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ABSTRACT

This work presents the study of KDP (Key Data Parameters) for the calibration of the in-
strument FLORIS (FLuORescence Imaging Spectrometer) onboard of the satellite FLEX
(FLuorescence EXplorer). FLORIS is an hyperspectral imager that will be calibrated at
CSL (Centre Spatial de Liège) which is a research center of the University of Liège. This
project explains the calibration philosophy applied for this instrument, and focuses on the
computation of KDP related to the non-linearity of the detector.

The first part presents the fluorescence mission, mission architecture and FLORIS
overview and design.

The second part explains the calibration philosophy that will be applied to FLORIS
at CSL and will also introduce the concept of KDP.

The last part focuses on the computation of the KDP related to the non-linearity of
the detector. As there are no measurements available for FLORIS, the calibration will be
done with the measurements of another instrument: 3MI. Four different methodologies
are applied and compared for computing KDP related to the non-linearity.
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INTRODUCTION

The Fluorescence Explorer (FLEX) mission takes part in ESA’s Living Earth Programme.
The goal of this mission is to show the fluorescence of the vegetation on global maps. As
the fluorescence is inversely proportional to the photosynthetic activity, this last param-
eter will also be knwon. Additionally, scientists will be able to monitor the health of the
plants. This is crucial for anthropomorphic reasons as the production of food is directly
dependent on the vegetation. Moreover, the fluorescence of the vegetation will be a great
indicator of the photosynthetic efficiency. This will allow to understand the role of plants
in the global carbon cycle better. This mission is important as no other satellite has
measured the photosynthetic activity from space before. The launch is planned for 2024
[1].

FLEX’s only payload is an hyperspectral imager named FLORIS (FLuORescence Imag-
ing Spectrometer). Leonardo, an Italian company that specialises in aerospace, defence
and security, has designed the instrument and has charged CSL (Centre Spatial de Liège),
a research center of the University of Liège, to calibrate it.

The calibration of an instrument is an important task in the conception of a mission.
It will assure the user that the measurements are accurate. For this reason, the calibra-
tion of FLORIS is capital. This work will explain the calibration philosophy that will be
applied for the calibration of FLORIS at CSL. KDPs (Key Data Parameters) will also be
introduced as they are key concepts in calibration. In addition, this project will focus on
the calibration of the non-linearity of the detector.

The first part of this work will present the mission in more details as well as an
overview of FLORIS. The second part, will explain the calibration philosophy done at
CSL for calibrating FLORIS. All the key concepts of calibration will be introduced. The
third part will explain the algorithms necessary to compute the calibration of the non-
linearity of the detector. Finally, these algorithms will be applied to an example, they
will be compared and the best one will be chosen.
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PART 1
THE FLUORESCENCE EXPLORER MISSION

1.1 Mission architecture
FLEX will carry a single instrument: the FLuOrescence Imaging Spectrometer (FLORIS).
It is a pushbroom hyperspectral imager that will cover a spectral range bewteen 500 nm
and 780 nm. FLORIS is composed of two high spectral resolution spectrometers which
cover a spectral range of 740 nm - 780 nm and 677 nm - 697 nm. This respectively cor-
responds to the two oxygen absorption bands O2A and O2B. Their spectral resolutions
are respectively 0.3 and 0.7 nm. FLORIS is also composed of a low spectral resolution
spectrometer with a range between 500 nm and 758 nm and has a spectral resolution of
2 to 3 nm [2].

Figure 1.1: Formation flying of FLEX and Sentinel-3 [2]. With FLORIS’ swath represented
in green, OLCI’s swath represented in blue and SLSTR’s nadir and backward swath indicated
by the red arrow.

As FLEX is only composed of an imager, additionnal data are needed to interpret
the fluorescence signal. These data will be given by Sentinel-3. In fact, FLEX will orbit
the Earth in tandem formation with Sentinel-3. They will fly at an altitude of 814km.
Fig.1.1 shows the formation flying of FLEX and Sentinel-3 and the overlap of the swaths
from FLORIS and Sentinel-3’s Ocean and Land Colour Instrument (OLCI) and Sea and
Land Surface Temperature Radiometer (SLSTR) instruments. The ground segment will
be operated by the Earth Explorer ground segment infrastructure and it will be placed
in orbit by the launcher VEGA/VESPA from Kourou in 2024. The mission lifetime is

2



Part 1 1.2. FLORIS OVERVIEW AND DESIGN

expected to be 3.5 years and will have a propellant budget for up to 5 years.

The main characteristics of the mission’s architecture are listed in Tab. 1.1.

Mission lifetime 3.5 years (nominal mission phase)
∆V and propellant budget computed up to 5 years

Mission phases

Launch at an early orbit phase and commissioning = 3 months
Nominal mission phase = 3.5 years
Possible mission extension = 1.5 years
End of life phase = less than 3 months

Orbit Sun-synchronous orbit: 14+7/27 (HREF = 800 km),
Local time of descending node = 10h00, repeat cycle = 27 days

Formation flying Tandem with Sentinel-3

Table 1.1: Main characteristics of the mission architecture [2].

1.2 FLORIS overview and design
FLEX’s only payload is FLORIS which is a pushbroom hyperspectral imager. The in-
strument optical layout is represented in Fig. 1.2 and its structure in Fig. 1.3. Moreover,
Fig. 1.4 shows the mechanical layout.

Figure 1.2: Optical layout of FLORIS [3].

Firstly, the radiation coming from the Earth enters the Calibration Unit (CU) which
consists of a rotating carousel. This unit is responsible for the in-flight calibration. The
rotating carousel can have three positions. The first one is nadir pointing, the second
one points at a black target for dark calibration and the third one is sun oriented for sun
radiometric calibration through the solar port. These positions are represented in Fig. 1.4
[2]. The CU is then followed by band pass filter that will filter the wanted spectral band.

3



Part 1 1.2. FLORIS OVERVIEW AND DESIGN

Secondly, the telescope has a focal length of 234.5 mm and a f-number of 3.1. It has two
slits corresponding to the high resolution (HR) and low resolution (LR) spectral bands.
[3].

Earth

SunCalibration Unit

Band Pass Filter
+ Scrambler

Telescope

Double Slit
+ folding Mirrors

Assy

LR Spectrometer

Detector LR

HR Spectrometer

Detectors
HR1 and HR2

Figure 1.3: FLORIS instrument diagram [2].

The radiation enters then the HR and LR spectrometers. These are offner spectrom-
eters that were modified to achieve the required spectral resolution. The high resolution
spectrometer operates at a range between 677 nm and 780 nm. The corresponding op-
tical layout is represented in the bottom right corner of Fig. 1.2. The pixel has a size
of 28µm in the spectral direction and 42µm in the spatial direction. The low resolution
spectrometer operates between 500 nm to 758 nm. The corresponding optical layout is
represented in the top of Fig. 1.2. The pixel size and the optical design are the same as
the HR spectrometer. Finally, the rays arrive to the CCD detectors. There are a total
of three identical detectors, two for the HR spectrometer named HR1 and HR2 detectors
and one for the LR spectrometer named LR detector. The format of the detectors are
1072× 460 pixels2 with a pixel size of 42 µm × 28 µm (spatial × spectral) [3].

4



Part 1 1.2. FLORIS OVERVIEW AND DESIGN

Figure 1.4: Mechanical layout of FLORIS [3].
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PART 2
CALIBRATION

Calibration is essential for every satellite. In fact, instruments are subjected to response
function of each component, optical aberrations, as well as noise sources or artefacts. In
the case of FLEX, these errors are for example: the non-linearity of the detector, the
presence of dark current, the presence of saturated or dead pixels, stray-light, and so
on. All these contributions taken globally participate to lowering the global instrument
performances. The goal of calibration is then to characterize the instrument response
and artefacts and evaluate the influence of space environment (temperature mainly) on
the instrument response. The performance of the instrument is then measured and has
to satisfy the wanted instrument specifications. In this project, the company Leonardo
charged Centre Spatial de Liège (CSL) to perform the calibration of FLORIS. My work
is then to understand the process of calibration.

In this chapter, the overall calibration process of FLEX will be explained. All the
essential steps are explained in section 2.5. For the sake of clarity some essential sub-
jects will be first introduced. These are: key data parameters, data processing levels,
instrument and calibration model.

2.1 Key data parameters
In calibration, Key Data Parameters (KDPs) are crucial. They consist of a set of parame-
ters that characterize the instrument. In a calibration campaign these parameters are the
ones to be calibrated. Once calibrated they are stored in the instrument characterisation
and calibration data base (ICCDB). Each KDP is computed for different flight models
and stored in a specific instance.

These KDPs are measured on-ground long before the launch of the satellite. However,
some of them need to be updated in-flight. This is done thanks to the calibration unit
discussed in section 1.1. KDP calibrated on-ground are measured thanks to Ground Sup-
port Equipments (GSEs). There are various type of GSE (electrical, mechanical, optical
and thermal) depending on the type of KDP which needs to be calibrated. Some KDP
can have a relatively simple form (e.g. a constant value) and can be directly written in
the ICCDB. Some other KDP, more complex, require knowledge of other ones and are
determined on the basis of the latter by computation following a theoretical description.
This is called ’KDP determination’. The algorithms relative to these ones are written in
the Algorithm Theoretical Baseline Document (ATBD).

For example, the dark current is a residual current that occurs when no pixel are
illuminated due to thermal activity. The model for computing the dark current for every
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pixel(i,j) in function of its KDPs is represented by Eq. 2.1:

DarkCurrent(i, j) = KDPSlope(i, j) . tint +KDPOffset(i, j), (2.1)

where, KDPSlope is the KDP containing the slope of the dark current, KDPOffset is
the KDP containing the offset and tint is the integration time.

