight altitude, air temperature or NIR sensor data for

instance.

The FLAME dataset

The Fire Luminosity Airborne-based Machine learning Evaluation (FLAME) dataset9

contains several repositories of UAV image and video of a prescribed pile burn in

Northern Arizona, USA. In particular, the nineth repository contains 2,003 3480×2160

video frames of the burn in JPEG format and the tenth repository contains the corre-

sponding 2,003 manually segmented ground-truth flame masks in PNG format. These

are per se very reasonable figures to work with to train and evaluate segmentation ar-

44

chitectures but the drawback is that these 2,003 frames are highly correlated to one

another since they are successive shots over a small of time of the same fire (it was

captured at 29 Frames Per Second (FPS)). Also, the dataset does not capture a great

diversity of fires nor of environments since it is only frames of the same fire taking

place in the same environment and therefore a model trained on this dataset is bound

to have a poor generalization ability.

Foggia dataset

The Foggia dataset35 contains 31 videos of different fires, not all of them occurring

in a natural environment. It also contains 149 non-fire videos that feature difficult sit-

uations that are often interpreted as fire by traditional color-based (non deep learning)

approaches, such as a mountain at sunset, lens flares or red roof houses in a wide val-

ley. Since no fire is present in the latter collection, the ground-truth mask can imme-

diately be deduced and it would be interesting to see in which proportion the model

trained on another dataset would misclassify some of these frames as fire and to com-

pare this from one architecture to another. Access to this database was requested but

no response was received and it could therefore not be studied further.

FireNet dataset

The FireNet dataset25 contains short videos of wildfires of about 150 frames that

have been collected over the previous years in various locations of the United States.

It boasts around 400,000 annotated frames, 100,000 of which contain an active fire.

All frames were captured in infrared (IR) since RGB sometimes makes it harder to see

the whole fire perimeter because of various factors such as smoke for instance. Anno-

tations have been performed with the help of experts from Californian Department of

Forestry and Fire Protection and Air National Guard. Authors of this database were

45

also contacted to request access to their dataset but no answer was returned.

Corsican Fire Database

The Corsican Fire Dabatase99 was assembled after a call for wildland fire images

was made. The images it is made of come from different parts of the world, and were

taken by various researchers and partners. It also contains images in the NIR spec-

trum (with RGB in parallel). All images, including ground-truth and NIR images

are in PNG format. It was assembled in 2017 after noticing there was no large pub-

lic database for wildland fire images, bearing in mind it would be even more useful if it

was an evolving database accepting outside contributions. Access to this database was

requested and very rapidly granted. It was favored against the others because it has

a large panel of images that have been well characterized, includes a greater variety of

fires and environments, has NIR and RGB data in parallel as well as the manual seg-

mentation mask, and contains images taken from UAV (though a great deal of these

shots are also taken from the ground). Since it was the dataset that was selected to

work on, it is further characterized in the following subsection.

2.1.2 Characterizing the dataset

The Corsican Fire Database contains 1135 RGB images, 634 of which have NIR

data. Among the 634 images that have NIR data, 540 are part of 5 different video

sequences of 5 different fires (which can trivially be explained by the fact those 634

images were captured by the same sensor, a JAI AD-080GE camera); this composition

is illustrated in Figure 2.1. Additionally, there are 419 different image sizes present in

the dataset; the number of pictures for the ten most represented dimensions is illus-

trated in Figure 2.2. The most represented image size can be justified since all of the

634 shots taken with the JAI AD-080GE camera have the same 1024× 768 dimension.

46

634

57

64

109

42

268
1135

Figure 2.1: Composition of the Corsican Fire Database. Out of the 1135 RGB
images composing the dataset, 634 of which have NIR data. Among the latter,
540 are part of 5 different video sequences of 5 different fires

47

Figure 2.2: Top 10 most frequent image sizes represented in the Corsican Fire
Database

2.1.3 Preprocessing

It was decided to preprocess the whole dataset by cropping samples of dimension

256× 256 without overlap from the 1135 images, because some architectures encounter

problems of layer shape compatibility when the input dimension is not a power of two.

Crops that were smaller than 256 × 256 were simply discarded. Ground-truth masks

and NIR images (when NIR was available) were cropped in parallel. This yielded

87672 samples that were indexed in a SQLite database with their corresponding ground-

truth and NIR crop, to allow to browse them in a more efficient manner. The ER

schema of the database used for indexing (though extremely straightforward) is rep-

resented in Figure 2.3. The name attribute refers to the file name, nir to the pres-

ence of NIR (1 or 0), seq refers to which video sequence the sample is part of, if any,

fire_pixels is the count of fire pixels in the sample and split is the index of the

48

data_entryrowid

name nir

seq

�re_pixelssplit

Figure 2.3: ER database schema used to index samples of the dataset. The only
entity is represented in blue and its attributes in orange.

split to which the image belongs (this is detailed further in Section 2.2). Since this

work focuses on segmentation and not on detection, the images without fire pixels can

safely be removed from the dataset, even if it represents a good proportion of the im-

ages as represented in Figure 2.4. It also seemed reasonable to exclude samples with

too small a number of pixels when the fire had been cropped near the borders. To

choose this lower limit on the pixel count, samples were examined manually consid-

ering greater and greater value for this lower limit until an area of fire that seemed

meaningful was encountered; all pictures with a number of fire pixels smaller than 20

were excluded from the dataset and 47520 samples remained.

2.2 Evaluation framework

To avoid overfitting and to allow to evaluate the model accurately, a standard train-

validation-test split is generated (with proportions 0.7-0.15-0.15, respectively). To also

allow the results of this research to be reproduced to some extent, this split is saved in

49

Figure 2.4: Empirical cumulative distribution of samples according to their
count of flame pixels

50

Figure 2.5: Evaluation methodology diagram

the SQLite database to allow the very same dataset and split to be reconstructed from

it and is included in the repository. This is encoded as a simple integer: the split at-

tribute is 0 when the sample is in the training set, 1 in the validation set and 2 in the

testing set. All architectures implemented in this work were evaluated during training

using the validation set to help choose the right hyperparameters (in this study, only

the epoch count was tweaked), then retrained on the union of the training and valida-

tion sets before being evaluated for the first and last time on the test set. All models

are then compared using the same sets of metrics. In this study, the IoU, the recall,

the MSE and the accuracy were chosen. Recall was preferred over precision, since in

the context of segmenting forest fires it seems more important to make sure we would

favor missing less regions of fire over ensuring non-fire regions were not misclassified as

fire. A diagram of the evaluation methodology is included in Figure 2.5.

51

Additionally, even if it was most of the time not included in the original implemen-

tations, shuffling of the training set between epochs was added for all architectures

evaluated in this work, in order to make it less likely that the training algorithm gets

entangled in a local minimum.

Finally, the implementation of the metrics chosen in this evaluation were the ones

implemented in Keras. Only the IoU had to been partially adjusted to be used as it

was needed to threshold the outputted predictions of the network that were all smaller

than 1; more specifically a threshold of 0.5 was chosen (so that values below it are

considered as non-fire and above it as fire).

2.3 Implementation

All architectures were implemented on Tensorflow 2.4.1 and were trained and tested

on a NVIDIA GeForce RTX 3090. The full implementation is made public at

https://github.com/PixelWeaver/ForestFireSegmentation.

In this section, their implementation is briefly described and commented.

Before moving on to these specific implementations, let us first go through some

generalities. All models were trained with an exponential decay learning schedule to

avoid oscillations around minima during training. A decay rate of 0.96 was used. The

chosen loss function was the binary cross-entropy, also called the log loss, which can be

written as

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.1)

if one sets down yi as the label of the pixel (0 for non-fire, 1 for fire), and p(yi)) as

the probability that a pixel seen by the model is indeed fire or not. Minimizing the

52

https://github.com/PixelWeaver/ForestFireSegmentation

Figure 2.6: Customized version of the U-Net showcased in the FLAME paper.88

cross-entropy amounts to minimizing the dissimilarity between the y and p(y) distri-

butions so that our model (which distribution is the latter) better approximates the

former. Other losses were not considered and this is indeed a limitation for this work.

This is detailed further in the conclusion.

2.3.1 FLAME U-Net

The first architecture that was tested was the U-NET featured in the article associ-

ated with the FLAME dataset.88 Along with the dataset is included suggested exper-

iments and methodology that involve deep learning, including architectures for detec-

tion and segmentation. Their research and code are both made public. Since the scope

of their research includes flame segmentation, their implementation was here tested

on the Corsican Fire Database. Their exact architecture is represented in Figure 2.6.

Only one thing needed to be changed in the architecture to make it compatible with

our specific task: changing the input shape to 256× 256.

The list of Tensorflow layers associated with their inputs and their number of pa-

rameters is included in Appendix E.

53

2.3.2 DeepLabV3+ w/ ResNet50 backbone

As mentioned in Section 1.3.5, Harkat et al. leveraged a DeepLabv3+ architecture

with a ResNet50 backbone for flame segmentation on the dataset used in this study

but neither their research, results or implementation was made public. The architec-

ture was therefore reimplemeneted drawing inspiration from a public implementation

of DeepLabv3+ found at

https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.0

though it was modified to have the correct input dimension, comply with the evalu-

ation framework used in this work as well as to use the official Tensorflow ResNet50

implementation instead of a re-implementation. As a reminder, the DeepLabV3+ ar-

chitecture is depicted in Section 1.3.5 and represented in Figure 1.19. The list of Ten-

sorflow layers associated with their inputs and their number of parameters is included

in Appendix G.

2.3.3 DeepLabV3+ w/ EfficientNet backbone

In 2019, M. Tan and Q. Le published their EfficientNet: Rethinking Model Scaling

for Convolutional Neural Networks paper,97 that defines a new scaling method that

calibrates uniformly the depth, width and resolution dimensions of the network by the

means of a mere compound coefficient. This compound coefficient is also expressed

according to a user-defined coefficient that controls how many additional resources

are available for model scaling. In addition to that scaling method, a new family of

convolutional classification architectures called EfficientNets was also developped. The

EfficientNet family’s ImageNet accuracy is compared against the one of other famous

architectures in Figure 2.7. They are more efficient in terms of parameters and floating

point operations per second (FLOPS) (when benchmarked against ImageNet22) than

previously studied ConvNets while also being more efficient (i.e. EfficientNets achieve

54

https://github.com/srihari-humbarwadi/DeepLabV3_Plus-Tensorflow2.0

a better accuracy than other convolution network with a similar number of parameters

or FLOPS). This means that for instance, EfficientNet-B4 that has a better accuracy

on ImageNet than ResNet50 — that was used as a feature extractor in the encoder

part of DeepLabV3+ as mentioned previously — for a similar amount of parameters.

Figure 2.7: Model Size vs. ImageNet Accuracy. All numbers are for single-crop,
single-model. EfficientNets significantly outperform other ConvNets. In particu-
lar, EfficientNet-B7 achieves new state-of-the-art 84.3% top-1 accuracy but being
8.4x smaller and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152.97

This seems to hint that it would be likely that an EfficientNet-based DeepLabv3+

would also score better in terms of our metrics of interest. To verify so, the previous

DeepLabv3+ implementation was modified to use official Tensorflow implementation

55

of EfficientNet-B4 as a feature extractor instead of ResNet50. The detail of the Ten-

sorflow layers and associated number of parameters can be found in Appendix H.

2.3.4 Squeeze U-Net

The Squeeze U-Net has not been used on the Corsican Fire Database or a simi-

lar dataset. But since it was chosen to implement the ATT Squeeze U-Net (which

is mentioned in Section 2.3.5), it seemed preferable to also implement the Squeeze

U-Net to see how their modified version of the Fire module, their modified version

of the transposed Fire module and the added attention mechanisms would compare

against the Squeeze U-Net implementation (described in detail in Sections 1.3.4 and

1.3.4, respectively). It was inspired by the public implementation found at https:

//github.com/lhelontra/squeeze-unet. Again, a few things needed to be adapted

in order to work with the evaluation framework and the input size of images. The

specifics of the Tensorflow layers as well as their respective number of parameters are

detailed in Appendix F.

2.3.5 ATT Squeeze U-Net

As mentioned earlier in Section 1.3.4, the ATT Squeeze U-Net has been evaluated

on the Corsican Fire Database in its original version but its implementation has not

been made public. However, thanks to its accurate description in the paper, it was

possible to reconstitute it. The list of the Tensorflow layers and associated number of

parameters can be found in Appendix I.

56

https://github.com/lhelontra/squeeze-unet
https://github.com/lhelontra/squeeze-unet

3
Results

In this chapter, the results of the experiments conducted in this study are presented

then briefly commented. For all trainings, a figure containing the evaluation of all

metrics considered (i.e. accuracy, recall, IoU and MSE) as well as the loss (which is

binary cross-entropy for all networks) is shown and used to motivate the choice of the

considered hyper-parameters (here, only the number of epochs is considered) before a

table with the final test values of these metrics (except for the loss which is only used

for training) is reported. Like mentioned in Section 2.2, for all architectures, the test

57

values are obtained after retraining on the whole union of the training and the testing

set. All metrics were reported on a logarithmic scale to make smaller changes more

noticeable.

3.1 FLAME U-Net

The FLAME U-Net was the first architecture tested. It was trained with a batch

size of 16 and with the Adam optimizer like in the original FLAME U-Net imple-

mentation. During training, the model started to overfit very clearly after 41 epochs,

which can be seen on every single metric we have at our disposition as shown in Fig-

ure 3.1. The metrics based on the training data continue to improve whereas the ones

based on the validation set, an indication on the generalization ability of our model,

start crashing (or soaring for the loss and the MSE) after 41 epochs. It was therefore

decided to freeze training at 41 epochs.

The important variance of the validation-based metrics is somewhat troubling, even

though the scale is relatively small.

Results on the test sets are shown in Table 3.1. They are better than what was

observed on the original FLAME dataset on which this model was first evaluated.

For reference, they obtained a precision of 91.99%, a recall of 83.88% and an IoU of

78.17%. This could possibly be explained by the fact that flame segmentation on the

Corsican Fire Database might be an easier task than on the FLAME dataset. Other

factors that could explain this difference is that the authors used a different epoch

count (30), a different input size (512 × 512) and did not rely on shuffling the training

set between epochs. However, as it would already be difficult to compare results ob-

tained on different splits of the same database, it goes without saying that it is utterly

58

impossible to really compare results when using two distinct datasets.

Figure 3.1: Training set and validation set -based metrics during training for
FLAME U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d)
MSE, (e) IoU.

59

metric score
recall 0.94
IoU 0.892

accuracy 0.943
MSE 0.042

Table 3.1: FLAME U-Net test results (41 epochs)

3.2 DeepLabv3+ with ResNet50 backbone

Second came the DeepLabv3+ architecture, first considered with a ResNet50 back-

bone, just like in the work of Harkat et al who also used the Corsican Fire Database.40

Their research was however not in open access and it was impossible to compare their

results with ours. A batch size of 16 was chosen, since our training set is relatively

small, and the Adam optimizer was used once more. The ResNet50 was loaded with

the ImageNet pretrained weights. The test and validation metrics are reported in Fig-

ure 3.2.

On the loss plot, it can clearly be seen when the network is starting to overfit (around

47 epochs). The plots of the other metrics seem to concur with the same conclusion,

apart from the validation recall that seem to be decreasing after around 25 epochs.

However, its variation is still somewhat small as it only goes down from around 0.98

before oscillating and then stabilizing around 0.96. The overfit is less visible on the

accuracy and the IoU plot.

Results on the test set after freezing training at 47 epochs are reported in Table 3.2.

They are better for every metric than the results of the FLAME U-Net architecture

which can at least be explained by the huge difference in the number of parameters

between these two: the FLAME U-Net has 2M parameters whereas the DeepLabv3+

60

with the ResNet50 backbone have 40M together as can be seen in Appendices E and

G respectively.

Figure 3.2: Training set and validation set -based metrics during training for
DeepLabv3+ with a ResNet50 backbone: (a) loss (binary cross-entropy), (b)
accuracy, (c) recall, (d) MSE, (e) IoU.

61

metric score
recall 0.968
IoU 0.926

accuracy 0.962
MSE 0.031

Table 3.2: DeepLabV3+ w/ ResNet50 backbone test results (47 epochs)

3.3 DeepLabv3+ with EfficientNet backbone

Because EfficientNet-B4 achieved better performances than ResNet50 on the Im-

ageNet dataset with a similar or lower number of parameters, like shown in Figure

2.7, it felt important to investigate it as well on our task, since it seemed to herald in-

creased performances. To do so, the previous architecture was modified with to replace

the ResNet50 backbone with the EfficientNet-B4 backbone. The EfficientNet-B4 was

already implemented in Tensorflow, therefore this implementation was rather straight-

forward. Akin to what has been done for the RestNet50, it was loaded with the Ima-

geNet pretrained weights.

Two possibilities were considered to encode the image features using EfficientNet-B4

(cf. DeepLabv3+ encoder-decoder structure described in Section 1.3.5), after discard-

ing the classification head: the output of the seventh convolutional block, resulting in

a somewhat shallower architecture, henceforth referred to as dlv3_efficientnet; or

taking the top activation right before the classification head of EfficientNet-B4, there-

fore resulting in a slightly deeper architecture, henceforth referred to as dlv3_efficientnet_2.

Both were were implemented, trained on the training set and evaluated using the val-

idation set. They are compared using the same metrics as previously in Figure 2.7. It

can be seen that for all validation-based metrics considered, the shallower dlv3_efficientnet

variant scored better (and converged faster towards better scores), which seems to in-

62

dicate that features right at the output of the last convolutional block capture better

the semantics of the images than the ones at the top activation right before the classi-

fication head of EfficientNet-B4.

Therefore, it was chosen to stick with the dlv3_efficientnet variant. A batch size

of 24 was chosen as well as the Adam optimizer again. For the sake of clarity in order

to be able to choose as best as possible the epoch hyperparameter, the training plots

of this variant are displayed on their own in Figure 3.3. The loss plot seems to indi-

cate that the model begins to overfit after the 65th epoch. The history of the other

validation metrics seem to concur once more with this conclusion. The training was

therefore pegged at 65 epochs and the test results are displayed in Table 3.3. Results

are all slightly better than those obtained with the ResNet50 backbone, except for the

recall that is right below. What is more, the EfficientNet based DeepLabv3+ architec-

ture has way less parameters than the ResNet flavor, it is brought down from a whop-

ping 40M to 22M as can be seen in Appendix H, which constitutes a 55% decrease in

parameters.

metric score
recall 0.967
IoU 0.93

accuracy 0.964
MSE 0.028

Table 3.3: DeepLabV3+ w/ EfficientNet backbone test results (65 epochs)

63

Figure 3.3: Training set and validation set -based metrics during training for
DeepLabv3+ with an EfficientNet backbone (dlv3_efficientnet variant): (a)
loss (binary cross-entropy), (b) accuracy, (c) recall, (d) MSE, (e) IoU.

64

Figure 3.4: Comparison of train/val-based metrics during training between
dlv3_efficientnet and dlv3_efficientnet_2 described in Section 3.3: (a)
loss (binary cross-entropy), (b) accuracy, (c) recall, (d) MSE, (e) IoU.

65

3.4 Squeeze U-Net

Next, the Squeeze U-Net was evaluated in order to compare it with the ATT Squeeze

U-Net and assess the added value of its modified Fire and transposed Fire module

as well as the attention mechanisms. To be able to compare this with the results ob-

tained in the original ATT Squeeze U-Net paper,117 a batch size of 12 was chosen (like

theirs). The Adam optimizer was once more used. The training and validation set-

based metrics are plotted in Figure 3.5. Overfitting can once more clearly be seen on

the loss plot but its exact start is harder to pinpoint. Using the other metrics, how-

ever, it becomes clearer that validation performances do not increase any further after

approximately 50 epochs.

