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Abstract

Integrate-and-fire modeling of dorsal horn neurons and their functional
states in pain pathways

Pain sensations are adaptive and aim to keep the body safe by triggering appropriate
protective responses. However, pain can become maladaptive and create a disease state of
the nervous system, associated with chronic pain. This disease state results in an acute
and prolonged feeling of pain. To relieve patients suffering from chronic pain, there are two
suboptimal treatments, both effective in less than 50% of cases: the prescription of opioids,
at the risk of misuse or abuse that could cause overdosed-related deaths, or spinal cord
stimulation, a new promising treatment strategy. Both of them are suboptimal due to the
lack of knowledge about the mechanisms behind pain generation. A better understanding
of these mechanisms would help to develop more efficient treatment strategies.

This thesis focuses on the modeling of the behavior of Dorsal Horn Neurons (DHNs),
which are neurons in the spinal cord embedded in the network taking care of pain signal
transmission to the brain. This group of neurons shows 4 types of firing patterns: tonic
firing, accelerating firing, plateau potentials and bursting. Each firing pattern is assumed
to correspond to a type of functional state in pain processing. Based on some of the rare
attempts to model them, we developed an integrate-and-fire model of DHNs. Our objective
is to understand the role of each timescale in the DHNs firing patterns generation and the
type of feedback involved in the excitability of these neurons, which is either restorative
or regenerative.

More specifically, this thesis follows an incremental procedure starting from a 2D
integrate-and-fire model with a fast and a slow feedback. The impact of the slow feed-
back nature (restorative or regenerative) on the phase plane and the time responses is
studied. The regenerative slow feedback involves specific properties shown in neurons that
have calcium channels such as bistability, spike latency and afterdepolarization potential.
The restorative slow feedback allows to always converge back to rest without perturbations.
Together, these two feedbacks are able to simulate tonic firing.

Then, we created a 3D model with a fast, a slow regenerative and an ultra-slow restora-
tive feedback. The analysis of this new model revealed that the additional ultra-slow feed-
back is involved in the generation of bursting. Indeed, the ultra-slow feedback offers a
modulation of the total current applied in the equivalent 2D model. This allows the gener-
ation of trains of spikes and quiescent periods as the 2D model travels between the stable
and the cyclic regimes during a period of oscillations of the 3D model response.

Following the incremental procedure, the final 4D model consists in a fast, a slow regen-
erative, a super-slow regenerative and an ultra-slow restorative feedbacks. The additional
super-slow feedback offers a second direction for the modulation of the total current applied
in the 2D equivalent model by shaping the increase in instantaneous frequency during the
burst or before converging towards a limit cycle, in the case where the ultra-slow feedback
is weak. The 4D model is able to represent all DHNs firing patterns stated provided that
the strength of each feedback is well chosen. This result allows to better understand the
functional mechanisms behind the change in excitability.

In further works, it would be interesting to verify that conductance-based models follow
the mechanisms we highlighted. Also, a model of the pain processing network at the level
of the spinal cord may reveal other directions of DHNs excitability modulation on which
new designs of pharmacological or neurostimulation treatments could act on.
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Chapter 1

Introduction

Pain is an adaptive sensation that usually aims to protect the body from being injured.
The signals interpreted as painful by the brain can be modulated by relay neurons in the
spinal cord to trigger the appropriate protective responses. In healthy individuals, adaptive
pain signals are split into two types: acute pain signals that trigger withdrawal reflexes and
prolonged pain signals assisting healing. However, pain signals can become maladaptive.
Typically, this third type of pain can trigger hypersensitivity and continuous discomfort.
This disease state of the nervous system is associated with chronic pain, a condition that
affects approximately 20% of the grown-up population.

Nowadays, no treatment is effective enough to relieve patients suffering from chronic pain.
These patients have two possibilities. First, they can be the subjects of pharmacological
approaches. Typically, these approaches involve the prescription of opioids. However,
they are not perfectly effective on every patient and they can be the cause of death if
they are misused or abused. Second, they can be treated by new strategies such as spinal
cord stimulation. However, this treatment is sub-optimal and does not relieve all patients
treated. For such promising but not efficient enough treatment, there is a real need to
understand the mechanisms involved at the level of the spinal cord, where the first relay
neurons treat pain signals. With the keys of pain transmission, perfected and efficient
treatments could be conceived to cure a larger majority of patients suffering from chronic
pain.

In this work, we chose to study the excitability of the relay neurons located in the
spinal cord. Indeed, this type of neurons shows different groups of firing patterns that may
correspond to different functional states in pain signals processing. To do so, we built an
integrate-and-fire model in order to understand the role of the restorative and regenerative
feedbacks and their timescale in the generation of these neuron firing patterns. To be able to
understand the separate effect of each feedback in the final model, we used an incremental
procedure. This approach is based on some works in the rare literature associated with
pain modeling that attempted to highlight key ion channels that would be involved in the
kinetics of the considered relay neurons.

This report is organized as follows: first, chapter 2 aims to explain the basic concepts
this work relies on by describing basic notions of electrophysiology and basic types of
models used to capture a single neuron activity. Then, the physiology of pain is explained
in chapter 3. This chapter aims to explain the definition of pain, how pain signals are
transmitted to the brain by relay neurons and how they are modeled in some works found
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in the literature. In chapter 4, we show that a fast and a slow feedback are sufficient to
model simple patterns. The behavior of the model and its dynamics are detailed as it
represents the basis of following chapter. To complexify the response of the model, a new
model is created based on the one presented and studied in chapter 4 and on an additional
ultra-slow negative feedback, much slower than the two first feedbacks considered. This
new model is presented in chapter 5 and aims to model bursting, a specific firing pattern
shown by relay neurons involved in pain generation. As these neurons are able to show an
even more complex behavior, called plateau potentials, an additional super-slow positive
feedback is added to the model presented in chapter 5. The timescale of this feedback is
higher than the first two feedbacks used alone in chapter 4 and lower than the ultra-slow
feedback added in chapter 5. The study of the new model created with the 4 types of
feedback is the subject of chapter 6. Finally, the conclusion of this work and its prospects
are presented in chapter 7.

The codes used to make the simulations described in this report have been developed in
Julia and are available in this repository: https://github.com/anadew2/IF-modelfing-of-
DHNs/tree/main/Codes.
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Chapter 2

Electrophysiology and modelling of
single cell neuronal activity

2.1 Electrophysiology of a neuron

This section aims to set the basis of this work by explaining what is a neuron. To do so,
we follow the ideas of the first chapters in the reference book [Bear, 2007].

2.1.1 The neuron

Cells are the smallest units of life in all known organisms. Each cell is separated from the
extracellular medium by a plasma membrane and count generally only one nucleus. A given
cell can specialize to perform a specific process in order to form specialized tissues. Cells
can be specialized for sensing a particular stimulus in their environment, for transporting
specific molecules such as oxygen or even for producing a force. Tissues assemble to form
organs. Several organs can work together to treat specific functions of the body. A group
of organs working together is called a system.

In this work, we focus on the behavior of particular cells of the nervous system, called
neurons. Indeed, neurons have the ability to sense their environment, communicate with
each other through electrical and chemical signals, and modulate the body’s response to
a change in its environment. Therefore, neurons constitute a great majority of the basic
building blocks of the human nervous system.

Biological structure

Neurons have a particular structure. Indeed, at the center of Figure 2.1.1, we can observe
the cell body, called soma, that contains the cell nucleus. Neurons are characterized by
thin tubes that radiate away from the soma. These thin tubes are called neurites and
they are split into two categories: dendrites and axons. Usually, only one axon emanates
from the soma. Axons have approximately a constant diameter and can be as large as the
order of a meter. The axon sometimes branches, usually with a right angle. In contrast,
dendrites rarely extend to more than 2mm from the soma. Also, their diameter is not
constant: it increases in direction of the cell body. Usually, there are a large number of
dendrites emanating from the soma.
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Figure 2.1.1: Structure of a neuron. The basic parts of a neuron are shown: the soma, the
dendrites and the axon. [Bear, 2007]

The particular structure of neurons, separated from the extracellular environment by a
plasma membrane, relies on a complex internal architecture. All cells are delimited by a
plasma membrane but in the particular case of neurons, this membrane is also called neu-
ronal membrane. The plasma membrane is a lipid bilayer where proteins are intercalated,
making it semi-permeable. In its internal architecture, we consider the cell subunits that
participate in the cell metabolism, called organelles.

Membrane potential

Organelles are to the cell what the organs are to the human body. A large majority
of them are contained in the soma. These subunits are bathed in a solution which is
the intracellular medium, called cytosol. This solution is composed of multiple ions: Na+

(sodium), Cl− (chloride), Ca2+ (calcium) and K+ (potassium). The intracellular concen-
tration of each of these ions can vary: these ions can flow in or out the neuron due to
the semi-permeable membrane. More precisely, some proteins are specialized to manage
selectively the flow of specific ions, they are called ion channels.

Ion channels, as their name indicates, are formed by a channel between the intracellular
and the extracellular media and two gates: the activation and the inactivation gate. How-
ever, some channels do not bear an inactivation gate. If one of the gates of an ion channel
is closed, no ion can flow in this channel. The gates opening of a given ion channel de-
pends either on the voltage difference at the cell membrane or on a given ion concentration,
such as Ca2+ (calcium) or K+ (potassium). A majority of these ion channels are voltage-
dependent. When the cell is at rest, intracellular ions concentrations are fixed. Therefore,
the membrane potential at rest is fixed at a precise value and does not vary unless if an
induced change in the membrane potential appears. This steady-state potential is negative
and approaches −65 mV, measured as the voltage difference between the intracellular and
the extracellular media.
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The membrane potential at rest can be exactly calculated using the Goldman equation,
where the relative permeability of the membrane to each ion is taken into account, so that
the electrical potential difference balances each ionic concentration gradient. This equation
is a more complete form of the Nernst equation that only considers the permeability of
the membrane to only one ion, leading to the equilibrium potential related to this ion.
This equilibrium potential is sometimes called reference potential too. This measurement
is indeed helpful to understand the dynamics of ions flow when we consider only one type
of ion channel. In fact, as all ion concentrations are different depending on the ion and
the side of the membrane, reference potentials of distinct families of ion channels are also
different. For a given state of the membrane potential, some ion channels families will thus
be activated while others will not. Thus, distinct reference potentials allow to cover a large
range of values of the membrane potential.

Figure 2.1.2: Evolution of the activation and inactivation gates of a sodium channel through
time during an action potential. Only the state 2 lets the sodium ions flow through the
channel. The activation gate is shown in blue at the bottom of the channel and the
inactivation gate is in purple. [Bear, 2007]

In Figure 2.1.2, we can observe how the opening of a sodium (Na+) channel and the
position of the gates are modified with the cell potential. Globally, if the cell is excited
for any reason, the ion channels gates can open in response to the voltage change. If this
voltage variation induces the activation and the inactivation gates to open, the channel is
thus said to be open. In response, the ions that can go through the considered family of
ion channels diffuse and flow inward or outward the cell, according to their gradient. In
practice, we know that different families of ion channels can be activated or inactivated at
different voltages or ion concentrations. Therefore, different families of ion channels can
be successively opened in response to an excitation from a stable state of the membrane
potential. The corresponding succession of ions flows and membrane potential variations
following a precise timing is referred to as action potential or spike.

The action potential is an electrical signal with a characteristic shape of spike. It can be
decomposed into different phases according to Figure 2.1.3. This figure shows a recording
of an action potential observed using an oscilloscope and its decomposition into different
phases. Starting from the resting potential around −65 mV, the first phase is the depo-
larization, also called rising phase. The voltage difference at the cell membrane increases
during this phase. In fact, the cell potential increases due to a fast inward flow of positive
ions Na+ (sodium), governed by their electrochemical gradient. Indeed, at a cell potential
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Figure 2.1.3: Action potential observed at the neuronal membrane, measured using an
oscilloscope (a), and its characteristics (b). [Bear, 2007]

slightly higher than the steady-state value, the activation and inactivation gates are both
open and let the sodium ions diffuse. At the end of the depolarization, the voltage differ-
ence at the plasma membrane approaches 40 mV. The cell is thus positively charged. The
voltage becomes too high for the inactivation of sodium channels to still be open. There-
fore, the inward flow of positive charges almost disappears. For such a high value of cell
potential, the voltage-gated potassium channels become open. The potassium ions (K+)
are then driven by their electrochemical gradient, which gives rise to the repolarization of
the cell, also called falling phase. The membrane potential falls below the resting poten-
tial. At this point, the sodium channels are deinactivated but the activation gate closes
and the flow of sodium channel is still null. As the membrane potential decreases due to
the outward flow of K+ ions, the potassium ion channels eventually close. As all channels
are closed, the cell is then driven towards its resting state. Globally, the activation of
voltage-dependent sodium channels is fast while their inactivation and the activation of
voltage-dependent potassium channels are slow.

Communication between neurons

The action potential is one of the means of communication between two neurons. Let
us take the example of a neuron specialized to sense a specific type of stimulus, such
as the sensing of mechanical deformation realized by specific neurons of the skin called
mechanoreceptors. When the neuron is deformed under a sufficient mechanical stimulus,
it is subject to the generation of an action potential. This spike propagates through the
axon from the soma to reach a synapse. From there, the electrical signal is converted
into a chemical signal by the means of neurotransmitters and ions. This chemical signal
eventually reaches the receptors of the next neuron dendrites and is transduced back into
an action potential. Since the diameter of a dendrite increases in the direction of the soma,
the electrical signals progress in the dendrites in direction of the cell body. The cycle is
then repeated to communicate with other neurons, possibly to process information in series
or in parallel.

However, neurons have other ways to communicate than simply send a spike. Indeed,
spikes usually combine to form specific patterns. These patterns allow to code the infor-
mation to transmit with the frequency and the number of spikes used. In this manner,
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the electrical signal bears all the information needed by the human brain to understand
its environment and make decisions in response to the input stimulation.

2.2 Computational modeling of a neuron

To fully understand the ionic exchanges involved in the generation and the propagation
of an action potential, a comprehensive model is needed. As the shape and the generation
of action potentials are complex, one can consider a complex and high-dimensional model.
This type of model is very convenient to simulate the electrical behavior of a given neuron
with appreciable accuracy. However, one can also consider low-dimensional models, much
easier to compute and giving other clues about the key mechanisms behind the generation
and the propagation of action potential. This section aims to present some examples of
these two types of models.

2.2.1 Hodgkin–Huxley conductance-based general model for neurons

Motivation

In 1952, Hodgkin and Huxley proposed the first conductance-based model Hodgkin and
Huxley [1952]. As its name induces, this model is based on an electrical model of the
neuronal membrane. To develop their model, they referred to many in vitro experiments
on an isolated squid giant axon. Using a conductance-based model, they achieved to
demonstrate that relatively simple changes in the neuronal membrane permeability can be
enough to capture the dynamics of action potentials generation and propagation. Thanks
to this important breakthrough in the field of neuron modeling, they were awarded a Nobel
Prize.

Framework

They first considered that the plasma membrane has a certain capacity Cm per unit of
area. The total current flowing in the plasma membrane is decomposed into the current
flowing in the capacitance and 3 other currents: the current of sodium ions (INa), the
current of potassium ions (IK) and a leak current (Il). The leak current accounts for all
other ion channels, whose dynamics are not explicitly taken into account in the model.
The capacitance current is, by definition proportional to the time variation of the voltage.
Figure 2.2.1 shows the present electrical model of the neuronal membrane. Based on
Kirchhoff’s theory, we can write an equality between the current inside and outside the
membrane:

Cm
dV

dt
= Iapp − INa − IK − Il, (2.2.1)

where Iapp is the current applied at the neuronal membrane, V the membrane potential
referenced to the membrane potential at rest, t is the time and Cm the membrane capacity.

From there, it is assumed that each of these 3 currents is proportional to a certain voltage
difference. The whole mechanism of spike generation is assumed to rely on dynamic and
simple changes in conductance. Each of these conductances links one of the 3 ionic currents
to the relative difference between the membrane potential and a reference potential. This
reference potential is the Nernst potential. In other words, its value is the potential at which
the electrical forces balance the diffusion forces on the considered ions. The conductances
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Figure 2.2.1: Electrical model of the neuronal membrane. [Hodgkin and Huxley, 1952]

are then fully defined by the following equations:

INa = gNa(V − VNa),

IK = gK(V − VK),

Il = ḡl(V − Vl).

The conductance associated to the leak current ḡl is fixed. The other conductances gNa
and gK are the dynamic conductances associated to the current INa and IK respectively.
These conductances are assumed to be a function of time. In fact, they are modeled based
on a maximum value of the same conductance and one or two time-dependent functions.
The latter are the activation and the inactivation of the ion channel. In fact, the activation
function is always necessary to model the conductance of the ion channel, but not always
the inactivation. These functions make the link with the kinetics of the considered ion
channels, which are known to be subject to activation (and sometimes inactivation) across
time.

The potassium ion channels are well represented by only an activation function. The
conductance of potassium ion channels depends on the fourth power of the activation func-
tion n. This power is chosen to best fit the time evolution of the potassium ion channels
conductance and corresponds to the number of activation gates in the channel. Similarly,
the sodium ion channels conductance is proportional to the third power of the correspond-
ing activation function m. These ion channels are also proportional to an inactivation
function h, having only one inactivation gate. The activation n can also be seen as the
probability for the ion channels considered to be activated. This assertion is also valid
for the other activation m and the inactivation h. The equations linking the two dynamic
conductances with their activation and inactivation functions are:

gK = ḡKn
4

gNa = ¯gNam
3h
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Each activation/inactivation function can be modeled by a simple first-order ordinary
differential equation. The update of each activation/inactivation depends on its steady-
state and a time constant, both defined with respect to a given voltage. Each activa-
tion/inactivation steady-state and time constant are shown in Figure 2.2.2 as functions
of the membrane potential. For example, the steady-state of the potassium channel acti-
vation at voltages near rest is close to 0, meaning that a majority of these channels are
closed. When the voltage is at the maximum of an action potential, the steady-state of
the activation n of the potassium channels is close to 1, meaning that a majority of them
is activated. Therefore, a sigmoid is suited to represent the voltage dependency. The same
reasoning is applied for the other activation m and the inactivation h, taking into account
the kinetics of the considered channels. The time constant is a unimodal function of the
membrane potential and usually stays in the same range. This allows to classify the ion
channels in terms of their speed. Considering only the sodium and potassium channels,
the model is characterized by two timescales : a fast activation of the sodium channels, a
slow inactivation of the sodium channels and a slow activation of the potassium channels.
The update of the activation and inactivation functions are thus defined by:

dn

dt
=
n∞(V )− n
τn(V )

,

dm

dt
=
m∞(V )−m

τm(V )
and

dh

dt
=
h∞(V )− h
τh(V )

.

Figure 2.2.2: Steady-states and time constants of the activation and inactivation of the
sodium and potassium ion channels as function of the membrane potential, simulated based
on the equations of [Hodgkin and Huxley, 1952]

Finally, the model can be summarized by the 4 following equations :

Cm
dV

dt
= Iapp − ¯gNam

3h(V − VNa)− ḡKn4(V − VK)− ḡl(V − Vl)

dn

dt
=
n∞(V )− n

τn
dm

dt
=
m∞(V )−m

τm
dh

dt
=
h∞(V )− h

τh

(2.2.2)
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As it can be seen in Figure 2.2.3, the results of this model are very good and allow to
capture the kinetics of the action potential generation. Another strength of this model is
that it can be adapted to model any neuron, provided that we consider the ion channels
impacting the electrical behavior of the membrane. Their conductance is therefore modeled
based on the same reasoning applied to model the conductances gNa and gK.

Figure 2.2.3: Action potential simulated with the Hodgkin-Huxley model (up) and recorded
in the squid giant axon (down). [Hodgkin and Huxley, 1952]

2.2.2 From conductance-based models to hybrid models

Motivation

Conductance-based models can lead to accurate modeling of the electrophysiology of
neurons, at the cost of their complexity. Indeed, they usually take many parameters into
account and their fitting is usually tedious. The problem with this approach is that it can
become difficult and very costly to capture the key dynamics behind a complex electrical
pattern with conductance-based models. Therefore, we need a simple model that would
capture the neurocomputational features of the considered neurons.

Two types of models with less parameters can be used : continuous reduced models and
hybrid reduced models. Reduced models are based on conductance models and use a certain
number of assumptions, notably using timescale separation in the ion channels kinetics,
to obtain a model that approaches the behavior of the conductance-based model. The
difficulty of getting these reduced models lies in the reduction method. Indeed, the reduced
model needs to keep the same properties as the original model. Hybrid reduced models can
be associated to continuous reduced models with a further simplification. Typically, they
combine continuous spike-generation mechanisms (as continuous reduced models do) and
the economy of a discontinuous after-spike reset of state variables. The main advantage of
hybrid models is that they match neurons dynamics instead of their electrophysiology.
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Leaky Integrate-and-fire model

More specifically, we focus on a family of hybrid models that is popular to simulate
spiking neurons, called integrate-and-fire models [Izhikevich, 2010a,b]. The simplest model
of this family is the leaky integrate-and-fire model. This model is not a spiking model as
it lacks an intrinsic spike generation mechanism. In fact, this type of model is more of a
threshold model. It is indeed defined by a linear differential equation characterizing the
subthreshold dynamic and by a reset rule, which is simply a threshold above which the
state variables are reset.

CV̇ = −gleak(V − Eleak) + Iapp(t), if V ≥ Vthreshold, then V ← c.

The subthreshold dynamic of this model only considers a fixed ohmic leak conductance
gleak to account for all ion channels. This leak conductance is also associated with the
Nernst potential Eleak. Provided a sufficient applied current Iapp(t), the membrane poten-
tial V increases until a threshold Vthreshold and is then reset to the state c and the potential
increases again until the reset.

