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Project objectives

Stars are non-static celestial objects constantly evolving and ruled by the hydrodynamics laws.
Throughout the last decades, thanks to the satellites SoHO (1995), CoRoT (2006-2014), Kepler
(2009), etc., the advent of asteroseismology has enabled us to probe their hidden structure for the
first time. Asteroseismology is an observational method which studies the interior of stars through
analyzing their oscillations. Indeed, the various dynamical phenomena acting within these objects
can generate waves whose spectrum depends on the properties of the stellar structure. In partic-
ular, the available asteroseismic data have put stringent constraints on the core rotation angular
frequencies of the Sun and thousands of distant low-mass stars (i.e. with masses between about 1
and 2 solar masses), as well as raised a lot of questions.

The rotation of stars is a very large subject because it acts during all their life and plays an
active role in their evolution. For instance, the rotation can induce chemical elements transport
that can supply nuclear regions in hydrogen, and thus significantly impact the main sequence
duration. However, several studies have shown that our current stellar evolution models predict
core rotation angular frequencies much higher than those measured in low-mass stars. Such dis-
crepancy demonstrates that an efficient process of angular momentum transport is able to extract
some angular momentum from the core towards the surface and slow down the core rotation in
these stars, and that this process has to be included in stellar models. Today, the issue of the
angular momentum transport in stars is one of the hottest topics of stellar physics and remains an
open question.

Two main hypotheses have been discussed about the missing transport mechanism. The first
one is the transport by internal magnetic fields generated by dynamo effect. This process can
reduce the discrepancy between observations and theory on the main sequence, but still remains
insufficient to slow down the core rotation of more evolved stars. The second one is the transport by
internal gravity waves. Many studies have already been conducted about the angular momentum
transport by internal gravity waves and all these works still show nowadays that this process is a
serious contender to explain the slowdown of the core rotation rates during the lifetime of stars.
Internal gravity waves have buoyancy as the restoring force. They are generated by turbulent mo-
tions in the convective zones of stars and can propagate in the radiative layers. There, these waves
are damped by radiative diffusion and can not only deposit but also extract angular momentum
into the medium; they can thus locally modify the internal rotation. In particular, they can drive
an oscillation of the internal rotation profile in a very thin layer at the top of the radiative zone, the
so-called Shear Layer Oscillation (SLO). The SLO actually results from the competition between
the transport by waves and the instabilities induced by the shear in the rotation profile. The cycle
period of the SLO in the Sun is estimated to be of the order of the year, which is much smaller
than the time scales of stellar evolution (several billions of years). The difference between these
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two time scales makes difficult the inclusion of the transport by waves in stellar evolution codes
(e.g., numerical issues concerning the temporal step to use). This mainly explains why most of
the previous studies on the transport by internal gravity waves did not properly take the effect of
the SLO into account. Currently, the scientific community wonders how the SLO can affect the
long-term evolution of the rotation of stars. For instance, it is known that the SLO can filter the
wave flux of angular momentum that is transmitted towards the center of stars, but it is not clear
how this can influence the evolution of the stellar core rotation.

Within this context, the goal of this work is to study the SLO in more details. To do so,
the main task will consist in modelling in a simple way the interaction between internal gravity
waves, shear-induced turbulence and rotation in a thin stably-stratified radiative layer. In the
considered configuration, internal gravity waves are supposed to be emitted at the upper bound-
ary, corresponding to the interface with an adjacent convective zone. Using a two-dimensional
plane parallel assumption, the laws of hydrodynamics will be rewritten according to the mean flow
theory. In this approach, the physical quantities are decomposed into an Eulerian mean slowly
evolving with time (e.g., the mean flow representing the rotation) and a small perturbation rapidly
evolving with time (i.e., the waves), and the evolution equations are deduced for each component.
The usual short-wavelength solutions for the linear internal gravity waves propagating in a slowly
varying medium will be exploited to express analytically the wave fluxes. These expressions will
thus be used in a second step to solve numerically the temporal evolution of the mean flow and the
SLO. In order to simplify the physical interpretations of the result, a dimensionless version of the
transport equation will be used as well as a unique frequency for the waves. This will allow us to
explicitly express the problem as a function of a couple of relevant dimensionless free parameters.
By varying these parameters, we will subsequently study the conditions of the appearance and the
main properties of the SLO. In addition, a stationary solution will be studied to extract a part
of the main properties of the SLO. This work is a preliminary step in the investigation that will
permit in the future to propose simple prescriptions easily implementable in stellar evolution codes
and describing the effect of the SLO on the rotation of the core on time scales corresponding to
the lifetime of stars.
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Chapter 1

Introduction

Before getting to the heart of this work, we will first introduce in the next sections fundamental
concepts about stellar structure and evolution and the impact of stellar rotation. Then, we will
present the different asteroseismic outcomes that have raised the issue of the angular momentum
redistribution in stellar interiors. This chapter will end by the introduction of the different studies
carried out on the angular momentum transport by internal gravity waves, the SLO and the
physical principles hidden behind.

1.1 A brief word about stellar structure and evolution

This section aims at reminding the main characteristics and fundamental concepts of stars and
more specifically of Sun-like stars such as their structure equations and their evolution.

Stars stem from the gravitational collapse of molecular clouds. This collapse occurs on a time
scale given by the dynamic time (or the free fall time) obtained by keeping only the gravitational
force in the Newton’s equation (i.e. neglecting the pressure forces of the gas):

tdyn ∼
√

R3

GM
(1.1)

where M and R are the initial mass and radius of the molecular cloud, respectively. In the case of a
molecular cloud having a mass of 10,000 M� and a radius of 10 parsecs, the corresponding dynamic
time is about 4.5 million years. During this collapse, the giant molecular condensate fragments
in smaller and smaller clouds until a quasi hydrostatic balance between the gas pressure and the
gravitational force is reached: the new celestial object formed is called a protostar. The basic
evolution of this celestial object can then be described by the standard model of stellar structure
and evolution. In this model, stars are described as non-rotating spheres of plasma in hydrostatic
equilibrium. The transport of energy is ensured by radiation and convection. The set of equations
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is thus provided by:

(Conservation of mass) :
dm

dr
= 4πr2ρ, (1.2a)

(Hydrostatic equilibrium) :
dP

dr
= −ρGm

r2
, (1.2b)

(Energy transport by radiation) :
dT

dr
= − 3κρL

16πacr2T 3
, (1.2c)

(Conservation of energy) :
dL

dr
= 4πr2ρ(εn − T

ds

dt
). (1.2d)

The transport of energy by convection is much more complicated to model and the approximate
Mixing-Length Theory (MLT) is generally used for this purpose. In the latter system, m is the
mass of a sphere of gas having a radius r with r the radial coordinate increasing from the center
towards the surface. The letter G represents the Cavendish constant 1. The thermodynamical
variables ρ, T and P are the density, the temperature and the pressure, respectively. The specific
entropy is given by s. The quantity c is the speed of light in vacuum 2, κ is the Rosseland mean
opacity, L is the luminosity, εn and −Tds/dt (denoted εgrav) are the specific nuclear and gravi-
tational energy production rates per unit of time, respectively. This system must be completed
by an equation of state linking the thermodynamical variables ρ, T and P , as well as the set of
equations describing the temporal evolution of the chemical composition caused by the creation
or the destruction of elements during the fusion reactions. It is important to note that the tem-
poral evolution of this system comes either from the thermal disequilibrium (−Tds/dt) or from
the evolution of the chemical composition due to nuclear reactions when the star is in thermal
equilibrium. Finally, appropriate initial and boundary conditions (i.e., at the center and at the
surface in connection with stellar atmosphere) have to be applied.

The standard model enables us to describe the general phases of stellar evolution. For the
sake of convenience, the stellar evolution is usually represented in the Herzsprung-Russel (HR)
diagram. Indeed, celestial objects and more specifically stars can be classified as a function of
their surface stellar luminosity L? and their surface effective temperature Teff , which continuously
evolve during the lifetime of stars. For instance, the evolution track of the Sun in the HR diagram
is plotted in the figure 1.1 and we can see that it can be split into several stages. Of course, the
evolution track in the HR diagram also depends on the stellar mass. Moreover, it is also possible
to plot the stellar radius in this diagram using the relation:

L? = 4πR2σT 4
eff (1.3)

where R is the stellar radius and σ is the Steffan-Boltzmann constant3. The equation of the curves
having a constant radius in the HR diagram is obtained by taking the logarithm of the latter
equation. This equation is given by the following expression:

log(L?) = 4 log(Teff ) + 2 log(R) + log(4πσ) (1.4)

The curves having a constant radius are thus straight lines in the HR diagram, as shown in dotted
lines in the figure 1.1.

1G ≈ 6.67× 10−11 m3.kg−1.s−2

2c = 299, 792, 458 m.s−1

3σ ≈ 5.670× 10−8 W.m−2.K−4
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About 4.5 million years after the beginning of the collapse of the progenitor cloud, the proto-
Sun will first start evolving on the Hayashi track in the Hertzsprung-Russell diagram of the figure
1.1 (orange curve). At this stage, the central temperature is too low to trigger the hydrogen fusion
and the luminosity of the protostar mainly results from the energy released by the gravitational
contraction. The internal structure is totally convective. The time scale on which a star will
radiate if the only source of energy is the gravitational energy is called the Kelvin-Helmholtz time
and is provided by the ratio between the total content of gravitational energy that can be released
during the contraction and the luminosity of the star. According to the Virial theorem, half of
the released gravitational potential energy is converted into internal energy and the other half is
radiated by the star. This theorem allows us to estimate the Kelvin-Helmholtz time, which is given
by:

tKH ∼
GM2

2RL
(1.5)

For instance, the characteristic Kelvin-Helmholtz time for a proto-Sun is of the order of several
tens of millions of years. This corresponds to the characteristic time required for a protostar to
reach the main sequence. Indeed, during the contraction phase, the pressure and the temperature
of the core are progressively increasing. At one moment (purple curve in the figure 1.1), this results
in the appearance of a radiative core as well as the ignition of the first nuclear reactions (the little
hook just before the beginning of the main sequence). When the core temperature is sufficient
(Tcore ≈ 107K), the nuclear fusion of the hydrogen into helium via the pp-chain is sustained. The
star thus begins its evolution on the main sequence (green curve in the figure 1.1). This phase is
the longest in the life of stars and an approximation of the corresponding time duration is given
by the nuclear time:

tnuc ∼
1

L�

0.1M�
4MH

∆Ereaction (1.6)

where L�
4 is the luminosity of the Sun, M�

5 is the mass of the Sun, MH
6 is the mass of the

hydrogen atom and ∆Ereaction
7 is the amount of energy released by the nuclear fusion of hydrogen

into helium. This characteristic time is obtained by the following reasoning: we know that this
characteristic time is given by the ratio between the total energy released by the nuclear reactions
and the luminosity of the Sun. If we consider that 10% of the mass of the Sun is converted into
helium and that one needs four atoms of hydrogen to form one atom of helium, then the total
number of reactions is given by 0.1M�

4MH
. Finally, the total energy released is equal to the number

of reactions multiplied by the energy released by one reaction ∆Ereaction. Replacing the numerical
values in this expression gives a characteristic nuclear time of the order of 1017 s, which corresponds
more or less to 10 billion years. During all this time on the main sequence, the energy released
by the nuclear reactions (Eq. 1.2d) in the central layers is carried towards the surface thanks to
radiative diffusion in a inner region (Eq. 1.2c) and by convection in the envelope, as shown by
the figure 1.2. Furthermore, the dynamics and the thermal times introduced above can also be
computed in the case of the Sun. These two characteristic times can be computed as:

tdyn ≈ 10 min and tKH ≈ 10 million years (1.7)

The dynamical time gives an idea on the time of structural readjustment with respect to the
hydrostatic equilibrium. This time scale corresponds to the typical period of an acoustic wave

4L� ≈ 3× 1026 W
5M� ≈ 2× 1030 Kg
6MH ≈ 1.67× 10−27 Kg
7∆Ereaction ≈ 4.118× 10−12 J
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propagating inside the star. In the Sun, we see that:

tdyn ≪ tKH � tnuc (1.8)

so that we check that the quasi-static hydrostatic equilibrium is verified. This actually holds true
during the whole life of stars, either during gravitational contraction phases (because tdyn � tKH)
or during nuclear phases (because tdyn � tnuc). Moreover, since tKH � tnuc, it is also clear that
the lifetime of stars strongly depends on the duration of the main sequence and thus, the time
during which the nuclear reactions are sustained in the core, which depends on the nuclear reaction
rates and the quantity of hydrogen available. The latter relation has also as a consequence that
the Sun remains in thermal equilibrium during the main sequence.

After the main sequence, the internal structure is composed of an helium core surrounded by
an hydrogen burning shell. From this stage, different fates await stars in function of their masses.
In the case of the Sun, its evolution will lead it to climb along the Giant branch (red curve in
figure 1.1) and to become larger and brighter. At one moment, it will undergo an helium flash due
to the starting of helium burning in a degenerated helium core. Then, when the whole helium in
the core will be converted into carbon and oxygen, an helium shell burning will surround the C-O
core in addition of the hydrogen shell. Finally, due to instabilites between the H and He shells,
the Sun will progressively expel its envelope (through thermal pulses), thus forming a planetary
nebulae with in its center a celestial body called white dwarf.

Figure 1.1 – Evolution of the Sun in the Hertzsprung-Russell diagram. The colors represent the
different stages of its evolution. The time scale is not included but the range goes from 3 million
to 13 billion years. The orange curve shows the Hayashi track (protostar phase). The purple curve
represents an adjustment occurring just before the ignition of hydrogen fusion reactions. The green
curve represents the main sequence until now (hydrogen burning phase). Finally, the red curve
shows the track towards the red giant phase.
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Figure 1.2 – Schematic view of the internal structure of the Sun. Credit: SOHO (ESA & NASA)
Site : https://scied.ucar.edu/sun-regions

1.2 What about the rotation?

If we want to describe more precisely what a star is, we have to include rotation in stellar models.
Indeed, the initial molecular cloud has already a non-zero angular momentum. During its collapse,
the angular momentum of the cloud will be conserved and will be transferred to the newly formed
protostar. Then, the protostar will evolve on the Hayashi track and will lose a significant part
of its angular momentum through its interaction with its accretion disk. It will finally reach the
main sequence with an internal rotation profile resulting from its past history and an induced
global internal transport dynamics. It is important to mention that including the rotation in the
problem makes it much more complex. Indeed, the set of Eqs. 1.2a - 1.2d considers the spherical
symmetry with only one variable which is the radial coordinate r. Nevertheless, taking into ac-
count the rotation breaks this symmetry since the centrifugal acceleration deforms the star (i.e.,
with an oblate shape, flattened at the poles and enlarged at the equator). This new axisymmetric
configuration requires to describe the structure in two dimensions as a function of the radial co-
ordinate r and the latitudinal coordinate θ, which makes the set of equations much harder to solve.

Hopefully, for rotating stars having a low rotation frequency such as the Sun, the effects induced
by the rotation can be treated as small perturbations with respect to the spherical hydrostatic equi-
librium. In such a case, the rotation is said ’shellular’ and depends on the radial coordinate r at
the dominant order, with small deviations in the latitudinal direction (e.g., Zahn 1992). In fact, it
would be more appropriate to say that the problem becomes a 1.5D problem, which can be solved
more easily than a 2D one. In such picture, two new transport mechanisms are included in the
modelling, which are shear-induced turbulence and meridional circulation. First, the turbulence
arises from the instabilities due to strong gradients associated with differential rotation in the flow
that generate eddies. The transport and the mixing induced by these eddies are usually modelled
by a diffusion process associated with an effective turbulent viscosity. This concept of effective
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viscosity will be developed in more details in Chapter 3. Second, the meridional circulation is
described as huge current loops crossing the different regions of the star as shown by the figure
1.3. This comes from the fact that a rotating radiative shell cannot be in thermal equilibrium (i.e.
the divergence of the heat flux does not vanish). In order to keep the heat conservation, the only
solution is to generate current loops that advect the entropy throughout the star in such a way
that the energy produced by nuclear reactions is exactly balanced by the energy radiated by the
star.