The results on the testing set after pegging training at 50 epochs are reported in

Table 3.4. It goes without saying performances are lesser than the ones of both of

the DeepLabv3+ based architectures. The complexity and number of parameters is

not even comparable. It makes more sense to compare it with the FLAME U-Net:

their results are really similar to one another. The recall is slightly lower than for the

FLAME U-Net but the IoU, accuracy and MSE are somewhat better, in a small mea-

sure. The difference in parameters between the Squeeze U-Net and the FLAME U-Net

is very reasonable with the Squeeze U-Net having 500K additional parameters, a 125%

increase compared to the FLAME U-Net. This 125% increase in parameters is still

questionable if it does not come with noticeably increased performances. However, the

Squeeze U-Net is very noticeably less prone to overfit than the FLAME U-Net.

66

Figure 3.5: Training set and validation set -based metrics during training for
Squeeze U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d)
MSE, (e) IoU.

67

metric score
recall 0.93
IoU 0.896

accuracy 0.946
MSE 0.04

Table 3.4: Squeeze U-Net test results (50 epochs)

3.5 ATT Squeeze U-Net

Finally, the ATT Squeeze U-Net architecture is evaluated. Like mentioned earlier,

this implementation had to be replicated from scratch because it had not been dis-

closed by the authors.117 Exactly as in the original paper, a batch size of 12 and the

Adam optimizer were used. The train/val set-based metrics during training are plot-

ted in Figure 3.6. What is blingly obvious when looking at those trends compared to

previously considered architectures is that the validation and training metrics are ex-

tremely close all along, especially for the accuracy, the recall and the IoU. The model

does not seem to overfit greatly, similarly to what was observed for the Squeeze U-

Net. However, the model performances do not increase anymore past 50 epochs, which

is especially noticeable on the loss and MSE plots.

After freezing the training at 50 epochs, the model was evaluated on the testing

sets. Its performances are illustrated in Table 3.5. In this implementation, a number

of 885K parameters was leveraged, which is greatly lower than all the other architec-

tures investigated. The ATT Squeeze U-Net scored very similarly to the Squeeze U-

Net with values that are right below (yet very close). Also, it scored better than the

FLAME U-Net for all metrics but recall, with a decrease of 226% in the number of

parameters.

68

Figure 3.6: Training set and validation set -based metrics during training for
ATT Squeeze U-Net: (a) loss (binary cross-entropy), (b) accuracy, (c) recall, (d)
MSE, (e) IoU.

69

In their original ATT Squeeze U-Net paper, the authors were able to score an ac-

curacy of 0.907 and a DSC of 0.875 (i.e. an IoU of 0.778 using Equation 1.14) using

7.96M parameters, on the same dataset (but not the same split). Those scores are

significantly lower than the ones obtained in this study, whereas it uses 899% of the

parameters used in our case. This is quite peculiar indeed and the fact that our imple-

mentation leveraged training set shuffling between epochs while theirs make no men-

tion of it does not seem enough to explain this gap. Two hypothesis remain. On the

one hand, they used the peculiar input size of 224 × 224 though it is unsure how that

would make their performance lower. On the other hand, they did not disclose the

number of epochs they have used to evaluate their model, nor how they had chosen

that number; they could have used a lower number of epochs, leading to not finding

an actual minimum in the loss function, or they could have used a higher number of

epochs leading to overfitting. There is no mention of that in their work, however, so

these two hypotheses will remain unconfirmed.

metric score
recall 0.928
IoU 0.893

accuracy 0.944
MSE 0.042

Table 3.5: ATT Squeeze U-Net test results (50 epochs)

3.6 Perspectives

The results of all experiments conducted in this work are reported in Table 3.6. It

can be seen that ATT Squeeze U-Net has a significantly lower number of parameters

than all other architectures while achieving very decent performance, especially com-

pared to the FLAME U-Net (compared to which it performs better except for the re-

call) and the Squeeze U-Net. The DeepLabv3+ architectures have the best results

70

overall but at the cost of a huge amount of additional parameters. The EfficientNet-

B4 flavor scored the most while also using a lot less parameters than the ResNet50

flavor, which was expected from the results of the work of M. Tan and Q. Le.97

architecture recall IoU accuracy MSE # parameters
FLAME U-Net 0.94 0.892 0.943 0.043 2M

DLV3+ w/ ResNet50 0.968 0.926 0.962 0.031 40M
DLV3+ w/ EfficientNetB4 0.967 0.93 0.964 0.028 22M

Squeeze U-Net 0.930 0.897 0.946 0.042 2.5M
ATT Squeeze U-Net 0.928 0.893 0.944 0.042 885K

Table 3.6: Metric comparison table

In order to be able to compare better what increase in performance is achieved with

what overhead in the number of parameters, the results of Table 3.6 have been nor-

malized by the ones of the ATT Squeeze U-Net since it was the one with the lowest

number of parameters. These normalized values are presented in Table 3.7. In the

simple task of fire segmentation, it does not seem that it is worth considering architec-

tures that are more complex and come with a higher price to pay in training time and

memory usage as well as in hardware. To better assess the competitiveness of more

advanced networks such as the DeepLabv3+ architectures, then a more difficult task

would be required.

architecture
normalized

recall
normalized

IoU
normalized
accuracy

normalized
MSE

normalized
parameters

FLAME U-Net 1.013 0.999 0.943 1.023 2.3
DLV3+ w/ ResNet50 1.043 1.037 1.019 0.74 45.2

DLV3+ w/ EfficientNetB4 1.042 1.041 1.02 0.67 24.8
Squeeze U-Net 1.002 1.004 1.002 1 2.8

Table 3.7: Metric comparison table normalized by the scores of the ATT Squeeze
U-Net

71

Eventually, in Figure 3.7, the outputs of the different networks are compared for

a set of representative inputs chosen from the dataset, which comprises both shots

taken from the ground and from a higher altitude, along with these inputs and their

ground-truth mask. On these, it is much more obvious than on Table 3.6 that the ex-

pressive power of the DeepLabv3+ architectures is more important. They are able to

more accurately predict the shapes and their contour. In particular, smaller regions

of fire also seem to be more accurately segmented but this should be the object of a

separate experiment to be able to quantify this phenomenon more appropriately. The

ATT Squeeze U-Net also seem to have the smoothest predicted fire area contours over-

all but this should also be more properly measured using a metric such as the fractal

dimension, for instance.32,84,105 It is also unsure that having smoother prediction con-

tours is a desirable property for a fire segmentation model used by a fire department.

72

Figure 3.7: Comparison of outputs between the different implemented network,
along with the input image and associated ground truth

73

4
Conclusion

In this work, the problem of flame segmentation in a natural environment is con-

sidered, more specifically, on the Corsican Fire Database which is an evolving dataset

of fires in a natural environment from around the world.99 Despite the fact that they

were not numerous, it was still possible to find some architectures that had either been

evaluated on the Corsican Fire DB or on similar datasets. A comparison between dif-

ferent candidate datasets was established before motivating why the Corsican Fire

DB was preferred in this study, and several architectures were implemented, either in-

74

spired by existing from implementation or from scratch, chosen among the reviewed

architectures. These architectures are: the FLAME U-Net, the DeepLabv3+ architec-

ture with the EfficientNet-B4 and the ResNet-50 backbones, the Squeeze U-Net as well

as the ATT Squeeze U-Net. The algorithms were then evaluated using a proper eval-

uation framework and compared using four commonly used metrics that seemed ap-

propriate for the scope of this work namingly recall, accuracy, IoU and MSE. Notable

among the evaluated architectures, the DeepLabV3+ with an EfficientNet backbone

was the one that achieved the best results and the ATT Squeeze U-Net scored very

decently with the least amount of network parameters. What transpired clearly from

the results is that considering deeper and more complex architecture coming inher-

ently coming with a higher number of parameters is not always justified, especially for

a task that is not too intricate, such as the one considered in this manuscript.

The contributions of this work are in order:

• the comparison between multiple datasets that can be leveraged for segmenta-

tion of fires occurring in a natural environment,

• laying the groundwork for an evaluation framework of segmentation methods on

the Corsican Fire Database,

• the evaluation of the performances of several architectures on the Corsican Fire

Database,

• sharing all its implementations publicly.

Naturally, this work is very far from being exhaustive and one could picture multi-

ple ways in which it could be extended. Some ideas of extensions follow. (a) An abla-

tion study was not conducted on the considered architectures. (b) More architectures

75

could be implemented and evaluated, including architectures that were not tested on

a similar dataset in the past. (c) Different metrics for detection using the results of

segmentation could be implemented and compared. (d) Other loss functions than the

binary cross-entropy could be compared. (e) More datasets that could be useful in

the context of early detection and segmentation of forest fires could be reviewed. (f)

More hyperparameters than only the epoch count could be considered. (g) The met-

ric comparison between architectures could be nuanced not only using the number of

parameters but also by weighting other important performance considerations such as

inference time for instance. (h) It would be interesting to compare how more relevant

and more efficient the use of IR data might be instead of RGB in this type of applica-

tion where visibility can be obstructed by several conditions such as plumes of smoke.

76

Appendix A. AHI bands

Band Central Wavelength (µm) Spatial resolution (km)
1 (B) 0.47063 12 (G) 0.51000
3 (R) 0.63914 0.5

4 0.85670 1
5 1.6101

2

6 2.2568
7 3.8853
8 6.2429
9 6.9410
10 7.3467
11 8.5926
12 9.6372
13 10.4073
14 11.2395
15 12.3806
16 13.2807

Table A.1: AHI bands. Natural-color component bands are noted with R, G and
B53

77

78

Appendix B. MODIS bands

Band Bandwidth Spectral Radiance Spatial Resolution Primary Use
1 620 - 670 nm 21.8 250 m Land/Cloud/Aerosols

Boundaries2 841 - 876 nm 24.7
3 459 - 479 nm 35.3

500 m Land/Cloud/Aerosols
Properties

4 545 - 565 nm 29.0
5 1230 - 1250 nm 5.4
6 1628 - 1652 nm 7.3
7 2105 - 2155 nm 1.0
8 405 - 420 nm 44.9

1000 m

Ocean
Color/Phytoplankton/
Biogeochemistry

9 438 - 448 nm 41.9
10 483 - 493 nm 32.1
11 526 - 536 nm 27.9
12 546 - 556 nm 21.0
13 662 - 672 nm 9.5
14 673 - 683 nm 8.7
15 743 - 753 nm 10.2
16 862 - 877 nm 6.2
17 890 - 920 nm 10.0 Atmospheric Water

Vapor18 931 - 941 nm 3.6
19 915 - 965 nm 15.0
20 3.660 - 3.840 µm 0.45

Surface/Cloud Tem-
perature

21 3.929 - 3.989 µm 2.38
22 3.929 - 3.989 µm 0.67
23 4.020 - 4.080 µm 0.79
24 4.433 - 4.498 µm 0.17 Atmospheric Temper-

ature25 4.482 - 4.549 µm 0.59
26 1.360 - 1.390 µm 6.00 Cirrus Clouds Water

Vapor27 6.535 - 6.895 µm 1.16
28 7.175 - 7.475 µm 2.18
29 8.400 - 8.700 µm 9.58 Cloud Properties
30 9.580 - 9.880 µm 3.69 Ozone
31 10.780 - 11.280 µm 9.55 Surface/Cloud Tem-

perature32 11.770 - 12.270 µm 8.94
33 13.185 - 13.485 µm 4.52

Cloud Top Altitude34 13.485 - 13.785 µm 3.76
35 13.785 - 14.085 µm 3.11
36 14.085 - 14.385 µm 2.08

Table B.1: MODIS bands. Spectral Radiance expressed in Wm−2sr−1µm−1.72

79

Appendix C. VIIRS bands

Band Wavelength Range (µm) Band Explanation Spatial Resolution (m)
M1 0.402 - 0.422

Visible/Reflective 750
M2 0.436 - 0.454
M3 0.478 - 0.488
M4 0.545 - 0.565

M5(B) 0.662 - 0.682
M6 0.739 - 0.754 Near IRM7 (G) 0.846 - 0.885
M8 1.23 - 1.25

Shortwave IRM9 1.371 - 1.386
M10 (R) 1.58 - 1.64

M11 2.23 - 2.28
M12 3.61 - 3.79 Medium-wave IRM13 3.97 - 4.13
M14 8.4 - 8.7

Longwave IRM15 10.26 - 11.26
M16 11.54 - 12.49
DNB 0.5 - 0.9 Visible/Reflective 750 across full scan
I1 (B) 0.6 - 0.68 Visible/Reflective

375
I2 (G) 0.85 - 0.88 Near IR
I3 (R) 1.58 - 1.64 Shortwave IR

I4 3.55 - 3.93 Medium-wave IR
I5 10.5 - 12.4 Longwave IR

Table C.1: VIIRS bands. M stands for moderate resolution bands, I for im-
agery, DNB for Day-Night Band (or Near Constant Contrast (NCC) band) and
natural-color component bands are noted with R, G and B.20

80

Appendix D. AVHRR bands

Band Central Wavelength (µm) Primary Uses
1 0.63 Visible cloud and surface features
2 0.86 Visible aerosols over water, vegetation
3 3.74 Infrared low-level cloud/fog, fire detection
4 10.8 Infrared surface/cloud-top temperature
5 12.0 Infrared surface/cloud temperature, low-level water vapor
6 1.61 Near-infrared surface, cloud phase

Table D.1: AVHRR/3 bands.102

81

Appendix E. FLAME U-Net layers and parameters
__

Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) [(None, 256, 256, 3) 0

__

lambda (Lambda) (None, 256, 256, 3) 0 input_1[0][0]

__

conv2d (Conv2D) (None, 256, 256, 16) 448 lambda[0][0]

__

dropout (Dropout) (None, 256, 256, 16) 0 conv2d[0][0]

__

conv2d_1 (Conv2D) (None, 256, 256, 16) 2320 dropout[0][0]

__

max_pooling2d (MaxPooling2D) (None, 128, 128, 16) 0 conv2d_1[0][0]

__

conv2d_2 (Conv2D) (None, 128, 128, 32) 4640 max_pooling2d[0][0]

__

dropout_1 (Dropout) (None, 128, 128, 32) 0 conv2d_2[0][0]

__

conv2d_3 (Conv2D) (None, 128, 128, 32) 9248 dropout_1[0][0]

__

max_pooling2d_1 (MaxPooling2D) (None, 64, 64, 32) 0 conv2d_3[0][0]

__

conv2d_4 (Conv2D) (None, 64, 64, 64) 18496 max_pooling2d_1[0][0]

__

dropout_2 (Dropout) (None, 64, 64, 64) 0 conv2d_4[0][0]

__

conv2d_5 (Conv2D) (None, 64, 64, 64) 36928 dropout_2[0][0]

__

max_pooling2d_2 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_5[0][0]

__

conv2d_6 (Conv2D) (None, 32, 32, 128) 73856 max_pooling2d_2[0][0]

__

dropout_3 (Dropout) (None, 32, 32, 128) 0 conv2d_6[0][0]

__

conv2d_7 (Conv2D) (None, 32, 32, 128) 147584 dropout_3[0][0]

__

82

max_pooling2d_3 (MaxPooling2D) (None, 16, 16, 128) 0 conv2d_7[0][0]

__

conv2d_8 (Conv2D) (None, 16, 16, 256) 295168 max_pooling2d_3[0][0]

__

dropout_4 (Dropout) (None, 16, 16, 256) 0 conv2d_8[0][0]

__

conv2d_9 (Conv2D) (None, 16, 16, 256) 590080 dropout_4[0][0]

__

conv2d_transpose (Conv2DTranspo (None, 32, 32, 128) 131200 conv2d_9[0][0]

__

concatenate (Concatenate) (None, 32, 32, 256) 0 conv2d_transpose[0][0]

conv2d_7[0][0]

__

conv2d_10 (Conv2D) (None, 32, 32, 128) 295040 concatenate[0][0]

__

dropout_5 (Dropout) (None, 32, 32, 128) 0 conv2d_10[0][0]

__

conv2d_11 (Conv2D) (None, 32, 32, 128) 147584 dropout_5[0][0]

__

conv2d_transpose_1 (Conv2DTrans (None, 64, 64, 64) 32832 conv2d_11[0][0]

__

concatenate_1 (Concatenate) (None, 64, 64, 128) 0 conv2d_transpose_1[0][0]

conv2d_5[0][0]

__

conv2d_12 (Conv2D) (None, 64, 64, 64) 73792 concatenate_1[0][0]

__

dropout_6 (Dropout) (None, 64, 64, 64) 0 conv2d_12[0][0]

__

conv2d_13 (Conv2D) (None, 64, 64, 64) 36928 dropout_6[0][0]

__

conv2d_transpose_2 (Conv2DTrans (None, 128, 128, 32) 8224 conv2d_13[0][0]

__

concatenate_2 (Concatenate) (None, 128, 128, 64) 0 conv2d_transpose_2[0][0]

conv2d_3[0][0]

__

conv2d_14 (Conv2D) (None, 128, 128, 32) 18464 concatenate_2[0][0]

__

83

dropout_7 (Dropout) (None, 128, 128, 32) 0 conv2d_14[0][0]

__

conv2d_15 (Conv2D) (None, 128, 128, 32) 9248 dropout_7[0][0]

__

conv2d_transpose_3 (Conv2DTrans (None, 256, 256, 16) 2064 conv2d_15[0][0]

__

concatenate_3 (Concatenate) (None, 256, 256, 32) 0 conv2d_transpose_3[0][0]

conv2d_1[0][0]

__

conv2d_16 (Conv2D) (None, 256, 256, 16) 4624 concatenate_3[0][0]

__

dropout_8 (Dropout) (None, 256, 256, 16) 0 conv2d_16[0][0]

__

conv2d_17 (Conv2D) (None, 256, 256, 16) 2320 dropout_8[0][0]

__

conv2d_18 (Conv2D) (None, 256, 256, 1) 17 conv2d_17[0][0]

==

Total params: 1,941,105

Trainable params: 1,941,105

Non-trainable params: 0

84

Appendix F. Squeeze U-Net layers and parameters
__

Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) [(None, 256, 256, 3) 0

__

lambda (Lambda) (None, 256, 256, 3) 0 input_1[0][0]

__

conv2d (Conv2D) (None, 128, 128, 64) 1792 lambda[0][0]

__

max_pooling2d (MaxPooling2D) (None, 64, 64, 64) 0 conv2d[0][0]

__

conv2d_1 (Conv2D) (None, 64, 64, 16) 1040 max_pooling2d[0][0]

__

batch_normalization (BatchNorma (None, 64, 64, 16) 64 conv2d_1[0][0]

__

conv2d_2 (Conv2D) (None, 64, 64, 64) 1088 batch_normalization[0][0]

__

conv2d_3 (Conv2D) (None, 64, 64, 64) 9280 batch_normalization[0][0]

__

concatenate (Concatenate) (None, 64, 64, 128) 0 conv2d_2[0][0]

conv2d_3[0][0]

__

conv2d_4 (Conv2D) (None, 64, 64, 16) 2064 concatenate[0][0]

__

batch_normalization_1 (BatchNor (None, 64, 64, 16) 64 conv2d_4[0][0]

__

conv2d_5 (Conv2D) (None, 64, 64, 64) 1088 batch_normalization_1[0][0]

__

conv2d_6 (Conv2D) (None, 64, 64, 64) 9280 batch_normalization_1[0][0]

__

concatenate_1 (Concatenate) (None, 64, 64, 128) 0 conv2d_5[0][0]

conv2d_6[0][0]

__

max_pooling2d_1 (MaxPooling2D) (None, 32, 32, 128) 0 concatenate_1[0][0]

__

conv2d_7 (Conv2D) (None, 32, 32, 32) 4128 max_pooling2d_1[0][0]

__

85

batch_normalization_2 (BatchNor (None, 32, 32, 32) 128 conv2d_7[0][0]

__

conv2d_8 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_2[0][0]

__

conv2d_9 (Conv2D) (None, 32, 32, 128) 36992 batch_normalization_2[0][0]

__

concatenate_2 (Concatenate) (None, 32, 32, 256) 0 conv2d_8[0][0]

conv2d_9[0][0]

__

conv2d_10 (Conv2D) (None, 32, 32, 32) 8224 concatenate_2[0][0]

__

batch_normalization_3 (BatchNor (None, 32, 32, 32) 128 conv2d_10[0][0]

__

conv2d_11 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_3[0][0]

__

conv2d_12 (Conv2D) (None, 32, 32, 128) 36992 batch_normalization_3[0][0]

