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Introduction

Origins of gravitational waves

The following section is based on [1] and [2].

In 1905, after Einstein published his famous article Zur Elektrodynamik bewegter Körper

[3], Henri Poincaré proposed the existence of gravitational waves analogous to the electromag-
netic waves [4]. Later Einstein also had the idea that these waves could exist. But he wasn't
convinced of there existence, essentially because there are no dipole in gravitation due to the
absence of negative mass [5].

However, he tried to �nd wave solutions to his equations in 1916 and did �nd such solutions
[6]. But he made a mistake that led him to the conclusions that three types of gravitational
waves exist. He had made a calculational mistake and realized it later in 1918 [7]. He pub-
lished another paper that year with the correct derivation of gravitational waves. However, the
scienti�c community, including Einstein, remained doubtful about their existence. The reason
was the possibility that these waves are a spurious artefact from the coordinate system.

In 1936, Einstein and his collaborator Rosen sent an article which concluded that gravi-
tational waves don't exist [8]. The reviewer is believed to have been Robertson, who found
mistakes in the development but Rosen refused to listen to the critics and published his paper
in another journal. Einstein remained sceptical. In the late 1950's the works of Pirani, Bondi,
Hartmann and Robinson proved that gravitational waves are a real phenomenon predicted by
General Relativity and not some spurious result linked to the choice of the coordinate system.

If gravitational waves exist one could prove their existence by observing them. To that end,
one must �rst know their e�ects and whether these e�ects can e�ectively be observed. So until
the end of the 1950's the big question was: Do gravitational waves carry energy? The complex
formalism of the theory of General Relativity was at the center of the di�culty that scientists
encountered at that time. However, the answer that convinced the majority was very simple
and given by Feynman [9]. The e�ect of gravitational waves was already known at that time:
they squeeze one of the two dimensions perpendicular to their propagation direction and stretch
the other. In 1957 the university of North California organised the �rst edition of a series of
discussions named the Chapel Hill Conference, on the most recent questions related to gravity.
Feynman explained that if a bar, on which two rings are placed, lies in the plane transverse to
the propagation of the wave the rings would move along the bar back and forth. Thus if there
is friction between the rings and the bar, energy is produced. This thought experiment proved
that gravitational wave carry energy and can thus be detected in principle.

The observability of gravitational waves being established, scientists were left with the last
part of the problem: How can one practically detect these waves? As a gravitational wave
passes by, it deforms a ring of free particles into an ellipse. But solids don't deform like free
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particles due to their internal mechanical properties. So it seemed very di�cult to detect the
passage of a gravitational wave if one uses a solid but not impossible according to the work done
on bar detector during the second half of the XX th century. Moreover the order of magnitude
of the amplitude h of the wave was expected to be very small (The amplitude of the wave that
we detect nowadays is of the order of 10−23). This dimensionless quantity is linked to some
extent to the variation of the distance between a pair of free particles:

h ' 2
∆l

L
(1)

where ∆l is the increase in distance between the two particles and L the distance between the
same particles before the wave deformed space-time.

The �rst device built to detect gravitational waves came from an idea of Weber. He was an
engineer and attended the Chapel Hill Conference. After this meeting, Weber decided to build
a detector for gravitational waves. His idea consisted in building a big aluminium cylinder,
some kind of "antenna". His detector was maintained above the ground hanging to a support
absorbing vibrations. When passing through his device, a gravitational wave would deform
the cylinder and thus create a resonant signal. These vibrations would be monitored by a belt
of piezoelectric sensors. Weber claimed later to detect gravitational waves [10]. His claimed
detections gained popularity and many groups of scientists tried to detect gravitationnal waves
using devices similar to the one designed by Weber. But no signals were detected by anyone
but Weber and the scienti�c community agreed on the spurious nature of Weber's detections,
to the exeption of Weber himself. This episode ended in a loss of motivation for the scientists
to continue searching for gravitational waves.

In 1979, a regain of interest in the search for gravitational waves came from an new obser-
vation. Taylor and Hulse [11] con�rmed indirectly the existence of gravitational waves through
their observation of the period of the binary pulsar PSRB1913+16 in 1979. The energy lost by
the system, deduced from the observation in the electromagnetic spectrum, was in agreement
with the energy loss through gravitational waves predicted by General Relativity.

After the conference at Chapel Hill, Weber thought about several methods to detect grav-
itational waves. Among these methods were the interferometric ones. But as mentionned in
the previous section, Weber tried his method based on an aluminum cylinder which was not
fruitful. However, the �rst time the interferometry technique was suggested was in 1962 [12], by
two Russian physicist Gertsenshtein and Pustovoid but their idea didn't go further in their case.

The basic working principle of an interferometer for the detection of gravitational waves is
the following. If a gravitational wave passes through the detector with an adequate polarization
the deformation of space-time will squeeze one arm and stretch the other. The two light beams
coming from the two arms will thus have a phase shift with respect to each other. This phase
shift will modify the interference image. The detector is initially set near a dark fringe and one
measures the deviation from this lock.

In the early seventies, one of Weber's former students, Forward, built an interferometer
with arms 8.5 meters long with funding from the Hughes Research Laboratory in Malibu, Cal-
ifornia [13]. Forward didn't detect gravitational waves. During the same period, Weiss built
a 1.5-meter long interferometer in the Research Laboratory of Electronics at MIT [14]. He
found his inspiration in a paper written by Pirani [15]. Pirani did seminal work on the e�ect
of gravitational waves in the 1950's. In particular he worked on the choice of a coordinate
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system convenient for laboratory measurement (the proper detector frame). Previous work on
gravitational waves used coordinates that simpli�ed theoretical calculations but these were not
appropriate for experiments in a laboratory.

In 1974, Weiss submitted a proposal to build a larger prototype interferometer with 9-meter
long arms to the US National Science Foundation [16]. The idea of the interferometer started
to interest research groups in Europe. Two groups, one at the Max Planck Institute for As-
trophysics in Garching [17] and one at the University of Glasgow [18], decided to build their
own interferometer. The �rst group, directed by Heinz Billing built a 3-meter and then a 30
meter interferometer. The second, directed by Drever and Hough, built a 1-meter and then a
10-meter interferometer. In order to get su�cient funding, these two groups collaborated to
build an 600-meter device called GEO600. This detector is located in the south of Hannover
in Germany and is still operational.

Then, in the early 1980's, NSF �nanced two prototypes. One was located at MIT and the
other at Caltech under the supervision of Thorne. In addition NSF funded Weiss's study about
the design and technical feasibility of two interferometers with arms of a few kilometers and
separated by several thousands of kilometers. The report, including all the results of the study,
is known as the "Blue Book" [19]. It set the basis of a large scale project involving both MIT
and Caltech. The project was led by Weiss, Drever and Thorne. These two interferometers
became one observatory named LIGO: Laser Interferometer Gravitational-Wave Observatory.
In the late 1980's, a large-scale French-Italian interferometer project started. It is now known
as the Virgo observatory. LIGO and Virgo have collaborated since 2007. Both LIGO and Virgo
have been improved in terms of sensitivity. The two current versions of these detectors are
called Advanced LIGO (aLIGO) and Advanced Virgo (aVirgo).

Advanced LIGO and Advanced Virgo

The perturbation metric h that we want to measure is so small that we need to build an inter-
ferometer with extremely long arms. As seen before, the perturbation of space-time is related
to the length of the arms of the detector by ∆l ' L× (h/2). The amplitude h is of the order of
10−23, as mentioned before, gravitational wave detectors must have arms with a length of about
750 km to detect a gravitational wave with a frequency of 100 Hz [2]. In addition to this di�-
culty comes the noise suppression in order to have a high enough sensitivity. Sources of noise
include thermal deformations of the mirrors, external vibrations, photon shot noise, external
gravitational perturbations, etc. In order to detect a gravitational wave a lot of technological
improvements of the basic Michelson interferometer were needed. Among these improvements:
active control systems to isolate the mirrors from external vibrations, power recycling mirrors,
Fabry-Pérot cavities [2].

A Fabry-Pérot cavity is used to increase dramatically the optical path of an arm. The con-
cept is simple, the light beam is re�ected a lot of times before leaving the cavity. Thus the light
path is much longer and the phase shift due to the gravitational wave is more important. A
Fabry-Pérot cavity can increase the phase shift several hundreds of time. In the case of LIGO
this factor is about 300 leading to an optical path of more than 1000 km for an arms only 4 km
long [2].

To be able to detect gravitational waves one needs to use a high power light beam. The
required power is several hundreds of kilowatts [20]. This is necessary to reduces the photon
shot noise. This noise, which reduces with increasing power, limits the interferometer when
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considering the detection of high frequency gravitational waves. But building a laser with such
a high emitting power is practically impossible. To e�ectively increase the power of the laser
a power recycling mirror is used. Basically it re�ects the light coming back to the source of
the laser. The Fabry-Pérot cavities and the power recycling mirrors are the main departures
from the Michelson interferometer design. This type of detectors is called a Dual Recycled,
Fabry-Pérot Michelson interferometer (see Fig. 1).

Vibrations are cancelled using active and passive controls. The detectors are also equipped
with thousands of sensors of various type to monitor seismic, acoustic, electromagnetic and
other external perturbations.

Figure 1: LIGO interferometer, simpli�ed scheme, adaptated from [21]

One of the two inteferometers of LIGO is located in Hanford, Washington, the other one
in Linvingston, Louisiana. They are separed by 3000 km. The LIGO sensitivity ranges from
more than 20 Hz to several thousands of Hertz [2]. The European detector Virgo is located
near Pisa in Italy. The frequency spectrum that Virgo can detect is slightly narrower than for
LIGO (see Fig. 2). Using these three detectors one can locate the region from where the wave
was emitted by triangulation. The event that can be detected using these interferometers are
binary black holes, binary neutron stars, binary systems with a neutron star and a black hole,
supernovae, rotating neutron stars, among others (see Fig. 3).
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Figure 2: Sensitivity curve of the LIGO and Virgo observatories during the O3 run (2017),
from [22]

Figure 3: The gravitational wave spectrum, from [23]
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There are four categories of gravitational wave sources according to Riles [24]. The category
in which a source belongs depends on the duration of the signal emitted and on the quality of
the modelling of the source. Sources that are short-lived and well-modelled are typically binary
systems involving massive and compact objects. Such sources constitute the events detected
so far by LIGO and Virgo. The signal is a succession of an inspiral phase and a merger phase
followed by a ringdown. From these signals one can extract the masses of each star or black
hole, the total e�ective spin, a characteristic quantity called the chirp mass and some others.

Another category contains short-lived but poorly known sources. These sources come from
some asymmetry in events, like supernovae for example, that are very di�cult to model. The
signal emitted by these events could be detected by the ground-based observatories.

Eventually there is a category for the long-lived sources. The well-modelled sources are ro-
tating neutron stars. If a neutron star is asymmetric it will emit a very stable nearly monochro-
matic gravitational wave. These could be detected by the ground-based interferometers if the
sources are located in our galaxy. The last category consists of the primordial black holes and
the cosmic gravitational wave background that is a di�use emission from the Big Bang and
previous mergers.

In the future, new interferometers will extend the possibility of detection. The KAmioka
GRAvitational wave detector (KAGRA), a Japanese detector developed at the University of
Tokyo will join LIGO and Virgo in the following years. This will be followed by LIGO-India.
The Einstein telescope will extend the observation of gravitational waves to lower frequencies.
Cosmic Explorer, a U.S. telescope will reach a sensitivity much better than LIGO. Eventually
the Laser Interferometer Space Antenna (LISA) is expected to be launched in the early 2030s.
LISA will be sensitive to frequency much lower than what is accessible with ground-based ob-
servatories, i.e. 10−4 − 10−1 Hz.

We are at the very beginning of an new era in astronomy. The observation of gravitational
waves allows us to characterise new astrophysical phenomena and complement observations in
the electromagnetic spectrum. The �rst observations allowed astronomers to test and constrain
the theory of General Relativity with higher precision [25]. The cataclysmal events that are
now observable could reveal deviation from General Relativity and eventually pave the way
towards new physics.

Origin of extra dimensions

This section is based on [26].

One of the major objectives of physics is to describe nature with a unique and consistent
theory. The theories that �t best our observations about the world are General Relativity
and quantum-�eld theory which describe with great accuracy the observation of phenomena
respectively at large and small scales. From this point, the way towards a �nal theory, if such
a theory exists, starts with �nding a single theory able to reproduce the prediction of both
General Relativity and quantum-�eld theory.

One possibility to achieve this goal might be to work with more spatial dimensions than the
three usual ones included in the four dimensional space-time of the two current theories. The
origin of this very strange idea dates back to 1919. Kaluza, a German physicist, found that
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adding a �fth dimension in the theoretical framework of General Relativity allows, under a few
hypotheses, the uni�cation of gravitation and classical electromagnetism.

The addition of classical electromagnetism is achieved through the Christo�el symbols linked
to the �fth dimension. The Christo�el symbols are given by

Γλµν = gλαΓαµν =
1

2
gλα (∂µgαν + ∂νgµα − ∂αgµν) (2)

with gµν the metric tensor and gµν its inverse. If one identi�es the 4-vector potential of elec-
tromagnetism to the metric component linked to the �fth dimension,

Aµ ≡ gµ5, (3)

and makes the hypothesis that the metric components are independent of the new spatial
dimension, one �nds:

Γµν5 =
1

2
(∂νgµ5 + ∂5gνµ − ∂µgν5)

=
1

2
(∂νAµ + ∂5gνµ − ∂µAν)

=
1

2
(∂νAµ − ∂µAν)

=
1

2
Fνµ

(4)

One can thus make the Faraday tensor appear in the connection linked to the �fth dimension.

