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Abstract

In the past decade, space missions, such the CoRoT, Kepler and TESS, have provided the as-
teroseismic community with a vast amount of observations, of unprecedented quality. This gave the
opportunity to stellar astrophysicists, to study the stellar interiors of a large variety of pulsating stars.
Amongst them, are the solar-like stars, that are low-mass main-sequence stars, reaching up to 2.3
solar masses.

During the main-sequence phase, the solar-like stars are stable, and they present frequencies that
are very regular, which is most obvious in a power spectrum. Nevertheless, there are some departures
from that equidistance, to which we refer as the smooth part, and one of the reasons for that, are
the glitches. The glitches are due to sharp variations, on the internal structure of the stars, which
introduce an oscillatory feature, as a function of the frequency, in the oscillation spectrum. Solar-
like stars experience mostly two glitches, the helium glitch, for which our study is about, and the
convection zone glitch. The former is located in the second ionization zone of helium, quite close to
the stellar surface, and the latter, is located in the transition region between the convective envelope
and the radiation zone. The study of those glitches is important, because they provide information
about their respective regions, which further helps constrain the internal structure of a star. The
amplitude of the helium glitch, is directly linked to the helium abundance, in that area and, since
that area is very close to the surface, and convection dominates there, it provides information about
the surface helium abundance. This is the only way to obtain that value, because the stellar surface
of solar-like stars, does not have the required temperature for the excitation of helium, and thus, few
or no emission lines can be obtained spectroscopically.

There exists a number of methods that use the observed frequencies, and derive seismic constraints,
which are used to derive information about the stellar structure, through stellar modeling. The one
that we used for our analysis, is the Whole Spectrum and Glitches Adjustment (WhoSGlAd). It uses
both the smooth part of the spectrum, along with the glitches part, to derive seismic indicators, as
little correlated as possible. The accuracy of those indicators, allows them to be used as constraints
by minimization techniques, in order to retrieve precise values about global quantities, as is the mass,
the age and the chemical composition.

In the case of WhoSGlAd, one of the constraints that is used is the helium glitch amplitude, but
for its value we need to know the helium acoustic depth. When we work with observations this value
is not available and so, we have to derive it by a model, to estimate the helium acoustic depth, which
takes time and it is inconvenient, since it makes the results model dependent. In this study, we propose
a method, that uses a linear relation, in order to derive this acoustic depth, which uses only observed
quantities and so, makes the procedure much faster. We prove the efficiency and the accuracy of that
method, by using both models and observations. This means that it does not make any sacrifices in
the precision of WhoSGlAd. Moreover, since this method is linear, and uses only observables, it can
be implemented in already existing codes, and provide results much faster. The method, as a result
of the assumed linear formulation, does not apply to cases that are not linear. This occurs in cases
beyond the main sequence, or with convective cores. This can happen for example, for the case of
stars ≥ 1.2 solar masses, for some chemical compositions.

The use of our method can decrease significantly the required computation time, for asteroseismic
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data. This can ease the study of big amounts of data, such those expected by future space missions,
such as PLATO, in little time.
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Chapter 1

Introduction

1.1 Context

The observation of the stars has been taking place since the early ages of the human history,
because the night sky would captivate the humans. It is only in the past few centuries however, that
we would scientifically study and try to better understand their properties. The only way of studying
them is by observing the photons that they emit. Although this is very important in order to get
information, like for example its evolutionary stage or spectral type, we cannot retrieve information
about their interior, that would help us obtain exact values about their global properties like their
mass, age or chemical composition.

The accuracy of those values is important for a number of reasons. First of all, because the stars
act as cosmic furnaces for the production of elements heavier than helium, understanding how they
evolve, will help us understand how the universe evolves in general. Furthermore, in the past few
years, the field of exoplanetology has become very important, with tens to hundreds of exoplanets
being discovered every year. This makes it clear that we also need to characterize those exoplanets,
so that we can better understand how planetary systems are formed, and if the conditions for the
development of life do exist in other places than the Earth. For that, important planetary features
such as their mass , their radius, their distance from their host star, their chemical composition,
and the size and the chemical composition of their atmosphere, if they have one, have to be known.
However, all the methods that those values are derived from, are indirect and they depend on their
host’s parameters. From that, it is obvious that the more precise is the characterization of a star,
the more precise values we will get for the exoplanets that orbit around it. Last but not least, by
combining the aforementioned values, with the dynamical properties of the corresponding stars, we
can retrieve information about the evolution of the Galaxy.

Those stellar properties are better constrained when we have a picture of the internal structure.
Nevertheless, they are not accessible by direct observations because the interior of the stars is optically
thick and so no photons can be received from it. As a result, the photons that we observe are produced
in the stellar atmosphere, meaning that they carry information only for the conditions of the most
superficial layers. In order to understand the internal structure of the stars we use the theory of
stellar evolution to build models that give us information about the quantities that we cannot directly
observe. Nonetheless, those models are not perfect, since they lack accuracy for important processes
that take place in the interior of the stars, like the mixing and transport processes. This creates
degeneracies in the possible set of initial conditions, that would result in a specific set of observations
and so the determination of the correct set of free parameters becomes difficult.

Asteroseismology uses constrains that are related to the internal structure of the star and that
help to lift some of these degeneracies, and to better constrain processes that can significantly affect
the evolution of the star. For that, it uses the observed oscillation frequencies on the stellar surfaces,
and by analysing them according to the theory of stellar oscillations, it retrieves information about
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the stellar structure.
During their lifetime, the stars go through several phases, some of them being stable, e.g. the main-

sequence phase. Even in that stable phase however, the star oscillates around the equilibrium state.
Those oscillations can be quantified, and by studying them, we can find their frequencies and their
amplitudes, and so to retrieve information about the stellar interior. This is possible because those
oscillations are due to waves, which propagate on the interior of the stars thus, their properties depend
on the stellar structure. In the observed frequencies, there are oscillatory departures from the simple
theoretical representations. Those departures are called glitches and they are due to sharp variations
in the internal structure of the star. The location of those variations in the stellar interior, is called
the acoustic depth. In solar like stars, there are mainly two glitches, the helium glitch, which occurs
in the second ionization zone of helium, is located very close to the surface and provides an estimate
for the helium surface abundance (YS), and the convection zone glitch which is due to the transition
region between the radiative and convection zones and it is very important in order to constrain its
location, and to constrain mixing processes. In the past few decades the field of asteroseismology has
grown importantly and is one of the fields that can answer questions about what is happening in the
inside of a star, making it possible to further lift the remaining degeneracies on the sets of the free
parameters.

One of the most important degeneracies is between the mass and the initial helium abundance
(Y0), as it is shown by Lebreton & Goupil (2014). They showed that there exist several pairs of Y0 -
M solutions. That means that we could easily derive the mass of the star, if we know Y0, but without a
proper measure of Y0, the determined M is very imprecise. Nonetheless, for solar-like stars, we cannot
obtain that value spectroscopically, because their surface is not hot enough to excite helium. As a
consequence, few, or even no helium lines are observed. That means that we have to find the helium
abundance in a different way, and asteroseismology is one of the few ways to do so. By studying the
helium glitch, we can obtain that value. This is because the amplitude of the helium glitch, or simpler
the helium amplitude (AHe), is directly associated to the helium abundance in that area, and because
to its proximity to the stellar surface, and to the fact that this area is convective, we can retrieve the
surface helium abundance.

In the present work we propose a method to directly calculate the helium acoustic depth, which
is the distance of the Γ1 depression, that we explain later, to the surface. When working with obser-
vations, it is easier and faster to find the helium amplitude, compared to the previous method, and
from that the helium abundance.

The way to obtain that value now is complicated, and thus time consuming., because a partial
modeling of the structure is necessary to obtain it, and in turn, AHe. At the end, the best model,
provides us with all the necessary information, in order to obtain the acoustic depths of both glitches.
This procedure needs a lot of time, since it requires the generation of a lot of models, but it is the
only way to obtain that values when working with observations of solar-like stars. With the proposed
method, the helium acoustic depth is retrieved without the need of model generation, thus it is much
faster and model independent.

The present thesis is structured as follows. In the present chapter, we present the theoretical
background of asteroseismology, that is needed in the understanding of the present work. We begin
with some general characteristics of the stellar structure, then we derive the set of equations of the
theory of stellar oscillations, and we close with the case of the solar-like stars. In the second chapter,
we present the WhoSGlAd method, which is a method to derive seismic indicators from observed or
modeled frequencies, and is the method that we used. In the third chapter, we present our analysis
and our results. First, we show our proposed method, and construct a grid of models in order to
study whether it is efficient or not. Afterwards, we use observed frequencies, from the Kepler target
KIC10963065, in order to evaluate its efficiency, when working with observations. We also discuss our
results, for each case. In the final chapter, we show our conclusions, and discuss future perspectives.
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1.2 Stellar structure

1.2.1 Characteristic times

The stellar oscillations are a dynamical phenomenon, which means that we work with the imbalance
of forces. So, it is important to remind some important timescales that are needed to understand the
further discussion.

Dynamical time: The two forces that determine whether the star will collapse or explode, are the
gravity and the gradient of the gas pressure. For a star in a stable state, like the main sequence, those
forces cancel each other. If suddenly the pressure would stop to act, then the star would collapse
due to gravity. The acceleration of the collapse would be GM/R2 and the time needed for that, is
R/t2dyn ≈ GM/R2 which results in

tdyn =

 
GM

R3
, (1.1)

where G is the gravitational constant, M is the mass of the star and R is its radius. This timescale is
important because it is a measure of the time that the star will need to explode, collapse or pulsate,
if for some reason the hydrostatic equilibrium is perturbed. For the Sun it is about 26 minutes.

Thermal or Helmholtz - Kelvin time:

tHK =
GM2

2RL
, (1.2)

where L is the luminosity. In some evolutionary stages, the star radiates energy but this energy is
not entirely due to thermonuclear reactions. When this happens we say that the star is in thermal
imbalance. This will lead to the contraction of the star and we know from the Virial Theorem that
half of the released potential energy will be converted into internal energy and the other half will be
radiated. If the gas is non-degenerated, the increase of the internal energy will lead to an increase of
the temperature. The timescale of this procedure is given by the thermal or Helmholtz - Kelvin time.
For the Sun it is about 3.1 × 107 years.

Nuclear time:

tnuc =
Enuc
L

, (1.3)

where Enuc is the energy produced by the nuclear reactions. This timescale provides the time for the
evolution of the star during a phase of nuclear burning, that it is in both hydrostatic and thermal
equilibrium. In that period, the main energy source for the star, are the thermonuclear reactions that
occur in its core, for the case of main-sequence stars. Those reactions alter the chemical composition
of the core and eventually of the whole star, and this modification is what drives the evolution of the
star, during those phases. Because those reactions take a lot of time, this timescale is the longest of
the three, and for the Sun it is of the order of 10 billion years.

1.2.2 Stellar hydrodynamics reminder

To understand how the stellar interior is structured, we should first remind some basic equations
from hydrodynamics that are used in stellar physics. In fluid dynamics, we can describe the motion
of a fluid in two different coordinate systems. In the first one, we use a reference point in space
which is fixed and the description is independent of the motion of the fluid. This is called the Eulerian
description. The second one follows the motion of a specific parcel of matter, and describes the motion
of the whole fluid, from that point of view. This is called the Lagrangian description, and is the one
that we usually use, when studying stellar oscillations, because we consider that the stellar mass does
not change, and so we have to take into consideration only the distance from the stellar center, r, in
our analysis.
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When we use the Lagrangian description, the variation with respect to time is not as usual d/dt,
like in the Eulerian description, but because we follow the motion of the fluid, it is given for a specific
quantity, let’s say x, by the following relation

Dx

Dt
=
∂x

∂t
+∇x · v, (1.4)

where v is the fluid velocity. This relation is called the material derivative and connects the time
derivative of the Lagrangian description (D/Dt), with the one of the Eulerian description (∂/∂t).

1.2.2.1 Conservartion of mass

The mass must be conserved at any time and this is expressed as

Dρ

Dt
+ ρ∇ · v =

∂ρ

∂t
+∇ · (ρv) = 0, (1.5)

where ρ is the density. This equation actually indicates that the rate of change of density in a specific
volume, depends on the flow through that volume. Of course, we consider that matter is not created
or destroyed inside that volume.

1.2.2.2 Conservation of momentum

In stellar conditions we can neglect viscosity. This comes from the fact that the Reynolds number
is very high in those cases due to the very small mean molecular weight (µ) of hydrogen (Re = ρV R/µ,
where Re is the Reynolds number that defines the kind of flow that we will have, and V is the stellar
volume). So the forces that act on a volume of gas in a star are the surface forces, like the pressure
gradient, and the body forces that act on the whole volume, like gravity. This results in

Dv

Dt
=
∂v

∂t
+ v · ∇v = −∇ψ − ∇P

ρ
, (1.6)

where ψ represents the potential of the body forces per unit mass. P is for the pressure and represents
the force that is exerted on a surface element dA, with the positive direction being the radially outward
one.

1.2.2.3 Poisson equation

The only body force that we consider in our analysis is gravity, with the gravitational potential
being represented by ψ. That means that the Poisson equation becomes

∇2ψ = 4πGρ, (1.7)

where ∇2 is the Laplacian operator.

1.2.2.4 Conservation and transport of energy

In order to describe the conservation of energy in the stars, we have to use the first and second
laws of thermodynamics, that connect the heat transfer to the work, and to the entropy, respectively.

Dq

Dt
= T

Ds

Dt
=
Du

Dt
+ P

Dv

Dt
, (1.8)

where q is the heat, T is the temperature, s is the specific entropy, u is the internal energy of the gas
and v is the specific volume. When we study stellar oscillations, it is more convenient to work with ε,
which is the rate of energy production per unit mass and per unit time, from nuclear reactions, and
with FR, which is the radiative flux. So equation 1.8 becomes
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T
Ds

Dt
= ε− ∇ · FR

ρ
, (1.9)

with FR

FR = −4ac?T
3

3κρ
∇T, (1.10)

where a is the radiation density constant, c? is the speed of light and κ is the opacity.
In the equation for the conservation of energy, we only considered radiative transfer. We neglegted

conduction, because it is negligible for non-degenerated stellar matter. Convection on the other hand is
important in the convective layers. In order to describe it, we would have to include in our calculations
all the turbulent motions that involve a large spectrum of spatial (the dissipation of heat being of
the order of 1 cm and having to be calculated up to the stellar scale), and temporal scales. This is
because the convective motion is considered to be in a fully developed state, meaning that it is the
dominant way of energy transport there. The analytical approaches, one of which being the mixing
length theory, are very approximate, and they need to introduce a number of free parameters. The
only way to study convection and oscillations, is to seperate the motions due to those two effects.
That would lead to the introduction of the covective flux, it would add in the energy equation and it
is given by

FC = ρcpVc∆T. (1.11)

However, the problem now is that we do not know, how FC interacts with the oscillations. That
means that we do not know how the energy is transferred from the turbulent motions to the oscillations
and vice versa, and also we do not know how the oscillations affect the convective motions, and
the convective flux. From that discussion, it is clear that convection makes the calculations of the
oscillations very complicated, and for that reason we neglect it in our analysis.

In order to see whether convection or radiation will be dominant, we have to see how the gas
behaves when a parcel of it is displaced upwards. We assume that the parcel moves much slower
than the speed of sound and so, there is pressure equillibrium at all times between the parcel and the
surrounding medium. In the following discussion, the index e will correspond to the properties of the
parcel at its final position of its displacement, and m will correspond to the properties that the gas
around the parcel has at its final position. When there is no index, they will be the properties of the
medium and of the parcel at the initial position.

Let’s see now the two possible cases. In the first case we have that the density of the element is
higher than that of the surrounding medium

ρe > ρm ⇔ ∆ρe > ∆ρm ⇔
∆ρe
ρ

>
∆ρm
ρ

, (1.12)

and that means that the Archimedes force, or else buoyancy, is downwards, and pushes the element
back to its initial position. In this case we say that the medium is stable with respect to convection.

