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Abstract

Monitoring a network in a precise manner is becoming more interesting in
light of the volume of traffic that new infrastructures can accommodate.
With the advent of programmable switches and routers, monitoring
systems are turning to solutions that benefit from this new capability. There
is also the establishment of a new back-end approach known as serverless
computing, which consists in uploading lambda functions to the cloud.
These functions offer backend services on an as-needed basis.

The goal of this work is to develop a monitoring system capable
of detecting network attacks and specific events of interest to a network
operator. To accomplish this, the two previously introduced notions are
used, namely a backend architecture based on serverless computing and
the assumption that the network is made up of programmable devices.

In terms of packet processing technology, we used XDP, which allows
us to create a hook at the switch’s network interface and execute a program.
The program’s goal is to save the headers of IP packets locally. These data
are then formatted as custom events and transferred to an intermediate
server. In order to do this, we have designed a protocol on top of UDP. The
server will then trigger the execution of the lambda functions associated
to the events. For their execution we decided to choose Kubeless, a
Kubernetes-native serverless framework. A Proof of Concept was created
to see if our solution was scalable and possible. We then evaluate the
amount of network traffic generated by our approach and discuss protocol
limitations.

We conclude by suggesting several sorts of prospective improvements
ranging from security to better benchmarking and other architectural
options.
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Chapter 1

Introduction

Network operators are constantly looking for solutions to continuously
monitor events ranging from simple congestion data to potential attacks
on the network. This monitoring requires the ability to handle huge
amounts of data in real time. Previously some used the Simple Network
Management Protocol (SNMP) as their primary data collection method.
However, using SNMP requires deploying SNMP agents on every device
in the network and collecting them one after the other, allowing very little
flexibility. Furthermore, the amount of data to be collected from these
devices, or the compression of the data or even the data itself to be collected
is quite limited. It does not account for fine-grained statistics such as flows
sizes counters for example, an almost pre-requisite when you think about
today’s network infrastructures such as data centers and Software-Defined
Networking (SDN) networks.

Programmable switches allow nowadays to parse packets at line rate
and if accompanied by stream processors to parse these data in real
time, to be able to interpret the network behavior and track performance
impairments or attacks. This allows the programmer to program a switch
according to her needs. The switch can be programmed to be a firewall
or even a load-balancer or simply an advanced switch with the ability to
record data and parse the headers of higher layers such as L2-L3 switches.

Furthermore, we see an increase in interest in cloud technologies,
particularly in the design of cloud-hosted applications. A new event-
driven paradigm known as Serverless computing, also known as "Function
as a Service (FaaS)", emerged a few years ago, allowing programmers to
create functions in response to events that together form an application.
These functions can interact with one another and use databases, and they
are managed and executed by the cloud service provider. These functions,
triggered by client-defined events, would be dynamically provisioned as
containers and Virtual Machine (VM), and their number would be scaled
in accordance with the real-time load.
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The goal of this thesis is to develop a draft of a complete monitoring
system that makes use of the ability of switches and routers to be
programmable, allowing active monitoring of a medium to large scale
network, as well as to use a serverless architecture to respond to network
events and determine so-called network behavior.

In chapter 2 and 3 the State of the Art (SOTA) technologies will
be reviewed as well as similar works on active monitoring of Internet
networks and important concepts that might appear in this thesis. In
chapter 4, the architecture of the developed solution will be presented.
The chapter 5 describes the implementation details of the solution. The
simulation environment and the results are discussed in chapter 6. Chapter
7 will conclude this thesis by describing the possible improvements of
the different modules of the architecture as well as the improvements
regarding the implementation.

Defining goals

The project consists in monitoring a computer network in order to detect
in real time possible attacks or unusual events. To do this we assume that
our network is composed of programmable devices (switches and routers)
which implies that each packet received on their respective interfaces can
be recorded, processed, modified and forwarded at almost the same speed
as state of the art hardware processing technologies.

Each device being programmable means that they have an Operating
System (OS) evolved enough to give them the capability to run programs
and thus to communicate and send statistics with other network entities
such as network controllers or servers.

To each network event would be associated a piece of code (lambda
function) defining an automatic decision to be taken. These lambda
functions are the core of the serverless architecture. They would analyse
the event and based on past events determine whether or not something
abnormal is detected and signal the network administrator. Exploring
a serverless solution is not trivial and comes with several challenges to
ensure proper scaling if the size of the network at hand is important.
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Chapter 2

Background

2.1 Data plane - Control plane

Device control plane and device data plane are conceptually separated in
conventional network equipment independently of implementation (e.g.,
pure software or specific hardware) or purpose (e.g., a switch or an edge
router).

Network routing’s control plane includes all functions and processes
that define how to process packets or how to determine which path a packet
or frame should take to get to its destination. For example, routing tables
and forwarding tables are filled by the control plane, enabling the data
plane’s capabilities. In a nutshell, it is responsible for how packets should
be routed.

The data plane, on the other hand, refers to all the functions and
processes that use control plane logic to move packets/frames from one
interface to another. It is responsible for executing what has been decided
in the control plane often with high performance. Forwarding plane is
another word for it.

Software-Defined Networking (SDN) is a new approach that separates
physically the control plane and the data plane in order to be able to flexibly
modify the rules contained inside the switches and routers tables. The
control plane in a traditional network is distributed between all the routers
of the network and communicate with each other to ensure proper routing.
However, in SDN Network this would be calculated by an sole entity called
a SDN controller that possesses the full network knowledge such as the
full topology, the cost per link, the bandwidth available and can run many
advanced algorithms to ensure flexible routing thanks to real time feedback
from the network devices. This type of architecture is shown on Figure 2.1.