This simple model shows a certain number of neurocomputational properties needed to
study the electrical behavior of a population of neurons. First, the shape of spikes created
under a sufficient applied current is not simulated but dictated by the reset. Therefore,
the leaky integrate-and-fire model has "all-or-none" spikes as they have all the same shape
and duration. Second, the hypothetical neuron fires as soon as the membrane potential is
above the value Vthreshold, which sets its excitability threshold. In the same manner, we
observed a relative refractory period where the membrane potential returns to rest at the
end of an action potential, we see that the hypothetical neuron is less excitable immediately
after the reset when the reset state c is lower than Eleak. Moreover, we observe that the
hypothetical neuron can be excited if the current is positive or inhibited if the current
is negative, which is similar to the distinction between inhibition and excitation in real
neurons. Finally, the hypothetical neuron is able to fire with a frequency that depends on
the strength of the applied stimulation.

Being so simple, the leaky integrate-and-fire model has some flaws. The bifurcation of
the model from rest to repetitive spiking (or inversely) is different than what is observed in
conductance-based models and it has an impact on the electrical pattern of the hypothetical
neuron. Moreover, this model cannot show spike latency as the neuron directly spikes when
the threshold is exceeded.

Quadratic Integrate and Fire model

The quadratic integrate-and-fire model is an early example of a successful combination of
the economy of integrate-and-fire model with physiological interpretability. The Izhikevich
model is a quadratic integrate-and-fire model that is used for neuromodulation [Izhikevich,
2010a,b].

CV̇ = k(V − Vrest)(V − Vthresh)− Vs + Iapp if V ≥ Vpeak, then
V̇s = a(b(V − Vrest)− Vs) V ← c, and Vs ← Vs + d.
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This model shows several differences from the leaky integrate-and-fire model. First, they
consider here two types of variables: a fast one, the membrane potential V , and a slow one
Vs. The latter allows to account for the refractoriness of excitability induced notably by the
potassium ion channel opening. Secondly, the time derivative of V grows as kV 2 provided
that the membrane potential is high enough. This is a source of negative conductance that
is necessary to model an action potential generation with physiological sense. To contrast
with the leaky integrate-and-fire model, the threshold potential Vthresh is not involved in
the reset rule. In fact, the reset is here applied to limit the escape to infinity involved by
the gradient. Therefore, the potential Vpeak is chosen high enough to represent the spike
maximum. Once this value is reached, the potential is set back to a lower value c. It
corresponds to a shortcut in the action potential shape. The quadratic integrate-and-fire
model is thus a spiking model and not a threshold model. Being slower, the variable Vs
is not set to a precise value but rather increased by a value d. The parameters a and b
must be chosen to verify that the update equation of the membrane potential has a smaller
timescale than Vs.

Mathematically, the bifurcation shown by the QIF (quadratic integrate-and-fire) model
is closer to what is observed for conductance-based models. Indeed, the QIF model is
subject to a saddle-node bifurcation. This type of bifurcation induces here a soft and
dynamic threshold that enables spikes to be generated with certain latencies for a given
stimulation. The physiological meaning of this model is thus better overall than the leaky
integrate-and-fire model. In Figure 2.2.4, We compare the time simulation of the leaky
integrate-and-fire (LIF) model with the results of the Izhikevich model for the same pattern
of applied current. This comparison allows to visualize the differences between these two
models and the improvements in the spikes shape and physiological meaning provided by
the quadratic integrate-and-fire model.

Figure 2.2.4: Response to a step of applied current of the leaky integrate-and-fire model
(a) and the Izhikevich model (b). [Izhikevich,2010]

The Hodgkin-Huxley model can be reduced to two ordinary differential equations and
compared to the Izhikevich model [Pottelbergh et al., 2018]. A famous reduction of this
conductance-based model is the FitzHugh-Nagumo model. This reduction is obtained by
exploiting the timescale separation between the fast sodium channels activation, their slow
inactivation and the slow activation of potassium channels. In fact, the fast activation is
supposed to be at steady-state while the slow activation and inactivation are joined and
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expressed by a slow state variable. From there, the first ODE corresponds to the evolution
of the membrane potential while the second explains how the slow variable moves with
time. By equaling each equation to 0, one can obtain the mathematical expression of the
model nullclines. A nullcline is a function of the state variables where the variation of
the corresponding state variable is null. A nullcline is represented in a phase plane, which
corresponds to the space of the state variables of the considered model. For example, the
Vs nullcline is a function of V where V̇s is 0 according to the definition of the QIF model.
This nullcline is represented as a straight line in the phase plane, here the space (V ;Vs)
where Vs is the slow state variable and V the membrane potential.

The phase plane associated to the FitzHugh-Nagumo model is shown in the left part of
Figure 2.2.5. The V nullcline is the black solid line cubic function while the Vs nullcline
of this model associated to the slow variable is the black dashed line. The intersection
of two different nullclines is a fixed point since the gradient of the state variables is null.
The study of the vector field defined by the gradient (V̇ ; V̇s) can help to determine the
fixed point stability. Its stability can also be determined analytically. If we realize a time
simulation of the FitzHugh-Nagumo model for a given time interval, we can compute the
traces V (t) and Vs(t) at each time t. Thus, at each time t of the interval, we have a new
point (V ;Vs) in the phase plane. The curve that is defined by all couples (V ;Vs) across
time is called a trajectory.

The blue solid line in the left part of Figure 2.2.5 corresponds to the trajectory of the
2D model in the phase plane, simulated with no applied current and with an initial excited
state. In our case, an initial excited state corresponds to a membrane potential that is
already high such that the action potential is directly generated. Any spike generated by
the model described more or less the same loop in the phase plane. For a low applied
current, the steady-state found at the intersection of the nullclines is a stable node and
the trajectory is attracted towards it. The zoom on this stable node is shown in the right
part of Figure 2.2.5. In the latter, we can see the interest of using a reset rule: if we use a
short cut in the phase plane, the computation of the model is more efficient. The nullcline
of the membrane potential can then be approximated by a quadratic function. This is the
reason that motivates the Izhikevich model.

Figure 2.2.5: Phase portrait of the FitzHugh-Nagumo model (left) with a zoom on the fixed
point (right). The zoom aims to show the interest of using a quadratic integrate-and-fire
model. [Pottelbergh et al., 2018]
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Multiple Quadratic Integrate and Fire (MQIF) model

The MQIF is a quadratic-quadratic description of the fast and slow currents with respect
to the cell potential. This model aims to account for the non-monotonicity of the slow
current, which was not considered by the Izhikevich model [Pottelbergh et al., 2018, 2021].
This model is a reduced model of a more complex model that is able to represent calcium
kinetics [Drion et al., 2012; Franci et al., 2012, 2013].

CV̇ = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 + Iapp if V ≥ Vmax, then

τsV̇s = V − Vs V ← Vr and Vs ← Vs,r

Except for the slow current, this model is similar to the Izhikevich model. The mem-
brane potential is denoted V . The slow current is proportional to the slow potential Vs.
The latter is obtained by filtering the membrane potential with a slow time constant τs.
The conductances ḡf and ḡs denote the conductances of the fast and slow ion channels
respectively. The potentials V 0 and V 0

s are the reference potentials of the fast and slow
ion channels respectively. As before, the potentials Vmax and Vr are the potentials needed
to set the reset condition and the reset state of the membrane potential. The slow voltage
Vs is reset at the fixed value of Vs,r whenever necessary. Finally, C and Iapp denote, as
before, the capacity of the neuronal membrane and the applied current at the neuronal
membrane.

In 2012, Drion et al. have shown that the present non-monotonicity is suited to model
several slow ion channels having the ability to shape the corresponding slow current with
a source of negative conductance [Drion et al., 2012]. These ion channels encompass many
calcium channels and some fast potassium channels. Due to their ability to give rise to
source of a negative conductance, they are qualified as regenerative. The ion channels
that are not able to generate a source of negative conductance are called restorative.
Therefore, restorative ion channels are source of negative feedback while regenerative ion
channels are source of positive feedback.

If we draw the nullclines of this model in the phase plane (V ;Vs), we can see that the
quadratic-quadratic description of the current strongly affects the V nullcline, compared to
the Izhikevich model. Indeed, this nullcline is cross-shaped around the point (V 0;V 0

s ) for
a zero applied current. When the current increases, this nullcline looks like two quadratic
functions near the point (V 0;V 0

s ). When the applied current is negative, this nullcline
seems to be turned of 90 degrees in the phase plane. The V nullcline is represented in the
phase plane for 3 values of Iapp in Figure 2.2.6. The computation of this nullcline equation
and a more in-depth analysis of the phase plane is realized in section 4.2.

The values chosen for the reference potentials V 0 and V 0
s have an impact on the behavior

of the model. Indeed, for a given value of V 0, the value chosen for V 0
s will determine if

the fixed points are located on the upper branch or on the lower branch, leading to two
different types of excitability. In fact, if V 0

s is lower than V 0, the model is slow restorative.
In the reverse case, the model is slow regenerative. Therefore, the reference potential sets
the nature of the slow feedback and the behavior of the model.

Slow regenerativity governs important phenomena shaping the electrical activity of the
membrane such as spike latency, afterdepolarization potential and bursting. Spike latency
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Figure 2.2.6: Nullcline associated to the membrane potential in the MQIF model repre-
sented in the phase plane for 3 values of applied current I. [Pottelbergh et al., 2018]

and the afterdepolarization potential can be observed in Figure 2.2.7. This figure shows the
evolution of the membrane potential obtained with the MQIF model for a given pattern
of Iapp with 4 pulses of different durations and strengths. The spike latency is the delay
between the time at which the applied current changes from 0 to a positive value and the
first spike in the membrane potential. This delay depends on the strength of the applied
current: the stronger the current is, the lower the spike latency is. The afterdepolarization
potential (ADP) is the distinctive small depolarization observed after one or several spikes,
when the membrane potential returns to its steady-state. Bursting is a specific pattern
described by the membrane potential for a constant positive value of applied current. It is
composed of several trains of spikes called bursts with a decreasing instantaneous frequency
(called intraburst frequency) separated by quiescent periods. The interburst frequency is
constant when the equilibrium is reached. Bursting will be studied in chapter 5.

Figure 2.2.7: Simulation of the MQIF model (blue) for a given pattern of applied current
Iapp (orange). [Pottelbergh et al., 2018]
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Chapter 3

Physiology of pain

3.1 What is pain ?

To introduce what pain is, we need to set the scene by introducing the part of the
nervous system that creates and processes pain: the somatic sensory system. This system is
specified to enable our body to feel and to ache by using messages called somatic sensations.
This term is used to refer to all the sensations arising from the skin, such as touch, pressure
or temperature. When the somatic sensation is so intense that it could lead to a damage
in any body part, it is called pain. [Bear, 2007]

"Pain" is used to refer to three quite different things, summarized in the three parts of
Figure 3.1.1.[Woolf, 2010] There is the nociceptive pain that is the pain being an early-
warning physiological protective system. This type of pain is associated to a noxious
stimulus such as heat, cold, a intense mechanical force or chemical irritants. The noci-
ceptive pain is a high-threshold and protective electrical signal interpreted by the brain.
In other words, if someone accidentally cuts his/her finger, the acute feeling of discomfort
instantly felt after the cut results from nociceptive pain signals. Usually, one of the first
decisions taken by the brain is to activate the withdrawal reflexes of the individual in order
to stop the noxious stimuli. Nociceptive pain is actually essential for maintaining bodily
integrity. Indeed, patients that are insensitive to pain loose in fact an early protective
warning which aims to keep the body safe. As a consequence, they are often subject to
self-mutilation, bone fracture or joint deformities that can lead to early death.

Equally important, another type of pain is the inflammatory pain which assists healing
of an injured body part by creating an hypersensitivity to pain. Typically, if we take back
the example of a finger cut, the inflammatory pain is the ache felt hours and days after the
cut, which keeps away the damaged tissue of being touched. This type of pain also appears
in response to the inflammation of a body part. In fact, it is activated by the immune
system and it is thus favored by inflammation factors. Inflammatory pain is low-threshold
and more extended in time form of pain. This type of pain aims to protect an injury too,
particularly during healing in this case.

Finally, some of us show abnormal pain signals called pathological pain. This last type of
pain is associated to a disease state of the nervous system. Pathological pain can be divided
into 2 sub-types: the neuropathic pain and the dysfunctional pain, both being low-threshold
and maladaptive. In the case of neuropathic pain, the disease state appears in response to
a neural lesion of the nervous system. To contrast, dysfunctional pain signals are produced
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Figure 3.1.1: Pain classification. The three types of pain and their triggers (if existing) are
represented. Nociceptors are represented in green: each green dot is a cell body while the
straight green lines are Aδ or C nerve fibers. Adapted from [Woolf, 2010].

even if there is no such damage or inflammation to the nervous system. In fact, the
dysfunctional pain appears in patients having conditions such has fibromyalgia, irritable
bowel syndrome, tension type headache, temporomandibular joint disease or interstitial
cystisis. All of these diseases have the same common point: no noxious stimulus is needed
to trigger the substantial pain patients feel (as in nociceptive pain generation) and no (or
minimal) peripheral inflammatory pathology is at the origin of these signals.

3.2 Pain neural circuits

The feeling called "pain" is usually triggered from peripheral stimuli, sensed by sensory
neurons specialized for nociception, called nociceptors. They are free nerve ending: the
terminal branches spread in the skin of the individual [Bear, 2007]. The membrane of
nociceptors contains ion channels that are able to react to intense thermal, mechanical or
chemical stimuli. Therefore, an intense stretch of the skin not only activates the mechanical
ion channels of nociceptors but may also damage cells that would release substances that
favor the opening of other ions channels in the surrounding nociceptors membrane. Some
nociceptors respond to each of these three types of stimuli and others are specialized to
respond to only one. The noxious stimuli are then converted into action potentials.

Nociceptive signals in the form of an electrical signal are conveyed through two types
of nerve fibers called Aδ fibers and C fibers [Bear, 2007]. The name attributed to these
nerves is based on the composition of the corresponding nociceptors axon. The Aδ fibers
are thinly myelinated and wide, while the C fibers are unmyelinated and more narrow.
Nociceptive signals are thus transmitted at two different speeds to the spinal cord. The Aδ
fibers being wider, the conduction velocity is between 5 and 30 m/s while the maximum
conduction velocity of C fibers is 2 m/s. As summarized in Figure 3.2.1, the pain intensity
in response to a punctual noxious stimulus across time is thus a special pattern. Having
a higher conduction velocity, Aδ fibers are associated to a first and sharp spike of pain
intensity called first pain, while C fibers activation induce second pain, a long-lasting but
lower in intensity pain sensation.
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Figure 3.2.1: First and second pain. The first peak is mediated by Aδ inputs while the
second long-lasting signal is triggered by C fibers inputs. The circle represented at the
middle of each fiber is the nociceptor cell body. [Bear, 2007]

The nerve influx travels in direction of the soma of nociceptors, located in the dorsal
root ganglia. To communicate with the brain, the nerve fibers enter the dorsal horn of the
spinal cord through the zone of Lissauer. [Bear, 2007] The dorsal horn is a part of the
spinal gray matter. In fact, the synapses of nociceptors modulate the activity of dorsal
horn neurons (DHNs) located in the substantia gelatinosa. Figure 3.2.2 shows the cell body
(purple dot in the dorsal ganglia) of a C fiber nociceptor that communicates with DHNs,
located in the green area where the substantia gelatinosa is. The signals produced by the
DHNs are processed next by the thalamus, as the nerve fibers of the DHNs project up to
the spinal cord through the medulla pons and midbrain. This path is the spinothalamic
pathway. In addition, the trigeminal pathway is the path taken by nociceptive signals that
come from the face. Similarly, nociceptive signals are also relayed by other neurons having
the same role as DHNs before being processed by the thalamus. The output signals of the
thalamus nuclei are then interpreted by the primary somatosensory cortex.

Figure 3.2.2: Spinal connections of nociceptive axons. The cell body of the purple C fiber
nociceptor is located in the dorsal root ganglia. Nociceptive signals are conveyed by C
fibers and enter the dorsal horn by the dorsal roots. The relay DHNs are located in the
green area, called substantia gelatinosa. [Bear, 2007]
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Pain can be either diminished or exaggerated depending on mood, cognitive functions
or memories. Such a high-level control of the brain is part of a descending regulation from
the brain. The periaqueductal gray matter (PAG) is a zone of neurons in the midbrain
that has the ability to inhibit nociception. The axons of PAG allow to communicate with
regions of the medulla such as the raphe nuclei, second to last relay for the descending
regulation. The inhibition controlled by the brain acts finally on the DHNs. Thus, the
electrical stimulation of the PAG can almost entirely suppress pain sensation.

3.3 Electrophysiology of dorsal horns neurons

3.3.1 Physiology

Dorsal horn neurons (DHNs) are the first relays for nociceptive information. Indeed,
DHNs are the first neurons to receive the action potentials generated by the nociceptors.
In parallel, they also receive other sensory signals such as touch sensations or proprio-
ception signals from non-nociceptive mechanoreceptors.[Bear, 2007] The role of DHNs in
nociception is to integrate and modulate input nociceptive signals. To do so, they are
embedded into a small network in the dorsal horn where their activity is controlled by
other neurons, as the gate-control theory of pain postulates.

In Figure 3.3.1, we can observe a schematic view of the substantia gelatinosa, a part of
dorsal horns, realized based on the gate-control theory of pain.[Bear, 2007] The red track
represents the nerve fibers that convey nociceptive signals. The blue track shows the path
taken by the non-nociceptive sensory information, which is separated from the path taken
by pain signals but still impacts pain signals transmission. In this figure, only two neurons
are represented: a projection neuron and an interneuron. The projection neuron aims to
send the information to the thalamus through the medulla. The output signal produced by
the projection neuron is therefore sent on the spinothalamic path. The nociceptive signals
sent to the brain are also modulated by the activity of an interneuron that also depends
on both nociceptive signals and non-nociceptive sensory signals, from mechanoreceptors
for example.

The actual network behind pain processing is much more complex and not well under-
stood. Every week or month, there is a new paper about this particular network, each
with new assumptions. Among them, a network will be presented later in section 3.4 for a
clarity purpose with a proposed electrical treatment for pathological pain.

3.3.2 Functional states

Dorsal horn neurons (DHNs) have the ability to change their firing pattern, which in
term modifies the information sent to the brain.[Derjean et al., 2003; Marder, 2003] The
first firing pattern observed was the tonic firing. For a pulse of current delivered in the
nociceptive fibers afferent to a given DHN, tonic firing is observed when action poten-
tials are produced with a constant frequency, as shown in the left part of Figure 3.3.2.
When delivering several shorter pulses to tonic DHNs, the output signal follows the global
characteristics of the input signal but usually with a lower frequency. For the same input
pattern made of short pulses, DHNs sometimes responded with a higher frequency and
an accelerating spike train. This type of response is associated to the second DHN firing
pattern called plateau potentials. Whether the input signal is composed of a wide pulse
or of several short pulses, this pattern is always characterized by an afterdischarge where
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Figure 3.3.1: The gate theory of pain. Pain signals transmission to the brain realized by
a projection neuron is modulated by the activity of an interneuron. Both neurons activity
is function of non-nociceptive and nociceptive sensory signals. [Bear, 2007]

endogenous spikes are generated after the end of the last pulse of the input signal (Figure
3.3.2, middle part). Finally, the third possible firing pattern of DHNs is the rhythmic burst-
ing, represented in the right part of Figure 3.3.2. This pattern is not triggered by the input
signal: rhythmic bursting can be observed even with a "silent" input signal. Bursting is
characterized by quiescent periods separated with a train of action potentials called burst
with a decreasing instantaneous intraburst frequency. The interburst frequency, being the
frequency at which a burst appears, is constant.

Figure 3.3.2: The three modes of firing of DHNs: tonic firing, plateau potentials and
rhythmic bursting. Each firing pattern is associated to one type of pain, added in blue.
Adapted from [Derjean et al., 2003].

For Derjean et al., each DHNs firing pattern is assumed to be linked to one type of
pain stated in section 3.1. Indeed, each of these output signals shows different properties
of pain signal transmission to the brain. Tonic firing is associated with nociceptive pain
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signals. Indeed, this firing pattern is relatively good at encoding the intensity and duration
of afferent signals from Aδ and C fibers. Inflammatory pain would be associated with the
plateau potentials sent by the dorsal horn neurons. As the generation of action potentials
outlasts significantly the duration of afferent nociceptive signals, plateau DHNs amplify
the input signal in situations of central sensitization to pain. This firing pattern is indeed
the more efficient to transfer input signals. Finally, DHNs showing rhythmic bursting are
associated to the generation of pathological pain. Indeed, during the quiescent periods of
bursting, a large majority of the input nociceptive signals from Aδ and C afferent fibers is
filtered out by this relay. Similarly, during burst, input nociceptive signals leave the firing
pattern almost unchanged. Therefore, rhythmic bursting is analogous to a loss in DHNs
coding abilities.

DHNs firing pattern would be determined by a dynamic balance of metabotropic controls
on inwardly rectifying potassium (Kir) channels of DHNs dendrites according to [Derjean
et al., 2003]. One possible explanation is that the Kir channels in the grip of this regu-
lation are activated as a result of a number of metabolic steps that are used for stimuli
transduction. Two substances act as neurotransmitters on Kir channels activation: glu-
tamate and GABA. Glutamate has an impact similar to an excitatory neurotransmitter
while GABA is more of an inhibitory neurotransmitter. Therefore, the balance between
the activation and inactivation of the Kir channel is at the source of change in DHNs firing
patterns. However, the Kir channels may not be the only control mechanisms for DHNs
firing patterns.

An interesting property also shown by DHNs firing patterns is wind-up.[Aguiar et al.,
2010] This phenomenon is a frequency-dependent adaptation of the nervous system con-
sisting in an increase of generated action potentials with an increasing frequency of stimuli
from nociceptive C fibers. Wind-up is thus a frequency-dependent facilitation process ex-
pressed by DHNs which typically exhibit plateau potentials. Indeed, wind-up leads to
many of the characteristics that describe central sensitization.