Moreover, as it is impossible to calibrate the KDPs perfectly, specifications on per-
formances of the instrument have been given. Thus, the GSEs need to satisfy these
specifications as the quality of the KDPs directly depends on the accuracy of the GSEs
to measure them. For this reason, requirements on GSEs will be applied to satisfy the
wanted performances. [5]

2.2 Data Processing Levels
Another important subject is data processing levels. Throughout the whole processing
chain, data will be processed at different levels. They range from level 0, which corre-
sponds to raw data, to level 4, which corresponds to highly processed data. The main
goal is to obtain data which will be easier to use in scientific work. The higher the level
the easier the data will be used and the more complex it gets to compute them. For the
mission FLEX the levels and their key parameters are summarized in Tab. 2.1.

Firstly, level 0 corresponds to data directly measured by the instrument. They are
unprocessed and at full resolution. At this level, data is measured in digital number or
DN. This corresponds to the numerical value measured by each pixel. This value refers to
the intensity of the electromagnetic radiation received by the instrument [15]. Additional
information is also included such as the orbital data, the time conversion and so on. Level
1b corresponds to data that have been radiometrically calibrated. At this level data are
expressed in radiance (W/(m2.sr.nm)). These data are also spectrally and geometrically
characterized.

Secondly, level 2 is subdivided into 4 levels: a, b, c and d. Level 2-a corresponds to the
orthorectification and collocation of FLEX and Sentinel-3’s data. These data are then
re-assembled into a grid. Level 2-b-c-d correspond to the derivation of geophysical pa-
rameters. The first geophysical parameter is the fluorescence emission of the two oxygen
bands O2A and O2B (F687 and F760) and peak values ( λ<685>, F<685> and λ<740>, F<740>

). Finally, the total fluorescence emission will also be computed and is represented by:
FT OT . Level 2 data represent the central parameters of the mission.

Finally, the European Space Agency (ESA) is in charge of computing the levels up
to level 2-d. Higher levels will be computed outside ESA’s ground segment. Level 3
and Level 4 will give for example fluorescence quantum efficiency, vegetation stress and
photosynthetic rate. These could be used in models such as the carbon cycle to have a
better understanding of that cycle. Moreover, the calibration process aims at obtaining
L1b data from L0 data. Thus, higher levels are not computed for the calibration. [3] [16]
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Level Description
L0 Raw data in DN
L1b Calibrated data in Radiance
L2 O2A and O2B fluorescence emission
L2 Peak values ( λ<685>, F<685> and λ<740>, F<740> )
L2 Total fluorescence emission.
L3-L4 Fluorescence quantum efficiency
L3-L4 Vegetation stress
L3-L4 Photosynthetic rate

Table 2.1: Summary of the main data levels for FLEX.

2.3 Instrument Model
The instrument model (IMOD) is a numerical model which simulates the behavior of the
instrument. It reproduces its acquisition chain and simulates the response function of
each component, it adds the optical aberrations, noise sources or artefacts and aims at
computing L0 data. These errors, such as simulating the non-linearity of the detector,
adding dark current, adding stray-light, are reproduced thanks to their respective KDP.
This instrument model is thus useful to predict how the satellite will behave with a spe-
cific input image. In calibration, this model is helpful to see how well the instrument is
simulated. In fact, for a given input image, L0 data obtained numerically and L0 data
obtained from the satellite will be compared. If they are close to each other this means
that the KDPs have been accurately calibrated as they simulate the behavior of the in-
strument correctly. The diagram of the model is represented in Fig. 2.1. Note that each
of these blue boxes implies one or several KDP.

The instrument model starts with an input image (in radiance) given by an image
generator. The input image is spatially and spectrally oversampled. The first step is then
to reduce the size of the image to reach the cardinality of the instrument. For this reason,
spectral integration and ISRF application is first applied. This step aims at aggregating
the spectrally oversampled image. In order to apply the ISRF, a related KDPISRF is used.
The second step consists on subsampling the overally sampled matrix and applying the
MTF by using the PSF which is in the ICCDB. After this step the image has the size of
the active matrix or AM. As the image is in radiance it is important to do a radiometric
calibration in order to convert it into DN. This is done in the third box. After the appli-
cation of these three boxes comes the application of all the artefacts of the instrument.
As a reminder, every artefacts implies one or several KDP previously calibrated. After
applying all these errors, L0 data are obtained.

For example, in the instrument model the box in Fig. 2.1 named ’flat-field’ adds the
error concerning the flat-field effect to the image. The mathematical model of this box is
represented by the following equation:

IF F (i, j) = I(i, j)×KDPF F (i, j), (2.2)

where, KDPF F (i, j) is the KDP related to the flat-field for pixel (i,j), I(i, j) is the
input image of the box which is flat-fielded, IF F (i, j) is the output image of the box which
is not flat-fielded (the image is not corrected from the flat-field effect) [5].
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Figure 2.1: Instrument model of FLORIS.

2.4 Calibration Model
The calibration reverse model (CMOD) is a numerical model which calibrates L0 data
and returns L1b data. This model is used to calibrate images coming from the satellite.
The diagram of the CMOD is represented in Fig. 2.2. Every boxes implies one or several
KDPs. L0 data are first corrected from all the response function of each component, noise
sources or artefacts by using the previously calibrated KDP. After these corrections, the
data is converted in radiance thanks to absolute radiometric calibration which is done in
the last box.

For example, in the calibration model the box in Fig. 2.2 named ’flat-field’ will correct
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the image from the flat-field effect. This equation can be written as:

I(i, j) = IF F (i, j)
KDPF F (i, j) , (2.3)

where I(i, j) is the output flat-fielded image and IF F (i, j) is the input image [5].

Figure 2.2: calibration model of FLORIS.

2.5 Calibration Philosophy
In this section, all the steps of the calibration philosophy will be explained. Fig. 2.3 shows
the diagram representing the calibration philosophy [9]. The green boxes correspond to
the work to be done by CSL and the blue boxes correspond to the work already done by
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Leonardo but which must be verified by CSL. This diagram will be explained in three
steps, each of them is represented in the figure.

Figure 2.3: Calibration Philosophy [9].

Starting from the first part (indicated by the number 1). This part of the work is
done by Leonardo. The aim is to find the accuracy needed on each KDP to fulfill the
requirements on L1b data. The instrument and calibration model have already been im-
plemented by Leonardo. The goal is then to define each KDP and to propagate errors
for each one in the calibration model. If the resulting L1b data do not have the required
accuracy, a smaller error is propagated in the model. After couple of iterations a required
accuracy on each KDP is fixed. The accuracy on KDPs is chosen to fulfill the require-
ments on L1b data.

The second part (indicated by the number 2) of this figure consists on finding the re-
quirements on GSEs. The first step is to define how the KDPs will be measured. This is
done in the ATBD. Then, the mathematical models of each KDP need to be implemented.
Thanks to the first part, the accuracy on the calibration measurements are known. By
knowing this precision, the requirements on GSEs can be defined. In fact, the GSEs need
to have strict requirements in order to measure KDP within the error budget. Finally,
the requirements on GSEs are checked to see if there are feasible. When this phase is
conclusive, the measures of the KDPs can be done. The GSEs are then implemented
and characterized, and on-ground calibration can finally take place. Each KDP will be
measured and will be filled in the ICCDB.

The third and final part (indicated by the number 3) concerns the in-flight calibration.
It is important to define the needs of the KDP that will have to be calibrated in-flight
beforehand. Once there are chosen, steps from before are applied. The calibration unit
is then calibrated [9].
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PART 3
KEY DATA PARAMETERS COMPUTATION RELATED TO

THE NON-LINEARITY OF THE DETECTOR

This project will focus only on the computation of KDPs1 related to the non-linearity of
the detector. The goal of this chapter is to understand the non-linearity and to introduce
the algorithms used to correct it. All the algorithms are hand coded in Matlab and can
be found in the Annex. A.

Firstly, the physical principle behind the non-linearity will be introduced. Secondly,
two different algorithms used to compute KDPs will be explained as well as the algorithm
needed to correct the images from the non-linearity.

3.1 Physical Principle
When light reaches FLEX’s detector, photons are converted in electrons that are stored
in wells. The amount of photons converted depends on the integration time, or equiva-
lently the time the detector has been illuminated. The photo-conversion is supposed to be
linear. This means that the amount of electrons increases proportionally with increasing
incoming photons. The linearity of the photo-conversion will be checked during on-ground
calibration.

Then, the analog to digital converters (ADC) will convert the electrons into digital
counts [DN]. Unfortunately, this conversion is not linear. This means that the increase
in light intensity, or radiance, received is not proportional to the increase in signal of the
detector. This effect is called the non-linearity of the detector. This issue will have to be
corrected during the calibration of the instrument. [5]

Fig. 3.1 illustrates the non-linearity of the detector 2. It shows the digital counts
perceived by the instrument with respect to the integration time. The expected signal,
represented in grey, is linear but the observed signal, represented in red, is not. Any
deviation from this linear line will be considered as non-linearity and must be corrected.
Moreover, it goes without saying that the quality of the measurements will be affected by
this non-linearity issue. That is why it is important to correct it.

1 In this part of the project, ’KDP’ will always refer to the KDPs related to the non-linearity of the
detector.

2 This figure is an example that shows the non-linearity of a fictional detector. The observed line
could be very different from the one depicted in this figure. The point here is to show a deviation from
the expected linear line. Any type of deviation, even above the linear line, would be considered as a
non-linearity.
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Figure 3.1: This figure represents the signal of one pixel (i,j) in [DN] with respect to the
integration time in [s]. The observed signal, DNm, is represented in red while the expected
signal, DNrect, is represented in grey. NL′ represents the non-linearity and DN0fit is the y-
intercept of both lines.

3.2 KDP computation: algorithm 1
In this section, the first algorithm behind the computation of KDP will be introduced.
This algorithm is inspired by the one described in the ATBD [6]. It has also been hand
coded and can be found in the Annex. A.1.

The first part of this section will focus on the mathematical development of the algo-
rithm. The second part will show the inputs and outputs and the last part consists on a
verification of the code.