There are several popular APIs and protocols used for communication
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Figure 2.1: Typical SDN architecture

between the controller and routers including OpenFlow [21], P4RunTime
[27] , ForCES [38] and many more.

2.2 Kernel Space vs User space

Random Access Memory (RAM) is separated into two parts: kernel space
and user space respectively. The kernel runs in kernel space, which is
inaccessible to other applications. It has full access to all memory address
spaces as well as all underlying hardware. It is only used for the most
trustworthy functions within a system. Kernel mode is often designated
for the operating system’s lowest-level, most trusted functions.

User programs must execute in user space. User space is a type of
sandboxing in which user programs can only access memory that has
been assigned to them by the OS so that they do not interfere with other
programs nor the kernel.

This in mind we must be able to discern between the execution
of operating-system code and user-defined code in order to ensure that
the operating system runs properly [31]. On most computers, this
is accomplished by supplying hardware capability for distinguishing
between execution modes. A minimum of two separate modes of operation
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Figure 2.2: User mode to kernel mode via system call. Source [31]

is required, namely, user mode and kernel mode. The mode bit is a bit
added to the computer’s hardware that indicates the current mode: kernel
(0) or user (1).

It is possible to distinguish between tasks performed for the operating
system and those conducted on behalf of the user using the mode bit. When
a user program is running on the computer, the system is in user mode.
However, when a user program requests a service from the OS, the system
must go from user to kernel mode to meet the request thanks to a system
call.

System calls give a user program the means to ask the operating
system to undertake user program tasks reserved for the operating system.
Depending on the capability of the underlying processor, a system call is
called in various ways.

The whole process is depicted on 2.2 to better illustrate the bit change
and the clear separation that exists between user space and kernel space
and the security that the system call API provides.

2.3 Kubernetes

In the recent years, the move towards the microservice based architecture
has attracted numerous framework.

Kubernetes [15] is one, if not the vendor-agnostic cluster and container
management tool that allows containerized applications to be deployed,
scaled, and managed automatically with a large community and support.

Kubernetes relieves application developers of the burden of building
resilience in their applications. As a result, it has grown in popularity as a
platform for delivering microservice-based applications.

The Kubernetes basic architecture depicted on Figure 2.3 is made up
of at least one master node (often several for redundancy) and a couple of
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Figure 2.3: Kubernetes basic architecture

worker nodes, each of which has a kubelet process running on it. Kubelet
is a Kubernetes process that allows the elements of the cluster to talk to
each other, communicate with each other, and actually execute some tasks
on those nodes. Each worker node has docker containers for various apps
installed on it, hence the number of docker containers operating on worker
nodes will vary depending on how the workload is spread.

It is important to note that several Kubernetes processes run on the
master node and they are absolutely necessary for the cluster to run
correctly.

The first process is an API server, which is also a container. That
server is the Kubernetes cluster’s entry point, therefore this is the process
that different Kubernetes clients will communicate with, such as a User
Interface (UI) if you’re using the Kubernetes dashboard, an API if you’re
using scripts, and a command-line tool if you’re using a Command-Line
Interface (CLI).

A controller manager is another process that runs on the master node
and keeps track of what is going on in the cluster, such as if anything needs
to be fixed or whether a container has died and has to be restarted. A third
process is the scheduler, which is in charge of scheduling containers on
different nodes based on the workload and available server resources on
each node. It is a smart process that determines which worker node the
next container should be scheduled on based on the available resources on

6



those worker nodes and the load that container must meet.

The most essential component of the entire cluster is a etcd key/value
store, which effectively keeps the current state of the Kubernetes cluster at
any given moment, including all of the configuration data as well as the
status data of each node and container within that node. Last but not least,
a very essential component of Kubernetes that enables those worker nodes
and master nodes to communicate with each other is the virtual network
that spans all of the cluster’s nodes. In basic terms, a virtual network
combines all of the nodes in a cluster into a single powerful system with
all of the resources of individual nodes.

There might also be different terms related to Kubernetes that are used
in this work. We will try to demystify some of them in order to better
understand once they appear.

In Kubernetes, a pod is the smallest unit configurable a user can
interact with. A pod is just a container wrapper. There will be many
pods on each worker node, and each pod can hold several containers. A
database, for example, would be one pod, a server would be another, a java
application would be yet another, and so on.

A virtual network assigns each pod its own Internet Protocol (IP)
address, thereby making each pod a self-contained server with its own IP
address. Internally, pods interact with each other using this IP address.
During the configuration phases, the client configures or creates containers
within the Kubernetes cluster, but the user only interacts with pods, which
are an abstraction layer over containers and a Kubernetes component that
controls the containers operating within it.

However, pods can come and go, crash, and restart, which implies they
will be restarted frequently. This is where the concept of services comes into
play.

A new pod is generated and given a new IP address whenever it is
restarted. If the application relied on other pods, it would be annoying to
have to change the IP address all the time. As a result, we will make use of
another Kubernetes component known as service. It is utilized as a stand-
in for those IP addresses in order to make things as consistent as feasible.