3.4 Spinal cord stimulation

Being an early-warning signal, nociceptive pain is usually not a clinical problem [Woolf,
2010]. However, when surgery or any other clinical procedure involving a noxious stimuli
is needed, nociceptive pain should be muted temporary. To do so, clinicians deliver high-
dose opioids or local and general anesthetics. In the context of pathological pain, there is
no universal solution to relieve patients with chronic pain, representing about 20% of the
adult population. The first treatment strategy tested is derived from the clinical strategy
to suppress nociceptive pain: a pharmacological therapy using opioids. Unfortunately, this
treatment is effective in less than 50% of patients.

As the interest for the electrical properties of the nervous system has grown, clinicians
were inspired to develop a new treatment strategy. In fact, they tried to electrically
stimulate the nerve fibers involved in pain transmission in order to suppress it, according
to the gate-control theory of pain presented in Figure 3.3.1. Several techniques have been
developed since but one of the most promising is the Spinal Cord Stimulation (SCS). [Guan,
2012]
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Clinically, spinal cord stimulation (SCS) is realized by delivering mild to moderate elec-
trical pulses at various frequencies to the spinal cord in order to ellicit paresthesia (a
tingling sensation) in the painful region. This process is realized using an electrode posi-
tioned in the epidural space above the spinal segment affected by pathological pain. The
electrical stimulation intensity is tuned so that this stimulation stays slighlty below the
motor threshold, for obvious pratical reasons, and below the pain threshold, to avoid a
painful paresthesia. For animal studies, the antidromic sciatic compound action potential
can be monitored in order to ensure the treatment acts below the pain threshold.

The development of SCS was motivated by the gate-control pain theory. Indeed, this
theory postulates that DHNs, necessary for pain transmission, can be inhibited by excita-
tory inputs from motor fibers. The stimulation is therefore applied to the dorsal column
that contains motor Aβ nerve fibers acting on the same DHNs which create pathological
pain signals. Locally, the inhibition created on the nociceptive afferent fibers results from
release of GABA inhibitors. Potentially, SCS can also favor a descending inhibition by
releasing the corresponding neurotransmittors. In Figure 3.4.1, we can see an updated ver-
sion of the gate-control pain theory with the location of the stimulation. In this update,
more neurons are taken into account for the pain transmission network: I is the popula-
tion of spinal inhibitory interneurons, E accounts for the set of excitatory interneurons, T
represents the transmission cells population and N is the population of nociceptive-specific
projection neurons.

For patients who responded well to this treatment, the pain inhibition often exceeded
the duration of the stimulation. This technique is therefore very useful to treat some pa-
tients and to relieve them from pathological pain. Moreover, due to the possible enhanced
descending inhibition of pain processing, SCS could also help to prevent the later devel-
opment of pain hypersensitivity. However, detailed knowledge about how SCS inhibits
pain is lacking. Indeed, the stimulation parameters (intensity and frequency) are not well
defined. The frequency usually used is between 50 and 60 Hz. SCS is shown to work better
with lower frequencies because it induces both a local spinal inhibition and a descending
inhibition. A deeper understanding of the network SCS acts on could be really beneficial
to improve this technique’s efficacy on patients.

3.5 Conductance-based models of dorsal horn neuron at the
cellular level

In the very scarce literature linked to this topic, some groups of researchers produced
conductance-based models to explain the generation of particular firing patterns. [Aguiar
et al., 2010; Franc and Masson, 2010; Zhang et al., 2014] To do so, they took many ion
channels into account and produced results that had the same properties than the firing
patterns considered. Aguiar’s and Le Franc’s research teams worked on modeling particular
characteristics of DHNs. Using these models is very helpful to determine the time scales
induced in the DHNs models. Also, these models highlight which ion channels are involved
in these firing patterns generation.

3.5.1 Aguiar’s model

Aguiar’s research team conceived a model to determine the key mechanisms behind wind-
up generation.[Aguiar et al., 2010] The model they developed is a type of compartmental
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Figure 3.4.1: Schematic diagram representing potential spinal segmental mechanisms un-
derlying pain inhibition induced by SCS. Aα and Aβ myelinated nerve fibers of motor
neurons are stimulated below the motor threshold and below the pain threshold to inhibit
nociceptive signals transmission to the thalamus. The activity of the tramsmission DHNs
"T" is recorded to observe the impact of SCS. "N", "E" and "I" are the neurons embedded
in the network assumed to manage pain tranmission. [Guan, 2012]

model, a more complex version of a conductance model. Indeed, conductance models are
usually associated with a single punctual neuron. To contrast, compartmental model take
into account local biophysical properties at several locations of a given neuron (soma, den-
drites, axons, etc). As DHNs behavior depends on interaction between several neurons in
an upstream network, Aguiar et al. wanted to take into account both membrane mech-
anisms and synaptic mechanisms. Thus, they created a small network, made of 2 single
cells, based on compartmental models. To keep the DHNs model simple enough, they took
into account only one type of interneurons, as it can be seen in Figure 3.5.1. The input
of the nociceptive Aδ fibers is delivered directly to the transmission neuron. As the trans-
mission neurons are able to change their firing pattern and give long-range responses, they
are called wide dynamic range (WDR) neurons. The authors assumed that the nocicep-
tive signals from C fibers are sent to interneurons that are connected to the transmission
(WDR) neurons by a set of synapses. The WDR neuron model is composed of several
cylindrical connected compartments representing its dendrites, soma, axon initial segment
and axon.
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Figure 3.5.1: Schematic diagram of the compartmental model used by Aguiar et al. The
locations where wind-up possibly takes place are numerated. Wind-up is actually mainly
generated at the membrane of WDR neurons (location 4). [Aguiar et al., 2010]

To model the synaptic mechanisms, several synaptic receptors are considered and sim-
ulated as conductance changes. Among them, the NMDA and NK1 synaptic receptors
are shown to contribute to wind-up in DHNs. Once activated, two types of currents
passed through them: a cationic non-specific (CAN) current iCAN and a long-lasting high-
threshold calcium current iCa,L. Beside these two currents, the membrane mechanisms
integrate the dynamics of the Hodgkin-Huxley currents (a transient sodium current iNa
and a delayed potassium current iK), a calcium-dependent potassium current iK,Ca, a
persistent sodium current iNa,p and, as usual, a leak current ileak.

Based on experimental measurements of spikes generated with wind-up, Aguiar et al.
noticed that a single exponential process is suited to model wind-up time profiles. From
there, they could estimate the time constants of the key mechanisms involved in the gener-
ation of wind-up, averaged to 5 seconds. This reference helped to determine that the key
mechanisms giving rise to wind-up are the time-summation of long-lasting postsynaptic re-
sponses produced by NMDA receptors and the cumulative depolarization supported by the
cationic non-specific (CAN) current and the long-lasting high-threshold calcium current.

3.5.2 Le Franc’s model

Le Franc’s model is an attempt to understand the mechanisms involved in the switch
in DHNs firing patterns.[Franc and Masson, 2010] As for the Aguiar model, they used a
compartmental model. However, they only considered a single cell with two compartments
in this version: dendrite and soma. The reason for this simplification is that the authors
wanted to focus on DHNs plateau potentials generation.

For each compartment, they considered specific types of ion channels to model the cor-
responding compartment membrane potential. The currents taken into account to model
the soma conductances are the following: the classical fast/slow iNa/iK Hodgkin-Huxley
currents, the fast L-type calcium channels modeled by the current ifCaL, the calcium-
dependent potassium channels (iSK), the Kir channels that were associated with the switch
of firing pattern iKir and finally a leak current ileak. There are only 4 currents taken into
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account for the dendrite: a slow calcium currents from L-type calcium channels isCaL, a
calcium-dependent cationic non-specific (CAN) conductance iCAN and, as for the soma, a
calcium-dependent potassium current iSK and a leak current ileak. A schematic represen-
tation of this model is shown in Figure 3.5.2.

Figure 3.5.2: Schematic representation of the compartmental model used by LeFranc et al.
For each compartment, the ion channels considered are listed, on left for the soma and on
the right for the dendrite. [Franc and Masson, 2010]

The study of this model allowed to discover a new type of firing pattern at the edge
between tonic firing and plateau potentials: the accelerating behavior. This behavior
is characterized by an increasing instantaneous frequency during a current pulse and an
afterdepolarization potential (ADP) at the pulse end. The analysis of the correlation and
contribution between the accelerating mode and the input signal from Aδ fibers highlighted
that this firing mode may be an optimal nociceptive signal transmission.

Plateau potentials are the optimal firing pattern for accurate nociceptive transmission
due to the signal amplification it creates. This model helped to clarify two mechanisms in-
volved in plateau potentials generation: a voltage-dependent one and a calcium-dependent
one. The first mechanism is especially due to the the kinetics of L-type calcium channels,
that are voltage dependent. The second mechanism relies on interactions between the L-
type calcium channels and the calcium-dependent potassium channels. It was shown that
if the latter potassium channels are blocked, plateau potentials cannot be observed any-
more. The CAN current is the ion current that has the major impact on the afterdischarge
generation in plateau potentials.

In fact, Le Franc et al. show that it is the balance between Kir conductances and L-type
calcium conductances of soma and dendrites that defines the electrical behavior of DHNs.
The existence of different firing patterns is assumed to be due to the variation of calcium
conductances while the Kir conductance defines the switch as it increases the amount of
current needed to trigger the DHNs regenerative properties. Figure 3.5.3 shows that the 4
firing patterns of DHNs can be obtained for a large range of conductance values.

To account for the large set of modulatory pathways involved in DHNs firing patterns
generation acting on many different targets, the authors considered a mapping of the pa-
rameter space that separates the effect of depolarizing (excitatory) conductances from the
effect of hyperpolarizing conductances.[Franc and Masson, 2010] Based on this mapping,
Le Franc et al. showed that the balance between these two groups of conductances sets
DHNs firing patterns. Focusing on the currents involved in plateau potentials generation
mentionned above, L-type calcium and CAN conductances are grouped as depolarizing con-
ductances while the Kir and calcium dependent potassium (SK) conductances are grouped
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Figure 3.5.3: Firing state observed in the DHN model depending on the balance of Kir and
L-type calcium channels conductances. The 4 firing modes (tonic, accelerating, plateau
potentials and oscillations) described by Le Franc et al. are represented. [Franc and
Masson, 2010]

as hyperpolarizing conductances. Consistently, the balance between these two groups de-
termines if we can observe plateau potentials or not according to Figure 3.5.4. Controlling
this balance means that we are able to control pain transmission properties through many
possible mechanisms such as intrinsic plasticity, neuromodulation and network activity.

Figure 3.5.4: Firing state observed in the DHN model depending on the balance of hyper-
polarizing and depolarizing conductances. The 4 firing modes (tonic, accelerating, plateau
potentials and oscillations) described by Le Franc et al. are represented. [Franc and
Masson, 2010]

26



3.5.3 Timescales and feedbacks involved in deep dorsal horn neuron
functional states generation

A closer look to the activation and inactivation functions of the ion channels taken
into account in Aguiar’s and Le Franc’s models may help to determine the timescales
involved in DHNs firing properties. The Aguiar model considers a total of 6 ion currents.
They are defined by 6 activation functions meaning that we must consider 6 steady-states
of the activation gates and 6 time constants that are functions of either the membrane
potential or the intracellular calcium potential. Beside the activation, the sodium channels
modeled by Hodgkin-Huxley and the sodium channels associated to the persistent sodium
are subjected to inactivation. These 2 inactivation functions add two steady-states and
two time constants function of the membrane potential to look at. In Figures 3.5.5 and
3.5.6, the steady-states of the activation and inactivation gates and their time constants
are respectively represented as function of their modulator (the membrane potential or the
calcium concentration, depending on the channels properties).

Figure 3.5.5: Evolution of the Aguiar’s model ion currents activation/inactivation variables
at rest according to the membrane potential (left) or the intracellular calcium concentration
(right).

The evolution of the time constant is a good start to determine the timescale of each
channel kinetic and thus to group the currents of the channels considered. In the Aguiar
model, considering that the different mechanisms act on 3 distinct timescales seems to be
a fair enough estimation. These timescales are: fast, slow and super-slow.

It is clear that the currents considered do not impact the membrane potential in the
same manner. The nature of the feedback induced by the opening of a given ion chan-
nel can be determined by the steady-state of each gate variable and the direction of the
current. For example, we can consider the activation of sodium channels modeled by
Hodgkin and Huxley. The sodium current flowing in these channels when they are open
is inward, meaning that the sodium ions flow from the extracellular medium to the inside
of the plasma membrane, which induces a depolarization. Moreover, for an increase in the
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Figure 3.5.6: Evolution of time constants of the Aguiar’s model ion currents activa-
tion/inactivation variables according to the membrane potential (left) or the intracellular
calcium concentration (right).

membrane potential, we can see in Figure 3.5.5 that more channels tend to open. The
activation of these sodium channels is thus regenerative, meaning that it creates positive
feedback. Mathematically, the sign of the feedback is fixed by the sign of the resistance in
the equation :

R =
∆V
∆I

where ∆I is taken positively when outward by convention. The same reasoning can be
applied to all other gates of the ion channels considered. The results of this approach for
the Aguiar model are summarized in Table 3.1.

Current Gate Time constant order ∆I ∆g R Feedback

INa
activation 10−1ms

inward
+ - Fast regenerative

inactivation 100ms - + Slow restorative

IKDR activation 100ms outward + + Slow restorative

ICaL activation 100ms inward + - Slow regenerative

INap

activation 10−1ms
inward

+ - Fast regenerative
inactivation 100ms - + Slow restorative

ICAN activation 102ms inward + - Super-slow regenerative

IK,Ca activation 101ms outward + + Slow restorative

Table 3.1: Summary of the timescale and the type of feedback involved in each ion channel
activation or inactivation defined in Aguiar’s model. A regenerative feedback is synonym
of positive feedback while a restorative feedback induces a negative feedback. This classifi-
cation is based on the order of magnitude of each time constant, on the sign of the current
∆I flowing through each type of ion channels considered and on the sign of the variation
of conductance ∆g with a depolarization of the cell.
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Le Franc’s model helps to understand the switch in the DHNs pain transmission prop-
erties. As this switch depends on a balance between hyperpolarizing and depolarizing
conductances, it would be interesting to verify the feedback types of the ion channels con-
sidered in these two groups and their timescales. Compared to Aguiar’s model, the model
of Le Franc does not consider the persistent sodium current but uses a Kir current and a
more elaborated description of the L-type calcium channels currents, segragated into slow
and fast channels, with each an activation and an inactivation gate.

Figures 3.5.7 and 3.5.8 show respectively the steady-state of each gate and the associated
time constants of the 7 currents considered in the model of Le Franc as functions of
either the membrane potential or the calcium concentration. Following the same reasoning
realized for the model of Aguiar, we classified each gate of each current depending on
its timescale and the corresponding feedback produced. This classification is found in
Table 3.2.

Figure 3.5.7: Evolution of the Le Franc’s model ion currents activation/inactivation vari-
ables at rest according to the membrane potential (left) or the intracellular calcium con-
centration (right).

The activation and inactivation processes in DHNs modeled by Le Franc et al. seem
to act on 4 different timescales: fast, slow, super-slow and ultra-slow. It is also worth
noticing that each activation of the ion channels grouped in the depolarizing conductances
in the analysis of Le Franc creates positive feedback. Similarly, the activation of the
ion channels classified as depolarizing are restorative, meaning that they induce negative
feedback, which is consistent.

3.5.4 Summary

The two modeling approaches presented aim to better understand the switch in the
electrical behavior of DHNs. Based on activation and inactivation of the ion channels they
consider, we found out that the mechanisms involved in DHNs firing pattern generation
act on 4 different timescales. This time separation can be used to create a hybrid model
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Figure 3.5.8: Evolution of time constants of the Le Franc’s model ion currents activa-
tion/inactivation variables according to the membrane potential (left) or the intracellular
calcium concentration (right).

Current Gate Time constant order ∆I ∆g R Feedback

INa
activation 10−1ms

inward
+ - Fast regenerative

inactivation 100ms - + Slow restorative

IKDR activation 100ms outward + + Slow restorative
IKir activation 101ms inward - + Slow restorative

ISK activation 101ms outward + + Slow restorative

IfCaL
activation 10−1ms

inward
+ - Fast regenerative

inactivation 103ms - + Super-slow restorative

ICAN activation 103ms inward + - Super-slow regenerative

IsCaL
activation 102ms

inward
+ - Super-slow regenerative

inactivation 104ms - + Ultra-slow restorative

Table 3.2: Summary of the timescale and the type of feedback involved in each ion channel
activation or inactivation defined in Le Franc’s model. A regenerative feedback is synonym
of positive feedback while a restorative feedback induces a negative feedback. This classifi-
cation is based on the order of magnitude of each time constant, on the sign of the current
∆I flowing through each type of ion channels considered and on the sign of the variation
of conductance ∆g with a depolarization of the cell.

that would model DHNs. More specifically, this work focuses on a MQIF model with 4
different timescales, following an incremental procedure. The goal of using such a model
is to define an input/output relation that would help us to understand how a change in
conductance at a given timescale impacts the DHNs pain transmission properties.
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Chapter 4

Tonic spiking generation with fast
and slow timescales

In this chapter, our goal is to study the behaviour and the characteristics of the two
dimensional Multiple Quadratic Integrate and Fire (MQIF) model introduced in section
2.2.2.

Contributions Our goal is to show that the MQIF model is suited to model tonic firing.
In Van Pottelbergh et al., several patterns of applied current were used to show specific
properties such as afterdepolarization potential, spike latency, or bistability. However,
there is no comparison between the behaviors of models with a slow restorative or a slow
regenerative feedback realized with the same inputs, nor a study of the impact of the
parameters. Such comparisons are realized in this work for several patterns of current.
To understand how the responses associated to slow restorative or regenerative feedbacks
differ, we also investigate the impact of the type of slow feedback on the phase plane. As
the nullclines expression can be found based on the model equations, we compute them
and their derivatives to understand their shape and the influence of each parameter on
it. The impact of the applied current on these nullclines is investigated with a bifurcation
diagram. Finally, the impact of the slow parameters on the convergence of the model is
analyzed, leading to different types of excitability.

4.1 Model

The MQIF model is made of two timescales: a fast one and a slow one. The system of
ordinary differential equations that is used in this section is the following:

CV̇ = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 + Iapp if V ≥ Vmax, then

τsV̇s = V − Vs V ← Vr, (4.1.1)
Vs ← Vs,r.

In equations (4.1.1), V and Vs are the cell potential and the slow potential respec-
tively. The slow voltage is characterized by the time constant τs, which is equal to 10 ms
throughout this work. This value is chosen based on the appendix of the article this model
is extracted from.[Pottelbergh et al., 2018] It is noticeable that this time constant is con-
sistent with the order of magnitude of the slow feedbacks defined in section 3.5.3. For a
fast-slow timescale separation, it is assumed that the membrane capacity is much lower
than τs. The fast inward current is characterized by the fast conductance ḡf and by the
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equilibrium potential V 0. The slow outward current is characterized by the slow conduc-
tance ḡs and by the equilibrium potential V 0

s . To keep the necessary physical meaning of
the results we have with this model, it is stated that the reset position (Vr, Vs,r) should
be located somewhere above the nullcline of the variable V . Once the reset applied, the
system evolves according to the computation of each gradient.

It is worth noticing that the system gradient ( δVδt ; δVsδt ) is composed of gradients of differ-
ent magnitudes. Indeed, as the time constant τs makes the variable Vs slow with respect to
V , the direction of the system gradient is mostly set by the δV

δt except in the near vicinity
of the V nullcline.

4.2 Fixed points and nullclines

From the system provided in (4.1.1), we can get the nullclines equation. Indeed, each
nullcline corresponds to a null gradient of the corresponding state variable. Here, these
two variables are V and Vs. The nullclines equations are obtained by setting separately
each gradient to 0:

V nullcline: 0 = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 + Iapp,

Vs nullcline: 0 = V − Vs.
(4.2.1)

We can rewrite the nullclines equations to plot them in the space (V ;Vs). The Vs
nullcline is simply a straight line where Vs equals V . The V nullcline has a more complex
shape. The expression of this nullcline depends on the sign of the current Iapp. Indeed,
the V nullcline can be rewritten as:

Vs = V 0
s ±

√
ḡf (V − V 0)2 + Iapp

ḡs
, if Iapp ≥ 0,

V = V 0 ±

√
ḡs(Vs − V 0

s )2 − Iapp

ḡf
, if Iapp ≤ 0.

For each current value, the V nullcline expression leaves us with two possible solutions:
either adding the square root term or subtracting it. When the current equals 0, these
two expressions are similar. Indeed, the V nullcline is cross-shaped, made of two straight
lines with opposite slopes and crossing in (V ;Vs) = (V 0;V 0

s ) when Iapp is null. Some clues
about the V nullcline shape for a non-zero current can be obtained by computing the first
and the second derivatives of these functions with respect to the variable they are functions
of in the space (V ;Vs) or (Vs;V ):

δVs
δV

= ±
√
ḡf
ḡs

V − V 0√
(V − V 0)2 +

Iapp
ḡf

if Iapp ≥ 0,

δV

δVs
= ±

√
ḡs
ḡf

Vs − V 0
s√

(Vs − V 0
s )2 − Iapp

ḡs

if Iapp ≤ 0.