__

concatenate_3 (Concatenate) (None, 32, 32, 256) 0 conv2d_11[0][0]

conv2d_12[0][0]

__

max_pooling2d_2 (MaxPooling2D) (None, 16, 16, 256) 0 concatenate_3[0][0]

__

conv2d_13 (Conv2D) (None, 16, 16, 48) 12336 max_pooling2d_2[0][0]

__

batch_normalization_4 (BatchNor (None, 16, 16, 48) 192 conv2d_13[0][0]

__

conv2d_14 (Conv2D) (None, 16, 16, 192) 9408 batch_normalization_4[0][0]

__

conv2d_15 (Conv2D) (None, 16, 16, 192) 83136 batch_normalization_4[0][0]

__

concatenate_4 (Concatenate) (None, 16, 16, 384) 0 conv2d_14[0][0]

conv2d_15[0][0]

__

conv2d_16 (Conv2D) (None, 16, 16, 48) 18480 concatenate_4[0][0]

__

batch_normalization_5 (BatchNor (None, 16, 16, 48) 192 conv2d_16[0][0]

__

86

conv2d_17 (Conv2D) (None, 16, 16, 192) 9408 batch_normalization_5[0][0]

__

conv2d_18 (Conv2D) (None, 16, 16, 192) 83136 batch_normalization_5[0][0]

__

concatenate_5 (Concatenate) (None, 16, 16, 384) 0 conv2d_17[0][0]

conv2d_18[0][0]

__

conv2d_19 (Conv2D) (None, 16, 16, 64) 24640 concatenate_5[0][0]

__

batch_normalization_6 (BatchNor (None, 16, 16, 64) 256 conv2d_19[0][0]

__

conv2d_20 (Conv2D) (None, 16, 16, 256) 16640 batch_normalization_6[0][0]

__

conv2d_21 (Conv2D) (None, 16, 16, 256) 147712 batch_normalization_6[0][0]

__

concatenate_6 (Concatenate) (None, 16, 16, 512) 0 conv2d_20[0][0]

conv2d_21[0][0]

__

conv2d_22 (Conv2D) (None, 16, 16, 64) 32832 concatenate_6[0][0]

__

batch_normalization_7 (BatchNor (None, 16, 16, 64) 256 conv2d_22[0][0]

__

conv2d_23 (Conv2D) (None, 16, 16, 256) 16640 batch_normalization_7[0][0]

__

conv2d_24 (Conv2D) (None, 16, 16, 256) 147712 batch_normalization_7[0][0]

__

concatenate_7 (Concatenate) (None, 16, 16, 512) 0 conv2d_23[0][0]

conv2d_24[0][0]

__

dropout (Dropout) (None, 16, 16, 512) 0 concatenate_7[0][0]

__

conv2d_transpose (Conv2DTranspo (None, 16, 16, 192) 884928 dropout[0][0]

__

concatenate_8 (Concatenate) (None, 16, 16, 576) 0 conv2d_transpose[0][0]

concatenate_5[0][0]

__

conv2d_25 (Conv2D) (None, 16, 16, 48) 27696 concatenate_8[0][0]

87

__

batch_normalization_8 (BatchNor (None, 16, 16, 48) 192 conv2d_25[0][0]

__

conv2d_26 (Conv2D) (None, 16, 16, 192) 9408 batch_normalization_8[0][0]

__

conv2d_27 (Conv2D) (None, 16, 16, 192) 83136 batch_normalization_8[0][0]

__

concatenate_9 (Concatenate) (None, 16, 16, 384) 0 conv2d_26[0][0]

conv2d_27[0][0]

__

conv2d_transpose_1 (Conv2DTrans (None, 16, 16, 128) 442496 concatenate_9[0][0]

__

concatenate_10 (Concatenate) (None, 16, 16, 384) 0 conv2d_transpose_1[0][0]

max_pooling2d_2[0][0]

__

conv2d_28 (Conv2D) (None, 16, 16, 32) 12320 concatenate_10[0][0]

__

batch_normalization_9 (BatchNor (None, 16, 16, 32) 128 conv2d_28[0][0]

__

conv2d_29 (Conv2D) (None, 16, 16, 128) 4224 batch_normalization_9[0][0]

__

conv2d_30 (Conv2D) (None, 16, 16, 128) 36992 batch_normalization_9[0][0]

__

concatenate_11 (Concatenate) (None, 16, 16, 256) 0 conv2d_29[0][0]

conv2d_30[0][0]

__

conv2d_transpose_2 (Conv2DTrans (None, 32, 32, 64) 147520 concatenate_11[0][0]

__

concatenate_12 (Concatenate) (None, 32, 32, 192) 0 conv2d_transpose_2[0][0]

max_pooling2d_1[0][0]

__

conv2d_31 (Conv2D) (None, 32, 32, 16) 3088 concatenate_12[0][0]

__

batch_normalization_10 (BatchNo (None, 32, 32, 16) 64 conv2d_31[0][0]

__

conv2d_32 (Conv2D) (None, 32, 32, 64) 1088 batch_normalization_10[0][0]

__

88

conv2d_33 (Conv2D) (None, 32, 32, 64) 9280 batch_normalization_10[0][0]

__

concatenate_13 (Concatenate) (None, 32, 32, 128) 0 conv2d_32[0][0]

conv2d_33[0][0]

__

conv2d_transpose_3 (Conv2DTrans (None, 64, 64, 32) 36896 concatenate_13[0][0]

__

concatenate_14 (Concatenate) (None, 64, 64, 96) 0 conv2d_transpose_3[0][0]

max_pooling2d[0][0]

__

conv2d_34 (Conv2D) (None, 64, 64, 16) 1552 concatenate_14[0][0]

__

batch_normalization_11 (BatchNo (None, 64, 64, 16) 64 conv2d_34[0][0]

__

conv2d_35 (Conv2D) (None, 64, 64, 32) 544 batch_normalization_11[0][0]

__

conv2d_36 (Conv2D) (None, 64, 64, 32) 4640 batch_normalization_11[0][0]

__

concatenate_15 (Concatenate) (None, 64, 64, 64) 0 conv2d_35[0][0]

conv2d_36[0][0]

__

up_sampling2d (UpSampling2D) (None, 128, 128, 64) 0 concatenate_15[0][0]

__

concatenate_16 (Concatenate) (None, 128, 128, 128 0 up_sampling2d[0][0]

conv2d[0][0]

__

conv2d_37 (Conv2D) (None, 128, 128, 64) 73792 concatenate_16[0][0]

__

up_sampling2d_1 (UpSampling2D) (None, 256, 256, 64) 0 conv2d_37[0][0]

__

conv2d_38 (Conv2D) (None, 256, 256, 1) 65 up_sampling2d_1[0][0]

==

Total params: 2,503,889

Trainable params: 2,503,025

Non-trainable params: 864

89

Appendix G. DeepLabv3+ with ResNet50 layers and pa-

rameters
__

Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) [(None, 256, 256, 3) 0

__

conv1_pad (ZeroPadding2D) (None, 262, 262, 3) 0 input_1[0][0]

__

conv1_conv (Conv2D) (None, 128, 128, 64) 9472 conv1_pad[0][0]

__

conv1_bn (BatchNormalization) (None, 128, 128, 64) 256 conv1_conv[0][0]

__

conv1_relu (Activation) (None, 128, 128, 64) 0 conv1_bn[0][0]

__

pool1_pad (ZeroPadding2D) (None, 130, 130, 64) 0 conv1_relu[0][0]

__

pool1_pool (MaxPooling2D) (None, 64, 64, 64) 0 pool1_pad[0][0]

__

conv2_block1_1_conv (Conv2D) (None, 64, 64, 64) 4160 pool1_pool[0][0]

__

conv2_block1_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_1_conv[0][0]

__

conv2_block1_1_relu (Activation (None, 64, 64, 64) 0 conv2_block1_1_bn[0][0]

__

conv2_block1_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block1_1_relu[0][0]

__

conv2_block1_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block1_2_conv[0][0]

__

conv2_block1_2_relu (Activation (None, 64, 64, 64) 0 conv2_block1_2_bn[0][0]

__

conv2_block1_0_conv (Conv2D) (None, 64, 64, 256) 16640 pool1_pool[0][0]

__

conv2_block1_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block1_2_relu[0][0]

__

conv2_block1_0_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block1_0_conv[0][0]

90

__

conv2_block1_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block1_3_conv[0][0]

__

conv2_block1_add (Add) (None, 64, 64, 256) 0 conv2_block1_0_bn[0][0]

conv2_block1_3_bn[0][0]

__

conv2_block1_out (Activation) (None, 64, 64, 256) 0 conv2_block1_add[0][0]

__

conv2_block2_1_conv (Conv2D) (None, 64, 64, 64) 16448 conv2_block1_out[0][0]

__

conv2_block2_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block2_1_conv[0][0]

__

conv2_block2_1_relu (Activation (None, 64, 64, 64) 0 conv2_block2_1_bn[0][0]

__

conv2_block2_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block2_1_relu[0][0]

__

conv2_block2_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block2_2_conv[0][0]

__

conv2_block2_2_relu (Activation (None, 64, 64, 64) 0 conv2_block2_2_bn[0][0]

__

conv2_block2_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block2_2_relu[0][0]

__

conv2_block2_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block2_3_conv[0][0]

__

conv2_block2_add (Add) (None, 64, 64, 256) 0 conv2_block1_out[0][0]

conv2_block2_3_bn[0][0]

__

conv2_block2_out (Activation) (None, 64, 64, 256) 0 conv2_block2_add[0][0]

__

conv2_block3_1_conv (Conv2D) (None, 64, 64, 64) 16448 conv2_block2_out[0][0]

__

conv2_block3_1_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block3_1_conv[0][0]

__

conv2_block3_1_relu (Activation (None, 64, 64, 64) 0 conv2_block3_1_bn[0][0]

__

conv2_block3_2_conv (Conv2D) (None, 64, 64, 64) 36928 conv2_block3_1_relu[0][0]

__

91

conv2_block3_2_bn (BatchNormali (None, 64, 64, 64) 256 conv2_block3_2_conv[0][0]

__

conv2_block3_2_relu (Activation (None, 64, 64, 64) 0 conv2_block3_2_bn[0][0]

__

conv2_block3_3_conv (Conv2D) (None, 64, 64, 256) 16640 conv2_block3_2_relu[0][0]

__

conv2_block3_3_bn (BatchNormali (None, 64, 64, 256) 1024 conv2_block3_3_conv[0][0]

__

conv2_block3_add (Add) (None, 64, 64, 256) 0 conv2_block2_out[0][0]

conv2_block3_3_bn[0][0]

__

conv2_block3_out (Activation) (None, 64, 64, 256) 0 conv2_block3_add[0][0]

__

conv3_block1_1_conv (Conv2D) (None, 32, 32, 128) 32896 conv2_block3_out[0][0]

__

conv3_block1_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block1_1_conv[0][0]

__

conv3_block1_1_relu (Activation (None, 32, 32, 128) 0 conv3_block1_1_bn[0][0]

__

conv3_block1_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block1_1_relu[0][0]

__

conv3_block1_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block1_2_conv[0][0]

__

conv3_block1_2_relu (Activation (None, 32, 32, 128) 0 conv3_block1_2_bn[0][0]

__

conv3_block1_0_conv (Conv2D) (None, 32, 32, 512) 131584 conv2_block3_out[0][0]

__

conv3_block1_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block1_2_relu[0][0]

__

conv3_block1_0_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block1_0_conv[0][0]

__

conv3_block1_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block1_3_conv[0][0]

__

conv3_block1_add (Add) (None, 32, 32, 512) 0 conv3_block1_0_bn[0][0]

conv3_block1_3_bn[0][0]

__

conv3_block1_out (Activation) (None, 32, 32, 512) 0 conv3_block1_add[0][0]

92

__

conv3_block2_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block1_out[0][0]

__

conv3_block2_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block2_1_conv[0][0]

__

conv3_block2_1_relu (Activation (None, 32, 32, 128) 0 conv3_block2_1_bn[0][0]

__

conv3_block2_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block2_1_relu[0][0]

__

conv3_block2_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block2_2_conv[0][0]

__

conv3_block2_2_relu (Activation (None, 32, 32, 128) 0 conv3_block2_2_bn[0][0]

__

conv3_block2_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block2_2_relu[0][0]

__

conv3_block2_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block2_3_conv[0][0]

__

conv3_block2_add (Add) (None, 32, 32, 512) 0 conv3_block1_out[0][0]

conv3_block2_3_bn[0][0]

__

conv3_block2_out (Activation) (None, 32, 32, 512) 0 conv3_block2_add[0][0]

__

conv3_block3_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block2_out[0][0]

__

conv3_block3_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block3_1_conv[0][0]

__

conv3_block3_1_relu (Activation (None, 32, 32, 128) 0 conv3_block3_1_bn[0][0]

__

conv3_block3_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block3_1_relu[0][0]

__

conv3_block3_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block3_2_conv[0][0]

__

conv3_block3_2_relu (Activation (None, 32, 32, 128) 0 conv3_block3_2_bn[0][0]

__

conv3_block3_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block3_2_relu[0][0]

__

conv3_block3_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block3_3_conv[0][0]

93

__

conv3_block3_add (Add) (None, 32, 32, 512) 0 conv3_block2_out[0][0]

conv3_block3_3_bn[0][0]

__

conv3_block3_out (Activation) (None, 32, 32, 512) 0 conv3_block3_add[0][0]

__

conv3_block4_1_conv (Conv2D) (None, 32, 32, 128) 65664 conv3_block3_out[0][0]

__

conv3_block4_1_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block4_1_conv[0][0]

__

conv3_block4_1_relu (Activation (None, 32, 32, 128) 0 conv3_block4_1_bn[0][0]

__

conv3_block4_2_conv (Conv2D) (None, 32, 32, 128) 147584 conv3_block4_1_relu[0][0]

__

conv3_block4_2_bn (BatchNormali (None, 32, 32, 128) 512 conv3_block4_2_conv[0][0]

__

conv3_block4_2_relu (Activation (None, 32, 32, 128) 0 conv3_block4_2_bn[0][0]

__

conv3_block4_3_conv (Conv2D) (None, 32, 32, 512) 66048 conv3_block4_2_relu[0][0]

__

conv3_block4_3_bn (BatchNormali (None, 32, 32, 512) 2048 conv3_block4_3_conv[0][0]

__

conv3_block4_add (Add) (None, 32, 32, 512) 0 conv3_block3_out[0][0]

conv3_block4_3_bn[0][0]

__

conv3_block4_out (Activation) (None, 32, 32, 512) 0 conv3_block4_add[0][0]

__

conv4_block1_1_conv (Conv2D) (None, 16, 16, 256) 131328 conv3_block4_out[0][0]

__

conv4_block1_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block1_1_conv[0][0]

__

conv4_block1_1_relu (Activation (None, 16, 16, 256) 0 conv4_block1_1_bn[0][0]

__

conv4_block1_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block1_1_relu[0][0]

__

conv4_block1_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block1_2_conv[0][0]

__

94

conv4_block1_2_relu (Activation (None, 16, 16, 256) 0 conv4_block1_2_bn[0][0]

__

conv4_block1_0_conv (Conv2D) (None, 16, 16, 1024) 525312 conv3_block4_out[0][0]

__

conv4_block1_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block1_2_relu[0][0]

__

conv4_block1_0_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block1_0_conv[0][0]

__

conv4_block1_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block1_3_conv[0][0]

__

conv4_block1_add (Add) (None, 16, 16, 1024) 0 conv4_block1_0_bn[0][0]

conv4_block1_3_bn[0][0]

__

conv4_block1_out (Activation) (None, 16, 16, 1024) 0 conv4_block1_add[0][0]

__

conv4_block2_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block1_out[0][0]

__

conv4_block2_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block2_1_conv[0][0]

__

conv4_block2_1_relu (Activation (None, 16, 16, 256) 0 conv4_block2_1_bn[0][0]

__

conv4_block2_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block2_1_relu[0][0]

__

conv4_block2_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block2_2_conv[0][0]

__

conv4_block2_2_relu (Activation (None, 16, 16, 256) 0 conv4_block2_2_bn[0][0]

__

conv4_block2_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block2_2_relu[0][0]

__

conv4_block2_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block2_3_conv[0][0]

__

conv4_block2_add (Add) (None, 16, 16, 1024) 0 conv4_block1_out[0][0]

conv4_block2_3_bn[0][0]

__

conv4_block2_out (Activation) (None, 16, 16, 1024) 0 conv4_block2_add[0][0]

__

conv4_block3_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block2_out[0][0]

95

__

conv4_block3_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block3_1_conv[0][0]

__

conv4_block3_1_relu (Activation (None, 16, 16, 256) 0 conv4_block3_1_bn[0][0]

__

conv4_block3_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block3_1_relu[0][0]

__

conv4_block3_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block3_2_conv[0][0]

__

conv4_block3_2_relu (Activation (None, 16, 16, 256) 0 conv4_block3_2_bn[0][0]

__

conv4_block3_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block3_2_relu[0][0]

__

conv4_block3_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block3_3_conv[0][0]

__

conv4_block3_add (Add) (None, 16, 16, 1024) 0 conv4_block2_out[0][0]

conv4_block3_3_bn[0][0]

__

conv4_block3_out (Activation) (None, 16, 16, 1024) 0 conv4_block3_add[0][0]

__

conv4_block4_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block3_out[0][0]

__

conv4_block4_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block4_1_conv[0][0]

__

conv4_block4_1_relu (Activation (None, 16, 16, 256) 0 conv4_block4_1_bn[0][0]

__

conv4_block4_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block4_1_relu[0][0]

__

conv4_block4_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block4_2_conv[0][0]

__

conv4_block4_2_relu (Activation (None, 16, 16, 256) 0 conv4_block4_2_bn[0][0]

__

conv4_block4_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block4_2_relu[0][0]

__

conv4_block4_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block4_3_conv[0][0]

__

conv4_block4_add (Add) (None, 16, 16, 1024) 0 conv4_block3_out[0][0]

96

conv4_block4_3_bn[0][0]

__

conv4_block4_out (Activation) (None, 16, 16, 1024) 0 conv4_block4_add[0][0]

__

conv4_block5_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block4_out[0][0]

__

conv4_block5_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block5_1_conv[0][0]

__

conv4_block5_1_relu (Activation (None, 16, 16, 256) 0 conv4_block5_1_bn[0][0]

__

conv4_block5_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block5_1_relu[0][0]

__

conv4_block5_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block5_2_conv[0][0]

__

conv4_block5_2_relu (Activation (None, 16, 16, 256) 0 conv4_block5_2_bn[0][0]

__

conv4_block5_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block5_2_relu[0][0]

__

conv4_block5_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block5_3_conv[0][0]

__

conv4_block5_add (Add) (None, 16, 16, 1024) 0 conv4_block4_out[0][0]

conv4_block5_3_bn[0][0]

__

conv4_block5_out (Activation) (None, 16, 16, 1024) 0 conv4_block5_add[0][0]

__

conv4_block6_1_conv (Conv2D) (None, 16, 16, 256) 262400 conv4_block5_out[0][0]

__

conv4_block6_1_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block6_1_conv[0][0]

__

conv4_block6_1_relu (Activation (None, 16, 16, 256) 0 conv4_block6_1_bn[0][0]

__

conv4_block6_2_conv (Conv2D) (None, 16, 16, 256) 590080 conv4_block6_1_relu[0][0]

__

conv4_block6_2_bn (BatchNormali (None, 16, 16, 256) 1024 conv4_block6_2_conv[0][0]

__

conv4_block6_2_relu (Activation (None, 16, 16, 256) 0 conv4_block6_2_bn[0][0]

__

97

conv4_block6_3_conv (Conv2D) (None, 16, 16, 1024) 263168 conv4_block6_2_relu[0][0]

__

conv4_block6_3_bn (BatchNormali (None, 16, 16, 1024) 4096 conv4_block6_3_conv[0][0]

__

conv4_block6_add (Add) (None, 16, 16, 1024) 0 conv4_block5_out[0][0]

conv4_block6_3_bn[0][0]

__

conv4_block6_out (Activation) (None, 16, 16, 1024) 0 conv4_block6_add[0][0]