The second case is when the density of the parcel is smaller than the medium around it in the
position that it arrived,

ρe < ρm ⇔ ∆ρe < ∆ρm ⇔
∆ρe
ρ

<
∆ρm
ρ

, (1.13)

and so, in that case, the total force on the parcel due to the pressure gradient is larger than its weight,
the Archimedes force is upwards and pushes the parcel further up. The medium is unstable with
respect to convection and the convective motions occur in large scales. In order to find a criterion for
convective instability, we consider the gas to be ideal, with P ∝ ρTµ. As we mentioned before there
is pressure equillibrium and so we get
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ρe
ρm

=
Tm
Te

µe
µm

=
Tm
Te
, (1.14)

where we assumed that the gas is homogeneous and so µe = µm.
From Eqs. 1.13 and 1.14, we have that the convective instability exists only if

Te > Tm ⇔
∆Te
T

>
∆Tm
T

. (1.15)

From that result, we get that in convectively unstable regions, the ascending parcels are hotter and
less dense than the surrounding medium, while the descending ones are colder and denser. That means
that the ascending parcels are taking the heat from the lower levels, and redistribute it in the upper
ones. Then, they cool down, and they descend to start the process again. This makes convection an
effective mechanism for heat transport towards the exterior.

We can now divide the inequality 1.15 by ∆P/P and take the limit for infinitesimal changes
(e.g.∆P/P → d lnP ). This results in Å

d lnT

d lnP

ã
e
<

Å
d lnT

d lnP

ã
m
. (1.16)

When an element moves upwards, it comes across cooler material and because of that it expands,
which helps it cool down and transfer heat to its surrounding medium. So, the heat transfers and, as
a result, the decrease of the temperature of the parcel is more efficient than what it would have been
in the case of no heat tranfer. So we have

∂ lnT

∂ lnP

∣∣∣∣
S
<

Å
d lnT

d lnP

ã
e
<

Å
d lnT

d lnP

ã
m
, (1.17)

where the first term, called the adiabatic gradient, is noted as ∇ad and it is equal to 2/5 for a fully
ionized ideal gas, in which we can neglect the radiation pressure. Eq. 1.17 depends only on the local
temperature, density and chemical composition, and we say that it is a state variable. The third term
of Eq. 1.17, called the real gradient, is noted as ∇ and corresponds to the general stratification of the
medium. The second term of 1.17 is noted ∇e. The convective instability is thus given by

∇ > ∇e > ∇ad, (1.18)

from which we can write, in a simpler way, the local condition for convective instability

∇ > ∇ad. (1.19)

Since a temperature gradient is always present, radiation will also be present in all parts of the
stars, even in convection zones. We can then introduce the radiative gradient, which is noted as ∇rad,
it describes the total transport of energy only by radiation and is given by

∇rad =
3κPL

16πacGmT 4
. (1.20)

From that we can now get the Schwarzchild criterion for convective instability:

1. If ∇rad > ∇ad, then the medium is convectively unstable. When ∇ > ∇ad, we have that L > LR,
since convection also carries energy, and thus ∇rad > ∇. So ∇rad > ∇ad.

2. If ∇rad < ∇ad, then the medium is convectively stable. When ∇ ≤ ∇ad, we have that L = LR,
and thus ∇rad = ∇. So ∇rad ≤ ∇ad.

where LR is the power of radiation crossing the sphere of radius r, and it is given by

LR = 4πr2F = −16πr2acT 3

3κρ

dT

dr
(1.21)
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1.2.2.5 Equilibrium equations of stellar structure

The stellar oscillations that we study, are small compared to the size of the star, and for that reason
we treat them as small perturbations of the equilibrium state. We describe here that equilibrium state.
In our analysis, we consider that the stars are not rotating and we also don’t take into consideration
the magnetic effects, as they are small in main-sequence, low-mass stars. That assumption means that
the star is spherically symmetric, and that parameters like density (ρ), pressure (P ), and temperature
(T ), can be described by two variables, their distance from the centre (r) and by time. In order
to retrieve the equations for the equilibrium state, we neglect all the time derivatives, and set the
velocity (v) equal to zero. Moreover, by taking advantage of the fact that the stars are spherical, we
can express those equations in the spherical coordinates, and so we get for the conservation of mass

dm

dr
= 4πr2ρ, (1.22)

for the hydrostatic equilibrium

dP

dr
= −ρGm

r2
, (1.23)

for the conservation of energy

dL

dr
= 4πr2ρ(εn + εgrav), (1.24)

where εn is the production rate of energy by nuclear reactions per unit time and unit mass, and εgrav
is the energy production rate by contraction. Finally, the transport of energy is

dT

dr
= − 3κρL

16πac?r2T 3
. (1.25)

1.3 Stellar oscillations

In this section we will discuss the derivation of the equations of stellar oscillations.

1.3.1 Small perturbations

The equations for the oscillations are derived by perturbing the equilibrium equations. We consider
those perturbations to be sufficiently small and, for that reason, in the linear theory, we only keep
the first order terms and we neglect terms of the second order and higher. As it is mentioned earlier,
there are two ways to describe those perturbations, the Eulerian description, which is denoted by a
prime symbol (′), and the Lagrangian description which is denoted by the letter δ, in the following
discussion. So we write

f(r, t) = f0(r) + f ′(r, t), (1.26)

f(r, t) = f0(r0) + δf(r0, t), (1.27)

where the index 0 stands for an equilibrium quantity. The connection between the two descriptions is
given by

δf(r, t) = f ′(r, t) + ξ · ∇f0(r), (1.28)

where ξ ≡ r − r0 is the displacement of first order in the Lagrangian description, and · is the scalar
product. The displacement vector ξ shows that, in the unperturbed case, the parcel of matter would
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be in the position r = r0. The time variations are given by dδf(r, t)/dt and ∂f ′(r, t)/∂t and those
expressions are linked through Eq. 1.4

By applying a Lagrangian perturbation to the mass conservation (Eq. 1.5), by neglecting the
derivative of the perturbation, and by integrating over time we get for the continuity equation:

δρ

ρ
= −∇ · δr, (1.29)

for the equation for the conservation of momentum (Eq. 1.6) we use that

v =
∂δr

∂t
, (1.30)

and that v = 0 in the equilibrium configuration. Then we take the perturbation of Eq. 1.5 and we get

∂2δr

∂t2
= −∇ψ′ − ∇P

′

ρ
+
ρ′

ρ2
∇P, (1.31)

and for the Poisson equation (Eq. 1.7) we get

∇2ψ′ = 4πGρ′. (1.32)

We saw in section 1.2.1 the important time-scales that we have to take into consideration, when
studying stellar oscillations. Those are the dynamical time (tdyn), the thermal or Helmholtz-Kelvin
time (tHK) and the nuclear time (tnuc), and their values for the Sun are approximately 26 minutes,
107 years, and 1010 years, respectively. The amount of heat that is exchanged by a parcel of matter in
the timescale of one oscillation, is denoted ∆Q and is proportional to the tdyn, and more specifically
| ∆Q |' Ltdyn. From the Virial theorem however, we know that the energy released by contraction is
converted into internal energy:

∫ M

0

GM

R
dm = 2

∫ M

0
udm. (1.33)

By replacing that equation in the Helmholtz-Kelvin time, that gives an estimate for the thermal
exchanges we get

tHK =
GM2

2RL
' 1

L

∫
GM

R
dm '

∫M
0 udm

L
' uM

L
, (1.34)

which is much larger than the dynamical time. Also, we assumed that u remains constant with respect
to m. From that we can derive

tdyn =
∆Q

L
� uM

L
⇒ ∆Q� uM ' cvTM, (1.35)

where we have also used from thermodynamics that u = cvT , with cv being the heat capacity at
constant volume. From that discussion, it is obvious that, in the timescale of the oscillations, that we
study, the gas does not have enough time to exchange significant amounts of heat, when we compare it
to the global heat capacity of the star. That means that the oscillations are adiabatic and so, we can
neglect the heat diffusion term in the equations. It is important to mention here that this is not the
case everywhere in the star. In the layers near the stellar surface, the heat exchange per unit mass is
of about the same order as the internal energy ∆Q ' u = cvT , which means that the oscillations there
are non-adiabatic. The area where the oscillations are adiabatic is seperated from the non-adiabatic
area by the transition region.

The relation between the density (ρ) and the pressure (P ) in the adiabatic case, is given by

d lnP

d ln ρ
=
∂ lnP

∂ ln ρ

∣∣∣∣
s

≡ Γ1 ⇒
δP

P
= δ(lnP ) =

d lnP

d ln ρ
δ(ln ρ) = Γ1

δρ

ρ
, (1.36)
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where Γ1 is the first adiabatic index. The Eqs. 1.29, 1.31, 1.32 and 1.36 form the complete set of
equations that we use when we study the adiabatic stellar oscillations.

1.3.2 Radial oscillations

The variations in the radial direction are well distinct from the variations in the horizontal direction,
and so we can consider them separately. The most simple case of stellar oscillations are those that take
place only in the radial direction. In order to study them, we consider that the spherical symmetry
is maintained during the oscillation (δr = δr(r) sin(σt)), with σ being the angular frequency, and by
using that condition in Eqs. 1.29, 1.31 and 1.32, we can combine them into a Sturm-Liouville problem

d

dr

Å
r4Γ1P

d

dr

Å
δr

r

ãã
+

ï
r3 d

dr
((3Γ1 − 4)P ) + σ2ρr4

ò
δr

r
= 0, (1.37)

in which we can replace δr
r = ξ, which is the displacement vector and also the eigenmodes of the

problem. The two boundary conditions are, that the pressure must be equal to zero (P (0) = P (R) =
0), at the center of the star and at its surface. That problem has some very important properties:

1. The eigenmodes are orthonormal to each other. That means that, for two eigenmodes ξ1 and
ξ2, we have that 〈ξ1 | ξ2〉 =

∫M
0 δr1δr2dm = 0.

2. We have a countable set of frequencies that tends to infinity σ2
0 < σ2

1 < ... < σ2
n →∞, where n

is the radial order, corresponding to the number of modes of the eigenfunctions.

3. The eigenmodes form a complete base.

4. There exists a variational principle that allows us to compute small variations in the eigenfre-
quencies, from small perturbations in the stellar structure.

5. The eigenfunction modes are interweaved. That is, the modes of ξn+1 are located between those
of ξn

1.3.3 Non-radial oscillations

For the previous discussion we considered only the radial oscillations. Nevertheless, those oscil-
lations are the simplest ones, and they are only a subcategory of the general case, which is about
oscillations that are also occuring in the horizontal (non-radial) direction. For that reason, we will
take into consideration the other two coordinates of the spherical set (θ, φ), for the oscillations in the
horizontal direction. In order to treat the whole system, we can use the method of variable separation,
to separate the spatial from the temporal coordinates, and so we get

P ′ = P ′(r, θ, φ)eiσt, (1.38)

and the displacement vector is

δr = ξrêr + ξθêθ + ξφêφ = δr(r, θ, φ) sin(σt). (1.39)

By replacing the previous expression in the equation for the conservation of momentum (Eq. 1.31),
we get

σ2ξr =
∂ψ′

∂r
+
ρ′

ρ

Gm

r2
+

1

ρ

∂P ′

∂r
, (1.40)

σ2ξθ =
1

r

∂

∂θ

Ç
ψ′ +

P ′

ρ

å
, (1.41)
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σ2ξφ =
1

r sin θ

∂

∂φ

Ç
ψ′ +

P ′

ρ

å
. (1.42)

For the mass conservation equation (Eq. 1.29) we get

δρ

ρ
+

ï
1

r2

∂

∂r
(r2ξr) +

1

r sin θ

∂

∂θ
(sin θξθ) +

1

r sin θ

∂ξφ
∂φ

ò
= 0. (1.43)

We can now combine the equations for the horizontal motion (Eqs. 1.41 and 1.42), with Eq. 1.43,
and we have

δρ

ρ
+

1

r2

∂

∂r
(r2ξr)−

1

σ2r2
L2

Ç
ψ′ +

P ′

ρ

å
= 0, (1.44)

where L

L = −r2∇2
h = − 1

sin θ

∂

∂θ

Ç
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2

å
, (1.45)

is the Legendrian operator and h stands for the horizontal component of any vector.
The Poisson equation (Eq. 1.32) becomes

∇2ψ′ =
1

r2

∂

∂r

Ç
r2∂ψ

′

∂r

å
− 1

r2
L2ψ′ = 4πGρ′. (1.46)

Eqs. 1.40, 1.44 and 1.46 form the set of equations that we need to solve for the case of non-radial
adiabatic stellar oscillations. In order to solve it, we use the method of variable separation, in which
we can search for solutions of the form

X ′(r, θ, φ) = X ′(r)F (θ, φ). (1.47)

This can be done because ∂/∂θ and ∂/∂φ appear only in the operator L2. The eigenfunctions of
L are the spherical harmonics Y m

l (θ, φ) and so we get

L2Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ), (1.48)

and by replacing that into 1.47 we have solutions of the form

X ′(r, θ, φ) = X ′(r)Y m
l (θ, φ). (1.49)

The spherical harmonics are given by

Y m
l (θ, φ) = NP

|m|
l cos(θ)eimφ, (1.50)

where P
|m|
l corresponds to the Legendre polynomial, θ is the angular distance from the polar axis,

or else co-latitude, φ is the longitude, and N is a normalization constant. l is called the spherical
degree of the mode and gives the total horizontal number of nodes, and the azimuthal order m is the
number of nodes along the equator. In the nodes, the amplitude of the oscillation is zero and, on
its one side is positive, with the material moving outwards and, on its other side is negative, with
the material moving inwards. This is represented in figure 1.1. In that figure, are represented a few
spherical harmonics, with contour plots, for different sets of l and m. The positive contours, showed
by continuous lines, correspond to material that moves outwards, and the negative contours, showed
by dashed lines, to material that moves inwards.

The set of three equations that we use (Eqs. 1.40, 1.44, and 1.46), contains 4 unknowns (ρ′, P ′,
ξ′r, and ψ′). In order to solve it, we can eliminate ρ′ by using the adiabatic relation, Eq. 1.36 and now
we get for the radial motion (Eq. 1.40)

14



Figure 1.1: The representation of the real part of spherical harmonics Y m
l . The continuous lines are

for positive contours while the dashed lines are for negative contours. The line showed by the ‘+++’
symbols, represents the equator and the pole is indicated by the star. The cases that are shown here
are: a) l = 1, m = 0, b) l = 1, m = 1, c) l = 2, m = 0, d) l = 2, m = 1, e) l = 2, m = 2, f) l = 3, m
= 0, g) l = 3, m = 1, h) l = 3, m = 2, i) l = 3, m = 3, j) l = 5, m = 5, k) l = 10, m = 5, and l) l =
10, m = 10.
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dP ′

dr
= ρ

dψ′

dr
+
g

c2
P ′ = (σ2 −N2)ρξr, (1.51)

for the expression of the horizontal motion (Eq. 1.44), and the mass conservation (Eq. 1.43)

P ′

ρc2

Ç
1− L2

l

σ2

å
− l(l + 1)

σ2r2
ψ′ − g

c2
ξr +

1

r2

d

dr
(r2ξr) = 0, (1.52)

and for the Poisson equation

1

r2

d

dr

Ç
r2 dψ′

dr

å
− l(l + 1)

r2
ψ′ = 4πGρ′, (1.53)

where we introduced the squared Brunt-Väisälä or buoyancy frequency

N2 =
Gm

r2

Å
1

Γ1

d lnP

dr
− d ln ρ

dr

ã
, (1.54)

and the squared Lamb frequency

L2
l =

l(l + 1)c2

r2
. (1.55)

Eq. 1.54 is a measure of the Ledoux criterion, for convective instability. The Ledoux criterion,
named after the famous Liège astrophysicist, Paul Ledoux, takes into consideration the modification
of the chemical composition, due to several processes (microscopic diffusion, nuclear reactions,...), in
the treatment of the equations. Those processes create chemical stratification in the radiative zones.
It is given by:

∇rad −
φ

δ
∇µ = ∇ad, (1.56)

where µ is the molecular weight, φ = ∂ ln ρ
∂ lnµ

∣∣∣
P,T

, δ = − ∂ ln ρ
∂ lnT

∣∣∣
P,µ

and ∇µ = d lnµ
d lnP

∣∣∣
m

. We can understand

this criterion like that. We consider a region where the molecular weight decreases upwards, which is
the most common case. If in that region, a parcel of matter starts moving upwards, it will reach an
area where the molecular weight is lower. If the temperature and pressure do not change, it will be
denser than the surrounding matter, and so, it will be pushed downwards, by the Archimedes force. If
an area is stable with respect to the Ledoux criterion, but unstable with respect to the Schwarzchild
criterion, the parcel of matter will be forced in an oscillatory motion, with frequency given by Eq.
1.54. This induces a slow mixing of the stellar material, which is referred to as semi-convection.