However the work isn't done yet. One also needs to postulate a metric of the form

ds2 = gµνdx
µdxν +

(
dx5 + Aµdx

µ
)2

(5)

Imposing such a restriction on the metric form thus breaks the invariance of the theory under
all di�eomorphisms. It can be shown that to enforce invariance of this metric expression one
can only use the following di�eomorphisms in addition to any di�eomorphism a�ecting only
the four dimensions of the usual space-time:

x5 → x5 + f(xµ) (6)

with the following transformation rule for the Aµ

A′µ → Aµ − ∂µf (7)

We recognize this transformation as being the gauge transformation of the 4-vector potential
Aµ in the classical theory of electromagnetism. Thus this restriction on the metric breaks
general covariance in 5 dimensions and leaves the theory invariant under any di�eoporphism on
the usual four-dimensional space-time, like General Relativity does, and is invariant under the
electromagnetism gauge transformation with respect to the �fth dimension. Eventually, one
can also compute the lagrangian density of this theory and one �nds:

L = LGR −
1

4
FµνF

µν (8)

where LGR is the Hilbert-Einstein lagrangian to which is added the lagrangian of electro-
magnetism. Eventually the geodesic equations of this theory can reproduce the behaviour of
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particles having a mass and an electric charge. Thus the Kaluza theory reproduces gravitation
and classical electromagnetism.

Beside unifying gravity and electromagnetism, this theory comes with serious conceptual
issues. Is this fourth spatial dimension real and how can one justify the hypothesis that are
needed to lead to electromagnetism while breaking general covariance? In order to solve the
problem of the existence of an additional space dimension that nobody ever observed so far,
the Swedish physicist Klein had the idea of writing the Kaluza theory with a �fth dimension
assumed to be compact and small. Doing so allows one to explain why this extra dimension
doesn't seem to exist in our everyday life: it is simply to small to be observed.

Since then, the idea of adding extra dimensions has been used in several attempts to �nd
a uni�ed theory of gravity and quantum physics. The most famous one is string theory. It is
important to note that adding dimensions seems a very promising way to unify physics because
of the Kaluza-Klein theory but the latter doesn't solve the issue encountered when one tries
to quantify gravity: the Kaluza-Klein theory successfully uni�es the theory of gravity with
electromagnetism but it remains classical. Thus, the present work is about physics with extra
dimensions despite the fact that it doesn't solve the incompatibility of General Relativity and
quantum physics. The reason we will focus on extra dimensions is because current attempts
tend to show that a theory of quantum gravity will probably involve extra dimensions. If it has
to be true these extra dimensions will a�ect gravitational waves. The question is thus to know
whether these e�ects can be detected in the four-dimensional part of gravitational waves.
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Chapter 1

Linearised Einstein equation with extra

dimensions

1.1 Linearised Einstein theory

The �rst step to analyse the e�ects of extra dimensions on gravitational waves is to derive the
wave equation with these extra dimensions. Before that, I will remind the reader of the main
steps of the derivation of gravitational waves in 4 dimensions with no sources on a Minkowski
background metric, neglecting the cosmological constant. This derivation is based on [27].

We start from Einstein equation:

Rµν −
R

2
gµν = 8πTµν (1.1)

Considering no sources simply means that Tµν = 0. Gravitational waves are small perturbations
of a "background metric". The latter is assumed to be much larger than the perturbation and to
vary much more slowly. In the present section it doesn't vary at all as we consider a Minkowski
background. The �eld is said to be weak with respect to the Minkowski background if it can
be written in the following form:

gµν = ηµν + hµν (1.2)

with

|hµν | � 1 |∂αhµν | � 1 |∂α∂βhµν | � 1 (1.3)

where ηµν is the Minkowski metric tensor. The convention we will follow for ηµν is (−,+,+,+).
The inverse metric tensor is given by:

gµν = ηµν − hµν +O(h2) (1.4)

In order to maintain the decomposition (1.2), we need to restrict ourself to some di�eomor-
phism. The two types of di�eomorphism that are allowed are:

1. The Lorentz transformations:
xα = Λα

βx
β (1.5)

2. In�nitesimal "gauge" transformations:

xα = xα + ξα
(
xβ
)
, |∂βξα| � 1 (1.6)
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We can easily understand the origins of these transformations. The Lorentz transformations
are obviously allowed because they correspond to a change from a inertial reference frame to
another. These are the only transformations that link inertial reference frames. Thus the gauge
transformations correspond to a change from an inertial frame to a non inertial frame. How-
ever these gauge transformations are allowed because they are in�nitesimal transformations
that can be reabsorbed in the metric perturbation. In other words, the only object that has
a physical signi�cation is the metric gµν and we impose this metric to be almost Minkowski
and the transformations that links these almost Minkowski reference frames are the Lorentz
and the gauge transformations. If we had imposed the metric gµν to be strictly Minkowski the
gauge transformations would not be allowed.

The perturbation hµν must then change in order to preserve the decomposition of (1.2).
The transformation rules are:

1. Lorentz transformation of the metric gµν :

hαβ = Λµ
αΛν

βhµν (1.7)

2. Gauge transformation of the metric gµν :

hµν = hµν − ∂νξµ − ∂µξν (1.8)

The Christo�el symbols, the Rieman tensor, the Ricci tensor and the scalar curvature are
then given by:

Γαβγ =
1

2
ηαδ (∂γhδβ + ∂βhδγ − ∂δhβγ) +O(h2µν) (1.9)

Rαβγδ =
1

2
(∂β∂γhαδ + ∂α∂δhβγ − ∂α∂γhβδ − ∂β∂δhαγ) +O(h2µν) (1.10)

Rαβ = −1

2

(
∂α∂βh

γ
γ + ∂γ∂γhαβ − ∂γ∂βhγα − ∂γ∂αh

γ
β

)
+O(h2µν) (1.11)

R = −∂β∂βhαα + ∂α∂βh
αβ +O(h2µν) (1.12)

All the second order terms are neglected because of the hypothesis of a weak �eld (1.3). The
linearised Einstein equation can be written:

−1

2
�hµν −

1

2

(
−∂α∂νhαµ − ∂α∂µhαν + ηµν∂

α∂βhαβ
)

= 0 (1.13)

where the following notations have been introduced:

hµν ≡ hµν −
h

2
ηµν (1.14)

h ≡ hαα (1.15)

and � is the d'Alembertian operator.

Thanks to the degrees of freedom due to the gauge transformation, the De Donder gauge
condition can be imposed:

∂νh
µν

= 0 (1.16)
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which simpli�es the equation even more:

�hµν = 0 (1.17)

There is not one unique gauge satisfying (1.16) and all the gauges that satis�es the De
Donder condition are linked by gauge transformation for which

�ξα = 0 (1.18)

1.2 The linearised theory in D dimensions

In this section, we detail the di�erent steps leading to the equation describing gravitational
waves in D dimensions. This derivation follows the one in [28]. The goal is to compare the
behaviour of these waves with those in a 4 dimensional space-time. We used in the previous
section the Einstein equation with no cosmological constant. Here, we will start from the general
case of a non-zero cosmological constant because such a constant might have important e�ects
on the extra dimensions. In D dimensions, and with a cosmological constant, the Einstein
equation is:

RMN −
R

2
gDMN + ΛgDMN = 8πTMN (1.19)

where the indicesM andN take value from 0 toD−1 and gD is the N-dimensional metric tensor.

Again we consider a vacuum space-time: TMN = 0 so that we can compare the result with
the four-dimensional case. Considering no sources thus allows us to avoid making some guess
on the behaviour of matter in these dimensions.

RMN −
R

2
gDMN + ΛgDMN = 0 (1.20)

If we compute the trace by multiplying (1.20) by the inverse of the metric gMN
D we �nd:

R =
2D

D − 2
Λ (1.21)

This result allows us to rewrite (1.20) as:

RMN −
2Λ

D − 2
gDMN = 0 (1.22)

To derive an equation for gravitational waves we need to split the metric into a background
part which is dominant and varies slowly with time and a perturbation component that varies
much faster than the background metric. As we don't know anything about the physics in the
extra dimensions, we have no reason to suppose that the background metric is a "Minkowski"
metric in D dimensions. So it is better to keep a general background metric gMN .

gDMN = gMN + hMN (1.23)

The �eld perturbation is supposed to be weak:

|hMN | � |gMN | (1.24)

and all higher terms with respect to hMN can be neglected. Thus the inverse metric tensor is
given by:

gD
MN = gMN − hMN +O(h2MN) (1.25)
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The decomposition of the metric (1.23) is left unchanged under some gauge transformations as
in the four-dimensional case:

hMN = hMN −∇NξM −∇MξN (1.26)

These are the only transformations allowed if we want to keep the decomposition (1.23) of the
metric. The Lorentz transformations aren't allowed as we keep the background metric general.

Now we introduce the decomposition (1.23) of the metric in the Einstein equation. From
this point we can make the hypothesis that the Einstein equation can be split into an equation
of order zero in the perturbation and an equation of �rst order in the perturbation:

R
(0)
MN −

2Λ

D − 2
gMN = 0 (1.27)

R
(1)
MN −

2Λ

D − 2
hMN = 0 (1.28)

In the four dimensional case, we are left with only one equation for the perturbation metric
because the background equation is trivial as we impose a Minkoswki background metric.

In the following all the mathematical objects that are denoted with the upper indices (0)

are built using only the background geometry. For example ∇(0)
P is the covariant derivative

with respect to xP accounting only for the background, i.e. using only the order zero part of
the Christo�el symbols: Γ(0). The Christo�el symbols and the Ricci tensor are given by:

ΓMNP = Γ(0)M

NP +
1

2
gMQ

(
∇(0)
N hQP +∇(0)

P hQN −∇(0)
Q hNP

)
(1.29)

RMN = R
(0)
MN −

1

2
∇(0)
P

(
gPQ∇(0)

Q hMN

)
+∇(0)

P

(
gPQ∇(0)

M hNQ

)
− 1

2
∇(0)
N ∇

(0)
M hD (1.30)

with

Γ(0)M

NP =
1

2
gMQ (∂NgQP + ∂PgQN − ∂QgNP ) (1.31)

R
(0)
MN = ∂AΓ(0)A

MN + Γ(0)A

AEΓ(0)E

MN − ∂NΓ(0)A

MA − Γ(0)A

NEΓ(0)E

MA (1.32)

and where the following notation have been introduced:

hD ≡ hQPg
QP (1.33)

The linearised Einstein equation for the �rst-order perturbation of the background metric is
then obtained by replacing the Ricci tensor (1.30) in equation (1.28) using R

(1)
MN = RMN−R(0)

MN :

−1

2
∇(0)
P

(
gPQ∇(0)

Q hMN

)
+

1

2
∇(0)
P

(
gPQ∇(0)

M hNQ

)
+

1

2
∇(0)
P

(
gPQ∇(0)

N hMQ

)
−1

2
∇(0)
N ∇

(0)
M hD −

2Λ

D − 2
hMN = 0

(1.34)

If we take into account the fact that the metric tensor commutes with the covariant derivative
and we introduce the notation �(0) ≡ gPQ∇(0)

P ∇
(0)
Q , the previous equation can be written:
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−1

2
�(0)hMN +

1

2
∇(0)
P ∇

(0)
M gPQhNQ +

1

2
∇(0)
P ∇

(0)
N gPQhMQ

−1

2
∇(0)
N ∇

(0)
M hD −

2Λ

D − 2
hMN = 0

(1.35)

As in the four-dimensional case the linearised Einstein equation doesn't look like a wave
equation at �rst sight. We would like to impose a gauge condition similar to the de Donder
gauge condition (1.16) in four dimensions. To that end, we use the de�nition of the Riemann
curvature tensor to evaluate:

∇(0)
P ∇

(0)
M gPQhQN = ∇(0)

M ∇
(0)
P gPQhQN +R

(0)
MPg

PQhQN + gNSR
(0)S

RPMg
PQhQUg

UR (1.36)

and its symmetries to evaluate:

gNSR
(0)S

RPMg
PQhQUg

UR = R(0)S

MNPg
PQhQS (1.37)

Eventually, introducing the notation

GN ≡ ∇(0)
P gPQhQN −

1

2
∇(0)
N hD (1.38)

allows us to rewrite equation (1.35) as :

−1

2
�(0)hMN +R

(0)
MPg

PQhQN +R(0)S

MNPg
PQhQS

+
1

2
∇(0)
M GN +

1

2
∇(0)
N GM −

2Λ

D − 2
hMN = 0

(1.39)

The equation can now easily be simpli�ed through the background Einstein equation (1.27)
to express the second term in (1.39) in terms of the perturbation only and see that it cancels
with the last term:

R
(0)
MPg

PQhQN =
2Λ

D − 2
gMPg

PQhQN

=
2Λ

D − 2
δQMhQN

=
2Λ

D − 2
hMN

(1.40)

The last step is to impose the de Donder gauge condition GN = 0. We end up with the following
equation:

−1

2
�(0)hMN +R(0)S

MNPg
PQhQS = 0 (1.41)

Again we obtain the wave equation but this time with a source term due to the background
curvature.

As we didn't impose any restriction on the extra dimension this derivation is identical to
that in four dimensions with a curved background. As mentioned in this section, the di�erence
is that we can assume a Minkowski background in four dimensions, provided we restrict ourself
to the study of waves travelling over distances that are short enough to neglect the curvature of
space-time. With extra dimensions this doesn't hold anymore because we don't know anything
about these dimensions.
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Background metric speci�cation

In order to solve equation (1.41), we need to specify the background metric. As we want
the four dimensional part of the D dimensional space-time to have the same properties as in
General Relativity, we choose a background metric such that the four dimensional background
is maximally symmetric. According to [28], the most general metric satisfying this requirement
is given by:

ds2 = e2A(y)g̃µν(x)dxµdxν + gmn(y)dymdyn (1.42)

where the x coordinates represent the four dimensional space-time and the y coordinates repre-
sent the extra dimensions. Thus the Greek indices can take the values 0, 1, 2, 3 and the Latin
indices can take values from 4 to N-1. The manifold including only the extra dimensions will
be denoted byM in the following. The factor e2A(y) is called the warp factor. It allows to have
a scaling factor of the four-dimensional metric that is di�erent depending on the position in
theM manifold.