The services in front of each pod communicate with one another, and
if a pod behind the service dies, it is replaced by the service that remains in
place because their life cycles are not linked. In a sense, the service has two
basic functions: the first is a permanent IP address and the second one is a
load balancer functionality.
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2.4 Network Attacks

This work consists partly in identifying attacks on the network. It is
important to recall how these attacks work in order to better understand
what information will be exchanged and stored for their detection.

2.4.1 TCP SYN Flooding

The Transmission Control Protocol (TCP) SYN flood attack is a Denial of
Service (DoS) attack. It consists in exploiting the way the TCP three-way
handshake works in order to consume a lot of resources on the targeted
server and to make it overloaded to the point that it cannot handle the
legitimate requests of other users.

As a reminder, the TCP three-way handshake depicted on Figure 2.4
works as follows:

Figure 2.4: TCP three-way handshake

1. The client will choose an initial sequence number and send it in the
first TCP segment with the SYN flag set to 1.

2. Once the server receives this segment it will allocate a TCP buffer
and useful variables to maintain the future state of the connection.
The server will respond with a TCP segment with the ACK flag set
to the value of the client’s sequence number incremented by 1. It
also sets the SYN flag of the TCP segment to 1. It then chooses its
own sequence number randomly and indicates it in the header field
provided for this purpose.

3. The client that receives the SYN+ACK from the server will also
allocate a TCP buffer and the necessary variables to keep the
connection state. It will finish the three-way handshake by sending
a last TCP segment with the ACK flag set according to the sequence
number received by the server incremented by 1.

8



Once these steps are completed the server and the client have
established a connection and can now exchange the desired data on this
channel.

The TCP SYN flood consists of the attacker sending step one of the
three-way handshake many times using fake IP addresses in order to force
the server to allocate memory and block potential sockets if they reach a
predefined maximum size, which is commonly done in practice to avoid
server crashes. The server often struggles to detect this kind of attack
because these requests appear to be legitimate requests and therefore will
respond to each of them.

2.4.2 TCP SYN Scanning

Another attack that we will try to detect in this work is TCP SYN scan
which also exploits the three-way handshake seen previously. Indeed,
knowing which port is open on a remote server can allow an attacker to
exploit the vulnerabilities of a particular service. It does not constitute an
attack directly but generally indicates a more than suspicious behavior and
the detection of it would allow to trigger alerts before the real attack occurs.

SYN scanning or half-open scanning consists of sending TCP segments
with only the SYN flag set and observing the server’s response which can
be either an RST, ACK, SYN or ACK. Based on these responses the attacker
can determine whether or not the port is open.

If she observes a RST or ACK or no response after a certain time
then the port is probably closed or filtered and the attacker will close the
connection by sending an RST to abort the process. If on the other hand a
SYN+ACK is sent from the server then the attacker knows that a service is
known to be running on that port and will quickly close the connection by
sending an RST to avoid handling a real connection with the server.

2.4.3 UDP Port Scanning

The most popular User Datagram Protocol (UDP) scans are used to detect
Domain Name System (DNS), SNMP, and Dynamic Host Protocol (DHCP)
services. UDP scans operate by transmitting a packet that is typically
empty. For each port, this can be adjusted or even set to a random payload.

The port is deemed closed if the target answers with an Internet
Control Message Protocol (ICMP) unreachable error (type 3, code 3) packet.
The packet is considered filtered if it responds with an ICMP unreachable
error message with other codes. The port is considered open or filtered if
no answer is received at all.
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The difficulty with utilizing UDP for any kind of communication is
that it is unreliable since it lacks the ability to create a connection or
synchronize packets like TCP does. As a result, UDP scans are usually
slow. Because you are waiting for a packet that may or may not arrive, and
you have no means of knowing if the packet arrived at all, you may need to
transmit multiple packets and then wait to ensure that a port is considered
open or filtered.
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Chapter 3

State of the Art

This chapter looks at a few projects and technologies that have some
similarities to the solution we intend to bring. Some of these were used to
inspire the architecture while some are proposed as improvements because
not fully developed at the time of conceptualization.

3.1 Packet processing

3.1.1 XDP

High performance packet processing done in software is a real challenge
as it requires a maximum time per packet to guarantee a maximum
bandwidth close to what can be achieved thanks to hardware packet
processing techniques.

It is important to note that the network stack currently used on our
operating systems is optimised for other purposes and therefore performs
too many operations that could not guarantee high throughput to be used
directly.

This is the reason why before eXpress Data Path (XDP) [12] was
invented there were already different techniques such as "kernel bypass"
to bypass the operating system completely and pass the packet directly
to the application. However, this approach, while effective, has several
drawbacks, such as the difficulty of integrating this bypass into any type
of system or without having to re-implement different OS functionalities in
the application.

XDP aims at the same goal as "kernel bypass" but has been concep-
tualized differently. It works by defining a limited execution environment
in the form of a virtual machine running Extended Berkeley Packet Filter
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(eBPF) code. Before the kernel touches the packet data, this environment
runs custom programs in kernel context. This allows for custom processing
as soon as a packet is received from the hardware.

It is then the role of the kernel to ensure the safety of the custom
programs by statically verifying them at load time thanks to an eBPF
verifier to avoid any type of crash or corruption of the running kernel. The
verifier checks for any loops not specifically bounded which could lead to
possible infinite loops. It does also check for any unsafe memory accesses
and will reject any program that does not meet these measures. These
programs are then dynamically compiled into native machine instructions
to ensure high performance.

More specifically an XDP program is run by a hook in the network
device driver each time a packet arrives. The infrastructure to execute
the program is contained in the kernel which means that the program is
executed in the device driver.