__

conv5_block1_1_conv (Conv2D) (None, 8, 8, 512) 524800 conv4_block6_out[0][0]

__

conv5_block1_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block1_1_conv[0][0]

__

conv5_block1_1_relu (Activation (None, 8, 8, 512) 0 conv5_block1_1_bn[0][0]

__

conv5_block1_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block1_1_relu[0][0]

__

conv5_block1_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block1_2_conv[0][0]

__

conv5_block1_2_relu (Activation (None, 8, 8, 512) 0 conv5_block1_2_bn[0][0]

__

conv5_block1_0_conv (Conv2D) (None, 8, 8, 2048) 2099200 conv4_block6_out[0][0]

__

conv5_block1_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block1_2_relu[0][0]

__

conv5_block1_0_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block1_0_conv[0][0]

__

conv5_block1_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block1_3_conv[0][0]

__

conv5_block1_add (Add) (None, 8, 8, 2048) 0 conv5_block1_0_bn[0][0]

conv5_block1_3_bn[0][0]

__

conv5_block1_out (Activation) (None, 8, 8, 2048) 0 conv5_block1_add[0][0]

__

conv5_block2_1_conv (Conv2D) (None, 8, 8, 512) 1049088 conv5_block1_out[0][0]

__

conv5_block2_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block2_1_conv[0][0]

98

__

conv5_block2_1_relu (Activation (None, 8, 8, 512) 0 conv5_block2_1_bn[0][0]

__

conv5_block2_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block2_1_relu[0][0]

__

conv5_block2_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block2_2_conv[0][0]

__

conv5_block2_2_relu (Activation (None, 8, 8, 512) 0 conv5_block2_2_bn[0][0]

__

conv5_block2_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block2_2_relu[0][0]

__

conv5_block2_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block2_3_conv[0][0]

__

conv5_block2_add (Add) (None, 8, 8, 2048) 0 conv5_block1_out[0][0]

conv5_block2_3_bn[0][0]

__

conv5_block2_out (Activation) (None, 8, 8, 2048) 0 conv5_block2_add[0][0]

__

conv5_block3_1_conv (Conv2D) (None, 8, 8, 512) 1049088 conv5_block2_out[0][0]

__

conv5_block3_1_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block3_1_conv[0][0]

__

conv5_block3_1_relu (Activation (None, 8, 8, 512) 0 conv5_block3_1_bn[0][0]

__

conv5_block3_2_conv (Conv2D) (None, 8, 8, 512) 2359808 conv5_block3_1_relu[0][0]

__

conv5_block3_2_bn (BatchNormali (None, 8, 8, 512) 2048 conv5_block3_2_conv[0][0]

__

conv5_block3_2_relu (Activation (None, 8, 8, 512) 0 conv5_block3_2_bn[0][0]

__

conv5_block3_3_conv (Conv2D) (None, 8, 8, 2048) 1050624 conv5_block3_2_relu[0][0]

__

conv5_block3_3_bn (BatchNormali (None, 8, 8, 2048) 8192 conv5_block3_3_conv[0][0]

__

conv5_block3_add (Add) (None, 8, 8, 2048) 0 conv5_block2_out[0][0]

conv5_block3_3_bn[0][0]

__

99

conv5_block3_out (Activation) (None, 8, 8, 2048) 0 conv5_block3_add[0][0]

__

average_pooling (AveragePooling (None, 1, 1, 2048) 0 conv5_block3_out[0][0]

__

pool_1x1conv2d (Conv2D) (None, 1, 1, 256) 524288 average_pooling[0][0]

__

bn_1 (BatchNormalization) (None, 1, 1, 256) 1024 pool_1x1conv2d[0][0]

__

ASPP_conv2d_d1 (Conv2D) (None, 8, 8, 256) 524288 conv5_block3_out[0][0]

__

ASPP_conv2d_d6 (Conv2D) (None, 8, 8, 256) 4718592 conv5_block3_out[0][0]

__

ASPP_conv2d_d12 (Conv2D) (None, 8, 8, 256) 4718592 conv5_block3_out[0][0]

__

ASPP_conv2d_d18 (Conv2D) (None, 8, 8, 256) 4718592 conv5_block3_out[0][0]

__

relu_1 (Activation) (None, 1, 1, 256) 0 bn_1[0][0]

__

bn_2 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d1[0][0]

__

bn_3 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d6[0][0]

__

bn_4 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d12[0][0]

__

bn_5 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d18[0][0]

__

relu_1_upsample (Lambda) (None, 8, 8, 256) 0 relu_1[0][0]

__

relu_2 (Activation) (None, 8, 8, 256) 0 bn_2[0][0]

__

relu_3 (Activation) (None, 8, 8, 256) 0 bn_3[0][0]

__

relu_4 (Activation) (None, 8, 8, 256) 0 bn_4[0][0]

__

relu_5 (Activation) (None, 8, 8, 256) 0 bn_5[0][0]

__

ASPP_concat (Concatenate) (None, 8, 8, 1280) 0 relu_1_upsample[0][0]

100

relu_2[0][0]

relu_3[0][0]

relu_4[0][0]

relu_5[0][0]

__

ASPP_conv2d_final (Conv2D) (None, 8, 8, 256) 327680 ASPP_concat[0][0]

__

bn_final (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_final[0][0]

__

low_level_projection (Conv2D) (None, 64, 64, 48) 12288 conv2_block3_out[0][0]

__

relu_final (Activation) (None, 8, 8, 256) 0 bn_final[0][0]

__

bn_low_level_projection (BatchN (None, 64, 64, 48) 192 low_level_projection[0][0]

__

relu_final_upsample (Lambda) (None, 64, 64, 256) 0 relu_final[0][0]

__

low_level_activation (Activatio (None, 64, 64, 48) 0 bn_low_level_projection[0][0]

__

decoder_concat (Concatenate) (None, 64, 64, 304) 0 relu_final_upsample[0][0]

low_level_activation[0][0]

__

decoder_conv2d_1 (Conv2D) (None, 64, 64, 256) 700416 decoder_concat[0][0]

__

bn_decoder_1 (BatchNormalizatio (None, 64, 64, 256) 1024 decoder_conv2d_1[0][0]

__

activation_decoder_1 (Activatio (None, 64, 64, 256) 0 bn_decoder_1[0][0]

__

decoder_conv2d_2 (Conv2D) (None, 64, 64, 256) 589824 activation_decoder_1[0][0]

__

bn_decoder_2 (BatchNormalizatio (None, 64, 64, 256) 1024 decoder_conv2d_2[0][0]

__

activation_decoder_2 (Activatio (None, 64, 64, 256) 0 bn_decoder_2[0][0]

__

activation_decoder_2_upsample ((None, 256, 256, 256 0 activation_decoder_2[0][0]

__

output_layer (Conv2D) (None, 256, 256, 1) 257 activation_decoder_2_upsample[0][

101

==

Total params: 40,430,913

Trainable params: 40,373,601

Non-trainable params: 57,312

102

Appendix H. DeepLabv3+ with EfficientNet layers and pa-

rameters
__

Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) [(None, 256, 256, 3) 0

__

rescaling (Rescaling) (None, 256, 256, 3) 0 input_1[0][0]

__

normalization (Normalization) (None, 256, 256, 3) 7 rescaling[0][0]

__

stem_conv_pad (ZeroPadding2D) (None, 257, 257, 3) 0 normalization[0][0]

__

stem_conv (Conv2D) (None, 128, 128, 48) 1296 stem_conv_pad[0][0]

__

stem_bn (BatchNormalization) (None, 128, 128, 48) 192 stem_conv[0][0]

__

stem_activation (Activation) (None, 128, 128, 48) 0 stem_bn[0][0]

__

block1a_dwconv (DepthwiseConv2D (None, 128, 128, 48) 432 stem_activation[0][0]

__

block1a_bn (BatchNormalization) (None, 128, 128, 48) 192 block1a_dwconv[0][0]

__

block1a_activation (Activation) (None, 128, 128, 48) 0 block1a_bn[0][0]

__

block1a_se_squeeze (GlobalAvera (None, 48) 0 block1a_activation[0][0]

__

block1a_se_reshape (Reshape) (None, 1, 1, 48) 0 block1a_se_squeeze[0][0]

__

block1a_se_reduce (Conv2D) (None, 1, 1, 12) 588 block1a_se_reshape[0][0]

__

block1a_se_expand (Conv2D) (None, 1, 1, 48) 624 block1a_se_reduce[0][0]

__

block1a_se_excite (Multiply) (None, 128, 128, 48) 0 block1a_activation[0][0]

block1a_se_expand[0][0]

__

103

block1a_project_conv (Conv2D) (None, 128, 128, 24) 1152 block1a_se_excite[0][0]

__

block1a_project_bn (BatchNormal (None, 128, 128, 24) 96 block1a_project_conv[0][0]

__

block1b_dwconv (DepthwiseConv2D (None, 128, 128, 24) 216 block1a_project_bn[0][0]

__

block1b_bn (BatchNormalization) (None, 128, 128, 24) 96 block1b_dwconv[0][0]

__

block1b_activation (Activation) (None, 128, 128, 24) 0 block1b_bn[0][0]

__

block1b_se_squeeze (GlobalAvera (None, 24) 0 block1b_activation[0][0]

__

block1b_se_reshape (Reshape) (None, 1, 1, 24) 0 block1b_se_squeeze[0][0]

__

block1b_se_reduce (Conv2D) (None, 1, 1, 6) 150 block1b_se_reshape[0][0]

__

block1b_se_expand (Conv2D) (None, 1, 1, 24) 168 block1b_se_reduce[0][0]

__

block1b_se_excite (Multiply) (None, 128, 128, 24) 0 block1b_activation[0][0]

block1b_se_expand[0][0]

__

block1b_project_conv (Conv2D) (None, 128, 128, 24) 576 block1b_se_excite[0][0]

__

block1b_project_bn (BatchNormal (None, 128, 128, 24) 96 block1b_project_conv[0][0]

__

block1b_drop (Dropout) (None, 128, 128, 24) 0 block1b_project_bn[0][0]

__

block1b_add (Add) (None, 128, 128, 24) 0 block1b_drop[0][0]

block1a_project_bn[0][0]

__

block2a_expand_conv (Conv2D) (None, 128, 128, 144 3456 block1b_add[0][0]

__

block2a_expand_bn (BatchNormali (None, 128, 128, 144 576 block2a_expand_conv[0][0]

__

block2a_expand_activation (Acti (None, 128, 128, 144 0 block2a_expand_bn[0][0]

__

block2a_dwconv_pad (ZeroPadding (None, 129, 129, 144 0 block2a_expand_activation[0][0]

104

__

block2a_dwconv (DepthwiseConv2D (None, 64, 64, 144) 1296 block2a_dwconv_pad[0][0]

__

block2a_bn (BatchNormalization) (None, 64, 64, 144) 576 block2a_dwconv[0][0]

__

block2a_activation (Activation) (None, 64, 64, 144) 0 block2a_bn[0][0]

__

block2a_se_squeeze (GlobalAvera (None, 144) 0 block2a_activation[0][0]

__

block2a_se_reshape (Reshape) (None, 1, 1, 144) 0 block2a_se_squeeze[0][0]

__

block2a_se_reduce (Conv2D) (None, 1, 1, 6) 870 block2a_se_reshape[0][0]

__

block2a_se_expand (Conv2D) (None, 1, 1, 144) 1008 block2a_se_reduce[0][0]

__

block2a_se_excite (Multiply) (None, 64, 64, 144) 0 block2a_activation[0][0]

block2a_se_expand[0][0]

__

block2a_project_conv (Conv2D) (None, 64, 64, 32) 4608 block2a_se_excite[0][0]

__

block2a_project_bn (BatchNormal (None, 64, 64, 32) 128 block2a_project_conv[0][0]

__

block2b_expand_conv (Conv2D) (None, 64, 64, 192) 6144 block2a_project_bn[0][0]

__

block2b_expand_bn (BatchNormali (None, 64, 64, 192) 768 block2b_expand_conv[0][0]

__

block2b_expand_activation (Acti (None, 64, 64, 192) 0 block2b_expand_bn[0][0]

__

block2b_dwconv (DepthwiseConv2D (None, 64, 64, 192) 1728 block2b_expand_activation[0][0]

__

block2b_bn (BatchNormalization) (None, 64, 64, 192) 768 block2b_dwconv[0][0]

__

block2b_activation (Activation) (None, 64, 64, 192) 0 block2b_bn[0][0]

__

block2b_se_squeeze (GlobalAvera (None, 192) 0 block2b_activation[0][0]

__

block2b_se_reshape (Reshape) (None, 1, 1, 192) 0 block2b_se_squeeze[0][0]

105

__

block2b_se_reduce (Conv2D) (None, 1, 1, 8) 1544 block2b_se_reshape[0][0]

__

block2b_se_expand (Conv2D) (None, 1, 1, 192) 1728 block2b_se_reduce[0][0]

__

block2b_se_excite (Multiply) (None, 64, 64, 192) 0 block2b_activation[0][0]

block2b_se_expand[0][0]

__

block2b_project_conv (Conv2D) (None, 64, 64, 32) 6144 block2b_se_excite[0][0]

__

block2b_project_bn (BatchNormal (None, 64, 64, 32) 128 block2b_project_conv[0][0]

__

block2b_drop (Dropout) (None, 64, 64, 32) 0 block2b_project_bn[0][0]

__

block2b_add (Add) (None, 64, 64, 32) 0 block2b_drop[0][0]

block2a_project_bn[0][0]

__

block2c_expand_conv (Conv2D) (None, 64, 64, 192) 6144 block2b_add[0][0]

__

block2c_expand_bn (BatchNormali (None, 64, 64, 192) 768 block2c_expand_conv[0][0]

__

block2c_expand_activation (Acti (None, 64, 64, 192) 0 block2c_expand_bn[0][0]

__

block2c_dwconv (DepthwiseConv2D (None, 64, 64, 192) 1728 block2c_expand_activation[0][0]

__

block2c_bn (BatchNormalization) (None, 64, 64, 192) 768 block2c_dwconv[0][0]

__

block2c_activation (Activation) (None, 64, 64, 192) 0 block2c_bn[0][0]

__

block2c_se_squeeze (GlobalAvera (None, 192) 0 block2c_activation[0][0]

__

block2c_se_reshape (Reshape) (None, 1, 1, 192) 0 block2c_se_squeeze[0][0]

__

block2c_se_reduce (Conv2D) (None, 1, 1, 8) 1544 block2c_se_reshape[0][0]

__

block2c_se_expand (Conv2D) (None, 1, 1, 192) 1728 block2c_se_reduce[0][0]

__

106

block2c_se_excite (Multiply) (None, 64, 64, 192) 0 block2c_activation[0][0]

block2c_se_expand[0][0]

__

block2c_project_conv (Conv2D) (None, 64, 64, 32) 6144 block2c_se_excite[0][0]

__

block2c_project_bn (BatchNormal (None, 64, 64, 32) 128 block2c_project_conv[0][0]

__

block2c_drop (Dropout) (None, 64, 64, 32) 0 block2c_project_bn[0][0]

__

block2c_add (Add) (None, 64, 64, 32) 0 block2c_drop[0][0]

block2b_add[0][0]

__

block2d_expand_conv (Conv2D) (None, 64, 64, 192) 6144 block2c_add[0][0]

__

block2d_expand_bn (BatchNormali (None, 64, 64, 192) 768 block2d_expand_conv[0][0]

__

block2d_expand_activation (Acti (None, 64, 64, 192) 0 block2d_expand_bn[0][0]

__

block2d_dwconv (DepthwiseConv2D (None, 64, 64, 192) 1728 block2d_expand_activation[0][0]

__

block2d_bn (BatchNormalization) (None, 64, 64, 192) 768 block2d_dwconv[0][0]

__

block2d_activation (Activation) (None, 64, 64, 192) 0 block2d_bn[0][0]

__

block2d_se_squeeze (GlobalAvera (None, 192) 0 block2d_activation[0][0]

__

block2d_se_reshape (Reshape) (None, 1, 1, 192) 0 block2d_se_squeeze[0][0]

__

block2d_se_reduce (Conv2D) (None, 1, 1, 8) 1544 block2d_se_reshape[0][0]

__

block2d_se_expand (Conv2D) (None, 1, 1, 192) 1728 block2d_se_reduce[0][0]

__

block2d_se_excite (Multiply) (None, 64, 64, 192) 0 block2d_activation[0][0]

block2d_se_expand[0][0]

__

block2d_project_conv (Conv2D) (None, 64, 64, 32) 6144 block2d_se_excite[0][0]

__

107

block2d_project_bn (BatchNormal (None, 64, 64, 32) 128 block2d_project_conv[0][0]

__

block2d_drop (Dropout) (None, 64, 64, 32) 0 block2d_project_bn[0][0]

__

block2d_add (Add) (None, 64, 64, 32) 0 block2d_drop[0][0]

block2c_add[0][0]

__

block3a_expand_conv (Conv2D) (None, 64, 64, 192) 6144 block2d_add[0][0]

__

block3a_expand_bn (BatchNormali (None, 64, 64, 192) 768 block3a_expand_conv[0][0]

__

block3a_expand_activation (Acti (None, 64, 64, 192) 0 block3a_expand_bn[0][0]

__

block3a_dwconv_pad (ZeroPadding (None, 67, 67, 192) 0 block3a_expand_activation[0][0]

__

block3a_dwconv (DepthwiseConv2D (None, 32, 32, 192) 4800 block3a_dwconv_pad[0][0]

__

block3a_bn (BatchNormalization) (None, 32, 32, 192) 768 block3a_dwconv[0][0]

__

block3a_activation (Activation) (None, 32, 32, 192) 0 block3a_bn[0][0]

__

block3a_se_squeeze (GlobalAvera (None, 192) 0 block3a_activation[0][0]

__

block3a_se_reshape (Reshape) (None, 1, 1, 192) 0 block3a_se_squeeze[0][0]

__

block3a_se_reduce (Conv2D) (None, 1, 1, 8) 1544 block3a_se_reshape[0][0]

__

block3a_se_expand (Conv2D) (None, 1, 1, 192) 1728 block3a_se_reduce[0][0]

__

block3a_se_excite (Multiply) (None, 32, 32, 192) 0 block3a_activation[0][0]

block3a_se_expand[0][0]

__

block3a_project_conv (Conv2D) (None, 32, 32, 56) 10752 block3a_se_excite[0][0]

__

block3a_project_bn (BatchNormal (None, 32, 32, 56) 224 block3a_project_conv[0][0]

__

block3b_expand_conv (Conv2D) (None, 32, 32, 336) 18816 block3a_project_bn[0][0]

108

__

block3b_expand_bn (BatchNormali (None, 32, 32, 336) 1344 block3b_expand_conv[0][0]

__

block3b_expand_activation (Acti (None, 32, 32, 336) 0 block3b_expand_bn[0][0]

__

block3b_dwconv (DepthwiseConv2D (None, 32, 32, 336) 8400 block3b_expand_activation[0][0]

__

block3b_bn (BatchNormalization) (None, 32, 32, 336) 1344 block3b_dwconv[0][0]

__

block3b_activation (Activation) (None, 32, 32, 336) 0 block3b_bn[0][0]

__

block3b_se_squeeze (GlobalAvera (None, 336) 0 block3b_activation[0][0]

__

block3b_se_reshape (Reshape) (None, 1, 1, 336) 0 block3b_se_squeeze[0][0]

__

block3b_se_reduce (Conv2D) (None, 1, 1, 14) 4718 block3b_se_reshape[0][0]

__

block3b_se_expand (Conv2D) (None, 1, 1, 336) 5040 block3b_se_reduce[0][0]

__

block3b_se_excite (Multiply) (None, 32, 32, 336) 0 block3b_activation[0][0]

block3b_se_expand[0][0]

__

block3b_project_conv (Conv2D) (None, 32, 32, 56) 18816 block3b_se_excite[0][0]

__

block3b_project_bn (BatchNormal (None, 32, 32, 56) 224 block3b_project_conv[0][0]

__

block3b_drop (Dropout) (None, 32, 32, 56) 0 block3b_project_bn[0][0]

__

block3b_add (Add) (None, 32, 32, 56) 0 block3b_drop[0][0]

block3a_project_bn[0][0]