3.2.1 Mathematical development
Fig. 3.1 shows the non-linearity effect for one pixel. It represents the signal on the pixel
(i,j), denoted by DN1(i, j) with respect to the integration time. Four integration times
are represented: t1, t2, t3 and t4. The dashed line, DNrect, represents the expected sig-
nal while the red line, DNm, represents the observed signal. DN0fit is the y-intercept
of both lines. NL′ represents the non-linearity. It corresponds to the observed signal
minus the expected signal. The goal of the algorithm is to characterize this function. The
following developments will consider the computation of the non-linearity for one spec-
tral band only. The mathematical developments are the same for the three spectral bands.

Firstly, the inputs are a set of images with varying integration time, or tint. In order
to have better quality measurements a certain number of images Nacq is acquired, each
with a specific integration time. Fig. 3.2 shows the inputs for one spectral band. The
annotations t1, t2, t3 and tn represent different integration times. For each one several
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acquisitions are taken. The number of acquisitions is represented respectively for each
integration time by Nacq1, Nacq2, Nacq3 and Nacqn. The arrow shows one image, or one
acquisition, taken with an integration time of t1. The total number of input images is
then the sum of all the acquisitions.

Figure 3.2: This figure represents the input images acquired by the instrument. t1, t2, t3 and
tn represent different integration time and Nacq1, Nacq2, Nacq3 and Nacqn represent respectively
the number of acquisitions for each integration time.

As there are several acquisitions, it is necessary to compute the mean of all the acqui-
sitions given an integration time. This will have to be done for all the integration time
and for all the pixels. After this, each pixel will have n number of measurements. These
measurements are represented by the dark dots in Fig. 3.1. They will be expressed by the
function DN(tint).

By using the function Polyfit() in Matlab these points can be fitted to a curve. The
polynomial that has been fitted to these measurements is represented in red in Fig.3.1.
This function can be written as Eq. 3.1. The order k of the useful polynomial will have to
be determined. The first two terms of this equation represents the linear part DNrect(tint)
while all the others represent the non-linearity. The order of the polynomial DNm(tint)
must be chosen to fit as best as possible the data described by DN(tint).

DNm(tint) = DN0fit + Pt1 . tint︸ ︷︷ ︸
Linear part

+Pt2 . t
2
int + Pt3 . t

3
int + ...+ Ptk . t

k
int︸ ︷︷ ︸

Non-linearity part

, (3.1)

DNrect(tint) = Pt1 . tint + DN0fit , (3.2)

where DN0fit, Pt1, Pt2, Pt3 and Ptk represent the polynomial coefficients.
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The non-linearity can be written as Eq. 3.3. It represents the ratio of non-linearity
with respect to DNrect(tint)−DN0fit.

NL(tint) = DN(tint)−DNrect(tint)
DNrect(tint)−DN0fit

= NL′(tint)
DNrect(tint)−DN0fit

(3.3)

NL(tint) can then be fitted to a polynomial. The order, m, will have to be determined.
Again NL(tint) and NLm(tint) might not be equal as the polynomial might not perfectly
fit the values of NL(tint).

NLm(tint) = PNL0 + PNL1 . DN(tint) + ... + PNLm . DN(tint)m, (3.4)

where, PNL0, PNL1 and PNLm are the polynomial coefficient.

3.2.2 Inputs and Outputs
Firstly, Tab. 3.1 summarizes the necessary inputs for the algorithm (table given by
Leonardo [6]). They consist of a set of images for each spectral band. These images
are corrected from previous effects such as removing bad, dead and saturated pixels, and
correcting the offset. Unfortunately, the computation of the KDP related to these effects
will not be considered in this work. However, the correction of these effects will be ap-
plied during the real phase of calibration. The images are expressed in DN and their sizes
correspond to the size of their respective detectors. These images will be captured by
FLORIS thanks to GSE during the calibration campaign. At the moment, there are no
images from FLEX available.

Finally, Tab. 3.2 represents the outputs in the case where Eq. 3.4 is a polynomial of
order 1 (table given by Leonardo [6]). Each spectral band has three types of KDP which
are: DN0fit, PNL0 and PNL1. The number of outputs rely on the order of Eq. 3.4. For
example, if the order was 4 we would have 6 outputs per spectral band. These outputs
will then be useful in the calibration model later on (section. 3.4). They will permit to
correct images from non-linearity.

Name Data
Type Units Size Note

DN2 HR1 Integer DN 530 rows, 140 cols HR1 image corrected
for previous effects

DN2 HR2 Integer DN 530 rows, 268 cols HR2 image corrected
for previous effects

DN2 LR Integer DN 530 rows, 234 cols LR image corrected
for previous effects

Table 3.1: Inputs of the KDP computation algorithm. They correspond to images from each
spectral band and are corrected from previous effects. The units are in DN and their size is the
binning of the detector matrix of each spectral band.
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Name Data
Type Units Size Note

HR1 DN0fit Float DN 530 rows, 140 cols Fit parameters of DN vs tint for
HR1 spectral band

HR1 PNL0 Float ∼ 530 rows, 140 cols Fit parameter of NL vs DN for
HR1 spectral band

HR1 PNL1 Float DN−1 530 rows, 140 cols Fit parameter of NL vs DN for
HR1 spectral band

HR2 DN0fit Float DN 530 rows, 268 cols Fit parameters of DN vs tint for
HR2 spectral band

HR2 PNL0 Float ∼ 530 rows, 268 cols Fit parameter of NL vs DN for
HR2 spectral band

HR2 PNL1 Float DN−1 530 rows, 268 cols Fit parameter of NL vs DN for
HR2 spectral band

LR DN0fit Float DN 530 rows, 234 cols Fit parameters of DN vs tint for
LR spectral band

LR PNL0 Float ∼ 530 rows, 234 cols Fit parameter of NL vs DN for
LR spectral band

LR PNL1 Float DN−1 530 rows, 234 cols Fit parameter of NL vs DN for
LR spectral band

Table 3.2: Outputs of the KDP computation algorithm. The table gathers all the KDP which
need to be computed. There are three KDP per spectral band: DN0fit, PNL0 and PNL1.
These are fit parameters obtained by DN vs tint for the first one and by NL vs DN for the two
last ones.

3.2.3 Verification of the code
A way to verify the code (Annex. A.1) is to derive input images from known polynomial
coefficients. Considering that DNm(tint) is a second order polynomial, it can be written
as:

DNm(tint) = DN0fit + Pt1 . tint + Pt2 . t
2
int . (3.5)

The polynomial coefficients are fixed at:

• DN0fit = 10 DN,

• Pt1 = 30 DN.ms−1,

• Pt2 = −100 DN.ms−2.

Based on these known polynomial coefficients, input images are created. After the
creation, the polynomial coefficients of DNm are forgotten. The code then takes these
images as inputs and computes the polynomial coefficients. If the code returns the exact
same coefficients, the code is correct.

In order to verify NL(tint), Eq. 3.6 is computed and compared with values given by
the code. As all of these parameters have been verified it is easy to check if the values of
NL(tint) are the good ones.
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NL(tint) = DN(tint)−DNrect(tint)
DNrect(tint)−DN0fit

= DN(tint)− Pt1.tint +DN0fit

Pt1.tint +DN0fit −DN0fit

= DN(tint)− Pt1.tint +DN0fit

Pt1.tint

(3.6)

By applying this methodology the code as been verified. Fig. 3.3 shows the constructed
points DN(tint) and the fit DNm(tint) as well as the points NL(tint) and the fit NLm(tint)
for pixel(10,10). NLm(tint) do not fit the data perfectly because the order of the polyno-
mial is not appropriate.
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Figure 3.3: The left figure represents the signal in pixel(10,10) in [DN ]with respect to tint in
[s]. The right figure represents the non linearity with respect to DN(10, 10) in [DN].

3.3 KDP computation: algorithm 2
In this section, a second method for computing KDP will be introduced. This algorithm
does not come from the ATBD. The goal is to compare both algorithms and see if the one
presented in the ATBD is the best. The code of this algorithm can be found in Annex. A.2.

This section will explained the mathematical development behind the code. The inputs
and outputs of this code are the same as for the first algorithm and are respectively
represented by Tab. 3.1 and Tab. 3.2. The code has also been verified according to the
methodology described in Sec. 3.2.3.

3.3.1 Mathematical development
The only step varying from the first algorithm is the way of computing the linearized
signal: DNrect(tint). All the other steps remain the same. For this reason, only the devel-
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opment of DNrect(tint) will be explained.

DNrect(tint) can be computed by assuming that the signal DNm(tint) is linear at an
average signal value of DNmidd corresponding to an integration time of tmidd. Thus, a
linear line can be constructed passing through this point. Fig. 3.4 shows DNrect(tint) and
DNm(tint) as well as the average signal value DNmidd and tmidd. In order to characterize
this linear line, we need the value of its slope and its intercept named p. Eq. 3.7 represents
DNrect(tint). The following mathematical development shows how the slope and intercept
are found.

DNrect(tint) = Slope . tint + p (3.7)

Figure 3.4: This figure represents the signal of one pixel (i,j) in [DN] with respect to the
integration time in [s]. DNm is represented in red and DNrect is represented in grey. P is the
y-interpect of DNrect and DN0fit is the y-intercept of DNm.

In order to have the slope of DNrect(tint) we can compute the slope of DNm(tint) at tmidd.
This is done simply by derivating DNm(tint):

DNm(tint) = DN0fit +Pt1 . tint +Pt2 . t
2
int + Pt3 . t

3
int + ...+Ptk . t

k
int , (3.8)

Slope = Pt1 + 2 . P t2 . tmidd + 3 . P t3 . t2midd + ...+ k . P tk . t
k−1
midd . (3.9)

DNm(tmidd) can be computed thanks to Eq. 3.8:

DNm(tmidd) = DN0fit+Pt1 . tmidd +Pt2 . t2midd + Pt3 . t
3
midd + ...+Ptk . tkmidd (3.10)

Eq. 3.10 in Eq. 3.7 will give the value of the intercept:

DNm(tmidd) = Slope . tmidd + p → p = DNm(tmidd) − Slope . tmidd (3.11)

By replacing Eq. 3.9 and Eq. 3.11 in Eq. 3.7 DNrect(tint) is found.
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3.4 Calibration model related to non-linearity
This section will explain the calibration model for the non-linearity correction. All of the
calibration model’s code will not be explained but only the part where the non-linearity
is being corrected. As the KDP have been computed, the image can now be corrected
from the non-linearity. The code can be found in Annex. A.3. The first part will explain
the inputs and outputs of the algorithm and the last part will explain the mathematical
development behind the code.