In the first derivative expressions, we see that if the current is non-zero, the nullcline
has 2 extrema. When the current is positive, the extrema in the space (V ;Vs) take place

at the locations (V 0;V 0
s ±

√
Iapp
ḡs

). When the current is negative, the extrema in the space
(V ;Vs) take place on the axis Vs = V 0

s . Consistently, we see that the derivative does not
exist in (V 0;V 0

s ) when Iapp is 0.
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If we take a look at the second derivative expressions, being:

δ2Vs
δV 2

= ±

√ ḡf
ḡs

 Iapp
ḡf(√

(V − V 0)2 +
Iapp
ḡf

)3


 , if Iapp ≥ 0,

δ2V

δV 2
s

= ±

√ ḡs
ḡf

 − Iapp
ḡs(√

(Vs − V 0
s )2 − Iapp

ḡs

)3


 , if Iapp ≤ 0,

we can see that for a non-zero current, the second derivative is either always positive or
always negative. Therefore, the extrema we have on the axis V = V 0 or Vs = V 0

s are a
minimum and a maximum. Moreover, the V nullcline expression for Iapp < 0 has the same
shape as the expression we have when Iapp > 0. Based on these considerations, we argue
that the V nullcline is composed of two arms in the space (V ;Vs) that look like quadratic
functions when the current is positive. For Iapp > 0, the upper arm is convex and above
the line Vs = V 0

s and the lower one is concave and below Vs = V 0
s . When the current

is negative, we have still two arms with the same shape in the space (Vs;V ). But if we
analyze the phase plane in the space (V ;Vs), one arm of the V nullcline is on the left of
the axis V = V 0 and the other one is on the right of V = V 0, with the extrema on the line
Vs = V 0

s . The plot of the V and Vs nullclines is represented after the computation of the
fixed points in the next subsection.

From the nullclines equations (4.2.1), we can compute the fixed points coordinates.
Fixed points are defined as points where the gradient is null and are thus located at the
intersections of the nullclines. The Vs nullcline implies that the fixed points coordinates
have the same value for V and Vs. The fixed points coordinates, being identical due to
the expression of the Vs nullcline, will be noted V̄ . By substitution, we find the following
second order equation in V̄ :

(ḡf − ḡs)V̄ 2 − 2(ḡfV
0 − ḡsV 0

s )V̄ + ḡf
(
V 0
)2 − ḡs (V 0

s

)2
+ I = 0.

Using the discriminant method, we find that there are at most two fixed points with
the coordinates (V̄1; V̄s1) and (V̄2; V̄s2). These fixed points existence is determined by the
value of the discriminant ∆:

V̄s1,2 = V̄1,2 =
ḡfV

0 − ḡsV 0
s ±
√

∆

ḡf − ḡs
with ∆ = ḡf ḡs(V

0 − V 0
s )2 − (ḡf − ḡs)I. (4.2.2)

The sign of ∆, which is function of the conductances ḡf and ḡs, the equilibrium poten-
tials V 0 and V 0

s and the current Iapp, has an impact on the system stability. The existence
of fixed points based on the value taken by ∆ is studied in section 4.4.

With the two fixed points coordinates, we can compute the Jacobian matrix of the
system to determine the stability of each fixed point. As a reminder, the Jacobian matrix
is obtained by deriving each time derivative of the system with respect to one of the two
variables. In our case, these two variables are either V or Vs and this matrix is written as:

J =

 δ

δV

(
V̇
) δ

δVs

(
V̇
)

δ

δV

(
V̇s

) δ

δVs

(
V̇s

)
 .
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From there, we can calculate the analytical expression of the Jacobian matrix:

J =

( 2

C
ḡf (V − V 0) − 2

C
ḡs(Vs − V 0

s )

1 −1

)
.

To compute the fixed points stability, we should substitute each fixed point coordinates
into the Jacobian matrix. Then, the considered fixed point stability is determined by the
sign of the eigenvalues of the corresponding Jacobian matrix.

4.3 Phase plane, reference simulations and slow feedback na-
ture

Through phase planes, phase portraits and simulations, this section aims to distinguish
the properties induced by slow restorative and slow regenerative feedbacks. The same
parameters are kept all along this subsection except the parameter V 0

s , which takes values
of −45 or −35 to simulate respectively a restorative or a regenerative slow feedback (with
V 0 being −40). However, the parameter Iapp is modified to observe the nullclines motion
in the phase plane and to perturb the system and observe its response.

4.3.1 Phase plane description

In consistency with the nullclines analytical expressions written in (4.2.1), we can see
in Figure 4.3.1 the phase plane of the MQIF for 3 values of current Iapp and 2 values of
the equilibrium potential V 0

s . Each phase plane is indeed composed of a straight line and
2 quadratic-like functions (or two straight lines depending on the absolute value of the
current), as discussed in section 4.2. The conductances ḡf and ḡs used to draw these phase
planes are respectively set to 1 and 0.5. According to equations (4.2.1), these conductances
have an impact on the V nullcline only. The values chosen for these constants are based
on [Pottelbergh et al., 2018]. These conductances allow to scale the impact of the slow
feedback on the neuron electrical response with respect to the impact of the fast feedback.

In each of these phase planes, a marker is positioned at the intersection of the 2 straight
lines associated to the V nullcline for a zero current i.e. in (V 0;V 0

s ). It is to be noted
that when the absolute value of the current increases, the nullcline extrema tend to move
away from this marker. This is consistent with the conclusions we draw from the analytical
expression of the V nullcline and its first and second derivatives. This marker will also be
used to understand the effect of V 0

s on the phase plane and the system firing properties in
the next subsections.

For the particular values of current chosen for Figure 4.3.1, we see that we have each
time two fixed points, two being the maximum number of fixed points the system can have
as discussed in section 4.2. In these cases, the fixed points are always a stable node and a
saddle node. By definition, a saddle node is neither stable or unstable, it is characterized
by an attractive direction and a repulsive one. Typically, a system evolving near a saddle
node tends to be attracted and then repelled towards another possible attractor such as a
stable node or a limit cycle. Therefore, saddle nodes are often considered to separate the
basin of attraction of distinct attractors and are very useful to understand spike generation.
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Figure 4.3.1: Phase planes of the MQIF for different sets of parameters. The V nullcline
is red and the Vs nullcline is green. The yellow marker highlights the point (V 0;V 0

s ).
A. The reference potential of the slow feedback is lower than the fast reference potential
(restorative feedback). B. The reference potential of the slow feedback is greater than the
fast reference potential (regenerative feedback). For A. and B., three values of current are
tested to observe the movement of the V nullcline with and increasing current.

A last consideration should be realized on the sign of the gradient of each variable near
the nullclines. Indeed, this is a manner to get clues about the time evolution of the system
for any initial conditions. The sign of the Vs gradient is positive when the system is located
anywhere below the Vs nullcline and negative when the system is above it. Therefore, the
Vs nullcline is considered as attractive. In the same manner, the gradient of V is negative
when, for a given Vs, the system is located between two parts of the upper arm or the two
parts of the lower arm of the V nullcline. Conversely, the gradient of V is positive when
the system has only one or no neighboring part of the V nullcline on the horizontal axis
where the system is. Therefore the left part(s) of the V nullcline is(are) attractive and the
right part(s) of the V nullcline is(are) repulsive. Due to the reset rule, the system is still
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able to converge even if it is initialized to the right of the V nullcline as the reset value
(Vr, Vs,r) is above the V nullcline. Furthermore, these observations allow us to understand
that the system is not excitable if the current is negative. Indeed, the system is attracted
to the left part of the V nullcline and therefore to the stable node on it.

4.3.2 Slow feedback nature impact on phase plane

The relative position of the marker of (V 0;V 0
s ) with respect to the straight line associated

to the Vs nullcline has an impact on the system stability. Indeed, if the marker is below
the Vs nullcline (V 0 > V 0

s ), the fixed points appear on the top part of the V nullcline.
Conversely, the fixed points appear on the bottom part of the V nullcline if the marker
is above the Vs nullcline (V 0 < V 0

s ). This distinction impacts the system convergence.
To discuss the convergence based on the fixed points position on the nullclines, we added
trajectories with a total of three sets of initial conditions to the phase planes obtained with
a positive current from Figure 4.3.1. In Figure 4.3.2, we show the phase plane obtained for
a positive current and V 0

s < V 0 with the corresponding time evolution of the system. In
Figure 4.3.3 we show two phase planes obtained for a positive current and V 0

s > V 0, each
with a different set of initial conditions and the corresponding system time evolution.

Figure 4.3.2: Trajectory in the phase portrait (left) and the associated time evolution of
V and Vs (right) of a restorative system for a positive applied current (V 0 > V 0

s ).

As we said, the difference in the V nullcline position, which is defined by the position of
the corresponding marker, and the number of fixed points impact the system convergence.
Indeed, when two fixed points are on the upper part of the V nullcline (i.e. V 0

s < V 0)
and when the system is excited (i.e. Iapp > 0), the system is drawn to the upper left
part of the V nullcline from any initial conditions and converges towards the stable node.
Accordingly, the time evolution of the system highlights that the system converges towards
a steady-state. It means that if the system is initially excited, a low positive current is not
sufficient for the neuron to show tonic spiking. There is a restorative feedback and it is
associated to a positive conductance in the neuronal model.

When the fixed points are on the lower part of the V nullcline (i.e. V 0
s > V 0) and when

the system is excited (i.e. Iapp > 0), the system is bistable. In this case, the saddle node
separates two basins of attraction: the basin of the stable node and the basin of a possible
limit cycle. Thus, the system can converge towards one of these two attractors. Indeed,
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Figure 4.3.3: Trajectories in the phase portrait (left) and the associated time evolutions of
V and Vs (right) for two distinct sets of initial conditions of a regenerative system with a
positive applied current (V 0 < V 0

s ).

when the current is sufficient, the gradient is high in the bottleneck bounded by the V
nullcline extrema. Therefore, the system cannot reach the attractive lower left part of the
V nullcline when initialized outside the basin of attraction of the stable node (see Figure
4.3.3, top). Consequently, the system gradient is governed mostly by the δV

δt component
and pulls the system to the reset point. Thus, the system always stays outside the basin
of attraction of the stable node and describes a limit cycle. However, for a low positive
current and a set of initial conditions located in the basin of attraction of the stable node,
the system converges towards the stable node (see Figure 4.3.3, bottom). In other words,
the system is able to evolve towards a resting state or to show tonic spiking. There is a
regenerative feedback and it is associated to a negative conductance in the neuronal model.

Provided that the equilibrium potential of the fast timescale V 0 is fixed and that the Vs
nullcline is a straight line where Vs = V , the relative value of V 0

s with respect to V 0 will
define if the fixed points are either in the top part or in the bottom part of the V nullcline.
Therefore, the equilibrium potential V 0

s has the physiological interpretation of the balance
between slow restorative and slow regenerative ion channels.

4.3.3 Response to stimulation patterns and firing properties

As we said, the balance between slow restorative and slow regenerative ion channels
offered by the parameter V 0

s impacts the stability. Therefore, this balance has also an
impact on the excitability properties of the system. To illustrate these properties, we
simulated various patterns of the current Iapp through time. We have then studied the
excitability properties illustrated by the system response to these simulations. Unlike in
the phase planes shown in Figure 4.3.1, we used a high value of the current Iapp to excite

37



the system. According to section 4.2, the reader should bare in mind that increasing the
absolute value of the current will move the V nullcline extrema away from its straight lines
intersection in (V 0;V 0

s ) when the current is null. Therefore, for a high positive current
value, the V nullclines extrema are relatively away from the Vs nullcline and there are no
more fixed points in the system. This assumption is true for both values of V 0

s used to
simulate respectively a slow restorative and a slow regenerative feedback. The parameters
of these two models are chosen to be each equal. However, the parameter V 0

s is, as before,
set to −45 or −35 in order to simulate each model respectively with a restorative or a
regenerative slow feedback, with a V 0 of −40.

Figure 4.3.4: Phase planes of a restorative slow system (A.) and of a regenerative slow
system (B.) for a large negative (left) and positive (right) value of the applied current.

Long-time pulse Studying a step of current as input of the system can help to un-
derstand the properties involved in tonic spiking. To do so, we simulated a 0 current
with initial conditions near the resting state of the two systems obtained respectively for
a restorative slow feedback and a regenerative slow feedback. The results of these two
simulations are shown in Figure 4.3.5. After 150 ms, we suddenly increased the current to
30. This value is chosen so that there is no fixed point anymore and the only attractors in
these systems are stable limit cycles. This current is maintained during 200 ms. Finally,
the current is set back to its initial value.

The time responses of the systems having a slow restorative feedback or a slow regen-
erative feedback are different. The system built with a slow restorative feedback reaches
its stable equilibrium when the current is low. When the current is very high, the system
spikes directly with a constant frequency and describes a stable limit cycle. To contrast,
the system built with a slow regenerative feedback shows particular excitability properties
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Figure 4.3.5: Time responses of the restorative slow system (A.) and the regenerative slow
system (B.) for the same pulse of current. The red lines are the simulations of the applied
current. The blue lines are the cell potentials for each system. The green lines are the slow
potential for each system.

such as spike latency and the presence of afterdepolarization potential. Spike latency is
the variable latency preceding the first action potential produced in response to a current
stimulus. Indeed here, the highest value of the step of current is high and there is no stable
equilibrium in the system for the chosen parameters. Therefore, the only explanation for
the fact that the system does not spike as soon as the current is increased is that the
system needs more time to produce the first action potential and to reach the stable limit
cycle. The afterdepolarization potential is the distinct depolarization immediately follow-
ing a spike (or a train of spikes) with a low amplitude. As for the restorative system, the
regenerative system converges towards a limit cycle too when the current is high provided
that the pulse duration is long enough.

The last difference that can be seen in Figure 4.3.5 is related to the stable limit cycle of
the two systems. We can see that the cycle frequency seems lower when the slow feedback
is restorative. Moreover, we see that the limit cycle minima are different for these two
systems. Indeed, as the V nullcline position depends on the equilibrium potential V 0

s

(which defines the slow feedback type), the V nuclline minimum is not at the same place
in the phase plane for these two models. From the position of the reset state in the phase
plane, the system is attracted to the upper left part of the V nullcline and slides down on
it until it reaches its minimum, where the system is actually between the attractive part
and the repulsive part of the nullcline. Then, the system spikes again. For the regenerative
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system, the minimum of the upper arm of the V nullcline is higher than the V nullcline
minimum of the restorative system. Therefore, the regenerative system reaches the V
nullcline minimum sooner. This explains why the frequency of the tonic spiking produced
by the regenerative slow feedback is higher. When the cell potential is higher that Vmax,
the reset rule is applied. The two limit cycles shown in Figure 4.3.5 have thus the same
maxima.

Figure 4.3.6: Time responses of the restorative slow system (A.) and the regenerative slow
system (B.) for short pulses of current. The red lines are the simulations of the applied
current. The blue lines are the cell potentials for each system. The green lines are the slow
potentials for each system.

Short-time pulses In figure 4.3.6, we study the responses to short-time pulses of current
of the same two systems respectively made of a slow restorative and a slow regenerative
feedback. As for the previous simulation, the current takes two possible values: 0 or 30.
Consistently with the responses obtained for a long-time pulse shown in Figure 4.3.5 and
the observations we made here above, we see that the behavior of these two systems is
very different for this type of simulation. Indeed, the system built with a slow restorative
feedback delivers an action potential as soon as the current changes. Once the pulse
disappears, the only attractor left in the phase plane is a stable node. Therefore, the model
with a restorative slow feedback slowly reaches rest until the next stimulation. To contrast,
exciting the regenerative system in a punctual way is not sufficient to get the system out
of the basin of attraction of the stable resting state. This observation is directly linked to
the spike latency property that is clearly shown in Figure 4.3.5. Indeed, the range of time
in which the current is high is too small here. Thus, the convergence of the system is set
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by the value of the baseline of the current applied when there is no pulse, which is equal
to 0 in this case. Therefore, the system converges towards a stable equilibrium when the
feedback is regenerative.

Figure 4.3.7: Time responses of the restorative slow system (A.) and the regenerative slow
system (B.) for the same pattern of current. This pattern of current contains each time
a positive pulse followed later by a negative one. The red lines are the simulations of the
applied current. The blue lines are the cell potentials for each system. The green lines are
the slow potentials for each system.

Up and down short-time pulses An interesting pattern of current to enhance the
contrast between restorative and regenerative feedbacks consists in simulating a high(up)
short-time pulse followed by a negative(down) short-time pulse with the same absolute
value. The baseline of the current is here a little bit higher than 0. Indeed, if the value
of the current is 0 or very close to it, the gradient of V between the extrema is too close
to 0 and the system cannot reach the maximum value Vmax to produce a spike and enable
the reset rule. The value of the current baseline is therefore chosen to enable this spiking
behavior. The highest value and the lowest value of the current are respectively 30 and −30.

If the baseline of the current is 0, no cyclic behavior is possible. As explained earlier,
for a positive applied current under the threshold of approximately 0.36, the gradient of V
is not sufficient for the trajectory to go between the two extrema. Thus, the cell potential
cannot show a limit cycle for very low currents. In the simulation of short-time pulses in
Figure 4.3.6, the slow regenerative model converged towards a stable equilibrium as the
baseline is 0. Here, the current baseline is above 0 and both a cyclic behavior and a stable
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equilibrium can be obtained. Indeed, the response of the slow regenerative model shows
time frames with different lengths where the system converges towards rest and others
where it converges towards a stable limit cycle. The regenerative model is thus bistable.
To contrast, the model built with a slow restorative feedback always converges towards rest
even if it is perturbed by up or down current pulses. Therefore, the model with restorative
feedback is not bistable.

Bistability is easily observed in a phase portrait. At the beginning, the initial condi-
tions are in the basin of attraction of the stable node, making the system converge towards
the stable equilibrium. After the first positive pulse, the system is brought outside the
basin of attraction of the stable equilibrium. In fact, the V nullcline extrema are brought
further from the point (V 0;V 0

s ) and thus the V nullcline maximum is significantly lowered
when the current switches from a low positive to a high value of current. While the system
was on the V nullcline near the equilibrium point before the increase of current, the system
finds itself between the two parts of the V nullcline during the positive pulse. The system
is then drawn by its gradient to the reset and converges towards a stable limit cycle. Once
a negative pulse is applied at a particular time, the system is able to return towards its
stable equilibrium. Indeed, the phase plane of the model with a negative current shows a
stable node on the lower left part of the V nullcline. Therefore, the system is attracted
towards this stable node during the short-time negative pulse.

The sequence of a stable equilibrium followed by a stable limit cycle, itself followed
by a convergence towards rest, is well observed in the right part of Figure 4.3.7, from 0
to 400 ms, for a regenerative slow feedback. From 400 to 800 ms, we simulated twice a
positive pulse followed by a negative pulse after a varying time. In the model response, we
see that the system does not stop spiking between the first negative pulse and the second
positive one, contrasting with what we have between 0 and 400 ms. This is to highlight
that the negative pulse does not always force the system to converge back towards the
stable equilibrium. In fact, a certain timing is important to observe this phenomenon.
Indeed, delivering a negative pulse to the system for a short-time will make the trajectory
to follow the left part of V nullcline when the current is negative. As the pulse is applied
during a very short amount of time, the system position in the phase portrait is essential
to be able to return to the basin of attraction of the stable node.

4.4 Bifurcations study

Throughout this subsection, we study how the system stability changes with the consid-
ered parameters. Each of the considered parameters produces a bifurcation that helps to
understand the model excitability properties. First, studying the bifurcation of the current
helps to understand the convergence of the system. Second, studying how the equilibrium
potential of the slow feedback (V 0

s ) changes the system stability highlights the contrast
between restorative and regenerative slow feedback. Third, studying the impact of the
conductances on the system stability will help to finally characterize the different types of
excitability that can be modeled.

4.4.1 Bifurcation and limit cycle frequency evolution with current

In section 4.2, we deduced analytically that modifying the current resulted in moving
the V nullcline extrema and observed this phenomenon in Figures 4.3.1 and 4.3.4 from
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the previous subsection. As the Vs nullcline is not influenced by any of the parameters, it
is considered as fixed. Intuitively, the Vs nullcline, being a straight line, can intersect at
most two times the V nullcline to create two fixed points, can be tangent to one part of
the V nullcline, or may not intersect it at all. Therefore, there are always 0, 1, or 2 fixed
points in the phase plane. Analytically, the number of fixed points is set by the sign of ∆,
defined in equation (4.2.2). We define the bifurcation current as the current for which we
have the transition from 0 to 2 fixed points, at which we have only one fixed point so. If
we set ∆ to 0, which analytically corresponds to only one fixed point, we can express the
bifurcation current in terms of the other parameters using equation (4.2.2):

Ibif =
ḡf ḡs(V

0 − V 0
s )2

ḡf − ḡs

Consistently with the phase planes shown in Figures 4.3.1 and 4.3.4, ∆ is positive(resp.
negative) when the current is lower(resp. higher) than the bifurcation current and there are
therefore 2(resp. 0) fixed points in the system. This type of bifurcation is called a saddle-
node bifurcation. A saddle-node bifurcation is created by two fixed points, typically a
saddle and a stable/unstable node, that get closer and closer with an increase of the
bifurcation parameter until they collide into one fixed point at the bifurcation point. The
fixed point obtained at the bifurcation has the stability of the two fixed points that collided:
in the case of a stable node that collides with a saddle, the resulting fixed point is attractive
on one side and partly repulsive on the other. If the bifurcation parameter is further
increased, there is no fixed point in the system anymore.

In figure 4.4.1, we show the bifurcation diagram obtained for a varying current in two
models: the first is built with a restorative slow feedback and the second is built with a
regenerative slow feedback. Each bifurcation diagram contains two parts: the evolution of
the V coordinate with the current on the left and the evolution of the Vs coordinate on the
right. The shape of the bifurcation diagram for each slow feedback type highlights that
the fixed points are found respectively on the left and on the right part of the V nullcline.
As the current increases, they get closer and closer to each other until they merge into one
point before disappearing. The shape of this bifurcation diagram is therefore consistent
with the intuition on the V nullcline movement with Iapp and the analytical developments
associated to the computation of the fixed points in section 4.2. For the parameters we
chose, the bifurcation current is 25 for both models because the difference between each
equilibrium potential of the slow feedback (V 0

s ) and V 0 is ±5.