Mathematically we can think Eq. 1.54 like this. The term outside the parenthesis, Gm/r2, and
1/Γ1 are always positive and so the sign of N2 is defined by the values of d lnP/dr and of d ln ρ/dr,
that are the indicators of the stratification of pressure and of density respectively. When N2 > 0, the
parcel is heavier than its surroundings which means that, due to buoyancy (Archimedes force), it is
pushed back to its original position, and this corresponds to convective stability. On the other hand,
when N2 < 0 the parcel is lighter than its surroundings and so buoyancy will make it continue moving
upwards, which corresponds to convective instability. In the first case, the parcel will be forced to
an oscillatory motion around the equilibrium position, while, on the second case, the parcel will be
permanently pushed away from it. From the form of Eq. 1.54 we can get

d ln ρ

d lnP
>

1

Γ1
, (1.57)

as an alternative condition for the N2 > 0 case. We see that Eq. 1.55 is directly linked to the spherical

degree of the mode, and to the c =
√

Γ1
P
ρ , which is the sound speed in the plasma. The restoring
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force for the waves that is characteristic of p-modes, is the pressure gradient that the plasma exerts
on the parcel, and so they are called pressure waves or p-modes.

By combining the equations of conservation of momentun in the horizontal direction, Eqs. 1.41 and
1.42, with the equation for the variable separation, Eq. 1.49, we can get for the horizontal components
of the displacement vector:

ξθ =
1

σ2r

Ç
ψ2 +

P ′

ρ

å
∂Y m

l (θ, φ)

∂θ
, (1.58)

ξφ =
1

σ2r

Ç
ψ2 +

P ′

ρ

å
1

sin θ

∂Y m
l (θ, φ)

∂θ
, (1.59)

and by defining

ξh =
1

σ2r

Ç
ψ′ +

P ′

ρ

å
, (1.60)

we get for the displacement vector

ξ′ = ξr(r)Y
m
l (θ, φ)er + ξh(r)

Ç
∂Y m

l (θ, φ)

∂θ
eθ +

1

sin θ

∂Y m
l (θ, φ)

∂φ
eφ

å
, (1.61)

and for the continuity equation

δρ

ρ
+

1

r2

d

dr
(r2ξr)− l(l + 1)

ξh
r

= 0. (1.62)

1.3.3.1 The Cowling approximation and propagation cavities

The Poisson equation (Eq. 1.7) for the gravitational potential can be written in integral form as

ψ′(r, t) = −G
∫

V

ρ(r′, t)dV

|r − r′| , (1.63)

which can also be written in the form

ψ′(r) =
4πG

2l + 1

ñ
1

rl+1

∫ r

0
ρ′(r′)r′l+2dr′ + rl

∫ R

r

ρ′(r′)

r′l+1
dr′
ô
, (1.64)

from which we take that in some cases we can neglect the perturbation to the gravitational potential
(ψ′ �). Those cases are when

1. the spherical degree l is large or

2. the radial order n is large

Usually the radial order n is much larger than the spherical degree l, and so we can take that
ψ′=0, according to the Cowling approximation, and further simplify the equations to make them an
eigenvalue problem of second order

dP ′

dr
+
g

c2
P ′ = (σ2 −N2)ρξr, (1.65)

P ′

ρc2

Ç
1− L2

l

σ2

å
− g

c2
ξr +

1

r2

d

dr

Ä
r2ξr
ä

= 0. (1.66)

In addition, when the number of eigenmodes is large we get that
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dP ′

dr
' (σ2 −N2)ρξr, (1.67)

which gives us

P ′

ρc2

Ç
1− L2

l

σ2

å
+
dξr
dr

= 0, (1.68)

and, by deriving Eq. 1.68, with respect to r, and combining it with Eq. 1.67 we get:

d2ξr
dr2

' − d

dr

®Ç
1− L2

l

σ2

å
P ′

ρc2

´
' −

Ç
1− L2

l

σ2

å
1

ρc2

dP ′

dr
' − 1

c2

Ç
1− L2

l

σ2

å
(σ2 −N2)ξr. (1.69)

From that we write

d2ξr
dr2

+ k2(r)ξr ' 0, (1.70)

where k is the wavenumber and is equal to

k2(r) =
1

c2

Ç
1− L2

l

σ2

å
(σ2 −N2). (1.71)

The above expression is very important because it provides the conditions for the wave propagation.
If k2 > 0, the wave can propagate and we can observe a mode, while if k2 < 0 we have an evanescent
zone and the wave cannot propagate. So, in order to have a positive k2, and taking into consideration
that 1/c2 and σ2 are always positive, we must have that

1. σ2 > L2
l , N

2 or

2. σ2 < L2
l , N

2

In the former case we have the propagation of pressure modes and, in the latter we have the
propagation of gravity modes. This is clearly illustrated in Fig. 1.2, where we see the regions of
propagation for the two different modes, in the case of the Sun.

In the JWKB approximation we get the asymptotic solution

ξr(r) '
A

k(r)1/2
cos

Å∫ r

k(r)dr

ã
. (1.72)

If, on the other hand, the square of the frequencies (σ2) is larger than one of the aforementioned
frequencies, but smaller than the other, then we have an evanescent zone, and the wave amplitude
varies exponentially. The asymptotic solution is given by

ξr(r) '
A

k(r)1/2
exp

Å∫ r

k(r)dr

ã
. (1.73)

In the limiting case where σ2 � N2, L2
l , we can simplify Eq. 1.71 for the p-modes

k2(r) ' σ

c

Ç
1− L2

l

σ2

å
' σ2

c2
, (1.74)

and Eq. 1.70 becomes a Sturm-Liouville problem of the form

d2ξr
dr2

+ k2f(r)ξr = 0, (1.75)
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Figure 1.2: The propagation and evanescent cavities for the case of the Sun. In this plot, the frequencies
ν, measured in µHz, are shown as a function of the normalized radius. The dashed lines correspond to
p-modes, of different spherical degree l, which is shown by the number, next to the line. The p-modes
can only propagate in the region on the right of that line, and so they are trapped between the surface
and the turning point. The continuous, curved line corresponds to the region where the g-modes can
propagate. We see that, for solar-like stars the g-modes cannot reach the surface.
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where the solutions of that problem are the squared eigenvalues σ2. There is an infinite number of
solutions and they tend to infinity for increasing spherical degree.

In that limiting case (σ2 � N2, L2
l ), we finally have for the pressure modes that the wave relation

is

d2ξr
dr2

+
σ2

c2(r)
ξr ' 0, (1.76)

which is the the same as for the acoustic waves in the organ pipe (see section 1.3.4). We thus understand
that the pressure modes in stars are comparable to acoustic standing waves. As in the atmosphere of
the Earth, the gas is compressed in some points and the pressure gradient is the restoring force that
produces those waves. The sound speed profile is given by

c2 =
Γ1P

ρ
∝ Γ1T

µ
, (1.77)

for the case of a perfect gas, for the second equality. It is important to note that, the first equality
is always valid by definition. Because of c2 in Eq. 1.76, the eigenfrequencies (σ2) are directly related
to c2. So, measuring σ2 ,allows asteroseismology to probe the sound speed profile. We need enough
modes, so that we can get profiles, but usually we have bulk properties.

For the limiting case of the σ2 � N2, L2
l we get for the gravity modes that

k2 =
N2L2

l

σ2c2
=
l(l + 1)N2

σ2r2
, (1.78)

and Eq. 1.70 becomes a Sturm-Liouville problem of the form

d2ξr
dr2

+
g(r)

σ2
ξr = 0, (1.79)

where the solutions of that problem are the negative squared eigenvalues σ−2. Those solutions are
infinite and they tend to zero for increasing spherical degree.

For the case of l ≥ 2, between the frequencies of the gravity and pressure modes, there is the
fundamental mode (f).

1.3.4 Semi-open organ pipe

One simple example that helps to better understand the previous set of equations, is the case of
the semi-open organ pipe. In that case we can consider the medium to be homogeneous and, by taking
into consideration the Cowling approximation, see section 1.3.3.1, we have that ∇P = ∇ρ = ∇Γ1 =
∇ψ = 0. So we can write δP = P ′, δρ = ρ′. By applying that in the previous equations we get for the
mass conservation equation (Eq. 1.29)

ρ′

ρ
= −∇ · δr, (1.80)

for the momentum conservation equation (Eq. 1.31)

∂2δr

∂t2
= −∇P

′

ρ
, (1.81)

and for the adiabatic relation (Eq. 1.36)

P ′

P
= Γ1

ρ′

ρ
. (1.82)
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In order to find the behavior of the gas in the perturbed case, we calculate the divergence of the
momentum equation (Eq. 1.81) and use Eqs. 1.80 and 1.82

∇ · ∂
2δr

∂t2
=
∂2∇ · δr
∂t2

= −∂
2(ρ′/ρ)

∂t2
= − 1

Γ1P

∂2P ′

∂t2
= −∇

2P ′

ρ
, (1.83)

from which we get the wave equation

∂2P ′

∂t2
= c2∇2P ′, (1.84)

and so we see, that the stellar oscillations can also be due to acoustic sound waves. We can understand
that, by thinking the stars as resonators, that reflect the acoustic waves in their interior. That has the
consequence to let only waves with specific frequencies to propagate in their interior, while cancelling
all the other waves. The quantities that appear in the equations like density (ρ(r, t)), and pressure
(P (r, t)), depend only on their radial coordinate (r), and so we can separate those two variables and
write the dependence on time as eiσt, where σ is the angular angular frequency and is connected to
the linear frequency by

σ = 2πν. (1.85)

The solution to the wave equation (Eq. 1.84) is given by

P ′(r, t) = P ′(r)eiσt = P ′(r)(i cos(σt)) + sin(σt) = sin(σt)P ′(r), (1.86)

in which we kept the real part of the equation and, by replacing in Eq. 1.84, we get

σ2P ′ + c2∇2P ′ = 0. (1.87)

The problem has become an eigenvalue problem of the form

Ax = σ2x, (1.88)

where σ2 is the requested eigenvalue, A = −c2∇2 is a linear operator, and x = P ′ is the eigenfunction.
To solve that, we will also need some boundary conditions that we will see in a while.

We assume that the semi-open organ pipe has lenght R, and that the distance increases from the
closed edge. The maximum displacement that a parcel would get, is the length of the pipe. Since
we are talking about standing waves, there must be no pressure difference in the closed edge of the
pipe and, in the open edge, the pressure perturbation should be zero, since it comes in contact with
the environment. That gives us the two boundary conditions that we need in order to solve the wave
equation (Eq. 1.84)

dP ′

dr

∣∣∣∣∣
r=0

= P ′(R) = 0, (1.89)

and, if we consider the sound speed to be constant in all the medium, then the solution takes the form

P ′(r, t) = A sin(σt) cos

Å
σr

t

ã
. (1.90)

The second boundary condition is satisfied only when the cosine reaches zero, and this happens
when its argument is half multiples of π. This corresponds to

σR

c
= π

Å
1

2
+ n

ã
⇒ σ

2π
= ν =

c

2R

Å
1

2
+ n

ã
, (1.91)

where n is positive inreger, and corresponds to the number of nodes of the stationary wave. In the
stars, it corresponds to the number of nodes in the radial direction, and is called the radial order. For
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acoustic waves, which we study, it takes positive values. We can define, for two consecutive frequencies,
the large separation

∆ν = νn − νn−1 =
1

2

c

R
, (1.92)

From that we have the important conclusion of the equidistance of frequencies of the same spherical
degree, with consecutive radial orders.

In that analysis, we considered that the sound speed (c), remains constant in the medium. Nev-
ertheless, we know that c depends on the density and on the temperature of the medium in which
it propagates, and those quantities vary in the stellar interior. When we consider that c varies with
the distance from the center (c(r)), we can treat the wave equation (Eq. 1.84) through the JWKB
approximation. In the general case we can write the wave equation as

d2u

dx2
+ k(x)2u = 0, (1.93)

and the solution is, under the JWKB approximation, assuming the solutions to be plane waves,

u(x) = k(x)1/2 cos

Å∫ x

0
k(x)dx

ã
, (1.94)

which, in our case, is

P ′(r) ' Ac(r)1/2 cos

Å
σ

∫ r

0

dr

c

ã
. (1.95)

From the boundary condition requiring that P’(R) = 0, we get that the argument of the cosine
must be half multiples of π. That gives us

σ

∫ R

0

dr

c
= π

Å
1

2
+ n

ã
⇒ σ

2π
= ν =

1

2

Å
1

2
+ n

ãÇ∫ R

0

dr

c

å−1

, (1.96)

from which we can define the large separation ∆ν as in the case of constant c as

∆ν =

Ç
2

∫ R

0

dr

c

å−1

. (1.97)

From that, we get that the frequencies are equidistant for large n, and this defines the asymptotic
regime of the frequencies. The quantity

∫ R
0

dr
c is called the acoustic radius, and is a measure of the

time that the wave would need, in order to propagate from the center of the star to the surface.

1.4 Solar-like stars

The method that we propose in our work is for solar-like stars. In that section we present the
structure and oscillatory characteristics of those stars.

1.4.1 Internal Structure

When we are talking about solar-like stars, we talk about stars that are of approximatelly the same
mass as the Sun (±0.2M�) and which are also in the same evolutionary stage, the main sequence.
With such a mass, those stars are considered to be of low- to intermediate- mass stars. As they are
in the main sequence, they produce their energy by fusing hydrogen in their core to produce mainly
helium nuclei and energy, as it is shown in appendix A. The energy that is produced by those reactions
is equal to the energy that is radiated by the star (luminosity). The main-sequence stars are located
in a long, diagonal strip in the Hertzsprung-Russel (HR) diagram, from the top left to the bottom
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Figure 1.3: The stars that are observed by CoRoT (Baglin et al. 2009), on the left plot, and by Kepler
(Borucki et al. 2010), on the right plot, from Chaplin & Miglio (2013). We can easily distinguish
between the main-sequence stars, on the bottom left of the plots, from the giants, on the top right.

right. This phase is the longest one in their life. In that stage they are in hydrostatic equilibrium
which means that they neither collapse nor explode.

We show in Fig. 1.3 HR plots (L/L� as a function of Teff0, of the CoRoT (Baglin et al. 2009),
on the left plot, and of the Kepler (Borucki et al. 2010), on the right plot, from Chaplin & Miglio
(2013). In the left plot we see that we have asteroseismic data for giant stars, in addition to the
main-sequence stars, that we are interested in our study. We see that the main-sequence stars are
located in a diagonal strip, at the bottom left of the plots, while the giant stars are located in the
giant branch, at the top right of the plots. Also, it is obvious from those plots, the large amount of
data that those missions provide.

In main-sequence stars, the energy is produced only in their cores where the thermonuclear re-
actions take place. This affects the structure of the whole star because that energy is transferred
outwards, and is eventually radiated by its surface and its atmosphere. The core in solar-like stars is
in most cases radiative, and they also have a convective envelope. In the case of the Sun, this envelope
extends from about 0.7R� up to the surface.