__

block3c_expand_conv (Conv2D) (None, 32, 32, 336) 18816 block3b_add[0][0]

__

block3c_expand_bn (BatchNormali (None, 32, 32, 336) 1344 block3c_expand_conv[0][0]

__

block3c_expand_activation (Acti (None, 32, 32, 336) 0 block3c_expand_bn[0][0]

__

109

block3c_dwconv (DepthwiseConv2D (None, 32, 32, 336) 8400 block3c_expand_activation[0][0]

__

block3c_bn (BatchNormalization) (None, 32, 32, 336) 1344 block3c_dwconv[0][0]

__

block3c_activation (Activation) (None, 32, 32, 336) 0 block3c_bn[0][0]

__

block3c_se_squeeze (GlobalAvera (None, 336) 0 block3c_activation[0][0]

__

block3c_se_reshape (Reshape) (None, 1, 1, 336) 0 block3c_se_squeeze[0][0]

__

block3c_se_reduce (Conv2D) (None, 1, 1, 14) 4718 block3c_se_reshape[0][0]

__

block3c_se_expand (Conv2D) (None, 1, 1, 336) 5040 block3c_se_reduce[0][0]

__

block3c_se_excite (Multiply) (None, 32, 32, 336) 0 block3c_activation[0][0]

block3c_se_expand[0][0]

__

block3c_project_conv (Conv2D) (None, 32, 32, 56) 18816 block3c_se_excite[0][0]

__

block3c_project_bn (BatchNormal (None, 32, 32, 56) 224 block3c_project_conv[0][0]

__

block3c_drop (Dropout) (None, 32, 32, 56) 0 block3c_project_bn[0][0]

__

block3c_add (Add) (None, 32, 32, 56) 0 block3c_drop[0][0]

block3b_add[0][0]

__

block3d_expand_conv (Conv2D) (None, 32, 32, 336) 18816 block3c_add[0][0]

__

block3d_expand_bn (BatchNormali (None, 32, 32, 336) 1344 block3d_expand_conv[0][0]

__

block3d_expand_activation (Acti (None, 32, 32, 336) 0 block3d_expand_bn[0][0]

__

block3d_dwconv (DepthwiseConv2D (None, 32, 32, 336) 8400 block3d_expand_activation[0][0]

__

block3d_bn (BatchNormalization) (None, 32, 32, 336) 1344 block3d_dwconv[0][0]

__

block3d_activation (Activation) (None, 32, 32, 336) 0 block3d_bn[0][0]

110

__

block3d_se_squeeze (GlobalAvera (None, 336) 0 block3d_activation[0][0]

__

block3d_se_reshape (Reshape) (None, 1, 1, 336) 0 block3d_se_squeeze[0][0]

__

block3d_se_reduce (Conv2D) (None, 1, 1, 14) 4718 block3d_se_reshape[0][0]

__

block3d_se_expand (Conv2D) (None, 1, 1, 336) 5040 block3d_se_reduce[0][0]

__

block3d_se_excite (Multiply) (None, 32, 32, 336) 0 block3d_activation[0][0]

block3d_se_expand[0][0]

__

block3d_project_conv (Conv2D) (None, 32, 32, 56) 18816 block3d_se_excite[0][0]

__

block3d_project_bn (BatchNormal (None, 32, 32, 56) 224 block3d_project_conv[0][0]

__

block3d_drop (Dropout) (None, 32, 32, 56) 0 block3d_project_bn[0][0]

__

block3d_add (Add) (None, 32, 32, 56) 0 block3d_drop[0][0]

block3c_add[0][0]

__

block4a_expand_conv (Conv2D) (None, 32, 32, 336) 18816 block3d_add[0][0]

__

block4a_expand_bn (BatchNormali (None, 32, 32, 336) 1344 block4a_expand_conv[0][0]

__

block4a_expand_activation (Acti (None, 32, 32, 336) 0 block4a_expand_bn[0][0]

__

block4a_dwconv_pad (ZeroPadding (None, 33, 33, 336) 0 block4a_expand_activation[0][0]

__

block4a_dwconv (DepthwiseConv2D (None, 16, 16, 336) 3024 block4a_dwconv_pad[0][0]

__

block4a_bn (BatchNormalization) (None, 16, 16, 336) 1344 block4a_dwconv[0][0]

__

block4a_activation (Activation) (None, 16, 16, 336) 0 block4a_bn[0][0]

__

block4a_se_squeeze (GlobalAvera (None, 336) 0 block4a_activation[0][0]

__

111

block4a_se_reshape (Reshape) (None, 1, 1, 336) 0 block4a_se_squeeze[0][0]

__

block4a_se_reduce (Conv2D) (None, 1, 1, 14) 4718 block4a_se_reshape[0][0]

__

block4a_se_expand (Conv2D) (None, 1, 1, 336) 5040 block4a_se_reduce[0][0]

__

block4a_se_excite (Multiply) (None, 16, 16, 336) 0 block4a_activation[0][0]

block4a_se_expand[0][0]

__

block4a_project_conv (Conv2D) (None, 16, 16, 112) 37632 block4a_se_excite[0][0]

__

block4a_project_bn (BatchNormal (None, 16, 16, 112) 448 block4a_project_conv[0][0]

__

block4b_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4a_project_bn[0][0]

__

block4b_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block4b_expand_conv[0][0]

__

block4b_expand_activation (Acti (None, 16, 16, 672) 0 block4b_expand_bn[0][0]

__

block4b_dwconv (DepthwiseConv2D (None, 16, 16, 672) 6048 block4b_expand_activation[0][0]

__

block4b_bn (BatchNormalization) (None, 16, 16, 672) 2688 block4b_dwconv[0][0]

__

block4b_activation (Activation) (None, 16, 16, 672) 0 block4b_bn[0][0]

__

block4b_se_squeeze (GlobalAvera (None, 672) 0 block4b_activation[0][0]

__

block4b_se_reshape (Reshape) (None, 1, 1, 672) 0 block4b_se_squeeze[0][0]

__

block4b_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block4b_se_reshape[0][0]

__

block4b_se_expand (Conv2D) (None, 1, 1, 672) 19488 block4b_se_reduce[0][0]

__

block4b_se_excite (Multiply) (None, 16, 16, 672) 0 block4b_activation[0][0]

block4b_se_expand[0][0]

__

block4b_project_conv (Conv2D) (None, 16, 16, 112) 75264 block4b_se_excite[0][0]

112

__

block4b_project_bn (BatchNormal (None, 16, 16, 112) 448 block4b_project_conv[0][0]

__

block4b_drop (Dropout) (None, 16, 16, 112) 0 block4b_project_bn[0][0]

__

block4b_add (Add) (None, 16, 16, 112) 0 block4b_drop[0][0]

block4a_project_bn[0][0]

__

block4c_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4b_add[0][0]

__

block4c_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block4c_expand_conv[0][0]

__

block4c_expand_activation (Acti (None, 16, 16, 672) 0 block4c_expand_bn[0][0]

__

block4c_dwconv (DepthwiseConv2D (None, 16, 16, 672) 6048 block4c_expand_activation[0][0]

__

block4c_bn (BatchNormalization) (None, 16, 16, 672) 2688 block4c_dwconv[0][0]

__

block4c_activation (Activation) (None, 16, 16, 672) 0 block4c_bn[0][0]

__

block4c_se_squeeze (GlobalAvera (None, 672) 0 block4c_activation[0][0]

__

block4c_se_reshape (Reshape) (None, 1, 1, 672) 0 block4c_se_squeeze[0][0]

__

block4c_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block4c_se_reshape[0][0]

__

block4c_se_expand (Conv2D) (None, 1, 1, 672) 19488 block4c_se_reduce[0][0]

__

block4c_se_excite (Multiply) (None, 16, 16, 672) 0 block4c_activation[0][0]

block4c_se_expand[0][0]

__

block4c_project_conv (Conv2D) (None, 16, 16, 112) 75264 block4c_se_excite[0][0]

__

block4c_project_bn (BatchNormal (None, 16, 16, 112) 448 block4c_project_conv[0][0]

__

block4c_drop (Dropout) (None, 16, 16, 112) 0 block4c_project_bn[0][0]

__

113

block4c_add (Add) (None, 16, 16, 112) 0 block4c_drop[0][0]

block4b_add[0][0]

__

block4d_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4c_add[0][0]

__

block4d_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block4d_expand_conv[0][0]

__

block4d_expand_activation (Acti (None, 16, 16, 672) 0 block4d_expand_bn[0][0]

__

block4d_dwconv (DepthwiseConv2D (None, 16, 16, 672) 6048 block4d_expand_activation[0][0]

__

block4d_bn (BatchNormalization) (None, 16, 16, 672) 2688 block4d_dwconv[0][0]

__

block4d_activation (Activation) (None, 16, 16, 672) 0 block4d_bn[0][0]

__

block4d_se_squeeze (GlobalAvera (None, 672) 0 block4d_activation[0][0]

__

block4d_se_reshape (Reshape) (None, 1, 1, 672) 0 block4d_se_squeeze[0][0]

__

block4d_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block4d_se_reshape[0][0]

__

block4d_se_expand (Conv2D) (None, 1, 1, 672) 19488 block4d_se_reduce[0][0]

__

block4d_se_excite (Multiply) (None, 16, 16, 672) 0 block4d_activation[0][0]

block4d_se_expand[0][0]

__

block4d_project_conv (Conv2D) (None, 16, 16, 112) 75264 block4d_se_excite[0][0]

__

block4d_project_bn (BatchNormal (None, 16, 16, 112) 448 block4d_project_conv[0][0]

__

block4d_drop (Dropout) (None, 16, 16, 112) 0 block4d_project_bn[0][0]

__

block4d_add (Add) (None, 16, 16, 112) 0 block4d_drop[0][0]

block4c_add[0][0]

__

block4e_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4d_add[0][0]

__

114

block4e_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block4e_expand_conv[0][0]

__

block4e_expand_activation (Acti (None, 16, 16, 672) 0 block4e_expand_bn[0][0]

__

block4e_dwconv (DepthwiseConv2D (None, 16, 16, 672) 6048 block4e_expand_activation[0][0]

__

block4e_bn (BatchNormalization) (None, 16, 16, 672) 2688 block4e_dwconv[0][0]

__

block4e_activation (Activation) (None, 16, 16, 672) 0 block4e_bn[0][0]

__

block4e_se_squeeze (GlobalAvera (None, 672) 0 block4e_activation[0][0]

__

block4e_se_reshape (Reshape) (None, 1, 1, 672) 0 block4e_se_squeeze[0][0]

__

block4e_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block4e_se_reshape[0][0]

__

block4e_se_expand (Conv2D) (None, 1, 1, 672) 19488 block4e_se_reduce[0][0]

__

block4e_se_excite (Multiply) (None, 16, 16, 672) 0 block4e_activation[0][0]

block4e_se_expand[0][0]

__

block4e_project_conv (Conv2D) (None, 16, 16, 112) 75264 block4e_se_excite[0][0]

__

block4e_project_bn (BatchNormal (None, 16, 16, 112) 448 block4e_project_conv[0][0]

__

block4e_drop (Dropout) (None, 16, 16, 112) 0 block4e_project_bn[0][0]

__

block4e_add (Add) (None, 16, 16, 112) 0 block4e_drop[0][0]

block4d_add[0][0]

__

block4f_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4e_add[0][0]

__

block4f_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block4f_expand_conv[0][0]

__

block4f_expand_activation (Acti (None, 16, 16, 672) 0 block4f_expand_bn[0][0]

__

block4f_dwconv (DepthwiseConv2D (None, 16, 16, 672) 6048 block4f_expand_activation[0][0]

115

__

block4f_bn (BatchNormalization) (None, 16, 16, 672) 2688 block4f_dwconv[0][0]

__

block4f_activation (Activation) (None, 16, 16, 672) 0 block4f_bn[0][0]

__

block4f_se_squeeze (GlobalAvera (None, 672) 0 block4f_activation[0][0]

__

block4f_se_reshape (Reshape) (None, 1, 1, 672) 0 block4f_se_squeeze[0][0]

__

block4f_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block4f_se_reshape[0][0]

__

block4f_se_expand (Conv2D) (None, 1, 1, 672) 19488 block4f_se_reduce[0][0]

__

block4f_se_excite (Multiply) (None, 16, 16, 672) 0 block4f_activation[0][0]

block4f_se_expand[0][0]

__

block4f_project_conv (Conv2D) (None, 16, 16, 112) 75264 block4f_se_excite[0][0]

__

block4f_project_bn (BatchNormal (None, 16, 16, 112) 448 block4f_project_conv[0][0]

__

block4f_drop (Dropout) (None, 16, 16, 112) 0 block4f_project_bn[0][0]

__

block4f_add (Add) (None, 16, 16, 112) 0 block4f_drop[0][0]

block4e_add[0][0]

__

block5a_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block4f_add[0][0]

__

block5a_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5a_expand_conv[0][0]

__

block5a_expand_activation (Acti (None, 16, 16, 672) 0 block5a_expand_bn[0][0]

__

block5a_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5a_expand_activation[0][0]

__

block5a_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5a_dwconv[0][0]

__

block5a_activation (Activation) (None, 16, 16, 672) 0 block5a_bn[0][0]

__

116

block5a_se_squeeze (GlobalAvera (None, 672) 0 block5a_activation[0][0]

__

block5a_se_reshape (Reshape) (None, 1, 1, 672) 0 block5a_se_squeeze[0][0]

__

block5a_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5a_se_reshape[0][0]

__

block5a_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5a_se_reduce[0][0]

__

block5a_se_excite (Multiply) (None, 16, 16, 672) 0 block5a_activation[0][0]

block5a_se_expand[0][0]

__

block5a_project_conv (Conv2D) (None, 16, 16, 160) 107520 block5a_se_excite[0][0]

__

block5a_project_bn (BatchNormal (None, 16, 16, 160) 640 block5a_project_conv[0][0]

__

block5b_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5a_project_bn[0][0]

__

block5b_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block5b_expand_conv[0][0]

__

block5b_expand_activation (Acti (None, 16, 16, 960) 0 block5b_expand_bn[0][0]

__

block5b_dwconv (DepthwiseConv2D (None, 16, 16, 960) 24000 block5b_expand_activation[0][0]

__

block5b_bn (BatchNormalization) (None, 16, 16, 960) 3840 block5b_dwconv[0][0]

__

block5b_activation (Activation) (None, 16, 16, 960) 0 block5b_bn[0][0]

__

block5b_se_squeeze (GlobalAvera (None, 960) 0 block5b_activation[0][0]

__

block5b_se_reshape (Reshape) (None, 1, 1, 960) 0 block5b_se_squeeze[0][0]

__

block5b_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block5b_se_reshape[0][0]

__

block5b_se_expand (Conv2D) (None, 1, 1, 960) 39360 block5b_se_reduce[0][0]

__

block5b_se_excite (Multiply) (None, 16, 16, 960) 0 block5b_activation[0][0]

block5b_se_expand[0][0]

117

__

block5b_project_conv (Conv2D) (None, 16, 16, 160) 153600 block5b_se_excite[0][0]

__

block5b_project_bn (BatchNormal (None, 16, 16, 160) 640 block5b_project_conv[0][0]

__

block5b_drop (Dropout) (None, 16, 16, 160) 0 block5b_project_bn[0][0]

__

block5b_add (Add) (None, 16, 16, 160) 0 block5b_drop[0][0]

block5a_project_bn[0][0]

__

block5c_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5b_add[0][0]

__

block5c_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block5c_expand_conv[0][0]

__

block5c_expand_activation (Acti (None, 16, 16, 960) 0 block5c_expand_bn[0][0]

__

block5c_dwconv (DepthwiseConv2D (None, 16, 16, 960) 24000 block5c_expand_activation[0][0]

__

block5c_bn (BatchNormalization) (None, 16, 16, 960) 3840 block5c_dwconv[0][0]

__

block5c_activation (Activation) (None, 16, 16, 960) 0 block5c_bn[0][0]

__

block5c_se_squeeze (GlobalAvera (None, 960) 0 block5c_activation[0][0]

__

block5c_se_reshape (Reshape) (None, 1, 1, 960) 0 block5c_se_squeeze[0][0]

__

block5c_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block5c_se_reshape[0][0]

__

block5c_se_expand (Conv2D) (None, 1, 1, 960) 39360 block5c_se_reduce[0][0]

__

block5c_se_excite (Multiply) (None, 16, 16, 960) 0 block5c_activation[0][0]

block5c_se_expand[0][0]

__

block5c_project_conv (Conv2D) (None, 16, 16, 160) 153600 block5c_se_excite[0][0]

__

block5c_project_bn (BatchNormal (None, 16, 16, 160) 640 block5c_project_conv[0][0]

__

118

block5c_drop (Dropout) (None, 16, 16, 160) 0 block5c_project_bn[0][0]

__

block5c_add (Add) (None, 16, 16, 160) 0 block5c_drop[0][0]

block5b_add[0][0]

__

block5d_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5c_add[0][0]

__

block5d_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block5d_expand_conv[0][0]

__

block5d_expand_activation (Acti (None, 16, 16, 960) 0 block5d_expand_bn[0][0]

__

block5d_dwconv (DepthwiseConv2D (None, 16, 16, 960) 24000 block5d_expand_activation[0][0]

__

block5d_bn (BatchNormalization) (None, 16, 16, 960) 3840 block5d_dwconv[0][0]

__

block5d_activation (Activation) (None, 16, 16, 960) 0 block5d_bn[0][0]

__

block5d_se_squeeze (GlobalAvera (None, 960) 0 block5d_activation[0][0]

__

block5d_se_reshape (Reshape) (None, 1, 1, 960) 0 block5d_se_squeeze[0][0]

__

block5d_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block5d_se_reshape[0][0]

__

block5d_se_expand (Conv2D) (None, 1, 1, 960) 39360 block5d_se_reduce[0][0]

__

block5d_se_excite (Multiply) (None, 16, 16, 960) 0 block5d_activation[0][0]

block5d_se_expand[0][0]

__

block5d_project_conv (Conv2D) (None, 16, 16, 160) 153600 block5d_se_excite[0][0]

__

block5d_project_bn (BatchNormal (None, 16, 16, 160) 640 block5d_project_conv[0][0]

__

block5d_drop (Dropout) (None, 16, 16, 160) 0 block5d_project_bn[0][0]

__

block5d_add (Add) (None, 16, 16, 160) 0 block5d_drop[0][0]

block5c_add[0][0]

__

119

block5e_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5d_add[0][0]

__

block5e_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block5e_expand_conv[0][0]

__

block5e_expand_activation (Acti (None, 16, 16, 960) 0 block5e_expand_bn[0][0]

__

block5e_dwconv (DepthwiseConv2D (None, 16, 16, 960) 24000 block5e_expand_activation[0][0]

__

block5e_bn (BatchNormalization) (None, 16, 16, 960) 3840 block5e_dwconv[0][0]

__

block5e_activation (Activation) (None, 16, 16, 960) 0 block5e_bn[0][0]

__

block5e_se_squeeze (GlobalAvera (None, 960) 0 block5e_activation[0][0]

__

block5e_se_reshape (Reshape) (None, 1, 1, 960) 0 block5e_se_squeeze[0][0]

__

block5e_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block5e_se_reshape[0][0]

__

block5e_se_expand (Conv2D) (None, 1, 1, 960) 39360 block5e_se_reduce[0][0]

__

block5e_se_excite (Multiply) (None, 16, 16, 960) 0 block5e_activation[0][0]

block5e_se_expand[0][0]

__

block5e_project_conv (Conv2D) (None, 16, 16, 160) 153600 block5e_se_excite[0][0]

__

block5e_project_bn (BatchNormal (None, 16, 16, 160) 640 block5e_project_conv[0][0]

__

block5e_drop (Dropout) (None, 16, 16, 160) 0 block5e_project_bn[0][0]

__

block5e_add (Add) (None, 16, 16, 160) 0 block5e_drop[0][0]

block5d_add[0][0]

__

block5f_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5e_add[0][0]

__

block5f_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block5f_expand_conv[0][0]

__

block5f_expand_activation (Acti (None, 16, 16, 960) 0 block5f_expand_bn[0][0]