These rotation-induced processes allow to mix the chemical elements in different layers and
redistribute angular momentum throughout the star. Therefore, they can significantly modify the
properties of stars, as shown by the figure 1.4. In the latter, we see that the evolution track of a
Sun-like star during the main sequence well differs with and without rotation in a HR diagram.
This observed shift is for instance mainly due to a higher helium abundance in the envelope of stars
when considering rotation (Eggenberger 2013). Furthermore, turbulent diffusion and meridional
circulation can also supply more hydrogen in the nuclear core of such stars and allows them to stay
a longer period on the main sequence by increasing the nuclear time tnuc. This shows that it is of
paramount importance to take the effects of the rotation into account, for instance to age stars.
The accurate knowledge of the age of stars is crucial to determine the past evolution of certain
regions of our galaxy such as the bulb or the galactic disc. Knowing with accuracy the age of stars
is also important in exoplanetology because the determination of the age of an exoplanet requires
the determination of the age of its host star.

Figure 1.3 – Representation of meridional circulation stream lines in a 20M� main sequence star
(Maeder 2009).

1.3 Issue of the angular momentum redistribution

Seismic data collected by the satellites SoHO, CoRoT and Kepler have allowed us to probe with
a great accuracy the internal rotation of thousands of stars going from the main sequence to the
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Figure 1.4 – Representation of the evolution on the main sequence of a Sun-like star with and
without rotation. We clearly see the difference of the track and the effects on the luminosity and
on the effective temperature induced by the rotation (Eggenberger 2013).

red giant branch. In this section, we briefly give an overview of the main results.

First, in the Sun, the observed internal rotation profile is displayed in the figure 1.5 (e.g.,
Garćıa et al. 2007). We see that, in the convective zone (r & 0.7R�), the rotation frequency
depends on the colatitude. The values observed are in line with the observations of the movements
of solar spots at the surface of the Sun. In contrast, in the inner radiative zone, we can see that
the rotation is almost radially uniform (i.e., for 0.2R� . r . 0.6R�). During the main sequence,
the core contracts due to the increase of the mean molecular weight and therefore, the envelope
must expand due to the temperature control by nuclear reactions. If the local conservation of the
angular momentum was preserved during the past history of the Sun, we should observe a much
higher rotation rate in the radiative layers than in the convective envelope, which is not what we
observe in the Sun. These observations are thus in disagreement with the local conservation of
angular momentum and imply angular momentum redistribution. We note that below this limit,
the modes are not able to provide us with information about the rotation profile because the
oscillation modes observed in the Sun are pressure modes 8 that mostly propagate in the envelope
and thus do not permit to probe deeper than 0.2 R�. We mention that gravity modes 9 might
help us to probe the deep layers of the Sun (below 0.2 R�) since these modes can propagate in the
core. However, gravity modes have never been observed yet in the Sun. We note that low rotation
contrasts between the core and the surface were also observed in other dozens of main-sequence

8Pressure modes are stationary waves with pressure gradient as the restoring force.
9Gravity modes are stationary waves with buoyancy as the restoring force.
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stars studied by the satellites CoRoT and Kepler (e.g., Benomar et al. 2015; Nielsen et al. 2014)
demonstrating that the Sun is not an isolated case.

Figure 1.5 – The internal rotation frequency of the Sun as a function of the distance to the center
normalized by the solar radius. In the convective zone, the differential rotation depends not only
on the distance but also on the colatitude. In the radiative zone, the rotation is mainly radial
(Garćıa et al. 2007).

Second, the seismic observations also brought a lot of constraints on the evolution of the inter-
nal rotation of post-main sequence stars. Indeed, thanks to the precision reached by the satellite
Kepler, the eigenfrequencies of mixed modes 10 permitted us to probe the deep layers of the core of
these evolved stars, whose properties are inaccessible on the main sequence (because mixed modes
have not been detected yet in main sequence stars). The study of the mixed modes in red giants
carried out by e.g. Mosser et al. (2012) allowed us to obtain for the first time an overview on
the evolution of the rotation for the advanced evolving stages as shown in the figure 1.6. This
figure shows us the average rotation speed of the central layers for thousands of stars going from
the beginning of the giants branch to the red clump (i.e., stars with an helium burning core).
During these evolved stages, the central layers are contracting while the envelope expands. In
the figure 1.6, the stellar radius in the abscissa thus gives an information on the evolutionary
stage. We observe that the rotation frequencies of the core remain quasi constant with evolution
while the core is contracting. Once again, this is in disagreement with the local conservation of

10Mixed modes can propagate in the core and in the envelope. Their peculiarity is that in the core, they behave
as gravity modes and as pressure modes in the envelope. Both cavities communicate through a tunneling effect
because they are coupled by an evanescent zone where modes show an exponential behavior. These modes are very
important because they have significant amplitudes at the surface and in the core and therefore allow to probe the
deep layers of the core.
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Figure 1.6 – Average core rotation of hundreds of stars located on the subgiants branch (filled
circles and crosses), on the red giants branch (empty circles) and on the clump (squares) as a
function of the seismic radius and normalized by the solar radius R�. The color shows the stellar
mass.

angular momentum. According to Mosser et al. (2012), in the case of red clump stars, the slow-
down of the core rotation can be partially explained by many structural changes undergone by
these stars after the ignition of the helium fusion and, more precisely, by the core radius expan-
sion, but this effect does not seem to be sufficient in order to explain these low rotation frequencies.

Whether it be for main sequence stars or for evolved ones, all these seismic observations show
the existence of a process able to extract some angular momentum from the core towards the sur-
face, which could counteract the acceleration of the rotation due to the contraction of the central
layers. Nevertheless, previous studies showed that considering only angular momentum transport
by the meridional circulation and turbulence is far from being sufficient for main sequence stars
(e.g., Amard et al. 2016) and also red giant stars. An idea of the discrepancy between our models
and the observations for a red giant star is shown in the figure 1.7. In the latter, we see the result of
the modelling of the star rotation profile KIC 7341231 obtained by considering only the meridional
circulation as well as the turbulence induced by shearing. Two additional hypotheses were followed
during the simulation. The first one is to consider a uniform rotation from the beginning of the
evolution until Xc = 0.1, where Xc is the hydrogen mass fraction. The second one is to consider
the uniform rotation until Xc = 0 (the beginning of the subgiant phase). Both cases led to a core
rotation frequency one order of magnitude higher than the observed one. As a conclusion, we need
to add another process in stellar evolution codes to be able to reproduce the observations and
further slowdown the core rotation. Today, many mechanisms are being explored as introduced in
the next section.
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Figure 1.7 – Rotation profile for models of the star KIC 7341231 (Ceillier et al. 2013) including
transport by meridional circulation and by turbulence induced by shearing (black). The blue
(magenta) dotted line shows the result obtained by assuming a uniform rotation from the beginning
of the evolution until Xc = 0.1 and (Xc = 0), where Xc is the central hydrogen mass fraction. The
two black dotted lines are the core and the envelope rotation frequencies observed for this star by
Deheuvels et al. (2012)

.

1.4 Solution: Magnetic field or Internal Gravity Waves ?

The previous section has shown the disagreements between the core rotation frequencies predicted
by our theoretical models and the observations. Many physical mechanisms acting in the interior
of stars could produce an angular momentum transport. A lot of works have been done covering
this topic but the two main fields of investigation invoke the effects of a magnetic field generated
by a Tayler-Spruit mechanism and the influence of internal gravity waves on the core rotation rate.

1.4.1 The current failure of the Tayler-Spruit mechanism

The first attempts made to explain the disagreement between the theoretical models and the
observations involved transport by a magnetic field. The interaction between the mean flow and
the magnetic field creates instabilities which transport angular momentum. The most common
physical phenomenon able to generate a magnetic field is a Tayler-Spruit mechanism. Such process
allows us to reduce successfully the discrepancy (without solving it, though) between the models
and the observations for the case of main sequence stars but it is clearly not sufficient to explain
the weak core rotation rates observed in red giants as shown in the figure 1.8 (e.g., Cantiello
et al. 2014; Eggenberger et al. 2005). However, a recent study (Fuller et al. 2019) has revised the
prescriptions of the Tayler-Spruit dynamo and concluded that the theoretical model could be in
agreement with the observations for the red giants, but still remain not sufficient for the main
sequence and subgiant stars. Therefore, since the Tayler-Spruit dynamo does not provide us with
a complete picture of the angular momentum redistribution during the whole life of stars, another
mechanism needs to be taken into account.
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Figure 1.8 – Evolution of the average core rotational period as a function of stellar radius for
different assumptions of angular momentum transport in a 1.5M� model initially rotating at 50
km s−1. Models are shown without angular momentum transport (green), including transport of
angular momentum due to rotational instabilities (purple) and accounting for magnetic torques
in radiative regions (red, Tayler-Spruit magnetic fields). The star symbols and the black dots
represent the observed values (Cantiello et al. (2014)).

1.4.2 The promise of Internal Gravity Waves

Internal gravity waves (IGW) are waves having the buoyancy as restoring force and thus propa-
gating in the radiative zone (see Chapter 2). During their travel across the radiative zone, IGW
undergo a radiative damping allowing them to deposit their angular momentum into the surround-
ing medium and therefore can modify the rotation of the medium (see Chapter 3). They are also
very likely to play a role in the redistribution of angular momentum in stars. In the case of sun-like
stars, these waves are generated at the interface with the external convective zone by turbulent
motions (e.g., plumes and eddies). This generation mechanism is well observed in numerical sim-
ulations as we can see for instance in the figure 1.9 according to Rogers et al. (2006). We note
that internal gravity waves generated by convective penetrations have a typical frequency range
between 1 and 10 µHz, which can be considered as low frequency incompressible waves.

Taking into account all angular momentum processes, one can show that the general equation
governing the angular momentum transport in stars is given by the horizontal average of the
azimuthal component of the momentum equation A.3. In spherical coordinates, this equation can
be written within the shellular approximation as follows (Zahn 1992):

ρ
d

dt
(r2Ω) =

1

5r2
∂r(ρr

4ΩUr) +
1

r2
∂r(ρνvr

4∂rΩ)− 1

r2
∂r(r

2ρrFB)− 1

r2
∂r(r

2ρrFW) (1.9)

where d
dt

is the material derivative, the first and the second term of the right hand side represent
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the transport by the meridional circulation11 and by turbulent diffusion12, respectively. The quan-
tities FW and FB are the horizontally-averaged wave and magnetic fluxes of angular momentum,

respectively and the mean rotation is given by Ω =
∫ π
0 Ω sin3(θ)dθ∫ π
0 sin3(θ)dθ

. Many studies have already in-

vestigated the effects of the FW term on the rotation evolution by solving Eq.1.9 during stellar
evolutionary sequences. For instance, in the case of the Sun, Talon and Charbonnel (2005) showed
that including this term from the beginning of the Hayashi track to the actual age of the Sun
could explain the flat rotation profile in our star. Indeed, as we can see in the figure 1.10, IGW
induce extraction fronts of angular momentum from the center of the star towards the surface,
which prevents the core rotation from drastically increasing due to its contraction. Later, on the
subgiant phase, Pinçon et al. (2017) showed that the IGW flux has the appropriate order of mag-
nitude in order to reproduce the observed rotation frequency. Until today, IGW are therefore the
only potential solution at this evolutionary stage.

As shown by the previous works, IGW are very promising in order to solve the issue of the
angular momentum redistribution in stars. However, all these studies do not take properly into
account the whole complex dynamics induced by waves and more particularly what is happening
just below the convective zone. Indeed, in this region, the complex interaction between the rotation
and the IGW leads to very fast processes difficult to take into account into a stellar evolution code,
but potentially with a significant impact on the long term evolution of rotation in stars. This is
the so-called problem of the Shear Layer Oscillation (SLO) that we introduce in the next section.

Figure 1.9 – Snapshot of the temperature perturbation, representing the full computational domain.
Dark red / white represent cold / hot perturbations with respect to the background temperature.
The outer convection region is dominated by descending plumes that overshoot into the inner ra-
diative region, finding themselves hotter than their surroundings (white spots at base of convection
zone). Gravity waves are generated by these overshooting plumes.

11Ur is the amplitude of the radial component of the meridional circulation’s velocity projected on the Legendre
Polynomial P2(cos θ).

12νv is the vertical turbulent viscosity
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Figure 1.10 – Evolution of the rotation profile in a complete model where the transport of angular
momentum is due to internal gravity waves, meridional circulation and turbulence. The model
shown is for a 1.2 M� Z = 0.02, star with an initial rotation velocity of 50 km s−1. The curves
are labeled according to the corresponding ages in Gyr (Talon and Charbonnel 2005).

1.4.3 The Shear Layer Oscillation

The Shear Layer Oscillation (SLO) is a phenomenon extremely localized occurring in stars. It
happens just below the convective zone in a thin layer of the radiative zone. More precisely, the
SLO is the oscillation of the rotation profile due to its interaction with IGW. We can note that
a phenomenon similar to the SLO occurs also on Earth. This is the so-called Quasi Biennal Os-
cillation (QBO) corresponding to the oscillation of the wind direction in the equatorial stratosphere.

In order to explain how the SLO is established, we need to use the Eq. 1.9 in which we only
keep the turbulent as well as the wave flux terms in the right hand side. The meridional circulation
and the magnetic flux terms are neglected because they act over time scales much larger than the
one of the SLO. Finally, the equation governing the dynamics of the SLO reduces to:

ρ
d

dt
(r2Ω̄) =

1

r2
∂r(ρνvr

4∂rΩ̄)− 1

r2
∂r(r

2ρrFW). (1.10)

On the one hand, we have the first term of the right hand side which stems from hydrodynamical
instabilities of the flow. These instabilities are amplified by the shearing profile of the flow and
create turbulence with eddies of different sizes. The energy of the flow is then transported from the
larger eddies towards the smaller ones. This energy cascade produces a global vertical stress acting
against the shear, thus creating an angular momentum transport. As mentioned in section 1.2,
this transport is modelled by a diffusion phenomenon through using an effective viscosity (called
turbulent viscosity) multiplied by a radial angular momentum gradient. This term tends to rigidify
the rotation profile. On the other hand, we have the second wave flux term of the right hand side
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that can be obtained by a small wave amplitude analysis. It is written under the following form:

FW =

∫ +∞

−∞

∑
m

Am(ω) exp

(
−
∫ r

r0

γm
(ω −mδΩ(r′, t))4

dr′
)
dω (1.11)

where Am is an amplitude term having the same sign than m (the azimutal order of spherical
harmonics, measuring the horizontal wavenumber), γm is the thermal damping coefficient and r0

is the location of the generation of waves. We can see that the wave flux is composed of a sum
of prograde (m > 0) and retrograde (m < 0) waves having various frequencies exchanging their
energy with the flow through a thermal damping mechanism. It is important to understand that
prograde (retrograde) waves transport positive (negative) angular momentum flux. In fact, we will
see that prograde waves are more rapidly damped than retrograde waves and hence accelerate the
rotation profile in the highest layers. The retrograde waves being damped later will decelerate the
rotation profile deeper in the radiative zone. This results in a shear of the rotation profile and,
under particular conditions, we will show that the balance between the wave flux, which tends to
enhance the shear of the profile, and the effective viscosity, which tends to rigidify the profile, may
lead to an oscillation, the so-called Shear Layer Oscillation, already studied in stellar physics by
Kim and MacGregor (2003) and by Talon et al. (2002) and illustrated in the figure 1.11. In the
latter, we can clearly observe an oscillation of the rotation profile. As we will see in Chapter 5,
this oscillation can be decomposed in three main parts which are the following:

First, starting from a linear rotation profile with a positive slope, we will observe an equilibrium
between the gradient of the prograde waves flux and the turbulent viscosity at the top of the radia-
tive zone (panel 350 yrs). This result is easy to understand, since δΩ is positive. Hence, prograde
waves are more rapidly damped than retrograde ones and can deposit a more substantial part of
their angular momentum in the flow. This is why, we see a ’hook’ in the direction of the positive δΩ.

Second, as we go in the deeper layers of the radiative zone, the retrograde waves flux will
progressively exceed the prograde waves flux (thanks to the integral in the exponential factor) and
will exchange a significant part of their angular momentum with the flow (panel 400 yrs). This is
why we will observe a second ’hook’ at these depths (but in the opposite direction).

Third, when the shear created between both ’hooks’ is sufficiently high, the turbulent viscosity
term will act and a kind of a ’wavefront’ in the flow will diffuse from the bottom to the top of
the radiative zone (panel 450 yrs) resulting in an inversion of the rotation profile for which we will
have this time an equilibrium between the gradient of the retrograde waves flux and the turbulent
viscosity at the top of the radiative zone (panel 500 yrs).