1.4.2 Solar-like oscillations

The Sun is the closest star to us and, for that reason, we can observe hundreds of thousands of
modes. As we can see in Fig. 1.2, not all modes can propagate everywhere. In the case of the Sun,
and of the solar-like stars, the gravity modes, for example, cannot propagate in the upper layers of the
Sun. That means that there are propagation and evanescent cavities for the different kinds of modes.
This is shown in Fig. 1.2, from Christensen-Dalsgaard (2003), where the frequencies are represented,
in µHz, with respect to the normalized distance to the center. In that plot the curved continuous line
depicts the Brunt-Väisälä frequency, Eq. 1.54, and so the possible range of frequencies and distances
for which gravity modes can propagate. For higher frequencies, or higher distances than those included
within that curve, the gravity modes are damped. The dashed lines depict the Lamb frequency, Eq.
1.55, for different spherical degrees, symbolized by the number. That means that they represent the
lower limit of the propagation cavities, for the pressure modes. From that plot, we see that for the
case of solar-like stars, the gravity modes are restricted to the interior of the star, up to a radius of
about 0.7M�, and so, we cannot observe them. For the pressure modes on the other hand, they are
trapped between the surface and a point in the staller interior.
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Figure 1.4: The pathways of two pressure modes of different spherical degrees.

The deepest point of the stellar interior that a pressure wave could reach, is called the turning
point (rt), and is directly linked to their spherical degree l, through the Lamb frequency, Eq. 1.55.
It is called turning point because, when the wave reaches that point, it is reflected towards the outer
regions of the star, until it arrives at the surface, where it is reflected again. This is better shown in
Fig. 1.4 (Christensen-Dalsgaard 2003), where we see a schematization of the pathways of two pressure
modes with l = 30, for the one that reaches deeper, and for l = 100 for the other one. We can
understand how that turning point acts, by considering the waves as plane waves. As the plane wave
travels inside the star, its deeper parts are located in an area with higher density and thus, the sound
speed there is higher. As a result, they travel faster, and the direction of propagation shifts away
from the radial direction. At the reflection point, the wave travels horizontally and then it travels
towards the surface of the star. We see from that plot that the lower the spherical degree, the deeper
in the star, the wave can go. This is very important because it means that waves of different spherical
degrees, carry information about different layers.

When we work in the asymptotic regime, where n� l, Gough (1986) showed that the frequencies
are approximated by

ν =

Å
n+

l

2
+ ε

ã
∆ν, (1.98)

where ∆ν is called the large separation and is the distance between two successive frequencies of the
same spherical degree, and ε is a constant. In Fig. 1.5 (Christensen-Dalsgaard 2003), we show the
power spectrum of the Sun, where the frequencies ν, in µHz, are shown in the abscissa, and in the
ordinate is the power P (ν), in cm2s−2µHz−1. The power spectrum is obtained by Fourier transforming
the light curve, which allows us to get the frequencies. The lower panel is an expanded view of the
central region of the upper panel. In those plots we can see that the majority of the observed solar
frequencies are of the order of 5 minutes. From that plot, we can also see that the frequencies, in
the case of solar-like stars, appear in groups, and that they are almost equidistant. Departures from
that equidistance do exist and they are due to higher - order terms in Eq. 2.13. One example of such
higher-order terms are the acoustic glitches, which we will discuss in the next chapter.
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Figure 1.5: The power spectrum in the case of the Sun. The lower panel is an expanded view of the
upper panel, where we can better see the equidistance of the frequencies ν, and that they appear in
groups.
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Chapter 2

The method for adjusting the glitches
signature

The seismic data that are needed in order to constrain the internal structure of stars are obtained
through observations, as in all other domains of astrophysics. However, to constrain the stellar struc-
ture, we measure small and periodic variations in the luminosity, which are of the order of one part
per million. It is therefore obvious that those kind of observations were difficult to obtain, up to
about a decade ago. Because of its short distance from Earth, which increases the precision of the
observations, we could only retrieve quality data only for the Sun. The modes that could be observed
were over a thousand, which helped us not only to put constrains on the characteristics of the internal
structure of the Sun, but also to improve our theory of stellar evolution and to refine our models.

In asteroseismology, to derive precise asteroseismic diagnoses, extremely precise data is necessary.
This justifies the need for space instruments, that evade the problems imposed by the Earth’s atmo-
sphere, like atmospheric seeing. Also, space intruments can take continuous observations for many
weeks in a row since they are not interrupted by the day and night cycle which is a disadvantage of
ground observations. In the recent years, with the advent of new space telescopes, such as the CoRoT
(Baglin et al. 2009) and the Kepler (Borucki et al. 2010) missions, that have stopped operating, and
the ongoing TESS (Ricker et al. 2014) space mission, that provided quality seismic data, the scientific
community had the ability to apply asteroseismic techniques to stars other than the Sun. There is a
variety of techniques that can be used in order to take advantage of those data. First of all, there is the
approach that constrains the stellar models using the forward modelling by using individual oscillation
frequencies, or by using frequency separations. Moreover, there are the inversion techniques that use
frequencies, observed or modelled, in order to put tight constrains to the physical properties on the
whole interior of the stars. Finally, there are some techniques that retrieve information about the
stellar structure by taking into consideration the acoustic glitches as well.

The oscillation spectrum of solar-like stars can be divided into two parts. The smooth part, which
varies slowly and can be described by the asymptotic theory of stellar oscillations, Eq. 2.13, and
an oscillating part, the acoustic glitches. The acoustic glitches are faint signatures in the oscillation
spectrum, which are caused by sharp variations in the stellar structure. By sharp variation we mean
that those variations expand in much smaller spatial scales than the wavelength of the mode itself. The
main two glitches that exist in solar-like stars are, firstly, due to the discontinuity of the temperature
gradient in the transition region between the radiative and the convective zone (BCZ) and secondly,
due to the second helium ionization zone. Both of them are located quite close to the stellar surface.
The convection zone glitch helps to constrain the exact position of this area but also provides us with
information about the mixing processes that affect the chemical profile around the bottom of that
region (turbulent diffusion due to differential rotation, ...), and affect that position. Unfortunately,
its signature is quite faint, in comparison to its uncertainty, in solar-like stars, and thus carries little
information. For the latter, because of the helium ionization in the second He ionization zone, energy
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Figure 2.1: The Γ1 profile, as a function of the reduces radius, near the stellar surface.

is absorbed and this causes the pressure P , and density ρ, to increase at different rates. As a result,
the first adiabatic index (Γ1 = ∂ lnP

∂ ln ρ

∣∣∣
S

, where S is the entropy) experiences a depression in that region,

which causes the helium acoustic glitch.
This is shown in Fig. 2.1. In that figure, from Farnir et al. (2019), we see the profile of the first

adiabatic index, with respect to the normalized distance from the center, for a star with M = 1.052M�.
We see the aforementined depression in Γ1, for helium abundances with values of 0.24, 0.25, 0.26,
and 0.27 and with an initial metallicity of (Z/X)0 = 0.022, with the black curves. The red curves
correspond to surface helium abundance of Y0 = 0.24 and to initial metallicities (Z/X)0 that vary
and take values of 0.008, 0.011, 0.014, and 0.017. It is obvious from that figure that the higher the
helium abundance, the deeper this depression gets, but also that the metallicity affects that depth in
the oppossite way, making it shallower for higher values. That depth can help constrain the helium
abundance in this region and, since it is so close to the surface, we can take it to be the surface helium
abunbance. This is very important because the surface helium abundance cannot be constrained by
other means, in main-sequence solar-like stars, like, for example, spectroscopy.

The use of data of high quality, as those provided by the aforementioned instruments, lead to the
need for improving the existing techniques, so that we could benefit from all the information that they
contain. Since we wanted to study the helium glitch, we used the WhoSGlAd (Whole Spectrum
and Glitches Adjustment), which makes a very efficient use of the helium glitch signature. The
strength of this method lies in the fact that it makes use of both the smooth and the glitches parts
simultaneously. It also combines the oscillation frequencies in a clever way to build seismic indicators
as little correlated as possible and representative of the stellar structure.
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2.1 Mathematical notations

In the subsequent sections of the present chapter, we describe the WhoSGlAd method following
Farnir et al. (2019). The mathematical notations that we use are

1. A basis of vectors over a given N -dimensional Euclidean vector space is represented by curly
brackets: {x} = {x1 . . .xN};

2. The scalar product of two vectors x and y is represented as: 〈x|y〉;

3. The norm of a vector is: ‖ x ‖=
»
〈x|x〉;

4. The weighted mean of a vector is noted as: x̄.

Expressions for the scalar product and the weighted mean will be given when necessary.

2.2 Gram - Shmidt orthonormalisation

The WhoSGlAd method is based on the Gram-Schmidt orthonormalisation process. With this
technique we can build an orthonormal basis from any given basis over a N dimensional Euclidean
vector space. An orthonormal basis is a base of which the components are normal to each other and
of unit length. By assuming that we have an ordinary basis of vectors {p} = {p1 . . .pN}, we can build
the orthonormal basis {q} = {p1 . . . qN} in the following way.

First, we normalise one of the vectors of our set

q1 =
p1

‖ p1 ‖
. (2.1)

Then we build the basis by adding new elements one by one. To do so, we remove from each basis
element pi, its projection on all the previously normalised basis elements

∑i−1
j=1〈pi|qj〉qj . This results

in the orthogonal vector:

ui = pi −
i−1∑

j=1

〈pi|qj〉qj . (2.2)

This vector is not a unit vector however and the next step is to normalise it by

qi =
ui
‖ ui ‖

. (2.3)

In a matrix form, we have

qi =
i∑

j=1

R−1
i,j pj , (2.4)

where R−1
i,j is the tranformation matrix for the i-th and j-th element between regular and orthonormal

basis elements.

2.3 Adjustment and representation of the frequencies

When we presented earlier the mathematical expressions for the non-radial oscillations (section
1.3.3), we saw that they can be described by three integer numbers: the radial order n, the spherical
degree l, and the azimuthal order m, which was set to 0, as we neglect rotation. This assumption
is valid in most cases, since main-sequence solar-like stars are slow rotators. WhoSGlAd is based on
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linear algebra in an Euclidean vector space and that vector space is the set of N observed oscillation
frequencies νi. Each observed frequency is associated with its standard deviation, σi. For two known
frequency vectors, x and y, we define their scalar product as

〈x|y〉 =
N∑

i=1

xiyi
σ2
i

. (2.5)

It is useful in asteroseismology to compare two sets of frequencies, like for example the observed
and the theoretical frequencies, by using a merit function which is defined as

χ2 =
N∑

i=1

(νobs,i − νth,i)2

σ2
i

, (2.6)

where νth are for the theoretical frequencies and νobs are for the observed ones. We can use the scalar
product that we defined before to represent it

χ2 = ‖νobs − νth‖2. (2.7)

Houdek & Gough (2007) showed that, when there is a glitch, we can separate its oscillatory
component from the smooth part of the spectrum. So, the frequencies are represented by separating
the glitch contribution from that of the smooth part. The frequencies, both observed and theoretical,
are projected over the vector basis elements and, from those projections, the seismic indicators are
defined. From that comes that an orthonormal basis element over the vector sub-space is advantgeous
and we acquire it by the Gram-Shmidt orthonormalization process (see section 2.2), associated with
the definition of the scalar product (Eq. 2.5). By defining j and j0 to be the indices that are related
to the basis elements, pj to be the former basis elements, qj0 to be the orthonormal basis elements

and R−1
j,j0

to be the transformation matrix we get:

qj0,l(n) =
∑

j≤j0
R−1
j,j0
pj,l(n), (2.8)

where the appearence of n and l means that the basis elements are evaluated at each observed value
of the radial order n and they have different values for each spherical degree l. The projections are
done in such a way that the value of the merit function (Eq. 2.6) is minimum. The projection of the
fitted coefficents over the basis elements is written as aj = 〈ν|qj〉. So the fitted frequencies are given
by

νf,l(n) =
∑

j

ajqj,l(n), (2.9)

where f is for the fitted frequencies.
A very important remark about the orthonormalization, is that the standard deviations of the

coefficients aj are σ(aj) = 1, and they are independent. This property gives the ability to the method
to build seismic indicators that are as little correlated as possible and to put stringent constrains on
the stellar structure, with reduced standard deviations, compared to classical indicators.

2.3.1 Smooth component

Let’s see now the vector sub-space for the smooth component. In the observed frequencies, the set
of radial orders and σi are often different for each spherical degree. In addition, the smooth component
depends on l, because it is affected most by the deep layers of the star, which makes its basis elements
to also depend on l. The polynomials are given then by the general form:

plk = δll′pk(n), (2.10)
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where δll′ is the Kronecker delta which compares two spherical degrees l and l′. It is zero when they
are different and 1 when they are the same. This leads to the distinction of the basis elements from
one l to the other, pk(n) is a polynomial in the radial order n, and k represents the order of the
polynomial. What was defined previously as j, now is splitted into two indices, the spherical degree
l, and the ordered power k. In order to comprehend better, the spherical degree and the ordering will
be explicitely written for the transformation matrix as R−1

l,k,k0
. The orthonormal basis elements will

then be given by:

qlk(n, l
′) = δll′qlk(n), (2.11)

which in turn gives

alk = 〈ν|qlk〉 =
∑

n

ν(n, l)qlk(n, l)

σ2
, (2.12)

in which we see that the introduction of the Kronecker δ, in Eqs. 2.10 and 2.11, results in the sum
to collapse over only one fixed spherical degree. For the smooth part, the observed frequencies are
grouped based on their spherical degree, and they are treated separately, so that the parameters that
are associated to a specific degree, depend only on the frequencies of this degree.

The observed frequencies of solar-like stars, are limited mostly to modes of low spherical degree
(l ≤ 3) and high radial order, which makes the use of the asymptotic theory of non-radial stellar
oscillations (Gough (1986)) possible. Therefore, we get that, at first order, the formulation of the
expected frequencies as a function of n and l is given by:

ν(n, l) '
Å
n+

l

2
+ ε

ã
∆, (2.13)

where ε is a constant offset mainly affected by the superficial layers, ∆ =
(
2
∫ R?

0
dr
c(r)

)−1
is the asymp-

totic large frequency seperation, c(r) is the sound speed profile in the adiabatic case, and R? is the
radius of the star. Inspired by this formulation, we use a linear representation for the first 2 poly-
nomials. The polynomials in n, from the right hand side of Eq. 2.10, that are used to represent the
smooth part of the spectrum are given by

p0(n) = 1, (2.14)

p1(n) = n, (2.15)

p2(n) = n2, (2.16)

where the last one was obtained after testing several combinations of powers in order to get the optimal
χ2 value. We have that, since there are three polynomials for each l value, the vector sub-space that
is built for the smooth component, is 3×l dimensions. That means that, if we have four values for l
(0, 1, 2, 3 for example, which is quite common for observations), we have 12 dimensions in total. It is
important to mention that, we need more than three observed frequencies for each l in order for the
method to be able to work, because we need at least one constrain per free parameter.

2.3.2 Glitch component

Previously developed methods that also adjust for the glitches (see for example Verma et al. 2014),
are using formulations that are non-linear. As a result, most of those methods can be unstable, and
need quite some time to process the frequencies, which is an important drawback when working with
a big amount of data. The WhoSGlAd method uses a linearlised formulation for the glitches to solve
these problems. Furthermore, it was developed to limit the correlations between indicators and to
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adjust simultaneously and coherently, the glitch and the smooth components. The formulations that
are used are the following, for the helium glitch:

pHe,Ck(ñ) = cos(4πTHeñ)ñ−k, (2.17)

pHe,Sk(ñ) = sin(4πTHeñ)ñ−k, (2.18)

with k=(4,5) and for the convection zone glitch:

pCC(ñ) = cos(4πTCZñ)ñ−2, (2.19)

pCS(ñ) = sin(4πTCZñ)ñ−2, (2.20)

where ñ =
Ä
n+ l

2

ä
, ν is replaced by its first order approximation ñ∆, from equation 2.13 of the

asymptotic formulation, and THe = τHe∆ and TCZ = τCZ∆ are the dimensionless forms of the acoustic
depths and we will refer to them as dimensionless acoustic depth. Also, the indices He and CZ
correspond to the helium glitch and the convective zone glitch, respectively. The above formulations
are linear and so we do not get the disadvatages of non-linearity.