If we compare the bifurcation diagrams obtained for a slow restorative and a slow re-
generative feedback, we can highlight other properties of their excitability. The model built
with a regenerative slow feedback shows bistability in the associated bifurcation diagram.
As a matter of fact, between a value close to 0 and the bifurcation current, we find the
coordinates of the stable equilibrium and the minimum and maximum values of the stable
limit cycle, defined for each current in this range. The smallest current at which a stable
limit cycle can be observed is not 0 but around 0.36 for the set of parameters chosen. Actu-
ally, the gradient needs to be sufficient in the bottleneck between the V nullcline extrema
for the model to be able to repeatedly pull the trajectory towards the reset. It is also to be
noted that the bifurcation diagram with Iapp of Vs for the slow regenerative model clearly
shows that the saddle node separates the basin of attraction of the stable node and the
one of the stable limit cycle.
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Figure 4.4.1: Bifurcation diagrams with the applied current of the system with restorative
feedback (A.) and the system with regenerative feedback (B.). The V coordinate of the
fixed points and the maximum and minimum of V during the limit cycle are represented
on the left. The Vs coordinate of the fixed points and the maximum and minimum of Vs
during the limit cycle are represented on the right.

To contrast, the model built with slow restorativity does not explicitly show bistability
as there is no possible current at which we observe a cycle and a steady-state. Indeed, the
cyclic behavior arises from the presence of an unstable node in the phase plane, making the
system reach the reset and describe a stable limit cycle. Nevertheless, there is a very small
range of current in which the stable limit cycle is reached even though a stable node exists
in the system. However, bistability is very fragile in this range of values and we maintain
that we cannot observe explicitly two distinct behaviors as shown in the simulation in
section 4.3. Moreover, the saddle node does not properly separate the basin of attraction
of the stable node and the stable cycle which makes the bistability even more fragile. In
fact, the range of values where a limit cycle exists near a stable node is really close to the
point where the stable node becomes unstable through a bifurcation called subcritial Hopf
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bifurcation. In the restorative model, this bifurcation happens when the stable fixed point
is located right where the minimum of the V nullcline takes place. At this moment, the
fixed point is between the attractive (i.e. left) part and the repulsive (i.e. right) part of
the V nullcline.

Finally, we see that the stable limit cycle described by the two models are different, as
noticed during the analysis of Figure 4.3.5. The stable limit cycles can also be characterized
by their frequency. Previously, we noticed that the limit cycle shown by the slow restorative
feedback model seemed to have a lower frequency than the system with slow regenerativity
for the same current. In figure 4.4.2, we draw the evolution of the limit cycle frequency with
the current. Consistently, the lowest current of these two curves is not the same. Indeed,
for the restorative model, the stable limit cycle exists only when the stable node looses
its stability, which happens at a current higher than 0. Also, the limit cycle frequency of
the slow regenerative model is significantly higher than the model with slow restorativity.
Intuitively, this difference is partly explained by the difference between the maximum and
minimum of the limit cycle shown in Figure 4.4.1: this difference is larger for the model
with slow restorativity, meaning that the system covers a broader area of the phase plane
in more or less the same time, which may decrease the stable cycle frequency. The shape
of these two curves defining the evolution of the frequency is also different, probably due
to second order effects.

Figure 4.4.2: Evolution of the limit cycle frequency with the applied current for a regen-
erative and a restorative system.

4.4.2 Bifurcation with the type of slow feedback

To put into perspective the effect of the equilibrium voltage on the system stability, we
can study the evolution of the fixed point coordinates and the corresponding eigenvalues
of the Jacobian matrix. Once again, we will compute a bifurcation diagram, with V 0

s as
the bifurcation parameter this time. As we just showed, the current also has an impact
on the system stability. To keep only one bifurcation parameter at the time, we keep only
V 0
s in a first instance and show the corresponding bifurcation diagram associated to three

different values of current. These bifurcation diagrams can be found in Figures 4.4.3, 4.4.4,
and 4.4.5. For each bifurcation diagram, we added 3 phase planes to have a better idea of
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the impact of V 0
s on the nullclines intersection and the corresponding fixed point stability.

Figure 4.4.3: Bifurcation diagram with V 0
s (left) and phase planes associated to different

values of V 0
s (right) for a low value of current.

Figure 4.4.4: Bifurcation diagram with V 0
s (left) and phase planes associated to different

values of V 0
s (right) for a middle value of current.

For a low positive applied current, the restorative and regenerative models respectively
used for the previous analysis have the same number of fixed points. Indeed, as seen in
Figure 4.4.3(left, upper right and lower right), the phase plane of these two models counts
a saddle node and a stable node. However, if the slow reference potential V 0

s is very close
to V 0, which is equal to −40 in this section, the resulting model does not have any fixed
point (Figure 4.4.3 left and middle right). In this case, the system converges towards a
limit cycle. It is also to be noted that for the conductances chosen, the saddle node always
appears on the right of the stable node, as the saddle coordinates are always higher.
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Figure 4.4.5: Bifurcation diagram with V 0
s (left) and phase planes associated to different

values of V 0
s (right) for a high value of current.

Switching from Figure 4.4.3 to Figure 4.4.4 highlights the impact of an increase in applied
current. As the impact of the current on the phase plane was already explained earlier,
we can only consider the fixed points position as a function of V 0

s in the left part of these
figures. The area where there are no fixed points and in which we observe only a limit
cycle is much wider when the current is increased. This phenomenon is explained by the
movement of the V nullcline induced by an increase in applied current. As the distance
between its extrema increases with an increasing current, the range of values for V 0

s so that
the vertical translation produced makes one of the two parts of the V nullcline touch the
Vs nullcline is larger. Moreover, it can be seen that the area where a stable node coexists
with a stable limit cycle is larger when the current is higher. Consistently, bistability is
observed only for regenerative models. For restorative systems, the limit cycle exists thank
to an unstable node, located on the repulsive arm of the V nullcline. Indeed, the extrema
of the V nullcline are located on the axis V = V 0 and the unstable node coordinates are
larger than this threshold.

A further increase in the applied current allows to switch from Figure 4.4.4 to Figure
4.4.5. If we compare the right part of these figures, we can clearly see that the distance
between the V nullcline extrema is larger for a higher current and that the fixed points
are closer to each other. For V 0

s = −45, we can observe that the stable node becomes
an unstable node for the increase in current considered. The same conclusions drawn on
the comparison between Figure 4.4.3 to Figure 4.4.4 apply here. Indeed, the area in the
bifurcation diagram where only a cycle is observed is also larger. Moreover, the position
of the two saddle-node bifurcations are modified with the current. Only the lower left and
the upper right parts of the V nullcline are candidate to be tangent to the Vs nullcline. As
we explained, when the current increases, the extrema of the V nullclines are smoother and
brought further from (V 0;V 0

s ). Therefore, the positions where the fixed points are merged
into a double fixed point also tend to be brought further from (V 0;V 0

s ). As the location
where the stable node becomes unstable for the system with slow restorative feedback is
fixed, the area where an unstable node gives rise to a limit cycle is also larger.
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4.4.3 Impact of the conductances

The final effect on the V nullcline is produced by a change in the conductances of the
fast and slow currents. To understand their impact, it is interesting to consider that the
cell voltage is far from its reference potential V 0. In this manner, the V nullcline can be
approximated as:

Vs ≈ V 0
s ±

√
ḡf (V − V 0)2

ḡs
,

such that the effect of the applied current is negligible. Using this simplification, we can
see that when the difference between the cell potential and its reference potential is large,
the nullcline is globally made of two straight lines. This situation was already observed
without any simplification for a zero current.

Thus, the conductances ḡf and ḡs scale the slope of these two straight lines. As the Vs
nullcline is also a straight line with a slope of one, we can already fix three types of cases:
either ḡf is greater than ḡs, ḡf is equal to ḡs or ḡf is lower than ḡs. Until now, we always
considered that ḡf is 1 and ḡs is 0.5, which corresponds to the first case of the three. To
understand how the behavior of the system, being either restorative or regenerative, is
impacted by the choice of conductances, we can analyze how the saddle-node bifurcation
behaves for these three cases. To do so, we take back the equation of ∆ (equation 4.2.2)
and equal it to 0 to obtain a double fixed point. This equation can be rewritten as the two
reciprocal functions:

SN ≡ V 0 = V 0
s ±

√
(ḡf − ḡs)
ḡf ḡs

I or ḡs =
ḡfI

I + ḡf (V 0 − V 0
s )2

.

This function can be plot in the space (ḡs;V
0) to locate the position of the saddle-node

bifurcation. At first, it is helpful to consider that V 0
s is equal to the previous value chosen

for V 0, being −40. To be able to plot the function, we chose a value of the applied current
slightly over 0. Figure 4.4.6 shows the horizontal position of the saddle-node bifurcation
for a varying conductance ḡs and a fixed conductance ḡf of 1.

When the slow conductance is lower than the fast one, there are two saddle-node bifur-
cations possible: this bifurcation is located either on the lower left part of the V nullcline
or on the upper right part. If the parameter V 0 is between these two limits, there are no
fixed points in the phase plane. The same reasoning can be realized with a fixed V 0 and
a moving V 0

s . When the conductances have the same value, the two saddle-node bifurca-
tions collide into one point, being a degenerated bifurcation. If the slow conductance is
further increased, there are two fixed points in the system. The position of the saddle-node
bifurcation has a shape of a peak that is larger when the current is higher.

4.4.4 Types of excitability

Taking into account that the system can be either restorative or regenerative and that
there are three possible cases for the choice of conductances, we can draw 9 phase planes
(taking into account the limit case where the system is neither restorative or regenerative
when V 0 = V 0

s ) and consider the position of the fixed points. Indeed, the fixed points
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Figure 4.4.6: saddle-node bifurcation position with a varying ḡs. V 0
s is fixed to be equal

to −40. The current is chosen to be close to 0 but non zero so that we see the impact of
ḡs. When the current is even closer to 0, the peak becomes sharper.

position can give clues about the system excitability. These 9 phase planes are represented
in Figure 4.4.7 for a 0 current.

Let us first consider the Figure 4.4.7A, where, as before, the slow conductance is lower
than the fast conductance. When the system is neither restorative or regenerative (when
V 0 = V 0

s ), the degenerated bifurcation appears, where the two couples of fixed points
collide at the same point.

In Figure 4.4.7C, the slow conductance is higher than the fast conductance. There is a
major impact on the fixed points position: when two fixed points are found, they are either
on the attractive or on the repulsive part of the V nullcline. Moreover, the saddle node is
always located on the lower part of the V nullcline. If the initial conditions of the system
are lower than the saddle coordinates, the system does not converge. In fact, the system
will be attracted to the lower left part of the V nullcline and try to reach the Vs nullcline.
This will never happen as the V nullcline asymptotes have a slope lower (in absolute value)
than the slope of the Vs nullcline. For regenerative systems, bistability cannot be observed
as well. However, it is still possible to observe a cycle for the regenerative system and a
stable equilibrium for the restorative system.

Choosing the same value for the fast and slow conductances, or even for the same ref-
erence potentials, is not a good choice for this work. Indeed, choosing V 0 = V 0

s induces
degenerated bifurcations as shown in the middle parts of Figures 4.4.7A and C. In the
left and right part of Figure 4.4.7B, we consider respectively the impact of choosing the
same conductances for a restorative and a regenerative system. Only one fixed point can
be obtained: either on the upper left part of the V nullcline or on the lower right. The
other fixed point is rejected to infinity. Unfortunately, this will prevent the system from
converging for several sets of initial conditions. The worst choice combines ḡf = ḡs and
V 0 = V 0

s as the nullclines overlap.
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Figure 4.4.7: Fixed points stability and their position evolution in the phase plane with
varying parameters V 0

s and ḡs.

In Figure 4.4.8, we emphasize that the choice of the conductances values is important
for the system to converge for any set of initial conditions. Indeed, for a regenerative
feedback (Figure 4.4.8, left) and ḡf < ḡs, only a stable limit cycle can be observed if the
system converges. If the choice of conductances is good, meaning that we choose ḡf > ḡs,
bistability can be observed as before. When the current applied increases, the area where a
bistable behavior leaves room to the limit cycle only is increased. For a restorative feedback
(Figure 4.4.8, right), the switch between steady-state and limit cycle is due to a change
in the position of the fixed point. In this part of Figure 4.4.8, the limit between these
behaviors seems staircase because a mesh (ḡf ; ḡs) is used to determine the convergence
of the excited system. As for the regenerative system, the restorative system may not
converge if ḡf < ḡs.
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Figure 4.4.8: Approximation of the bifurcation diagram with conductances ḡf and ḡs for
a regenerative model (A.) and a restorative model (B.) with a high value of current.

4.5 Summary

In this section, we analyzed in-depth the MQIF model with a fast and a slow timescale.
It appeared that a slow regenerative feedback is needed to model several properties in DHN
firing patterns (bistability, afterdepolarization potential, and spike latency). To understand
the impact of each parameter and the dynamic of this model, many bifurcation studies were
lead. Finally, we analyzed the impact of the conductances and the reference potentials on
the convergence of a perturbed system.
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Chapter 5

Burst generation with additional
ultra-slow timescale

In this section, we show that bursting can be observed if we add an additional ultra-
slow restorative feedback to the 2D slow regenerative MQIF model studied in the previous
section.

Contributions The 3D MQIF model presented allows to model bursting. To understand
the mechanisms behind the generation of bursting, we chose to analyze the phase plane of
this model and its time responses to a constant current of pulses of current. This section is
organized the same way the study of the 2D MQIF model is. First, we take a mathematical
approach by computing the nullclines and their intersections to have clues about the phase
plane of the 3D model. Next, we present the 3D phase plane and some projections in the
space (V ;Vs) to show the impact of adding an ultra-slow feedback to the 2D MQIF model.
This impact is also discussed based on simulations of the system for a constant applied
current and then for several patterns of applied current. Finally, we discuss the impact of
the current and a change in the ultra-slow parameters on the 3D MQIF model.

5.1 Model

To add an ultra-slow feedback, we used a supplementary quadratic term in the update
equation of the cell potential. This quadratic term has the same shape as the term repre-
senting the slow feedback. As for the slow feedback, the strength of the ultra-slow feedback
is modulated by the ultra-slow conductance ḡus and the reference potential V 0

us. Similarly
to the slow potential, we added a third state variable into the new MQIF model, which is
the ultra-slow potential Vus. The time evolution of this new state variable is scaled by a
time constant τus, equal to 1000 ms. The update of the MQIF model is:

CV̇ = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 − ḡus(Vus − V 0

us)
2 + Iapp if V ≥ Vmax, then

τsV̇s = V − Vs V ← Vr,

τus ˙Vus = V − Vus Vs ← Vs,r, (5.1.1)
Vus ← Vus + ∆Vus.

For now, a majority of old parameters are the same as before. However, to keep the
same reference potentials chosen in the work of Van Pottelbergh et al., the slow reference
potential is fixed at −38.4, which allows to keep a regenerative slow feedback. To ensure the
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convergence of this 3D model, the ultra-slow feedback is chosen to be negative. Therefore,
the ultra-slow reference potential is set at −50. The associated ultra-slow conductance is
set at 0.015. To account for the ultra-slow evolution of Vus, its reset value is not fixed.
Indeed, each time the cell potential will spike, the ultra-slow potential is increased by ∆Vus.
In the simulations that will be presented, ∆Vus is set to 3.

5.2 Fixed points and nullclines

The nullclines of this new model are computed by setting separately each gradient to 0.
The three nullclines equations are:

V nullcline: 0 = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 − ḡus(Vus − V 0

us)
2 + Iapp,

Vs nullcline: 0 = V − Vs,
Vus nullcline: 0 = V − Vus.

(5.2.1)

Due to the additional dimension, the V nullcline becomes a plane with a particular shape
in the 3D space (V ;Vs;Vus). The Vs nullcline also becomes a plane as the straight line
V = Vs is projected for each value of Vus. Similarly, the Vus nullcline is a plane of the same
shape.

The ultra-slow feedback has thus an impact on the V nullcline. To understand this
impact, it is interesting to rewrite the V nullcline as a function of V and Vus, as we did
for the analysis of the 2D MQIF model. The V nullcline can therefore be written:

Vs = V 0
s ±

√
ḡf (V − V 0)2 + It

ḡs
if It ≥ 0,

V = V 0 ±

√
ḡs(Vs − V 0

s )2 − It
ḡf

if It ≤ 0,

with It = Iapp − ḡus(Vus − V 0
us)

2.

Several observations can be made on this set of equations defining the V nullcline in the
space (V ;Vs;Vus). In these notations, we use a new variable It, that aims to represent the
total current in the two dimensional model. In fact, if the ultra-slow potential does not
change and is fixed to be equal to its reference potential V 0

us, the total current It is equal
to the applied current Iapp and the model is similar to a 2D MQIF model. Provided that
we want to excite the 3D model, the applied current must be greater than or equal to zero.
Indeed, if the applied current is negative, the total current is always negative, making the
model to always converge towards a stable equilibrium.

The impact of the additional ultra-slow feedback can be understood as a modulation of
the total current in the 2D model. Due to the reset rule, the ultra-slow voltage Vus will
tend to increase each time the cell potential spikes. If we consider an initial state where
the ultra-slow potential is equal to its reference potential, which induces the total current
to be equal to its maximum value, the ultra-sow potential will tend to diverge from its
reference as long as the cell potential spikes. Therefore, during spiking, the total current
in the equivalent 2D model decreases. Eventually, the total current will be equal to or
less than 0, preventing the cell potential to spike again. Therefore, quiescent periods can
be induced by this ultra-slow restorative feedback. Based on its definition, we see that
bursting is thus probably possible with such a model.

53



The change in the cell potential behavior from spiking to a quiescent period happens
when the total current It falls below 0. When the total current in the equivalent 2D
model is null, the V nullcline is cross-shaped in the space (V ;Vs). This happens when the
ultra-slow current takes the values:

Vus = V 0
us ±

√
Iapp

ḡus
.

As expected, the reference potential of the ultra-slow potential defines the position where
the total current is maximum. The bigger the conductance is, the bigger the impact of
the ultra-slow feedback is on the cell potential behavior. The range of values taken by
the ultra-slow potential to keep a positive total current will shrink if the conductance ḡus
increases. Accordingly, the ultra-slow restorative feedback would much more slow down
the cell potential behavior.

The fixed points are found at the intersections of the 3 planes defined by the nullclines
equations. As for the 2D MQIF model, we need to solve a second degree equation in V ,
as the fixed points have the coordinates (V̄ ;V̄ ;V̄ ). This equation is:

(ḡf − ḡs − ḡus) V̄ 2−2
(
ḡfV

0 − ḡsV 0
s − ḡusV 0

us

)
V̄+ḡf

(
V 0
)2−ḡs (V 0

s

)2−ḡus (V 0
us

)2
+Iapp = 0.

Using the discriminant method, we can determine the value of V̄ . The discriminant
can be simplified and we can write the fixed points coordinates as:

V̄1,2 =
ḡfV

0 − ḡsV 0
s − ḡusV 0

us ±
√

∆

ḡf − ḡs − ḡus
with

∆ = ḡf ḡs
(
V 0 − V 0

s

)2
+ ḡf ḡus

(
V 0 − V 0

us

)2 − ḡsḡus (V 0
s − V 0

us

)2 − (ḡf − ḡs − ḡus)Iapp.
(5.2.2)

Similarly to the 2D MQIF, there are at most 2 fixed points, depending on the sign of
∆. As before, if the applied current is very high, there are no fixed points in the phase
plane. The stability of these fixed points is determined by the eigenvalues of the Jacobian
matrix, calculated based on the 3D model equations:

J =


2

C
ḡf (V − V 0) − 2

C
ḡs(Vs − V 0

s ) − 2

C
ḡus(Vus − V 0

us)

1 −1 0
1 0 −1


5.3 Phase plane and reference simulations

5.3.1 Phase plane of the 3D model

The phase plane of the 3D model is represented in Figure 5.3.1. The orange plane is
the V nullcline. The pink and blue curves show the intersection between the V nullcline
and the Vs or the Vus nullclines respectively. This phase plane corresponds to an applied
current of 4.

It can be seen that the system is excited as there is no steady-state for this applied
current. Also, when Vus approaches its reference potential of −50, a well appears in the
phase plane. In the range of values of Vus associated to this well, the system spikes. Indeed,
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as discussed before, Vus is close enough to its reference potential to enable the total current
in the equivalent 2D model to be positive. In Figure 5.3.2, we show the projections of the
V nullcline in the space (V ;Vs) for increasing values of Vus (left to right). The well is
associated to the range of values of Vus that induces a positive current in the equivalent
2D model. This well is therefore called excitability well. Therefore, at these locations of
the phase plane, the gradient makes the cell potential spike. The trajectory of the system
in the excitability well goes from the left (low V ) to the right, before being reset on the
line (Vr;Vus + ∆Vus;Vs,r).

Figure 5.3.1: Phase plane of the 3D model with an added ultra-slow restorative feedback
for Iapp = 4. The V nullcline is the plane shown in orange. For the sake of clarity, the
Vs and Vus nullclines are not shown but rather, we show separately the intersections of
these nullclines with the V nullcline. Thus, the pink lines are the curves associated to the
intersection between the V and Vs nullclines. The blue lines are the curves associated to
the intersection between the V and Vus nullclines.

When the applied current is negative, the excitability well disappears as it can be seen
in Figure 5.3.3. Thus, each cut (V ;Vs) of the 3D phase, obtained for any value of the
ultra-slow potential, is similar to Figure 5.3.2, left and right.