3.4.1 Inputs and Outputs
The inputs of this code are the images already corrected from previous effects, described
in Tab. 3.1, and the KDPs computed from the previous algorithms, described in Tab. 3.2.
The outputs are represented in Tab. 3.3 (table given by Leonardo [6]). They correspond
to images corrected from the non-linearity.

Name Data
Type Units Size Note

DN3 HR1 Float DN 530 rows, 140 cols HR1 image corrected
for the non-linearity

DN3 HR2 Float DN 530 rows, 268 cols HR2 image corrected
for the non-linearity

DN3 LR Float DN 530 rows, 234 cols LR image corrected
for the non-linearity

Table 3.3: Outputs of the calibration model related to the non-linearity. They correspond to
the corrected image for each spectral band. The units are in DN and their size is the binning of
the detector matrix of each spectral band.

3.4.2 Mathematical development
The image DN2 is corrected using the KDP previously computed. The equation can be
written as:

DN3 = DN2 − DN0fit

NLm(tint) + 1 + DN0fit (3.12)

By supposing that NL(tint) is perfectly approximated by the polynomial NLm(tint),
we can replace NL(tint) into 3.12.

DN3 = DN2 − DN0fit

NL(tint) + 1 + DN0fit = DN2 − DN0fit

DN2−DNrect(tint)
DNrect(tint)−DN0fit

+ 1
+ DN0fit (3.13)

DN3 = DN2 − DN0fit

DN2− Pt1.tint −DN0fit

Pt1.tint +DN0fit −DN0fit

+ 1
+DN0fit (3.14)

DN3 = (DN2−DN0fit).P t1.tint

(DN2−DN0fit)
+DN0fit = Pt1.tint +DN0fit (3.15)
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DN3 = DNrect(tint) (3.16)

In the case the polynomial fits perfectly NL(tint): DN3 is equal to DNrect. However, as
it is not always possible to perfectly fit a polynomial to its data, DN3 will not be equal
to DNrect and the correction will not be perfect. [6]
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PART 4
APPLICATION

In this part of the work, the algorithm explained in the previous chapter will be applied.
In order to correct the non-linearity of FLORIS’s detector, on-ground measurements of
the instrument (with the GSE) are required. These measurements collected for different
integration times, with several acquisitions, will then be used as inputs of the algorithm
to compute KDPs. However, as the calibration of this instrument is a project at an early
stage, on-ground measurements have not been performed yet. This means that, in order to
test the code with relevant inputs, images from another instrument are needed. This other
instrument is 3MI, which stands for Multi-viewing Multi-channel Multi-polarisation im-
ager. It is one of the ten instruments on board of the MetOp-Second Generation (MetOp-
SG) satellite. The purpose of 3MI is study the aerosols and the chemical composition of
the atmosphere. It also needs to be calibrated by CSL but the project is more advanced
and some inputs are already available to compute KDPs related to non-linearity. The
computed KDPs using 3MI’s images will not be correct for FLORIS as the two instru-
ments are different and need different calibration parameters. Nonetheless, it is a great
way to be familiarized with the technique before the actual measurement on FLORIS.

This section will be divided in six parts. The first part will explain briefly what is
3MI and the format of the inputs. Then, the filters that need to be applied on the
measurements will be explained. Finally, the last parts will focus on the results obtained
with the algorithm 1 and the algorithm 2.

4.1 3MI’s images
In order to calibrate the non-linearity of the detector, the instrument has been tested in
CSL with the help of GSE. As explained earlier, in order to compute the non-linearity
a set of images with different integration times are needed. First of all, we will explain
briefly the setup used for 3MI and which will be similar in the case of FLORIS. The
following figure shows the principle of the calibration setup.

Figure 4.1: Calibration setup.
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An integrating sphere is an optical component that has a spherical shape. It consists
of a cavity with highly diffusive white interior coating. It has small holes (ports) for en-
trance and exit [13]. The light from a source (lamp or laser) transported to the entrance
port. The goal of the integrating sphere is to obtain uniformly distributed radiation in
all directions, so as the exit port appears uniform. At the output port of the integrating
sphere, a square mask is placed which defines the field-of-view illuminating the instrument.

Fig. 4.2 shows an example of one image taken with the instrument 3MI. Due to the
small field-of-view defined by the square mask, only the middle part of the detector is
illuminated (in red). The integration time is 0.003s and it is the second acquisition. The
field-of-view with which all the images have been taken is 0.0256◦.

Figure 4.2: Image taken from 3MI. The instrument has been illuminated by an integrating
sphere. The intensity of the radiation is shown thanks to colours, dark blue corresponding to
less intensity, starting at 792 DN and red corresponding to higher intensity, the maximum being
928DN.

As there is only one part of the detector that is illuminated the computation of KDPs
is only valid for these pixels. The non-linearity of the other non-illuminated pixels will
have to be corrected with larger field-of-views (as larger field-of-view will illuminate more
pixels). These images are not corrected from the other effects. For example, the dark
current signal, the offset, are not corrected and bad, dead and saturated pixels are not
eliminated. In fact, as only the middle part of the detector is illuminated, there would
normally be only a signal in this part. But as can be seen in Fig. 4.2 there is a signal
outside the illuminated area. Moreover, in the figure two parts can be seen: a lighter blue
side and a darker blue side. This is due to the fact that 3MI has two readout registers and
that each one of them has a different offset. FLORIS has four different readout registers,
so if the images were taken by FLORIS, four different parts would be visible, each with
their own offset.
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Part 4 4.1. 3MI’S IMAGES

3MI’s images are NETCDF (network Common Data Form) files. This type of file is
used to store scientific data and variables. Fig. 4.2 has been opened with the software
Panoply. This software stretches the image in the x-direction. In fact, Fig. 4.2 is actually
a square. In matlab, the NETCDF files containing the measurements are read thanks to
the code in Annex. A.4. This code is also used to compute the mean of every acquisition
given an integration time. Images will be displayed in gray levels thanks to the function
Mat2gray() in Matlab. This function takes the maximum value of the signal and repre-
sents it in white while the minimum value of the signal is represented in black. Fig. 4.3
shows an image at integration time of 0.004 s. The function also transforms the values
of the signal to a range between 0 (black) and 1 (white). As only the illuminated part is
interesting, all the other pixels are fixed at a value of 900 DN which corresponds to the
minimum value of the image.

Fig. 4.3 also shows the coordinates of the illuminated part. The pixels that forms the
square are: (242,258), (261,238), (280,258) and (261,277). The pixel (261,258) corresponds
to the middle of the illuminated region. It is important to notice that the borders of the
square are formed by pixels that are not directly illuminated by the integrating sphere, but
by scattering. This region is called the transition zone. As it is challenging to separate the
transition zone from the illuminated zone, they have been both taken into account. The
transition zone is represented in white in Fig. 4.2. The pixels from this region (for example
pixel (277,260)) have a weaker signal than the signal from the directly illuminated pixels.
The computation of KDP will also be performed for the pixels in the transition region
but the result might not be representative of the reality. Again, a higher field-of-view is
needed to be able to correctly characterize these pixels.
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Figure 4.3: Representation of an image taken with the instrument 3MI with an integration time
of 0.004s. White represents the maximum value of intensity and black represents the minimum
value of intensity. In this figure the pixels in non-illuminated region have been fixed at 900 DN.
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4.2 Filters
As other effects have not been calibrated, the data need to be pre-processed. According
to [14] several filters need to be applied to the data before the computation of the KDP
related to the non-linearity.

The first filter will remove the pixels that reach the maximum signal value during the
two first integration times. In the illuminated area, there are no pixels of that kind to be
removed. Nonetheless, in the non-illuminated area there are some pixels that show this
kind of bad behavior. Fig. 4.4 shows the image at an integration time of 0.004 s. The
red arrow shows the bad pixels. The image on the right is a zoom of the affected region.
As said before, all the pixels in the non-illuminated area will be fixed at 900 DN and the
non-linearity will not be corrected for them. So in the scope of this project these pixels
will not affect the results. However, in future studies, when this region will be illuminated
with a higher field-of-view, these pixels will have to be removed.

Figure 4.4: Representation of an image taken with the instrument 3MI with an integration
time of 0.004s. The red arrow shows the bad pixels in the non-illuminated area. In this figure
the pixels in the non-illuminated area have not been fixed at 900DN.

The second filter removes the dead pixels. According to [14] one pixel is considered
dead if the signal emitted does not reach 100DN. There are no pixels of this kind in the
illuminated area, so no pixels are removed.

The third filter computes for each pixels a function called DNramp(tint). This function
is a linear line constructed thanks to the three first measurements of DN(tint). Any
data that is at more than 25% away from the ramp will be ignored. This will limit odd
measurements. Two examples are shown in Fig. 4.5. The figures represent DN(tint) as
well as DNramp(tint) in function of the integration time for two different pixels (261,258)
and (277,260). These pixels have been chosen as the majority of the other pixels have the
same shape. In fact, in the illuminated area most of the pixels have the same shape as the
middle pixel (261,258). And it is important to show how one of the transition pixel vary.
In this project, there are no data in the illuminated region for any pixel to be ignored.
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Figure 4.5: Signal in [DN] over tint in [s]. The figures show DNramp in function of the
measurements for two different pixels: (261,258) and (277,260).

4.3 Application of algorithm 1 as suggested in the
ATBD

In this section the algorithm 1 will be used with the images taken by the instrument
3MI. The first part of the algorithm 1 consists on taking the mean of every acquisitions
for each integration time and for each pixel. This is achieved with the code described in
Annex. A.4 which will compute the function DN(tint). The next steps of the algorithm
will be done with the code described in Annex. A.1.