Each point in M corresponds to a di�erent four dimensional space-time. Each of them
will be referred to as a brane. We set the coordinate of the four dimensional brane we live in
to (xµ, 0). Fig. 1.1 represents the situation for a three dimensional space. An hypothetical
observer see its universe as being two dimensional. In addition to these two dimension that can
be perceived there exists a third extra dimension. In prevision of the compacti�cation of the
extra dimensions in the next chapter the extra dimension in the �gure is compact. This means
that the point y = 0 and y = L inM are the same.

x1

x2

y = 0 y = L

Figure 1.1: Illustration of di�erents two dimensional branes (represented in gray), along a
compact extra dimension (represented in blue).

It is important to note that imposing the metric (1.42) breaks the general covariance in
D dimensions. The only restriction on g̃µν is that it doesn't depend on the coordinate of the
extra dimensions ym. The di�eomorphisms left are thus all the di�eomorphism including only
the four-dimensional coordinates xµ. For this reason g̃µν is a four-dimensional tensor. The
same reasoning can be made for gmn. This is a tensor with respect to all the di�eomorphisms
implying only the extra-dimensional coordinates ym.
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We can now take into account the form of the metric (1.42) to rewritte the wave equation
(1.41). First we calculate the Christo�el symbols:

Γµνπ = Γ̃µνπ

Γµνp = Γ̃µpν =
1

2
δµν e
−2A∂pe

2A

Γmνπ = −1

2
g̃νπg

mn∂ne
2A

(1.43)

where Γ̃µνπ are the Christo�el symbols built from the metric g̃µν and Γmnp those built from gmn.
Then we can calculate the covariant derivatives of the pertubation metric and write them as
follows:

∇πhµν = ∇̃πhµν +
1

2
g̃πµhνmg

mn∂ne
2A +

1

2
g̃πνhµmg

mn∂ne
2A (1.44a)

∇πhµn = ∇̃πhµn +
1

2
g̃πµhmng

mp∂pe
2A − 1

2
hµπe

−2A∂ne
2A (1.44b)

∇πhmn = ∂πhmn −
1

2
e−2Ahπm∂ne

2A − 1

2
e−2Ahπn∂me

2A (1.44c)

∇qhµν = ∂qhµν − hµνe−2A∂qe2A (1.44d)

∇qhmν = ∇qhmν −
1

2
hmνe

−2A∂qe
2A (1.44e)

where ∇̃π and ∇q are the covariant derivatives built from the Christo�el symbols Γ̃µνπ and
Γmnq respectively. We can now calculate the d'Alembertian of the perturbation metric hMN .

Introducing the notations �̃4 = g̃µν∇̃µ∇̃ν and ∆M = gpq∇p∇q, the d'Alembertian �(0)
D hMN

can be rewritten as follow:

�(0)
D hµν = e−2A�̃4hµν + ∆Mhµν − hµν∆M ln e2A − 3

2
e−4Ahµνg

mn∂me
2A∂ne

2A

+e−2A∇̃µhνmg
mn∂ne

2A + e−2A∇̃νhµmg
mn∂ne

2A +
1

2
e−2Ag̃µνhmng

mrgnp∂re
2A∂pe

2A
(1.45a)

�(0)
D hµn = e−2A�̃4hµn + ∆Mhµn + e−2Agpq∇phµn∂qe

2A − 3

2
e−4Ahµmg

mp∂pe
2A∂ne

2A

−e−4Ahµngpq∂pe2A∂qe2A −
1

2
hµn∆M ln e2A

−e−4Ag̃πρ∇̃πhµρ∂ne
2A + e−2Agpq∂µhnp∂qe

2A

(1.45b)

�(0)
D hmn = e−2A�̃4hmn + ∆Mhmn + 2e−2Agpq∂pe

2A∇qhmn − 2e−4Agpq∂pe
2Ahqm∂ne

2A

−e−4Ag̃πρ∇̃πhρm∂ne
2A − e−4Ag̃πρ∇̃πhρn∂me

2A +
e−4A

2
h4∂me

2A∂ne
2A

(1.45c)

The last step is to calculate the background Riemann tensor. We note R̃π
µνσ and Rp

mns the

Riemann curvature tensors built from Γ̃µνπ and Γmnp. We �nd:

R(0)P

µνS = δσSδ
P
π

(
R̃π

µνσ +
1

2
e−2Aδπσ g̃νµg

pq∂pe
2A∂qe

2A − 1

2
e−2Aδπν g̃σµg

pq∂pe
2A∂qe

2A

)
+δsSδ

P
n

1

2
g̃µνg

np

(
∇s∂pe

2A − 1

2
e−2A∂pe

2A∂se
2A

) (1.46)
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R(0)P

µmS = δσSδ
P
n

1

2
g̃σµg

np

(
−∇m∂pe

2A +
1

2
e2A∂pe

2A∂me
2A

)
(1.47)

R(0)P

mnS = δsSδ
P
p R

p
mns + δσSδ

P
π

1

2
δπσ

(
∇n

(
e−2A∂me

2A
)

+
1

2
e−4A∂me

2A∂ne
2A

)
(1.48)

Eventually, we can write all the components of the Einstein equation:

e−2A�̃4hµν + ∆Mhµν − hµν∆M ln e2A − 2R̃π
µνσg

σρhρπ

−1

2
e−2Agpq∂pe

2A∂qe
2A
(
g̃νµh4 + 2hνµe

−2A)
+e−2A∇̃µhνmg

mn∂ne
2A + e−2A∇̃νhµmg

mn∂ne
2A

−g̃µνhmngmrgnp
(
∇r∂pe

2A − e−2A∂re2A∂pe2A
)

= 0

(1.49)

e−2A�̃4hµn + ∆Mhµn + e−2Agpq∇phµn∂qe
2A

+e−2Ahµmg
mp∇n∂pe

2A − 2e−4Ahµmg
mp∂pe

2A∂ne
2A

−e−4Ahµngpq∂pe2A∂qe2A −
1

2
hµn∆M ln e2A

−e−4Ag̃πρ∇̃πhµρ∂ne
2A + e−2Agpq∂µhnp∂qe

2A = 0

(1.50)

e−2A�̃4hmn + ∆Mhmn + 2e−2Agpq∂pe
2A∇qhmn

−2e−4Agpq∂pe
2Ahqm∂ne

2A − 2Rs
mnpg

pqhqs

−e−4Ag̃πρ∇̃πhρm∂ne
2A − e−4Ag̃πρ∇̃πhρn∂me

2A − h4∇n

(
e−2A∂me

2A
)

= 0

(1.51)

The gauge condition GN = 0 that we imposed to obtain the previous equation can be
written:

e−2Ag̃πρ∇̃πhρν −
1

2
e−2A∇̃ν h̃4 −

1

2
∇νhN + gpq∇phqν + 2hpνg

pqe−2A∂qe
2A = 0 (1.52a)

gpq∇phqr −
1

2
∇rhN −

1

2
e−2A∇rh̃4 + gπρ∇̃πhρr + 2hmrg

mpe−2A∂pe
2A = 0 (1.52b)

Warp factor and e�ects on the cosmological constants

We assume a maximally symmetric four-dimensional space-time. Thus we can write, according
to [28],

R̃π
µnuσ =

Λ4

3
(δπν g̃µσ − δπσ g̃µν) (1.53)

with

Λ4 =
1

4
R̃4 (1.54)

Then one can obtain the two following relations:

2D

D − 2
ΛD = R

(0)
D = e−2AR̃4 +RM − e−4A

(
∂e2A

)2 − 4e−2A∆Me
2A (1.55)

4Λ4 = R̃4 =
4

D − 4
e2ARM + 2

D − 2

D − 4
e−2A

(
∂eA

)2
+ 2

D − 8

D − 4
∆Me

2A (1.56)
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We see that Λ4 is equal to a combination of e2ARM,
(
∂eA

)2
and ∆Me

2A and that ΛD is a

equal to a combination of e−2Ae2ARM, e−2A
(
∂eA

)2
and e−2A∆Me

2A. This overall factor e2A

can lead to a signi�cant di�erence in the two cosmological constants.

In the next chapter we will assume a constant unitary warp factor and a Minkowski four
dimensional space time. The assumption of a constant warp factor implies that Eq. (1.56) can
now be written as:

2D

D − 2
ΛD = R

(0)
D = R̃4 +RM (1.57)

4Λ4 = R̃4 =
4

D − 4
RM (1.58)

From this point, we deduce that for a four dimensional Minkowski space time, which is �at
(R̃4 = 0 = Λ4), the scalar curvature and the cosmological constant in D dimension are both
equal to zero. Moreover ΛD = 0 implies through Eq. (1.27) that:

R
(0)
MN = 0 (1.59)

Thus if we impose a constant unitary warp factor and a Minkowski four dimensional space time,
the extra dimensions must be Ricci �at, i.e. R

(0)
mn = 0. We will make this assumption later on.
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Chapter 2

Gravitational waves with extra dimensions

2.1 Wave equations with �at extra dimensions

2.1.1 Warp factor speci�cation

The components (1.49), (1.50) and (1.51) of the wave equation in D dimensions look very com-
plicated due to the presence of the warp factor. In order to simplify these equations, we will
assume that the warp factor is constant, as mentioned in the previous chapter. Thus everywhere
in the manifoldM the in�nitesimal element of length is strictly the same at the same location
in each brane. We thus describes a in�nite set of four-dimensional branes strictly identical
considering only the background metric. All those branes are linked through the manifoldM.
Only the perturbation metric will di�er from one another.

We can set e2A = 1 as every other value for the constant warp factor is equivalent. The
four-dimensional metric e2Ag̃µν is now equal to g̃µν = gµν so that one drops the tilde notation.
The component of the Einstein equation (1.49), (1.50) and (1.51) can now be written:

�4hµν + ∆Mhµν = 2Rπ
µνσg

σρhρπ (2.1a)

�4hµn + ∆Mhµn = 0 (2.1b)

�4hmn + ∆Mhmn = 2Rs
mnpg

pqhqs (2.1c)

The de Donder gauge condition can be written:

gπρ∇πhρν + gpq∇phqν −
1

2
∇νh4 −

1

2
∇νhN = 0 (2.2a)

gπρ∇πhρr + gpq∇phqr −
1

2
∇rh4 −

1

2
∇rhN = 0 (2.2b)

In the four-dimensional case, one usually sets the background metric to be Minkowski. The
curvature of space-time caused by the Earth is negligible along the arm of an interferometer.
Between the source and the Earth space is �at in the Friedmann-Lemaître-Robertson-Walker
metric and one assumes that the expansion of the universe is negligible as the source only
go to moderate redshifts. In order to compare the gravitational waves of the theory with
extra dimensions with the ones of General Relativity, we also set gµν = ηµν in the theory with
extra dimensions. Thus the right-hand side of equation (2.1a) vanishes. Also all the covariant
derivatives with respect to four-dimensional coordinates are now equal to partial derivatives
because these derivatives are built using only the four-dimensional metric. The gauge condition
can be simpli�ed further:
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∂ρhρν + gpq∇phqν −
1

2
∂νh4 −

1

2
∂νhN = 0 (2.3a)

∂ρhρr + gpq∇phqr −
1

2
∇rh4 −

1

2
∇rhN = 0 (2.3b)

We notice that imposing a Minkowski background leads to the same residual gauge trans-
formation for the four-dimensional perturbation hµν . The decomposition of the metric into a
background metric and a perturbation metric can be rewritten as:(

gDµν gDµn
gDmν gDmn

)
=

(
ηµν 0
0 gmn

)
+

(
hµν hµn
hmν hmn

)
(2.4)

gD being the metric of the D-dimensional manifold. Thus the transformations of hµν with re-
spect to the four-dimensional coordinate xµ that leave gDµν = ηµν +hµν unchanged are the same
as for the four-dimensional theory. These are the Lorentz transformations and the in�nitesimal
gauge transformations.

2.1.2 Compacti�cation

We must now discuss the compacti�cation of the extra dimensions. Compacti�cation is not
required in order to reproduce General Relativity as shown in [29]. However the assumption of
non-compact extra dimensions requires that the four-dimensional metric depends on the coor-
dinates of the extra dimensions. As we impose e2A(y) to be constant, the metric is independent
of the extra ym coordinate and we must impose compact extra dimensions.

There are many possibilities. The extra dimensions are compact and this implies that the
internal laplacian operator ∆M has a discrete basis of eigenfunctions. The compacti�cation is
formally imposed by choosing these eigenfunctions. We are restricted to a Ricci-�at manifold
because we have made the assumption that the four-dimensional space-time is �at as discussed
at the end of last chapter. Well-known examples are the Calabi-Yau manifolds used in string
theory [30]. However we will turn to a much simpler type of manifold in the following: the �at
torus TN .