The degrees −4 and −5 were chosen by the authors, after they proved that they are the best to
reproduce the decrease of the glitch amplitude towards high frequencies. They also showed that the
method is stable. The glitches finally are given by:

δνHe(ñ) =
4∑

k=5

[sHe,kpHe,Sk(ñ) + cHe,kpHe,Ck(ñ)], (2.21)

δνCZ(ñ) = [sCZpCS(ñ) + cCZpCC(ñ)]. (2.22)

This formulation allows the Gram-Shmidt process to take place and to generate the orthonormal
vectors to append the smooth component basis.

The glitch is generated in the superficial layers and so it doesn’t depend on l. For that reason,
the basis elements are defined independently of l and so are the coefficients c and s. This makes the
vector sub-space, associated to the glitch, to be of only 6 dimensions, and it is used to complete the
orthonormal basis, over which the frequencies are projected. The glitch contribution can then be given
by:

δνg = δνHe + δνCZ. (2.23)

We should note, at this point, that the basis functions depend on the acoustic depths of the second
helium ionization zone for THe, and on the base of the convective zone for TCZ, and this dependance
is non-linear. In order for the linearity of the method to be maintained, it is necessary for the values
of THe and of TCZ to be provided, and to keep them unchanged for the generation of the basis, over
which the frequencies are projected. When working with models, because we have access to the stellar
structure, this value is obtained by using:

τHe/CZ =

∫ R?

rHe,CZ

dr

c(r)
, (2.24)

which is the definition of the acoustic depth. In that relation rHe,CZ is the position of the second
ionization zone of helium and of the base of the convective zone, respectively. For rHe we find the
position of the local maximum between the two local minima of the Γ1 depletion, due to the partial
ionization zone of He and, for rCZ, we find the last point below the surface for which ∇ < ∇rad,
accoding to the Schwarzchild criterion (see section 1.2.2.4 for more details).

When we work with observations however, rHe, rCZ, and c(r) are not known and so we cannot
provide a value for τHe and for τCZ, respectively. In order to retrieve an initial guess, we first fit a

31



Table 2.1: The set of frequencies used in the example.
l=0 l=1 l=2

n ν(µHz) σ(µHz)

13 1498.89 0.07
14 1603.60 0.07
15 1708.55 0.08
16 1812.40 0.07
17 1916.65 0.06
18 2022.56 0.05
19 2128.56 0.04
20 2234.84 0.05
21 2341.67 0.05
22 2448.06 0.08
23 2554.95 0.16

n ν(µHz) σ(µHz)

13 1546.42 0.07
14 1651.36 0.09
15 1755.56 0.08
16 1860.40 0.05
17 1965.44 0.05
18 2071.47 0.05
19 2178.50 0.04
20 2284.98 0.05
21 2391.77 0.06
22 2499.11 0.08
23 2606.15 0.13

n ν(µHz) σ(µHz)

13 1596.42 0.19
14 1701.68 0.17
15 1805.69 0.11
16 1910.30 0.10
17 2016.47 0.08
18 2122.70 0.06
19 2229.41 0.06
20 2336.56 0.09
21 2443.24 0.13
22 2550.54 0.21

model to seismic indicators of the smooth part, which are independent of the glitches. Then, because
we have the structure of that model, we may use Eq. 2.24. The next step could be the use of any
minimisation algorithm in order to optimize over the values of τHe and of τCZ. This nevertheless would
break the linearity of the problem. In addition, the obtained values of τHe and of τCZ, stay close to
the theoretical values and, as a result, they do not contribute much in the minimisation of the merit
function (2.6). For those reasons we do not use it.

In the present work, we developed a method that solves this problem, and provides a value for the
helium acoustic depth by using linear relations. In that way we skip the partial modeling, which is
necessary for the estimation of τHe, making the method faster, when working with observations. More-
over, the problem becomes linear again, which means that the computations are fast. Furthermore,
it is model independent, which means that it can be implemented in the code and provide results in
an automated way, which makes it more efficient. Something similar could be done for the convection
zone glitch as well. However, we did not do that here because the signal of this glitch, hence its
amplitude, is quite weak in solar-like stars and so it carries little information.

τHe is necessary to derive the helium amplitude (AHe), which is a proxy for the helium abundance
in that area, and, since it is very close to the surface, we can derive the surface helium abundance of
the star, something which is not possible to retrieve in solar-like stars, from other methods, that do
not use the glitches.

2.3.3 An example

In order to illustrate the basis elements, that are given by their method, Farnir et al. (2019)
provided an example, proving that their adjustments work. To do so, they used the set of frequencies
listed in table 2.1. Those data are from the 16 Cygni A with a magnified convection zone glitch by a
factor of 3, so that it would be better visualized.

In Fig. 2.2 and 2.3 the authors show the successive adjustments of the basis functions, which
shows that they represent well the data, and, as a result, it shows that the method is accurate. Those
values were obtained by the procedure mentioned in subsections 2.3.1 and 2.3.2. To recap it, the
frequencies are being processed using the Gram-Schmidt orthonormalization procedure. The elements
of the former basis elements, pj(n, l) are projected one after another, on an othogonal basis (Eq. 2.8)
and then they are normalised in order to obtain the orthonormal basis elements qj0(n, l), and the
tranformation matrix, R−1

j,j0
. The fitted frequencies, νf (n, l) (Eq. 2.9), of the smooth part come as the

result of the projection of the frequencies on the orthonormal basis, related to the smooth component.
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For the glitch part, the frequencies are projected on the corresponding basis elements at the same
time for all the spherical degrees, because their coefficients do not depend on it.

In Fig. 2.2 and 2.3, we illustrate the basis elements used for the example. In Fig. 2.2, is presented
the smooth part of the frequencies from table 2.1, with respect to their radial order n. The straight line
in the upper panel of Fig. 2.2 corresponds to the zero and first order functions, and the points with the
errorbars are the data. In the lower panel of the same figure, the continuous curved line corresponds
to the second order functions only, and the points respresent the residuals of the adjustment of first
order, again with respect to the radial order n. We see that there is important improvement, but
there are still some differences. The fact that the fitting is so close to the values, shows that the linear
approximation, of the asymptotic theory, already provides a good representation, but still there is a
small departure.

Figure 2.3 presents the basis elements of the two glitches, without the smooth component, over
ñ =

Ä
n+ l

2

ä
. The helium glitch is shown in the upper panel and the convection zone glitch is shown

in the lower one, for all the frequencies. The points with the errorbars represent the residuals, of the
corresponding glitch amplitude, from which we see that they are very low, and thus, they contribute
by a small amount to the frequencies. We see that the signal of the glitch is indeed very small, since
it is of the order of 1 µHz. while the frequencies themselves are of the order 1000 µHz. Especially
the convection zone glitch has very small amplitude, and this is obvious by the fact that its values in
that plot have been multiplied by a factor of 3, in order to be obvious. The line is the fitting for the
values of the glitches, by which we can clearly see the oscillatory nature of the glitches.

2.4 Seismic indicators

The use of the Gram-Schmidt process provides fitted coefficients, that are independent of each
other. This allows WhoSGlAd to define seismic indicators that are as little correlated as possible.

2.4.1 The large separation

One of the most used seismic indicators is the large separation, ∆ν. In WhoSGlAd, the Gram-
Schmidt orthonormalisation begins with the smooth component of each spherical degree, and subse-
quently treats them in increasing polynomial order. So, the first one to be treated is the zero order,
of the smooth component, of the radial modes, that is with l = 0, k = 0. Next is the first order
polynomial of the radial modes and so on. The reason for proceeding in that specific order is because,
frequencies can be approximated at first order by the formulation of the asymptotic theory, Eq. 2.13.
This formulation is linear as a function of the radial order and ∆ν corresponds to its slope. That
means that, for each l, the projection of the frequencies over the first 2 basis elements provides us
with a linear adjustment of the frequencies and an estimator of the large separation. So, WhoSGlAd
defines a different ∆ν for each subset of frequencies of the same spherical degree, as the slope of that
set and it is given by:

∆l = al,1R
−1
l,1,1. (2.25)

We could also express it as a function of frequencies and radial orders. By knowing the vector
of frequencies that is associated to the spherical degree l, νl, and the vector of corresponding radial
orders, nl, we have that:

∆l =
〈νl|nl〉/ ‖ 1 ‖2 −nl νl
‖ νl ‖2 / ‖ 1 ‖2 −nl2

, (2.26)

where 1 = (1, 1, ..., 1) and the ·̄ is called the weighted mean and is given by
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Figure 2.2: The basis elements of the example. Upper panel : The first order fit of the smooth part
of the frequencies with respect to the radial order. The points with the errorbars correspond to the
data. Lower panel : The second order fit of the residuals between the frequencies and their first order
fit, for the smooth part as well. The points with the errorbars correspond to the data, as well.
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Figure 2.3: Upper panel : Adjustment for the helium glitch. Lower panel : Adjustment for the con-
vection zone glitch (lower panel) for the frequencies of spherical degree l =0. The points with the
errorbars represent the residuals, of the corresponding glitch amplitude.
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ν =
〈ν|1〉
‖ 1 ‖2 =

∑N
i=1 νni/σ

2
i∑N

i=1 1/σ2
i

. (2.27)

The previous definitions are for only one spherical degree. The mean large separation, or else the
large separation over all the spherical degrees, is also given by

∆ = ∆l =

∑
l ∆l/σ

2(∆l)∑
l 1/σ2(∆l)

, (2.28)

where σ(∆l) is the uncertainty on the large separation of degree l. This is one of the most important
seismic indicators because it is a proxy of the mean stellar density, accordingly to Ulrich (1986) and
is sensitive to both the age and mass of the star.

2.4.2 Normalised small separations

Other important indicators are the small separations. Common definitions are the following:

d01(n) = (νn,1 − 2νn,0 + νn+1,1)/2, (2.29)

d02(n) = νn,0 − νn−1,2, (2.30)

where the indices of d are for the spherical degree while those of ν correspond to the radial order
and spherical degree. So the first equation corresponds to the separations between radial and dipolar
modes, and the second one to differences between radial and quadrupolar modes. They are important
because they allow for a measurement of the spacing between the observations and the asymptotic
relation (Eq. 2.13). Their disadvantage is that the surface effects highly influence them. Those effects
are due to the non-adiabaticity of the superficial layers of the star, and to the interaction between the
convection and the oscillations, which are not well understood. In order to decrease those effects on
the small separations, Roxburgh & Vorontsov (2003a) divided them by the large separation and so
got new definitions for the small separations that are almost independent of those layers. They are
the normalised small seperations:

r01(n) =
d01

∆r,1(n)
, (2.31)

r02(n) =
d02

∆r,1(n)
, (2.32)

where ∆r,l = νl,n − νl,n−1 is the large separation.
Inspired by these definitions, comes the definition of the small separation ratio in WhoSGlAd,

that represent the spacing between the ridges of spherical degrees 0 and l, in the échelle diagram. If
we consider that the asymptotic relation is valid, the spacing between ridges 0 and l, ν0−νl∆0

, can be
approximated by n0 + ε0 − (nl + εl + l/2). The authors added the term n0 + (nl + l/2) in order for
the value to come closer to ε0 − εl. From that we take the equation:

r̂0l =
ν0 − νl

∆0
+ nl − n0 +

l

2
, (2.33)

which is the mean value of the small separation, and where νl and nl are respectively the weighted
mean values of νl(n) and of n for the spherical degree l, in agreement with Eq. 2.27. Also νl = al,0R

−1
l,0,0

corresponds to the fitting of zero order of the frequencies of spherical degree l, and so it is its mean
value. Eq. 2.33 represents the mean spacing in the échelle diagram while equations 2.29 and 2.30
represent the local spacing. The uncertainties on the WhoSGlAd separation ratios are reduced in
comparison to the local values.

36



The defined small separations are important because they provide information about different
features of the stellar interior. r̂02 is an indicator for the conditions close to the core and, as a result,
it holds information about the evolutionary stage of the star, on the main sequence. That is because
its evolution is almost monotonic for solar-like stars, and it is sensitive to the gradient of the sound
speed, which highly depends on the chemical composition. As evolution proceeds, H is tranformed
into He, and µ changes. r̂01, on the other hand side, does not hold information about the evolutionary
stage, but it can be used as an indicator for the upper limit of the convective core overshooting and
for the chemical composition for example. This was shown by de Meulenaer et al. (2010), for stars
with masses and metallicities close to that of α Centauri A (HD128620), by using a similar indicator
as r̂01. Finally r̂03 does not provide any new information, as its evolution is reduntant with that of
r̂02.

2.4.3 Large separations differences

We may also define differences between the large separations among the sets of modes with spherical
degrees 0 and l. For that, the authors built an indicator to compare the large separations for different
l which is given by:

∆0l =
∆l

∆0
− 1. (2.34)

Given that, we can combine r̂01, which gives an estimation of the mean values of the orders 0 and
1, with ∆01 in order to retrieve information about the amount of core overshooting, as it was shown
by Deheuvels et al. (2016).

2.4.4 ε estimator

In Eq. 2.13 for the asymptotic regime, there is the constant term ε, which is mostly affected by
surface effects. For an estimator of ε, the method defines a subspace in which the frequencies are
represented as:

ν(n, l) =

Å
n+

l

2
+ ε

ã
∆̂ =

Å
n+

l

2

ã
∆̂ +K, (2.35)

where ∆̂ and K are free parameters. Then comes the definition of an orthonormal basis over this
sub-space: q̃0 and q̃1. The last step is the projection of the frequencies over this basis, and the
identification of the different coefficients with Eq. 2.13. In doing so, we also get an estimate for the
large separation, other than Eq. 2.25. It is shown by the authors that this indicator is sensitive to
the mass only when the star gets older on the main-sequence, and that it can be used to distinguish
between different choices of surface effects corrections.

2.4.5 Glitch amplitude

All the seismic indicators that we presented so far, had to do with the smooth component of the
observed frequencies. We now define indicators associated with the glitch. Very important indicator
is the glitch amplitude. By the formulation of the method, it is simply given by the norm of the glitch
term and its general form is:

Ag =‖ δg ‖, (2.36)

with δg being the glitch term. More specificaly, for the helium glitch, it is given by:

AHe =
√
C2

He,5 + S2
He,5 + C2

He,4 + S2
He,4. (2.37)
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Also, it is independent of the other indicators due to the orthonormalisation and has a standard
deviation of 1. The authors showed that the helium amplitude is a proxy of the surface helium
abundance, Yf . This is something that makes sense, because a higher helium abundance would lead
to a deeper depression of the Γ1 index, as shown in Fig. 2.1, hence to a higher value of the helium
amplitude. However, it is important to mention that the metallicity works in the opposite way, the
higher the metallicity, the shallower the depression of Γ1 gets and so the smaller the helium amplitude
gets for a given helium abundance, which shows that the relation between AHe and Ys is model
dependent.

The convection zone glitch amplitude is given by

ACZ =
»
C2

CZ + S2
CZ. (2.38)

It provides information about the sharpness of the transition region between the convective enve-
lope and the radiative zone, but we will not discuss it further because it carries little information and
we do not consider it in our analysis.

2.5 Limitations

WhoSGlAd is developed in order to study the oscillations of solar-like stars, that present p-modes
at their surface. For that reason, it cannot be used for the study of stars evolved beyond the main
sequence, because those stars present mixed modes, that contain both pressure and gravity modes. In
that case it would be able to show information for the p-modes but not for the g-modes. Moreover, the
authors clearly show that stars with mass of 1.25M� and higher, and for high helium abundances, the
relation between the surface helium abundance and the helium glitch amplitude is not monotonic, and
so the method becomes unreliable, to relate the glitch signature to the helium content. Therefore, the
inferred helium abundance of high-mass or helium-rich stars has to be regarded carefully. Nevertheless,
it remains reliable for the smooth component.