This process will repeat in a symmetrical way which will lead to a second inversion of the
profile bringing it back to its initial equilibrium position, thus creating the so-called Shear Layer
Oscillation.

To conclude, it is quite reasonable to expect that this oscillation is able to apply a kind of
filtering of the incoming wave flux (generated at the base of the convective zone) or to interact
locally with other transport processes, and thus impact the core rotation rate over time scales
corresponding to the lifetime of stars (Gy). This is why it is also important to include its effect in
a stellar evolution code. Nevertheless, the typical time scale of the SLO is of the order of the year
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Figure 1.11 – Representation of the SLO in a solar model from 350 to 750 yrs (Talon et al. 2002).
The dotted lines represent the initial rotation profile.

which is much smaller than the typical time scale corresponding to the evolution of stars. This
explains why it is very difficult to include properly its effects over large time scales. This is what
this work is about and more particularly it will consist in studying the physical characteristics of
the SLO in a simple configuration, considering the fast SLO only in a small region at the top of the
radiative zone, but with the aim to express the results in a convenient way easily implementable
in global rotating stellar models. To do so, in the next chapters, we will introduce the concept of
IGW in more details as well as the interaction between them and a mean flow in the frame of a
simple 2D plan parallel model.
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Chapter 2

Internal gravity waves in a static
medium

Internal gravity waves (IGW) are waves propagating through media stably stratified in density
and having the buoyancy as restoring force. Such kind of waves are ubiquitous in the Earth’s
atmosphere and oceans where the density varies with depth due to temperature variations as we
can see in the figures 2.1 and 2.2. Similarly, they can also propagate in the radiative layers of
stars. These waves show a certain behaviour and possess some properties which will be developed
in the next sections in the frame of a simple theoretical model.

Figure 2.1 – Surface manifestation of oceanic internal waves. The upward energy propagation of
internal waves modifies the properties of surface waves making them visible from space. Source :
https://physics.aps.org/articles/v9/s50 (Internal Wave trains around Trinidad, as seen from space)
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Figure 2.2 – The effect of internal gravity waves on clouds. Tualatin, United States. Source :
https://fyfluiddynamics.com/2019/07/striped-clouds/

2.1 Small amplitude wave equation

In this section, we consider an infinite medium in hydrostatic equilibrium in which waves can freely
propagate. We also assume that wave amplitudes are small and there are neither ambient rotation
nor dissipative mechanisms. Within this hypothesis, the velocity, density and pressure fields are
decomposed as:

~v = ~v ′ = u′(x, y, z, t)~ex + v′(x, y, z, t)~ey + w′(x, y, z, t)~ez, (2.1a)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t), (2.1b)

p(x, y, z, t) = p0(z) + p′(x, y, z, t). (2.1c)

where the quantities X ′ (Eulerian perturbations) are supposed to be small compared to the
reference state X0. At the hydrostatic equilibrium, we have:

~∇p0 = ρ0~g = −ρ0g~ez, (2.2)

with g the gravitational acceleration. It is important to note that the perturbations are such
that any product between them is considered as much smaller than any perturbation and will be
neglected in the equations.

2.1.1 The momentum equation

The momentum equation for a perfect fluid is provided in Eq. A.3 with a negligible viscosity and
reads:

∂~v

∂t
+ (~v.~∇)~v = −1

ρ
~∇p+ ~g (2.3)
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where ~∇ is the nabla operator. The latter equation can be written following Eqs. 2.1

(ρ0 + ρ′)

(
∂~v ′

∂t
+ (~v ′.~∇)~v ′

)
= −~∇(p0 + p′) + (ρ0 + ρ′)~g.

Neglecting terms of order higher than one and using the hydrostatic equilibrium, we can finally
write:

ρ0
∂~v ′

∂t
= −~∇p′ + ρ′~g (2.4)

2.1.2 The continuity equation

The continuity equation in Eq. A.2 is written:

∂ρ

∂t
+ ~v.(~∇ρ) + ρ(~∇.~v) = 0 (2.5)

Using Eq. 2.1, we have:

∂ρ′

∂t
+ ~v ′.(~∇[ρ0 + ρ′]) + (ρ0 + ρ′)(~∇.~v ′) = 0.

Once again, neglecting terms of order higher than one, we finally write:

∂ρ′

∂t
+ ~v ′.~∇ρ0 + ρ0(~∇.~v ′) = 0 (2.6)

2.1.3 The state equation

In order to close the problem, we have to add the relation linking the density and pressure per-
turbations. To do so, we will use the adiabatic approximation (δS = 0, with δS the Lagrangian
perturbation of the entropy), so that the state equation reads:

δp

p0

= Γ1
δρ

ρ0

(2.7)

where Γ1 is the adiabatic exponent. We note that the Lagrangian perturbation (δX) and the
Eulerian perturbation (X ′) of a quantity X are related by:

δX = X ′ + δ~r.~∇X0 (2.8)

where δ~r represents the small displacement of particles relatively to their equilibrium position and
is such that ~v ′ = ∂tδ~r. Using the Eq. 2.8, we can write:

p′

p0

+ δ~r.~∇ ln(p0) = Γ1

(
ρ′

ρ0

+ δ~r.~∇ ln(ρ0)

)
⇔ ρ′ =

ρ0

Γ1p0

p′ +

(
1

Γ1

d ln(p0)

dz
− d ln(ρ0)

dz

)
ρ0ξz
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where ξz is the z component of the vector δ~r. Noting that the sound speed in the medium and the
Brunt-Väisälä frequency1 are given by:

c2 =
Γ1p0

ρ0

(2.9a)

N2 = g

(
1

Γ1

d ln(p0)

dz
− d ln(ρ0)

dz

)
(2.9b)

we can finally write:

ρ′ =
1

c2
p′ +

N2

g
ρ0ξz (2.10)

2.1.4 Set of equations governing IGW

Considering what we have done for the momentum, continuity and state equations, the set of
equations we need to solve is the following:

ρ0
∂u′

∂t
= −∂p

′

∂x
(2.11a)

ρ0
∂v′

∂t
= −∂p

′

∂y
(2.11b)

ρ0
∂w′

∂t
= −∂p

′

∂z
− gρ′ (2.11c)

∂ρ′

∂t
+ w′

dρ0

dz
+ ρ0(~∇.~v ′) = 0 (2.11d)

ρ′ =
1

c2
p′ +

N2

g
ρ0ξz (2.11e)

where all the components have been written explicitly. We can see that we have five equations
for five unknowns (u′, v′, w′, p′ and ρ′) since w′ = ∂tξz. However, we can rewrite it under a more
convenient form. Indeed, we can replace Eq. 2.11e in Eq. 2.11c and we can rewrite ∂tρ

′ + w′ dρ0
dz

=
∂tδρ = ∂t(δp/c

2). Finally, the system can be rewritten as:

ρ0
∂u′

∂t
= −∂p

′

∂x
(2.12a)

ρ0
∂v′

∂t
= −∂p

′

∂y
(2.12b)

ρ0
∂w′

∂t
= −∂p

′

∂z
− g

c2
p′ −N2ρ0ξz (2.12c)

1

c2

∂p′

∂t
− ρ0g

c2
w′ + ρ0(~∇.~v ′) = 0 (2.12d)

which is totally equivalent to the above result. Nonetheless, this time, we have four equations for
four unknowns (u′, v′, w′ and p′), which makes it easier to solve.

1This frequency represents the characteristic oscillation frequency of a buoyant bubble in a medium stably
stratified in density (see appendix B for more details).
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2.2 Plan wave solution

By assuming a solution of the type ei(kxx+kyy+kzz−ωt) for each quantity (u′, v′, w′ and p′), where ω
is the angular frequency and ki is the wavenumber in the direction ~ei, the previous Eqs. 2.12 can
be written as: 

ωρ0u
′
0 − kxp′0 = 0

ωρ0v
′
0 − kyp′0 = 0

ωρ0

(
1− N2

ω2

)
w′0 +

(
ig

c2
− kz

)
p′0 = 0

ρ0kxu
′
0 + ρ0kyv

′
0 + ρ0

(
ig

c2
+ kz

)
w′0 −

ω

c2
p′0 = 0

(2.13)

where u′0, v
′
0, w

′
0, p
′
0 are the amplitudes of the quantites u′, v′, w′ and p′, respectively. We can see

that the latter system can be considered as a matrix equation. Indeed, this system can be written
as: 

ωρ0 0 0 −kx
0 ωρ0 0 −ky
0 0 ωρ0

(
1− N2

ω2

) (
i
g

c2
− kz

)
ρ0kx ρ0ky ρ0

(
i
g

c2
+ kz

)
− ω
c2



u′0
v′0
w′0
p′0

 = 0

This matrix equation admits a non trivial solution if, and only if the determinant of the matrix
vanishes. This condition leads directly to the following dispersion relation:(

N2

ω2
− 1

)(
ω2

c2
− k2

h

)
+ k2

z +
g2

c4
= 0 (2.14)

where kh is the horizontal wave number (k2
h = k2

x + k2
y). We can notice that this expression is

very similar to the one obtained for the non-radial adiabatic oscillations of stars. As a matter of

fact, here the ’traditional’ Lamb frequency (L2
l = l(l+1)c2

r2
, with l the angular degree of spherical

harmonics and r the radial coordinate) can be identified as k2
hc

2. IGW correspond to the low
frequency branch (i.e. ω2 � N2 and ω2 � c2k2

h) so that the dispersion relation reduces to:

k2
z ≈

(
N2

ω2
− 1

)
(k2
x + k2

y),

in which we have neglected the term g2/c4 since according to the hydrostatic equilibrium and the

low-frequency hypothesis, it is equal to 1/(Γ1Hp)
2 � |~k|2 =

(
2π
λ

)2
, where Hp is the pressure scale

height and λ is the wavelength. We can rewrite the latter expression under the form:

ω2 ≈ N2
k2
x + k2

y

k2
x + k2

y + k2
z

. (2.15)

Since we have assumed a plane wave solution, we directly see that the wave propagates when k2
z

is positive and the wave is evanescent (shows an exponential behaviour) when k2
z is negative. It

is therefore clear that the wave propagates for the low-frequency branch when ω2 � N2 (k2
z � k2

h).
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A very important point is that within this low-frequency approximation, one can show that it
is exactly the same as assuming that ~∇.~v ′ ≈ 0. Indeed, thanks to Eqs. 2.13, where we neglect
again the terms proportional to g/c2, we have:

~∇.~v ′ = i ~k.~v ′

= i(kxu
′ + kyv

′ + kzw
′)

≈ i

ωρ0

(k2
x + k2

y)−
k2
z

(N2/ω2 − 1)︸ ︷︷ ︸
=0

 p′ ≈ 0.

This is why we can assume that (to leading order approximation for ω2 � N2):

~∇.~v ′ ≈ 0 (2.16)

meaning that these waves are incompressible. We can also note that taking the horizontal laplacian
of the partial time derivative of Eq. 2.11c and replacing the different terms through the momentum
equation and the continuity equation reduced to ~∇v′ ≈ 0 (still within the low-frequency regime),
we obtain the following wave equation:

∂2

∂t2
(∇2w′) +N2(∇2

hw
′) = 0 (2.17)

which also leads to the dispersion relation 2.15 assuming a plane wave solution. It is then straight-
forward to show that by substituting in Eqs. 2.11a-2.11c and Eq. 2.16 a real solution for the density
in the form of:

ρ′ = +Aρ0 cos(kxx+ kyy + kzz − ωt) (2.18)

we find:

u′ = −A gωkzkx
N2(k2

x + k2
y)

sin(kxx+ kyy + kzz − ωt), (2.19a)

v′ = −A gωkzky
N2(k2

x + k2
y)

sin(kxx+ kyy + kzz − ωt), (2.19b)

w′ = +A
gω

N2
sin(kxx+ ky + kzz − ωt) (2.19c)

p′ = −A ρ0gkz
k2
x + k2

y + k2
z

sin(kxx+ kyy + kzz − ωt) (2.19d)

for which we directly verify the incompressibility condition in Eq. 2.16 since kxu
′+kyv

′+kzw
′ = 0.

Moreover, we see that the magnitude of the horizontal velocity is equal to:

v′h =
√
u′2 + v′2 =

kz√
k2
x + k2

y

|w′| =

√(
N2

ω2
− 1

)
|w′|. (2.20)

Since ω � N for propagative internal gravity waves in the low-frequency regime, we see that the
horizontal velocity is larger than the vertical velocity.
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2.3 Phase and group velocity of IGW

In the following, we set ky = 0. This is actually always possible with an appropriate choice of frame
of reference. In this case, Eq. 2.19b shows that the y component of the wave velocity vanishes.
Furthermore, the dispersion relation in Eq. 2.15 can be rewritten as:

ω2 ≈ N2 k2
x

k2
x + k2

z

= N2 cos2(θ) 6 N2 (2.21)

where we recall the norm of the wavevector ~k = (kx, kz) given by k =
√
k2
x + k2

z . This vector
indicates the direction of the propagation of the wave phase, which is rotated by an angle θ from
the x axis. The phase velocity thus points in this direction and is given by:

~vφ =
ω

k2
~k. (2.22)

In the limiting case where ω � N , kz � kx so that the phase velocity is mostly vertical, internal
gravity waves are thus transverse waves (indeed, ~v′.~vφ = 0). In contrast, the group velocity
representing the propagation velocity of the energy carried by the wave is given according to
Eq. 2.15 by:

~vg = ~∇~k ω =
ωk2

z

kxk2
~ex −

ωkz
k2

~ez,

⇒|~vg| =
kz
kx

ω

k
=
kz
kx
|~vφ|.

(2.23)

This relation shows that the gravity waves are dispersive waves because the phase and the group
velocity have not the same expression. Equations 2.22 and 2.23 show that for the phase and the
energy, the horizontal directions of propagation are the same but the vertical direction of propa-
gation are opposite. We can also see that the propagation direction of the wave is perpendicular
to its group velocity since ~k.~vg = 0. A convenient representation of the phase and group velocity
as well as an illustration of the layout of internal gravity waves with respect to these velocities is
shown in the figure 2.3 .

2.4 Thermal damping of IGW

In the last sections, we have neglected all the dissipative mechanisms so that the oscillations have
been considered adiabatic with a constant amplitude over time. However, IGW obviously generate
temperature perturbations that can in turn be countered by any thermal diffusion mechanism.
The wave amplitude is thus progressively damped by thermal diffusion. Here, we aim to study
and quantify this phenomenon in a simple way.

To do so, we have to consider in addition the heat equation that is given by:

ρ
dq

dt
= −~∇.~q (2.24)

where dq = Tds is the specific heat, s is the specific entropy and ~q is the heat flux. In stably
stratified radiative zone in stars, the heat transport is ensured by photons radiation so that:

ρT
ds

dt
= −~∇. ~FR (2.25)
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Figure 2.3 – Representation of IGW. Here, there is no scale for the axis but the scheme is such
that kz = 2kx and thus, vg = 2 vφ. The different wavelengths are also represented and we can see
that they are inversely proportional to the wave numbers

where the flux of radiative energy can be written in the diffusion approximation:

~FR = −Krad
~∇T (2.26)

with Krad = 16σT 3

3κρ
the thermal conductivity, σ the steffan-Boltzmann constant and κ the opacity.