3.1.2 eBPF

eBPF is an evolution of the original Berkeley Packet Filter (BPF) [20] which
has been used extensively in various packet filtering applications over the
last decades.

The original BPF virtual machine consisted of 2 32-bit registers and a
small set of eleven instructions. This obviously led to some key restrictions.

The number of registers in eBPF is increased to eleven, and the
register widths are increased to 64 bits. To improve program execution
speed, the Just-in-Time (JIT) compilation stage converts the program’s
generic bytecode into a machine-specific instruction set. This allows eBPF
programs to run as efficiently as natively compiled kernel code.

The program can write any section of the packet data, including
adding or removing headers by extending or reducing the packet buffer.
This enables it to handle encapsulation and decapsulation as well as modify
address fields for forwarding, for example. Various kernel helper functions
are available to aid with tasks such as calculating the checksum of a
modified packet. The XDP program issues a final verdict for the packet
at the end of processing which is accomplished by selecting one of the four
return codes available.

In order to be able to store relevant data BPF has defined what is called
BPF maps. These are key/value stores that are defined when loading the
eBPF program and can be accessed from within the program thanks to a
set of instructions. These maps have several variants, and several data
structures: they can be global or unique per Central Processing Unit (CPU),
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they can be simple hash tables, arrays or even radix trees. They serve
several purposes: they act as a form of persistent storage as well as a means
of communication between the eBPF program that modifies the state of the
BPF maps and a user space program that can poll the data stored in the BPF
maps.

3.1.3 P4

Data and control plane algorithms are used by traditional networking
equipment like routers and switches to process packets. Users can
customize control plane features and protocols using all sorts of tools
such as CLIs, management APIs but only the manufacturer can change
the underlying algorithms. SDN and, to a lesser extent, data plane
programming have broken down this barrier.

Programming Protocol-independent Packet Processors (P4) [5] [26]
attempts to provide programmability to the data plane. It enables the
programmer to entirely define how to deal with data packets that cross
the programmable data plane block.

The runtime mapping metadata is generated by a P4 compiler,
allowing the control and data planes to communicate.

A P4 compiler additionally creates a target data plane executable
(target prog.bin), which specifies the header formats and actions for the
target device.

3.2 Network measurements

3.2.1 Sketches

According to Wikipedia [32]:

"In computer science, streaming algorithms are algorithms for
processing data streams in which the input is presented as a
sequence of items and can be examined in only a few passes
(typically just one). In most models, these algorithms have
access to limited memory (generally logarithmic in the size of
and/or the maximum value in the stream). They may also have
limited processing time per item.

These constraints may mean that an algorithm produces an
approximate answer based on a summary or "sketch" of the data
stream".
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For network measurements, the data represents packets received on
the network interfaces of the devices and will create a sketch about the
state of the packet.

In OpenSketch [39] they present common properties of sketches such
as the low memory usage. For example, one can use an array as a sketch
that maintains counters incremented each time a packet destination port
hash matches. It would allow then to gather knowledge about what port
is commonly targeted, how often, and in what proportion. Moreover, it
has proven to offer a provable trade-off between accuracy and memory
which makes them appropriate for network measurements considering
great hashing functions, and reasonable storage size.

Sketches may be used for a variety of reasons in network measures,
including spotting heavy hitters [4] as well as making flow size distribution
estimations [16], or traffic change detection [30] and many more.

Another key contributor to this field is SCREAM [25]. They suggest in
their work to utilize a dynamic resource allocator that gives each job just
enough resources for the traffic it observes, and dynamically adapts the
resource allocation as traffic varies over time.

An important contribution is the use of Sketch-based task implement-
ation across many switches. SCREAM use cutting-edge technology to com-
bine sketches of varying sizes from several switches. Each task type imple-
mentation must collect sketch counts from multiple switches and present
the user with measurements.

Because switches see different types of traffic, each sketch may require
different sizes in order to be efficient and accurate. They carried out
three measurements tasks such as heavy hitter, hierarchical heavy hitter
and super source/destination which appear to be the most common and
benchmarked sketches among the field.

3.3 Serverless Computing

3.3.1 Serverless

Serverless computing is an architecture in which code execution is
completely controlled by a cloud provider, as opposed to the typical way
of building applications and deploying them on servers. [36] [35]

It means that when deploying code, developers don’t have to worry
about managing, or maintaining servers. Previously, a developer had to
estimate how much storage and database capacity would be required prior
to deployment, which slowed down the entire process.
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Users prepurchase units of capacity in an Infrastructure-as-a-Service
(IaaS) cloud computing paradigm, which means you pay a public cloud
provider for always-on server components to operate your apps.

It is the responsibility of the user to scale up server capacity during
periods of high demand and scale down when that capacity is no longer
required. Even when an app isn’t being used, the cloud infrastructure is
still required to support its operation.

Serverless architecture, on the other hand, allows apps to be launched
only when they are needed. The public cloud provider dynamically
provides resources for app code that is triggered by an event. When the
code has completed its execution, the user is no longer charged. Serverless
frees developers from repetitive and laborious activities associated with
app scalability and server provisioning, in addition to the cost and
efficiency benefits.

FaaS is available from all of the major public cloud providers. Amazon
Web Services (AWS Lambda) [3], Microsoft Azure (Azure Functions) [22],
Google Cloud [11], and IBM Cloud (IBM Cloud Functions) [13] are just a
few of them.