5.3.2 Responses to a constant current

For a positive applied current of 4, there are no fixed points in the phase plane. However,
the model does not converge towards a classical limit cycle, as the 2D MQIF model did. In
fact, due to the added ultra-slow restorative feedback, the model is able to show bursting.
In Figure 5.3.4, we show the response of the system submitted to a constant positive
current. This figure consists in a time evolution of the cell potential, the slow potential
and the ultra-slow potential in the upper part and in a time evolution of the total current
It. The pink area represents a period of the oscillations described by the model. The zoom
on this pink area is provided in Figure 5.3.5.
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Figure 5.3.2: Projection of the V nullcline in the space (V ;Vs) for an increasing Vus from
left to right. The reference potential of the ultra-slow voltage being equal to −50, the total
current associated to the center of this figure is equal to the applied current, which is 4 in
this case. The left and the right parts of this figure are the same as the ultra-slow potential
chosen are at the same distance of the reference potential.

Figure 5.3.3: Phase plane of the 3D model with an added ultra-slow restorative feedback
for Iapp = −4. The V nullcline is the plane shown in orange. For the sake of clarity, the
Vs and Vus nullclines are not shown but rather, we show separately the intersections of
these nullclines with the V nullcline. Thus, the pink lines are the curves associated to the
intersection between the V and Vs nullclines. The blue lines are the curves associated to
the intersection between the V and Vus nullclines.

First, it is clear in Figure 5.3.4 that the period is very much increased due to the ultra-
slow restorative feedback. Indeed, without the impact of this timescale, the frequency of
the limit cycle was in the order of 100 Hz. Adding the ultra-slow restorative feedback, we
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Figure 5.3.4: Response of the system to a constant applied current. The upper plot shows
the time evolution of the cell, the slow and the ultra-slow potentials. The lower plot shows
the corresponding evolution of the total current It, computed based on the ultra-slow
potential. To make the parallel with the equivalent 2D model, 3 areas are represented:
stable, bistable and limit cycle. These areas actually correspond to the convergence of the
equivalent 2D model. In both plots, the pink area is a used to show a zoom in Figure 5.3.5.

see that the frequency of the oscillations is in the order of 1 Hz. During each period, there
are a train of spikes and a long quiescent period.

In the zoom provided in Figure 5.3.5, the time window begins at the end of the last
spike of the first train of spikes. Due to the reset rule, a train of spikes implies a large
increase in the value of Vus. This potential being always greater than its reference during
the oscillations, an increase in Vus involves a decrease in the total current. From there, the
equivalent 2D system is attracted to a stable equilibrium, even if the total current slowly
increases as the slow feedback is regenerative as explained in the previous section.

At some point, the total current becomes higher than the value at which the saddle-
node bifurcation occurs. Thus, the equivalent 2D system spikes after a given spike latency.
The light blue marker is positioned at the end of this spike latency. The spike latency
ends when the slow voltage is higher that the equivalent V nullcline maximum in the 2D
space. Then, the cell potential spikes until the ultra-slow potential implies a bifurcation
to a resting state, due to a negative total current, as discussed in the previous subsection.
The quiescent period is thus triggered by the ultra-slow potential being too far from its
reference potential, making the total current null or negative.
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Figure 5.3.5: Zoom on the pink area of the time response shown in Figure 5.3.4. Similarly,
the upper plot shows the time evolution of the cell, the slow and the ultra-slow potentials.
The lower plot shows the evolution of the total current It according to the evolution of
the ultra-slow potential. The yellow marker corresponds to the current value at which a
saddle-node bifurcation occurs in the equivalent 2D model. The dark blue marker denotes
the bifurcation from the bistable behavior to a stable equilibrium when the current becomes
negative. The light blue marker is located at the end of the spike latency before the first
spike.

The trajectory of the cell potential in the 3D model can be seen as a movement on
the bifurcation diagram of the 2D model we presented in the previous section. Indeed, in
Figure 5.3.6, we show the bifurcation diagram of the equivalent 2D model. Additionally,
we plotted the evolution of the cell potential V as a function of the total current It to be
consistent with the x-axis of this bifurcation diagram, being usually the current applied to
the 2D model. The color gradient on the right of the bifurcation diagram is linked to the
trajectory V (It) during one period of bursting and represents its time dependency.

During a large majority of the period, the cell potential describes a quiescent period. In
fact, the total current being positive, the system is actually in the basin of attraction of
the stable equilibrium of the 2D equivalent model. At this stage, the ultra-slow potential
is much higher than the cell potential, making the total current very small. Due to its
gradient, the ultra-slow potential decreases, meaning that the total current increases. Once
the current corresponding to the saddle-node bifurcation is reached, there is a small spike
latency. When the spike latency ends, the cell potential spikes, which corresponds to an
increase in the ultra-slow potential and a decrease in the corresponding total current. This
current decreases until being negative. Then, no more spikes can be generated directly
and the system is attracted towards the only attractor left : a steady-state and the cycle
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Figure 5.3.6: Trajectory of one period of the cell potential oscillations observed in Figures
5.3.4 and 5.3.5 as a function of the corresponding total current It shown in the bifurcation
diagram of the equivalent 2D model. On the left, there is a legend associated to the 2D
bifurcation diagram only. The V coordinates of the stable and saddle nodes are reported
as functions of the total current applied to the equivalent 2D model. As before, if a limit
cycle exists, the minimum and maximum of V are also reported. The color gradient on
the right of this figure accounts for the time evolution of the cell potential and the total
current. The 3 dark triangles correspond to the 3 spikes occurring during the burst of the
cell potential trajectory. They have approximately the same color as the duration of the
burst is really short compared to the entire period of oscillations. During the quiescent
period, the cell potential is located near the stable nodes of the equivalent 2D model.

restarts.

The fact that the slow potential is regenerative is important to generate bursting. Indeed,
this slow feedback enables several spikes to generated in a row of short durations. If this
feedback was restorative, bistability at the level of the equivalent 2D model would not
exist. In this case, the model would spike once, which would make the corresponding total
current below the value of the bifurcation. Therefore, the full restorative system would
be directly attracted back to the stable equilibrium. The behavior described by the cell
potential would be more of a tonic spiking one instead of bursting.

5.3.3 Responses to pulses of current

To further investigate the properties of the 3D system with an ultra-slow feedback, we
analyze its response to several pulses of applied current.

Long-time pulse First, in Figure 5.3.7, we see the input applied current in red, which
is a pulse. The baseline of the applied current pattern is 0 while its value taken during
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the pulse is 20. The cell potential, the slow potential and the ultra-slow potential are
shown in blue, green and orange respectively. This current being much higher than before,
the interburst frequency is higher, in the order of 10 Hz approximately. Figure 5.3.7 also
contains a zoom on the pulse of applied current and on the associated potentials evolution
in the same time interval.

Figure 5.3.7: Time evolution of the 3D model response to a pulse of applied current with a
long duration. The two upper plots show respectively the pattern of applied current used
in red (with a lowest value of 0 and a highest value of 20) and the corresponding evolution
of the cell, the slow and the ultra-slow potentials in blue, green and orange respectively.
The two lower plots show a zoom on the center of the pulse of the two upper plots.

During the pulse, the oscillations at equilibrium contain trains of less spikes compared
to what we had in Figures 5.3.4 and 5.3.5. At the transition between the baseline value
and the highest value of the applied current, the created train of spikes bears more spikes.
This is actually due to the fact that the value of the ultra-slow potential at the global
equilibrium of the 3D model is close to its reference potential V 0

us when the applied current
is null. Therefore, when the applied current is suddenly highly increased, the total current
is very close to the applied current. During the oscillations described by the system, the
ultra-slow potential is in a range of values so that the total current oscillates in a range of
value close to 0. Thus, for a high applied current, Vus will oscillate in a range of values
much higher to compensate the high applied current. That is the reason why much more
spikes are generated by the model at the transition. Moreover, at the transition between
high applied current and its baseline, Vus is very high and far from its reference potential.
Therefore, the total current is highly negative. There is thus a long time interval needed
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to reach back the final steady-state.

Figure 5.3.8: Time evolution of the 3D model response to several short pulses of applied
current. The upper plot shows the pattern of applied current used in red (with a lowest
value of 0 and a highest value of 20). The corresponding evolution of the cell, the slow and
the ultra-slow potentials are shown in the lower plot in blue, green and orange respectively.

Short-time pulses In Figure 5.3.8, we simulated 5 short-time pulses of applied current.
The highest current of this pattern is of 20, during the pulses. The baseline of the applied
current is set at 0. In this simulation, the duration of the pulses is apparently too small
to generate several spikes during only one pulse. If the duration of the pulses was longer,
we could observe several spikes arranged into a burst, as in Figure 5.3.7. These results
seem however similar to what we obtained when we simulated short-time pulses of applied
current for a 2D slow restorative system. This is probably due to the fact that the feedback
in the last timescale is negative in both cases.

5.4 Bifurcations study

This section aims to further investigate the impact of the parameters Iapp, ḡus and V 0
us

on the new model.

5.4.1 Bifurcation of the full system with current

In figure 5.4.1, we show the influence of the applied current on the 3D MQIF model.
The plot that is shown is a bifurcation diagram with the applied current of the full system.
For a low applied current, the only attractor in the system is a steady-state. In fact, for
a low current, the three planes associated to the nullclines V , Vs and Vus intersect into
two points. When the current is higher than the bifurcation current at which the saddle-
node bifurcation occurs, the system shows an oscillating behavior. Due to the regenerative
nature of the slow feedback, these oscillations have the same characteristics as bursting.

We can see that the curve showing the evolution of the minimum value of the cell
potential during bursting is not smooth. The non-linearity observed is apparently not a

61



Figure 5.4.1: Bifurcation diagram of the 3D model with the applied current. The V
coordinates of the stable and saddle nodes are reported in green and orange respectively.
The yellow marker denotes the position of the saddle-node bifurcation, where the stable
and saddle nodes collide. The dark yellow line reports the minimum of the oscillations for
a given applied current.

numerical error but matches with a change in the number of spikes during the burst. In
Figure 5.4.2, we show the evolution of the number of spikes with the applied current of the
3D model (lower part) and the according evolution of the interburst frequency, being the
frequency of the oscillations observed, with the applied current. The non-linearity observed
in the bifurcation diagram of Figure 5.4.1 appears also in the evolution of the interburst
frequency and matches the switch in the number of spikes during each burst from 3 to 2
spikes. We see that the interburst frequency increases with the applied current, which is
consistent with what we observed for the response of the system to a pulse of long duration
compared to its response to a constant current of 4, in Figures 5.3.7 and 5.3.4 respectively.

Figure 5.4.2: Evolution of the interburst frequency (upper part), being the frequency of
the oscillations in the cell potential, and of the number of spikes in the burst (lower part)
with the applied current.
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In Figure 5.4.3, we computed the evolution of the averaged instantaneous intraburst fre-
quency, being the instantaneous frequency between each spike in the burst. This frequency
globally decreases with the applied current. Before the non-linearity, there are 3 spikes
in the burst. Thus, we also reported the maximum and minimum intraburst frequencies,
being actually the two frequencies observed for a given current.

Figure 5.4.3: Evolution of the averaged instantaneous intraburst frequency, being the
instantaneous frequency between two spikes in a burst of the cell potential, with the applied
current. When there are more than 2 spikes in the burst, the pink area covers the range
of values between the minimum and maximum observed instantaneous frequencies for a
given applied current.

5.4.2 Impact of the ultra-slow feedback on the 2D equivalent system
stability

The impact of the ultra-slow parameters ḡus and V 0
us can be investigated using a simula-

tion of the model for a constant current of 4 as in Figures 5.3.4 and 5.3.5. The figures that
will be presented here consist in the time evolution of the potentials V , Vs and Vus in the
same time interval as in Figure 5.3.4 (upper part) and in a zoom on a period of oscillations
on the potentials V , Vs and Vus as in Figure 5.3.5. Each figure presented in the following
developments results from a change in either ḡus or V 0

us.

First, we show in Figure 5.4.4 the response of the system with a conductance of the
ultra-slow feedback decreased by a factor 10. The ultra-slow conductance tested is thus
equal to 0.0015. In fact, decreasing the conductance of the ultra-slow feedback decreases its
strength. Accordingly, we observe that the slow regenerative feedback has a greater impact
on the cell potential. Indeed, the interburst frequency is increased and the number of spikes
during the burst increases. Mathematically, the increase in the number of spikes is due
to the fact that the total current is less sensitive to a change in the ultra-slow potential
if ḡus is decreased. Thus, when the cell potential spikes, the corresponding increase in
the ultra-slow potential implies a smaller increase in the total current. This allows the
cell potential to generate more spikes during each burst. The increase in the interburst
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frequency corresponds to the fact that the oscillations in the ultra-slow potential stabilize
in a higher range of values than before. Thus, the gradient of Vus is higher which implies
a faster change in the total current during the quiescent period.

Figure 5.4.4: Evolution of the cell, slow and ultra-slow potentials under a constant applied
current of 4 and a decreased ultra-slow conductance from 0.015 to 0.0015 (upper part).
A region of interest highlights a single period of bursting and is shown separately (lower
part). The yellow marker is positioned at the value of Vus that involves a total current
It at which a saddle-node bifurcation occurs in the equivalent 2D model. The dark blue
marker is located where the total current goes below 0. The light blue marker shows where
the spike latency ends.

In Figure 5.4.5, we show the evolution of the 3D model potentials for a constant current
of 4 with an increased ultra-slow reference potential, set to −45 instead of −50. The
interburst frequency increases as a response to this change. Once again, the oscillations in
the ultra-slow potentials stabilize in a higher range than before. Consequently, the gradient
of the ultra-slow potential is higher, making the interburst frequency higher. However, for
a change in the ultra-slow potential, there is apparently no increase nor decrease in the
number of spikes per burst. This would actually be due to the fact that a change in the
ultra-slow potential corresponds to the same rate of change in the total current. Thus,
a change in Vus, notably during a train of spikes, has the same effect on It, whether the
ultra-slow reference potential is set to −50 or −45. However, one should bear in mind
that a change in the ultra-slow reference potential or in the ultra-slow conductance has an
impact on the position of the saddle-node bifurcation of the 3D model. Thus, for a given
applied current, it is possible to stop observing bursting if these parameters are changed.
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Figure 5.4.5: Evolution of the cell, slow and ultra-slow potentials under a constant applied
current of 4 and an increased ultra-slow reference potential from −50 to −45 (upper part).
A region of interest highlights a single period of bursting and is shown separately (lower
part). The yellow marker is positioned at the value of Vus that involves a total current
It at which a saddle-node bifurcation occurs in the equivalent 2D model. The dark blue
marker is located where the total current goes below 0. The light blue marker shows where
the spike latency ends.

5.5 Summary

In this section, we showed that the MQIF with a fast, a slow, and an ultra-slow timescale
is suited to model bursting. The 3D MQIF model created was analyzed mathematically
based on its nullclines expressions and the corresponding fixed points. As in the previous
section, the 3D MQIF model shows saddle-node bifurcation with 0, 1, or 2 fixed points.
When two fixed points are found, they are always a stable and a saddle nodes in this case.

The ultra-slow feedback impacts the V nullcline. This nullcline was shown in the space
(V, Vus, Vs) to reinforce that the ultra-slow feedback changes the total current It in the
equivalent 2D MQIF model. The reference potential of this feedback defines where the
impact is the lowest. The conductance of this feedback defines its strength and how
much a change in the ultra-slow voltage impacts the total current in the equivalent 2D
model. The link with the equivalent 2D MQIF model is also highlighted if we represent
the evolution of the cell potential during a period of bursting as a function of the total
current It (which depends on the ultra-slow voltage) in the bifurcation diagram of the 2D
equivalent model for a varying current. The ultra-slow voltage induces a displacement
along the stable equilibrium line, which creates the quiescent period in bursting, and a
switch to a cyclic behavior, which creates the train of spikes, when the current is larger
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than the bifurcation.

Finally, the study of the behavior of this model with the applied current Iapp showed
that the time responses of the new 3D MQIF model to short time pulses was similar
to the responses of the 2D slow restorative model. However, due to complex non-linear
effects, the bifurcation diagram and the frequencies evolution with the applied current
are different. Globally, this is because the slow regenerative feedback interacts with the
ultra-slow restorative feedback, notably to create bursting.
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Chapter 6

Plateau potentials generation with
additional super-slow timescale

In this chapter, we show that plateau potentials and accelerating behaviors can be ob-
served if we add an additional super-slow regenerative feedback to the 3D MQIF model
studied in the previous section. The new 4D model consists in 4 feedbacks: a fast one,
a slow regenerative one, a super-slow regenerative one, and an ultra-slow restorative one.
The super-slow feedback added in this chapter is characterized by a time constant between
the one of the slow feedback and the one of the ultra-slow feedback.

Contributions The development of the 4D MQIF model is essential to model the two
resting firing patterns shown by DHNs, being the accelerating behavior and plateau po-
tentials. Indeed, these firing patterns depend on the strength of a super-slow regenerative
feedback that is added to the 3D MQIF model presented in the previous chapter. As be-
fore, we take a mathematical approach to have clues about how the super-slow feedback
impacts the model dynamics. The dynamics of this model are then analyzed based on the
model response to a constant applied current. Such simulations support the description
of the movement of the V nullcline in the 3D space induced by the additional variation
of the super-slow potential. To simulate all DHNs firing patterns (except bursting which
is observed for a constant current), we must give an input pulse of applied current. We
created a methodology to determine the baseline and the maximum of the applied current
for the input pulse, as it is shown that the current has a large impact on the results. The
impact of a choice of conductances is also studied, which allows to understand how each
firing pattern is created in terms of feedbacks strength. Finally, eight additional firing
patterns, distinct from the 4 firing patterns of DHNs, can be obtained for various sets of
conductances and values of current and are presented.

6.1 Model

Similarly to the reasoning made to add the ultra-slow feedback, a supplementary quadratic
term is used in the update equation of the cell potential of the 3D MQIF model, found in
equation (5.1.1). As before, this new term has the same shape as the terms representing
the slow or the ultra-slow feedbacks. The strength of the added super-slow feedback is
modulated by the super-slow conductance ḡss and by the corresponding super-slow refer-
ence potential V 0

ss. Accordingly, a new state variable, the super-slow potential Vus, and its
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update equation are added to the model, leading to the 4D MQIF model:

CV̇ =ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 − ḡss(Vss − V 0

ss)
2 − ḡus(Vus − V 0

us)
2 + Iapp

τsV̇s =V − Vs
τss ˙Vss =V − Vss
τus ˙Vus =V − Vus

if V ≥ Vmax, then V ← Vr, Vs ← Vs,r, Vss ← Vss + ∆Vss and Vus ← Vus + ∆Vus
(6.1.1)

The time constant of the super-slow feedback is supposed to be lower than the ultra-slow
time constant of 1000 ms but greater than the slow time constant of 10 ms. Thus, τss is
set to 100 ms. As a reminder, the time constant of the fast feedback is set at 1 ms and the
capacity of the membrane is set to 1. The reference potentials are the same as before: the
cell reference potential V 0 is set at −40, the slow reference potential V 0

s is set at −38.4
to have a slow regenerative feedback and the ultra-slow potential V 0

us is set at −50. The
reference potential of the super-slow feedback is set to −10. This value is chosen to be far
from the other reference potentials so that the super-slow feedback is more regenerative
near rest. Intuitively, to model plateau potentials, we need a super-slow feedback, slower
than the slow regenerative one, that creates positive feedback near rest so that the increase
in spike frequency and the afterdischarge can be observed. A reference potential for the
super-slow potential of −10 is thus suited for this purpose.

The reset rule is applied when the cell potential is equal to or greater than Vmax, which
is chosen to be equal to 30. The cell potential is reset at a value Vr of −40, as for the
2D and the 3D MQIF models. The other values needed to apply the reset rule are chosen
based on [Pottelbergh et al., 2018]: the reset value Vs,r is set at −25 and the increase in
the super-slow and ultra-slow potentials, ∆Vss and ∆Vus respectively, are both set to 3.
Finally, the conductance of the fast feedback ḡf is set to 1. The other conductances are
not fixed in this section to allow us to see that this model is suited to represent each type
of firing patterns shown by DHNs.

6.2 Fixed points and nullclines

As for the previous section, the equations of the nullclines are computed by equaling
each gradient to 0. This leads us to the following set of 4 nullclines:

V nullcline: 0 = ḡf (V − V 0)2 − ḡs(Vs − V 0
s )2 − ḡss(Vss − V 0

ss)
2 − ḡus(Vus − V 0

us)
2 + Iapp,

Vs nullcline: 0 = V − Vs,
Vss nullcline: 0 = V − Vss,
Vus nullcline: 0 = V − Vus.

(6.2.1)
As the model counts the 4 dimensions V, Vs, Vss and Vus, these nullclines are hyperplanes.
The phase plane of this model will thus not be represented here. However, as the added
feedback has the same shape as the other ones, its effect on the phase plane must be
correlated to the effect of the added ultra-slow feedback on the V nullcline of the equivalent
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2D MQIF model. To justify it, we can rewrite the V nullcline equation as:

Vs = V 0
s ±

√
ḡf (V − V 0)2 + It

ḡs
if It ≥ 0,

V = V 0 ±

√
ḡs(Vs − V 0

s )2 − It
ḡf

if It ≤ 0,

with It = Iapp − ḡss(Vss − V 0
ss)

2 − ḡus(Vus − V 0
us)

2.

The total current It in the equivalent 2D MQIF model dictates the evolution of the cell
potential. This current depends on two states variables, Vss and Vus. To contrast, the 3D
model presented in the previous section is characterized by a total current that depends
only on Vus. As we explained, the ultra-slow feedback creates an excitability well in the
3D phase plane for a positive applied current. In the case of the 4D model, the size of the
excitability well is modulated across time. Supposing that the super-slow potential does
not change and that it is fixed to its reference potential, the 4D model is reduced to the
3D model presented. The total current is equal to 0 when the following equality is verified:

Vss = V 0
ss ±

√
Iapp − ḡus(Vus − V 0

us)
2

ḡss
,

provided that Iapp− ḡus(Vus−V 0
us)

2 is positive. This happens when the ultra-slow voltage
is close enough to its reference potential. However, if the super-slow or the ultra-slow
potentials are too far from their respective references, then the total current is negative
and a quiescent period is induced. Bursting would thus still be observed in the 4D model
response.