An N-dimensional �at torus corresponds to a manifold where each dimension has its begin-
ning identi�ed to its end. For example, a cube with each face identi�ed to the opposite face is
a three-dimensional �at torus. This implies the following Dirichlet boundary conditions on the
perturbation metric:

hMN(yn = 0) = hMN(yn = ln) (2.5)

where ln is the length of the nth dimension. The solutions are combinations of the harmonic
eigenfunctions of the discrete basis:

hMN(x, y) =
∑
k

hkMN(x)ωk(y) (2.6)

where hkMN are the Kaluza-Klein modes and the eigenfunctions ωk are solutions of the eigenvalue
problem:

∆Mωk = −m2
kωk (2.7)

19



with mk a real number. Equations (2.6) and (2.7) are general and in the case of the �at torus
the eigenfunctions are simply given by ωk = eik·y and {k} is a set of N-dimensional real vectors
isomorphic to ZN . The eigenvalue associated to k = 0 is by convention m0 = 0 and we can
write:

k =
2πkn̂

Ln̂

(2.8)

where k is an integer, n̂ a unitary vector ofM and Ln̂ the length ofM along the direction n̂.

In conclusion, in this thesis we shall study waves in a four-dimensional space-time with N
extra dimensions, assuming

• A constant warp factor.

• A Minkowski four-dimensional space-time that implies a Ricci-�at manifoldM and a null
cosmological constant Λ = 0

• A �at torus manifoldM that implies harmonic eigenfunctions as a basis of the internal
laplacian operator ∆M

Considering all these assumptions, the components of the wave equation in D dimension reads:

�4h
k
µν −m2

kh
k
µν = 0 (2.9a)

�4h
k
µn −m2

kh
k
µn = 0 (2.9b)

�4h
k
mn −m2

kh
k
mn = 2Rs

mnpg
pqhqs (2.9c)

where we recognise the Klein-Gordon equation. The expression of the gauge conditions (2.2a)
and (2.2b) are unchanged.

2.2 Gravitational waves in 4 dimensions

As before, I will remind the reader of the main features of gravitational waves in 4 dimenions
before discussing the case with extra dimensions. The devellopement presented here are based
on [27]. We will study plane waves in the following for simplicity. A plane wave solution of
equation (1.17) is:

hµν = Aµν cos (kαxα) (2.10)

with kµ and Aµν that must satisfy:

kαk
α = 0 (2.11)

Aµαk
α = 0 (2.12)

The �rst constraint means that the velocity of the wave is the speed of light c due to the
d'Alembertian operator of equation (1.17). The second is imposed by the de Donder (or Lorenz)
gauge condition (1.16).

As seen in the �rst chapter the de Donder gauge condition leads to a wave equation but it
doesn't �x completely the gauge because in�nitesimal gauge transformation, Eq. (1.6),

xα = xα + ξα
(
xβ
)
, |∂βξα| � 1
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are allowed. There are thus four degrees of freedom left to �x. A very common choice for
gravitational waves is the Transverse-Traceless gauge or TT gauge. To impose the TT gauge
condition, we must choose a 4-velocity uα that is time-like. This 4-velocity corresponds to
a choice of a Lorentz reference frame. This gauge choice implies further constraints on the
solution which are:

Aµαu
α = 0 (2.13)

Aαα = 0 (2.14)

In this gauge the amplitude of each mode of the solution and thus the solution hµν is transverse
to the direction uµ and traceless. The equation (1.14) that de�nes hµν implies:

hµν = hµν +
h
α

α

2
ηµν (2.15)

so that hµν = hµν in this gauge and both are transverse and traceless.

Equation (2.13) is a set of four scalar equations but it adds only three constraints on Aµν
because they are linearly dependent due to Eq. (2.12) ( kαAαβu

β = 0 ). Taking into account
the scalar equation (2.14) adds another constraint on Aµν . So the transverse-traceless gauge
add a total of four constraints and thus �xes completely the gauge.

Because hµν = hµν , all the constraints on Aµν can be express through constraints on hµν
directly. There are eight of them. Choosing uµ so that u0 = 1 and uj = 0 for simplicity (All
the possible choice of uα are linked by a Lorentz transformations):

hµ0 = 0 (2.16)

3∑
j=1

∂jhkj =
3∑
j=1

ikjhkj = 0 (2.17)

3∑
k=1

hkk = 0 (2.18)

By choosing kµ = (1, 0, 0, 1), so that the wave propagate in the z direction, Eq. (2.17) becomes
ikzhkz = hkz = 0. Thus we are left with only hxx, hyy and hxy = hyx being non-zero. Taking
into account the traceless condition (2.18), we eventually �nds that the wave only has two
degree of freedom h+ and h× such that:

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (2.19)

To visualize the e�ect of a gravitational wave, we can choose Fermi's normal coordinates
system as the observer frame of reference (This implies that the observer is moving along a
geodesic). In this coordinate system, the metric at the location of the observer is Minkowski
and its �rst derivative is zero: it is the inertial frame of reference moving with a particle falling
freely. In this reference frame, one can calculate the geodesic deviation of a ring of free falling
particles centered on the observer. From the observer's point of view, the distances between him
and all the particles of the ring oscillate so that the observer sees the ring changing according
to the patterns of Fig. 2.1:
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Figure 2.1: One period of the h+ (above) and the h× (below) modes

2.3 Gravitational waves in D dimensions

In this section, we calculate the solutions to equation (2.9). We are only interested in the
solutions for hµν and need only to check compatibility with the other equations and the gauge
conditions.

2.3.1 The massless mode

The �rst di�erence with the four-dimensional case is that we must solve an equation for each
mode. As the zero-mode is associated with the eigenvalue m0 = 0, the Klein-Gordon equation
reduces to the wave equation for this mode. Also, we notice that the eigenfunction associated to
the zero-mode is constant: ω0 = e0·y = 1. Equivalently the solution of the di�erential equation
∆Mω0 = 0 is a linear function because it is a second order di�erential equation and the only
way a linear function can satisfy the Dirichlet boundary conditions (2.5) is to be constant. Thus
∇phMN = 0, ∇ph4 = 0, ∇phN = 0 and the gauge condition is simpli�ed:

∂ρhρν −
1

2
∂νh4 −

1

2
∂νhN = 0 (2.20a)

∂ρhρr = 0 (2.20b)

The second gauge condition implies that �4hµn = 0 is automatically satis�ed. Moreover equa-
tions (2.9) and (2.20) contain no terms with hµν or hmn such that it completely decouples from
the other equations. As we are interested only in the behaviour of the four-dimensional part of
the wave hµν , the two equations discussed before can be omitted.

Furthermore, the four-dimensional wave is coupled to the extra dimensions only through hN
via the �rst gauge condition. We notice that taking the trace of equation (2.9c) by multiplying
it with gmn we obtain for the right-hand side:
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2gmnRs
mnpg

pqhqs = 2gmngrsRrmnpg
pqhqs

= −2gmngrsRmrnpg
pqhqs

= −2grsRrpg
pqhqs

= 0

The last equality is due to the fact that we imposed the four-dimensional space-time to be
Minkwoski and, as mentioned in the �rst chapter, this assumption implies that the manifold
M is Ricci �at: Rrp = 0. Thus, we are left with:

�4hµν = 0 (2.21a)

�4hN = 0 (2.21b)

and the gauge condition (2.20a). From now on will note the zero mode amplitudes h0µν and h
0
N

As mentioned before, h0µν transforms like in the four-dimensional case. The only di�erence
is that the de Donder gauge is di�erent due to the presence of the term −1

2
∇νh

0
N . Thus the

counting of the degrees of freedom is identical and the perturbation h0µν has two degree of
freedom. The trace hN has obviously one degree of freedom. We notice that h0N is a scalar
�eld because the trace of a tensor is independent of the coordinate basis. The waves we study
through this equation thus have 3 degrees of freedom, two in the four-dimensional space-time
and one in the extra dimensions, linked to each other through the gauge condition.

Plane wave solutions of Eq. (2.21) are:

h0µν = A0
µν cos (kαxα) (2.22)

h0N = A0
N cos (kαxα) (2.23)

with kµ, A0
µν and A

0
N that must satisfy:

kαkα = 0 (2.24)

kαA0
αν −

1

2
kνA

0
4 −

1

2
A0
N = 0 (2.25)

We can choose arbitrarily the propagation axis. Taking kµ = (ω/c, 0, 0, p), the gauge condition
can be written:

ω

c
A0

00 + k A0
03 +

1

2

ω

c
A0

4 = −1

2

ω

c
A0
N (2.26a)

ω

c
A0

10 + k A0
13 = 0 (2.26b)

ω

c
A0

20 + k A0
23 = 0 (2.26c)

ω

c
A0

30 − k A0
33 +

1

2
k A0

4 =
1

2
k A0

N (2.26d)

As in the four-dimensional case, we impose the transverse condition with respect to a direc-
tion given by the four-vector uα. However, we notice that the de Donder condition doesn't imply
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that the four scalar equations of the transverse condition are linearly dependent: kβhβαu
α 6= 0.

The consequence is that there is no degree of freedom left to impose the traceless condition as
the gauge is already completely �xed. Thus the presence of extra dimension forces the wave
to have a non-zero trace. In fact all the calculations and hypotheses for the massless mode are
identical to the four-dimensional case. However where we imposed a traceless condition in four
dimensions we still impose a traceless condition but, this time, including the extra dimension
in the computation of the trace. So we did impose the traceless condition exactly as in four
dimensions but the di�erence here is that we are only interested in the four-dimensional part
of the wave and not the whole wave.

Indeed, we impose the transverse condition:

A0
µαu

α = 0 (2.27)

and choose the four-vector uα = (1, 0, 0, 0) as in four dimensions so that A0
µ0 = A0

0µ = 0. Using
this last result in equations (2.26) we �nd A0

13 = A0
23 = A0

33 = 0 and A0
4 = A0

11 + A0
22 = −A0

N ,
so that:

A0
µν =


0 0 0 0
0 A0

11 A0
12 0

0 A0
21 −A0

11 − A0
N 0

0 0 0 0

 (2.28)

and

h0µν =


0 0 0 0
0 h011 h012 0
0 h021 −h011 − h0N 0
0 0 0 0

 cos (kαxα) =


0 0 0 0
0 h011 h012 0
0 h021 −h011 − h0N 0
0 0 0 0

 cos

(
ω

(
t− x3

c

))
(2.29)

We know that any tensor can be split as follow:

(Tµν) =
T

N
1N×N + (Bµν) (2.30)

where T is the trace of the tensor (Tµν), N the number of dimension, 1N×N the identity and
(Bµν) a traceless tensor. The trace is thus linked to the isotropic part of the tensor. In this case,
we expect that an isotropic mode in the transverse plane in addition to the two polarisation
already present in the four-dimensional case. Thus we can decompose the expression of h0µν
into a sum of an isotropic tensor and a traceless tensor as in (2.30) .The isotropic part has one
degree of freedom and the traceless part has two degrees of freedom that can be identify to the
two mode of the four-dimensional theory:

h0µν =

−h0N2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+


0 0 0 0
0 h0+ h0× 0
0 h0× −h0+ 0
0 0 0 0


 cos

(
ω

(
t− x3

c

))
(2.31)

As the additional mode is isotropic, we don't need to compute the geodesic deviation to �nd
its e�ects. From the already known e�ects of the h0+ and h0×, we deduce for h

0
◦ ≡ −h0N/2 that

the e�ect seen by an observer at the center of a ring of particles is given by the patterns on
Fig. 2.2. This oscillation mode is called the breathing mode.
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Figure 2.2: One period of the h0◦ mode

2.3.2 The massive modes

We consider now waves such that mk 6= 0. This means that the waves propagate partially, at
least, in the manifold M. We add to the amplitude of the massive mode a subscript k: hkµν .
As before, we are interested only in the four-dimensional part of the waves. The equation for
hkµν is given in (2.9a). We recognise the Klein-Gordon equation. A plane wave solution of this
Klein-Gordon equation is:

hkµν = Ak
µν cos (kαxα) (2.32)

but this time kµ =
(
ω/c,~k

)
must satisfy:(ω

c

)2
= m2

k + ~k2 (2.33)

which is a dispersion relation that prevents kµ from being light-like. Thus all the mode with
mk 6= 0 travel slower than light and previous four-dimensional gravitational waves. We call mk

a mass because the Klein-Gordon equation describes the behavior of massive particle despite
the fact that the equation considered here is classical. However, as these modes travel slower
than light their velocity depends on the observer reference frame as for any massive particle.

The gauge conditions (2.3a) and (2.3b) don't change. The di�erence with the massless
mode is that the term gpq∇phqν doesn't vanish because the four-dimensional part is no longer
constant with respect to the extra dimensions. For a plane wave the de Donder gauge condition
become:

(
kαAk

αν −
1

2
kνA

k
4

)
cos (kαxα) = − (gmn∇mhnµ)k +

1

2
∂νh

k
N (2.34a)

∂ρhρr −
1

2
∇rh4 = −gpq∇phqr +

1

2
∇rhN (2.34b)

In four dimensions, all the gauges that satisfy the de Donder gauge condition are linked
by gauge transformations for which �ξµ = 0. In the present situation, we deduce using the
in�nitesimal gauge transformations (1.26) that the de Donder gauge condition (2.3a) imposes
that the gauge transformation satis�es:

�4ξ
k
µ −mkξ

k
µ = 0 (2.35)

We would like to proceeds like in the four-dimensional case and �x completely the gauge.
At �rst sight it seems quite di�cult because we need to take into account the gauge condition
(2.3b). It turns out that equation (2.35) allows to impose:
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∂ρhkρν = 0 (2.36)

and
hk

α

α ≡ hk4 = 0 (2.37)

Satisfying these two conditions adds the following constraints on the gauge transformations
which are:

�4ξ
k
µ + ∂µ∂

νξkν = 0 (2.38)

and
∂νξkν = 0 (2.39)

Taking into account all the constraints that a gauge transformation must satisfy to preserve
the gauge conditions (2.35), (2.38) and (2.39) leads to:

mkξ
k
µ = 0 (2.40)

meaning that all the gauge conditions we imposed completely �x the gauge for the four-
dimensional part. Moreover it is enough to study the four-dimensional part. We don't need
to �x the extra dimensional part of the gauge degrees of freedom because the condition (2.38)
and (2.39) imply that the left-hand side of the gauge condition (2.34a) is always equal to zero.
So, the four-dimensional part of the wave is completely decoupled from the extra-dimensional
part.