3.3.2 Kubeless

Kubernetes was initially introduced because Kubeless is a Kubernetes-
native approach of deploying and managing serverless functions using the
serverless framework. The functions are self-contained and can be thought
of as Kubernetes-managed microservices. They are pieces of code that the
developer writes and subsequently uploads to the Kubernetes cluster.

Kubeless has set up a system for triggering functions for them to run.
These triggers are defined by the framework as events such as Hypertext
Transfer Protocol (HTTP) endpoint, Kafka queue message, timers.

3.3.3 Unikernel

In a serverless architecture, code snippets executed in response to an event
are allocated an execution environment. This environment must be able to
be created quickly, be very light, have the basic functionalities and libraries
to execute the code in question and be completely freed once the execution
is complete. It is also important to take into consideration the isolation, as
the cloud provider wants to make sure that the execution of a function from
one client cannot interfere with the execution of a function from another
client on the same host or corrupt the host machine itself.

It is therefore very popular to use lightweight virtual machines or
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containers or even unikernels that are even lighter and have a very low
boot time.

Unikernels [19] are built using library operating systems, in which
the OS kernel is tightly linked with user applications as separate software
appliances.

They may be used in conjunction with standard hypervisors as well as
lighter virtualization methods. Unikernels are lightweight and have great
isolation which makes them a very good match for the FaaS paradigm.
They are also as quick as processes and as safe as virtual machines.

3.3.4 Unikernel FaaS

In contrast to the current FaaS model, in which large, stateless functions are
run in heavy sandboxes, Unikernel-as-a-Function (UaaF) [33] breaks down
the main functionality into a sequence of low-level function invocations,
each of which runs in its own unikernel (lightweight sandbox). UaaF is
made up of two kinds of functions: session and library functions. A session
is a proxy function that specifies the application’s skeleton. When the
application starts to run, it specifies which library functions to call. Library
functions are pre-defined routines that application developers upload to
the cloud and may be called and used by different apps.

When a user requests that a serverless application be invoked, the
cloud provider constructs a session function for the application and ties
it to the library functions given in the user’s configuration file.

UaaF most important takeaway is that it allows to create more
sophisticated serverless applications with inter-function communication,
a feature that would make possible one function in one unikernel to call
and wait for the return value of another function in another unikernel with
little performance and startup time overhead.

In order to do that they have to minimize the performance penalty
of function invocation across unikernels. UaaF makes use of VMFUNC,
a new virtualization capability on Intel CPUs. A unikernel running as
a guest OS in a virtual machine can use VMFUNC to call a function in
another VM without exiting the virtual system. UaaF uses VMFUNC to
switch the Extend Page Table Pointer between two unikernels, allowing
one unikernel to access virtual memory and execute functions in another
unikernel making this technology a real contender in the field.
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3.4 In-Band Network Telemetry

Data plane telemetry and switch internal state information can be collected
at line rate using In-Band Network Telemetry (INT), an unique architecture.
Custom metadata is used to read the telemetry headers and identify
which telemetry items to add utilizing programmable data planes and P4
programming language.

In [34] by using an SDN controller, the control plane can set per-flow
event detection mechanisms, such as a switch’s role (such as source or sink)
and detection algorithm (see Figure 3.1). P4 exposes a controller API that
communicates this configuration to the switch. Event detection parameters
can be specified by the SDN controller through this configuration API,
allowing for the detection of many different sorts of events at the sink
switches (e.g. queue information, burst and so on).

Figure 3.1: Overview of the INT monitoring. Source [34]

Each transit switch along the path parses the instruction and puts
on the INT metadata in the telemetry header (such as queue occupancy)
specified by the instruction.

Upon receiving a packet containing a telemetry header, an INT
sink (collector) strips all telemetry headers and uses the event detection
mechanism provided in the control plane.

Telemetry reports from the sink switches are then sent to INT monitors
if the event criteria are met. The sink switches delete telemetry information
if no event is detected, lowering the strain on the stream processor. INT
monitors use AF_XDP, which streams remaining telemetry items to a
distributed Kafka cluster.

This collected data retained in Kafka topics may be used by the SDN
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controller to modify and fine-tune the threshold and algorithm settings
on a per-flow basis, boosting report resolution for relevant traffic while
decreasing it for background traffic, for example. Kafka also sends INT
event reports to an Elastic Search stack for further analytic processing and
visualization.

They utilize numerous traces from real-world data center workloads
to assess the impact of various event detection algorithms and threshold
settings on the event detection ratio and stream processor load. The
article demonstrates that their system can handle hundreds of millions of
telemetry headers every second.

In this study, they use a mechanism that adds additional headers to
network packets that carry important information, which is then read and
decapsulated by switches at certain network locations. The inclusion of
more data is indeed interesting if we are interested in delays, queue sizes,
and congestion rather than network attacks or events that can be inferred
directly from the original packets without the addition of new data. They
presume an SDN network and chose not to overburden this controller with
INT Monitoring functions by establishing entities dedicated just to this
task, which is promising and will be used as inspiration.

18



Chapter 4

Architecture

This chapter will display the overall architecture that can be seen on Figure
4.1. We introduce mainly three big components called modules that interact
with each other two by two vertically which are : packet processing
module, lambda server module, lambda functions module.

Figure 4.1: Overview of the architecture

4.1 Approach

When you are tasked to design a complete solution it is important to
understand what needs to be designed and more specifically divide the
architecture into structural layers from bottom to top where the top
represents the application using the data collected and gathered in the
bottom layers.