In addition, as we mentioned earlier, the method needs an estimation of the helium acoustic depth,
(τHe), in order for it to remain linear. That estimation has to come unavoidably from a model, which
in turn imposes biases regarding to the initial helium abundance and the metallicity that it considers,
as initial values. Those two values affect the depth of the Γ1 depression in opposite ways, which shows
that they should be adapted for each observed star. This would happen in an indirect way by the
use of models, something that adds time to the process of the data, as we will explain later. Our
method solves that problem and makes the method fast without breaking its linearity, which is the
big advantage of the method. It is important to note that WhoSGlAd needs the same number of
frequencies as the number of basis elements, hence of coefficients to be fitted.
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Chapter 3

Results

3.1 Measuring the helium acoustic depth

As it was mentioned earlier, one of the limitations of WhoSGlAd is that it needs an estimate for
the acoustic depth of the glitches (τHe/CZ), that will work as the initial guess for the minimization
technique. If it was to provide an estimate for the acoustic depths, it would have to go through one
more minimization over them, that would result in non-linear relations and in correlations between
the parameters of the fit. This is undesired since it would ruin the advantages of the method that are
that it is fully linear, which makes it fast, and that the different parameters are as little correlated as
possible. In order to avoid that, the introduction of a fixed value for those acoustic depths is necessary.
When we work with models, this is not a problem because we have access to the stellar structure and
so we know the position of the second ionization zone of He, and of the sound speed profile above it.
Therefore, we can calculate it by the following relationship

τHe =

R?∫

rHe

dr

c(r)
, (3.1)

where rHe is the position of the local maximum of Γ1, between the two minimums, R? is the radius of
the star, and c(r) is the sound speed as a function of the distance from the centre of the star.

When we work with observed data however, this is not the case since we do not have access to the
stellar structure of the star we observe. In order to find the acoustic depths, we would rather proceed
in the following way:

1. First we use the observed frequencies to retrieve a set of seismic indicators that are connected to
the smooth part of the spectrum, and indicative of the stellar structure, like for example ∆, r̂01,
and r̂02.

2. The next step is to find a model that best represents the observed seismic indicators. This is
a time consuming procedure, since the algorithms that are responsible for the generation of the
models have to go through multiple iterations, in order to obtain the optimal one.

3. Since we have now access to the stellar structure of that model, which provides a good approx-
imation of the stellar structure of the observed star, the last step is to use model quantities to
calculate the acoustic depth according to Eq. 3.1.

After that, we could use that value as the estimate of the acoustic depth, in order to re-run
WhoSGlAd and finally obtain the helium amplitude (AHe). It is obvious that this process takes quite
some time to be completed, because it requires the generation of the models and, furthermore, it is
model dependent, which again ruins the advantage of fast computations of the method. Nevertheless,
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it does not affect its efficiency, because, as it was shown in Farnir et al. (2019), departures of even up
to 10 % from the estimated value have a negligible effect on the measured helium amplitude.

The already large amount of available asteroseismic data, thanks to the already completed missions,
such as CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010), and the ongoing TESS (Ricker
et al. 2014), is expected to be increased vastly, in the coming years, with the advent of new missions
like PLATO (Rauer et al. 2014). It is clear that there is the need for an automated, fast, and model
independent method that could analyse those data in an efficient way. In regard to those specific needs,
the aim of my work was to upgrade WhoSGlAd and to make its analysis of observed seismic data fully
automated and model independent, thus enabling the fast treatment of these data. It was based on
an idea of one of my supervisors, Martin Farnir, which was to relate the dimensionless acoustic depth
of the second ionization zone of helium THe, which is defined in Farnir et al. (2019) as

THe = τHe ·∆, (3.2)

to easily accessible and precise observables, for solar-like stars.
Our first choice was to relate it to the effective temperature Teff and to the luminosity L, as in a

HR diagram, because those two quantities already provide a lot of information about the evolution of
the star. Furthermore, because, for a given pressure, the second ionization of helium takes place at
a specific range of temperatures, it would follow that the depth at which it happens, which depends
on the stratification of the temperature, would be related to Teff. However, the seismic indicators
that are provided by WhoSGlAd, are more precise than the spectroscopic constrains and therefore,
we chose ∆0 and r̂02 instead. We chose those two seismic indicators because, Christensen-Dalsgaard
(1988) show that the classical ∆ν and d02, are good indicators of the stellar evolution, and Farnir
et al. (2019), showed that their expressions hold the same information. Moreover, by plotting r̂02 as
a function of ∆0, over a grid of models, they showed that they are related in an almost monotonous
way. r̂02 is similar to the small separation ratio (Roxburgh & Vorontsov 2003b), which is sensitive
to the sound speed gradient and, as a result, to the chemical composition. So, it carries information
about the conditions near the core, and, as a consequence, about the evolutionary stage of the star
on the main sequence, as its evolution is almost monotonous. We show in Fig. 3.1 a seismic diagram,
representing r̂02 as a function of ∆0, on a grid of models that we made for our analysis. In this grid,
the tracks are for stellar masses from 0.8M� to 1.15M� with a step of 0.05M�, for an initial chemical
composition of X=0.75 and Z=0.012. From this plot, we can see the almost monotonous relation
between those two seismic indicators.

In order to check that r̂02, ∆0, and THe are related by a linear expression, we made a grid of models
using different masses ranging from 0.8M� to 1.2M�, with a step of 0.05M�. We also tested different
initial chemical compositions, with values for the hydrogen abundance (X0) of 0.70, 0.725, and 0.75
and for the metallicity (Z0) of 0.010, 0.012, and 0.014. We generated the models using the CLES
stellar evolution code (Scuflaire et al. 2008), using for the opacity the OPAL opacity table (Iglesias
& Rogers 1996), in combination with that of Ferguson et al. (2005) for the case of low temperatures.
Moreover we used the FreeEOS code in order to generate the equation of state table from Cassisi
et al. (2003), the nuclear reactions rates as given by Adelberger et al. (2011), and we considered only
models with a radiative core, for reasons that we will explain later. We also used the AGSS09 solar
chemical misxture (Asplund et al. 2009).

We checked whether or not the dimensionless acoustic depth could be connected, at first order, to
the mean large seperation, ∆0 and to the normalised small seperation, r̂02, through the relation:

THe = a∆0 + br̂02 + c, (3.3)

where a, b, and c are fitting coefficients.
Since we are working with solar-like stars, it is essential to be sure that our models are restricted

to the main-sequence phase. Departures from this evolutionary stage would degrade the data because
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Figure 3.1: The evolution of ∆0 with r̂02 for the masses in the range [0.8M�, 1.15M�] with a step of
0.05M�, for an initial chemical composition of X=0.75 and Z=0.012.

models that extend beyond the main sequence phase, evolve in a non-monotonous way, as it is shown
in Fig. 3.2, which means that non-linearities are introduced. This is problematic because we want to
relate THe to ∆0 and r̂02, using a simple linear formulation. In this plot, we show the evolution of ∆0,
measured in µHz with respect to the normalised small separation r̂02, as it is defined by WhoSGlAd
(Eq. 2.33), for models with masses in the range 0.8M� to 15M�, with a step of 0.05M�, for an
initial chemical composition of X=0.75 and Z=0.012. The evolution goes from the top right part to
the bottom left, as ∆0 decreases with the evolution on the main-sequence phase (Farnir et al. 2019).
The color in each track represents the evolution of THe, according to Eqs. 3.1 and 3.2, with its values
showing on the colorbar on the right.

We see in that plot, that the lines for each track become curved in their bottom part in the plot,
from almost straight in the rest of it. This is because the main-sequence phase ends, approximately at
the lowest point of the curves, and the models evolve further. As we saw earlier, this introduces non-
linearities, and so the Eq. 3.3 does not apply. To select the main sequence models, we used a criterion
in central H abundance. The main sequence starts when H has been ignited and its abundance has
dropped by approximately 1 %. The main sequence ends once the H is almost fully depleted. This
translated into the criteria Xc . 5 × 10−2.

Also, we noted that the models of 1.2M� and X0 = 0.70, developed convective cores, which lead
to the extension of their main-sequence phase. This can be seen in Fig. 3.3, where we used the same
criterion for the end of the main-sequence phase as before. This plot is the same as Fig. 3.2 but now
with the models being restricted only to the main sequence, via the criteria detailed before. Because
the core is fully mixed due to convection, the nuclear reactions have access to a bigger fuel reservoir,
which means that they last longer. From the previous discussion, we see that some solar-like stars do
have convective cores. This, however, introduces non-linearities, as explained before. Therefore, we
rejected the models of 1.2M� from our analysis, regardless of whether they had developed convective
cores or not, in order to have comparable and consistent grids.
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Figure 3.2: The evolution of ∆0 with r̂02 for the masses in range [0.8M�, 1.2M�], with a step of
0.05M�, for the case of initial chemical composition of X0=0.70 and Z0=0.010. The color scale
corresponds to the THe value.
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Figure 3.3: The evolution of ∆0 with r̂02 for the masses in range [0.8M�, 1.2M�], with a step of
0.05M�, for the case of initial chemical composition of X0=0.70 and Z0=0.010. The color scale
corresponds to THe.
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Figure 3.4: The evolution of ∆0 with r̂02 for the masses in range [0.8M�, 1.15M�] with a step of
0.05M�, for the case of initial chemical composition of X0=0.75 and Z0=0.012, which we used as our
reference composition. The color scale corresponds here to THe as well.

Next, we checked whether there is s linear relation between THe,∆0, and r̂02, and we plotted in
Fig. 3.4 the evolution of THe, over a grid of models for the same mass range as for Fig. 3.2, that are
restricted to the main sequence and without convective cores. In that plot, ∆0 is in the abscissa, r̂02

is in the ordinate and THe is represented by the color gradient, like in the previous plots, for the model
with initial chemical composition of X0=0.75 and of Z0=0.012. We used this chemical composition,
as a reference initial chemical composition, for our further analysis. From that plot, we see that there
seems to be a linear relation between the three quantities (THe,∆0, and r̂02), and Eq. 3.3 can be used
to estimate the helium acoustic depth. Next, we proceeded to adjust the coefficients of Eq. 3.3. To do
so, we fitted Eq. 3.3 to all the tracks in Fig. 3.4, which is our reference initial chemical composition.
From the fitting, we obtained the following values for the three coefficients:

a ' 8.1× 10−5, b ' −2.5× 10−1, c ' 7.9× 10−2. (3.4)

The values for the coefficients given in Eq. 3.4, are the ones that we will use in order to provide
estimates for THe. However, we have first to validate that they are accurate. The first way to validate
them was to compare the values of THe that we get with the original method, to those that we get
with the new method. We define their relative difference by the relation:

δTHe =
THe,fit − THe,mod

THe,mod
(3.5)

where THe,mod is the value obtained from a model, with Eqs. 3.1 and 3.2, and THe,fit is the value
obtained from fitting Eq. 3.3 with the aforementioned coefficients. At first, we did it for the reference
chemical composition. We represent in Fig. 3.5, as a color gradient, this difference (Eq. 3.5), over the
same grid of models as in Fig. 3.4. It is obvious from that figure that the agreement is extremely good,
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Figure 3.5: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�], with a step of 0.05M�,
for the case of initial chemical composition of X0=0.75 and Z0=0.012. The color scale here corresponds
to the relative difference between the 2 values of THe, δTHe.

with a maximum departure for the worst case of only about 1.5 %. This remains well below the 10 %
example, that was mentioned earlier to be the maximum disagreement that still yields good results.
As a result, we expect the difference to be negligible. In addition, we can see that this difference
does not evolve monotonously. As it increases, it goes through a maximum and then decreases during
stellar evolution. This is anticipated to happen by non-linearities. Nevertheless, the magnitude of
those differences is small, with the maximum being abround 1.5 %, and, thus, it is expected to have
negligible effect on the inferred AHe. In order to be more precise, we found that the biggest difference
in AHe, equals 1.38 %. This discussion shows, that the method we propose is accurate and, therefore,
is an excellent replacement of the original method. In that plot, we also see some discontinuities in
the color gradient, which we expect to originate from the discrete nature of stellar models, and the
determination of τHe, from Eq. 3.1. These discontinuities appear in all the plots that represent the
differences according to Eq. 3.5.

From Fig. 3.5 we see that the largest differences appear on the middle parts of the tracks while on
their edges the situation is relatively better. In order to better see the differences we illustrated in Fig.
3.6 the evolution of THe,fit and of THe,mod with respect to ∆0, for the reference chemical composition,
for the track of 0.8M�, which had the biggest differences on the edges. We see from that plot that
the differences are quite small, which shows that our method is accurate. In that figure we see that
the curve for the track appears several indentations, that we them to be of the same origin as the
discontinuities of Fig. 3.5. We also observe that THe evolves almost linearly with ∆0. The apparent
non-linear behaviour of the fitted value arises from the contribution of r̂02 (Eq. 3.3).

We carried the same procedure for a different initial chemical composition (X0 = 0.725, Z0 =
0.014), using the values for the coefficients that we derived from the previous case, so that we could
validate that they can be applied to the other chemical compositions. Figure 3.7 is the same as Fig.
3.5 for the new chemical composition. We see here that, although the differences now are higher, than
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Figure 3.6: The evolution of THe,fit in red, and of THe,mod in blue with respect to ∆0, for the mass of
1.2M�, for the case of initial chemical composition of X0 = 0.725 and Z0 = 0.014.

in the other case, with maximum deviation of about 3%, they are still quite low compared to the
example of 10% given by the method. Again this validates our method.

In order to check if the THe retrieved with our method is a good substitute of the real τHe and
efficient to use, we calculated the helium amplitude (AHe), with both of them using observed data,
and checked if their difference was within the uncertainties of that parameter (σ = 1 for the AHe). We
used observations of 16 Cygni A and the original method gave a value of AHe=29.6 while our method
returned a value of AHe=29.1. Their difference is well in the range of error given by the method, which
proves that we can use the Eq. 3.3, in order to have the value of the dimensionless helium acoustic
depth directly from ∆0 and r̂02.

To better show the limitations of the method to the cases outside the main sequence, and also
to models presenting convective core, we made Fig. 3.8. This figure is the same as Fig. 3.6 but for
the model of initial chemical composition of X0 = 0.70 and Z0 = 0.010, which includes post main-
sequence models and also icludes the mass of M = 1.2M�, which developed a convective core. ∆0

decreases during the main-sequence phase, as mentioned earlier, because of the slight increase of the
stellar radius, which results in the decrease of the mean density and so the beginning of the main
sequence is located in the right edge of the curves. The black vertical line indicates the end of the
main sequence and so everything to its left, is part of the post main sequence evolution, where we see
that the evolution becomes non-linear. On the right of the vertical line, we also see that the evolution
is non-linear, for about the second half of the main sequence, which is the effect of the convective core.
The offset of the values on that plot, is due to the fact that the fitting coefficients that are used come
for the reference initial chemical composition, as it was discussed for the Fig. 3.7.

For the convective core more specifically, we can see it also in Fig. 3.9. This figure is the same
as Fig. 3.5 but for X0 = 0.70 and Z0 = 0.010, including the track with convective core. To better
illustrate this impact, we carried a new adjustment of Eq. 3.3 on that grid. We see from that figure
that the differences become relatively large for that track while they remain small for the rest. Because
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Figure 3.7: The evolution of ∆0 with r̂02 for the masses in range [0.8M�, 1.15M�] with a step of
0.05M�, for the case of initial chemical composition of X0=0.725 and Z0=0.014. The color scale here
corresponds to the relative difference between the 2 values of THe, δTHe.
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Figure 3.8: The evolution of THe,fit in red, and of THe,mod in blue with respect to ∆0, for the mass of
1.2M�, for the case of initial chemical composition of X0 = 0.70 and Z0 = 0.010.
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Figure 3.9: The evolution of ∆0 with r̂02 for the 9 different masses, in the range [0.8M�, 1.2M�], with
a step of 0.05M�, for the case of initial chemical composition of X0=0.70 and Z0=0.010 for the case
of convective core. The color scale here corresponds to the relative difference between the 2 values of
THe, δTHe. THe, fit has been fitted for all the tracks simultaneously.

the fit is on all the tracks simultaneously, the values of the other tracks are affected too.
To further validate our method, we carried again the same procedure for the compostition that

is the furthest away from our reference one (X0 = 0.70, Z0 = 0.010), using the same values for the
coefficients. In Fig. 3.10 we show the same plot as in Fig. 3.5, for that case. The differences here reach
values of up to 14 %, for the track of 1.15M�, meaning that for further initial chemical compositions
our method might not be efficient. In order to see if that is the case or not, we examined the difference
of the resulting helium amplitude (AHe), between the previous method and our method, for the model
that had the biggest δTHe. In the former case we retrieved AHe = 54.53 and for the latter AHe =
54.56. This difference is placed well in the range of σ = 1, for AHe in WhoSGlAd, which shows
that our method remains valid even for large values of δTHe, hence large variations in the chemical
composition. The same procedure was carried for all of the nine models of our grid. Since they present
similar results, and the departures of the helium amplitude, are never above the standard deviation
defined by WhoSGlAd, we considered that it would be redundant to show them here. Nevertheless,
we show them in appendix B for completeness.