The de Donder gauge condition is imposed on the four-dimensional part and the extra-
dimensional part of the wave such that it restricts the number of degrees of freedom of the
whole wave. However as the four-dimensional part and the extra-dimensional part are still
coupled if we consider only the de Donder condition, it doesn't reduce the number of degrees
of freedom of the four-dimensional part. As a consequence, only the additional gauge condition
(2.38) and (2.39) reduce the number of degrees of freedom of the four-dimensional part of the
wave. There are �ve scalar constraints and a four by four symetric matrix has 10 degrees of
freedom. So the four-dimensional massive modes have �ve degrees of freedom each.

Because of the dispersion relation (2.33) we can choose kµ = (mk, 0, 0, 0) so that the gauge
condition (2.38) leads to Ak

0ν = 0. Taking into account (2.38) we �nd:

Ak
µν =


0 0 0 0
0 Ak

11 Ak
12 Ak

13

0 Ak
12 Ak

22 Ak
23

0 Ak
13 Ak

23 −Ak
11 − Ak

22

 (2.41)

so that

hkµν =


0 0 0 0
0 h1+ h1× h2×
0 h1× h2+ h3×
0 h2× h3× −h1+ − h2+

 cos
(
mkc

2t
)

(2.42)

All the patterns of the modes are identical to the patterns shown previously. The oscillation
mode denoted by a + sign deforms a ring of particle into a ellipse with the axis along the
background coordinates axes. The oscillation modes denoted by a × sign correspond to ellipses
with axes rotated about 45 degrees with the spatial axes. The coordinates that correspond to
one mode de�ne the plane in which it deforms space. For example, the mode h3× deforms a ring
of particles in the yz-plane as an ellipse with axes rotated about 45 degree with respect to the
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directions y and z.

We see that the h+ modes can generate breathing modes. For example, the h1+ and the
h2+ modes generate a breathing mode in the xy-plane if these modes oscillate with the same
amplitude and the same phase. As the only condition that couples the diagonal components
of hkµν to each other is the traceless condition, we could have choose h1+ and h3+ to be arbitrary
and h2+ would be equal to −h1+−h3+. So the breathing mode can appear in any of the xy-plane,
xz-plane and yz-plane.

These massive modes travel slower than light or massless gravitational waves as mentioned
before. The reason behind that is that the massive modes travel at the same speed as other
gravitational waves but partially in the extra dimensions whereas the massless modes travel
purely in the four-dimensional brane. For a �xed frequency, the dispersion relation (2.33) tell

us that the three-dimensional wave vector ~k can only take discrete values depending on the
mass of the mode because the latter takes discrete values. For a �xed wave vector in the three-
dimensional space the set of frequencies takes discrete values for the same reason. The mass is
simply the wave vector of the mode in the extra dimensions and the dispersion relation imposes
that the D-vector kM is light-like.

Minimal frequency of the massive modes

The massive modes satisfy the dispersion relation (2.33). Hence there exist a minimal frequency

for these massive modes. This frequency corresponds to a stationary wave, i.e. ~k = ~0. For such
waves the dispersion relation is then:

ω

c
= mk (2.43)

The masses mk of the waves are linked to the size of the extra dimensions by Eq. (2.8).
The relation between the frequency and the extra dimension is thus:

ω

c
=

2πn

L
(2.44)

where L is given by:

L =

√√√√ D∑
i=1

aiLi , ai ∈ {0, 1} (2.45)

Hence the minimal frequency is evaluated by replacing L by its maximal value and setting
n = 1:

ωmin =
c√
D∑
i=1

Li

≡ c

Lmax
(2.46)

where ωmin is express in Hertz.

According to Fig. 3, current gravitational wave interferometers and those coming in the
following years are able to detect frequencies that ranges roughly from 10−4 Hz to 104 Hz. We
can take the logarithm of Eq. (2.46):

log (ωmin) = log (c)− log (Lmax) (2.47)

27



Now we suppose that all the extra dimensions have the same length so that we can easily
introduce the number of extra dimension in the last equation. With this assumption we can
write:

Lmax =

√√√√ D∑
i=1

Li =

√√√√ D∑
i=1

L =
√
DL (2.48)

where L is the size of one extra dimension. Then we can write:

log (ωmin) = log (c)− log
(√

DL
)

(2.49)

If there are only a few extra dimensions, we deduce that any potential signature of massive
modes must have a high frequency because we suppose that the extra dimensions are small.
For L = 1µm and D = 10, we get ωmin ' 1014 Hz. The frequency is thus too high to be
detected by current or coming interferometers. For a frequency a few order of magnitude lower,
the length of the extra dimensions must be a few order of magnitude larger than a micrometer.
This is impossible because we suppose that we can't perceive them because of their small size.

On the other hand, if the number of extra dimensions is very large then we have no clue
on the minimal frequency because it could belong to the frequency range that we can detect
but it could also be much smaller. The frequencies of the massive modes are only bounded
from below. Thus we could detect massive mode even if the minimal frequency is several orders
of magnitude below the detection threshold of interferometers. However the number of extra
dimensions becomes extremely high. For L = 1 µm and ωmin = 1 Hz, we �nd D ' 1029...
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Chapter 3

Existence of sources for the new modes

The mathematical developments in the previous chapters lead to di�erential equations allowing
a new polarization and new modes - the Kaluza-Klein (KK) modes - of waves. We must now
address the natural question: can we expect these new waves to be excited? The answer is
not obvious because we will suppose that matter can only move in the four dimensional brane
that we perceive. We will make this assumption because we are sure that matter can travel
in four dimensions and thus our conclusions will only depend on the existence of the extra
dimensions. In other words, we analyse whether or not gravitational waves in extra dimensions
can be produced by matter that cannot move in these extra dimensions. Before that we will
brie�y review the emission of gravitational waves in General Relativity.

3.1 Sources in four-dimensional space-time

A source simply corresponds to a non-zero stress-energy tensor in the Einstein equation. The
linearised Einstein equation with a source term is written:

�hµν = −16πTµν (3.1)

in the Lorenz gauge. We can de�ne hµν and hµν and impose the gauge condition as we did in
the �rst chapter in order to linearise the theory. Far away from the source, the interpretation
of hµν still holds because we consider space-time to be Minkowski there. However, in the region
of space-time where the source is located the gravitational �eld could be strong (and is strong
in the case of neutron star or black hole binaries that produce the waves that we are able to
detect) and in this case the interpretation of hµν as a perturbation breaks down and the wave
equation is false.

The stress-energy tensor satis�es the conservation relation:

∇αT
αβ = 0 (3.2)

In the case of a Newtonian system, i.e. the gravitational �eld is well described by Newton's
law of gravity (slow motion source), the last equation reduces to [27]:

∂αT
αβ = 0 (3.3)

The solution of the inhomogeneous equation (3.1) is given by:

hµν = 4

∫
R3

1∣∣∣~r − ~r′∣∣∣Tµν
(
t−
∣∣∣~r − ~r′∣∣∣ , ~r′) d3~r′ (3.4)
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The integration is made over all space but we assume that the curvature of space-time vanishes
very quickly so that space-time between the source and the observer is Minkowski. Thus we
can consider that Tµν = 0 outside a spherical spatial region V with a radius R containing the

source so that the integration is made on this sphere. This implies that the integrand ~r′ takes
only values much smaller than ~r the distance to the source. The integral reduces to:

hµν =
4

r

∫
V

Tµν

(
t− |~r| , ~r′

)
d3r′ (3.5)

from which we deduce that the sources emit spherical waves as the expression of the amplitude
h only depends on the modulus of the radius. Far away from the source the observer can thus
assume that these waves are locally plane waves. The situation is represented schematically in
Fig. 3.1.

×Observer

|~r|

2R� |~r|

Not Minkowski : gµν 6= ηµν

Minkowski background, T µν = 0

Figure 3.1: Gravitational wave from a binary system in the far �eld approximation

We will now evaluate this integral. To do that we de�ne the quadrupole moment:

Qkl =

∫
V

xl xk T00

(
t, ~r′
)
d3r′ (3.6)

and we calculate its second temporal derivative. We start with the �rst temporal derivative:
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∂2

∂t2
Qkl =

∫
V

xl xk ∂
0T00 d

3r′

=

∫
V

xl xk
(
−∂iTi0

)
d3r′

= −
∫
V

(
∂i (Ti0 xk xl)− Ti0 δil xk − Ti0 xl δik

)
d3r′

= −
∫
S

Ti0 xk xl d
2r′ −

∫
V

(
−Ti0 δil xk − Ti0 xl δik

)
d3r′

=

∫
V

(Tl0 xk + Tk0 xl) d3r′

where S is the boundary of the spherical region V . On this boundary the stress-energy tensor
is everywhere equal to zero. We then calculate the second derivative:

∂2

∂t2
Qkl =

∫
V

(
∂0Tl0 xk − ∂0Tk0 xl

)
d3r′

=

∫
V

(
−∂iTli xk − ∂iTki xl

)
d3r′

=

∫
V

(
−∂i (Tli xk) + Tli δ

i
k − ∂i (Tki xl) + Tki δ

i
l

)
d3r′

=

∫
S

−Tli xk d2r′ +
∫
V

Tli δ
i
k d

3r′ −
∫
S

Tki xl d
2r′ +

∫
V

Tki δ
i
l d

3r′

= 2

∫
V

Tkl d
3r′

From this results we obtain:

hkl =
2

r

∂2

∂t2
Qkl (t− ~r) (3.7)

This expression can be projected onto the TT gauge with the use of the projector:

Pij = δij − ninj ni =
xi
r

(3.8)

We obtain:

hTTkl =
2

r

∂2

∂t2

(
PkiQijPjl −

1

2
Pkl (PijQji)

)
(3.9)

where PkiQijPjl is the projection on the transverse plane and 1
2
Pkl (PijQji) is the trace.

3.2 Sources of the new waves

We suppose that matter can't travel in the extra dimensions. This implies that TMN 6= 0 only
if M = µ and N = ν. Thus we have to solve the following equations:

�4hµν + ∆Mhµν = −16πTµν (3.10a)

�4hµn + ∆Mhµn = 0 (3.10b)

�4hmn + ∆Mhmn = 0 (3.10c)
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We are only interested in the four-dimensional waves. The solution is given by:

hµν = 4

∫
RD−1

1∣∣∣~R− ~R′
∣∣∣Tµν

(
t−
∣∣∣~R− ~R′

∣∣∣ , ~R′) dD−1 ~R′ (3.11)

where ~R and ~R′ ∈ RD−1.

As matter can't travel in the extra dimensions, this implies that we live exclusively in one of
the four-dimensional branes. We set ym = 0 as the position of our brane in the manifoldM. For
each point with ym 6= 0 there is a four-dimensional brane that could be �lled with matter. But
if the extra dimension exists we don't know whether or not the other branes contains matter.
So we will suppose that these branes are empty in order to see if the matter of our brane is
su�cient to create waves with an extra dimensional signature. Mathematically this means that
the previous integral reduces to a three-dimensional integral as in General Relativity because
we suppose a energy-impulse tensor of the form:

Tµν

(
t−
∣∣∣~R− ~R′

∣∣∣ , ~R′) = Tµν

(
t−
∣∣∣~r − ~r′∣∣∣ , ~r′) δD−4 (~y) (3.12)

where ~r and ~r′ ∈ R3 and ~y ∈M.

hµν = 4

∫
R3

1∣∣∣~r − ~r′∣∣∣Tµν
(
t−
∣∣∣~r − ~r′∣∣∣ , ~r′) d3~r′ (3.13)

The right-hand side is exactly the same as in the previous section so that we can conclude:

hµν =
2

r

d2

dt2
Qkl (t− ~r) (3.14)

The previous result is obvious because we supposed that the source is the same as in the four-
dimensional theory. The di�erence is on the left hand side of the equation. The term hµν
contains all the modes and polarizations discussed in the previous chapter. Thus the answer to
the question Can a source in four-dimension excite the new waves ? is yes.