The fixed points of the 4D MQIF model are found at the intersection of all hyperplanes,
provided that they intersect at the same location(s) of the 4D phase plane. The Vs, Vss
and Vus nullclines equations imply that each fixed point has the same coordinates across
all state variables, noted V̄ . Using this substitution, the fixed points coordinates can be
computed by solving the following equation:

(ḡf − ḡs − ḡss − ḡus) V̄ 2 − 2
(
ḡfV

0 − ḡsV 0
s − ḡssV 0

ss −ḡusV 0
us

)
V̄ + ḡf

(
V 0
)2 − ḡs (V 0

s

)2
− ḡss

(
V 0
ss

)2 − ḡus (V 0
us

)2
+ Iapp = 0.

Using the discriminant method, the mathematical expression of the fixed points coordi-
nates is:

V̄1,2 =
ḡfV

0 − ḡsV 0
s − ḡssV 0

ss − ḡusV 0
us ±

√
∆

ḡf − ḡs − ḡss − ḡus
with

∆ = ḡf ḡs
(
V 0 − V 0

s

)2
+ ḡf ḡss

(
V 0 − V 0

ss

)2
+ ḡf ḡus

(
V 0 − V 0

us

)2 − ḡsḡss (V 0
s − V 0

ss

)2
− ḡsḡus

(
V 0
s − V 0

us

)2 − ḡssḡus (V 0
ss − V 0

us

)2 − (ḡf − ḡs − ḡss − ḡus)Iapp. (6.2.2)

As for the 3D MQIF, there are 0, 1, or 2 fixed points, depending on the sign of ∆. Moreover,
a high and negative applied current involves a positive ∆, meaning that there are two fixed
points in the 4D phase plane. The stability of the fixed points is defined by the Jacobian
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matrix, being:

J =


2

C
ḡf (V − V 0) − 2

C
ḡs(Vs − V 0

s ) − 2

C
ḡss(Vss − V 0

ss) −
2

C
ḡus(Vus − V 0

us)

1 −1 0 0
1 0 −1 0
1 0 0 −1


6.3 Phase plane and reference simulation

6.3.1 Responses to a constant current

To understand the impact of the super-slow feedback on the time response of the cell
potential, we simulated the 4D MQIF model with an applied current of 20. This current
is chosen to be slightly higher than the bifurcation current. The conductances chosen for
this simulation are found in Table 6.1.

ḡf ḡs ḡss ḡus
1 0.5 0.015 0.0015

.

Table 6.1: Conductances used to simulate Figures 6.3.1 and 6.3.2

The value of the fast and the slow conductances are the same as before. However, the
conductance of the ultra-slow feedback is decreased by a factor 10. The conductance of
the super-slow feedback is chosen to be 10 times greater than the ultra-slow conductance.
The reason behind this choice is that a higher conductance for the super-slow feedback will
induce a larger effect of the super-slow feedback compared to the effect of the ultra-slow
one.

In Figure 6.3.1, the response of the 4D model across time is represented. The upper part
of this plot shows the evolution of the potentials V , Vs, Vss and Vus during the simulation.
The lower part of this figure shows the corresponding evolution of the total current in
the equivalent 2D MQIF model. For the set of conductances chosen, the behavior that is
modeled is still bursting. However, compared to the response of the 3D model to a constant
current shown in Figure 5.3.4, the shape of the total current is much more different. First,
the total current covers a larger range of values when the super-slow feedback is applied.
Second, the total current evolution contains sharp spikes.

To understand how the super-slow feedback impacts the 4D MQIF model response, it
is helpful to consider a single period of oscillations. In Figure 6.3.2, we show a zoom on
a period of Figure 6.3.1. Similarly, the lower plot shows the corresponding evolution of
the total current during a period of oscillations. The evolution of the ultra-slow current
and the super-slow currents are also represented. In fact, as they both modulate the total
current in the equivalent 2D model, considering them separately may help to understand
the shape of the total current. As a reminder, the super-slow and ultra-slow currents are
expressed respectively as:

Iss = −ḡss(Vss − V 0
ss)

2 and

Ius = −ḡus(Vus − V 0
us)

2,
with It = Iapp + Iss + Ius.
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Figure 6.3.1: Time response of the 4D MQIF model to a constant current of 20. The set of
conductances used for this simulation can be found in Table 3.1. The upper plot shows the
evolution of the 4 potentials V , Vs, Vss and Vus. The lower plot shows the corresponding
evolution of the total current in the equivalent 2D model.

The upper plot shows the evolution of the potentials during the simulation. The reference
potentials of the slow, super-slow and ultra-slow feedbacks are also represented. They aim
to understand the shape of the super-slow and the ultra-slow currents separately.

At the beginning of this period, the total current is positive. This is mainly due to the
super-slow potential that is far from its reference. Indeed, as the ultra-slow potential is
relatively low, this potential is at the closest position to its reference potential. In response,
the cell potential spikes. Due to the reset rule, the super-slow and ultra-slow potentials
increase at each spike of the cell potential. Thus, the super-slow potential is brought closer
to its reference while the gap between the ultra-slow potential and its reference increases.
Thus, the absolute value of the super-slow current decreases and the absolute value of
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Figure 6.3.2: Zoom on a period of oscillations of Figure 6.3.1. The upper plot shows the
evolution of the 4 potentials V , Vs, Vss and Vus in response to an applied current of 20.
The (fixed) values of the slow, super-slow and ultra-slow reference potentials are added as
dashed lines. The lower plot shows the corresponding evolution of the total current in the
equivalent 2D model. The corresponding super-slow and the ultra-slow currents are also
represented to understand the shape of the total current.

the ultra-slow current increases. During this interval, the total current mostly follows the
evolution of the super-slow current and increases. The instantaneous frequency increases
accordingly.

Since the super-slow potential gets closer to its reference, the absolute value of super-
slow current gets closer to 0. Thus, the super-slow current becomes negligible compared
to the ultra-slow current. The ultra-slow potential increases as long as the cell potential
spikes, which happens as long as the total current is still positive. Therefore, the ultra-
slow current decreases. Since the super-slow current becomes negligible compared to the
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ultra-slow current, the total current peaks and starts to decrease too. As the total current
decreases, the instantaneous frequency of the spikes generated decreases. Accordingly, the
evolution of the super-slow potential globally decreases. Indeed, as the time separating
two spikes increases, the reset is applied less frequently which lets the gradient of Vss act
longer on its time evolution.

As the time constant of the ultra-slow feedback is very large, the decrease in the in-
traburst frequency does not prevent the ultra-slow potential from still increasing. The
corresponding ultra-slow current decreases a lot, so does the total current. At some point,
the total current becomes negative, the cell potential cannot spike anymore and the quies-
cent period begins. Since the reset cannot be applied anymore, all trajectories are driven by
their gradient. As the super-slow potential evolution is characterized by a smaller timescale
than the timescale of the ultra-slow potential, the super-slow potential moves away from
its reference faster than the ultra-slow potential gets closer to its reference. Thus, absolute
value of the super-slow current increases rapidly and both this current and the ultra-slow
current become comparable. The corresponding evolution of the total current is a mix
between these two currents.

The super-slow potential eventually reaches the same value as the cell potential. Indeed,
the evolution of the super-slow potential is dictated by its gradient during the quiescent
period. Among the 4 potentials, only the ultra-slow current has not reached the same
value as the cell potential. Thus, the variation of the total current is mostly dictated by
the variation of the ultra-slow current. Therefore, the total current increases, which also
modifies the equilibrium of the cell potential in the equivalent 2D model. Additionally,
the variation in the ultra-slow current implies an even slower variation in the super-slow
current, which tends to move closer to its reference. Finally, the total current becomes pos-
itive, which involves a period of spike latency. The ultra-slow current has become negligible
as it finally moved close enough to its reference. The total current keeps increasing as the
super-slow potential follows the cell potential, which is slowly attracted towards spiking.
Therefore, for the rest of the period of oscillations, the total current has approximately the
same shape as the super-slow current.

6.3.2 Super-slow feedback impact on phase plane

Based on the analysis of the time response of the 4D MQIF, it is clear that the super-
slow feedback has a major effect: for this set of conductances, it creates a sharp peak in
the evolution of the total current applied in the equivalent 2D MQIF model during each
period of oscillations. This peak allows a specific modulation of the intraburst frequency
that was not observed in the 3D model presented in the previous chapter. Indeed, during
the first half of the peak, the total current increases a lot. Accordingly, the time between
two consecutive spikes in the burst decreases and the instantaneous frequency increases a
lot. During the second half of the peak, the cell potential keeps spiking but it slows down:
the intantaneous frequency decreases.

The change in the super-slow potential can also be seen as a change in the size of the
excitability well in the 3D phase plane, represented in the space (V ;Vus;Vs). Indeed, as we
considered the total current It in the equivalent 2D model we can consider a total current
It3D in the equivalent 3D model. Its mathematical expression would be:

It3D = Iapp − ḡss(Vss − V 0
ss)

2.
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Therefore, the analysis of the impact of the super-slow feedback on the equivalent 3D
model is similar to the analysis of the impact of the ultra-slow feedback on the equivalent
2D model, with an additional dimension. As the super-slow potential is able to change the
applied current in the equivalent 3D model, and that this current mostly impacts the size
of the excitability well, the super-slow feedback simply modifies the size of the excitability
well and is able to make it disappear. Figures 6.3.3 to 6.3.5 show the V nullcline of
the equivalent 3D model with a total current It3D in the space (V ;Vus;Vs) (left) and the
corresponding value of Vss taken from the simulation shown in Figure 6.3.2 (right) at 3
different locations in the time interval associated with a period of bursting. These figures
show that the excitability well is modified by the value taken by the super-slow potential.
For a more comprehensive view of the evolution of the V nullcline during a period of
bursting, please check the video these figures are extracted from. The serrated look of the
V nullcline that may appear for positive Vus and low Vss is due to approximation errors.
In reality, the total current in the equivalent 2D model is negative at these locations and
the V nullcline separates into a left and a right part, while it separates into a upper and a
lower part when the total current in the 2D model is positive, meaning that the excitability
well separates the upper and the lower parts.

Figure 6.3.3: Screenshot of the video realized to show the evolution of the V nullcline in
the space (V ;Vus;Vs) (left) for a given value of super-slow potential (right), which is taken
from the response of the 4D model to a constant applied current shown in Figure 6.3.2.
The intersections of the hyperplanes defined by the Vs, Vss and Vus nullclines with the V
nullclines are shown respectively as pink, green and blue lines. The value taken by the
super-slow potential is the last value shown in the right plot. In this case, this value is
chosen near its maximum.

To support the reasoning realized on the observed behavior of the 4D model in response
to a constant current, it is interesting to consider both the evolution of the equivalent
2D phase plane and the evolution of the size of the excitability well across a period of
oscillations. For a clarity purpose, the excitability well is projected into the 2D space
(Vus;Vs), which is actually a side view of the 3D space presented in Figures 6.3.3 to
6.3.5. Once again, the associated video is much more helpful, compared to the figures
extracted from it, to understand how bursting with a modulated instantaneous frequency
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Figure 6.3.4: Screenshot of the video realized to show the evolution of the V nullcline in
the space (V ;Vus;Vs) (left) for a given value of super-slow potential (right), which is taken
from the response of the 4D model to a constant applied current shown in Figure 6.3.2.
The intersections of the hyperplanes defined by the Vs, Vss and Vus nullclines with the V
nullclines are shown respectively as pink, green and blue lines. The value taken by the
super-slow potential is the last value shown in the right plot. In this case, this value is
chosen near its minimum.

Figure 6.3.5: Screenshot of the video realized to show the evolution of the V nullcline in
the space (V ;Vus;Vs) (left) for a given value of super-slow potential (right), which is taken
from the response of the 4D model to a constant applied current shown in Figure 6.3.2.
The intersections of the hyperplanes defined by the Vs, Vss and Vus nullclines with the V
nullclines are shown respectively as pink, green and blue lines. The value taken by the
super-slow potential is the last value shown in the right plot. In this case, this value is
chosen near the beginning of the next train of spikes.
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is generated. The screenshots of this video are found in Figures 6.3.6 to 6.3.8. Each of these
figures is separated into 4 plots. Plots B and D are similar to Figure 6.3.2 as they represent
respectively the evolution of the 4 potentials and the evolution of the corresponding total
current in the equivalent 2D model from the beginning of the period of oscillations to the
timestep considered. Plot A represents the phase plane of the equivalent 2D model that
is computed based on the last value taken by the total current at the considered timestep
in plot D. The trajectory of the 4D model is represented in the space (V ;Vs) to see its
evolution in this phase plane. To have a better view of the position of the timestep in
the period considered, a color gradient is added to characterize the system trajectory in
plots A and C. Finally, plot C shows the evolution of the system trajectory (following the
same color gradient as plot A) projected in the space (Vus;Vs) around the projection of
the excitability well.

These figures also support the analysis realized before and combine some observations
realized in the study of the 2D model and of the 3D model. The size of the excitability
well is clearly modulated by Vss. Also, the side view of the excitability well is helpful to
understand how the trajectory evolves in the 3D phase plane. In fact, a spike is generated
as soon as the system finds its way back to this well. When the applied current is positive,
the system organizes itself around the tip of the excitability well, around a total current
in a range of values near 0.

Figure 6.3.6: Screenshot of the video realized to show the evolution of the 4D model
response to a constant current in the 2D equivalent phase plane (A.) and around the
projection in (Vus;Vs) of the excitability well (C.) that is found in the V nullcline in
the space (V ;Vus;Vs). The evolution of the 4 potentials V , Vs, Vss and Vus between
the beginning of the period and the considered timestep are represented in B., while the
corresponding evolution of the total current is represented in D. In parts A. and C., each
projected trajectory is associated to a color gradient defined on the full duration of the
period of oscillations. The value of Vss that corresponds to the timestep considered can be
found in the legend of C.
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Figure 6.3.7: Screenshot of the video realized to show the evolution of the 4D model
response to a constant current in the 2D equivalent phase plane (A.) and around the
projection in (Vus;Vs) of the excitability well (C.) that is found in the V nullcline in
the space (V ;Vus;Vs). The evolution of the 4 potentials V , Vs, Vss and Vus between
the beginning of the period and the considered timestep are represented in B., while the
corresponding evolution of the total current is represented in D. In parts A. and C., each
projected trajectory is associated to a color gradient defined on the full duration of the
period of oscillations. The value of Vss that corresponds to the timestep considered can be
found in the legend of C.

6.4 Bifurcation study

6.4.1 Bifurcation of the full system with constant current

Similarly to the previous models, the 4DMQIF model shows a saddle-node bifurcation, as
represented in Figure 6.4.1. The maximum value of the cell potential during the oscillations
is not represented as it is simply defined by the reset. Therefore, it is constant with a change
in applied current. The shape of the bifurcation diagram is close to what was observed for
the 3D model. Even if this bifurcation diagram supports the value chosen for the constant
applied current in the presented simulations, the detailed shape of this bifurcation diagram
may depend on the conductances values. However, based on the previous results and on
the mathematical developments realized, we assume that the saddle-node bifurcation is
observed for any set of conductances.

Due to the modulation of the total current during the burst realized by the super-slow
feedback, the intraburst frequency is modified. Figure 6.4.2 shows that the instantaneous
frequency during the burst clearly follows the variation in total current.

Finally, we can analyze the evolution of the interburst frequency for a change in applied
current. Above the value at which the saddle-node bifurcation occurs, the interburst
frequency slightly increases. Moreover, the number of spikes in each burst seems to decrease
with an increasing applied current. These two results are consistent with what was observed
for the 3D model.
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Figure 6.3.8: Screenshot of the video realized to show the evolution of the 4D model
response to a constant current in the 2D equivalent phase plane (A.) and around the
projection in (Vus;Vs) of the excitability well (C.) that is found in the V nullcline in
the space (V ;Vus;Vs). The evolution of the 4 potentials V , Vs, Vss and Vus between
the beginning of the period and the considered timestep are represented in B., while the
corresponding evolution of the total current is represented in D. In parts A. and C., each
projected trajectory is associated to a color gradient defined on the full duration of the
period of oscillations. The value of Vss that corresponds to the timestep considered can be
found in the legend of C.

Figure 6.4.1: Bifurcation diagram of the 4D model with the applied current. The location
of the saddle-node bifurcation is highlighted by the yellow marker. The V coordinates of
the stable and the saddle nodes are reported in this diagram. The minimum value of the
cell potential during the oscillations is also represented.

6.4.2 Impact of a change in conductances

The set of conductances chosen for the simulations has a large impact of the behavior
of the model. In fact, conductances allow to scale the impact of each feedback, notably
on the total current in the equivalent 2D model, which in term impacts the entire pattern.
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Figure 6.4.2: Evolution of the instantaneous frequency during the burst shown in Figure
6.3.2 (up) and the corresponding evolution of total current (down).

Figure 6.4.3: Evolution of the average frequency of oscillations (interburst frequency) dur-
ing a period of oscillations with the applied current (up) and the corresponding evolution
of the number of spikes during each burst (down).

Thus, other patterns than bursting can be observed. For example, we further reduced the
ultra-slow conductance by a factor 10 and observed a limit cycle that does not contain
any quiescent period. This behavior of the model is represented in Figure 6.4.4 and the
associated set of conductances can be found in Table 6.2. The applied current used for
this simulation is still 20, as the change in ultra-slow conductance compared to its value
in the previous simulation has barely no impact on the bifurcation current of this model.

The disappearance of the quiescent periods in Figure 6.4.4 is consistent with the set of
conductances used. Indeed, the conductance of the ultra-slow feedback being much smaller
than the other conductances, the ultra-slow feedback has barely no impact on the model
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Figure 6.4.4: Time responses of the 4D MQIF model to a constant current of 20. The set of
conductances used for this simulation can be found in Table 6.2. The upper plot shows the
evolution of the 4 potentials V , Vs, Vss and Vus. The lower plot shows the corresponding
evolution of the total current in the equivalent 2D model.

ḡf ḡs ḡss ḡus
1 0.5 0.015 0.00015

.

Table 6.2: Conductances used to simulate Figure 6.4.4

response. Thus, the super slow regenerative feedback dominates in the model response.

Since the 4D MQIF model shows already two very distinct behaviors for a constant
current, it is expected that the model response to a pulse of current may be very different
depending on the set of conductances chosen. Indeed, a change in the set of conductances
may have a big impact on the bifurcation current. To simulate the response of the model
to a pulse of applied current, the baseline (Il) and the value taken by the current during
the pulse (Ih) must be chosen based on the set of conductances considered. In Figure 6.4.5,
we can observe the impact of a variation in each conductance on the value at which the
saddle-node bifurcation occurs in the 4D model phase plane. The applied current needed
to overcome this bifurcation and to observe another behavior than a convergence towards
a stable state increases as each conductance increases. A non-linearity occurs in the left
part of this figure as the slow conductance gets too close to the fast conductance. Indeed,
based on equation (6.2.2), the value of applied current at which the stable and the saddle
nodes collide is:

Ibif =
ḡf ḡs

(
V 0 − V 0

s

)2
+ ḡf ḡss

(
V 0 − V 0

ss

)2
+ ḡf ḡus

(
V 0 − V 0

us

)2
ḡf − ḡs − ḡss − ḡus

−
ḡsḡss

(
V 0
s − V 0

ss

)2
+ ḡsḡus

(
V 0
s − V 0

us

)2
+ ḡssḡus

(
V 0
ss − V 0

us

)2
ḡf − ḡs − ḡss − ḡus

6.4.3 Types of firing patterns

According to the definition of the DHNs firing pattern (observed in Figure 3.3.2 and
modeled by Le Franc et al. in Figures 3.5.3 and 3.5.4), we must simulate either a pulse of
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Figure 6.4.5: Evolution of the bifurcation current with the conductances ḡs (left), ḡss
(center) and ḡus (right). As only one conductance varies per plot, the set of conductances
from which the fixed conductances are extracted is given in Table 6.1.

applied current to observe tonic firing, plateau potentials and the accelerating behavior.

To account for the change in conductances when choosing the value of applied current,
we simulate the evolution of the maximum and the minimum of the total current for a given
range of applied current. Based on the behavior of the 2D equivalent MQIF model for the
corresponding range of total current, we can find the values of applied current under which
the total current is negative and above which the range of total current is higher than the
value of the saddle-node bifurcation in the equivalent 2D model. Using this method, we
ensure that the baseline and the highest current associated to the pulse of applied current
are located at the beginning and the end of the bistable area associated to the 2D equivalent
model. For the set of conductance in Table 6.2, Figure 6.4.6 shows the position of the two
values of applied current Il and Ih that are optimal to stay around the limit of the 2D
bistable regime, shown in yellow. The green and the blue areas represent respectively
the ranges where the applied current chosen induces a total current at equilibrium that
corresponds to a stable state or to a limit cycle in the equivalent 2D model.

Consistently with the evolution of the bifurcation current of the 4D model with a change
in conductances, Figure 6.4.7 shows that the current Il and Ih, at the limits of the area
in which bistability is observed in the equivalent 2D model, increase with an increasing
ultra-slow conductance (left) or an increasing super-slow conductance (right).

Based on the methodology explained to choose the value of the baseline of the applied
current and its value during the pulse, we achieved to simulate both plateau potentials and
tonic firing. The set of conductances used to simulate these patterns are found in Tables
6.3 and 6.4 respectively. Consistently with the previous discussions, tonic firing is observed
when the impact of the super-slow and the ultra-slow feedback is very weak and plateau
potentials are observed when the super-slow regenerative feedback has a greater impact
than the ultra-slow feedback.