3.2 Seismic modeling of KIC10963065

The heart of all the asteroseismic analyses, is the study of stars, with the goal of retrieving values
for their internal structure, by modeling. So, in this section, we present the modeling we carried on
an observed Kepler target, KIC10963065.
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Figure 3.10: The evolution of ∆0 with r̂02 for the masses in the range [0.8M�, 1.15M�], with a step
of 0.05M�, for the case of initial chemical composition of X0=0.70 and Z0=0.010. The color scale
here corresponds to the relative difference between the 2 values of THe, δTHe, fitted for all the tracks
simultaneously.
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3.2.1 Asteroseismic techniques

In order to derive the stellar parameters from asteroseismic data, there are two kinds of techniques.
The first one, which is also the one we used, is the forward modeling. In this technique we use
observables of our target in order to retrieve the model that best represents our observations. The
observables that can be used for this kind of modeling can be spectroscopic data, like the luminosity
(L), the effective temperature (Teff), the surface gravity (log g), or the metallicity ([Fe/X]), or seismic
quantities like the large frequency separation (∆), the small frequency separations (r̂0l), or even the
observed frequencies (ν). The forward techniques try to find the stellar parameters, e.g. r̂01, r̂02, of
a stellar model that best reproduces the observations, through the minimization of a merit function
(χ2), similar to the one WhoSGlAd uses (Eq. 2.6). The models that are produced by forward
modeling, although very close to the observations, do not match perfectly with them. Moreover, the
inversion techniques use an alredy existing model and try to bring it even closer to the observations,
by applying small changes to the stellar stucture. These changes can be in the profile of one quantity,
as the density or the sound speed, or in global indicators, as the mean density. This approach relies
on the variational principle, which relates small changes in the stellar structure to small changes in
the oscillation frequencies.

Both those techniques use constraints and free parameters. The constraints are the quantities that
are used as inputs and the free parameters the quantities that will be adjusted in order to return
the constraints. It is important to mention that the minimization techniques, need at least the same
number of constrains as free parameters.

3.2.2 The minimization problem

When we perform stellar forward modeling, the goal is to retrieve a set of K stellar parameters ak,
with k = 1, 2, ...K, that best reproduce a given set of N observed constraints Ci,obs, with i = 1, 2, ...N .
In order to control the quality of that model, we define a merit function

χ2(a) =
N∑

i=1

(Ci,obs − Ci,mod(a))2

σ2
, (3.6)

where the subscripts ‘obs’ and ‘mod’, correspond to observed and modeled values respectively, σ are
for the associated uncertainties, and the vectors are represented by boldface symbols. The merit
function measures the squared difference between the observed and the modeled constraints, and all
the minimization techniques, try to obtain the smallest value of this function. In our analysis we
used the Levenberg-Marquardt technique (Marquardt 1963), which we applied to the modeling of
our target, as we show later. When the models depend non-linearly on the set of parameters, the
minimization occurs through a series of iterations, which means that, we try to improve an initial
value. The procedure stops when the χ2 is sufficiently low, or when it is not able to be improved
anymore.

3.2.2.1 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt technique is not used for the first time, in order to obtain stellar models
of high accuracy. For example Miglio & Montalbán (2005) made use of it, for the case of the α Centauri
system. We show the developments of that method, as they are given by Press et al. (1992).

When χ2 is close to its minimum value, we expect that it can be described by a quadratic relation
of the form:

χ2(a) ≈ γ − d · a+
1

2
a ·D · a, (3.7)
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where d is an M -vector, D is an M×M matrix, and γ is a constant. If this approximation is adequate,
we can find a better set of parameters (amin), from the current set (acur) by using:

αmin = acur −D−1 · ∇χ2(acur), (3.8)

where D is the matrix for the second derivatives with respect to the free parameters, or else the
Hessian matrix. It is important to note that ∇χ2(amin) = 0. If the approximation is not adequate,
then we can only proceed by taking a step down the gradient

anext = acur − J∇χ2(acur), (3.9)

where J is a constant, and anext is the newly defined set of best parameters.
By defining

βk ≡ −
1

2

∂χ2

∂ak
, (3.10)

αk,l ≡
1

2

∂2χ2

∂ak∂al
, (3.11)

δal ≡ al,next − al,cur, (3.12)

where δα is the vector of small increments, we can take a linear form of Eq. 3.8

K∑

l=1

αklδal = βk. (3.13)

Now we have a set of linear equations, where the unknowns are the sets δal. At the steepest
descent, Eq. 3.9 becomes

δal = Jβl. (3.14)

The inclusion of second-order derivative terms can lead to destabilization, if the model fits badly
or if it is contaminated by outlier points, we use a more stable definition of the α matrix, that takes
into account only first order derivatives

αkl =
N∑

i=1

1

σ2
i

ï
∂Ci,mod

∂αk

∂Ci,mod

∂αl

ò
. (3.15)

If we modify the form of α, we will still reach the proper minimum, but from a different iterative
route. This is because the condition for the minimum is β = 0, and is independent of how α is
defined.

One more problem that needs to be solved is the definition of the J constant in Eq. 3.14. From
Eq. 3.10, we see that βk has the dimensions of 1/αl and, since χ2 is dimensionless, J must have
dimensions of α2

l . So, its dimension is of 1/αll, which is the reciprocal of the diagonal element of the
α matrix. We can divide it by a dimensionless factor λ and we have

δαl =
1

λαll
βl. (3.16)

The first difference of the Levenberg-Marquardt method, with respect to the steepest descent is
the estimation of J , while its second difference is that we can combine Eqs. 3.13 and 3.16, to redefine
the matrix α

α′ll = (1 + λ)αll, (3.17)
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α′kl = αkl, (3.18)

with k 6= l. We can now replace Eqs. 3.13 and 3.16 by

M∑

l=1

α′klδal = βk. (3.19)

When λ is large, the matrix α′ is diagonally dominant and, as a result, Eq. 3.19 becomes identical
to Eq. 3.16. On the other hand, when λ is small, Eq. 3.19 becomes identical to Eq. 3.13.

The strength of the Leverberg-Marquardt method lies in the control of λ, in order to converge to
one of the cases. By having an initial guess for the parameters of α, the technique works as follows

1. First it computes χ2(a).

2. Afterwards, it picks a modest value for λ.

3. Then, it solves Eqs. 3.19, for δa, and evaluates χ2(a+ δa).

The next step, depends on the value of χ2(α + δα). If it is larger than χ2(α), then in increases
λ by a specific factor and returns to the final step of the procedure. If χ2(α + δa) is smaller than
χ2(α), it changes the value of a to be α+ δα, and then returns to the final step. The whole process
will eventually stop when the condition for convergence, or for non-convergence, has been met.

When we have finally found the optimal minimum, we set λ = 0, and we compute the matrix

C ≡ α−1, (3.20)

which is the covariance matrix of the parameters α. The diagonal elements of this matrix correspond
to the standard deviations of the individual parameters

σ(ak) =
»

(α−1
kk ). (3.21)

This method has of course its limitations. The first one has to do with the fact that it requires an
initial guess. The convergence of the technique, strongly depends on that initial guess. Thankfully, in
stellar modeling, we can provide an educated initial guess.

The other disadvantage of the method has to do with the computation of the derivatives. For
stellar modeling, the functions Ci,mod do not have an analytical form. However, they are necessary to
compute the merit function and their derivatives. As a result, we cannot obtain a formal representation
of their derivatives. The most frequently used way to estimate them is by the finite differences

∂Ci,mod(ak)

∂ak
' Ci,mod(ak + h)− Ci,mod(ak)

h
, (3.22)

where h is the derivation step. For the choice of h, we have to be careful, because if it is very large, the
derivative will not be accurate, but if it is very small, numerical noise might dominate. For our analysis
we used the min-cles minimization algorithm, which implements a Leverberg-Marquardt minimization
scheme.

3.2.3 The modeling

The last part of my work was the seismic modeling of the solar-like star KIC10963065, from the
Kepler Legacy sample, where KIC stands for Kepler Input Catalogue. It is a single star of spectral
type F8V with an exoplanet orbiting around it, which has an orbit of about 2.47 days, and radius of
0.82± 0.03R⊕ (Marcy et al. 2014). We computed the seismic indicators, given in Table 3.1, using the
frequencies determined by Davies et al. (2015) and for the surface effects we applied the lorentzian
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Table 3.1: The seismic parameters that were used as constraints for the fitting.

∆0 r̂02 r̂01 AHe (our) AHe (old)

103.76 ± 0.01 0.072 ± 0.001 0.036 ± 0.001 15.08 ± 1.00 15.06 ± 1.00

correction prescribed by Sonoi et al. (2015), as a function of THe and log g. Those seismic indicators
were used as constraints in our fitting procedure, that we describe later. The two values of AHe that
we provide, are for testing the accuracy of our method, as we explain, when we describe how the fitting
was carried.

In order to better represent the frequencies we also made the échelle diagram for our target. This
kind of diagram is common in asteroseismology and represents the frequencies versus the frequencies
over large separation modulo 1. It is like cutting the frequencies, with spacing of the value of the large
separation (∆), and stacking them one over the other. That way, the frequencies appear vertically,
grouped based on their spherical degree l. Here, the different spherical degrees are represented by
different colors, as they appear in the legend of the plot. Normally, according to the asymptotic
theory, they should be exactly one above one another, since they have to be equidistant in frequency,
in a power spectrum diagram, but, because of departures from that equidistance due to higher-order
terms, and such as the glitches, the expected regularity is disrupted. At first order, we see a departure
that creates a parabolic shape, and this is due to the second-order term of the smooth component, as
it is shown in Fig. 2.2. There is also however, a higher-order departure, that produces an oscillation
around the parabolic shape, and it is mainly due to helium glitch, and to the convection zone glitch. In
that plot we have also represented the large separation (∆), Eq. 2.25, and the second small separation
(r̂02), Eq. 2.33, as it is given by WhoSGlAd, so that it would be easier to understand what those
values actually represent. ∆ is the frequency difference between two consecutive frequencies of the
same spherical degree, while r̂02 is the difference between the mean values of ν/∆ modulo 1, of the
spherical degrees l=0 and l=2. The mean values of ν/∆ modulo 1, are shown in the plot with the
dashed, vertical lines for each l. The small separation r̂01 provides the same difference as r̂02, but
between the frequencies of spherical degrees l=0 and l=1.

We also show for completeness the power spectrum of our target, as it is given by Davies et al.
(2015). We see the expected behaviour for a solar-like star, as it shown in Fig. 1.5 for the case of
the Sun. It is clear that the frequencies appear in groups and that they are equally spaced. In this
plot, the symbols are the respective points from the échelle diagram. The colors are different from
our diagram. The blue squares correspond to frequencies with l=0, the green triangles to frequencies
with l=1 and the red circles to frequencies with l=2.

We present the stellar parameters of our target, from other studies, in Table 3.2. In those studies,
there was presented a plethora of different parameters. We chose to display only those that are relevant
to our analysis, and thus, they will help us compare our results with them. Those parameters are
the stellar mass, measured in solar masses (M�), the stellar radius, measured in solar radii (R�), the
age of the star, measured in billion years (Gy), the effective temperature, measured in Kelvin degrees
(K), the surface gravity (log g), the stellar luminosity, measured in solar luminosities (L�), and the
metallicity, ([Fe/H]). We show in the column labeled Marcy, the values from Marcy et al. (2014), in the
column labeled Bellinger the values from Bellinger et al. (2019), and in the column labeled Nsamba,
the values from Nsamba et al. (2021). The empty places in the table, are due to the fact that the
respective studies do not provide that value.

While the Levenberg-Marquardt algorithm is very powerful, see section 3.2.2.1, it is also very
sensitive to the initial guesses of the parameters. For that reason, we placed our star in our ∆0 - r̂02

diagram, Fig. 3.13, in order to estimate its mass and age, through a comparison with the values of
our grid. The precision of the WhoSGlAd method is also seen by the fact that the errorbars are very
small, and so we can get very good first guesses for the aforementioned quantities. Afterwards, we
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Figure 3.11: The échelle diagram of the star KIC10963065. It shows the frequencies, ν, as a function
of ν/∆ modulo 1. The blue diamonds correspond to the frequencies of spherical degree l = 0, the green
diamonds correspond to the frequencies of spherical degree l = 1, and the red diamonds correspond
to the frequencies of spherical degree l = 2

Table 3.2: Stellar parameters of KIC10963065.

Marcy Bellinger Nsamba

Mass (M�) 1.08 ± 0.07 1.065 ± 0.043 1.123 ± 0.044
Radius (R�) 1.23 ± 0.03 1.225 ± 0.026 1.244 ± 0.017

Age (Gy) 6.68 4.57 ± 0.48 4.145 ± 0.239
Teff (K) 6104 ± 74 - 6140 ± 77

logg 4.294 ± 0.03 - 4.297 ± 0.01
Luminosity (L�) - 1.93 ± 0.13 2.05 ± 0.12

Metallicity -0.20 ± 0.10 - -0.19 ± 0.10
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Figure 3.12: The power spectrum of KIC10963065, as it is given by Davies et al. (2015). The blue
squares correspond to frequencies with l=0, the green triangles to frequencies with l=1 and the red
circles to frequencies with l=2

proceeded in successive adjustments of increasing dimensions. First, we fixed the reference composition
and we started for the estimated mass and age, and we adjusted those two parameters, to match the
observed ∆0 and r̂02, retrieved by WhoSGlAd. Next, we added r̂01 to the constraints and Z0/X0 to
the parameters. At the end, we adjusted X0, to represent the observed AHe. This process is sensitive
to the guesses of the parameters, and so we proceeded in steps, in order to ease its convergence.

The results of our fitting appear in Table 3.3. In that table we show the values of the age, in
billion years (Gy), of the mass, in solar masses (M�), of the metallicity (Z0/X0), and of the hydrogen
abundance (X0), that were used as free parameters, for each step. We also show the values of the
χ2 for each step, in order to show its quality. The column labeled ‘2 parameters’ corresponds to the
case when we used only two constraints, the column ‘3 parameters’ corresponds to the case when we
use three parameters, and the columns labeled ‘4 parameters’ to the two cases where we used four
parameters.

To demonstrate that our method yields results, that are as precise as the old way, we proceeded
by using a THe value estimated from a model, we carried two minimization procedures with four
parameters: one with our THe estimate, and one with the old estimate. The differences between the
two procedures is visible in the AHe constraint, as visible in Table 3.1. In order to obtain the AHe as
in the old procedure, we used the optimal model of the case with the three parameters, in order to
obtain the dimensionless helium acoustic depth (THe), Eq. 3.1. We then carried a new modeling with
four parameters, with the previous method, Eq. 3.3, in order to observe the impact of the different
constraints, on the optimal stellar parameters. We show the values of the helium amplitude in Table
3.1. The results for the former case appear in the column labeled ‘4 parameters (our)’, and for the
latter case in the column labeled ‘4 parameters (old)’. We see that for the cases of the 4 parameters,
the value of χ2 is of the order of 10−3, which is extremely small, and depicts that we can expect an
exact solution. Furthermore, it illustrates that our method is as precise as the previous one, and thus
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Figure 3.13: The evolution of ∆0 with r̂02 for the 8 different masses, in the range [0.8M�, 1.15M�],
with a step of 0.05M�, for the case of initial chemical composition of X0=0.75 and Z0=0.012. The
color scale corresponds here to T .