At the equilibrium, the radiative flux is assumed vertical and conserved so that:

Krad
dT0

dz
= constant (2.27)

where T0(z) is the equilibrium temperature. In presence of internal gravity waves, Eq. 2.25 is
perturbed. In order to keep the problem simple, we make the following assumptions. First, in case
of incompressible gravity waves, we can neglect the Lagrangian perturbation of pressure to good
approximation (Dintrans and Rieutord 2001) so that we have the relation:

δs

cp
≈ δT

T
(2.28)

where δs and δT is the Lagrangian perturbation of specific entropy and temperature respectively.
Second, we assume the vertical wavelength is much smaller than the variation scale height of the
structure and the horizontal wavelength so that the Lagrangian perturbation of the energy flux
divergence is dominated by the vertical gradient of the temperature perturbation. Within these
approximations, linearizing the energy equation leads to:

dδT

dt
≈ +χrad∂

2
zδT = −χradk2

zδT (2.29)
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where χrad = Krad/ρcp is the radiative diffusivity. This latter equation shows that the wave
amplitude is progressively damped over a time at a rate 1/tdamp with:

tdamp =
1

k2
zχrad

(2.30)

Of course, in addition to this damping, the variations of temperature is also ruled by the momentum
equation and thus oscillates with the frequency ω of the wave. Therefore, the general solution takes
the form of an exponentially-damped harmonic oscillator which is given to good approximation
by:

δT (t) ≈ δT (t0) e
−

∫ t
t0

dt′
tdamp e−iωt (2.31)

It is also interesting to convert this expression for the damping of the oscillation at one point
with the damping of an energy ray that propagates at the group velocity in the z direction. During
a time interval dt, the wave amplitude decreases by a factor dt/tdamp. During this lapse of time, the
energy ray moves over a distance dz = vg,z dt in the vertical direction. Therefore, the amplitude
of the energy ray decreases by a factor dt/tdamp = dz/(vg,ztdamp), where vg,z is the vertical group
velocity. Using Eq. 2.23, it is thus straightforward to show that the total damping of the energy
ray between z0 and z can be described to good approximation by a factor e−τ , where τ is given
by:

τ(z) ≈ k3
x

∫ z

z0

χrad
N3

ω4
dz′ (2.32)

where we consider that z0 < z. This approximate expression is actually very close to the rigorous
expression that will be derived in more details in the Chapter 3. Since gravity waves are damped,
they deposit energy and momentum and interact with the medium, for example a mean flow. This
is what happens for the SLO, as we discussed earlier. In particular, when an horizontal flow U(z, t)
is considered in the direction ~ex the wave frequency is doppler-shifted in Eq. 2.32 so that ω has
to be replaced by ω̂ = (ω − kxU(z, t)), meaning that prograde waves, that is propagating in the
same direction as the flow (kxU > 0), is more rapidly damped than the retrograde ones, that is
propagating in the opposite direction of the flow (kxU < 0). This asymmetry can create a net
transport of angular momentum in the medium as we will see in the next chapter.

To conclude this chapter, we can say that IGW are low frequency transverse waves having
buoyancy as restoring force and with an incompressible nature. Their phase velocity is perpen-
dicular to their group velocity which is also the propagation direction of the energy carried by
the waves. They propagate in media stably stratified in density and undergo a radiative damping
mechanism during their travel across the medium. We can therefore see that these waves can in-
teract with a surrounding medium (by exchanging angular momentum), for instance with a mean
flow as developed in the next chapter.
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Chapter 3

Modelling the Shear Layer Oscillation

3.1 Description of the problem

This chapter is aiming at modelling the interaction between a mean flow and internal gravity waves
generated at the interface between the convective and the radiative zones. The mean flow lies just
below the bottom of the convective zone, on the top of the radiative zone on a depth much smaller
than the characteristic radius of the star R. We assume that L, the largest horizontal spatial scale
of the problem, is much smaller than R. This configuration allows us to make an approximation
on the dimensions of the problem. Indeed, we focus on a small part of the radiative zone and we
assume that we place ourselves in a two dimensional plan parallel model, as shown in the figure
(3.1), to study the behavior of the mean flow interacting with internal gravity waves.

In order to achieve this, we work with a cartesian plan (~ex, ~ez). The medium is stably stratified
(radiative zone), at the hydrostatic equilibrium in the ~ez direction and moves at an horizontal
velocity ~u = U(z)~ex (the vertical component of the velocity is neglected since the contraction ve-
locity is very small and negligible over the timescales of interest). We also neglect the microscopic
viscosity of the bulk and the heating due to friction.

Figure 3.1 – Illustration of the physical situation of the flow inside a small box at the interface
between the convective and radiative zones.

Convective zone

Radiative zone

-

6
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We consider now that we disturb this equilibrium. All physical quantities can be decomposed
as follows:

X(x, z, t) = X(z, t) +X ′(x, z, t) (3.1)

where t is the time, X ′(x, z, t) is the fluctuating part and X(z, t) is the horizontal Eulerian mean
defined by:

X(z, t) =
1

L

∫ +L/2

−L/2
X(x, z, t)dx (3.2)

We note for later purposes that the following properties are valid for any quantity X an Y :

X ′ = 0, ∂tX = ∂tX, ∂zX = ∂zX, ∂xX = ∂xX = 0

XY = X Y +X ′Y ′
(3.3)

Assuming periodical boundary conditions in the ~ex direction, L corresponds to the spatial period
such as X(x+ L, z, t) = X(x, z, t). In this context, the fields ρ, p and ~v are written:

ρ(x, z, t) = ρ(z, t) + ρ′(x, z, t),

p(x, z, t) = p(z, t) + p′(x, z, t),

~v(x, z, t) =
[
U(z, t) + u′(x, z, t)

]
~ex + w′(x, z, t)~ez

(3.4)

The gravity field is governed by the Poisson equation ~∇.~g = −4πGρ with G, the gravitational
constant and ~g is the gravitational acceleration vector. We adopt the Cowling approximation
(Cowling 1941), which allows us to neglect the fluctuations of ~g. We can write:

~g(x, z, t) ≈ −g(z, t)~ez (3.5)

This approximation implicitly assumes that the fluctuations have weak amplitudes and oscillate on
spatial scales smaller than L. Indeed, in this case, the fluctuations of ~g induced by the fluctuations
of ρ over all the plane vanish by mean effect. This condition will be satisfied for the low frequencies
gravity waves (Dintrans and Rieutord 2001).

3.2 Eulerian mean of conservation equations

In this section, we are going to derive the Eulerian mean of balance equations by using the con-
tinuity equation A.2 and the two components of the momentum equation A.4 along the ~ex and
~ez directions. For the sake of clarity, one replaces the expressions of the density ρ, the pressure
p and the velocity field ~v by the relations 3.4 in the continuity and momentum equations, while
neglecting the viscous term which is always valid in stars. Then, we take the horizontal Eulerian
mean of these equations and only the terms up to the second order in the perturbations are kept in
the disturbances because we assume that their amplitudes are much smaller than the amplitudes
of the undisturbed variables. Finally, we simplify the expressions by using the relations given by
equations 3.3.
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Replacing ρ, p and ~v by the equations 3.4, the continuity and the two momentum equations
are written:

∂t[ρ+ ρ′] + ∂x[(ρ+ ρ′)(U + u′)] + ∂z[ρw
′] + ∂z[ρ

′w′] = 0

∂t[ρw
′] + ∂x[ρ(U + u′)w′] + ∂z[ρw

′2] = −∂zp− ρg
∂t[ρ(U + u′)] + ∂x[ρ(U + u′)2] + ∂z[ρ(U + u′)w′] = −∂xp

and taking the Eulerian mean while using the relations 3.3, we obtain:

∂tρ = −∂z
(
ρ′w′

)
= C (3.6a)

−∂zp− ρg = ∂t(ρ′w′) + ∂z(ρw′2 + ρ′w′2) = V (3.6b)

∂t(ρU) = ∂z(ρu′w′)− ∂t(ρ′u′)− ∂z(U ρ′w′) = H (3.6c)

where we have used the periodic boundary conditions in the x direction to remove the partial
derivatives with respect to x. At this stage, it is the equation 3.6c which will allow us to describe
the interactions between the mean flow U and the wave terms. To go further, we thus have to
express the evolution of the perturbations as a function of t and z. To do so, we will consider two
cases. First, we will consider the case of small amplitude waves oscillating in a stable way around
the equilibrium state: these are the IGW. Second, we will address the case where the level of shear
in the star can lead to instabilities and the perturbations cannot be considered as small amplitude
waves anymore. In this last case, we will derive the instability criterions and will propose a simple
modelling to describe the induced turbulence and mixing.

3.3 Case 1: Stable linear fluctuation analysis (IGW)

3.3.1 Small wave amplitude assumption

In this section, we are going to derive the fluctuations equations by using, once again, the con-
tinuity equation A.2, but this time, instead of working with equation A.4, we are going to use
equation A.3 in order to derive the two components of the momentum equation. In a similar way
to the previous section, we will use the equation 3.4 to develop the mathematical expressions of
these equations without applying the Eulerian mean but by keeping only the first order terms in
disturbances because, in our case, we assume that these fluctuations are small with respect to
the Eulerian mean : X � X ′ for all variable X, which justifies the linear approximation for the
fluctuations.

The continuity and the two momentum equations are written:

∂t[ρ+ ρ′] + ∂x[(ρ+ ρ′)(U + u′)] + ∂z[(ρ+ ρ′)w′] = 0

(ρ+ ρ′)[∂tw
′ + (U + u′)∂xw

′ + w′∂zw
′] = −∂z[p+ p′]− (ρ+ ρ′)g

(ρ+ ρ′)[∂t(U + u′) + (U + u′)∂x(U + u′) + w′∂z(U + u′)] = −∂x[p+ p′]

and keeping only the first order terms in disturbances, we obtain:

∂tρ
′ + U∂xρ

′ + ~∇.(ρ~v ′) = −∂tρ = −C ≈ 0 (3.7a)

ρ∂tw
′ + ρU∂xw

′ + ∂zp
′ + ρ′g = −∂zp− ρg = V ≈ 0 (3.7b)

ρ∂tu
′ + ρU∂xu

′ + ρw′∂zU + ∂xp
′ = −(ρ+ ρ′)∂tU ≈ 0 (3.7c)
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In these equations, the right hand side vanishes because it is straightforward to show, thanks to
equations 3.6a, 3.6b and 3.6c, that these terms are of order two in disturbances. Moreover, we
assume that:

|u′|, |w′| � U � c (3.8)

where c2 = Γ1p/ρ is the sound velocity, with Γ1 the first adiabatic exponent. In other words, in
order to study the interaction between the fluctuations and U , the mean of the other variables
ρ and p can be considered as independent of time in good approximation, which means that the
variation of the mean structure with respect to the hydrostatic equilibrium is totally negligible.
Indeed, by taking C ≈ 0 and V ≈ 0 for equations 3.6a and 3.6b we find:

∂tρ ≈ 0⇒ ρ ≈ ρ(z)⇒ ~g ≈ −g(z)~ez (3.9)

∂zp ≈ −ρg ⇒ p ≈ p(z) (3.10)

where the second mathematical implication in equation 3.9 comes from the Poisson equation
~∇.~g = −4πGρ. The Eulerian mean of the structure variables therefore depends only on the
altitude z, except for U , which is also time dependent. In the following, the notation is simplified
by omitting the bar (the overline) on Eulerian mean, corresponding by hypothesis to the quantities
at the hydrostatic equilibrium of ρ, p and the other variables such as the temperature T or the
specific entropy s (entropy per unit mass). However, there are also two other equations that we
need to take into account: the state equation for ρ and the heat equation.

First, the state equation for the variable ρ ≡ ρ(p, T ), assuming that the gradient of chemical
composition is weak, is given by:

ρ′

ρ
= α

p′

p
− δT

′

T
(3.11)

where α =
(
∂ ln ρ
∂ ln p

)
T

and δ = −
(
∂ ln ρ
∂ lnT

)
p
. Indeed, we can always write this state equation for any

gas having a relation between the pressure and the temperature. For instance, in the case of a
perfect gas, we have α = δ = 1 since ρ ∝ p

T
.

Second, the heat equation is given by:

ρ
dq

dt
= −~∇.~q

where dq = Tds is the heat and ~q = ~FR is the radiative flux. This equation can be written:

ρT
ds

dt
= −~∇. ~FR

Now, by replacing ρ, T, s, ~FR by their averaged plus a perturbation (eq 3.1), developing the total
derivative with respect to time and getting rid of the bar for the mean quantities, keeping only

the first order perturbations and assuming the equilibrium such that ∂ts = −~∇.~FR , we obtain
the following equation:

ρT (∂ts
′ + U∂xs

′ + w′
ds

dz
) = −~∇. ~F ′R
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where the term ds
dz

can be expressed as a function of the Brunt-Väisälä frequency N2 = gδ
cp
ds
dz

thanks

to the state equation for the density. We obtain:

ρT (∂ts
′ + U∂xs

′ + w′
cpN

2

gδ
) = −~∇. ~F ′R (3.12)

where cp is the heat capacity at constant pressure.

Finally, at this stage, we have the following set of equations to solve for the linear IGW:

∂tρ
′ + U∂xρ

′ + ~∇.(ρ~v ′) = 0 (3.13a)

ρ(∂tu
′ + U∂xu

′ + w′∂zU) + ∂xp
′ = 0 (3.13b)

ρ(∂tw
′ + U∂xw

′) + ∂zp
′ + ρ′g = 0 (3.13c)

ρT (∂ts
′ + U∂xs

′ + w′
cpN

2

gδ
) = −~∇. ~F ′R (3.13d)

3.3.2 Low frequency fluctuations

Now we suppose that the fluctuations belong to low frequency regime as seen in the chapter
2 meaning that the characteristic frequency ω verifies that ω2 � N2 as well as ω2 � c2/H2

p ,
where Hp ≡ −(d ln p/dr)−1 corresponds to the pressure height scale. Under these hypotheses,
the deviation with respect to the hydrostatic equilibrium induced by the fluctuations is almost
instantaneously rebalanced (on the fluctuations time scale). Fluctuations may be considered as
nearly incompressible meaning that the terms with ρ′ can be neglected in Eq. 3.13a and p′/p� ρ′/ρ
in Eq. 3.11. Although frequencies are considered to be low, we assume that 1/ω is much smaller

than the evolution time scale of the mean flow (∂ lnU
∂t
≡ 1

τU
� ω). This hypothesis allows us to state

that the flow U in fluctuation Eqs. 3.13a-3.13d may be considered time independent, meaning:

U(z, t) ≈ Ũ(z). (3.14)

We can therefore rewrite the fluctuation equations under the following form:

~∇.(ρ~v ′) = 0 (3.15a)

ρ(∂tu
′ + Ũ∂xu

′ + w′∂zŨ) + ∂xp
′ = 0 (3.15b)

ρ(∂tw
′ + Ũ∂xw

′) + ∂zp
′ + ρ′g = 0 (3.15c)

ρ′

ρ
= −δT

′

T
= − δ

cp
s′ (3.15d)

ρT (∂ts
′ + Ũ∂xs

′ + w′
cpN

2

gδ
) = −~∇. ~F ′R (3.15e)

where Eqs. 3.15a and 3.15d come from the incompressible nature of the low-frequency waves.

The latter system consisting of 6 equations with 6 unknowns ( u′, w′, p′, ρ′, s′ and T ′ ) repre-
sents the oscillation equations for internal gravity waves damped in an horizontal flow having the
buoyancy force (ρ′g) as main restoring force. We can note that this system is quite similar to the
system 2.12 developed in the previous chapter. Thus, we expect to find some similarities for the
solution but keeping in mind that this system is much more complex since we have taken into
account the thermal damping of the waves as well as an horizontal non-vanishing mean flow.
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3.3.3 Solution of the system

The system of Eqs. 3.15 is quite complex and has already been solved by Press (1981). The idea is
to find an evolution equation for the variable ρw′ and then expand the solution as a Fourier series
and express it within the low-frequency approximation using an asymptotic JWKB analysis. The
different steps of the development are presented hereafter.

The following developments are quite heavy and can be skipped by the reader until the part 3.3.3
where we make a little synthesis of the most important results obtained hereunder.

Equation for ρw′

The first step is to take the horizontal divergence of the momentum conservation represented by
Eqs. 3.15b and 3.15c, and so that using Eq.3.15a we obtain:

∆p′ = −∂z(ρ′g)− 2∂zŨ(∂xρw
′) (3.16)

where ∆ is the Laplacian operator. Then, we take the Laplacian of Eq. 3.15c to get:

∂τ∆(ρw′) = −∂z∆p′ −∆(ρ′g)− ∂2
z Ũ(∂xρw

′)− 2∂zŨ(∂2
zxρw

′)

= ∂2
z (ρ
′g)−∆(ρ′g) + ∂2

z Ũ(∂xρw
′)

= −g∂2
xρ
′ + ∂2

z Ũ(∂xρw
′)

(3.17)

where the second equality has been obtained by using Eq. 3.16 and for which we have defined the
operator ∂τ = ∂t + Ũ∂x representing the derivative with respect to time in the frame of reference
moving with the mean flow in the horizontal direction.