We could also deduce those results without calculation. The four dimensional matter can
bend space-time in various ways. But not all types of curvature of space-time can lead to a
wave. To create a wave, the dynamics of the geometry must allow a particular deformation
of space-time to propagate. In General Relativity only the two polarizations h+ and h× can
propagate. With our hypothesis of extra dimensions and the restriction that matter travels only
in four dimensions we simply add a new mechanism that allows new waves to propagate from
four dimensional sources. However, the addition of this new possibility for gravitational waves
to propagate mean that the energy of the sources will be distributed between more possible
kind of waves. If we express hµν in terms of all the modes we can write:

∞∑
k=0

[
�4h

k
µν −m2

kh
k
µν

]
exp (ik · y) =

2

r

∂2

∂t2
Qkl (t− ~r) (3.15)

3.3 Propagation of the new waves

We would like now to determine the amplitude of the excitation of each mode. We will thus cal-
culate the Green function hµν (x, y) = Gµν (x, y) that is the solution of the di�erential equations
with a pulse as the source term:
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∑
k

[
�4G

k
µν −m2

kG
k
µν

]
exp (ik · y) =

∑
k

ηµνδ
(4) (x− x0) exp (ik · y) (3.16)

x0 is the location of the pulse and is located in the brane at ym = 0. From now on x0 = 0. For
simplicity we now consider a scalar wave Gk and only one extra dimension as in [31] such that
k ∈ RN → k ∈ R. The retarded Green function corresponding to the di�erential problem:

�4G
k −m2

k = δ(4)(x) (3.17)

is given in [31]:

Gk
R = − 1

4πr

∂

∂r

[
J0

(
mk

√
t2 − r2

)
θ (t− r)

]
(3.18)

with J0 the Bessel function of the �rst kind of order 0, t and r are the time and the radius
coordinates respectively and θ is the Heaviside step function. The sum of the J0 function over
all the Kaluza-Klein masses is also given in [31]:

+∞∑
k=−∞

J0

(
2kπ

L

√
t2 − r2

)
=

2L

π

+∞∑
k=−∞

θ
(
t−
√
r2 + 8k2L2

)
√
t2 − r2 − 8k2L2

(3.19)

so that the retarded Green function summed over all the masses, which is also given in [31], is:

GR = − 1

2π2

+∞∑
k=−∞

1

r

∂

∂r

θ
(
t−
√
r2 + 16k2L2

)
√
t2 − r2 − 16k2L2

(3.20)

We now evaluate the derivative and �nd:

GR = − 1

2π2

+∞∑
k=−∞

(
− 1√

r2 + 16k2L2

δ
(
t−
√
r2 + 16k2L2

)
√
t2 − r2 − 16k2L2

+
θ
(
t−
√
r2 + 16k2L2

)
(t2 − r2 − 16k2L2)

3
2

)
(3.21)

This retarded Green function is quite hard to interpret. However we can compare the expression
of the Green function for the massless mode and the massive modes. The two mathematical
expression

δ
(
t−
√
r2 + 16k2L2

)
√
t2 − r2 − 16k2L2

, θ
(
t−
√
r2 + 16k2L2

)
(3.22)

take the same value in the massless and the massive cases. The di�erence is that in the massive
cases these expression are shifted towards the light cone interior. We thus expect the massless
signal to be followed by copies of itself. But these copies will have a smaller amplitude because
the two expression in 3.22 are respectively multiplied by

− 1√
r2 + 16k2L2

< −1

r
∀k 6= 0 (3.23)

1

(t2 − r2 − 16k2L2)
3
2

<
1

(t2 − r2)
3
2

∀k 6= 0 (3.24)

Hence we expect echoes of the massless signal with an amplitude decreasing as the mass of the
wave that produced these echoes increases. The decreasing rate of the echoes will be mentioned
later in this chapter.

33



3.3.1 Propagation of the isotropic massless mode

The isotropic polarization propagates exactly like the other massless modes: they travel within
a brane at the speed of light while stretching and squeezing space in directions perpendicular
to their propagation direction. The di�erence with General Relativity is the presence of other
spatial directions perpendicular to the propagation: the extra dimension. As we have seen this
allows an isotropic transverse polarization because the traceless condition applies to the extra
dimension as well.

However we must keep in mind that we did not discuss the deformation of the extra dimen-
sion when deriving the isotropic polarization. If there are more than one extra dimension then
the isotropic polarization is degenerate because di�erent deformations of the extra dimensions
can lead to an isotropic deformation of the dimensions we perceive. Obviously we can't distin-
guish them because we cannot observe directly the extra dimensions.

Hence the isotropic transverse polarizations share all the features of the usual gravitational
waves predicted by General Relativity. This is just an new polarization of the massless gravi-
tational waves and thus presents no exotic behaviour unlike the massive modes. For example
massive modes create echoes of a gravitational waves. These echoes are created due to the fact
that these massive modes propagate in the extra dimensions as we will see. Massless modes are
thus unable to create echoes because they travel exactly like gravitational waves from General
Relativity.

3.3.2 Visualization of the propagation of massive modes

In order to visualize the propagation of the massive modes which are D-dimensional gravita-
tional waves let us consider a hyperspherical shell wave as illustrated in Fig. 3.2. The abscissa
corresponds to the modulus of the three dimensional position vector and the ordinate corre-
sponds to the modulus of the position vector in the manifoldM. The wave is represented by
the gray area. Because the extra dimensions are compact there is a correspondence between
each interval separated by a dotted line.

Each value of |~y| corresponds to a continuous set of points each associated to a four dimen-
sional brane. In particular, |~y| = nL is an (N-1)-sphere that includes our brane. The points on
this (N-1)-sphere that correspond to our brane satisfy:

L =

√√√√D−4∑
k=1

(αklk)
2 , αk ∈ N (3.25)

with lk the length of the �at kth extra dimension. This condition is easily seen in Fig. 3.3. To
each of these points corresponds a three-dimensional spherical wave.

We can decompose the hyperspherical wave into the harmonic basis of the extra dimension.
This signal in D dimension can then be seen as a combination of massive modes moving through
the extra dimension di�erent copies of the four dimensional signal at di�erent times. Instead
of a one-dimensional pulse on a string the initial image that is transported is now a spherical
shell (in 3D). This shell is then �lled with the echoes propagating through the extra dimensions.

I now discuss whether or not the whole wave travelling in the D dimensions, which is as-
sumed to be emitted from our brane, crosses periodically our brane and when it does if there
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|~y| = 6L

|~y| = 7L

Figure 3.2: Hyper spherical wave

is a limit on the period.

Considering the case of a two-dimensional �at manifoldM and setting the extra coordinates
of our brane as (y1, y2) = (0, 0), the situation can be visualized in Fig. 3.3. The angle θ
determines a direction in the extra dimensions. Along that path, each time a wave travels the
distance l1 along y

1 it travels l1 tan (θ) along y2. In order to cross our brane the angle has to
satisfy the equation:

n1 l1 tan (θ) = n2 l2 , n1, n2 ∈ N (3.26)

which implies that

n2

n1

=
l1 tan (θ)

l2
∈ Q (3.27)

In the case of an N dimensional manifold M this reasoning can easily be generalised by in-
duction. For a three-dimensional M we just needs to consider a direction in the plane y1y2

that satis�es Eq. (3.27) and consider a two-dimensional plane y12y3 where y12 is the linear
combination of y1 and y2 that corresponds to the chosen direction.

Hence not the whole D-dimensional wave will come back to our three dimensional space.
Some parts of it will be lost in the extra dimensions. For those that will cross our brane there
is no limit on the period because for each ratio n2/n1 there exists a wave corresponding to the
ratio n2/(n1 + 1). We thus expect echoes emitted inde�nitely. However we also expect that
geometrical dilution in M will make these massive mode practically undetectable after some
time. The decaying amplitude of the echoes is the geometrical dilution of the hypersphere wave
seen from our four-dimensional perspective.

Now we would like to know how fast the amplitude decreases. The decaying signal formed
by the echoes of an initial �nite duration signal with a constant unit amplitude is calculated
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Figure 3.3: Two dimensional �at manifoldM, each blue cross corresponds to our brane

in [31] in the case of one compact extra dimension and was called tail. A screening e�ect at
the forefront of the pulse is also highlighted in the article. The two e�ects can be seen in Fig.
3.4. Because the tail of the signal is a part of the initial pulse that travelled through the extra
dimension, it is linked to the missing part of the signal at the forefront: the four-dimensional
pulse looses part of its amplitude to produce images that travel in the extra dimension eventu-
ally coming back to produce the tail.

The decreasing rate of the tail is evaluated in [31] and is:

〈Φ(t, ~x)〉tail = (2
5
2 − 5)

G4

2π2

L
1
2T

t
5
2

(3.28)

for t � r and t � T . G4 = G5/L is an e�ective four-dimensional gravitational constant, T is
the duration of the pulse and L is the size of the extra dimension. The brackets means that the
quantity is averaged over time. The reason for that is that the echoes are made of a discrete
set of images which are singularities. The temporal averaging implies that the duration of
the pulse is su�ciently long to create multiple images (T � L/c). The temporal averaging of
these singularities is �nite. We see that this average amplitude decreases with time as a power
law t−

5
2 . In the conclusion of [31], this average amplitude of the tails is compared with the

amplitude of the four dimensional part of the signal Φ0(t, r) = G4/4πr. The upper bound on
this ratio is given by:

χ ∼ cT

√
L

r3
(3.29)

with t ≥ r. As in [31], we consider a signal with a duration T ∼ 104 s which corresponds
to the inverse of lowest frequency that could be detected by the future LISA space-borne
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interferometer. With L ∼ 10−6 m, r ∼ 10 Mpc we �nd χ ∼ 10−26. Hence we don't expect to
observe the massive modes.

Figure 3.4: Amplitude 〈Φ(t, ~x)〉 with respect to time t, from [31]. The amplitude of the wave
is dimensionless and the time coordinate is ct with c set to 1. The plot corresponds to cT = 5
and L = 0.1. The units of t on the abscissa depends on the unit chosen for T and L. Note that
the ration cT/L is not so large so that we can see the typical shape of the signal. With realistic
value for T and L we have seen that the upper bound of the tail is of the order χ ∼ 10−26.
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Chapter 4

Detection of the new modes

The new features that can reveal a D-dimensional gravitational wave withD > 4 are an isotropic
massless polarization and new massive modes. We have just seen in the previous chapters that
these new modes and polarizations can be excited by four-dimensional sources living in our
brane. We would like to know if the new gravitational wave astronomy could be able to collect
evidence for extra compact dimensions.

4.1 Massless mode

4.1.1 E�ect on one interferometer

Current detections of gravitational waves are performed using interferometers. We must now
analyse the e�ect of the new polarizations on the detectors. A gravitational wave interferom-
eter has two arms. On one side of each arm lies the beam splitter and on the other side lies a
mirror. We will now analyse the e�ect of a gravitational wave on one arm of the interferometer,
following [32].

We derived the expression of the gravitational waves in the transverse gauge. In this gauge,
we suppose that the beam splitter is at rest, meaning that it corresponds to its local inertial
frame. The mirror is considered to be initially (before the gravitational wave reaches the
detector) at rest:

dxi

dτ

∣∣∣∣
τ=0

= 0 (4.1)

The movement of the mirror in this coordinates system is given by the geodesic equation:

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0 (4.2)

Especially, at τ = 0:

d2xi

dτ 2

∣∣∣∣
τ=0

= −Γiµν
dxµ

dτ

dxν

dτ

∣∣∣∣
τ=0

= −Γi00
dx0

dτ

dx0

dτ

∣∣∣∣
τ=0

(4.3)

with

Γαµν =
1

2
ηαβ (∂µhνβ + ∂νhµβ − ∂βhµν) (4.4)

In the transverse gauge h0µ = hµ0 = 0 which leads to Γα00 = 0 and
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d2xi

dτ 2

∣∣∣∣
τ=0

= 0 (4.5)

This expression is thus independent of τ . This implies that the mirror stays at the same
coordinate in the transverse gauge reference frame:

dxi

dτ
= 0 (4.6)

The spatial coordinates of the mirror being �xed, the proper time is thus equal to the time
coordinate of the mirror. Indeed, the proper time is given by:

c2dτ 2 = c2dt2(τ)−
(
δij + hTTij

)
dxi(τ)dxj(τ) (4.7)

with

dxidxj =
dxi

dτ

dxj

dτ
dτ 2 (4.8)

As the mirror is static in this coordinate system, i.e. dxi

dτ
= 0 , we obtain:

dτ = dt (4.9)

The physical e�ect of the gravitational wave is to change the distance between the beam
splitter and the mirror:

ds2 = −c2dt2 +

[
1 +

(
h0◦ + h0+

)
cos

(
ω

(
t− x3

c

))]
dx2

+

[
1 +

(
h0◦ − h0+

)
cos

(
ω

(
t− x3

c

))]
dy2

+2h0× cos

(
ω

(
t− x3

c

))
dxdy + dz2

(4.10)

for a plane wave propagating along the z axis. Assuming that the beam splitter and the mirror
are initially located along the x axis at x1 and x2, the distance between the them is given by:

∫ x2

x1

ds =

∫ x2

x1

[
1 +

(
h0◦ + h0+

)
cos

(
ω

(
t− x3

c

))] 1
2

dx (4.11)

= (x2 − x1)
[
1 +

(
h0◦ + h0+

)
cos

(
ω

(
t− x3

c

))] 1
2

(4.12)

The separating distance oscillates between L(1 + (h0◦ + h0+)) and L(1 − (h0◦ + h0+)) with L ≡
(x2 − x1).

More generally, if the beam splitter and the mirror are separated by the spatial three vector
~L, we can write:

s =
(
L2 + hijLiLj

) 1
2 (4.13)

that we can approximate to its �rst order Taylor development in hij:

s ' L+
1

2
hij
LiLj
L

(4.14)

39



An interferometer compares the lengths of its two arms by measuring the phase di�erence
of two light beams that travels back and forth along these two arms. Hence the important
quantity is the di�erence in length between the two arms. If we consider an interferometer with
one arm along x and the other along y and a gravitational wave with a + polarization moving
along z, we can use Eq. (4.14) to write:

sx − sy = Lx +
1

2
hxx

LxLx
Lx
− Ly −

1

2
hyy

LyLy
Ly

(4.15)

If the two arms have the same length then:

sx − sy =
1

2
(hxx − hyy)L (4.16)

We can rewrite the last equation as follow:

sx − sy
L

=
1

2
(~ex~ex − ~ey~ey) : h (4.17)

where ":" is the scalar product of two tensor (A : B =
∑
i,j

AijBij) and with

h =

h+ 0 0
0 h+ 0
0 0 0

 (4.18)

This tensorial expression remains valid if we consider other massless polarizations.