The order of the polynomials DNm(tint) and NLm(tint) will be taken at respectively 2
and 1 as suggested in the ATBD. Thus, Eq. 3.1 and 3.4 can be written as:

DNm(tint) = DN0fit + Pt1 . tint + Pt2 . t
2
int, (4.1)

NLm(tint) = PNL0 + PNL1 . DN(tint). (4.2)
The following part consists on fitting the polynomial DNm(tint) to the data DN(tint).

Thanks to the function Polyfit in Matlab, the three polynomial coefficients DN0fit, Pt1
and Pt2 are found. This step is performed for every pixels in the illuminated area. As
the two first polynomial coefficients have been found, DNrect can be computed:

DNrect = Pt1 . tint + DN0fit. (4.3)
Fig. 4.6 shows DN(tint), DNm(tint) and DNrect(tint) for the pixels (261,258) and

(277,260). As explained earlier, the pixel (261,258) is very representative of all the pixels
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in the illuminated region while the pixel (277,260) shows how the pixels in the transition
region behave. For the pixel (261,258), it can be seen that the polynomial of order 2
does not fit perfectly the data DN(tint). However, for the pixel (277,260), the polynomial
seems to fit better. In order to measure how well the polynomial fits the data the function
χ2

DN is introduced. This function is written in Eq. 4.4. It represents the sum of every
distance between the polynomial and DN(tint) squarred over DN(tint).

χ2
DN =

tf∑
i=ti

(DNm(i)−DN(i))2

DN(i) (4.4)

For each pixel χ2
DN is computed. The goal is then to minimize this value. In fact, the

smaller χ2
DN , the best the polynomial fits the data. Tab. 4.1 shows the χ2

DN computed
for the pixel (261,258) and (277,260). The last column of the table represents the mean
of every χ2

DN for every pixels in the illuminated area.

Pixel (261,258) (277,260) Mean of every
illuminated pixel

χ2
DN [DN] 45.5771 0.1305 28.0115

Table 4.1: This table shows the value of χ2
DN for the pixels (261,258) and (277,260) as well as

the mean value of χ2
DN for every illuminated pixel.

0 0.1 0.2 0.3 0.4 0.5

t
int

 [s]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
ig

n
al

 [
D

N
]

Pixel(261,258)

DN(261,258)

DNm(261,258)

DN
rect

(261,258)

0 0.1 0.2 0.3 0.4 0.5

t
int

 [s]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
ig

n
al

 [
D

N
]

Pixel(277,260)

DN(277,260)

DNm(277,260)

DN
rect

(277,260)

Figure 4.6: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260).

Afterwards, the non-linearity is computed using Eq. 4.5. Then, the polynomialNLm(tint)
will be fitted to the data NL(tint). By using the function Polyfit() in Matlab, the two
polynomial coefficients PNL0 and PNL1 are found. These are the outputs of algorithm
1. This step is performed for every pixel in the illuminated region. Fig. 4.7 shows NLtint
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and NLm(tint) for the pixel (261,258) and (277,260). As can be seen in the figures, the
polynomial fits poorly the data. The quantity χ2

NL given by Eq. 4.6 needs to be computed
to see how well the data have been fitted. Tab. 4.2 shows χ2

NL computed for the pixel
(261,258), (277,260) and the average value for every pixel.

NL(tint) = DN(tint)−DNrect(tint)
DNrect(tint)−DN0fit

(4.5)

χ2
NL =

tf∑
i=ti

(NLm(i) +NL(i))2

NL(i) (4.6)

Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
NL [∼] 7.1091 0.3645 6.3296

Table 4.2: This table shows the value of χ2
NL for the pixels (261,258) and (277,260) as well as

the mean value of χ2
NL for every illuminated pixel.
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Figure 4.7: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for the
pixels (261,258) and (277,260).

Finally, the outputs of algorithm 1 are found: DN0fit, PNL0 and PNL1. They will
be used as inputs of the calibration model algorithm. This algorithm corrects the non-
linearity for a given image. This code can be found in Annex. A.3. Fig. 4.8 shows the
correction DNcorr(tint) for each data in DN(tint). The values are corrected perfectly if
they are on the linear line DNrect(tint). So if DNcorr(tint) = DNrect(tint). This is not the
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case for pixel(261,258). However, the pixel (277,260) is nearly perfectly corrected. As
before the value χ2

Err will be computed thanks to Eq. 4.7.

χ2
Err =

tf∑
i=ti

(DNcorr(i) +DNrect(i))2

DNrect(i)
(4.7)

Moreover, the percentage of error can also be computed. This is done thanks to Eq. 4.8.
Tab. 4.3 shows the value of χ2

Err and the Error for the pixel (261,258), (277,260) and the
average values for every pixel.

Error = DNcorr(tint)−DNrect(tint)
DNrect(tint)

. 100 (4.8)

Pixel (258,260) (277,260) Mean for every
illuminated pixel

X2
Err [DN] 390.4283 1.3364 239.3590

Error [%] 4.62 0.4 3.46

Table 4.3: This table shows the value of χ2
Err and the percentage of error for the pixels

(261,258) and (277,260) as well as the mean value of χ2
Err and the percentage of error for every

illuminated pixel.
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Figure 4.8: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260).

Fig. 4.9 shows the initial image with an integration time of 0.004 s on the left and the
corrected image on the right. The corrected image is bad as it is not as homogeneous as
the initial image. It should look smoother.
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Figure 4.9: Difference between the initial image on the left and the corrected image on the
right. The integration time of the image is 0.004 s.

4.3.1 Discussion
It can be seen that pixel (261,258) is not corrected properly. Most of the pixels follow
the same path and are poorly corrected too. In fact, the average error for all the pixels
is 3.46%. This is due to the fact that the orders for the polynomials suggested by the
ATBD are not appropriate. In fact, DNm(tint) do not fit correctly the data DN(tint).
This leads to polynomial coefficients that do not represent well the data. As a result
the function DNrect(tint) will be incorrect as it depends on the polynomial coefficients of
DNm(tint). For the polynomial NLm(tint) the fit is even worse. Again, this means that
the polynomial coefficients do not represent the data NL(tint) correctly. As both polyno-
mials are not well fitted to their corresponding data, the inputs of the calibration model
algorithm: DN0fit, PNL0 and PNL1 are not appropriate. This results in bad corrections.

To conclude, the rightness of the correction rely on how well the polynomials DNm(tint)
and NLm(tint) are fitted to their respective data. For this reason, the orders proposed by
the ATBD will not be considered anymore.

4.4 Application of algorithm 1 with varying polyno-
mial order

In this section, the algorithm 1 will be used with the images taken by the instrument
3MI. The computation is done the same way as for Sec. 4.3. For this reason, all the steps
of the algorithm will not be explained again. However, compared to Sec. 4.3 the order of
the polynomials NLm(tint) and DNm(tint) will be different and need to be investigated.

The first step is to find the best suited order for the polynomial DNm(tint). The order
that suits the best the polynomial would be the one that minimizes χ2

DN . In fact, with
a more appropriate order the polynomial and the data will be closer to each other which
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will lead to a smaller χ2
DN . Fig. 4.10 shows the variation of χ2

DN with respect to the order
of the polynomial DNm(tint).
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Figure 4.10: χ2
DN in function of the order of the polynomial DNm(tint).

The blue line represents the pixel (261,258), the yellow line represents the pixel(277,260)
and the red line represents the average value of all pixels. The polynomial of order 2 for
the pixel(277,266) was already a good fit in (Sec. 4.3). For this reason, the value of χ2

DN

remains constant. However, most of the pixels and pixel(261,258) have high values of
χ2

DN for the small orders. The minimum is reached for a polynomial of order 9. Using
the function Polyfit() in Matlab the polynomial DNm(tint) expressed by Eq. 4.9 can be
fitted to the data DN(tint). The 10 polynomial coefficients are then found.

DNm(tint) = DN0fit + Pt1 . tint + ... + Pt9 . t
9
int, (4.9)

Then, DNrect(tint) can be expressed thanks to the first two polynomial coefficients
just computed. Fig. 4.11 shows DN(tint), DNm(tint) and DNrect(tint) in function of the
integration time for the pixel (261,258) and (277,260). Tab. 4.4 shows the χ2

DN for the
pixel (261,258), (277,260) and for the average of every pixels. As can be seen, DNm(tint)
fits much better the data in this section.

Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
DN [DN] 0.3510 0.0361 0.2363

Table 4.4: This table shows the value of χ2
DN for the pixels (261,258) and (277,260) as well as

the mean value of χ2
DN for every illuminated pixel.
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Figure 4.11: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260).

The second step is to find the best suited order for the polynomialNLm(tint). Again the
order that suits the best the polynomial will be the order that minimizes χ2

NL. Fig. 4.12
shows the variation of χ2

NL with respect to the order of the polynomial NLm(tint). Again
the blue line represents the pixel(261,258), the yellow line represents the pixel(277,260)
and the red line represents the average for all pixels. The minimum value of χ2

NL occurs
at an order of 10. Thus the polynomial NLm(tint) can be written as Eq. 4.10. Fig. 4.13
shows how different order fits the data NL(tint). The order 2, 4 and 8 are represented.
Obviously, higher order polynomials give better approximation for the data NL(tint).

NLm(tint) = PNL0 + PNL1 . DN(tint) + ...+ PNL10 . DN(tint)10 (4.10)
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Figure 4.12: χ2
NL in function of the order of the polynomial NLm(tint).
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Figure 4.13: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixel (261,258). Three polynomials NLm(tint) with the order 2, 4 and 8 are represented.