The second step is to express the density perturbation thanks to the heat flux in Eq.3.15e. In
the diffusion approximation, the flux of radiative energy can generally be written:

~FR = −Krad
~∇T

where Krad = 16σT 3

3κρ
is the thermal conductivity, with σ the steffan-Boltzmann constant and κ the

opacity. The Eulerian perturbation of the flux is therefore given by:

~F ′R = −K ′rad~∇T −Krad
~∇T ′

In the case of internal gravity waves having low frequencies, one can show that the vertical wave-
length is very small compared to the height scale of the equilibrium variation (of the pressure). It
will be verified later thanks to the dispersion relation (see chapter 2). Using the latter equation
and Eq. 3.15d, the leading order gives:

~∇. ~F ′R ≈ −Krad∆T
′ ≈ TKrad

δ ρ
∆ρ′

Inserting this result in Eq. 3.15e and using Eq.3.15d, we obtain:

∂τρ
′ − χrad∆ρ′ =

N2

g
ρw′ (3.18)
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where χrad = Krad/ρcp is the radiative diffusivity. Then, we take the derivative ∂τ of Eq. 3.17 and
we replace ∂τρ

′ by the latter equation in order to find:

∂2
τ∆(ρw′) = −gχrad∆∂2

xρ
′ −N2∂2

x(ρw
′) + ∂2

z Ũ(∂xτρw
′)

and replacing ∂2
xρ
′ by Eq.3.17, we finally get:

∂2
τ∆(ρw′) = gχrad∆

(
1

g

[
∂τ∆(ρw′)− ∂2

z Ũ(∂xρw
′)
])
−N2∂2

x(ρw
′) + ∂2

z Ũ(∂xτρw
′) (3.19)

Before going further, we expand the dependent variable as a Fourier series in the horizontal direc-
tion. One assumes that the length scale L is the largest horizontal wavelength of the considered
spectrum. In this case, the perturbation of the quantity X can be written:

X ′(x, z, t) =
l=+∞∑
l=−∞

X ′l(z, t)e
iklx (3.20)

where kl = 2πl/L with l, an integer and

X ′l(z, t) =
1

L

∫ +L/2

−L/2
X ′(x, z, t)e−iklxdx (3.21)

in such a way that ∂x can be substituted by ikl in the equation Eq. 3.19. In the same way, one
also introduces the temporal Fourier transform of any variable X(t) by:

TFω[X(t)] ≡ X̂(ω) =

∫ +∞

−∞
X(t)eiωtdt (3.22)

where ω is the angular frequency of the wave in a Galilean frame. Of course, we can write
TFω(∂tX) = −iωX̂(ω).

All these conventions have been introduced in order to write Eq.3.19 in the Fourier’s space
under the following form:[
−ω̂2(∂2

z − k2
l )−N2k2

l − klω̂∂2
z Ũ
]

(ρŵ′l) = gχrad(∂
2
z − k2

l )

(
1

g

[
−iω̂(∂2

z − k2
l )− ikl∂2

z Ũ
])

(ρŵ′l)

(3.23)
where we have defined ω̂ = ω−klŨ(z) which is the intrinsic frequency of the wave in the co-moving
frame of reference following the horizontal flow. A prograde wave whose phase propagates in the
same horizontal direction than U (such as lU > 0) will have an intrinsic frequency lower than the
one in the considered Galilean frame. It will be exactly the opposite for a retrograde wave (such
as lU < 0). It is also convenient to be careful to the definition of the Fourier transform. Indeed,
the link between the sign of l and the property prograde/retrograde depends on the convention of
the Fourier transform. The case where l > 0 will refer to a prograde wave because we have used
eiωt instead of e−iωt when we have passed into the frequency space through the Fourier transform
in Eq.3.22.

38



Short wavelength JWKB analysis

The Eq. 3.23 does not posses analytical solution. However, a quite good approximation is to
neglect the velocity gradient acting on the waves. This approximation is only done here in order
to simplify the mathematical resolution of the problem but will be relaxed in section 3.4. In other
words, we consider that the flow only acts on the waves through Doppler effect on their frequencies
(included in ω̂). We therefore neglect the derivatives of Ũ in Eq. 3.23 which becomes:{(

[∂2
z − k2

l ] +
k2
lN

2

ω̂2

)
− i g

ω̂
χrad[∂

2
z − k2

l ]

(
1

g
[∂2
z − k2

l ]

)}
(ρŵ′l) = 0 (3.24)

As already mentioned, we expect that internal gravity waves having low frequencies (ω̂ � N)
have their wavelength much smaller than the pressure height scale. Thus, we search for solution
in the WKB approximation such as:

ρŵ′l = A(z)eiΦ(z) (3.25)

where A(z) and Φ(z) are an amplitude slowly varying and a phase rapidly varying with z meaning
that:

(∂zΦ)2 ≡ k2
z(z)� (∂z lnA)2, ∂2

z ln g

where we have defined the local radial (vertical) wave number kz(z). Moreover, we consider
the quasi-adiabatic hypothesis. We therefore suppose that the losses by radiative diffusion are
associated with time scales much longer than the wave period. Thus, we suppose that:

εnad ≡
χradk

2
z

ω̂
� 1

Physically, εnad measures the radiative diffusion efficiency with respect to the restoring force. To
the dominant order in εnad, Eq. 3.24 can be written:

∂2
z (ρŵ

′
l) +

(
N2

ω̂2
− 1

)
k2
l (ρŵ

′
l) = 0 (3.26)

By replacing Eq. 3.25 in the latter equation and gathering the dominant terms in kz, the WKB
solution is written:

kz = ±

√(
N2

ω̂2
− 1

)
k2
l (3.27)

∂z lnA = −1

2
∂z ln(kz)⇒ A(z) = |kz|−1/2 (3.28)

where the + and - represent the case of a progressive and a regressive wave in the z direction,
respectively. We also note that the leading-order dispersion relation we have just found has the
same expression than the one obtained in the chapter 2. Now we consider the first order disruption
in εnad of the solution. We search for the perturbation of the wave number kz by writing:

∂zΦ = k(0)
z + εnadk

(1)
z = ±

√(
N2

ω̂2
− 1

)
k2
l + εnadk

(1)
z (3.29)
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where k
(0)
z is the solution of the non-disrupted case. Inserting the latter relation in Eq.3.25 and

Eq. 3.24, we can identify the first order terms in εnad giving:

εnadk
(1)
z = ∓ i

2
|kl|3χrad

N3

ω̂4

(
N2

N2 − ω̂2

)1/2

(3.30)

which is similar to the expression founded by Press (1981). Finally, the general expression of the
wave function in the frame of the WKB approximation can be expressed as a linear combination
of the progressive and regressive solutions, which can be written as follows:

ρŵ′l ≈
1

|k(0)
z |1/2

(Ale
iφ(z)+τ(z) +Ble

−iφ(z)−τ(z)) (3.31)

where Al and Bl are two complex constants entirely determined by the excitation mechanism. The
functions φ(z) and τ(z) are given by:

φ(z) =

∫ z

z0

|k(0)
z |dz (3.32)

and

τ(z) =
1

2
|kl|3

∫ z

z0

χrad
N3

ω̂4

(
N2

N2 − ω̂2

)
dz (3.33)

representing the damping rate of the waves (z0 is the location of the waves generation on the
bottom of the convective zone). Since we have considered that ω̂ � N , the latter expression for
the damping wave can be written:

τ(z) =
1

2
|kl|3

∫ z

z0

χrad
N3

ω̂4
dz (3.34)

and we conclude that prograde waves are much rapidly damped than retrograde ones. We can also
note that this expression is quite similar to the expression 2.32 obtained with a simpler reasoning
in the previous chapter. Once one comes back to the time space, the more general expression for
the variable ρw′ can therefore be expressed as follows:

ρw′ =

∫ ∑
l

1

|k(0)
z |1/2

(Al e
iφ+τ +Bl e

−iφ−τ )eiklxe−iωtdω (3.35)

Flux expression

The last step is to find the expressions for the various fluxes in Eq. 3.6c. In order to achieve this,
we need to extract u′ and ρ′ from the system of Eq.3.15. By using Eq. 3.15a and Eq.3.18, we find
the following expressions:

u′ = −1

ρ

kz
kl

(ρw′) (3.36)

and

ρ′ =
N2

g

1

(χrad(k2
l + k2

z)− iω̂)
(ρw′) (3.37)
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However, the flux of the second term of the left hand side of Eq. 3.6c has the following expression:

u′w′ =
1

L

∫ +L/2

−L/2
u′w′dx

≈
∫ ∫ ∑

l

û′l(ω)ŵ′−l(ω
′)e−i(ω+ω′)tdω dω′

(3.38)

which is an expression very difficult to compute. In fact, the latter double integral cannot be
computed because we have not taken into account the whole wave excitation process in our previous
developments. The study of the convective excitation of waves is well beyond the scope of this work
and will not be tackled with in what follows. Nevertheless, we can find an analytical expression for
the wave flux if we assume an equality between the spatial and temporal mean (on the characteristic
time for convective excitation) as shown in appendix C. Its expression is given by:

u′w′ =
1

2π

∫
1

τc
û′ŵ′∗dω

=
1

2π

1

τc

∫
− 1

ρ2

∑
l

1

kl
|Al|2e2τ(z)dω

= −
∫ ∑

l

FJ(l, ω)e2τ(z)dω

(3.39)

where τc is the characteristic time for the convection and FJ is the wave flux computed at z = z0.

Synthesis of the important results

In the next parts of this work, we will only keep in Eq.3.6c the flux term u′w′ giving the following
equation and neglect the mass flux, as usually done in previous works (Kim and MacGregor 2003):

∂t(ρU) = −∂z(ρ u′w′) (3.40)

for which the linear analysis has just given this expression for the flux term:

u′w′ = −
∫ ∑

l

FJ(l, ω)e2τ(z)dω (3.41)

where FJ is the wave flux computed at the top of the radiative zone where the waves are generated.
Moreover, the following expression for the damping rate of waves is given by this expression:

τ(z) =
1

2
|kl|3

∫ z

z0

χrad
N3

ω̂4
dz (3.42)

where z0 > z is the vertical coordinate where waves are generated, χrad is the radiative coefficient
and finally, the symbol ω̂ has the following expression:

ω̂ = (ω − klU) (3.43)

with ω the frequency of the wave. Finally, we can note that the relation 3.42 tells us that the
prograde waves will be more rapidly damped that the retrograde ones (through the Doppler shifted
frequency ω̂) meaning that retrograde waves will exchange more momentum with the mean flow.
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3.4 Case 2 : Unstable shear profile

The entire developments we have done until now are only based on the fact that the perturbations
u′, w′, p′ and ρ′ are small compared to the corresponding mean quantities for any time t. This
hypothesis is true since we have considered IGW, but becomes invalid when the amplitude of the
small fluctuations increases in function of time. As a matter of fact, there is an important quantity
that we have intentionally forgotten in the linear analysis. This quantity is the vertical variation
of the mean flow itself, or in other words, its vertical gradient. In the next parts of this chapter, we
are going to demonstrate the link between the vertical shearing of the mean flow and the growing
or not growing of the fluctuations, as well as proposing a simple prescription to express the term
u′w′ seen through a stability analysis as developed in the chapter 14 of the reference book Roisin
and Beckers (2010).

3.4.1 The Richardson criterion

An important quantity needed to know the degree of instability of a shear flow is the Richardson
number that we are introducing here. We still consider a two dimensional flow with the same
decomposition 3.1 for the quantities of the problem. The linearized 1 momentum and continuity
equations are (assuming ~∇.~v = 0):

∂t(u
′) + U∂x(u

′) + w′
dU

dz
= − 1

ρ0

∂xp
′ (3.44a)

∂t(w
′) + U∂x(w

′) = − 1

ρ0

∂zp
′ − ρ′

ρ0

g (3.44b)

∂x(u
′) + ∂z(w

′) = 0 (3.44c)

∂t(ρ
′) + U∂x(ρ

′) + w′
dρ

dz
= 0 (3.44d)

with the boundary conditions : w′(0) = w′(H) = 0 (H is the height of the domain). The fact that
the velocity field has a vanishing divergence allows us to introduce a new variable ψ(x, z, t) called
current function such as: ∂xψ = w′ and ∂zψ = u′ (ψ(x, 0, t) = ψ(x,H, t) = 0). We can show that
the two components of the momentum equation can be combined and written under the following
form:

[∂t + U∂x]∆ψ − ∂x(ψ)
d2U

dz2
− g

ρ0

∂x(ρ
′) = 0 (3.45)

By introducing the plane wave solutions: ψ(x, z, t) = Ψ(z)eik(x−ct) and ρ′(x, z, t) = R(z)eik(x−ct)

(c is the phase velocity) it is possible to write, thanks to the continuity equation, the following
Taylor-Goldstein equation:

(U − c)
[
d2Ψ

dz2
− k2Ψ

]
+

[
N2

(U − c)
− d2U

dz2

]
Ψ = 0 (3.46)

with Ψ(0) = Ψ(H) = 0. We can note that if c and Ψ are solutions of the latter equation, then
c∗ and Ψ∗ are also solutions (thanks to the properties of the complex conjugate operator on the
derivative).

1This is the only step for which we have to linearize the equations and what follows is a linear stability analysis.
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Let us consider now that Ψ(z) can be decomposed as : Ψ =
√
U − c φ. The Eq. 3.46 can

therefore be written:

d

dz

[
(U − c)dφ

dz

]
−

[
k2(U − c) +

1

2

d2U

dz2
+

1

(U − c)

{
1

4

(
dU

dz

)2

−N2

}]
φ = 0 (3.47)

with φ(0) = φ(H) = 0. Multiplying the latter equation by φ∗, integrating over the whole domain
and assuming a decomposition for the velocity c: c = cr + ici, the imaginary part of the result is
given by:

ci

∫ H

0

(
N2 − 1

4

(
dU

dz

)2
)
|φ|2

|U − c|2
dz = −ci

∫ H

0

(∣∣∣∣dφdz
∣∣∣∣2 + k2|φ|2

)
dz (3.48)

We directly see that if N2− 1
4

(
dU
dz

)2

> 0 everywhere in the domain, then ci must be equal to zero

to satisfy the latter relation. However, the fact that ci = 0 makes the system stable. Thus, the
stability criterion is given by a condition on the Richardson number (Ri) taking the form:

Ri =
N2(
dU
dz

)2 >
1

4
(3.49)

where N2 = − g
ρ0

dρ
dz

and M2 ≡
(
dU
dz

)2

is the Prandtl frequency. A local indicator of instability is

therefore given by:

Ri <
1

4
(3.50)

To conclude this discussion about the Richardson number it is interesting to consider the case of
two fluids with densities and velocities ρ1, U1 and ρ2, U2 each on a height H/2 one above the other
which by instability will be mixed into a new fluid having a density ρ = (ρ1 + ρ2)/2 and a velocity
U = (U1 +U2)/2. It can be shown that the ratio between the variation of the potential energy and
the variation of the kinetic energy of the flow is approximatively given by the Richardson number
and is written:

Ri ∼ gH(ρ2 − ρ1)

ρ0(U2 − U1)2
(3.51)

and the instability criterion can be interpreted as follows. If the loss in kinetic energy is at least
as large as the gain in potential energy, then the flow will be unstable.

3.4.2 The eddy viscosity

Once the Richardson criterion has been established, it could be interesting to model these insta-
bilities. In fact, these instabilities take the shape of eddies with different sizes and rotation speeds.
The flow of energy goes from the larger eddies towards the smaller eddies where the viscosity starts
to act (because the friction becomes as large as the inertia) and extracts the energy of the mean
flow by damping these eddies. This phenomenon is called Kolmogorov cascade. The idea is to
introduce an effective viscosity νeff in order to model the damping of the larger eddies (i.e. the
macro-scale eddies) since it is not possible to model each eddy scales. This situation is very similar
to the one of a perfect gas for which its accurate description requests the temporal evolution of a
huge amount of particles and becomes immeasurably difficult to model. This is why we introduce
the thermodynamical variable such as the temperature or the pressure of the gas. We can show by
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a dimension analysis that the eddy scale and velocity for the macro-scale Lm, Um and the effective
viscosity νeff are related by: νeff ∼ UmLm and thus, the Reynolds number (Re) at the macroscopic
dissipation scale can be written:

Re ∼ UmLm
νeff

∼ 1 (3.52)

However, the Reynolds number is the ratio between the advection term and the viscosity term in
the momentum equation. We can therefore say that the advection term (ρ u′w′) of Eq. 3.40 can
be modelled the same way that a viscous term. This is why we will use the following relation in
order to model the advection term:

u′w′ = −νeff∂z(U) (3.53)

which can be interpreted as a Fick law. Another way to see that is to write the first component of
the momentum equation as follows (by keeping explicitly the viscous term):

∂t(ρu) + ∂x(ρuu) + ∂z(ρuw) = ∂xp+ η∆u

⇔ ∂t(ρU) + ∂z(ρ u′w′) ≈ η∆U = η∂2
zU

ρ→ ρ

⇔ ∂t(ρU) = ∂z[η∂zU − (ρu′w′)]

and we directly see the meaning of the term (ρu′w′) which can be seen as a viscous term and, in
some way, justifies the relation 3.53 . Finally, we mention that this term is just one component of
a mathematical entity called Reynolds stress tensor having the form Rij = ρv′iv

′
j where v′i and v′j

are the ith and jth component of the velocity field ~v ′.