120

__

block5f_dwconv (DepthwiseConv2D (None, 16, 16, 960) 24000 block5f_expand_activation[0][0]

__

block5f_bn (BatchNormalization) (None, 16, 16, 960) 3840 block5f_dwconv[0][0]

__

block5f_activation (Activation) (None, 16, 16, 960) 0 block5f_bn[0][0]

__

block5f_se_squeeze (GlobalAvera (None, 960) 0 block5f_activation[0][0]

__

block5f_se_reshape (Reshape) (None, 1, 1, 960) 0 block5f_se_squeeze[0][0]

__

block5f_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block5f_se_reshape[0][0]

__

block5f_se_expand (Conv2D) (None, 1, 1, 960) 39360 block5f_se_reduce[0][0]

__

block5f_se_excite (Multiply) (None, 16, 16, 960) 0 block5f_activation[0][0]

block5f_se_expand[0][0]

__

block5f_project_conv (Conv2D) (None, 16, 16, 160) 153600 block5f_se_excite[0][0]

__

block5f_project_bn (BatchNormal (None, 16, 16, 160) 640 block5f_project_conv[0][0]

__

block5f_drop (Dropout) (None, 16, 16, 160) 0 block5f_project_bn[0][0]

__

block5f_add (Add) (None, 16, 16, 160) 0 block5f_drop[0][0]

block5e_add[0][0]

__

block6a_expand_conv (Conv2D) (None, 16, 16, 960) 153600 block5f_add[0][0]

__

block6a_expand_bn (BatchNormali (None, 16, 16, 960) 3840 block6a_expand_conv[0][0]

__

block6a_expand_activation (Acti (None, 16, 16, 960) 0 block6a_expand_bn[0][0]

__

block6a_dwconv_pad (ZeroPadding (None, 19, 19, 960) 0 block6a_expand_activation[0][0]

__

block6a_dwconv (DepthwiseConv2D (None, 8, 8, 960) 24000 block6a_dwconv_pad[0][0]

__

121

block6a_bn (BatchNormalization) (None, 8, 8, 960) 3840 block6a_dwconv[0][0]

__

block6a_activation (Activation) (None, 8, 8, 960) 0 block6a_bn[0][0]

__

block6a_se_squeeze (GlobalAvera (None, 960) 0 block6a_activation[0][0]

__

block6a_se_reshape (Reshape) (None, 1, 1, 960) 0 block6a_se_squeeze[0][0]

__

block6a_se_reduce (Conv2D) (None, 1, 1, 40) 38440 block6a_se_reshape[0][0]

__

block6a_se_expand (Conv2D) (None, 1, 1, 960) 39360 block6a_se_reduce[0][0]

__

block6a_se_excite (Multiply) (None, 8, 8, 960) 0 block6a_activation[0][0]

block6a_se_expand[0][0]

__

block6a_project_conv (Conv2D) (None, 8, 8, 272) 261120 block6a_se_excite[0][0]

__

block6a_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6a_project_conv[0][0]

__

block6b_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6a_project_bn[0][0]

__

block6b_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6b_expand_conv[0][0]

__

block6b_expand_activation (Acti (None, 8, 8, 1632) 0 block6b_expand_bn[0][0]

__

block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6b_expand_activation[0][0]

__

block6b_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6b_dwconv[0][0]

__

block6b_activation (Activation) (None, 8, 8, 1632) 0 block6b_bn[0][0]

__

block6b_se_squeeze (GlobalAvera (None, 1632) 0 block6b_activation[0][0]

__

block6b_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6b_se_squeeze[0][0]

__

block6b_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6b_se_reshape[0][0]

__

122

block6b_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6b_se_reduce[0][0]

__

block6b_se_excite (Multiply) (None, 8, 8, 1632) 0 block6b_activation[0][0]

block6b_se_expand[0][0]

__

block6b_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6b_se_excite[0][0]

__

block6b_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6b_project_conv[0][0]

__

block6b_drop (Dropout) (None, 8, 8, 272) 0 block6b_project_bn[0][0]

__

block6b_add (Add) (None, 8, 8, 272) 0 block6b_drop[0][0]

block6a_project_bn[0][0]

__

block6c_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6b_add[0][0]

__

block6c_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6c_expand_conv[0][0]

__

block6c_expand_activation (Acti (None, 8, 8, 1632) 0 block6c_expand_bn[0][0]

__

block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6c_expand_activation[0][0]

__

block6c_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6c_dwconv[0][0]

__

block6c_activation (Activation) (None, 8, 8, 1632) 0 block6c_bn[0][0]

__

block6c_se_squeeze (GlobalAvera (None, 1632) 0 block6c_activation[0][0]

__

block6c_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6c_se_squeeze[0][0]

__

block6c_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6c_se_reshape[0][0]

__

block6c_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6c_se_reduce[0][0]

__

block6c_se_excite (Multiply) (None, 8, 8, 1632) 0 block6c_activation[0][0]

block6c_se_expand[0][0]

__

123

block6c_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6c_se_excite[0][0]

__

block6c_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6c_project_conv[0][0]

__

block6c_drop (Dropout) (None, 8, 8, 272) 0 block6c_project_bn[0][0]

__

block6c_add (Add) (None, 8, 8, 272) 0 block6c_drop[0][0]

block6b_add[0][0]

__

block6d_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6c_add[0][0]

__

block6d_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6d_expand_conv[0][0]

__

block6d_expand_activation (Acti (None, 8, 8, 1632) 0 block6d_expand_bn[0][0]

__

block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6d_expand_activation[0][0]

__

block6d_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6d_dwconv[0][0]

__

block6d_activation (Activation) (None, 8, 8, 1632) 0 block6d_bn[0][0]

__

block6d_se_squeeze (GlobalAvera (None, 1632) 0 block6d_activation[0][0]

__

block6d_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6d_se_squeeze[0][0]

__

block6d_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6d_se_reshape[0][0]

__

block6d_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6d_se_reduce[0][0]

__

block6d_se_excite (Multiply) (None, 8, 8, 1632) 0 block6d_activation[0][0]

block6d_se_expand[0][0]

__

block6d_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6d_se_excite[0][0]

__

block6d_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6d_project_conv[0][0]

__

block6d_drop (Dropout) (None, 8, 8, 272) 0 block6d_project_bn[0][0]

124

__

block6d_add (Add) (None, 8, 8, 272) 0 block6d_drop[0][0]

block6c_add[0][0]

__

block6e_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6d_add[0][0]

__

block6e_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6e_expand_conv[0][0]

__

block6e_expand_activation (Acti (None, 8, 8, 1632) 0 block6e_expand_bn[0][0]

__

block6e_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6e_expand_activation[0][0]

__

block6e_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6e_dwconv[0][0]

__

block6e_activation (Activation) (None, 8, 8, 1632) 0 block6e_bn[0][0]

__

block6e_se_squeeze (GlobalAvera (None, 1632) 0 block6e_activation[0][0]

__

block6e_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6e_se_squeeze[0][0]

__

block6e_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6e_se_reshape[0][0]

__

block6e_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6e_se_reduce[0][0]

__

block6e_se_excite (Multiply) (None, 8, 8, 1632) 0 block6e_activation[0][0]

block6e_se_expand[0][0]

__

block6e_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6e_se_excite[0][0]

__

block6e_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6e_project_conv[0][0]

__

block6e_drop (Dropout) (None, 8, 8, 272) 0 block6e_project_bn[0][0]

__

block6e_add (Add) (None, 8, 8, 272) 0 block6e_drop[0][0]

block6d_add[0][0]

__

block6f_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6e_add[0][0]

125

__

block6f_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6f_expand_conv[0][0]

__

block6f_expand_activation (Acti (None, 8, 8, 1632) 0 block6f_expand_bn[0][0]

__

block6f_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6f_expand_activation[0][0]

__

block6f_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6f_dwconv[0][0]

__

block6f_activation (Activation) (None, 8, 8, 1632) 0 block6f_bn[0][0]

__

block6f_se_squeeze (GlobalAvera (None, 1632) 0 block6f_activation[0][0]

__

block6f_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6f_se_squeeze[0][0]

__

block6f_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6f_se_reshape[0][0]

__

block6f_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6f_se_reduce[0][0]

__

block6f_se_excite (Multiply) (None, 8, 8, 1632) 0 block6f_activation[0][0]

block6f_se_expand[0][0]

__

block6f_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6f_se_excite[0][0]

__

block6f_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6f_project_conv[0][0]

__

block6f_drop (Dropout) (None, 8, 8, 272) 0 block6f_project_bn[0][0]

__

block6f_add (Add) (None, 8, 8, 272) 0 block6f_drop[0][0]

block6e_add[0][0]

__

block6g_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6f_add[0][0]

__

block6g_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6g_expand_conv[0][0]

__

block6g_expand_activation (Acti (None, 8, 8, 1632) 0 block6g_expand_bn[0][0]

__

126

block6g_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6g_expand_activation[0][0]

__

block6g_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6g_dwconv[0][0]

__

block6g_activation (Activation) (None, 8, 8, 1632) 0 block6g_bn[0][0]

__

block6g_se_squeeze (GlobalAvera (None, 1632) 0 block6g_activation[0][0]

__

block6g_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6g_se_squeeze[0][0]

__

block6g_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6g_se_reshape[0][0]

__

block6g_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6g_se_reduce[0][0]

__

block6g_se_excite (Multiply) (None, 8, 8, 1632) 0 block6g_activation[0][0]

block6g_se_expand[0][0]

__

block6g_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6g_se_excite[0][0]

__

block6g_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6g_project_conv[0][0]

__

block6g_drop (Dropout) (None, 8, 8, 272) 0 block6g_project_bn[0][0]

__

block6g_add (Add) (None, 8, 8, 272) 0 block6g_drop[0][0]

block6f_add[0][0]

__

block6h_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6g_add[0][0]

__

block6h_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block6h_expand_conv[0][0]

__

block6h_expand_activation (Acti (None, 8, 8, 1632) 0 block6h_expand_bn[0][0]

__

block6h_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 40800 block6h_expand_activation[0][0]

__

block6h_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block6h_dwconv[0][0]

__

block6h_activation (Activation) (None, 8, 8, 1632) 0 block6h_bn[0][0]

127

__

block6h_se_squeeze (GlobalAvera (None, 1632) 0 block6h_activation[0][0]

__

block6h_se_reshape (Reshape) (None, 1, 1, 1632) 0 block6h_se_squeeze[0][0]

__

block6h_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block6h_se_reshape[0][0]

__

block6h_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block6h_se_reduce[0][0]

__

block6h_se_excite (Multiply) (None, 8, 8, 1632) 0 block6h_activation[0][0]

block6h_se_expand[0][0]

__

block6h_project_conv (Conv2D) (None, 8, 8, 272) 443904 block6h_se_excite[0][0]

__

block6h_project_bn (BatchNormal (None, 8, 8, 272) 1088 block6h_project_conv[0][0]

__

block6h_drop (Dropout) (None, 8, 8, 272) 0 block6h_project_bn[0][0]

__

block6h_add (Add) (None, 8, 8, 272) 0 block6h_drop[0][0]

block6g_add[0][0]

__

block7a_expand_conv (Conv2D) (None, 8, 8, 1632) 443904 block6h_add[0][0]

__

block7a_expand_bn (BatchNormali (None, 8, 8, 1632) 6528 block7a_expand_conv[0][0]

__

block7a_expand_activation (Acti (None, 8, 8, 1632) 0 block7a_expand_bn[0][0]

__

block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1632) 14688 block7a_expand_activation[0][0]

__

block7a_bn (BatchNormalization) (None, 8, 8, 1632) 6528 block7a_dwconv[0][0]

__

block7a_activation (Activation) (None, 8, 8, 1632) 0 block7a_bn[0][0]

__

block7a_se_squeeze (GlobalAvera (None, 1632) 0 block7a_activation[0][0]

__

block7a_se_reshape (Reshape) (None, 1, 1, 1632) 0 block7a_se_squeeze[0][0]

__

128

block7a_se_reduce (Conv2D) (None, 1, 1, 68) 111044 block7a_se_reshape[0][0]

__

block7a_se_expand (Conv2D) (None, 1, 1, 1632) 112608 block7a_se_reduce[0][0]

__

block7a_se_excite (Multiply) (None, 8, 8, 1632) 0 block7a_activation[0][0]

block7a_se_expand[0][0]

__

block7a_project_conv (Conv2D) (None, 8, 8, 448) 731136 block7a_se_excite[0][0]

__

block7a_project_bn (BatchNormal (None, 8, 8, 448) 1792 block7a_project_conv[0][0]

__

block7b_expand_conv (Conv2D) (None, 8, 8, 2688) 1204224 block7a_project_bn[0][0]

__

block7b_expand_bn (BatchNormali (None, 8, 8, 2688) 10752 block7b_expand_conv[0][0]

__

block7b_expand_activation (Acti (None, 8, 8, 2688) 0 block7b_expand_bn[0][0]

__

block7b_dwconv (DepthwiseConv2D (None, 8, 8, 2688) 24192 block7b_expand_activation[0][0]

__

block7b_bn (BatchNormalization) (None, 8, 8, 2688) 10752 block7b_dwconv[0][0]

__

block7b_activation (Activation) (None, 8, 8, 2688) 0 block7b_bn[0][0]

__

block7b_se_squeeze (GlobalAvera (None, 2688) 0 block7b_activation[0][0]

__

block7b_se_reshape (Reshape) (None, 1, 1, 2688) 0 block7b_se_squeeze[0][0]

__

block7b_se_reduce (Conv2D) (None, 1, 1, 112) 301168 block7b_se_reshape[0][0]

__

block7b_se_expand (Conv2D) (None, 1, 1, 2688) 303744 block7b_se_reduce[0][0]

__

block7b_se_excite (Multiply) (None, 8, 8, 2688) 0 block7b_activation[0][0]

block7b_se_expand[0][0]

__

block7b_project_conv (Conv2D) (None, 8, 8, 448) 1204224 block7b_se_excite[0][0]

__

block7b_project_bn (BatchNormal (None, 8, 8, 448) 1792 block7b_project_conv[0][0]

129

__

block7b_drop (Dropout) (None, 8, 8, 448) 0 block7b_project_bn[0][0]

__

block7b_add (Add) (None, 8, 8, 448) 0 block7b_drop[0][0]

block7a_project_bn[0][0]

__

average_pooling (AveragePooling (None, 1, 1, 448) 0 block7b_add[0][0]

__

pool_1x1conv2d (Conv2D) (None, 1, 1, 256) 114688 average_pooling[0][0]

__

bn_1 (BatchNormalization) (None, 1, 1, 256) 1024 pool_1x1conv2d[0][0]

__

ASPP_conv2d_d1 (Conv2D) (None, 8, 8, 256) 114688 block7b_add[0][0]

__

ASPP_conv2d_d6 (Conv2D) (None, 8, 8, 256) 1032192 block7b_add[0][0]

__

ASPP_conv2d_d12 (Conv2D) (None, 8, 8, 256) 1032192 block7b_add[0][0]

__

ASPP_conv2d_d18 (Conv2D) (None, 8, 8, 256) 1032192 block7b_add[0][0]

__

relu_1 (Activation) (None, 1, 1, 256) 0 bn_1[0][0]

__

bn_2 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d1[0][0]

__

bn_3 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d6[0][0]

__

bn_4 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d12[0][0]

__

bn_5 (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_d18[0][0]

__

relu_1_upsample (Lambda) (None, 8, 8, 256) 0 relu_1[0][0]

__

relu_2 (Activation) (None, 8, 8, 256) 0 bn_2[0][0]

__

relu_3 (Activation) (None, 8, 8, 256) 0 bn_3[0][0]

__

relu_4 (Activation) (None, 8, 8, 256) 0 bn_4[0][0]

130

__

relu_5 (Activation) (None, 8, 8, 256) 0 bn_5[0][0]

__

ASPP_concat (Concatenate) (None, 8, 8, 1280) 0 relu_1_upsample[0][0]

relu_2[0][0]

relu_3[0][0]

relu_4[0][0]

relu_5[0][0]

__

ASPP_conv2d_final (Conv2D) (None, 8, 8, 256) 327680 ASPP_concat[0][0]

__

bn_final (BatchNormalization) (None, 8, 8, 256) 1024 ASPP_conv2d_final[0][0]

__

low_level_projection (Conv2D) (None, 64, 64, 48) 1536 block2b_add[0][0]

__

relu_final (Activation) (None, 8, 8, 256) 0 bn_final[0][0]

__

bn_low_level_projection (BatchN (None, 64, 64, 48) 192 low_level_projection[0][0]

__

relu_final_upsample (Lambda) (None, 64, 64, 256) 0 relu_final[0][0]

__

low_level_activation (Activatio (None, 64, 64, 48) 0 bn_low_level_projection[0][0]

__

decoder_concat (Concatenate) (None, 64, 64, 304) 0 relu_final_upsample[0][0]

low_level_activation[0][0]

__

decoder_conv2d_1 (Conv2D) (None, 64, 64, 256) 700416 decoder_concat[0][0]

__

bn_decoder_1 (BatchNormalizatio (None, 64, 64, 256) 1024 decoder_conv2d_1[0][0]

__

activation_decoder_1 (Activatio (None, 64, 64, 256) 0 bn_decoder_1[0][0]

__

decoder_conv2d_2 (Conv2D) (None, 64, 64, 256) 589824 activation_decoder_1[0][0]

__

bn_decoder_2 (BatchNormalizatio (None, 64, 64, 256) 1024 decoder_conv2d_2[0][0]

__

activation_decoder_2 (Activatio (None, 64, 64, 256) 0 bn_decoder_2[0][0]

131

__

activation_decoder_2_upsample ((None, 256, 256, 256 0 activation_decoder_2[0][0]

__

output_layer (Conv2D) (None, 256, 256, 1) 257 activation_decoder_2_upsample[0][

==

Total params: 21,817,888

Trainable params: 21,692,073

Non-trainable params: 125,815

132

Appendix I. ATT Squeeze U-Net layers and parameters
Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) [(None, 256, 256, 3) 0

__

lambda (Lambda) (None, 256, 256, 3) 0 input_1[0][0]

__

conv2d (Conv2D) (None, 128, 128, 64) 9472 lambda[0][0]

__

max_pooling2d (MaxPooling2D) (None, 64, 64, 64) 0 conv2d[0][0]

__

conv2d_1 (Conv2D) (None, 64, 64, 16) 1040 max_pooling2d[0][0]

__

batch_normalization (BatchNorma (None, 64, 64, 16) 64 conv2d_1[0][0]

__

depthwise_conv2d (DepthwiseConv (None, 64, 64, 16) 160 batch_normalization[0][0]

__

tf.compat.v1.shape (TFOpLambda) (4,) 0 depthwise_conv2d[0][0]

__

tf.__operators__.getitem (Slici () 0 tf.compat.v1.shape[0][0]

__

tf.convert_to_tensor (TFOpLambd (5,) 0 tf.__operators__.getitem[0][0]

__

tf.reshape (TFOpLambda) (None, 64, 64, 1, 16 0 depthwise_conv2d[0][0]

tf.convert_to_tensor[0][0]

__

tf.compat.v1.transpose (TFOpLam (None, 64, 64, 16, 1 0 tf.reshape[0][0]

__

tf.compat.v1.shape_1 (TFOpLambd (5,) 0 tf.compat.v1.transpose[0][0]

__

tf.__operators__.getitem_1 (Sli () 0 tf.compat.v1.shape_1[0][0]

__

tf.convert_to_tensor_1 (TFOpLam (4,) 0 tf.__operators__.getitem_1[0][0]

__

conv2d_2 (Conv2D) (None, 64, 64, 64) 1088 batch_normalization[0][0]

__

tf.reshape_1 (TFOpLambda) (None, 64, 64, 16) 0 tf.compat.v1.transpose[0][0]

133

tf.convert_to_tensor_1[0][0]

__

concatenate (Concatenate) (None, 64, 64, 80) 0 conv2d_2[0][0]

tf.reshape_1[0][0]

__

conv2d_3 (Conv2D) (None, 64, 64, 16) 1296 concatenate[0][0]

__

batch_normalization_1 (BatchNor (None, 64, 64, 16) 64 conv2d_3[0][0]