Fig. 4.14 shows NLm(tint) of order 10 and NL(tint) with respect to DN(tint) for pixel
(261,258) and (277,260). Compared to Sec. 4.3 the polynomials fit better the data for
both pixels. Tab. 4.5 shows χ2

NL for the pixel(261,258), (277,260) and the average of every
pixel. As expected, the values are smaller than the ones computed in Sec. 4.3.
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Figure 4.14: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixels (261,258) and (277,260).
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Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
NL [∼] 0.0386 0.0177 0.0763

Table 4.5: This table shows the value of χ2
NL for the pixels (261,258) and (277,260) as well as

the mean value of χ2
NL for every illuminated pixel.

Finally, the outputs of algorithm 1 are found: DN0fit and from PNL0 to PNL10. They
will be used as inputs of the calibration model algorithm. This algorithm will be used
to correct DN(tint) to DNcorr(tint). Fig. 4.15 shows the correction DNcorr(tint), DN(tint)
and DNrect(tint) in function of the integration time. DNcorr(tint) is perfectly corrected if
it is equal to DNrect(tint). Compared to the previous section, the correction of DN(tint)
is much better. Tab. 4.4 shows χ2

Err and the error in percentage for the pixel(261,258),
(277,260) and the average of every pixel. The average error is smaller than Sec. 4.3.

Pixel (261,258) (277,260) Mean for every
illuminated pixel

X2
Err [DN] 9.3717 0.0381 6.4915

Error [%] 0.2 0.05 0.24

Table 4.6: This table shows the value of χ2
Err and the percentage of error for the pixels

(261,258) and (277,260) as well as the mean value of χ2
Err and the percentage of error for every

illuminated pixel.
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Figure 4.15: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260)

The calibration model algorithm is used again but this time for the correction of an
image. Fig. 4.16 shows the initial image with an integration time of 0.004s on the left and
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the corrected image on the right. The corrected image is smoother than the one presented
in Sec. 4.3. This kind of correction is expected for the non-linearity.
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Figure 4.16: Difference between the initial image on the left and the corrected image on the
right. The integration time of the image is 0.004 s.

4.4.1 Discussion
Firstly, polynomials of higher orders approximate better their respective data compared
to the ones in Sec. 4.3. Concerning the polynomial DNm(tint), X2

DN is almost 10 times
smaller for a polynomial of order 9 than for a polynomial of order 2. Regarding the poly-
nomial NLm(tint), X2

NL is also almost 10 times smaller for the polynomial of order 10 than
for the polynomial of order 1. The mean error was 3.46% in Sec. 4.3 while it is now 0.24%.
This means that the order of the polynomials are more appropriate. The corrected image
represented in Fig. 4.16 seems also more adequate than the one represented in Fig. 4.9 as
the image in smoother with less contrast.

Secondly, because of the change in order for the polynomial DNm(tint), the linear line
DNrect(tint) has not the same position as the one depicted in Fig. 4.6 from Sec. 4.3. This
is due to the fact that the values of the first two polynomial coefficients have changed.
It can be seen that DNrect(tint), computed with the polynomial DNm(tint) of order 9,
is closer to the data DN(tint). As the distance between the data and the linear line is
smaller, the non-linearity between them is also smaller. This leads to less non-linearity
to correct. In fact, in the methodology suggested by the ATBD the order of magnitude
of NL(tint) is about 0.1 and now the order of magnitude is about 0.01. To sum up, it is
important to find an appropriate order for the polynomial DNm(tint), as it will determine
the accuracy of the polynomial DNrect(tint).

Finally, there are still some issues regarding the correction of the last points ofDN(tint)
in Fig. 4.15 for pixel (261,258). In fact, by looking at Fig. 4.11 it can be seen that the
three last points in the data DN(tint) have an odd position compared to the other points.
Normally, with the increasing integration time they should give a signal of higher value.
These three points show a behavior of saturation. For this reason, they should be ignored.
In the next section the computation will be done without the three last points of the data
DN(tint) for each pixels. This will allow to have simpler data distribution DN(tint) which
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will lead to better fitting. It is important to note however that pixel (277,260) does not
show this kind of behavior. In fact, pixels in the transition region do not receive the full
intensity of the integration sphere.

4.5 Application of code 1 without the last three points
In this section, the algorithm 1 will be used with the images taken by the instrument 3MI.
The computation is done the same way as for Sec. 4.3. For this reason, all the steps of the
algorithm will not be explained again. However, for every pixel the last three points in the
data DN(tint) will be ignored. The order of the polynomials NLm(tint) and DNm(tint)
will have to be investigated.

The first step is to find the best suited order for the polynomial DNm(tint). The order
that suits the best the polynomial would be the one that minimizes χ2

DN . Fig. 4.17 shows
the variation of χ2

DN with respect to the order of the polynomial DNm(tint). The blue
line represents the pixel(261,258), the yellow line represents the pixel(277,260) and the
red line represents the average of every pixel. Most of the pixels reaches a minimum χ2

DN

for a polynomial of order 8. By using the function Polyfit in Matlab, the polynomial
DNm(tint) expressed by Eq. 4.11 can be fitted to the data DN(tint). The corresponding
9 polynomial coefficients are then found.

DNm(tint) = DN0fit + Pt1 . tint + ... + Pt8 . t
8
int (4.11)
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Figure 4.17: χ2
DN in function of the order of the polynomial DNm(tint).

Then, DNrect(tint) can be expressed thanks to the first two polynomial coefficients
of DNm(tint). Fig. 4.18 shows DN(tint), DNm(tint) and DNrect(tint) in function of the
integration time for the pixels (261,258) and (277,260). Tab. 4.7 shows the χ2

DN for the
pixel (261,258), (277,260) and for the average of every pixel. As expected, the value χ2

DN

for pixel(277,260) from Sec.4.4 do not change a lot from the value obtained in this section.
This is because, there are no saturated data in the pixels in the transition region. In fact,
they do not receive the full intensity emitted by the integration sphere. However, for
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most of the pixels and for pixel (261,258) the polynomial fits better without the three last
points of DN(tint).
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Figure 4.18: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260).

Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
DN [DN] 0.027 0.0333 0.0356

Table 4.7: This table shows the value of χ2
DN for the pixels (261,258) and (277,260) as well as

the mean value of χ2
DN for every illuminated pixel.

The second step is to find the best suited order for the polynomialNLm(tint). Again the
order that suits the best the polynomial will be the order that minimizes χ2

NL. Fig. 4.19
shows the variation of χ2

NL with respect to the order of the polynomial NLm(tint). The
blue line represents the pixel (261,258), the yellow line represents the pixel (277,260) and
the red line represents the average of every pixel. The minimum value of χ2

NL occurs at
an order of 7. Thus the polynomial NLm(tint) can be written as Eq. 4.12. Fig. 4.20 shows
how different order fits the data NL(tint). The order 2, 4 and 6 are represented.

NLm(tint) = PNL0 + PNL1 . DN(tint) + ...+ PNL7 . DN(tint)7 (4.12)
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Figure 4.19: χ2
NL in function of the order of the polynomial NLm(tint).
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Figure 4.20: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixel (261,258). Three polynomials NLm(tint) with the order 2, 4 and 6 are represented.

Fig. 4.21 shows NLm(tint) of order 7 and NL(tint) with respect to DN(tint). Tab. 4.8
shows χ2

NL for the pixel (261,258), (277,260) and the average of every pixels. As can be
seen from the table, χ2

NL of pixel (277,260) do not vary a lot from Sec. 4.4 however, most
of the pixels and pixel (261,258) have a much better fit. This is again due to the fact that
without the three last points the data fits much better to any polynomial.

Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
NL [∼] 0.0054 0.018 0.0182

Table 4.8: This table shows the value of χ2
NL for the pixels (261,258) and (277,260) as well as

the mean value of χ2
NL for every illuminated pixel.
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Figure 4.21: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixels (261,258) and (277,260).

Finally, the outputs of algorithm 1 are found: DN0fit and from PNL0 to PNL7. They
will be used as inputs of the calibration model algorithm. This algorithm will be used to
correct DN(tint) and will return DNcorr(tint). Fig. 4.22 shows the correction DNcorr(tint),
DN(tint) and DNrect(tint) in function of the integration time. Compared to the previous
section, the correction of DN(tint) is much better. Tab. 4.5 shows χ2

Err and the error in
percentage for the pixel(261,258), (277,260) and the average of every pixels. The mean
error in Sec. 4.4 was 0.24% and is now 0.056% which represents a net amelioration.

The calibration model algorithm is used again but this time for the correction of an
image. Fig. 4.23 shows the initial image with an integration time of 0.004 s on the left
and the corrected image on the right. The differences between both are barely visible.
This is due to the fact that the non-linearity to be corrected was very small as the three
points in the data DN(tint) have been ignored.

Pixel (261,258) (277,260) Mean for every
illuminated pixel

X2
Err [DN] 0.0314 0.0268 0.0541

Error [%] 0.044 0.047 0.056

Table 4.9: This table shows the value of χ2
Err and the percentage of error for the pixels

(261,258) and (277,260) as well as the mean value of χ2
Err and the percentage of error for every

illuminated pixel.
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Figure 4.22: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260)
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Figure 4.23: Difference between the initial image at the left and the corrected image at the
right. The integration time of the image is 0.004s.

4.5.1 Discussion
By ignoring the three last points in the data DN(tint), the mean value of χ2

DN is almost
10 time smaller than the one computed in Sec. 4.4. This is the case even if the order of
the polynomial DNm(tint) is smaller: the polynomial as an order of 8 here compared to
9 for Sec. 4.4. This is due to the fact that by ignoring the last three points, the shape of
the data became simpler. Thus, the polynomial fits better the data. It can be seen that
the accuracy of the fitting do not really change for the pixel in the transition part. In
fact, as there were no saturated data, the fitting accuracy stay the same for both sections.
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Concerning the mean error for all the pixels, it was 0.24% for Sec. 4.4 compared to 0.056%
for this section which is a good amelioration.

4.6 Application of algorithm 2
In this section, the algorithm 2 will used with the images taken by the instrument 3MI.
The only step varying from the algorithm 1 is the way of computing DNrect(tint). The first
step is to determine tmidd for an average value of DN(tint). For each pixel, the average
value named DNmidd = DN(tmidd) corresponds to an integration time of : tmidd = 0.175s.