We will therefore introduce in a first module the very low level
technologies linked to the programming of switches and routers which
allow us to efficiently retrieve information of each packet directly arriving
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at the Network Interface Card (NIC).

We will discuss a second module which consists of exchanging this
information with either other switches and routers or a dedicated server
present in the network topology. Protocols might be included to ensure the
exchanges and will also be described as well as the challenges they bring.

The third module will cover the connection that exists between
the controller namely the lambda server, and the serverless architecture
that we will use in order to provide a scalable solution to execute our
lambda functions in response to network events that can vary enormously
depending on the assumptions about the size of the network at hand.
This part is also dedicated to the execution environment of these lambda
functions with their advantages and disadvantages as well as the persistent
storage technology used.

4.2 Packet Processing

During the state of the art review several packet processing concepts were
introduced. Indeed the goal is to recover information on packets and
store them in an efficient way while ensuring a sufficient bandwidth not
to impact the whole network in which we will implement our solution.

P4 is a serious choice when considering fast packet processing.
However, it still has the disadvantage of requiring some hardware
compatibility. "P4 compliant" switches and routers are not the vast majority
of devices available and even less so at the price level if you want to
consider a network like the one of the University of Liege or a large
company for example.

That’s why the choice has been made for a solution that is easy to
develop, to test and that can be portable on almost any type of device
available on the market.

Rather than transferring networking device management out of the
kernel, the XDP technique [12] chooses that performance-sensitive packet
processing tasks are relocated inside the kernel and executed before the
operating system networking stack starts processing. This maintains the
benefit of removing the kernel-user space boundary between networking
hardware and packet processing code while keeping the kernel in control of
the hardware, preserving the management interface and operating system
security assurances. The use of a virtual execution environment, which
guarantees that loaded applications will neither harm or crash the kernel,
is the essential invention that enables this.

As it can be noted in Figure 4.2 the XDP program is executed before
any allocation in the kernel (sk_buff allocation) and even before being
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Figure 4.2: XDP’s integration with the Linux network stack. On packet
arrival, before touching the packet data, the device driver executes an eBPF
program in the main XDP hook. Source [12]

passed to the network stack. This XDP hook at the device driver level
allows to execute the eBPF program which is the responsibility of the
programmer and have been created for this work. This eBPF program
can store, drop, forward on the same interface or another one, the packet
received on the interface it came from. It can also decide to pass the packet
to the network stack to be processed in user space by an application that
needs it and follow a more classical path that we find if XDP was not in the
picture.

4.3 Storage

It is clear that to be able to interpret the behavior of the network in real
time we need real time data. We must therefore consider a means of storage
and especially a selective choice of data packets to store and where to store
them.

We are going to introduce the different components that intervene at

21



the packet processing level see Figure 4.3. We will have three components:
The first one will be the XDP hook which will allow the execution of the
BPF program. The second one will be a user space process that will run
permanently in order to poll the hash tables that are the third component,
the BPF maps. This third component although introduced previously,
will allow us to store for a key an associated value which will not be a
simple value but information such as flows composed of source IP address,
destination IP address, source and destination ports, sizes of the flow, the
number of packet it is made of and so on. We will therefore map keys to
structures representing this information.

Figure 4.3: Overview of the components for packet processing and
temporary storage

The kernel allocates these BPF maps. As a result, the user space
program can only access them through system calls. However, because
the eBPF program runs in kernel space, it does not require the usage of a
system call.

In this work we take inspiration from sketches in a much more
simplistic manner. Indeed, sketches are very often compact ways of
representing information in a data stream. They generally use very
compact tables and arrays combined with hashing functions.

Our idea is to hash fields of the header of the packet thanks to hashing
functions. Then, to map this hashed value to an index of an array and
to increment different kinds of counters such as the number of bytes, the
number of packets, the number of SYN flags or any type of statistics the
user may want to use to understand at best what is going on in the network.
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4.4 Controller

The next critical step is to collect or aggregate this data. There are various
ways; in fact, just one of multiple options was chosen.

When using sketches SCREAM [25] also designed an algorithm that
allows the different switches to communicate their sketches with each other
so that at any time each entity can have a global view of what is happening
in the network. We decided not to go along this path mainly because first
it consumes more bandwidth even if you take into consideration that they
are using a compression algorithm. Secondly, because we wanted to be
able to transpose our solution into an SDN network with a controller. This
controller would have a double role since it would be used on the one hand
to control the control plane and the routing and on the other hand as a
drop point of the various metrics collected by the switches and routers of
the network that they would communicate to it thanks to a protocol to be
defined.

The role of the controller will be reduced to trigger the lambda
functions according to the reception of events sent by the switches
themselves. It is the role of the user space program on each switch that
polls the data from the BPF maps to create events with a specific format
and to send them to the controller.

It is clear that the controller could have a more active role in the
process. Indeed, we could assign it the task of collecting all this data,
storing it, filtering it and then only triggering the lambdas functions.
However, because an SDN network may have many SDN controllers, a
synchronization system should have been implemented to ensure that no
data was lost if one of them stopped working. Protocols exist, but the idea
was not to overcomplicate each layer, which would make the entire process
more complicated. As a result, they will only act as a triggering engine for
lambda functions. Another point is that their principal purpose is to make
routing decisions, and calculations. These can be very demanding in terms
of computing power and we did not want to overload it with too much
additional work.