__

depthwise_conv2d_1 (DepthwiseCo (None, 64, 64, 16) 160 batch_normalization_1[0][0]

__

tf.compat.v1.shape_2 (TFOpLambd (4,) 0 depthwise_conv2d_1[0][0]

__

tf.__operators__.getitem_2 (Sli () 0 tf.compat.v1.shape_2[0][0]

__

tf.convert_to_tensor_2 (TFOpLam (5,) 0 tf.__operators__.getitem_2[0][0]

__

tf.reshape_2 (TFOpLambda) (None, 64, 64, 1, 16 0 depthwise_conv2d_1[0][0]

tf.convert_to_tensor_2[0][0]

__

tf.compat.v1.transpose_1 (TFOpL (None, 64, 64, 16, 1 0 tf.reshape_2[0][0]

__

tf.compat.v1.shape_3 (TFOpLambd (5,) 0 tf.compat.v1.transpose_1[0][0]

__

tf.__operators__.getitem_3 (Sli () 0 tf.compat.v1.shape_3[0][0]

__

tf.convert_to_tensor_3 (TFOpLam (4,) 0 tf.__operators__.getitem_3[0][0]

__

conv2d_4 (Conv2D) (None, 64, 64, 64) 1088 batch_normalization_1[0][0]

__

tf.reshape_3 (TFOpLambda) (None, 64, 64, 16) 0 tf.compat.v1.transpose_1[0][0]

tf.convert_to_tensor_3[0][0]

__

concatenate_1 (Concatenate) (None, 64, 64, 80) 0 conv2d_4[0][0]

tf.reshape_3[0][0]

__

conv2d_5 (Conv2D) (None, 64, 64, 16) 1296 concatenate_1[0][0]

134

__

batch_normalization_2 (BatchNor (None, 64, 64, 16) 64 conv2d_5[0][0]

__

depthwise_conv2d_2 (DepthwiseCo (None, 64, 64, 16) 160 batch_normalization_2[0][0]

__

tf.compat.v1.shape_4 (TFOpLambd (4,) 0 depthwise_conv2d_2[0][0]

__

tf.__operators__.getitem_4 (Sli () 0 tf.compat.v1.shape_4[0][0]

__

tf.convert_to_tensor_4 (TFOpLam (5,) 0 tf.__operators__.getitem_4[0][0]

__

tf.reshape_4 (TFOpLambda) (None, 64, 64, 1, 16 0 depthwise_conv2d_2[0][0]

tf.convert_to_tensor_4[0][0]

__

tf.compat.v1.transpose_2 (TFOpL (None, 64, 64, 16, 1 0 tf.reshape_4[0][0]

__

tf.compat.v1.shape_5 (TFOpLambd (5,) 0 tf.compat.v1.transpose_2[0][0]

__

tf.__operators__.getitem_5 (Sli () 0 tf.compat.v1.shape_5[0][0]

__

tf.convert_to_tensor_5 (TFOpLam (4,) 0 tf.__operators__.getitem_5[0][0]

__

conv2d_6 (Conv2D) (None, 64, 64, 64) 1088 batch_normalization_2[0][0]

__

tf.reshape_5 (TFOpLambda) (None, 64, 64, 16) 0 tf.compat.v1.transpose_2[0][0]

tf.convert_to_tensor_5[0][0]

__

concatenate_2 (Concatenate) (None, 64, 64, 80) 0 conv2d_6[0][0]

tf.reshape_5[0][0]

__

max_pooling2d_1 (MaxPooling2D) (None, 32, 32, 80) 0 concatenate_2[0][0]

__

conv2d_7 (Conv2D) (None, 32, 32, 32) 2592 max_pooling2d_1[0][0]

__

batch_normalization_3 (BatchNor (None, 32, 32, 32) 128 conv2d_7[0][0]

__

depthwise_conv2d_3 (DepthwiseCo (None, 32, 32, 32) 320 batch_normalization_3[0][0]

135

__

tf.compat.v1.shape_6 (TFOpLambd (4,) 0 depthwise_conv2d_3[0][0]

__

tf.__operators__.getitem_6 (Sli () 0 tf.compat.v1.shape_6[0][0]

__

tf.convert_to_tensor_6 (TFOpLam (5,) 0 tf.__operators__.getitem_6[0][0]

__

tf.reshape_6 (TFOpLambda) (None, 32, 32, 1, 32 0 depthwise_conv2d_3[0][0]

tf.convert_to_tensor_6[0][0]

__

tf.compat.v1.transpose_3 (TFOpL (None, 32, 32, 32, 1 0 tf.reshape_6[0][0]

__

tf.compat.v1.shape_7 (TFOpLambd (5,) 0 tf.compat.v1.transpose_3[0][0]

__

tf.__operators__.getitem_7 (Sli () 0 tf.compat.v1.shape_7[0][0]

__

tf.convert_to_tensor_7 (TFOpLam (4,) 0 tf.__operators__.getitem_7[0][0]

__

conv2d_8 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_3[0][0]

__

tf.reshape_7 (TFOpLambda) (None, 32, 32, 32) 0 tf.compat.v1.transpose_3[0][0]

tf.convert_to_tensor_7[0][0]

__

concatenate_3 (Concatenate) (None, 32, 32, 160) 0 conv2d_8[0][0]

tf.reshape_7[0][0]

__

conv2d_9 (Conv2D) (None, 32, 32, 32) 5152 concatenate_3[0][0]

__

batch_normalization_4 (BatchNor (None, 32, 32, 32) 128 conv2d_9[0][0]

__

depthwise_conv2d_4 (DepthwiseCo (None, 32, 32, 32) 320 batch_normalization_4[0][0]

__

tf.compat.v1.shape_8 (TFOpLambd (4,) 0 depthwise_conv2d_4[0][0]

__

tf.__operators__.getitem_8 (Sli () 0 tf.compat.v1.shape_8[0][0]

__

tf.convert_to_tensor_8 (TFOpLam (5,) 0 tf.__operators__.getitem_8[0][0]

136

__

tf.reshape_8 (TFOpLambda) (None, 32, 32, 1, 32 0 depthwise_conv2d_4[0][0]

tf.convert_to_tensor_8[0][0]

__

tf.compat.v1.transpose_4 (TFOpL (None, 32, 32, 32, 1 0 tf.reshape_8[0][0]

__

tf.compat.v1.shape_9 (TFOpLambd (5,) 0 tf.compat.v1.transpose_4[0][0]

__

tf.__operators__.getitem_9 (Sli () 0 tf.compat.v1.shape_9[0][0]

__

tf.convert_to_tensor_9 (TFOpLam (4,) 0 tf.__operators__.getitem_9[0][0]

__

conv2d_10 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_4[0][0]

__

tf.reshape_9 (TFOpLambda) (None, 32, 32, 32) 0 tf.compat.v1.transpose_4[0][0]

tf.convert_to_tensor_9[0][0]

__

concatenate_4 (Concatenate) (None, 32, 32, 160) 0 conv2d_10[0][0]

tf.reshape_9[0][0]

__

conv2d_11 (Conv2D) (None, 32, 32, 32) 5152 concatenate_4[0][0]

__

batch_normalization_5 (BatchNor (None, 32, 32, 32) 128 conv2d_11[0][0]

__

depthwise_conv2d_5 (DepthwiseCo (None, 32, 32, 32) 320 batch_normalization_5[0][0]

__

tf.compat.v1.shape_10 (TFOpLamb (4,) 0 depthwise_conv2d_5[0][0]

__

tf.__operators__.getitem_10 (Sl () 0 tf.compat.v1.shape_10[0][0]

__

tf.convert_to_tensor_10 (TFOpLa (5,) 0 tf.__operators__.getitem_10[0][0]

__

tf.reshape_10 (TFOpLambda) (None, 32, 32, 1, 32 0 depthwise_conv2d_5[0][0]

tf.convert_to_tensor_10[0][0]

__

tf.compat.v1.transpose_5 (TFOpL (None, 32, 32, 32, 1 0 tf.reshape_10[0][0]

__

137

tf.compat.v1.shape_11 (TFOpLamb (5,) 0 tf.compat.v1.transpose_5[0][0]

__

tf.__operators__.getitem_11 (Sl () 0 tf.compat.v1.shape_11[0][0]

__

tf.convert_to_tensor_11 (TFOpLa (4,) 0 tf.__operators__.getitem_11[0][0]

__

conv2d_12 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_5[0][0]

__

tf.reshape_11 (TFOpLambda) (None, 32, 32, 32) 0 tf.compat.v1.transpose_5[0][0]

tf.convert_to_tensor_11[0][0]

__

concatenate_5 (Concatenate) (None, 32, 32, 160) 0 conv2d_12[0][0]

tf.reshape_11[0][0]

__

conv2d_13 (Conv2D) (None, 32, 32, 32) 5152 concatenate_5[0][0]

__

batch_normalization_6 (BatchNor (None, 32, 32, 32) 128 conv2d_13[0][0]

__

depthwise_conv2d_6 (DepthwiseCo (None, 32, 32, 32) 320 batch_normalization_6[0][0]

__

tf.compat.v1.shape_12 (TFOpLamb (4,) 0 depthwise_conv2d_6[0][0]

__

tf.__operators__.getitem_12 (Sl () 0 tf.compat.v1.shape_12[0][0]

__

tf.convert_to_tensor_12 (TFOpLa (5,) 0 tf.__operators__.getitem_12[0][0]

__

tf.reshape_12 (TFOpLambda) (None, 32, 32, 1, 32 0 depthwise_conv2d_6[0][0]

tf.convert_to_tensor_12[0][0]

__

tf.compat.v1.transpose_6 (TFOpL (None, 32, 32, 32, 1 0 tf.reshape_12[0][0]

__

tf.compat.v1.shape_13 (TFOpLamb (5,) 0 tf.compat.v1.transpose_6[0][0]

__

tf.__operators__.getitem_13 (Sl () 0 tf.compat.v1.shape_13[0][0]

__

tf.convert_to_tensor_13 (TFOpLa (4,) 0 tf.__operators__.getitem_13[0][0]

__

138

conv2d_14 (Conv2D) (None, 32, 32, 128) 4224 batch_normalization_6[0][0]

__

tf.reshape_13 (TFOpLambda) (None, 32, 32, 32) 0 tf.compat.v1.transpose_6[0][0]

tf.convert_to_tensor_13[0][0]

__

concatenate_6 (Concatenate) (None, 32, 32, 160) 0 conv2d_14[0][0]

tf.reshape_13[0][0]

__

max_pooling2d_2 (MaxPooling2D) (None, 16, 16, 160) 0 concatenate_6[0][0]

__

conv2d_15 (Conv2D) (None, 16, 16, 48) 7728 max_pooling2d_2[0][0]

__

batch_normalization_7 (BatchNor (None, 16, 16, 48) 192 conv2d_15[0][0]

__

depthwise_conv2d_7 (DepthwiseCo (None, 16, 16, 48) 480 batch_normalization_7[0][0]

__

tf.compat.v1.shape_14 (TFOpLamb (4,) 0 depthwise_conv2d_7[0][0]

__

tf.__operators__.getitem_14 (Sl () 0 tf.compat.v1.shape_14[0][0]

__

tf.convert_to_tensor_14 (TFOpLa (5,) 0 tf.__operators__.getitem_14[0][0]

__

tf.reshape_14 (TFOpLambda) (None, 16, 16, 1, 48 0 depthwise_conv2d_7[0][0]

tf.convert_to_tensor_14[0][0]

__

tf.compat.v1.transpose_7 (TFOpL (None, 16, 16, 48, 1 0 tf.reshape_14[0][0]

__

tf.compat.v1.shape_15 (TFOpLamb (5,) 0 tf.compat.v1.transpose_7[0][0]

__

tf.__operators__.getitem_15 (Sl () 0 tf.compat.v1.shape_15[0][0]

__

tf.convert_to_tensor_15 (TFOpLa (4,) 0 tf.__operators__.getitem_15[0][0]

__

conv2d_16 (Conv2D) (None, 16, 16, 192) 9408 batch_normalization_7[0][0]

__

tf.reshape_15 (TFOpLambda) (None, 16, 16, 48) 0 tf.compat.v1.transpose_7[0][0]

tf.convert_to_tensor_15[0][0]

139

__

concatenate_7 (Concatenate) (None, 16, 16, 240) 0 conv2d_16[0][0]

tf.reshape_15[0][0]

__

conv2d_17 (Conv2D) (None, 16, 16, 64) 15424 concatenate_7[0][0]

__

conv2d_18 (Conv2D) (None, 16, 16, 64) 36928 conv2d_17[0][0]

__

conv2d_19 (Conv2D) (None, 16, 16, 64) 10304 concatenate_3[0][0]

__

conv2d_20 (Conv2D) (None, 16, 16, 64) 4160 conv2d_18[0][0]

__

add (Add) (None, 16, 16, 64) 0 conv2d_19[0][0]

conv2d_20[0][0]

__

re_lu (ReLU) (None, 16, 16, 64) 0 add[0][0]

__

conv2d_22 (Conv2D) (None, 16, 16, 192) 12480 conv2d_18[0][0]

__

conv2d_23 (Conv2D) (None, 16, 16, 192) 110784 conv2d_18[0][0]

__

conv2d_21 (Conv2D) (None, 16, 16, 1) 65 re_lu[0][0]

__

concatenate_8 (Concatenate) (None, 16, 16, 384) 0 conv2d_22[0][0]

conv2d_23[0][0]

__

activation (Activation) (None, 16, 16, 1) 0 conv2d_21[0][0]

__

conv2d_24 (Conv2D) (None, 16, 16, 48) 18480 concatenate_8[0][0]

__

up_sampling2d (UpSampling2D) (None, 32, 32, 1) 0 activation[0][0]

__

up_sampling2d_1 (UpSampling2D) (None, 32, 32, 48) 0 conv2d_24[0][0]

__

multiply (Multiply) (None, 32, 32, 160) 0 concatenate_3[0][0]

up_sampling2d[0][0]

__

140

conv2d_25 (Conv2D) (None, 32, 32, 48) 20784 up_sampling2d_1[0][0]

__

concatenate_9 (Concatenate) (None, 32, 32, 208) 0 multiply[0][0]

conv2d_25[0][0]

__

conv2d_transpose (Conv2DTranspo (None, 32, 32, 128) 239744 concatenate_9[0][0]

__

conv2d_26 (Conv2D) (None, 32, 32, 32) 2592 concatenate_1[0][0]

__

conv2d_27 (Conv2D) (None, 32, 32, 32) 4128 conv2d_transpose[0][0]

__

add_1 (Add) (None, 32, 32, 32) 0 conv2d_26[0][0]

conv2d_27[0][0]

__

re_lu_1 (ReLU) (None, 32, 32, 32) 0 add_1[0][0]

__

conv2d_29 (Conv2D) (None, 32, 32, 128) 16512 conv2d_transpose[0][0]

__

conv2d_30 (Conv2D) (None, 32, 32, 128) 147584 conv2d_transpose[0][0]

__

conv2d_28 (Conv2D) (None, 32, 32, 1) 33 re_lu_1[0][0]

__

concatenate_10 (Concatenate) (None, 32, 32, 256) 0 conv2d_29[0][0]

conv2d_30[0][0]

__

activation_1 (Activation) (None, 32, 32, 1) 0 conv2d_28[0][0]

__

conv2d_31 (Conv2D) (None, 32, 32, 32) 8224 concatenate_10[0][0]

__

up_sampling2d_2 (UpSampling2D) (None, 64, 64, 1) 0 activation_1[0][0]

__

up_sampling2d_3 (UpSampling2D) (None, 64, 64, 32) 0 conv2d_31[0][0]

__

multiply_1 (Multiply) (None, 64, 64, 80) 0 concatenate_1[0][0]

up_sampling2d_2[0][0]

__

conv2d_32 (Conv2D) (None, 64, 64, 32) 9248 up_sampling2d_3[0][0]

141

__

concatenate_11 (Concatenate) (None, 64, 64, 112) 0 multiply_1[0][0]

conv2d_32[0][0]

__

conv2d_transpose_1 (Conv2DTrans (None, 64, 64, 64) 64576 concatenate_11[0][0]

__

conv2d_33 (Conv2D) (None, 64, 64, 32) 2080 conv2d[0][0]

__

conv2d_34 (Conv2D) (None, 64, 64, 32) 2080 conv2d_transpose_1[0][0]

__

add_2 (Add) (None, 64, 64, 32) 0 conv2d_33[0][0]

conv2d_34[0][0]

__

re_lu_2 (ReLU) (None, 64, 64, 32) 0 add_2[0][0]

__

conv2d_36 (Conv2D) (None, 64, 64, 64) 4160 conv2d_transpose_1[0][0]

__

conv2d_37 (Conv2D) (None, 64, 64, 64) 36928 conv2d_transpose_1[0][0]

__

conv2d_35 (Conv2D) (None, 64, 64, 1) 33 re_lu_2[0][0]

__

concatenate_12 (Concatenate) (None, 64, 64, 128) 0 conv2d_36[0][0]

conv2d_37[0][0]

__

activation_2 (Activation) (None, 64, 64, 1) 0 conv2d_35[0][0]

__

conv2d_38 (Conv2D) (None, 64, 64, 16) 2064 concatenate_12[0][0]

__

up_sampling2d_4 (UpSampling2D) (None, 128, 128, 1) 0 activation_2[0][0]

__

up_sampling2d_5 (UpSampling2D) (None, 128, 128, 16) 0 conv2d_38[0][0]

__

multiply_2 (Multiply) (None, 128, 128, 64) 0 conv2d[0][0]

up_sampling2d_4[0][0]

__

conv2d_39 (Conv2D) (None, 128, 128, 16) 2320 up_sampling2d_5[0][0]

__

142

concatenate_13 (Concatenate) (None, 128, 128, 80) 0 multiply_2[0][0]

conv2d_39[0][0]

__

conv2d_transpose_2 (Conv2DTrans (None, 256, 256, 32) 23072 concatenate_13[0][0]

__

conv2d_40 (Conv2D) (None, 256, 256, 64) 18496 conv2d_transpose_2[0][0]

__

conv2d_41 (Conv2D) (None, 256, 256, 1) 65 conv2d_40[0][0]

==

Total params: 884,932

Trainable params: 884,484

Non-trainable params: 448

143

References

[1] Ahlawat, H. D. & Chauhan, R. (2020). Detection and monitoring of forest fire
using serial communication and wi-fi wireless sensor network. In Handbook of
Wireless Sensor Networks: Issues and Challenges in Current Scenario’s (pp.
464–492). Springer.

[2] Al-Rawi, K., Casanova, J., & Calle, A. (2001). Burned area mapping system
and fire detection system, based on neural networks and noaa-avhrr imagery.
International Journal of Remote Sensing, 22(10), 2015–2032.

[3] Amari, S.-i. & Arbib, M. A. (2013). Competition and Cooperation in Neural
Nets: Proceedings of the US-Japan Joint Seminar Held at Kyoto, Japan Febru-
ary 15–19, 1982, volume 45. Springer Science & Business Media.

[4] Angayarkkani, K. & Radhakrishnan, N. (2010). An intelligent system for effec-
tive forest fire detection using spatial data. arXiv preprint arXiv:1002.2199.

[5] Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012). A framework for use of wireless
sensor networks in forest fire detection and monitoring. Computers, Environment
and Urban Systems, 36(6), 614–625.

[6] Ba, R., Chen, C., Yuan, J., Song, W., & Lo, S. (2019). Smokenet: Satellite
smoke scene detection using convolutional neural network with spatial and
channel-wise attention. Remote Sensing, 11(14), 1702.

[7] Balasubramanian, A., Sathick, M., & Senthamaran, K. (2012). An efficient
method of forest fire detection using wireless sensor network with yager’s modi-
fied dempster’s rule. Int J Emerg Technol Adv Eng IJETAE, 2(1), 222–227.

[8] Beheshti, N. & Johnsson, L. (2020). Squeeze u-net: A memory and energy effi-
cient image segmentation network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops.

[9] Blasch, A. S. F. A. A. R. L. Z. P. F. E. (2020). The flame dataset: Aerial im-
agery pile burn detection using drones (uavs).