Table 3.3: Parameters of fitting of KIC10963065.

2 parameters 3 parameters 4 parameters (our) 4 parameters (old)

Age (Gy) 3.960 ± 0.116 4.035 ± 0.127 4.177 ± 0.154 4.188 ± 1.047
Mass (M�) 1.151 ± 0.001 1.089 ± 0.023 1.070 ± 0.023 1.070 ± 0.035
Z0/X0 - 0.0102 ± 0.002 0.008 ± 0.001 0.008 ± 0.005
X0 - - 0.756 ± 0.023 0.756 ± 0.081
χ2 1.089 2.106 0.004 0.009

can make WhoSGlAd faster. For the values of other important parameters we derived L/L� = 2.22,
Teff = 6373K, for the helium mass fraction, Y0 = 0.24, and for the metallicity a value of -0.35.

It is important to dedicate some time to compare the results of our fitting, shown in Table 3.3,
with the values provided for our target from other studies, shown in Table 3.2. We can see that,
although in some cases our values, with their respective uncertainties, fall within the ranges of those
studies, for example our derived age, agree with those from Bellinger et al. (2019) and Nsamba et al.
(2021), there are cases that the values do not agree with each other, for instance, again in the case
of our derived age, and that from Marcy et al. (2014). In order to locate the reason behind those
disagreements, we must show how those studies were carried.

In the case of Marcy et al. (2014), they used optical ‘templates’ spectrums from the Keck tele-
scope, and the HIRES echelle spectrometer. And, from those spectra, they retrieved the effective
temperature, Teff, the surface gravity, log g, and the metallicity [Fe/H]. For targets that presented
an asteroseismic signal, like ours, they used the aforementioned three spectroscopic values, for stellar
modeling, and so they retrieved more accurate values for the radius and the mass, than the previous
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values, and, as a result, for the surface gravity. Then, they fed that value to the spectroscopic analysis
in order to retrieve more precise results for the Teff and [Fe/H], and, with the new results, they ran
one last time the stellar modeling. The fact that they did not use seismic indicators, but spectroscopic
ones, could be the reason for deviations from our values for the age, the effective temperature, and the
metallicity. Moreover, they carry a fit on the metallicity, something that we do not do, and this can
also lead to deviations for the chemical composition. Indeed, the surface metallicity of our optimal
model is much smaller than the value they provide. This clearly affects the inferred age, and it can
be the reason for the large deviation of the ages. We note here that, from the presented studies, this
is the study with the biggest departures form our values.

In the case of Bellinger et al. (2019), the authors wanted to study how the systematic errors and the
underestimated uncertainties, of spectroscopic quantities, affect the stellar parameters, through stellar
modeling. They used approximate scaling relations to obtain stellar radii (R), mean stellar densities
(ρ), and stellar masses (M). Those relations use the effective temperature of the star (THe), that
is retrieved spectroscopically, the large separation (∆ν), and the frequency of maximum oscillation
power (νmax). The fact that those relations are scaling, means that they make correlations with the
respective values for the Sun. The values that they used for the solar reference values are Teff� = 5772
K, νmax�=309 ± 30 µHz, and ∆ν� = 135.1 µHz. They created a large grid of models of solar-like
stars, and they also obtained oscillation frequencies from observed stars, that implemented on the
grid, to obtain their stellar parameters. They obtained their seismic data by calculating frequency
separations and ratios, as in Roxburgh & Vorontsov (2003b). Their derived values agree with ours,
except for the luminosity (L), which shows a small departure. This could have happened because of
the different choice for the solar values.

Finally, in the case of Nsamba et al. (2021), the authors made three different stellar grids, by only
varying the treatment of initial helium mass fraction. Their purpose was to study, how its value affects
the general properties of a star, since this quantity is the most difficult to be derived. This is due
to the fact that we cannot obtain it spectroscopically, because the surface temperature of solar-like
stars, is not high enough to excite helium, and so few or no helium lines can be observed. They used
the seismic data from Lund et al. (2017), where the large separation (∆ν), is obtained by a linear
fit in the frequencies of spherical degree l=0, expressed as a function of the radial order. Although
they retrieved different results for each case, we show the values from the grid that is closer to our
analysis. This is the one, in which they let the helium mass fraction free, something that we did too.
In the other two grids they assumed a galactic enrichment relation (relating helium abundance to
metal abundance), with fixed values for the helium-to-heavy element enrichment ratio (∆Y/∆Z), of
1.4 and of 2.0. They considered diffusion in their models, but that there is no overshooting between
the convective envelope and the radiative zone, as we did. Our values agree for the mass, the age, and
the radius. A large difference exists for the effective temperature (THe), and the metallicity, due to the
fact that those values where obtained spectroscopically, by Buchhave & Latham (2015). Furthermore,
there is a small disagreement when it comes to the luminosity, probably because of the influence of the
effective temperature (THe), and the metallicity and, they are not used as constraints in our study. In
Fig. 3.14 we show in an HR diagram, the position of our best model for our target, with the diamond,
and with the black box and cross the values from observations, with the associated uncertainties. The
values of the observations are from Nsamba et al. (2021). Those differences are probably due to the
fact that their values come from spectroscopic observations, while ours come from the best model of
the fitting procedure, using seismic indicators, and they were not part of our fitting.

In Fig. 3.15, we compare, in an échelle diagram, the observed frequencies, depicted with the circles,
and those that we get from our best model, depicted with the diamonds. There is a big offset between
those sets of values, although the general bahaviour of the curves remains the same. We identified
the reason for that offset to be the difference in the mean ε̂, retrieved in both cases, which eventually
affects the value of the frequencies through Eq. 2.13. We retrieved ε̂ = 1.027 for the case of the
model and ε̂ = 0.251 for the case of the observations. This difference creates the almost 0.2 difference
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Figure 3.14: HR diagram for our target. The values of the observations are taken from Nsamba et al.
(2021).

in the abscissa, in view of the fact that it represents the frequencies over large separation modulo
1. The difference in the case of the observations might be created because of the corrections for the
surface effects using the relation prescribed by Sonoi et al. (2015). In Farnir et al. (2019), the authors
show that this correction, it still does not give the best agreement with observations, and a difference
between observations and models remains. Moreover, this was not part of the fitting constraints, and
so, we can expect that they do not match.

In Fig. 3.16 we show the values for the glitches (δν), in µHz, as a function of the frequencies (ν),
also in µHz. The observed data are the blue lines with their errorbars, and our best model are the
diamonds. Moreover we show their fit, where the blue line is for the observations and the black line
is for the model. In Farnir et al. (2019), the authors show that with WhoSGlAd, the observed and
fitted glitches are close in amplitude and period. In our case, although the two sets follow the same
behaviour when it comes to the period, we can clearly see that there is a significant horizontal offset
between them. This is again due to the ε̂ difference that affects the frequencies ν, as in the case of the
échelle diagram, Fig. 3.15. There is also a vertical offset, which could be due to a difference in the
phase of the glitches. However, the amplitude is correctly fitted.
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Chapter 4

Conclusions

In the present work, we developed a new method that provides a value for the dimensionless helium
acoustic depth, THe, as it is given by Eq. 3.2 and shown in Farnir et al. (2019). Using as observables
the seismic indicators ∆0 and r̂02, as it appears in Eq. 3.3, and as they are defined in WhoSGlAd
method. That way we reduce significantly the time needed to retrieve the helium amplitude, AHe,
when working with observations. This is a very important value because it works as a proxy for the
helium abundance, in the region of the second helium ionization zone, which is located quite close to
the surface. The proximity of that area to the stellar photosphere, and the fact that in this region,
solar-like stars are fully convective, allows us to consider that helium abundance of that area is the
same as that of the surface. The knowledge of the surface helium abundance allows us to improve
our models and thus, better constrain processes, like mixing and transport processes, that affect the
evolution of the star. For solar-like stars, this is the only way to retrieve it, since spectroscopically
this value is not available.

We used the large separation ∆, and the small separation r̂02 in a linear relation, Eq. 3.2, in
order to retrieve a value for the dimensionless helium acoustic depth THe. We chose those two seismic
indicators because, as it was presented in Farnir et al. (2019) and as it is shown in Fig. 3.1, they
are connected by an almost monotonous relation, and so we could easily see whether or not THe, was
linearly connected to them. Indeed, we proved that this is the case in Fig. 3.5. The obtained value of
THe is used to retrieve AHe. We used WhoSGlAd for our analysis because that method takes advantage
of both the information contained in the smooth part of the spectrum and in the glitches to provide
seismic indicators as little correlated as possible by using the Gram-Schmidt algorithm.

Since our technique uses a linear relation, it is fast, and thus, it can be implemented in existing
pipelines of stellar data processing, in order to give results in an automatic way, for large amounts
of data. Past space missions, such as CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010),
and the ongoing TESS space mission (Ricker et al. 2014) provide such large amounts of data. Future
space missions, such as PLATO (Rauer et al. 2014), are expected to provide them as well. This makes
it clear that small computation times are necessary, so that we can study more targets at the same
time.

Furthermore, as explained in section 3.1, a value for the helium amplitude is needed, because
it is one of the few ways to constrain the surface He abundance. We remind that this quantity is
not available spectroscopically, and asteroseismology can provide an accurate value, through stellar
modeling. Before our method, this was found by computing a model representative of most featuresof
the stellar structure of our target.

Before implementing our method, we validated it by comparing its results to the original approach.
We used a grid of models with a specific initial chemical composition, and we computed the differences
given by the two approaches, and found that they are very low. The maximum difference reaches up
to values of about 1.5 %. This is small, as Farnir et al. (2019), found that a 10 % difference still has a
negligible impact on AHe. Then we used the fitting coefficients from previously, to test our method for

59



a different initial chemical composition, and we showed that it works for that case too. Although in
that case the maximum differences are up to about 3 %, which remains well below the 10 % example
given in Farnir et al. (2019), for the deviation of the method, still returns accurate results. We also
verified that our method is efficient, by comparing the values retrieved for the helium amplitude with
our method and with the previous approach, for the case of 16 Cygni A, the same target that was used
by Farnir et al. (2019). With the original method we obtained AHe = 29.6, while with our method we
obtained AHe = 29.1. This difference is in the range of the σ of the helium amplitude in WhoSGlAd,
which is equal to 1. That discussion proves the validity of our method.

However, our method is only useful for observations. When we process models, we have access to
its structure and so we can easily retrieve the position of the helium glitch and of the sound speed
profile from that point up to the stellar surface. Thus, the calculation of τHe, is done by Eq. 3.1. This
is a more efficient, accurate, fast and easy way, than the proposed method.

In addition, because our method uses seismic indicators provided by the WhoSGlAd method, the
limits of that method apply to our method as well. Those limitations have to do mostly with cases
where the linearity of the method breaks, and those cases are for stars that have evolved beyond the
main-sequence phase, and for stars that have developed a convective core. WhoSGlAd can still provide
accurate indicators for the smooth part of the spectrum, for those cases. Nonetheless, the values that
depend on the glitches, for instance the dimensionless helium acoustic depth, (THe), and the helium
amplitude, (AHe), are not accurate.

Future perspectives would be to test our method for a larger range of initial chemical compositions,
in order to see whether or not our method remains efficient for a larger sample of stars. Furthermore,
we think that it would be interesting to investigate, whether or not a second order expression such as:

THe = a∆2
0 + b∆0 + cr̂2

02 + dr̂02 + e∆0r̂02 + f, (4.1)

where a, b, c, d, e and f are newly defined coefficients, could give more precise results than Eq. 3.3.
On the one hand, the fact that this expression is of 2nd order, could indeed lead to better fit, while
using only the same seismic indicators, ∆0 and r̂02, as our relation, Eq. 3.2. On the other hand, we
proved in our analysis, that the departures from the correct value, by using the proposed method, are
insignificant, and do not result in errors in the derived values for the helium amplitude (AHe), meaning
that it might not be useful to sacrifice the small computation times of our method, for slightly better
results.
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Appendix A

Nuclear reactions

As we said before, Solar like stars generate their energy in their core where the weight of the gas
column above it makes it possible for thermonuclear reactions to take place. There are two cycles that
can be at work and in both of them after a chain of reactions four protons (hydrogen nucleus) will
give one alpha particle (helium nucleus), two positrons (e+), two neutrinos (ν) and energy:

41H→ 4He + 2e+ + 2ν + 26.33MeV (A.1)

One of those cycles is the proton-proton (pp) chain and in that cycle we begin with the production
of deuterium (2H) from two protons by the two following reactions:

1H +1 H→ 2H + e+ + ν (A.2)
1H +1 H + e− → 2H + ν (A.3)

where the second one only takes place in 0.25%. Both those reactions are very slow, 1010 years in
the former case and 1012 years in the latter and so they determine the duration of the whole pp chain.
Then, the produced deuterium captures a proton and produces one 3He:

2H +1 H→ 3He + γ (A.4)

After that reaction, we have three different possibilities for the rest of the cycle. The first one is
also the most possible and happens at about 85% of the times:

3He +3 He→ 4He + 2 1H (A.5)

The second one is quite rare:

3He +1 H→ 4He + e+ + ν (A.6)

The third one starts with:

3He + 4He→ 7Be + γ (A.7)

and is followed either by:

7Be + e− → 7Li + ν (A.8)
7Li + 1H→ 2 4He (A.9)

either by:
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7Be + 1H→ 8B + γ
8B→ 8Be + e+ + ν

8Be→ 2 4He

with the third possibility being the one that gives neutrinos of high energy that are detected
by neutrino detectors on Earth. All the positrons (e+) that are produced from those reactions are
almost immediately annihilated by electrons (e−) and produce energy in the form of γ rays. The other
cycle that produces He from 4 protons is the CNO (Carbon-Nitrogen-Oxygen) cycle which needs high
temperatures to take place and is dominant in high mass stars. In the case of the Sun the pp chain
is the dominant cycle and counts to about 99% of the reactions and that’s why we won’t go into the
details for the CNO cycle.

62



Appendix B

Other compositions

Here we show plots like Fig. 3.5, showing the relative differences between THe, calculated with
our method and with the integral relation, of models of different initial chemical compositions. The
chemical compositions of those plots, are those from the grid that we made, and did not present in
our analysis, because that would be redundant. The sets of initial hydrogen abundance (X0), and of
initial metallicity (Z0/X0), that are shown here are: X0 = 0.70 and Z0/X0 = 0.012, X0 = 0.70 and
Z0/X0 = 0.014, X0 = 0.725 and Z0/X0 = 0.010, X0 = 0.725 and Z0/X0 = 0.012, X0 = 0.75 and
Z0/X0 = 0.010, X0 = 0.75 and Z0/X0 = 0.014 respectively. For all the cases, we see that the value
of δTHe remains small, which proves the accuracy of our method.
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Figure B.1: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�] with a step of 0.05M�,
for the case of initial chemical composition of X0=0.70 and Z0=0.012. The color scale here corresponds
to the relative difference between the 2 values of THe, δTHe.
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Figure B.2: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�], with a step of 0.05M�,
for the case of initial chemical composition of X0=0.70 and Z0=0.014. The color scale here corresponds
to the relative difference between the 2 values of THe, δTHe.
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Figure B.3: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�] with a step of 0.05M�,
for the case of initial chemical composition of X0=0.725 and Z0=0.010. The color scale here corre-
sponds to the relative difference between the 2 values of THe, δTHe.
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Figure B.4: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�] with a step of 0.05M�,
for the case of initial chemical composition of X0=0.725 and Z0=0.012. The color scale here corre-
sponds to the relative difference between the 2 values of THe, δTHe.
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Figure B.5: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�] with a step of 0.05M�,
for the case of initial chemical composition of X0=0.75 and Z0=0.010. The color scale here corresponds
to the relative difference between the 2 values of THe, δTHe.
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Figure B.6: The evolution of ∆0 with r̂02 for masses in range [0.8M�, 1.15M�] with a step of 0.05M�,
for the case of initial chemical composition of X0=0.75 and Z0=0.014. The color scale here corresponds
to the relative difference between the 2 values of THe, δTHe.
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