As our solution is also applicable for any network that is not SDN, we
will use the word "Lambda server" to designate this relay process in direct
communication with the switches and routers of the network topology.

4.5 Protocol

In order to communicate the events from the switch to the lambda server,
it was necessary to establish a protocol. Indeed, the user space program of
the switch has to send the data of the BPF maps formatted in a precise way
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so that the server can read them, understand them, reject them if necessary
or accept them and trigger the lambda functions in a third time. It works as
a carousel, i.e. it will browse the modified BPF maps entries, format them
as events, gather them and send them to the server every two seconds,
which guarantees a certain refresh rate that aims to channel the number
of exchanges between the switch and the server. A refresh rate that is too
high will lead to a lot of packets being sent containing very few events
and a refresh rate that is too low will lead to a mismatch between what is
actually happening in the network and what the server will perceive and it
might not be real time information.

The choice of the transport protocol was turned to UDP. The first
reason being that we had considered the fact that some events to be sent
to the lambda server would not require any acknowledgement from it,
such as for example some counters that would be modified frequently and
therefore to be resent according to the defined period no matter what. On
the other hand, events for which the switch expects an acknowledgement
but has yet to receive one will be resent during the next period. This causes
network overload the exact reason we wanted to avoid TCP in the first
place. However, it is important to remember the assumption we made
about the network in which we would deploy our solution. It is a Local
Area Network (LAN) with very short links, very few hops between the
ingress and egress points which will naturally decrease the drop rate of
packets exchanged between the switches and the lambda server.

This protocol is quite simple and inspired by a stop-and-wait type of
protocol for the acknowledgment algorithm. The reason for not choosing
a very complex protocol is also a strategic choice that was made with full
knowledge of the facts. Indeed, the reasoning throughout the development
was to not overload the switches and routers with too much logic at the
level of the protocol and exchanges to ensure their main task was not
compromised. The goal was to avoid consuming high percentages of their
CPU.

The protocol works as follows: the switch will create two types of UDP
payload either composed of events that all require an acknowledgment, or
events that do not require an acknowledgment. This payload will be called
a transaction and will therefore be composed of several events grouped
together. If an acknowledgement is expected from the lambda server, then
the client (switch) will wait a predefined time after which it will re-send the
transaction if it was waiting for an acknowledgement.

Upon receipt of an acknowledgement the client will directly resend a
new transaction unless no transaction is possible, for example if there were
no events in the queue.

Since some transactions do not require an acknowledgement from the
lambda server, it was decided to create another policy. According to the
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same timer if events are available they are sent and the timer is reset
which means that transactions are only sent to the lambda server at regular
interval but does not expect an acknowledgment and will never retransmit
transactions even if they are lost.

On the server side the logic is relatively simple: either it responds by
sending an ACK, or it does not respond because the transaction received
does not require an explicit response.

The protocol will be further explained in more detail when we discuss
its implementation in section 5.2.

4.6 Lambda functions execution environment

The execution environment of the lambda functions was part of the
requirements of this work. It is often a container, a VM or a unikernel
according to the latest technological advances. The design of a unikernel
for this kind of task is promising but very laborious and would deserve
a complete focus on the adaptation of these to this solution in order
to compare it to other technologies. It is also important to note that a
framework is required to easily deploy and manage the lambda functions
and their execution on the hosts, and all the issues that this entails.

Thus the choice was very targeted on an opensource framework that
we could test and that would be among the most promising out of the ones
available to us.

Choice & Motivations

There are several studies that try to compare frameworks in different
scenarios. We have selected two of them to make our choice on the
technology to use.

In [23] they look at opensource serveless frameworks like Kubeless,
OpenFaas, OpenWhisk, and Fission. To ensure isolation, all of the
frameworks studied run each serverless function in its own Docker
container.

A container orchestrator is used by OpenFaaS, Kubeless, and Fission
to handle the networking and lifecycle of the containers.

They chose Kubernetes as the orchestrator in their experiment since it
is the only one supported by all of the frameworks mentioned above.

Under various levels of concurrent queries, they first examined the
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Figure 4.4: Response time with one function replica and 100 concurrent
requests. Source [23]

Figure 4.5: Success ratio (in %) of all requests for different serverless
frameworks. Source [23]

average response time and the ratio of correctly received responses. As it
can be seen on Figure 4.4 Fission has many outliers, and it suffers from high
workloads regardless of the number of function replicas. This is attributed
to Fission’s router component, which routes all incoming HTTP requests
to the correct function. As the workload grows, this component becomes
a bottleneck. Kubeless, on the other hand, relies as much as possible on
native Kubernetes components: it uses the Kubernetes Ingress controller to
route requests and balance the load.

They then go a step further and look at the same parameters but for
a number of other function replicas variation. The results are depicted on
Figure 4.5.

They discovered that Kubeless had the best performance, with a
success rate of 100 percent across all experiments, whereas Fission
maintains a success rate of above 99 percent even at larger levels of
concurrency. When there are 50 or more concurrent requests, the success
rate of OpenFaaS drops to 98 percent or below, according to the researchers.
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The influence of auto-scaling on response time and the ratio of
successfully received responses is also highly important in serverless
applications, which is why they looked at how the impact of auto-scaling
on the response time and the ratio of successfully received responses
varied. The Kubernetes orchestrator handles scaling for all frameworks.
They did note, however, that the ratio of successful responses and the
response time distribution differed from one framework to the next. In
comparison to Fission, which had a deceptive 98.11 percent success rate
across all experiments, Kubeless and OpenFaaS had a high 100 percent
success rate.