3.5 The transport equation

Once the linear and turbulent analysis have been done, we can write the final form of the transport
equation. The first component of the momentum equation is written:

∂(ρU)

∂t
= − ∂

∂z
[(ρ u′w′)lin + (ρ u′w′)turb]

=
∂

∂z

(
νeff

∂(ρU)

∂z

)
− ∂

∂z
[(ρ u′w′)lin]

=
∂

∂z

(
νeff

∂(ρU)

∂z

)
+

∂

∂z

(
1

2π

1

τc

∫ +∞

−∞

1

ρ

∑
l

1

kl
|Al|2e2τ(z,ω)dω

)

If ρ (i.e. ρ(z)) varies slower with z than the mean flow U(z, t), we can write:

∂U

∂t
=

∂

∂z

(
νeff

∂U

∂z

)
+

∂

∂z

(
1

2π

1

τc

∫ +∞

−∞

1

ρ2

∑
l

1

kl
|Al|2e2τ(z,ω)dω

)

=
∂

∂z

(
νeff

∂U

∂z

)
+

∂

∂z

(∑
l

FJ(l, ω)

∫ +∞

−∞
e2τ(z,ω)dω

)
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Moreover, we can write the damping rate as follows:

τ(z) =
γl
2

∫ z

z0

1

ω̂4(z′)
dz′

=
γl
2

∫ z

z0

1[
ω − klU(z′, t)

]4dz′
and the final transport equation takes the following shape:

∂U

∂t
=

∂

∂z

(
νeff

∂U

∂z

)
+

∂

∂z

(∑
l

FJ

∫ +∞

−∞
exp

[
γl

∫ z

z0

1[
ω − klU(z′, t)

]4dz′
]
dω

)
(3.54)

where FJ has the dimensions of a viscosity (m2.s−1) and γl is expressed in (m−1.s−4). Making the
change of variable z → −z, removing the overline for the velocity and keeping only one frequency
and one l, we get:

∂U(z, t)

∂t
= νeff

∂2U(z, t)

∂z2
− FJ

∂

∂z

(
exp

[
−
∫ z

z0

γl
[ω − klU(z′, t)]4

dz′
])

(3.55)

where we also have assumed that the viscosity is independent of the z coordinate. Furthermore,
it is important to note that since we have considered one and only one frequency, the dω of the
integral is absorbed in the FJ which has now the dimensions of a squared velocity (m2.s−2). It
is very important to understand that the coordinate z in Eq. 3.55 has been inverted
compared to the z in Eq. 3.54.

This transport equation has to be completed with appropriate initial and boundary conditions.
Since the higher order for the time derivative is equal to one and the higher order for the spa-
tial derivative is two, we need one initial condition and two boundary conditions. As an initial
condition, we have to impose an initial rotation profile that we can write in the following way:

U(z, 0) = f(z) (3.56)

where f is any analytical function of z (straight line, sine function, ...). The boundary conditions
are a bit tricky to determine. We assume that we are in the frame following the location where
the waves are generated. In such a case, we set the parameter z0 to 0 (the origin of the coordinate
system). We can therefore write as a first condition:

U(0, t) = 0. (3.57)

Finally, we want the bottom of the SLO to be free to move. This condition is satisfied if we impose
as a second condition:

∂zU(H, t) = 0 (3.58)

It is important to mention that Eq. 3.55 is not exactly the equation describing the problem. Indeed,
we have to add in the second term of the right hand side another term for the flux taking into
account the retrograde waves flux (same expression than for the prograde waves flux but with a
negative kl and thus, a negative FJ). However, for the sake of simplicity, we intentionally neglect
this term here and in chapter 4, but will have to take it into account when solving the whole
problem in Chapter 5.
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Chapter 4

Numerical resolution of the transport
equation

4.1 Nondimensionalization

In order to simplify the numerical resolution of Eq. 3.55 and to have a physical interpretation of the
results, we are going to nondimensionalize the problem. To do so, we will define two characteristic
physical quantities which are the characteristic height Lp and time tc as:

z = Lp z̃ (4.1)

t = tc t̃ (4.2)

where Lp = ω4/γl is the wave damping depth and tc = L2
p/νeff = ω8/(γ2

l νeff ) is the characteristic
viscous time of the problem. It is important to note that the tilde variables are dimensionless. We
also define a dimensionless velocity Ũ as:

U = U0 Ũ (4.3)

where U0 is the characteristic velocity (for example, we can choose its maximum at t = 0). We
can therefore rewrite Eq. 3.55 under the following form:(

U0

tc

)
∂Ũ(z̃, t̃)

∂t̃
=

(
νeffU0

L2
p

)
∂2Ũ(z̃, t̃)

∂z̃2
−
(
FJ
Lp

)
∂

∂z̃

(
exp

[
−
∫ z̃

0

γlLp

[ω − klU0 Ũ(z̃′, t̃)]4
dz̃′
])

⇔ ∂Ũ(z̃, t̃)

∂t̃
=

(
νeff tc
L2
p

)
∂2Ũ(z̃, t̃)

∂z̃2
−
(
FJtc
U0Lp

)
∂

∂z̃

(
exp

[
−
∫ z̃

0

γlLp
ω4

1

[1− klU0

ω
Ũ(z̃′, t̃)]4

dz̃′

])

and we can express R and D as a function of the wave damping depth Lp

R =
FJLp
U0νeff

=
FJω

4

γlU0νeff
, (4.4a)

D =
klU0

ω
. (4.4b)

We can see that R represents the ratio between the wave flux magnitude to the turbulent diffusion
intensity while D is the ratio between the mean horizontal velocity to the horizontal phase velocity
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of the waves. The dimensionless transport equation is thus written as:

∂Ũ(z̃, t̃)

∂t̃
=
∂2Ũ(z̃, t̃)

∂z̃2
−R ∂

∂z̃

(
exp

[
−
∫ z̃

0

1

[1−DŨ(z̃′, t̃)]4
dz̃′
])

and making the substitutions z̃ → z, t̃→ t and Ũ → U (to simplify the reading), we finally obtain
the following dimensionless transport equation:

∂U(z, t)

∂t
=
∂2U(z, t)

∂z2
−R ∂

∂z

(
exp

[
−
∫ z

0

1

[1−DU(z′, t)]4
dz′
])

(4.5)

where the only parameters of the problem are R and D, which will simplify a bit the code imple-
mentation as well as the physical interpretation of the results.

4.2 Code Implementation

4.2.1 Discretization

In order to solve the problem numerically, we have to use a scheme of integration based on the
discretization of the wave flux as well as the partial derivatives of the dimensionless transport
equation 4.5. The discretization of the temporal step ∆t and spatial step ∆z can be done in the
following way (see, e.g., Press et al. 2007, for a reference book).

• Discretization:
α = M∆t

β = N∆z

U(z, t) = U(n∆z,m∆t)→ Um
n

m = 0, 1, 2, ...,M

n = 0, 1, 2, ..., N

(4.6)

where m and n are referred to the time and space, respectively, and where α and β are
real numbers of the order of unity (they are generally chosen as equal to one in the follow-
ing). Moreover, the ’→’ means the transition between the continue physical variable and its
discretized version.

• Initial condition:

U(z, 0) =
f(z)

U0

→ U0
n =

f(∆z)

U0

(f is an arbitrary function)

(4.7)

• Boundary conditions:
U(0, t) = 0→ Um

0 = 0

∂z(U)(H, t) = 0→ Um
N−1 = Um

N

(4.8)
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• Time derivative:
∂U(z, t)

∂t
= lim

∆t→0

U(z, t+ ∆t)− U(z, t)

∆t

→ 1

∆t
(Um+1

n − Um
n ) (Forward)

(4.9)

• First spatial derivative:

∂U(z, t)

∂z
= lim

∆z→0

U(z + ∆z, t)− U(z, t)

∆z
→ 1

∆z
(Um

n+1 − Um
n ) (Forward)

= lim
∆z→0

U(z, t)− U(z −∆z, t)

∆z
→ 1

∆z
(Um

n − Um
n−1) (Backward)

(4.10)

• Second spatial derivative:

∂2U(z, t)

∂z2
= lim

∆z→0

1

(∆z)2
[U(z + ∆z, t)− 2U(z, t) + U(z −∆z, t)]

→ 1

(∆z)2
[Um

n+1 − 2Um
n + Um

n−1] (Centered)

(4.11)

In the following, we will use the forward scheme for the partial time derivative and the
centered scheme for the second partial spatial derivative because we can show that in such
case the error is proportional to ∆z2. The second spatial derivative is obtained by applying
successfully a forward and a backward scheme on the first spatial derivative.

• Matrix form: 

U0
0 U0

1 U0
2 ... U0

n ... U0
N−2 U0

N−1 U0
N

U1
0 U1

N

U2
0 U2

N

. .

. .
Um

0 Um
N

. .

. .
UM−2

0 UM−2
N

UM−1
0 UM−1

N

UM
0 UM

N


(4.12)

This matrix is a (M + 1)× (N + 1) matrix representing the whole spatial and temporal domain
of integration. The first line represents the initial condition (U0

n = f(∆z)/U0) and the first column
represents the boundary condition (Um

0 = 0) at the top of the radiative zone where the waves are
generated. The second boundary condition (Um

N = Um
N−1) will be satisfied during the integration.

Indeed, for each temporal step, we will explicitly impose that Um
N = Um

N−1. The algorithm will
consist in computing what is left of the matrix in order to know the flow for each temporal and
spatial step. An extract of the code is available in appendix D.
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4.2.2 Integration scheme

The integration scheme is given by the discretized version of Eq. 4.5. Its expression is the following:

1

∆t
(Um+1

n − Um
n ) =

1

∆z2
(Um

n+1 − 2Um
n + Um

n−1) +
R

(1−DUm
n )4

exp

(
−
∫ z

0

1

(1−DU(z′, t))4
dz′
)

(4.13)
where we have already derived the expression of the wave flux and the integral is computed thanks
to the trapeze method whose expression is given by:∫ z

0

1

(1−DU(z′, t))4
dz′ →

n−1∑
j=0

∆z

2

[
1

(1−DUm
j )4

+
1

(1−DUm
j+1)4

]
.

In the following, we will write the prograde wave flux term as (FpW )mn . It is interesting to note
that the only term in Eq. 4.13 allowing us to compute the next temporal step of the flow is Um+1

n ,
meaning that we are using an explicit method1 to solve the problem. As a matter of fact, we can
rewrite the latter equation as:

Um+1
n = (1− 2α)Um

n + α(Um
n+1 + Um

n−1)−∆t
1

(1−DUm
n )4

(FWP )mn (4.14)

where α = ∆t
∆z2

. We directly see in Eq. 4.14 that the line m + 1 of the matrix 4.12 is computed
on the basis of the line m (the previous one). It is then clear that implementing a first loop going
from m = 0 to m = M containing a second loop going from n = 1 to n = N − 1 will allow us to
compute the entire matrix 4.12.

4.3 Numerical stability

A significant problem for the numerical resolution of transport equations is the stability of the
integration regarding our choice for the temporal and spatial steps. Indeed, in a general way, we
can write a diffusion equation under the following form:

∂F (x, t)

∂t
= κ

∂2F (x, t)

∂x2
(4.15)

which gives under its discretized form (following the same notations as in the previous section):

Fm+1
n = (1− 2σ)Fm

n + σ(Fm
n+1 + Fm

n−1) (4.16)

where σ = κ∆t
∆z2

. The stability of the numerical integration depends on the ratio σ as we are going
to show now. Using the Fourier decomposition into eigen modes, we can write:

Fm
n =

∑
k

fmk e
ikn∆x (4.17)

where k is the wave number of the mode fmk . We can see that from one temporal step to another,
we have:

fm+1
k = g(k)fmk

1Another method for solving differential and partial differential equations is the implicit method involving the
resolution of a system of equations for each time step. This is why implicit methods are more complex that explicit
ones.
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for which the stability criterion is given by:

||g(k)|| < 1 (4.18)

where the expression of g(k) is found by inserting Eq. 4.17 in Eq. 4.16, giving:∑
k

fm+1
k eikn∆x = (1− 2σ)

∑
k

fmk e
ikn∆x + σ

∑
k

[
fmk e

ik(n+1)∆x + fmk e
ik(n−1)∆x

]
= (1− 2σ)

∑
k

fmk e
ikn∆x + σ

∑
k

[
fmk
(
eik∆x+ e−ik∆x

)
eikn∆x

]
= (1− 2σ)

∑
k

fmk e
ikn∆x + 2σ

∑
k

[
fmk cos(k∆x)eikn∆x

]
and projecting this expression on one mode k we get:

fm+1
k = (1− 2σ)fmk + 2σfmk cos(k∆x)

= [1− 2σ + 2σ cos(k∆x)]fmk
= [1− 2σ(1− cos(k∆x))]fmk

=

[
1− 4σ sin2

(
k∆x

2

)]
fmk

and since g(k) =
fm+1
k

fmk
, we obtain:

g(k) = 1− 4σ sin2

(
k∆x

2

)
(4.19)

and the condition 4.18 leads directly to:

σ =
κ∆t

∆z2
<

1

2
. (4.20)

This condition means that the chosen time step ∆t must be at least smaller than half of the
characteristic diffusion time ∆z2/κ over a mesh space of ∆z, which can be seen as the characteristic
time needed for the information transmission. If we consider Eq. 4.14, we clearly see that it has
not exactly the same shape as Eq. 4.16 because we see another term coming from the wave flux.
Nevertheless, this wave flux term is highly non-linear and the decomposition 4.17 does not work
anymore. Neglecting the last term of the right hand side in Eq. 4.14 allows us to find the following
stability condition:

α =
∆t

∆z2
<

1

2
. (4.21)

Experimentally, we find that the real stability condition is very close to this value meaning that
the flux term is stable under the integration scheme we have chosen. This condition imposes quite
strong constraints on the temporal step since the spatial step is squared. For instance, if we want a
precision of 0.01 for the spatial step, then we must have at least a precision of 0.012/2 = 1/20000 =
0.00005 meaning that the dimensions of the matrix will be 101×20001 = 2020101. In other words,
if we want a spatial step two times more precise, we have to divide the temporal step by a factor
four. In a more general way, if we want a spatial step N times more precise, we have to divide the
temporal step by a factor N 2.
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Chapter 5

Analysis of the results

5.1 Occurrence conditions and detailed visualization

As we have just seen in the previous chapter, the problem of the SLO can be reduced to only two
control parameters. Nevertheless, there is an ambiguity concerning the characteristic velocity U0

defined in Eq. 4.3. Indeed, this characteristic velocity seems completely arbitrary. However, we
can show that there is a judicious choice to make on this velocity. Indeed, the prograde wave flux
is written:

FWP = −R exp

[
−
∫ z

0

1

(1−DU(z, t))4
dz′
]

(5.1)

and considering a positive linear profile as initial condition, since D = klU0/ω = U0/vφ,h (where
vφ,h is the horizontal phase velocity of waves, see Sect. 2.3), we can see that the prograde wave flux
will be negligible when U0U = vφ,h (i.e., the prograde waves will be rapidly damped compared to
retrograde waves and will accelerate the rotation profile until UU0 = vφ,h). We can thus consider
that UmaxU0 = vφ,h. Hence, as a characteristic velocity we can choose U0 = vφ,h. We will see in
the following that this choice is judicious and physically-grounded to scale the problem. Moreover,
adopting this velocity for U0 allows us to reduce the problem to only one parameter (R) since D
is equal to one for any value of kl and ω. It is important to note that making this choice for D
includes each physical parameter (FJ , ω, νeff , γl and kl) in R. Indeed, R is now written:

R =
FJω

4

γlνeffU0

=
FJω

3kl
γlνeff

. (5.2)

Now that the problem is reduced to only one control parameter, we can explore several regimes.