4.1.2 Antenna pattern functions

We would like to determine the antenna pattern functions of an interferometer and their angular
dependence. We �rst de�ne (O′, ~ex′ , ~ey′ , ~ez′) as the basis in which the propagation direction
of the wave corresponds to the ~ez′ axis. In this basis a superposition of the three massless
polarizations can be written as:h◦(t) + h+(t) h×(t) 0

h×(t) h◦(t)− h+(t) 0
0 0 0

 = h◦(t) e◦ + h+(t) e+ + h×(t) e× (4.19)

where we de�ned:

e◦ ≡ ~ex′~ex′ + ~ey′~ey′ (4.20)

e+ ≡ ~ex′~ex′ − ~ey′~ey′ (4.21)

e× ≡ ~ex′~ey′ + ~ey′~ex′ (4.22)

A detector will give us a signal h(t) as the output corresponding to the input (4.19). We can
thus characterize the detector with the tensor D that satis�es:

h(t) ≡ D : (h◦(t) e◦ + h+(t) e+ + h×(t) e×) (4.23)

and we also de�ne the detector pattern functions:

F◦,+,× ≡ D : e◦,+,× (4.24)

The de�nitions of e◦, e+ and e× rely on the choice of the basis vector ~ex′ and ~ey′ . These two
vectors are arbitrary (but must be orthogonal to ~ez′) whereas the vector ~ez′ must be along the
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~ex′

~ey′

~ez′

ψ

~ex′′

~ey′′

Figure 4.1: Rotation in the transverse plane

propagation direction. A unitary change of basis in the plane perpendicular to the propagation
direction is given by a rotation of angle ψ around ~ez′ :

Rψ =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (4.25)

In this new basis, the polarization tensors e◦, e+ and e× are given by Rψe◦,+,×R
T
ψ :

e◦(ψ) =

1 0 0
0 1 0
0 0 0

 (4.26)

e+(ψ) =

cos 2ψ sin 2ψ 0
sin 2ψ − cos 2ψ 0

0 0 0

 (4.27)

e×(ψ) =

− sin 2ψ cos 2ψ 0
cos 2ψ sin 2ψ 0

0 0 0

 (4.28)

We now de�ne the basis (O,~ex, ~ey, ~ez) such that the interferometer is located at the origin O
and has its two arms aligned with ~ex and ~ey. An interferometer is only sensitive to a di�erence
of length between its arms. Hence the matrix D for an interferometer in this basis is:

D =
1

2
(~ex~ex − ~ey~ey) (4.29)

according to Eq. (4.17).

In order to calculate the detector pattern functions we must express e◦, e+ and e× in the
basis (O,~ex, ~ey, ~ez). We can perform the change of basis by rotating ~ex′ , ~ey′ and ~ez′ around
three di�erent axis.
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~ez
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Figure 4.2: Rotation of the source position in the sky

First we �nd the matrix that allows us to express the propagation direction ~ez′ in the
(O,~ex, ~ey, ~ez) basis. We de�ne θ as the angle between ~ez′ and ~ez, and φ as the angle between
~ex and the orthogonal projection of ~ez′ on the ~ex~ey-plane. The vector ~ez′ is expressed in the
interferometer basis via:

R = RφRθ =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (4.30)

Indeed, in the interferometer basis the expression of the propagation vector is given by R~ez′ .
Thus the expression of e◦, e+ and e×, which are tensors, in the interferometer basis are given
by Re◦,+,×(ψ)RT . We then �nd:

F◦ = D : e◦(ψ) = −1

2
sin2 θ cos 2φ (4.31)

F+ = D : e+(ψ) =
1

2

(
cos2 θ + 1

)
cos 2φ cos 2ψ + cos θ sin 2φ sin 2ψ (4.32)

F× = D : e×(ψ) = −1

2

(
cos2 θ + 1

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (4.33)

We see that an interferometer is blind to the isotropic mode if it travels along the direction
perpendicular to the plane in which the detector lies. Considering θ = π/2 the patterns func-
tions of the isotropic polarization is maximum when φ = nπ/2, i.e. when the propagation axis
and one of the arms of the interferometer are aligned.

With three detectors we can detect this isotropic polarization if they are not parallel to
each other. Each interferometer sees the same gravitational wave with a di�erent direction
with respect to its arms, i.e. with di�erent angles θ and φ. The angle ψ is the same for all
interferometers and de�nes the amplitude of the + and × polarizations. Let us choose ψ = 0.
Then the antenna pattern functions of each interferometer is given by:
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F◦ = −1

2
sin2 θ cos 2φ (4.34)

F+ =
1

2

(
cos2 θ + 1

)
cos 2φ (4.35)

F× = cos θ sin 2φ (4.36)

The ideal situation is the following. One detector would see the isotropic polarization with its
maximal amplitude : θ1 = π/2, φ = 0. For this interferometer F◦ = −1/2, F+ = 1/2 and
F× = 0. The observed signal of the �rst interferometer S1(t) is then given by:

S1(t) = F◦S◦(t) + F+S+(t) = −1

2
S◦(t) +

1

2
S+(t) (4.37)

where S◦,+,×(t) are the temporal evolution of the amplitude of the corresponding polarization.

Still in the ideal situation, the two other detectors would be blind to the isotropic polar-
ization. If we choose θ2,3 = 0 then maximize the + response of the second detector and the ×
response of the third by setting φ2 = 0 and φ3 = π/4 respectively. This gives:

S2(t) = F◦S◦(t) + F+S+(t) + F×S×(t) = 0 + 1S+(t) + 0 = S+(t) (4.38)

S3(t) = F◦S◦(t) + F+S+(t) + F×S×(t) = 0 + 0 + 1S×(t) = S×(t) (4.39)

In this idealised situation the three signal observed would appear clearly as linearly independent.

4.1.3 Detection of the isotropic polarization

We now consider real interferometers: LIGO Hanford, LIGO Livingston and Virgo. The two
LIGO interferometers are almost anti-parallel so the situation is far from ideal for polarization
measurements. The location and orientation of the three observatories are

Detector Latitude Longitude Azimuth
X Arm Y Arm

LIGO Hanford 46◦27′19′′N 119◦24′28′′W N36◦W W36◦S
LIGO Livingston 30◦33′46′′N 90◦46′27′′W W18◦S S18◦E

Virgo 43◦37′53′′N 10◦30′16′′E N19◦E W19◦N

Figure 4.3: Coordinates and orientation of the three current gravitational waves detectors.
Note on the azimuth: N36◦W means a direction between local North and West, 36 degrees
away from North [33]

We must now �nd the relation between (φV irgo, θV irgo), (φLLO, θLLO) and (φLHO, θLHO).
First we can express the unit vector corresponding to the propagation direction of the wave in
a reference frame at Virgo location but with the x direction towards the North polesin (θV irgo) cos (φV irgo)

sin (θV irgo) sin (φV irgo)
cos (θV irgo)

→
sin (θV irgo) cos (φV irgo − 19◦)

sin (θV irgo) sin (φV irgo − 19◦)
cos (θV irgo)

 (4.40)

Now we will rotate the propagation direction of the wave so that we get the relative orien-
tation of the propagation direction with respect to an interferometer located at LIGO Hanford
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Figure 4.4: Location and orientation of LIGO and Virgo, from [33]. Note that the arm directions
do not take into account any map projection e�ects, they simply indicate the direction of the
arms relative to local north.

(resp. Livingston) but with its x arm pointing towards the North pole. This will be done in
three steps. After these rotations we will correct the azimuth.

First we perform a rotation of the propagation direction in order to obtain the relative
orientation of the wave with respect to an interferometer located at the Equator, at the same
longitude as Virgo, with its x arm pointing towards the North pole. Then we perform a rotation
that give us the propagation direction relative to an interferometer located at the Equator, at
the same longitude as LIGO Handford (resp. Livingston) with its x arm pointing towards the
North pole. The last rotation gives us the orientation of the propagation direction with respect
to an interferometer at the same location as LIGO Hanford (resp. Livingston) but with its x
arm pointing towards the North pole. These three rotations are given by:

REq−>LHO = −

 cos (lLHO) 0 sin (lLHO)
0 1 0

− sin (lLHO) 0 cos (lLHO)

 (4.41)

REq =

1 0 0
0 cos (LLHO − LV irgo) sin (LLHO − LV irgo)
0 − sin (LLHO − LV irgo) cos (LLHO − LV irgo)

 (4.42)

RV irgo−>Eq =

 cos (lV irgo) 0 sin (lV irgo)
0 1 0

− sin (lV irgo) 0 cos (lV irgo)

 (4.43)

Taking into account the azimuth of Virgo and LIGO Handford (resp. Livingston) we �nd the
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following relation between the propagation direction with respect to Virgo and LIGO Handford:sin (θLHO) cos (φLHO + 36◦)
sin (θLHO) sin (φLHO + 36◦)

cos (θLHO)

 = REq−>LHOREqRV irgo−>Eq

sin (θV irgo) cos (φV irgo − 19◦)
sin (θV irgo) sin (φV irgo − 19◦)

cos (θV irgo)


(4.44)

with and lV irgo ' 43.6314◦, lLHO ' 46.4553◦, LV irgo ' 10.5044◦ and LLHO ' −119.4078◦. For
the observatory located at Livingston lLLO ' 30.5628◦, LLLO ' −90.7714 and +36◦ → +108◦.
From equation (4.44) we can �nd the angle φLHO, θLHO, φLLO and θLLO as functions of φV irgo
and θV irgo. Thus we can easily compute the antenna pattern functions of LIGO and V irgo
as functions of the two angle associated to Virgo. The absolute value of the antenna pattern
function of the isotropic polarization of each observatory is plotted in Fig. 4.5, 4.6 and 4.7, as
function of φV irgo and θV irgo. The amplitude of the polarization is set to unity: S◦(t) = 1.

Figure 4.5: Virgo : Antenna pattern function of the isotropic polarization.

Figure 4.6: LIGO Hanford : Antenna pattern function of the isotropic polarization.
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Figure 4.7: LIGO Livingston : Antenna pattern function of the isotropic polarization.

We see on Fig. 4.5, 4.6 and 4.7 the antenna patterns functions of each interferometers. The
antenna pattern functions corresponding to the + and × polarizations can be found in the
appendix. We want to know if there is a propagation direction that allows the three interfer-
ometers to detect the isotropic polarizations with a high amplitude.

In Fig. 4.8, we can see the sum of the square of the amplitude F◦ of each interferometers
normalized by a factor

√
3.

F ≡
F◦

2
V irgo + F◦

2
LHO + F◦

2
LLO

3
(4.45)

This facilitates the identi�cation of propagation directions for which the response of the whole
system LIGO− V irgo is maximum. We see that there are four local maxima. The location of
these maxima and the corresponding amplitudes are summarized in the table 4.3.

We can now study the linear dependence of the three interferometer antenna pattern func-
tions in order to determine whether or not the new isotropic polarization could be identi�ed.
The response of the three interferometers can be written:SV irgo(t)SLHO(t)

SLLO(t)

 = S◦(t)

F◦V irgoF◦LHO
F◦LLO

+ S+(t)

F+V irgo

F+LHO

F+LLO

+ S×(t)

F×V irgoF×LHO
F×LLO

 (4.46)

where

~F◦ =

F◦V irgoF◦LHO
F◦LLO

 , ~F+ =

F+V irgo

F+LHO

F+LLO

 , ~F× =

F×V irgoF×LHO
F×LLO

 (4.47)

are three vectors in a three dimensional vectorial space with three basis vectors that correspond
to a unit signal measured at Virgo, LIGO Hanford and LIGO Livingston respectively. Each
vector of (4.47) characterises the response of the system composed of the three interferometers
to a particular polarization. We want to know whether some directions of propagation of grav-
itational waves with respect to the three observatories produce three responses (one for each
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Figure 4.8: Map of F ≡
√
F◦

2
V irgo + F◦

2
LHO + F◦

2
LLO/

√
3. The factor

√
3
−1

is present so that

the value plotted on the map represents the amplitude of the isotropic polarization that would
be seen by one interferometer if all the interferometers measure this polarization with the same
amplitude.

polarization) of the system that are linearly independent. Hence we want some measure of the
linear dependence of the three vectors of (4.9) as a function of φV irgo and θV irgo.

Three vectors in a three-dimensional space are linearly independent if and only if the deter-
minant of the matrix with each column that corresponds to one of these three vectors is di�erent
from zero. If we normalize the three vector then the determinant can take value between 0 and
1. The case det = 1 corresponds to an orthogonal basis. In our case we write:

D (φV irgo, θV irgo) ≡
1

‖ ~F◦ ‖‖ ~F+ ‖‖ ~F× ‖
det

F◦V irgo F+V irgo F×V irgo
F◦LHO F+LHO F×LHO
F◦LLO F+LLO F×LLO

 (4.48)

The value of D (φV irgo, θV irgo) is plotted in Fig. 4.9. We see that, expect two regions located
approximately at φV irgo = π/4 and φV irgo = 5π/4 and some meanders linked to them, all the
directions gives a value of D > 0.3 approximately.

We would like to know if the regions where the isotropic polarization is detected with a high
amplitude correspond to regions where the response to this polarization is linearly independent
from the two polarizations + and ×. In table 4.10 are the values of F◦ for each interferometer
and D, at the center of each region corresponding to a local maximum of F . We see that two
maxima correspond to D ∼ 0.1 and the two others correspond to D ∼ 0. Hence the three
interferometers don't seem well suited for polarization measurements but it doesn't seem im-
possible either. A more detailed analysis of the interferometer responses, including noise for
example, would be needed. In addition, for long signals the rotation of the Earth could help to
increase the linear independence of the response but this also requires a deeper analysis beyond
the scope of this thesis.

So far we have assumed that we know precisely the propagation direction of the wave. This
is far from true when there is no electromagnetic counter part. Unfortunately only neutron star
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Figure 4.9: Absolute value ofD (φV irgo, θV irgo), the determinant of the three polarization vectors
as a function of the propagation axis direction (θ, φ) with respect to Virgo's arms.