In this section all the points of DN(tint) are considered and the order of the polynomial
DNm(tint) will be taken to 9 and is represented in Eq. 4.13. In fact, the study has already
been made in Sec. 4.4 and the best polynomial for fitting DN(tint) has an order 9. Thus,
the χ2

DN for this polynomial are the same as the ones listed in Sec. 4.4.

DNm(tint) = DN0fit + Pt1 . tint + ... + Pt9 . t
9
int (4.13)

As explained in chapter 3, in order to compute DNrect(tint) we need the value of the
slope and the intercept. As the value tmidd as been found, they can be computed for each
pixels following the next equations:

Slope = Pt1 + 2 . P t2 . tmidd + 3 . P t3 . t2midd + ...+ 9 . P t9 . t9−1
midd . (4.14)

p = DNm(tmidd) − Slope . tmidd (4.15)

DNrect = Slope . tint + p (4.16)
Fig. 4.24 represents DN(tint), DNm(tint) and DNrect(tint) for the pixels (261,258) and

(277,260). As expected most of the non-linearity occurs for small and large integration
time. This is due to the fact that the middle has been considered linear.

The next step is to find the best suited order for the polynomial NLm(tint). The order
that suits the best the polynomial will be the order that minimizes χ2

NL. Fig. 4.25 shows
the variation of χ2

NL with respect to the order of the polynomial NLm(tint). It can be
seen that χ2

NL of the pixel (277,260) is very unstable. The minimum value occurs for the
order 11. The polynomial NLm(tint) can be written as Eq. 4.17. Fig. 4.26 shows how
different order fits the data NL(tint). The order 2, 4 and 8 are represented.

NLm(tint) = PNL0 + PNL1 . DN(tint) + ...+ PNL11 . DN(tint)11 (4.17)
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Figure 4.24: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260).
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Figure 4.25: χ2
NL in function of the order of the polynomial NLm(tint).
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Figure 4.26: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixel (261,258). Three polynomials NLm(tint) with the order 2, 4 and 8 are represented.

Fig. 4.27 shows NLm(tint) of order 11 and NL(tint) with respect to DN(tint). Tab. 4.10
shows χ2

NL for the pixel (261,258), (277,260) and the average of every pixels. The values
for most pixels and pixel (277,260) are abnormally big compared to the other sections.

0 0.5 1 1.5 2

DN(261,258) 10
4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

N
L

(2
6
1

,2
5
8
)

Pixel(261,258)

NL
m

(261,258)

NL(261,258)

0 2000 4000 6000 8000 10000

DN(277,260)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

N
L

(2
7
7

,2
6
0
)

Pixel(277,260)

NL
m

(277,260)

NL(277,260)

Figure 4.27: Representation of the non-linearity in [∼] with respect to DN(tint) in [DN] for
the pixels (261,258) and (277,260).

Pixel (261,258) (277,260) Mean of every
illuminated pixel

X2
NL [∼] 0.3627 32.5042 12.6265

Table 4.10: This table shows the value of χ2
NL for the pixels (261,258) and (277,260) as well

as the mean value of χ2
NL for every illuminated pixel.
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Finally, the outputs of algorithm 2 are found: DN0fit and from PNL0 to PNL1. They
will be used as inputs of the calibration model algorithm. This algorithm will be used to
correct DN(tint) and will return DNcorr(tint). Fig. 4.28 shows the correction DNcorr(tint),
DN(tint) and DNrect(tint) in function of the integration time. Tab. 4.11 shows χ2

Err and
the error in percentage for the pixel(261,258), (277,260) and the average of every pixel.
The mean error is 0.98% which is larger than the error from Sec. 4.4 and Sec. 4.5.

Pixel (261,258) (277,260) Mean for every
illuminated pixel

X2
Err [DN] 9.6804 250.0385 39.2650

Error [%] 0.42 5.16 0.98

Table 4.11: This table shows the value of χ2
Err and the percentage of error for the pixels

(261,258) and (277,260) as well as the mean value of χ2
Err and the percentage of error for every

illuminated pixel.
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Figure 4.28: Representation of the signal in [DN] with respect to tint in [s] for the pixels
(261,258) and (277,260)

The calibration model algorithm is used again but this time for the correction of an
image. Fig. 4.29 shows the initial image with an integration time of 0.004 s on the left
and the corrected image on the right. The corrected image shows a very bad behavior.
This correction is totally incorrect.
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Figure 4.29: Difference between the initial image at the left and the corrected image at the
right. The integration time of the image is 0.004s.

4.6.1 Discussion
Firstly, it can be seen in Fig. 4.29, that the corrected image is very odd. In fact, the
non-illuminated pixels were fixed at 900 DN. They were always represented in black as
900 DN is supposed to represents the minimum value. However, in the corrected image
presented here, some pixels in the illuminated region are even smaller than 900 DN. This
is not correct as at an integration time of 0.004s the signal in the illuminated region is
supposed to be around 950 DN. This means that the corrected image is not representa-
tive of the reality. Moreover, the mean error was computed at 0.98%, this seems very
small compared to the errors in other sections. In fact, the other sections showed more
appropriate corrected images. The error is computed with respect to DNrect(tint), and
DNrect(tint) is computed very differently in this section than from the others. As the error
is small and that the outcomes are very bad, this means that the algorithm 2 is a bad
algorithm. The way of computing DNrect(tint) do not represents the reality.

Secondly, in Tab. 4.10, the χ2
NL of pixel (277,260) was equal to 32.5042 which is very

huge compared to the values obtained in the previous sections. This anomaly comes from
the fact that at tmidd, DNm(tmidd) and DN(tmidd) are not exactly equal. Theoretically
the method supposes that DNm(tmidd) = DN(tmidd), as it is not the case they are huge
problems concerning the non-linearity computations.

In conclusion, the algorithm 2 is bad because the polynomial DNm(tint) can not fit the
data at tmidd perfectly. Moreover, the way of computing DNrect is incorrect because even
with small errors, the corrected image shows odd behavior. The best method to apply
for computing KDP related to non-linearity is the method described in Sec. 4.5 as it gave
the best results.
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CONCLUSION

This project presented the key concepts in the calibration of FLORIS instrument. FLORIS
is the only payload of FLEX. This mission aims at measuring the fluorescence of the veg-
etation and representing it on global maps [1]. FLORIS, is an hyperspectral imager and
is composed of two high spectral resolution spectrometers that covers a spectral range of
740nm - 780nm and 677nm-697nm. It is also composed of a low spectral resolution spec-
trometer that covers a spectral range of 500nm - 758nm [2]. As FLEX is only composed
of one instrument, it needs additional data to interpret the fluorescence signal. Thus it
will orbit the Earth in tandem formation with Sentinel-3 which will provide the necessary
information. The company Leonardo has designed FLORIS and has charged CSL to cal-
ibrate it [9]. This work explained the essential steps in the calibration of FLORIS.

Firstly, key data parameters (KDPs) as well as the calibration philosophy was intro-
duced. KDPs are parameters that characterize the instrument. These parameters are the
ones that will need to be calibrated during the calibration campaign. In this project, only
the KDP related to the non-linearity of the detector was computed. In this purpose, two
algorithms have been introduced and compared. They only differ by the way of computing
the linearized signal DNrect(tint). However, as the calibration of FLEX is a new project,
the images from 3MI have been used to test the algorithms.

The first study used algorithm 1. The order for the polynomials NLm(tint) and
DNm(tint) were taken at 1 and 2 respectively as suggested in the ATBD. It was demon-
strated that these polynomials were not appropriate for their respective data NL(tint)
and DN(tint). The second study tested algorithm 1 too but with larger orders. It was
shown that this improved the results but at large integration times the data were not
properly corrected. The third study tested the algorithm 1 but this time the data taken
at large integration times were ignored because the signal was too small compared to what
it should have been. This was due to saturation. The results from this study were the
best, the corrected image was very close to the initial one. Finally, the last study tested
algorithm 2. The results were very bad, even though the error in the correction was small.

In conclusion, study number 3 was the one which gave the best results. Moreover, the
use of algorithm 2 must be avoided.
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APPENDIX A
MATLAB FUNCTIONS AND SCRIPTS

A.1 Code for algorithm 1
NL3_Code1.m

%% Code for computing KDP related to non-linearity
clear all;
close all;

%% Part 1: Loading the images of 3MI
DN = load("HR1_DNm.mat"); % Loading the input images
tint = 10^(-3)*[3,4,5,15,25,35,45,57,85,115,145,175,205,235,265,295,325....

,355,385,415,430,450,465]; % Integration time [s]
DN = DN.HR1_DNm ; % DN(t_int) [DN]

%% Part 2.1: Fit of DN, then extraction of the polynomial coefficients
% Initialization of the polynomial coefficients in the case where the
% order of the polynomial is 2.

data = zeros(length(tint),1);
DN0_fit = zeros(520,520);
Pt1 = zeros(520,520);
Pt2 = zeros(520,520);

for i=1:520
for j=1:520

data(:)= DN(i,j,:);
ft = polyfit(tint(:),data(:),2); % Polyfit of order 2
DN0_fit(i,j) = ft(3); % coefficient of t^0
Pt1(i,j) = ft(2); % coefficient of t^1
Pt2(i,j) = ft(1); % coefficient of t^2

end
end

for i=1 : 1:520
for j=1 :1:520
% Construction of DNm for every pixel
DNm(i,j,:) = DN0_fit(i,j) + Pt1(i,j).*tint(:) + Pt2(i,j).*tint(:).^2 ;
end

end
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%% Part 2.2: Construction of NL and DNrect

% Initialization
DNrect = zeros(520,520,length(tint));
NL = zeros(520,520,length(tint));

for t=1:length(tint)
for i=1:520

for j=1:520
% Construction of DNrect for every pixel
DNrect(i,j,t) = DN0_fit(i,j) + Pt1(i,j)*tint(t);
% Construction of NL for every pixel
NL(i,j,t) = (DN(i,j,t)-DNrect(i,j,t))/(DNrect(i,j,t)- ....