5.1.1 The diffusion regime (R ≤ 1)

When we consider that R ≤ 1, it is the diffusion that dominates and there is no SLO. As a matter
of fact, as we can see in the figure 5.1, we start from an initial rotation profile (e.g., for instance,
an hyperbolic tangent function) with a control parameter R equal to 0.5 and we clearly see the
large contribution of the diffusion term compared to the contribution of the wave flux terms. The
question is: why can the SLO not be established? The answer is that the wave flux terms are still
acting but the diffusion is so efficient that it rapidly smoothes the rotation profile and makes U
tend towards zero for all z. Therefore, when U is equal to zero for all z, the two wave fluxes have
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opposite values and cancel each other out and there is no possibility for the SLO to be established.

Label
U(z,t=0)

U(z,t=10)

U(z,t=50)

U(z,t=100)

U(z,t=200)

U(z,t=700)

-1 1
U(z)

1

z

Figure 5.1 – Representation of the diffusion phenomenon of the rotation profile U as a function of
the depth at different times (R = 0.5).

5.1.2 The SLO regime (R > 1)

If we consider regimes with R > 1, then a SLO can be established because the competition between
the wave fluxes and the diffusion phenomenon is no more dominated by the latter. An example of
a SLO (computed for R = 201) is given in the figures 5.2 and 5.3. As you can see in these figures,
we start from an initial linear rotation profile (t = (0)). Then, an equilibrium is established
between the gradient of the prograde wave flux (∂zFP ) and the diffusion term (∂2

zU) taking the
shape of a ’hook’ (t = (172)). After that, in the deeper layers, the gradient of the retrograde wave
flux (∂zFR) acts and tends to decelerate the rotation profile thus creating a second ’hook’ but in
the opposite direction (t = (198)) until the shear between the two ’hooks’ becomes sufficiently
strong to make the second ’hook’ diffuse (a kind of wavefront is created) towards the top layers
(t = (210)). After that, a new equilibrium between the gradient of the retrograde wave flux and
the diffusion term is established and the whole process repeats in a symmetrical way to come back
to the initial equilibrium between the gradient of the prograde wave flux and the diffusion term
(t = (234) − (405)). All these steps constitute the so-called Shear Layer Oscillation and, in the
following sections, we will study its behaviour and properties as a function of R.

1Two additional videos showing the SLO as well as the wave fluxes for R = 5 and R = 20 are available as
supporting documents (SLO R=5.avi and SLO R=20.avi).
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Figure 5.2 – Representation of one cycle of the SLO (computed for R = 20) and the different terms
of the rhs in Eq.4.5. The abscissa axis (value of the rotation profile) is located at the boundary
between the bottom of the convective zone (above the axis) and the beginning of the radiative
zone (bellow the axis).
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Figure 5.3 – See figure 5.2 for more details.
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5.2 Oscillations as a function of the depth

The figure 5.4 shows the evolution as a function of time of a point located at three different depths.
First, the depth z = (0.06) corresponds to the location of the upper hook created by the balance
between the gradient of the prograde wave flux and the diffusion term. At this depth, we can see
that the oscillations are sharp. This is due to the action of prograde waves. Second, the depth
z = (0.5) is interesting to observe because the passage of the wavefront occurs around this depth
and is clearly visible in the figure. In addition, we can observe that the oscillations are smoother
than for the hook. Finally, the depth z = (1.) corresponds to the bottom of the SLO and we can
see that the oscillations look like a sine function (the smoothest oscillations). We can say that the
deeper we go, the smoother the oscillations are. This is due to the fact that the dynamics of the
upper layers is created by the prograde waves while the dynamics of the lower layers results from
the action of the retrograde waves. The prograde waves are more rapidly damped and thus act more
rapidly than the retrograde waves. Once the equilibrium with the diffusion term is established,
the prograde waves have to wait the action in the deeper layers of the retrograde waves in order to
create a sufficiently high shear which will ’trigger’ the SLO. Hence, we see that the period of the
SLO is ruled by the characteristic time over which the retrograde waves act (the kind of plateau).
Moreover, we see that there is a short initial phase to make the transition from the initial velocity
profile to the final velocity profile of the oscillation cycle. Once this cycle begins, we clearly see that
the SLO has three main properties: amplitude, period and position of the upper hook. We observe
that the amplitude is close to one, meaning that the choice for the scaling is smart. Nevertheless,
we can wonder if this fact can result from the choice of the amplitude of the initial rotation profile.
Finally, we can see that the oscillation cylce is of the order of a few tenths of tc. What is the origin
of this feature? What is its relation with the control parameters of the problem? These questions
will be addressed in the next sections.
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0.5

U(t), z = (0.06)

0.5 1.0 1.5 2.0
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1.0
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Figure 5.4 – Evolution of the oscillations over time for three different depths corresponding to the
first hook (z = (0.06)), the middle of the SLO (z = (0.5)) and the bottom of the SLO (z = (1.)).
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5.3 The impact of the initial profile on the solution

In this section, we study how the characteristics of the initial rotation profile can impact the
dynamics and the properties of the SLO.

5.3.1 Impact of the amplitude

In order to show whether the amplitude of the initial rotation profile could impact or not the SLO,
we have to choose an appropriate initial profile. To do so, we can choose a hyperbolic tangent.
The figure 5.5 shows the results of the impact of the amplitude on the SLO. In this figure, we see
that the only effect the amplitude has on the SLO is the equilibration time of the hook and that
the final dimensionless amplitude of the SLO remains close to U ∼ 1, which means close to vφ,h.
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Figure 5.5 – Impact of the initial amplitude of the rotation profile on the SLO. The initial function
is the following: f(z) = A tanh(10z), where A = 0.3, 0.8 and 2.
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5.3.2 Impact of the shape

In order to show whether the shape of the initial profile impacts or not the SLO, we need to test
several profiles given by different functions. In the figure 5.6, we can see the impact of the initial
shape of the profile on the SLO. As we can observe, the behaviour of the SLO is not disrupted and
the equilibration is quite fast in each case (i.e., the final cycle is obtained after one first oscillation).
Once again, we can see that the amplitude is close to one, which justifies the choice of Umax ≈ vφ,h
and thus the choice to put D = 1 in the following.
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Figure 5.6 – Impact of the initial shape of the rotation profile on the SLO. The initial functions
used are the following: f(z) = z, f(z) = sin(10z) and f(z) = exp(−(10[z − 0.5])2).

5.4 The stationary solution

In the previous sections, we have just seen that the appearance of the SLO does not depend on the
conditions we impose on the initial rotation profile. Furthermore, we always observe the formation
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of a hook representing the equilibrium between the gradient of the prograde wave flux and the
diffusion term. Therefore, we expect that the stationary solution can describe the characteristics
of the hook such as its amplitude or its occurrence depth. To do so, we can use Eq. 4.5 in which
we neglect the partial time derivative (the problem becomes stationary2) as well as the gradient of
the retrograde wave flux (negligible at the depth of the first hook). The equation describing the
SLO is thus reduced to:

d2U(z)

dz2
= R

d

dz

(
exp

[
−
∫ z

0

1

[1− U(z′)]4
dz′
])

. (5.3)

for which the variable U(z) does no longer depend on the time, which makes the problem simpler.
We can rewrite the latter equation under the following form:

d2U(z)

dz2
= − 1

[1− U(z)]4
R

(
exp

[
−
∫ z

0

1

[1− U(z′)]4
dz′
])

=
1

[1− U(z)]4
FWP (z)

(5.4)

where FWP is the prograde wave flux. Then, we can compute the first integral of Eq. 5.3 and we
obtain:

dU

dz
−K = −(R + FWP )

where K = dU/dz (0) is an integration constant and represents the gradient of U at z = 0 once
the hook is established. We can therefore write:

− FWP (z) =
dU

dz
+ (R−K) (5.5)

and inserting this result in Eq. 5.4, we finally obtain:

d2U

dz2
= − 1

[1− U ]4

(
dU

dz
+ (R−K)

)
(5.6)

where we impose the conditions U(0) = 0 and dU(0)/dz = K. This equation is easier to solve than
Eq. 5.3 because we have got rid of the integral and we directly see that it is an ordinary differential
equation. There is no analytical solution, but once again we can use numerical solution as shown
in the Figure 5.7. It is very important to note that K is computed numerically by simulating the
whole SLO over time and then injected in the latter equation in order to extract the stationary
solution. One can clearly see that the orange curve (SLO) fits fairly well to the hook of the grey
curve corresponding to the stationary solution. Hence, one can expect that studying the effects of
the control parameter R on the stationary solution will give us an indication about the shape of
the SLO.

2In the frame of any hydrodynamical problem, it is always very interesting to study the stationary case (if it is
possible) in order to decompose the dynamics of the problem is several simple steps.
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Figure 5.7 – Stationary solution (Equil) between the gradient of the prograde wave flux and the
viscosity term (diffusion term). The grey curve represents the solution of Eq. 5.6 and the orange
curve is the SLO computed numerically and frozen at a given time t = (802).

5.5 The effects of control parameters on the SLO

In this section, we are going to find an approximative analytical expression for the main properties
of the SLO which are the depth of the upper hook, its amplitude and its period. It is important to
keep in mind that the main task is to understand the tendency of the SLO properties with respect
to R and not to find accurate mathematical laws.

5.5.1 The effects on the shape of the hook

In this subsection, we are going to consider D as a free control parameter. At the end of this
subsection, it will allow us to justify analytically the choice to put its value equal to one. Since the
physical meaning of R is the competition between the waves and the flow, it is easy to determine
its impact. Indeed, if we fix D and let R vary, we can see that the amplitude of the hook and the
location of its depth will be proportional and inversely proportional to R, respectively as shown
in the figure 5.8. This parameter is, in some way, the amplitude of the wave flux and it is not
surprising to find such a dependence.
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Figure 5.8 – Stationary profile of the SLO at D = 1 for three values of R. The top picture is for
R = 7, the middle picture is for R = 10 and the bottom picture is for R = 30. The stationary
solution is still superimposed on the SLO computed numerically and frozen at a given time.
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One way to determine an analytical expression for the depth (expressed as a function of the
problem parameters R and D), at which the hook appears, is to consider that at this depth the
gradient of the prograde waves flux reaches its maximum (this is what we see in the simulations).
Hence, we have to solve the following equation:

d

dz

(
dFWP

dz

)
=

d

dz

(
− R

[1−DU(z)]4
exp

[
−
∫ z

0

1

[1−DU(z′)]4
dz′
])

= 0 (5.7)

Developing this equation gives:

−R
(

4D
dU

dz
(1−DU)−5 − (1−DU)−8

)
exp

[
−
∫ z

0

1

[1−DU(z′)]4
dz′
]

= 0

which is totally equivalent to write:

4D
dU

dz
(1−DU)−5 − (1−DU)−8 = 0

⇔ 4D
dU

dz
=

1

(1−DU)3

(5.8)

If we want to find a solution, we have to express U as a function of z. To do so, we need to make
an approximation on U by considering the following expression: U(z) ≈ Kz because we can see in
the simulations that the rotation profile seems more or less like a straight line having a slope equal
to K on the considered domain below the base of the convective zone. As a matter of fact, when
we reach the maximal value of the hook, dU

dz
(zHook) ≈ 0 and the approximation we have made on

U is no more valid. Inserting this rotation profile in Eq. 5.8 allows us to find:

zH ≈
1

DK

(
1− 1

(4DK)1/3

)
, (5.9)

corresponding to the depth where the hook, more precisely the rotation profile, reaches its max-
imum (U(zH) = Umax). Moreover, we note that multiplying zH by K allows us to find the
corresponding value of the rotation speed at this depth given by the following expression:

Umax = U(zH) ≈ KzH ≈
1

D

(
1− 1

(4DK)1/3

)
(5.10)

Moreover, we can see that the expression for zH does not depend on the control parameter R. In
fact, this is not the case because K depends itself on R and D. Indeed, if we compute approxima-
tively Eq. 5.5 at z = zH , we can write:

K ≈ (FWP (zH) +R) (5.11)

where we have considered that dU
dz

(zH) ≈ 0 because U reaches its maximum. Developing the latter
relation allows us to write:

K ≈ R

(
1− exp

[
1

3DK

(
1− 1

(1−DKzH)3

)])
(5.12)

and replacing zH by Eq. 5.9, we obtain:

K ≈ R

(
1− exp

[
1

3DK
(1− 4DK)

])
⇔ R ≈ K(

1− exp
[

1
3DK

(1− 4DK)
]) (5.13)
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and if DK � 1, we can write the asymptotic behaviour:

R ≈ K

(1− e−4/3)
(5.14)

The latter equation gives a rather good tendency for K with respect to R. We can observe that
for D = 1, K grows with R. Indeed, this tendency is verified with the numerical simulations as
we can see in the figure 5.9. However, the error made on K is more or less the same than for zH
(∼ 20− 30%).

To conclude this subsection, we can note that the expression found for Umax shows an asymp-
totic behaviour for a fixed D. Indeed, since K grows with R, we can see that this expression tends
towards 1/D while R tends towards infinity. This saturation tendency is also observed through the
numerical simulations (as we can see in the figure 5.10) but the saturation value is overestimated
with Eq. 5.10. For instance, taking 0.2 as a value for D will lead to a saturation value of 4 (with
numerical simulations) against a value of 5 (with the latter approximation3). In fact, it is the
latter equation that has led us to choose U0 = vφ,h as a characteristic velocity. Indeed, if we work
with the notations of the beginning of Chapter 4, we can write:

Ũmax ∼
1

D
⇔ Ũmax =

Umax
U0

∼ vφ,h
U0

⇔ Umax ∼ vφ,h

(5.15)

This is why it is very interesting and physically-grounded to choose this velocity as a characteristic
velocity of the problem and to put the value of D equal to one. In this way, the problem is no
more degenerated and its physical interpretation becomes simpler since it is reduced to only one
control parameter (R).
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Figure 5.9 – Evolution of the control parameter R as a function of K. The blue curve represents
the approximation given by Eq. 5.14 and the red dots are the real values obtained through the
simulations (D = 1).

3This approximation is not perfect because we have made a strong assumption on the expression of U . We can
therefore expect that a multiplicative factor could allow us to be in line with the simulations.
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Figure 5.10 – Evolution of the depth of the hook (zH) and the corresponding maximum value of
the rotation profile (Umax) as a function of K. The blue curve represents the approximation given
by Eq. 5.9 and the green dots are the real values obtained through the simulations (D = 1).

5.5.2 The effects on the period

The control parameter R has also an impact on the characteristic times of the SLO. From the
simulations, we can observe that there are two main characteristic times that we are going to
express analytically as a function of R.