√
F◦2V irgo+F◦

2
LHO+F◦2LLO

3
F◦V irgo F◦LHO F◦LLO D

φV irgo = 0.07639π 0.3962 0.4413 0.4472 0.2759 0.08464
cos (θV irgo) = 0.07074
φV irgo = 0.522π 0.3649 0.4623 0.4084 0.1374 0.02207

cos (θV irgo) = 0.2579
φV irgo = 1.076π 0.3962 0.4421 0.4474 0.2742 0.08446

cos (θV irgo) = −0.06915
φV irgo = 1.522π 0.4629 0.4072 0.1389 0.3649 0.02377

cos (θV irgo) = −0.2563

Figure 4.10: Propagation directions corresponding to local maxima of LIGO−V irgo response
and the amplitude seen by each interferometer.

48



mergers produce electromagnetic counterpart that we can detect. Currently, only two of these
mergers have been detect by gravitational wave observations as can be seen in Fig. 4.11. The
scarcity of these detections reduces the probability to observe a neutron star mergers well ori-
ented for polarization measurements. The forthcoming new interferometers will solve this issue.

Figure 4.11: Masses of detected LIGO/Virgo compact binaries. Neutron stars detected by
gravitational waves are represented by orange dots. From [34].

4.2 Massive modes

The massive modes are expected to be undetectable due to their possibly very high frequency
and the power law decrease of their amplitude as discussed in chapter 2 and 3 respectively. How-
ever, we made a lot of simplifying hypotheses and we don't know whether other hypotheses on
the extra dimensions could lead to detectable waves with a longitudinal polarization similar to
the polarization of the massive modes in our simpli�ed theory. Hence it can be interesting to
look for other polarizations before worrying about which modi�ed theory can produce them.

Generically a four by four space-time metric can have six polarizations. In addition to
the three mode ◦,+,× are a longitudinal scalar mode L and two vectorial mode X, Y . Their
patterns functions are given by [35]:

FL =
1

2
sin2 θ cos 2φ (4.49)

FX = − sin θ (cos θ cos 2φ cos 2ψ + sin 2φ sin ψ) (4.50)

FY = − sin θ (− cos θ cos 2φ sin 2ψ + sin 2φ cos ψ) (4.51)
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Figure 4.12: One period of the hL (upper), the hX (middle) and the hY (lower) modes

4.3 Polarization measurements

If we want to determine the presence of more polarizations than the two predicted by General
Relativity we need at least �ve detectors. Indeed, the output signal of one interferometer is
given by:

h(t) = F◦h◦(t) + FLhL(t) + FXhX(t) + FY hY (t) + F+h+(t) + F×h×(t) + n(t) (4.52)

where n(t) is the noise. The signal h(t) is thus a basis of patterns functions. The patterns
functions F◦ and FL are linearly dependent because they have the same analytical expression
with opposite signs. The patterns functions basis is thus 5 dimensional.

If we assume that we know the location in the sky of the source from an electromagnetic
counterpart, we know how to shift in time the signals of a set of N interferometers. Thus we
can write:

~h(t) = F · ~hpol(t) + ~n(t) (4.53)

with

~h(t) =


h1(t)
h2(t)

:
hN(t)

 ~hpol(t) =


h◦(t)
hL(t)

:
h×(t)

 ~n(t) =


n1(t)
n2(t)

:
nN(t)

 (4.54)

and
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F =


F◦1 FL1 FX1 FY 1 F+1 F×1
F◦2 FL2 FX2 FY 2 F+2 F×2

: : : : : :
F◦N FLN FXN FY N F+N F×N

 (4.55)

In order to determine the full composition of the signal in the �ve polarizations modes one
needs at least �ve interferometers so that the matrix F can be inverted. With a high quality
signal one can thus detect and measure all polarizations in principle.

h1(t)

h2(t)

~h(t)

~hGR

~hnullstream

Figure 4.13: Representation of the signal measured by two interferometer in a two dimensional
vectorial space. This vectorial space is a subspace of the �ve dimensional vectorial space
of polarization and it is given by the antenna pattern functions of the two interferometers.
~hnullstream is the projection of the signal on the null stream vector ~enullstream. ~hGR is the
projection of the signal on the subspace containing only the + and × polarizations.

A way to separate the signal from the noise in gravitational wave data is the null stream
method. We have seen that there are �ve linearly independent antenna pattern functions. The
signal observed by an interferometer ~h(t) thus belongs to a vectorial space with �ve functions

as basis vectors. The idea is to project the vector ~h(t) onto a subspace orthogonal to some
polarizations. This can be used with less than 5 detectors to test the presence of new polar-
izations without knowing precisely the composition of the gravitational wave signal in term of
polarizations, as explained in the following.

Currently, only three interferometers are operational the two that constitute LIGO and
Virgo. The two LIGO interferometers are antiparallel and thus are equivalent to one detector as
far as polarization measurements are concerned. Despite the fact that gravitational wave events
are observed with fewer than �ve interferometers, we can use the null-stream method to search
for new polarizations. With this method one can project the data on a subspace orthogonal to
the plane determined by the basis function F+ and F×. Indeed, with two interferometer the
system of equations (4.53) becomes:
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(
h1(t)
h2(t)

)
=

(
F◦1 FL1 FX1 FY 1 F+1 F×1
F◦2 FL2 FX2 FY 2 F+2 F×2

)

h◦(t)
hL(t)
hX(t)
hY (t)
h+(t)
h×(t)

 (4.56)

The signal ~h(t) in the �ve dimensional vectorial space of polarizations is projected onto a two
dimensional plane corresponding to the LIGO and Virgo response. Hence we can de�ne the
vector ~enullstream in the polarization vectorial space such that ~enullstream ·~e+ = ~enullstream ·~e× = 0.
The vectors ~e+ and ~e× are the two basis vectors of the �ve dimensional vectorial space that
correspond to the + and × polarizations respectively.

The projection of the signal ~h(t) on ~enullstream should be constituted only of noise if the
gravitational wave is composed only of the two polarizations of General Relativity. If there was
no noise the projection on ~enullstream would be zero in the theory of General Relativity. That's
why it is called "null stream".

If the projected signal is signi�cantly di�erent from the noise projection on the null stream
vector it means that other polarizations are present in the wave. A similar method (the null
energy method) was used in [36] for the signal GW170817. The results are in favor of the
presence only of the two polarizations predicted by General Relativity with a p-value of 0.315.

Another way to test for the presence of other polarizations is to perform a coherent Bayesian
analysis of a GW signal. This consists in the comparison of the probability that one model
generates the data observed and the probability that another model generates the same data.
The comparison is given by the Bayes factor:

K =
P (D|M1)

P (D|M2)
(4.57)

where P (D|M1) and P (D|M2) are the probabilities that the data D is produces by the models
M1 and M2 respectively.

This is was done in [37] and [38] for the signals GW170814 and GW170817 respectively.
They both compared the case with only the two tensor modes to the case with the two vector
modes only and the two scalar modes only. Both results are in favor of General Relativity. In
[37], the tensor case vs the vector case gives a Bayes factor of more than 200 and for the tensor
case vs the scalar case the Bayes factor is 1000. In [38], the results are more precise due to
the determination of the sky position of the event thanks to its electromagnetic counterpart.
The Bayes factors are 1020.81±0.08 and 1023.09±0.08 for the tensor vs vector case and the tensor
vs scalar case respectively.

52



Conclusion

We have seen that the introduction of extra dimensions is motivated by the "Kaluza-Klein mir-
acle". However there are lots of possibilities for a theory of physics implying extra dimensions.
In addition, N dimensional physics is not intuitive at all. So it is very hard to select a criterion
to prefer a speci�c theory with respect to another. On the other hand, if one wants to keep
a general reasoning, calculations get very quickly hard to handle especially geometrodynamics
calculations as can be seen by looking at the equations in the �rst chapter. For this reason we
imposed many simplifying hypotheses. The theory we analysed is thus a toy model to get an
idea of the consequences of adding extra dimensions. However assuming a constant warp factor
is a strong simpli�cation and it would be interesting to analyse the non constant case.

In our simpli�ed theory, the new features are intuitive despite the fact that the extra dimen-
sions are not: the traceless condition extends to more spatial dimensions allowing a transverse
isotropic polarization and waves travelling partially in the extra dimensions are seen as massive
modes simply because we perceive only some component of their velocity in the D dimensional
space-time. Unfortunately the power law decreasing amplitude of the massive mode and their
probably too high frequencies implies that they are not very interesting in view of searching
for new physics from gravitational wave observations. However, more complex theories with
extra dimensions could lead to non vanishing massive modes and that is why looking for new
polarizations is interesting.

Currently there are only few constraints on polarization due to the low number of obser-
vatories as explained. The new interferometers will not only allows to test more precisely the
polarizations but they will also increase the diversity of the sources observed (and obviously
increase the number of observations).

Among the next generation of ground-based interferometers is the Einstein telescope [39].
The telescope will have a much higher sensitivity than the current observatories LIGO and
Virgo. The reasons of this higher sensitivity are the length of the arms on the one hand and
new technologies to reduce the di�erent sources of noise on the other hand. The arms of the
Einstein telescope will measure 10 km in length. For comparison Virgo arms measure 3 km
in length. This increased sensitivity with respect to the second generation of ground-based
interferometers will allow to observed earlier epochs of the universe as seen in Fig. 4.14 The
Einstein telescope will be able to observe the entire spectrum of stellar and intermediate black
holes and determine their stellar or primordial origin. It will also detect neutron star inspirals
and tidal e�ects. The observatory will be sensitive to higher and lower frequencies than LIGO
and Virgo. The �rst observations are expected in 2035.

LIGO-India [40] is an improved version of the advanced LIGO observatory. The arm length
will be the same as for LIGO. Thus the improvements concern the technologies of noise re-
duction [41]. The main purpose of this telescope is to extend the gravitational wave detector
network in order to improve the sky location determination and polarization measurements.
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Figure 4.14: Epochs of the Universe that will be observed by the Einstein telsecope, from [39]

The Japanese telescope KAGRA [42] is already built. The telescope started its operations
in 2020. However the sensitivity of KAGRA needs to be improved through real time debugging
before reaching the expected sensitivity. The observatory is thus less sensitive than LIGO and
Virgo for now. The length of the arms of KAGRA is 3 km. The telescope is thus similar to
Virgo. As for LIGO India the improvements with respect to the second generation of detectors
concerns not only the noise reduction technologies, but also cryogeny, and a location under-
ground.

Cosmic Explorer [43] is a future third generation U.S. ground-based detector. Its arms will
be 40 km in length. These are 10 times longer than the arms of LIGO. Hence the sensitivity of
Cosmic Explorer will be much higher than LIGO's.

The LISA interferometer [44] is a space-borne gravitational wave detector led by ESA and
an international scienti�c consortium. It will observe gravitational waves with frequencies be-
tween 0.1 mHz and 1 Hz. These frequencies correspond to sources with a wider orbit than
those we can detect with ground-based observatories. These sources are potentially much heav-
ier also. Hence LISA will be able to detect supermassive black hole mergers. The observatory
is expected to be launched in the early 2030s.

The need for di�erent gravitational waves observatories to measure polarization comes from
the necessity to observe a signal with di�erent orientation with respect to the detectors. How-
ever, as the Earth rotates on itself, the ground-based observatories rotate with it. Hence, for a
long enough signal, the interferometer relative orientation can change signi�cantly.

The time until coalescence of a binary system is given in [45]:

τc =
5

256η

GM

c3

(
πGMf0
c3

)−8/3
(4.58)

where η = µ/M is the symmetric mass ratio and f0 is the initial frequency of the gravitational
wave emitted by the binary system. M is the total mass of the system m1 + m2 and µ is the
reduced mass:
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µ =
m1m2

m1 +m2

(4.59)

We see from Eq. (4.58) that the time until coalescence decrease with the mass of the total
mass of the system M . Thus longer signal are from neutron star binaries. For two neutron star
of mass 1.5 M� for example and starting with a frequency f0 = 10Hz that corresponds to the
lower bond of current interferometers we �nd:

τc ' 900 s (4.60)

This corresponds to approximately 15 minutes. The interferometer will not rotates signi�cantly
with respect to the gravitational wave. However τc is very sensitive to the initial frequency value
f0. If we consider now a signal stating with 1 Hz that would be detectable by the Einstein
detector in principle, we �nd:

τc ' 4 · 105s (4.61)

This corresponds to approximately 110 hours. We see that neutron star inspiral signals can be
very long if we can detect them at frequencies between 1 and 10 Hz. This duration would lead
to a signi�cant variation of the sky position of the source for the same interferometer.

Eventually massless new polarizations are of particular interest for future observations.
The origin of the isotropic mode is the relaxation of the traceless condition on the two spatial
component in the plane transverse to the propagation. This is a direct e�ect of the introduction
of new dimensions that has nothing to do with the physics in these dimensions. Thus we expect
that any theory with gravity in extra dimensions should present such new polarizations and we
can expect them to have an amplitude similar to the tensor massless mode we already detected.
Hence, the construction of new interferometers in the following years or decades will gives us
key results on the existence of extra dimensions.
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Appendix

Figure 4.15: Absolute value of the F+ antenna pattern function of Virgo

Figure 4.16: Absolute value of the F× antenna pattern function of Virgo
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Figure 4.17: Absolute value of the F+ antenna pattern function of LIGO Hanford

Figure 4.18: Absolute value of the F× antenna pattern function of LIGO Hanford
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Figure 4.19: Absolute value of the F+ antenna pattern function of LIGO Livingston

Figure 4.20: Absolute value of the F× antenna pattern function of LIGO Livingston
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