DN0_fit(i,j));
end

end
end

%% Part 2.3: Fit of NL, then extraction of the polynomial coefficients

% Initialization of the polynomial coefficients in the case where the
% order of the polynomial is 1.

P_NL_1 = zeros(520,520);
P_NL_0 = zeros(520,520);
NLm = zeros(520,520,length(tint));

for i=1:520
for j=1:520

datax(:) = DN(i,j,:);
datay(:) = NL(i,j,:);
ft = polyfit(datax(:),datay(:),1) ; % Polyfit of order 1
P_NL_0(i,j) = ft(2) ; % coefficient of t^0
P_NL_1(i,j) = ft(1) ; % coefficient of t^1

end
end

for i=1:520
for j=1:520

% Construction of NLm
NLm(i,j,:) = P_NL_0(i,j)+P_NL_1(i,j).*DN(i,j,:);

end
end
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A.2 Code for algorithm 2
NL3_Code2.m

%% Code for computing KDP related to non-linearity
clear all;
close all;

%% Part 1: Loading the images of 3MI
DN = load("HR1_DNm.mat"); % Loading the input images
tint = 10^(-3)*[3,4,5,15,25,35,45,57,85,115,145,175,205,235,265,295,325....

,355,385,415,430,450,465]; % Integration time [s]
DN = DN.HR1_DNm ; % DN(t_int) [DN]

%% Part 2.1: Fit of DN, then extraction of the polynomial coefficients
% Initialization of the polynomial coefficients in the case where the
% order of the polynomial is 2.

data = zeros(length(tint),1);
DN0_fit = zeros(520,520);
Pt1 = zeros(520,520);
Pt2 = zeros(520,520);

for i=1:520
for j=1:520

data(:)= DN(i,j,:);
ft = polyfit(tint(:),data(:),2); % Polyfit of order 2
DN0_fit(i,j) = ft(3); % coefficient of t^0
Pt1(i,j) = ft(2); % coefficient of t^1
Pt2(i,j) = ft(1); % coefficient of t^2

end
end

for i=1 : 1:520
for j=1 :1:520
% Construction of DNm for every pixel
DNm(i,j,:) = DN0_fit(i,j) + Pt1(i,j).*tint(:) + Pt2(i,j).*tint(:).^2 ;
end

end

%% Part 2.2: Construction of NL and DNrect

% Initialization
DNrect = zeros(520,520,length(tint));
NL = zeros(520,520,length(tint));

for t=1:length(tint)
for i=1:520

for j=1:520
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% Construction of DNrect for every pixel
slope(i,j) = Pt1(i,j)+ 2*Pt2(i,j)*tint(12);
intercept(i,j) = DN0_fit(i,j) + Pt1(i,j)*tint(12) + ....

Pt2(i,j)*tint(12)^2 - pente(i,j) *tint(12);
DNrect(i,j,:) = slope(i,j).*tint(:) + intercept(i,j);

% Construction of NL for every pixel
NL(i,j,t) = (DN(i,j,t)-DNrect(i,j,t))/(DNrect(i,j,t)- ....

DN0_fit(i,j));

end
end

end

%% Part 2.3: Fit of NL, then extraction of the polynomial coefficients

% Initialization of the polynomial coefficients in the case where the
% order of the polynomial is 1.

P_NL_1 = zeros(520,520);
P_NL_0 = zeros(520,520);
NLm = zeros(520,520,length(tint));

for i=1:520
for j=1:520

datax(:) = DN(i,j,:);
datay(:) = NL(i,j,:);
ft = polyfit(datax(:),datay(:),1) ; % Polyfit of order 1
P_NL_0(i,j) = ft(2) ; % coefficient of t^0
P_NL_1(i,j) = ft(1) ; % coefficient of t^1

end
end

for i=1:520
for j=1:520

% Construction of NLm
NLm(i,j,:) = P_NL_0(i,j)+P_NL_1(i,j).*DN(i,j,:);

end
end

A.3 CMOD for the correction of non-linearity
NL3_CMOD.m
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%% Calibration model for the correction of the non-linearity

for i=1:520
for j=1:520

DN_corr(i,j,:)=(DN(i,j,:)-DN0_fit(i,j))./....
(NL_m(i,j,:)+1)+DN0_fit(i,j);

end
end

A.4 Code for computing the mean of each acquisi-
tions for every pixels

NL3_Mean.m

%% Opens NETCDF files and computes the mean of the acquisitions for every
%% integration time and for every pixel
clear all;
close all;

tint = 10^(-3)*[3,4,5,15,25,35,45,57,85,115,145,175,205,235,265,295,325....
,355,385,415,430,450,465]; % Integration time in [s]

% Initialization
DN = zeros(520,520,length(tint));

%% Time integration 3
Nacq3 = 1000;
for i=1:Nacq3

filename = strcat(’meas_TINT_0003.0_’,num2str(i-1),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_3(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,1) = mean(Imread_3(i,j,:));

end
end

%% Time integration 4
Nacq4 = 609;
for i=1:Nacq4

filename = strcat(’meas_TINT_0004.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_4(:,:,i)= Image ;

end
for i=1:520

for j=1:520
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DN(i,j,2) = mean(Imread_4(i,j,:));
end

end
%% Time integration 5
Nacq5 = 390;
for i=1:Nacq5

filename = strcat(’meas_TINT_0005.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_5(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,3) = mean(Imread_5(i,j,:));

end
end
%% Time integration 15
Nacq15 = 43;
for i=1:Nacq15

filename = strcat(’meas_TINT_0015.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_15(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,4) = mean(Imread_15(i,j,:));

end
end
%% Time integration 25
Nacq25 = 16;
for i=1:Nacq25

filename = strcat(’meas_TINT_0025.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_25(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,5) = mean(Imread_25(i,j,:));

end
end
%% Time integration 35
Nacq35 = 8;
for i=1:Nacq35

filename = strcat(’meas_TINT_0035.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_35(:,:,i)= Image ;

end
for i=1:520

for j=1:520
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DN(i,j,6) = mean(Imread_35(i,j,:));
end

end
%% Time integration 45
Nacq45 = 5;
for i=1:Nacq45

filename = strcat(’meas_TINT_0045.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_45(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,7) = mean(Imread_45(i,j,:));

end
end
%% Time integration 57
Nacq57 = 3;
for i=1:Nacq57

filename = strcat(’meas_TINT_0057.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_57(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,8) = mean(Imread_57(i,j,:));

end
end
%% Time integration 85
Nacq85 = 3;
for i=1:Nacq85

filename = strcat(’meas_TINT_0085.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_85(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,9) = mean(Imread_85(i,j,:));

end
end
%% Time integration 115
Nacq115 = 3;
for i=1:Nacq115

filename = strcat(’meas_TINT_0115.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_115(:,:,i)= Image ;

end
for i=1:520

for j=1:520
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DN(i,j,10) = mean(Imread_115(i,j,:));
end

end
%% Time integration 145
Nacq145 = 3;
for i=1:Nacq145

filename = strcat(’meas_TINT_0145.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_145(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,11) = mean(Imread_145(i,j,:));

end
end
%% Time integration 175
Nacq175 = 3;
for i=1:Nacq175

filename = strcat(’meas_TINT_0175.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_175(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,12) = mean(Imread_175(i,j,:));

end
end
%% Time integration 205
Nacq205 = 3;
for i=1:Nacq205

filename = strcat(’meas_TINT_0205.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_205(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,13) = mean(Imread_205(i,j,:));

end
end
%% Time integration 235
Nacq235 = 3;
for i=1:Nacq235

filename = strcat(’meas_TINT_0235.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_235(:,:,i)= Image ;

end
for i=1:520

for j=1:520
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DN(i,j,14) = mean(Imread_235(i,j,:));
end

end

%% Time integration 265
Nacq265 = 3;
for i=1:Nacq265

filename = strcat(’meas_TINT_0265.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_265(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,15) = mean(Imread_265(i,j,:));

end
end
%% Time integration 295
Nacq295 = 2;
for i=1:Nacq295

filename = strcat(’meas_TINT_0295.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_295(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,16) = mean(Imread_295(i,j,:));

end
end
%% Time integration 325
Nacq325 = 2;
for i=1:Nacq325

filename = strcat(’meas_TINT_0325.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_325(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,17) = mean(Imread_325(i,j,:));

end
end
%% Time integration 355
Nacq355 = 2;
for i=1:Nacq355

filename = strcat(’meas_TINT_0355.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_355(:,:,i)= Image ;

end
for i=1:520
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for j=1:520
DN(i,j,18) = mean(Imread_355(i,j,:));

end
end
%% Time integration 385
Nacq385 = 2;
for i=1:Nacq385

filename = strcat(’meas_TINT_0385.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_385(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,19) = mean(Imread_385(i,j,:));

end
end
%% Time integration 415
Nacq415 = 2;
for i=1:Nacq415

filename = strcat(’meas_TINT_0415.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_415(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,20) = mean(Imread_415(i,j,:));

end
end
%% Time integration 430
Nacq430 = 2;
for i=1:Nacq430

filename = strcat(’meas_TINT_0430.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_430(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,21) = mean(Imread_430(i,j,:));

end
end
%% Time integration 450
Nacq450 = 2;
for i=1:Nacq450

filename = strcat(’meas_TINT_0450.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_450(:,:,i)= Image ;

end
for i=1:520
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for j=1:520
DN(i,j,22) = mean(Imread_450(i,j,:));

end
end
%% Time integration 465
Nacq465 = 2;
for i=1:Nacq465

filename = strcat(’meas_TINT_0465.0_’,num2str(i),’.nc’);
Image = ncread( filename, ’NON_LINEARITY_CALIB/VNIR/MEASUREMENT’);
Imread_465(:,:,i)= Image ;

end
for i=1:520

for j=1:520
DN(i,j,23) = mean(Imread_465(i,j,:));

end
end
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