First, we have the equilibration time (the fastest time) between the gradient of the prograde
wave flux and the diffusion term. For the purpose of obtaining an order of magnitude of this time,
we will use Eq. 4.5 evaluated at z = zH in which we only keep the diffusion term. The idea is to
consider the characteristic time needed to allow the hook to pass on the other side. To do so, we
can write: (

∂U

∂t

)
zH

≈
(
∂2U

∂z2

)
zH

(5.16)

which is more or less equivalent to write in order of magnitude:

∆UzH
∆tzH

≈
(
d2U

dz2

)
zH

⇔ ∆tzH ≈
2Umax(
d2U
dz2

)
zH

and using Eq. 5.6, we obtain (for R� 1):

|∆tzH | = |∆tH | ≈
2Umax
R−K

[1− Umax]4 ≈
2Umax
R

e4/3[1− Umax]4 (5.17)

Second, we have the characteristic time for a full cycle of the SLO associated with the action
of retrograde waves (the slowest time). This time can be estimated by using once again Eq. 4.5
but in this case, we are going to consider the gradient of the retrograde wave flux evaluated at
z = 1. The idea is to consider the characteristic time needed to allow the retrograde waves to
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switch the whole profile on the other side (considering a profile U = Umax). This is done once the
point located at z = 1 has completed a full cycle. To do so, we can write the following equation:(

∂U

∂t

)
z=1

≈ (∂zFWR)z=1

≈ R
1

[1 + Umax]4
exp

[
−
∫ 1

0

1

[1 + Umax]4
dz′
]

≈ R
1

[1 + Umax]4
exp

[
− 1

[1 + Umax]4

]
We can thus write:

|∆tz=1| ≈
Umax
R

[1 + Umax]
4 exp

[
1

[1 + Umax]4

]
(5.18)

and finally, the total period of the SLO can be written:

|∆tSLO| = |∆tH |+ |∆tz=1| (5.19)

The two characteristic times we have just derived give the good tendency of the oscillation period
as a function of R, as we can see in the tables 5.1 and in the figure 5.11. Indeed, this figure
shows that the equilibration time ∆tH (the vertical doted lines) and the cycle time ∆tSLO (the
blue plateau) are inversely proportional to the parameter R. Finally, the ratio between the two
characteristic times gives:

|∆tH |
|∆tz=1|

≈ 2e4/3 [1− Umax]4

[1 + Umax]4
exp

[
− 1

(1 + Umax)4

]
� 1 (5.20)

for Umax → 1 (i.e., R � 1 ). In this case, the period of the SLO ∆tSLO is given in good
approximation by ∆tz=1.

R |∆tH(R)| Measurements
10 0.02 0.04
15 0.01 0.02
20 6 ×10−3 8 ×10−3

25 3 ×10−3 7 ×10−3

30 2 ×10−3 5 ×10−3

R |∆tz=1(R)| Measurements
10 0.57 0.72
15 0.45 0.47
20 0.37 0.34
25 0.32 0.27
30 0.28 0.23

Table 5.1 – Tables showing the comparison between the two characteristic times (∆tH and ∆tz=1)
and the measurements made with the simulations for different values of R.

64



0.5 1.0 1.5 2.0
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

U(t), z = (0.12)

0.5 1.0 1.5 2.0
t

-0.5

0.5

U(t), z = (0.06)

0.5 1.0 1.5 2.0
t

-0.5

0.5

U(t), z = (0.035)

Figure 5.11 – Evolution of the SLO as a function of time at a depth corresponding to the location
of the hook for R = 10, 20 and 30 from the picture of the top towards the bottom, respectively
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Chapter 6

Conclusion

This work has aimed at studying the Shear Layer Oscillation (SLO) in order to give simple pre-
scriptions to include in a stellar evolution code. To do so, we have used a small box located just
below the convective zone of a Sun-like star in which we have applied the laws of hydrodynamics
in a two dimensional plan parallel model. These laws have been used in the frame of the mean
flow theory allowing us to split the variables between a mean quantity slowly evolving with time
and another small quantity (the perturbation) quickly evolving with time (i.e., the IGW). We have
obtained the transport equation describing the interaction between the mean flow and the IGW
(i.e., governing the SLO). Considering only one frequency for the waves, we have shown that the
dynamics of the SLO is entirely described by two control parameters R and D. R represents the
ratio between the wave flux and the turbulent viscosity and D is the measure of the magnitude
of the Doppler effect. Then, the dimensionless equation has been solved numerically thanks to a
C++ code made entirely by us to have the full control on the problem. Thanks to simulations,
we have observed that the dynamics of the SLO does not depend on the characteristics of the
initial rotation profile we have used (i.e., its amplitude and its shape). Trough this outcome, we
have understood that the characteristic velocity of the problem (denoted U0) could be associated
to the horizontal phase velocity of waves (denoted vφ,h) meaning that the control parameter D is
fixed to one and that this choice is physically-grounded. In this way, the physical interpretation
of the problem is simpler since the only remaining parameter is R. Therefore, the whole physics
of the SLO is contained in only one control parameter allowing us to better understand the whole
phenomenon. From this, two distinct regimes have been discovered. A first regime for which R is
smaller that one characterizing a diffusion regime where no SLO could be established and a second
regime for which we have considered R larger than one and where we could observe an oscillation
of the rotation profile. Once we have observed the SLO, we have managed to characterize it in
three steps. First, we have looked for a stationary solution allowing us to describe the equilibrium
position between the wave fluxes and the diffusion term (the upper ’hook’). Second, we have found
simple and approximative analytical relations between the properties of the hook and the control
parameter R. Third, we have found approximative analytical laws governing the oscillation cycles
of the SLO as a function of R. In this manner, we have carried out a first investigation which
has led us to a fairly good understanding of the global characteristics of the SLO which are its
amplitude, depth of the upper hook and period.
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Concerning the outlooks, all this work has allowed us to have a first qualitative description of
the SLO. Nonetheless, many realistic aspects have been intentionally neglected in order to make
the physical interpretation, the numerical resolution as well as the analysis of the results simpler.
As a matter of fact, having taken a single frequency for waves is far from being sufficient since it is
known that the wave excitation mechanism generates waves with various frequencies. In addition,
the effective viscosity we have used in the simulations is supposed to be a constant over the all
integration domain. However, this is definitively not the case since this viscosity stems from a
stability analysis and acts only where the shear of the flow reaches a large enough value to allow
the growing of instabilities and thus the appearance of the turbulence. A viscosity depending on
the gradient of the flow would have been a better description of the phenomenon. Finally, the
whole problem has been studied through the control parameters. Nevertheless, physical conditions
of Sun-like stars should be contemplated through the physical parameters of the problem in order
to reproduce the physical environment inside this type of stars.

To conclude, even if in the frame of this work we could reach a rather good understanding
of this oscillation of the rotation profile, a lot of researches still need to be conducted in order
to obtain as much as possible a realistic model of this phenomenon, the so-called Shear Layer
Oscillation in order to progressively include its effect in a stellar evolution code.
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Appendix A

Basics of fluid mechanics

A.1 The continuity equation

The first equation we need to use is the continuity equation. This equation expresses the mass
conservation which implies that the total derivative of the mass M in a given volume V with
respect to time is equal to zero. Under its integral form, this equation is written :∫ ∫ ∫

V

∂ρ(~r, t)

∂t
dV = −

∫ ∫
S

ρ(~r, t) ~v.~n dS (A.1)

where ∂
∂t

is the partial derivative with respect to time, ρ(~r, t) is the density of the fluid, ~v is the
velocity field and ~n is the unitary vector normal to the surface S corresponding to the volume V .
This equation states that the time variation of the density is balanced by the flux of particules
incoming or outgoing from the volume V through its surface S. However, under this form, this
equation counts for the entire volume V but we can also write this equation under its local form
thanks to the Ostrogradski Theorem1.

∂ρ(~r, t)

∂t
+ ~∇.(ρ~v) = 0 (A.2)

where the operator nabla ~∇ = (∂x, ∂y, ∂z) is the partial derivative with respect to the space coor-
dinates x, y, z. This is the most common form of the continuity equation. As a matter of fact, it is
mere to use it in physical context because this equation is valid for any part of the fluid we want
to study.

A.2 The momentum equation

The second equation we need to use is the momentum equation in the frame of the fluid mechan-
ics. This equation comes directly from the conservation of momentum in classical mechanics but
involves some additional concepts like density forces or viscous constraints. The most common
form of this equation is called the Navier-Stokes equation and is written :

∂~v

∂t
+ (~v.~∇)~v = −1

ρ
~∇p+ ν∆~v + ~fV (A.3)

1The Ostrogradski theorem allows us to change a surface integral into a volume integral with a differential
operator called divergent and noted ~∇. Indeed, for all vector ~u, we have :

∫ ∫
S
~u.~n dS =

∫ ∫ ∫
V
~∇.~u dV
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where ~v is the velocity field, ~∇ is the nabla operator, ρ is the density, ν is the kinematic viscosity,
∆ ≡ ~∇2 = (∂2

x+∂2
y +∂2

z ) is the Laplace operator and ~fV represents the density forces which has the
dimensions of an acceleration. The left hand side of this equation states for the acceleration and
is composed of two terms. The first term is the partial derivative of the velocity field with respect
to time and is called the Eulerian derivative because it represents the fact that we measure the
variation of the velocity of the flow at a given place. The second term is the advection term and
added to the first one, they represent the total derivative with respect to time noted d

dt
and means

that we observe a small fluid element moving in the flow. This derivative is also called Lagrangian
derivative. The right hand side of the equation states for the different forces acting on the fluid
through the pressure, viscosity and external forces like the gravity. As the second law of motion,
this equation is a vector equation which means that there are three different components following
the ~ex, ~ey and ~ez directions.

In some cases, it is more convenient to rewrite the Navier-Stokes equation in another form.
From the combination of A.2 and A.3, we can write:

∂ρ~v

∂t
+ ~∇.(ρ ~v ⊗ ~v) = −~∇p+ η∆~v + ρ~fV (A.4)

where η is the dynamic viscosity and the symbol ⊗ defines the tensor product (~v ⊗ ~v is a 3×3
matrix having vivj as components). Indeed, if we develop (in term of its components) the left hand
side of the equation A.4 we get2 :

∂t(ρvi) + ∂j(ρvivj) = ρ∂t(vi) + vi∂t(ρ) + ρ∂j(vivj) + vivj∂j(ρ)

= ρ∂t(vi) + vi∂t(ρ) + ρ[vi∂j(vj) + vj∂j(vi)] + vivj∂j(ρ)

= ρ∂t(vi) + vi∂t(ρ) + vi[ρ∂j(vj) + vj∂j(ρ)] + ρvj∂j(vi)

= ρ∂t(vi) + vi∂t(ρ) + vi∂j(ρvj) + ρvj∂j(vi)

Thus, in a tensor form, this expression is written:

∂t(ρ~v) + ~∇.(ρ ~v ⊗ ~v) = ρ(∂t~v) + ~v(∂tρ) + ~v ~∇.(ρ~v) + ρ(~v.~∇)~v

= ρ
[
∂t~v + (~v.~∇)~v

]
+ ~v

[
∂tρ+ ~∇.(ρ~v)

]
︸ ︷︷ ︸

=0

= ρ
[
∂t~v + (~v.~∇)~v

]
which is similar to the first term of the Navier-Stokes equation A.3 and where the second term of
the second line vanishes thanks to the continuity equation A.2.

2Here, ∂t ≡ ∂
∂t , but in general, ∂q ≡ ∂

∂q , with q = x, y, z, t
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Appendix B

Gravity waves in a simple model

In order to introduce internal gravity waves, it is interesting to consider a simple case with a
medium stratified in the vertical direction z with a density ρ(z) and at the hydrostatic equilibrium,
as shown in figure B.1. The gravitational acceleration is denoted ~g = −g~ez.

ρ(z)

ρ(z + ∆z) dm

~g

z

Figure B.1

We consider a small fluid element having a volume dV and a mass dm initially at a level z
that we move in an other layer at z + ∆z keeping its initial density and thus its volume. At this
moment, the forces acting on this fluid element is the buoyancy force ~B and the weight ~W . By
applying the Newton’s second law (~F = m~a), we obtain

~B + ~W = dm ~a (B.1)

and projected along the z axis, the latter equation gives

ρ(z + ∆z)gdV − g dm = dm
d2∆z

dt2
(B.2)

where ∆z is the displacement of dm along the z axis.
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Then, the mass element dm can be expressed by dm = ρ(z)dV and equation B.2 becomes

ρ(z + ∆z)gdV − g ρ(z)dV = ρ(z)dV
d2∆z

dt2

⇔ ρ(z + ∆z)g − g ρ(z) = ρ(z)
d2∆z

dt2

⇔ g[ρ(z + ∆z)− ρ(z)] = ρ(z)
d2∆z

dt2

Now if we consider that ∆z → 0 then we can replace [ρ(z + ∆z) − ρ(z)] by dρ
dz

∆z and we get,
renaming ∆z = h,

g
dρ

dz
h = ρ(z)

d2h

dt2

By renaming ρ(z) ≡ ρ0 and N2 = − g
ρ0

dρ
dz

with N the Brunt-Väisälä frequency, we finally obtain

d2h

dt2
+N2h = 0 (B.3)

Thera are two cases which can be envisaged. The first case is the one where N2 > 0⇒ dρ
dz
< 0

which means that ρ(z + ∆z) < ρ(z), the acceleration of the fluid element dm points toward the
negative z and equation B.3 is the harmonic oscillator equation and its solution is given by

h(t) = H0 cos(Nt+ φ) (B.4)

where H0 is the initial amplitude of the motion and φ is just a phase term which is not very
important here. We can clearly see in this solution that the Brunt-Väisälä frequency is the motion
frequency of the fluid element dm through the stably-stratified medium. Moreover, the motion of
the small fluid element dm is an oscillating motion that is only due to the buoyancy force. The
second case is the one for which N2 < 0⇒ dρ

dz
> 0 meanning that ρ(z+∆z) > ρ(z), the acceleration

points toward the positive z and the solution of equation B.3 is no longer a periodic function but
a sum of exponential functions, i.e., as A exp(Nt) +B exp(−Nt), which means that the motion is
itself exponential and we can deduce that the medium is not stably-stratified in density, that is,
convectively unstable.

71



Appendix C

Temporal mean for the fluxes

Internal gravity waves are excited in the overlying convective zone by turbulent motions of matter.
The excitation process is supposed random, uniform in the horizontal direction, stationary and er-
godic. The characteristic time scale associated with this process is noted τc. One therefore assume
that over a time interval τc around the moment t = 0, the convection generates a wave packet
with an amplitude Aτc(t) and a ’lifetime’ of the order of τc (by means of correlation between the
’exciting’ convection and the ’excited’ waves). The stationarity implies that over an interval kτc,
with k & 1, the field associated with waves can be represented by a succession of wave trains each
generated over a time interval τc and each of them with a mean amplitude Aτc(t − ti), where ti
represents the time shift associated with the i-th wave train with respect to the one generated at
t = 0. We also note that the convection generates waves efficiently in the domain τω . τc to which
we limit ourselves.

For the following, we will define the temporal mean of a physical quantity X(x, z, t) as:

〈X〉kτc (x, z, t) =
1

kτc

∫ t+kτc/2

t−kτc/2
X(x, z, t′)dt′ (C.1)

In order to continue, we assume that τU � kτc � τω. Under this hypotheses, the temporal mean
filters the waves effect and thus varies over large time scales τU . Moreover, as the excitation does
not depend on the horizontal position, it makes sense to assume that the temporal mean does not
depend on the variable x. By correspondence, since X varies over time scales τU and X ′ varies
over τω . τc, one obtains:

〈X〉kτc = X (C.2)

〈X ′〉kτc = X ′ = 0 (C.3)

Using the above properties and noting that for any quantity Z representing average values of
perturbations or perturbation products, we can write:

〈∂tZ〉kτc = ∂t〈Z〉kτc (C.4)

〈∂xZ〉kτc = ∂x〈Z〉kτc = ∂xZ = 0 (C.5)
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It is then possible to derive in an equivalent way the same evolution equations of the mean
flow by taking this time the temporal mean for the equations of dynamics instead of the horizontal
mean. Therefore, the wave angular momentum flux can be rewritten in two different ways and we
have:

u′w′ = 〈u′w′〉kτc (C.6)

From the properties of the exciting source (stationarity) described above, we can write:

u′w′ = 〈u′w′〉kτc =
1

kτc

∫ t+kτc/2

t−kτc/2
u′τcw

′
τcdt

′ (C.7)

≈ k
1

kτc

∫ t+τc/2

t−τc/2
u′τcw

′
τcdt

′ (C.8)

≈ 1

τc

∫ +∞

−∞
u′τcw

′
τcdt

′ (C.9)

where u′τc and w′τc are associated with the wave train generated at t = 0 over a time interval τc
with an amplitude Aτc and where we have considered that the lifetime of the wave train was of the
order of τc allowing us to extend the integration limits to infinity. Using the Parseval-Plancherel
theorem and relations derived on the chapter ??, one find:

u′w′ ≈
∫ +∞

−∞
FJ(l, ω)eτ(z)dω (C.10)

where FJ is the angular momentum flux emitted at the top of the considered radiative domain.
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Appendix D

Extract of the C++ code

Figure D.1 – Extract of the C++ code made in the frame of this work. These pictures come from
the main file but each function has been implemented in an other file.
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Figure D.2 – Extract of the C++ code made in the frame of this work. These pictures come from
the main file but each function has been implemented in an other file.
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