[10] Blenz (2019). What is the difference between semantic segmen-
tation, object detection and instance segmentation? https:
//datascience.stackexchange.com/questions/52015/
what-is-the-difference-between-semantic-segmentation-object-detection-and-insta.
[Online; accessed 2021-5-25].

[11] Bowman, D. M., Perry, G. L., Higgins, S. I., Johnson, C. N., Fuhlendorf, S. D.,
& Murphy, B. P. (2016). Pyrodiversity is the coupling of biodiversity and fire
regimes in food webs. Philosophical Transactions of the Royal Society B: Biolog-
ical Sciences, 371(1696), 20150169.

144

https://datascience.stackexchange.com/questions/52015/what-is-the-difference-between-semantic-segmentation-object-detection-and-insta
https://datascience.stackexchange.com/questions/52015/what-is-the-difference-between-semantic-segmentation-object-detection-and-insta
https://datascience.stackexchange.com/questions/52015/what-is-the-difference-between-semantic-segmentation-object-detection-and-insta

[12] Brostow, G. J., Fauqueur, J., & Cipolla, R. (2008a). Semantic object classes in
video: A high-definition ground truth database. Pattern Recognition Letters,
xx(x), xx–xx.

[13] Brostow, G. J., Fauqueur, J., & Cipolla, R. (2008b). Semantic object classes in
video: A high-definition ground truth database. Pattern Recognition Letters,
xx(x), xx–xx.

[14] Carandini, M. (2006). What simple and complex cells compute. The Journal of
physiology, 577(Pt 2), 463.

[15] Chen, L., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous
convolution for semantic image segmentation. CoRR, abs/1706.05587.

[16] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014).
Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062.

[17] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018a).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(4), 834–848.

[18] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018b).
Encoder-decoder with atrous separable convolution for semantic image segmen-
tation. In Proceedings of the European conference on computer vision (ECCV)
(pp. 801–818).

[19] Chen, Y., Zhang, Y., Xin, J., Wang, G., Mu, L., Yi, Y., Liu, H., & Liu, D.
(2019). Uav image-based forest fire detection approach using convolutional
neural network. In 2019 14th IEEE Conference on Industrial Electronics and
Applications (ICIEA) (pp. 2118–2123).: IEEE.

[20] Colorado State University (2017). Viirs bands and bandwidths. http://rammb.
cira.colostate.edu/projects/npp/VIIRS_bands_and_bandwidths.pdf. [On-
line; accessed 2021-02-17].

[21] de Miguel Molina, B. & Oña, M. S. (2018). The drone sector in europe. In
Ethics and civil drones (pp. 7–33). Springer, Cham.

[22] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248–255).: Ieee.

[23] Dice, L. R. (1945). Measures of the amount of ecologic association between
species. Ecology, 26(3), 297–302.

145

http://rammb.cira.colostate.edu/projects/npp/VIIRS_bands_and_bandwidths.pdf
http://rammb.cira.colostate.edu/projects/npp/VIIRS_bands_and_bandwidths.pdf

[24] Doshi, J., Basu, S., & Pang, G. (2018). From satellite imagery to disaster in-
sights. arXiv preprint arXiv:1812.07033.

[25] Doshi, J., Garcia, D., Massey, C., Llueca, P., Borensztein, N., Baird, M., Cook,
M., & Raj, D. (2019). Firenet: Real-time segmentation of fire perimeter from
aerial video. arXiv preprint arXiv:1910.06407.

[26] Dubey, V., Kumar, P., & Chauhan, N. (2019). Forest fire detection system using
iot and artificial neural network. In International Conference on Innovative
Computing and Communications (pp. 323–337).: Springer.

[27] Earth Policy Institute (November 2009). Wildfires by region: Observations and
future prospects. http://www.earth-policy.org/images/uploads/graphs_
tables/fire.htm. [Online; accessed 2021-1-18].

[28] Environmental Protection Agency (2016). Climate change indicators: Wildfires.
www.epa.gov/climate-indicators/climate-change-indicators-wildfires.
[Online; accessed 2021-1-18].

[29] European Environment Agency (2019). Forest fires indicator assessment. https:
//www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/
assessment. [Online; accessed 2021-1-18].

[30] European Union Aviation Safety Agency (2020). Civil drones (unmanned air-
craft). https://www.easa.europa.eu/domains/civil-drones-rpas. [Online;
accessed 2021-5-24].

[31] Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., & Zis-
serman, A. (2015). The pascal visual object classes challenge: A retrospective.
International journal of computer vision, 111(1), 98–136.

[32] Falconer, K. (2004). Fractal geometry: mathematical foundations and applica-
tions. John Wiley & Sons.

[33] Farasin, A., Colomba, L., & Garza, P. (2020). Double-step u-net: A deep
learning-based approach for the estimation of wildfire damage severity through
sentinel-2 satellite data. Applied Sciences, 10(12), 4332.

[34] Flood, N., Watson, F., & Collett, L. (2019). Using a u-net convolutional neural
network to map woody vegetation extent from high resolution satellite imagery
across queensland, australia. International Journal of Applied Earth Observation
and Geoinformation, 82, 101897.

[35] Foggia, P., Saggese, A., & Vento, M. (2015). Real-time fire detection for video-
surveillance applications using a combination of experts based on color, shape,
and motion. IEEE Transactions on Circuits and Systems for Video Technology,
25(9), 1545–1556.

146

http://www.earth-policy.org/images/uploads/graphs_tables/fire.htm
http://www.earth-policy.org/images/uploads/graphs_tables/fire.htm
www.epa.gov/climate-indicators/climate-change-indicators-wildfires
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/assessment
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/assessment
https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-3/assessment
https://www.easa.europa.eu/domains/civil-drones-rpas

[36] Fukushima, K. & Miyake, S. (1982). Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets (pp. 267–285). Springer.

[37] Gauss, C. F. & Bertrand, J. (1957). Gauss’s Work (1803-1826) on the Theory of
Least Squares.

[38] Guo, D., Pei, Y., Zheng, K., Yu, H., Lu, Y., & Wang, S. (2019). Degraded image
semantic segmentation with dense-gram networks. IEEE Transactions on Image
Processing, 29, 782–795.

[39] Hand, D. & Christen, P. (2018). A note on using the f-measure for evaluating
record linkage algorithms. Statistics and Computing, 28(3), 539–547.

[40] Harkat, H., Nascimento, J., & Bernardino, A. (2020). Fire segmentation using
a deeplabv3+ architecture. In Image and Signal Processing for Remote Sens-
ing XXVI, volume 11533 (pp. 115330M).: International Society for Optics and
Photonics.

[41] He, K. & Sun, J. (2015). Convolutional neural networks at constrained time
cost. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 5353–5360).

[42] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(9), 1904–1916.

[43] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition (pp. 770–778).

[44] Hebb, D. (2002). The organization of behavior. 1949. New York Wiely, 2(7), 8.

[45] Hefeeda, M. & Bagheri, M. (2009). Forest fire modeling and early detection
using wireless sensor networks. Ad Hoc Sens. Wirel. Networks, 7(3-4), 169–224.

[46] Herutomo, A., Abdurohman, M., Suwastika, N. A., Prabowo, S., & Wijiutomo,
C. W. (2015). Forest fire detection system reliability test using wireless sensor
network and openmtc communication platform. In 2015 3rd International con-
ference on information and communication technology (ICoICT) (pp. 87–91).:
IEEE.

[47] Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of sciences,
79(8), 2554–2558.

147

[48] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

[49] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer,
K. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. arXiv preprint arXiv:1602.07360.

[50] James, W., Burkhardt, F., Bowers, F., & Skrupskelis, I. K. (1890). The princi-
ples of psychology, volume 1. Macmillan London.

[51] Jang, E., Kang, Y., Im, J., Lee, D.-W., Yoon, J., & Kim, S.-K. (2019). Detection
and monitoring of forest fires using himawari-8 geostationary satellite data in
south korea. Remote Sensing, 11(3), 271.

[52] Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A., & Weyde,
T. (2017). Singing voice separation with deep u-net convolutional networks.

[53] Japan Meteorological Agency (2014). New geostationary meteorological satellites
— himawari-8/9 —. http://www.jma.go.jp/jma/jma-eng/satellite/news/
himawari89/himawari89_leaflet.pdf. [Online; accessed 2021-02-19].

[54] Kalinicheva, E., Ienco, D., Sublime, J., & Trocan, M. (2020). Unsupervised
change detection analysis in satellite image time series using deep learning com-
bined with graph-based approaches. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, 1450–1466.

[55] Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A.
(2011). Fire as an evolutionary pressure shaping plant traits. Trends in plant
science, 16(8), 406–411.

[56] Kim, H.-D., Jung, O.-C., & Bang, H. (2007). A computational approach to re-
duce the revisit time using a genetic algorithm. In 2007 International Confer-
ence on Control, Automation and Systems (pp. 184–189).: IEEE.

[57] Kinaneva, D., Hristov, G., Raychev, J., & Zahariev, P. (2019). Early forest fire
detection using drones and artificial intelligence. In 2019 42nd International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO) (pp. 1060–1065).: IEEE.

[58] Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2019). Panoptic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 9404–9413).

[59] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information pro-
cessing systems, 25, 1097–1105.

148

http://www.jma.go.jp/jma/jma-eng/satellite/news/himawari89/himawari89_leaflet.pdf
http://www.jma.go.jp/jma/jma-eng/satellite/news/himawari89/himawari89_leaflet.pdf

[60] Larsen, A., Hanigan, I., Reich, B. J., Qin, Y., Cope, M., Morgan, G., & Rap-
pold, A. G. (2021). A deep learning approach to identify smoke plumes in satel-
lite imagery in near-real time for health risk communication. Journal of exposure
science & environmental epidemiology, 31(1), 170–176.

[61] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11), 2278–
2324.

[62] Li, X., Song, W., Lian, L., & Wei, X. (2015). Forest fire smoke detection using
back-propagation neural network based on modis data. Remote Sensing, 7(4),
4473–4498.

[63] Li, Z., Khananian, A., Fraser, R. H., & Cihlar, J. (2001). Automatic detection
of fire smoke using artificial neural networks and threshold approaches applied
to avhrr imagery. IEEE Transactions on geoscience and remote sensing, 39(9),
1859–1870.

[64] Liang, S. (2017). Comprehensive Remote Sensing. Elsevier.

[65] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431–3440).

[66] Lucas, C., Hennessy, K., Mills, G., & Bathols, J. (2007). Bushfire weather in
southeast australia: recent trends and projected climate change impacts.

[67] McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

[68] Miller, J., Borne, K., Thomas, B., Huang, Z., & Chi, Y. (2013). Automated
wildfire detection through artificial neural networks. In Remote Sensing and
Modeling Applications to Wildland Fires (pp. 293–304). Springer.

[69] Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., & Ter-
zopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[70] Minsky, M. & Papert, S. (1969). Perceptrons.

[71] Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hess-
burg, P. F., Leonard, J., McCaffrey, S., Odion, D. C., Schoennagel, T., et al.
(2014). Learning to coexist with wildfire. Nature, 515(7525), 58–66.

[72] National Aeronautics and Space Administration (2015). Modis components.
https://modis.gsfc.nasa.gov/about/components.php. [Online; accessed
2021-1-19].

149

https://modis.gsfc.nasa.gov/about/components.php

[73] National Aeronautics and Space Administration (2017). Viirs land. https:
//viirsland.gsfc.nasa.gov/. [Online; accessed 2021-1-26].

[74] National Aeronautics and Space Administration (2019). Honeycomb platform.
https://2019.spaceappschallenge.org/challenges/living-our-world/
spot-fire-v20/teams/et760/project. [Online; accessed 2021-5-24].

[75] National Aeronautics and Space Administration (2021). Modis. https://terra.
nasa.gov/about/terra-instruments/modis. [Online; accessed 2021-5-23].

[76] North, M., Stephens, S., Collins, B., Agee, J., Aplet, G., Franklin, J., & Fule,
P. Z. (2015). Reform forest fire management. Science, 349(6254), 1280–1281.

[77] Ohio University (2021). 7 pros and cons of drones and un-
manned aerial vehicles. https://onlinemasters.ohio.edu/blog/
the-pros-and-cons-of-unmanned-aerial-vehicles-uavs/. [Online; accessed
2021-5-23].

[78] Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori,
K., McDonagh, S., Hammerla, N. Y., Kainz, B., et al. (2018). Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999.

[79] Pant, D., Verma, S., & Dhuliya, P. (2017). A study on disaster detection and
management using wsn in himalayan region of uttarakhand. In 2017 3rd Inter-
national conference on advances in computing, communication & automation
(ICACCA)(Fall) (pp. 1–6).: IEEE.

[80] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. CoRR, abs/1505.04597.

[81] Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory.

[82] Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo
NY.

[83] Roy, P. (2003). Forest fire and degradation assessment using satellite remote
sensing and geographic information system. Satellite Remote sensing and GIS
applications in agricultural meteorology, (pp. 361).

[84] Sagan, H. (2012). Space-filling curves. Springer Science & Business Media.

[85] Sahin, Y. G. (2007). Animals as mobile biological sensors for forest fire detec-
tion. Sensors, 7(12), 3084–3099.

[86] Sasaki, Y. (2007). The truth of the f-measure. Teach Tutor Mater.

150

https://viirsland.gsfc.nasa.gov/
https://viirsland.gsfc.nasa.gov/
https://2019.spaceappschallenge.org/challenges/living-our-world/spot-fire-v20/teams/et760/project
https://2019.spaceappschallenge.org/challenges/living-our-world/spot-fire-v20/teams/et760/project
https://terra.nasa.gov/about/terra-instruments/modis
https://terra.nasa.gov/about/terra-instruments/modis
https://onlinemasters.ohio.edu/blog/the-pros-and-cons-of-unmanned-aerial-vehicles-uavs/
https://onlinemasters.ohio.edu/blog/the-pros-and-cons-of-unmanned-aerial-vehicles-uavs/

[87] Scott, A. C. & Glasspool, I. J. (2006). The diversification of paleozoic fire sys-
tems and fluctuations in atmospheric oxygen concentration. Proceedings of the
National Academy of Sciences, 103(29), 10861–10865.

[88] Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E.
(2021). Aerial imagery pile burn detection using deep learning: The flame
dataset. Computer Networks, 193, 108001.

[89] Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[90] Soliman, H., Sudan, K., & Mishra, A. (2010). A smart forest-fire early detec-
tion sensory system: Another approach of utilizing wireless sensor and neural
networks. In SENSORS, 2010 IEEE (pp. 1900–1904).: IEEE.

[91] Sørenson, T. (1948). A Method of Establishing Groups of Equal Amplitude in
Plant Sociology Based on Similarity of Species Content and Its Application to
Analyses of the Vegetation on Danish Commons. Biologiske skrifter. I kommis-
sion hos E. Munksgaard.

[92] Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

[93] Stewart, O. C. (2002). Forgotten fires: Native Americans and the transient
wilderness. University of Oklahoma Press.

[94] Stoller, D., Ewert, S., & Dixon, S. (2018). Wave-u-net: A multi-scale neural net-
work for end-to-end audio source separation. arXiv preprint arXiv:1806.03185.

[95] Sunar, F. & Özkan, C. (2001). Forest fire analysis with remote sensing data.
International Journal of Remote Sensing, 22(12), 2265–2277.

[96] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 1–9).

[97] Tan, M. & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning (pp.
6105–6114).: PMLR.

[98] Toan, N. T., Cong, P. T., Hung, N. Q. V., & Jo, J. (2019). A deep learning
approach for early wildfire detection from hyperspectral satellite images. In 2019
7th International Conference on Robot Intelligence Technology and Applications
(RiTA) (pp. 38–45).: IEEE.

151

[99] Toulouse, T., Rossi, L., Campana, A., Celik, T., & Akhloufi, M. A. (2017). Com-
puter vision for wildfire research: An evolving image dataset for processing and
analysis. Fire Safety Journal, 92, 188–194.

[100] Ulku, I., Barmpoutis, P., Stathaki, T., & Akagunduz, E. (2020). Comparison
of single channel indices for u-net based segmentation of vegetation in satellite
images. In Twelfth International Conference on Machine Vision (ICMV 2019),
volume 11433 (pp. 1143319).: International Society for Optics and Photonics.

[101] Ullo, S. L. & Sinha, G. (2020). Advances in smart environment monitoring sys-
tems using iot and sensors. Sensors, 20(11), 3113.

[102] University of Wisconsin (2020). Mcidas-x user’s guide. https://www.ssec.
wisc.edu/mcidas/doc/users_guide/current/app_d-12.html. [Online; ac-
cessed 2021-02-17].

[103] Vadrevu, K. P., Lasko, K., Giglio, L., Schroeder, W., Biswas, S., & Justice, C.
(2019). Trends in vegetation fires in south and southeast asian countries. Scien-
tific reports, 9(1), 1–13.

[104] Vani, K. et al. (2019). Deep learning based forest fire classification and detection
in satellite images. In 2019 11th International Conference on Advanced Comput-
ing (ICoAC) (pp. 61–65).: IEEE.

[105] Vicsek, T. (1992). Fractal growth phenomena. World scientific.

[106] Von Neumann, J. (2016). Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components. In Automata Studies.(AM-34), Volume 34 (pp.
43–98). Princeton university press.

[107] Von Neumann, J. (2017). The general and logical theory of automata. In Sys-
tems Research for Behavioral Sciencesystems Research (pp. 97–107). Routledge.

[108] Wagner, F. H., Sanchez, A., Tarabalka, Y., Lotte, R. G., Ferreira, M. P., Aidar,
M. P., Gloor, E., Phillips, O. L., & Aragao, L. E. (2019). Using the u-net con-
volutional network to map forest types and disturbance in the atlantic rainforest
with very high resolution images. Remote Sensing in Ecology and Conservation,
5(4), 360–375.

[109] Widrow, B. et al. (1960). Adaptive” adaline” Neuron Using Chemical” memis-
tors.”.

[110] Willis, K. & McElwain, J. (2014). The evolution of plants. Oxford University
Press.

[111] Wyniawskyj, N. S., Napiorkowska, M., Petit, D., Podder, P., & Marti, P. (2019).
Forest monitoring in guatemala using satellite imagery and deep learning. In
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Sympo-
sium (pp. 6598–6601).: IEEE.

152

https://www.ssec.wisc.edu/mcidas/doc/users_guide/current/app_d-12.html
https://www.ssec.wisc.edu/mcidas/doc/users_guide/current/app_d-12.html

[112] Xie, Z., Song, W., Ba, R., Li, X., & Xia, L. (2018). A spatiotemporal contextual
model for forest fire detection using himawari-8 satellite data. Remote Sensing,
10(12), 1992.

[113] Yadav, N., Yadav, A., & Kumar, M. (2015). History of neural networks. In An
Introduction to Neural Network Methods for Differential Equations (pp. 13–15).
Springer.

[114] Yi, J., Wu, P., Jiang, M., Huang, Q., Hoeppner, D. J., & Metaxas, D. N. (2019).
Attentive neural cell instance segmentation. Medical image analysis, 55, 228–240.

[115] Yu, L., Wang, N., & Meng, X. (2005). Real-time forest fire detection with wire-
less sensor networks. In Proceedings. 2005 International Conference on Wire-
less Communications, Networking and Mobile Computing, 2005., volume 2 (pp.
1214–1217).: Ieee.

[116] Zhang, D., Han, S., Zhao, J., Zhang, Z., Qu, C., Ke, Y., & Chen, X. (2009). Im-
age based forest fire detection using dynamic characteristics with artificial neural
networks. In 2009 International Joint Conference on Artificial Intelligence (pp.
290–293).: IEEE.

[117] Zhang, J., Zhu, H., Wang, P., & Ling, X. (2021). Att squeeze u-net: A
lightweight network for forest fire detection and recognition. IEEE Access, 9,
10858–10870.

[118] Zhang, Q.-x., Lin, G.-h., Zhang, Y.-m., Xu, G., & Wang, J.-j. (2018a). Wildland
forest fire smoke detection based on faster r-cnn using synthetic smoke images.
Procedia engineering, 211, 441–446.

[119] Zhang, Z., Liu, Q., & Wang, Y. (2018b). Road extraction by deep residual u-net.
IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.

153