Plateau potentials and tonic firing are represented in Figures 6.4.8 and 6.4.9 respectively.
In each figure, the three lower plots are a zoom of the three upper plots around the pulse
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Figure 6.4.6: Methodology used to define the currents Il, associated with the baseline of
the pulse of current at first, and Ih, the maximum value of the pulse. The applied current is
varied to compute the total current in the equivalent 2D model and its associated behavior.
The currents Il and Ih are the values of applied current that correspond respectively to
the end of the stable regime and the beginning of the cyclic regime.

Figure 6.4.7: Evolution of the currents Ih and Il used to define the pulse of current with a
change in the ultra-slow conductance for a fixed ḡss (left) or in the super-slow conductance
or a fixed ḡus.

of applied current. Starting from the top of each figure, the first and fourth plots show the
evolution of the applied current across time and the evolution of the total current in the 2D
model, which is computed from the voltage traces. In dotted line, the current at which the
saddle-node bifurcation occurs in the 2D model is represented. This value only depends
on the fast and slow parameters as explained during the mathematical analysis of the 2D
MQIF equations. The second and the fifth plots show the evolution of the potentials V ,
Vs, Vss and Vus. Finally, the third and sixth plots show the evolution of the instantaneous
frequency, as long as spikes are generated.
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Figure 6.4.8: Simulation of plateau potentials. The three lower plots are a zoom on the
three upper plots respectively around the time interval where the pulse is applied. Starting
from the top, the first and fourth plots show the evolution of the applied current (red), the
total current computed based Vss and Vus (pink) and the value of the bifurcation current
in the equivalent 2D model (dotted line). The second and fifth plots show the evolution
of the potentials. The third and sixth plots represent the evolution of the instantaneous
frequency. The currents chosen for the baseline and the maximum value for the pulse of
applied current are chosen based on the methodology shown in Figure 6.4.6. The duration
of the pulse is 300 ms. The parameters used for this simulation can be found in Table 6.3.

ḡf ḡs ḡss ḡus
1 0.5 0.0155 0.0005

.

Table 6.3: Conductances used to simulate Figure 6.4.8

ḡf ḡs ḡss ḡus
1 0.5 0.0001 0.00001

.

Table 6.4: Conductances used to simulate Figure 6.4.9

The duration of each pulse of applied current is 300 ms. This arbitrary value is chosen
so that plateau potentials are easily observed in the model response to a pulse of current.
The baseline of the current is set to the floor value of Il while the value of the current
during the pulse is set to the ceil value of Ih plus one for each set of conductances. Once
again, the choice to approximate up and down the upper and the lower boundary of the
bistable area helped to see easily plateau potentials in the model response.
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Figure 6.4.9: Simulation of tonic firing. The three lower plots are a zoom on the three
upper plots respectively around the time interval where the pulse is applied. Starting from
the top, the first and fourth plots show the evolution of the applied current (red), the
total current computed based Vss and Vus (pink) and the value of the bifurcation current
in the equivalent 2D model (dotted line). The second and fifth plots show the evolution
of the potentials. The third and sixth plots represent the evolution of the instantaneous
frequency. The currents chosen for the baseline and the maximum value for the pulse of
applied current are chosen based on the methodology shown in Figure 6.4.6. The duration
of the pulse is 300 ms. The parameters used for this simulation can be found in Table 6.4

However, the accelerating behavior is hard to observe with this methodology. In fact, it
is the baseline of the applied current that raises this issue. Indeed, the switch in the applied
current value at the end of the pulse must be close enough to 0 to prevent the model from
generating spikes after the pulse. If it is not the case, the system might oscillate forever,
leading to an unstable behavior. Thus, to observe the accelerating firing, we simulated
a fixed value for the baseline of applied current of 0.5. The maximum of the current is
kept near the upper boundary of the bistable area. Figure 6.4.10 shows the accelerating
behavior, following the same organization as Figures 6.4.8 and 6.4.9.

ḡf ḡs ḡss ḡus
1 0.5 0.008 0.00015

.

Table 6.5: Conductances used to simulate Figure 6.4.10

The three behaviors represented in Figures 6.4.8 to 6.4.10 in response to a pulse of
applied current emanate from the same behavior of the model with a constant current,
shown in Figure 6.4.4. This behavior tends to a limit cycle with no quiescent period.
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Figure 6.4.10: Simulation of accelerating firing. The three lower plots are a zoom on the
three upper plots respectively around the time interval where the pulse is applied. Starting
from the top, the first and fourth plots show the evolution of the applied current (red), the
total current computed based Vss and Vus (pink) and the value of the bifurcation current
in the equivalent 2D model (dotted line). The second and fifth plots show the evolution
of the potentials. The third and sixth plots represent the evolution of the instantaneous
frequency. The currents chosen for the baseline and the maximum value for the pulse of
applied current are chosen based on the methodology shown in Figure 6.4.6. The duration
of the pulse is 300 ms. The parameters used for this simulation can be found in Table 6.5.

However, the instantaneous frequency at which each spike is generated varies a lot at the
beginning of the simulation. This modulation of the frequency matches the variation in
instantaneous frequency observed during the pulse. In figure 6.4.4, it can be seen that the
instantaneous frequency shows a maximum at the beginning of the simulation. Indeed, the
time separation between two spikes decreases during the first hundred of milliseconds and
increases afterwards. The strength of the super-slow and the ultra-slow feedbacks modulate
the amplitude and the sharpness of this peak of instantaneous frequency. This allows a
flat variation in frequency during the pulse for tonic spiking and a globally increasing
instantaneous frequency for plateau potentials during the burst. Finally, it is interesting
to note that an increasing strength of the super-slow regenerative feedback increases the
spike latency observed in the model response during the burst.

As explained, it is rare to observe the accelerating behavior in the model response when
the baseline of the applied current is high. The choice of currents for the pattern of applied
current has a large impact on the model response actually. Indeed, in Figure 6.4.11, we
represented a scatter plot in which the color of the dots corresponds to a defined behavior
observed in the model response to a pulse of current for the values (Il; Ih) chosen for the
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baseline and the highest value of current during the pulse. The set of conductances chosen
is the same as in Table 6.2.

Figure 6.4.11: Mapping of the firing pattern observed for the set of currents chosen for the
baseline and the maximum of the pulse of applied current. Each color corresponds to one
type of firing pattern. These patterns are simulated for a pulse duration of 300 ms. The
set of conductances used is given in Table 6.2.

Figure 6.4.12: Mapping of the firing pattern observed for the set of conductances (gss; gus)
chosen. Each color corresponds to one type of firing pattern. These patterns are simulated
for a pulse duration of 300 ms. The baseline of the applied current is set to 0.5 while its
value during the pulse is not fixed and follow the methodology explained to find Ih related
to Figure 6.4.6. The slow conductance is set to 0.5.

In this figure, we can clearly see that not only bursting, tonic firing, plateau potentials
and the accelerating behavior can be observed. To see all types of patterns in response
to a pulse of current that can be generated with the 4D MQIF model, we can change the
slow, the super-slow and the ultra-slow conductances. In Figures 6.4.12 and 6.4.13, we
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Figure 6.4.13: Mapping of the firing pattern observed for the set of conductances (gs; gus)
chosen. Each color corresponds to one type of firing pattern. These patterns are simulated
for a pulse duration of 300 ms. The baseline of the applied current is set to 0.5 while its
value during the pulse is not fixed and follow the methodology explained to find Ih related
to Figure 6.4.6. The super-slow conductance is set to 0.002.

present a mapping of the behaviors of the model in response to a pulse of current with a
maximum value Ih and a baseline of 0.5 for a given set of (ḡss; ḡus) with a fixed ḡs or a set
of (ḡs; ḡus) with a fixed ḡss respectively. Besides the firing patterns of the DHNs described
in the literature, 8 others behaviors can be observed:

• "Stable": As the range of applied current used to find the limits of the bistable
area for a corresponding total current in the equivalent 2D model has its limits,
the maximum value of the current during the pulse may stay under the bifurcation
current of the 4D model associated to the set of conductance chosen. Thus, the total
current during the simulation is always negative and no spike is generated by the
model. A simulation of this firing pattern can be observed in Figure A.2.1 in the
Appendix.

• "Latent": The duration of the pulse of applied current is fixed. Therefore, for high
values of conductances, the maximum of the applied current may be too low to
overcome the spike latency induced by the model. Thus, the behavior observed in
response to a pulse of current seems at equilibrium and no spike is generated by the
model.

• "Unstable": As explained to justify the change in the value of the baseline of applied
current, the model may sometimes keep on spiking after the end of the pulse and
may not stop. This behavior is the "unstable" behavior. A simulation of this firing
pattern can be observed in Figure A.1.1 in the Appendix.

• "Tonic with plateau": This type of behavior is similar to tonic spiking during the
pulse. Indeed, the variation in instantaneous frequency is lower than 2% of the
maximum instantaneous frequency during the pulse. However, the cell potential at
the end of the pulse contrasts with tonic spiking. Indeed, this behavior shows an
afterdischarge. A simulation of this firing pattern can be observed in Figure A.3.1 in
the Appendix.
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• "Decelerating": As the frequency increases for the accelerating behavior, for some
sets of conductances we were able to observe a globally decreasing frequency during
the pulse that is not associated to bursting for a simulation of a constant current.
This type of behavior is associated to a change in instantaneous frequency of more
than 2% of the maximum frequency during the pulse. Moreover, another condition
set to define this behavior is that the maximum instantaneous frequency during the
pulse must be reached in the first third of the time interval in which the model spikes
during the pulse. This criterion is set so that we do not take into account a possible
spike latency to classify the pattern observed. A simulation of this firing pattern can
be observed in Figure A.4.1 in the Appendix.

• "Decelerating with plateau": A pattern is classified as plateau potentials or as an
accelerating behavior depending on the presence of spikes after the pulse. This
distinction is similar to the distinction between "decelerating" and "decelerating
with plateau". Indeed, the latter has the same characteristics as the "decelerating"
behavior during the pulse but it shows an additional afterdischarge.

• "Curved": The criterion on the position of the maximum instantaneous frequency
during the burst is also applied to the accelerating behavior. Indeed, a pattern is
classified as accelerating if the maximum frequency during the pulse is located after
the second third of the time interval where spiking is observed during the pulse. By
continuity, the pattern is classified as "curved" when the location of the maximum
frequency is around the middle of the time interval where the cell potential spikes
during the pulse. The period during which the frequency increases has almost the
same duration as the period during which the frequency decreases. A simulation of
this firing pattern can be observed in Figure A.5.1 in the Appendix.

• "Curved with plateau": In parallel to the distinction between plateau potentials and
the accelerating behavior or between the "decelerating with plateau" and "decelerat-
ing" behaviors, the behavior "curved with plateau" has a maximum frequency around
the middle of the time interval where the cell potential spikes during the pulse but
also shows an afterdischarge after the pulse.

Now that all types of firing patterns observed are defined, we can further analyze Figure
6.4.11. Two features of the model can be observed. First, for an fixed low baseline of the
current and an increasing value of current during the pulse, provided that the latter is
greater than the bifurcation current, the firing pattern switches from accelerating/plateau
potentials to "curved"/"curved with plateau". In fact, if we choose a higher maximum
for the applied current, the total current at the transition between the baseline and this
maximum is much higher. Indeed, as the system is at equilibrium before the pulse, the
super-slow and ultra-slow potentials are very far from their reference. Thus, the peak in
instantaneous frequency is higher and occurs sooner if the maximum value of the applied
current is increased. Second, we can see in Figure 6.4.11 that when the baseline of the
applied current is too high, the only firing pattern observed is an unstable behavior, pro-
vided that the maximum of the applied current during the pulse is high enough to observe
another behavior than a stable or a "latent" one. This effect is observed for various sets of
conductances. This further supports that a low value of the baseline is suited to observe
all firing patterns.

Finally, Figures 6.4.12 and 6.4.13 further support that the relative strengths of the slow,
super-slow and ultra-slow feedback set the behavior of the model in response to a pulse

88



of current. Using the definition of all types of firing patterns observed, we can see that
the firing pattern tends to slow down when the conductance of the ultra-slow restorative
feedback increases. Indeed, in each line of these scatter plots, the behaviors from low to
high ḡus are characterized respectively by increasing or maintained instantaneous frequency
during the pulse to decreasing instantaneous frequency during the pulse. Also, it can be
seen that an increase in the super-slow regenerative conductance tends to accelerate the
instantaneous frequency during the pulse. However, increasing this conductance induces an
increase in the bifurcation current and this may give rise to "latent" or "stable" behaviors if
the maximum value of the applied current cannot follow this increase. Indeed, an applied
current greater but too close to the bifurcation implies a long spike latency, which can
be longer than the pulse duration. In Figure 6.4.13, an increase in the slow conductance
seems to slow down the system during the pulse. This may seem counter-intuitive since this
feedback is regenerative, just as the super-slow feedback. However, the slow conductance
has a large impact on the bifurcation current. We assume that the decrease in frequency
may be mainly due to the large impact of the slow conductance on the bifurcation current.
Indeed, this slow down reminds us of the behaviors of the 2D model observed for a varying
ḡs that are shown in Figure 4.4.8.

6.5 Summary

In this chapter, we showed that all DHNs firing patterns can be modeled using a slow
regenerative, a super-slow regenerative, and an ultra-slow restorative feedback. We also
showed that each firing pattern is obtained for different strengths of feedbacks. Tonic firing
is obtained when the super-slow and the ultra-slow feedbacks have a reduced impact on
the system. Bursting is obtained when the ultra-slow feedback is non-negligible. However,
an additional weak super-slow regenerative feedback is able to modulate the intraburst
frequency. Finally, plateau potentials and the accelerating behavior need a non-negligible
super-slow feedback and a negligible ultra-slow conductance.

As much as the conductances impact the behavior of the model, the current seems to
play an important role in the responses observed. Indeed, even if the 4D model’s fixed
points and the frequency evolution with the current are consistent with what is observed
in the analysis of the 3D model, the fact that the current used, in particular to simulate a
pulse, has a large impact on the firing patterns complexifies their analysis. A methodology
in which the maximum applied current is chosen near the boundary between the bistable
and the limit cycle regime is presented. The baseline of the current is also very important
and impacts a lot the firing patterns observed.

Finally, we showed that the 4D MQIF model is able to show other firing patterns that
are a continuity of the 4 DHNs firing patterns. Each of them is presented and the criteria
used to classify them are also explained.

89



Chapter 7

Conclusion and Perspectives

Previous work realized by Le Franc et al. gave order of magnitude of the timescales of
the mechanisms involved in the DHNs excitability. These mechanisms were split into 4
groups: fast, slow, super-slow and ultra-slow feedbacks. This motivated the incremental
approach used to study the 4D MQIF model. First, we studied the behavior of the 2D
model and analyzed the impact of the feedback nature on the phase plane and on the time
responses. This study showed that specific properties such as bistability, spike latency and
afterdepolarization potential, involved in neurons that are well represented by a calcium
dynamic, can be modeled by a slow regenerative feedback. The nature of the slow feedback
was shown to determine the excitability of the model. A restorative slow feedback does not
induce particular properties such as bistability, among others, but allows to always come
back to a stable equilibrium when there is no more input perturbation. We therefore chose
the slowest feedback to be restorative in the final model, so that it could always converge
back to a resting state.

The study of the 2D model and its behavior was the basis of the analysis of the behavior
of the 3D model. This model showed the importance and the impact of the ultra-slow
restorative feedback to generate bursting. Having a slow regenerative and an ultra-slow
restorative feedbacks, the response to input pulses of applied current and the bifurcation
diagram of the 3D model did not show specific properties such as bistability but were
not similar to the results obtained with a slow restorative feedback neither. The slow
regenerative feedback in the 3D model modulates the generation of a train of spikes that
is also called burst. The ultra-slow potential, added to the model to create the ultra-
slow feedback, modulates the total current applied in the equivalent 2D model. Indeed,
bursting was shown to be a displacement in the bifurcation diagram of the 2D model with
the current. The nullcline of the cell potential moves during a perturbation according to
the value taken by the ultra-slow potential, which allows to modify the regime shown by
the equivalent 2D model across time (stable regime or cyclic regime).

Following the incremental procedure, the analysis of the 2D and 3D models led to the
analysis of the 4D model. For a constant current, this model is still able to show bursting.
In contrast with the 3D model, the 4D model showed a more important modulation of
the instantaneous frequency during the burst due to the additional super-slow regenerative
feedback. Moreover, when the strength of the ultra-slow feedback is too low, the quies-
cent periods disappear and the model converges towards a limit cycle. By mapping the
behavior of this model in response to an input pulse of current, we showed that the 4D
model is suited to simulate each firing pattern generated by DHNs. Additionally, it was
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shown that this model is able to represent other firing patterns, that are actually found by
the continuous investigations of the impact of the super-slow regenerative and ultra-slow
restorative feedbacks with different strengths.

In conclusion, the 4D multiple integrate-and-fire model we developed allows to repro-
duce the four firing patterns of DHNs. This model and its study allow to have a better
understanding of the functional mechanisms of the excitability changes behind the switch
in DHNs firing patterns.

Pain generating mechanisms are still unclear nowadays, they are thus many directions
to explore in order to bring light on these phenomena. In the context of this work, we
would like to go back to the use of conductance-based models. The objective is to show
that we can generate the DHNs firing patterns. Additionally, we would like to verify that
the corresponding dynamic input conductances (according to [Drion et al., 2015]) needed
to generate each type of firing pattern match the types of feedbacks highlighted in this
work. Another prospect is to develop a model that would represent the network of neurons
involved in pain processing at the level of the spinal cord. Indeed, such a model would
help to understand the mechanisms of neuronal plasticity of pain. In this manner, we
could have a better understanding of the modifications made on this network after nerve
injuries, giving rise to maladaptive pain processing. Based on a deep understanding of
the mechanisms involved in pain processing these two prospects would provide, we would
then be in a good position to design new treatment strategies, either by targetting cellular
mechanisms with drugs or by designing closed-loop neurostimulation systems.
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Appendix A

Additional firing patterns

A.1 "Unstable" behavior
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Figure A.1.1: Simulation of the "unstable" behavior. The three lower plots are a zoom
on the three upper plots respectively around the time interval where the pulse is applied.
Starting from the top, the first and fourth plots show the evolution of the applied current
(red), the total current computed based Vss and Vus (pink) and the value of the bifurca-
tion current in the equivalent 2D model (dotted line). The second and fifth plots show
the evolution of the potentials. The third and sixth plots represent the evolution of the
instantaneous frequency. The currents chosen for the baseline and the maximum value for
the pulse of applied current are chosen based on the methodology shown in Figure 6.4.6.
The duration of the pulse is 100 ms. The parameters used for this simulation are: Ih=20,
Il = 0.5, ḡs = 0.5, ḡss = 10−5 and ¯gus = 2 · 10−6.
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A.2 "Stable" behavior
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Figure A.2.1: Simulation of the "stable" behavior. The three lower plots are a zoom on the
three upper plots respectively around the time interval where the pulse is applied. Starting
from the top, the first and fourth plots show the evolution of the applied current (red), the
total current computed based Vss and Vus (pink) and the value of the bifurcation current
in the equivalent 2D model (dotted line). The second and fifth plots show the evolution
of the potentials. The third and sixth plots represent the evolution of the instantaneous
frequency. The currents chosen for the baseline and the maximum value for the pulse of
applied current are chosen based on the methodology shown in Figure 6.4.6. The duration
of the pulse is 100 ms. The parameters used for this simulation are: Ih=20, Il = 0.5,
ḡs = 0.5, ḡss = 10−1 and ¯gus = 10−4.
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A.3 "Tonic with plateau" behavior
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Figure A.3.1: Simulation of the "tonic with plateau" behavior. The three lower plots are
a zoom on the three upper plots respectively around the time interval where the pulse is
applied. Starting from the top, the first and fourth plots show the evolution of the applied
current (red), the total current computed based Vss and Vus (pink) and the value of the
bifurcation current in the equivalent 2D model (dotted line). The second and fifth plots
show the evolution of the potentials. The third and sixth plots represent the evolution of
the instantaneous frequency. The currents chosen for the baseline and the maximum value
for the pulse of applied current are chosen based on the methodology shown in Figure
6.4.6. The duration of the pulse is 100 ms. The parameters used for this simulation are:
Ih=20, Il = 0.5, ḡs = 0.5, ḡss = 10−4 and ¯gus = 8 · 10−5.
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A.4 "Decelerating" behavior
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Figure A.4.1: Simulation of the "decelerating" behavior. The three lower plots are a
zoom on the three upper plots respectively around the time interval where the pulse is
applied. Starting from the top, the first and fourth plots show the evolution of the applied
current (red), the total current computed based Vss and Vus (pink) and the value of the
bifurcation current in the equivalent 2D model (dotted line). The second and fifth plots
show the evolution of the potentials. The third and sixth plots represent the evolution of
the instantaneous frequency. The currents chosen for the baseline and the maximum value
for the pulse of applied current are chosen based on the methodology shown in Figure
6.4.6. The duration of the pulse is 100 ms. The parameters used for this simulation are:
Ih=20, Il = 0.5, ḡs = 0.5, ḡss = 10−6 and ¯gus = 9 · 10−4.
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A.5 "Curved" behavior
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Figure A.5.1: Simulation of the "curved" behavior. The three lower plots are a zoom on the
three upper plots respectively around the time interval where the pulse is applied. Starting
from the top, the first and fourth plots show the evolution of the applied current (red), the
total current computed based Vss and Vus (pink) and the value of the bifurcation current
in the equivalent 2D model (dotted line). The second and fifth plots show the evolution
of the potentials. The third and sixth plots represent the evolution of the instantaneous
frequency. The currents chosen for the baseline and the maximum value for the pulse of
applied current are chosen based on the methodology shown in Figure 6.4.6. The duration
of the pulse is 100 ms. The parameters used for this simulation are: Ih=20, Il = 0.5,
ḡs = 0.2, ḡss = 0.002 and ¯gus = 5 · 10−5.
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