In the second study [28] they also compare the same Opensource
serverless framework but adding a new one namely, Knative.

They run a similar testing environment except that this time the
lambda functions will be triggered by Internet of Things (IoT) devices since
they are analysing this in the deployment of IoT devices on the edge.

Despite the fact that all frameworks delegate scaling decisions to the
Kubernetes Horizontal Pod Autoscaler (HPA) feature, they discovered that
the values obtained for the evaluated metrics differ significantly. For
example, Apache OpenWhisk has the worst overall performance across
all metrics of any framework analyzed. One service/device has a similar
success rate to the other three frameworks, however it lowers dramatically
as the load increases.

There is no discernible difference in success rate or throughput
between Kubeless, OpenFaas, and Knative. However, when the demand
grows, they noticed that Kubeless scales better in terms of reaction time.
As the number of services per IoT devices grows, Kubeless maintains an
average response time of 12.57 to 13.79 milliseconds, whereas OpenFaaS
response time increases from 96.92 to 106.82 milliseconds and Knative
response time climbs from 86.27 to 253.66 milliseconds on average.

In conclusion based on those two studies and given an incredible
close gap in terms of features, Kubeless seems to outperform the other
frameworks across the different scenarios presented in those papers. This
directed our choice towards Kubeless using Kubernetes as the orchestrator
and thus leaving Kubernetes HPA automatically scaling the number of
pods in a replication controller, deployment, replica set or stateful set based
on observed CPU utilization in real time.

4.7 Long-term storage for lambda functions

Since the beginning of the conception of the architecture, there was a need
for storing in a more permanent way the data initially collected by the

27



switches and routers. Indeed, each time a lambda function is triggered,
its code can be made up of an access to a database, distributed or not, and
to store the values of these counters. It can increment them and check that
they do not exceed certain threshold each time they are called. It is therefore
obvious that to exploit the real-time information to the maximum we need
a more persistent storage, whether it is useful for very reactive lambdas
functions or for offline analyses of these data.

A Distributed Hash Table (DHT) is a decentralized data storage that
uses key-value pairs to look up data. In a distributed hash table, each
node is in charge of a set of keys and their values. The key is a unique
identifier for the data value it refers to, which is generated by passing
the value through a hashing process. Any type of data can be used as
data values. Because distributed hash tables are decentralized, all nodes
in the system work together without the need for centralized coordination.
Generally, the data is replicated over numerous nodes which makes the
whole system fault-tolerant. This form of storage was initially considered
for resiliency purposes and also allowed to be very flexible in term of its
implementation which would have allowed to have a distributed database
designed specifically for the kind of operations and interactions with the
lambda functions that were required.

However, having already a cluster under Kubernetes at our disposal
and our serverless infrastructure with Kubeless it was natural to find a
workable solution within Kubernetes to have something consistent. It
is not as easy to deploy a distributed database in time and quality with
Kubernetes, especially since there are other options available to us. Indeed,
the strength of Kubernetes lies in its ability to scale any resource according
to demand in real time thanks to the Kubernetes HPA. So we chose the
option of deploying a MongoDB database within the cluster with a master
on which the lambdas functions would come to read and write and two
replicas synchronized on the master for questions of redundancy if this one
had to give way. It is clear that having only 3 replicas is a starting point and
that Kubernetes would allow us to deploy more replicas if needed.
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Chapter 5

Proof of Concept

In order to prove the feasibility of our framework, we decided to develop
a Proof of Concept (PoC). The code is available on a Github repository
at https://github.com/francoisleduc/TFE with additional details and
installation steps.

5.1 Packet processing

The technology we will use for the packet processing phase is the XDP
hook system mentioned in section 3 alongside BPF and eBPF programs,
terms that are used interchangeably in this work.

When learning a very specific technology with its own concepts to
grasp, it is common to have to learn by yourself and to exchange more
formally with experienced people. A first pointer to a Github directory [2]
with tutorials, explanations, official papers, learning content was given to
me by my advisor. They offer a multitude of examples from which I was
inspired for the implementation further explained in the following sections.
Three of them must be mentioned in particular such as the "XDP Hands-
On Tutorial" [37] github repository, the "BPF and XDP Reference Guide" [6]
and "Andrii Nakryiko’s Blog" [1], a blog written by a Facebook developer
that has also developed libbpf and is currently working on BPF.

However, even if these pointers were very useful and full of concrete
examples, this was not a direct solution to my problem and I had to
integrate my own ideas. Some libraries and dependencies were reused but
is not the core of my work.
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5.1.1 Dependencies

Long time before now, when it came to developing BPF applications that
needed looking into the kernel, BPF Compiler Collection (BCC) [7] was
the framework of choice. BCC had a built-in Clang [8] compiler that could
build BPF code in runtime and adapt it to a certain host kernel. This was the
only method to write a maintainable BPF program that dealt with kernel
internals that were constantly changing.

Nowadays libbpf [18] is the reference as it understands the structure
of BPF code and properly load everything into the kernel. The fact
that it is not runtime compiled avoids BCC compilation-time errors that
were sometimes detected only during the runtime. BCC also required
dependencies on some kernel headers per target host and sincerely reduced
the lack of portability. libbpf also uses the Clang compiler to compile
once the BPF code and ensure portability. It is also capable to load the
BPF program thanks to its loading functionalities as well as a means of
interaction between the BPF program and user space from user space
programs using libbpf APIs.

5.1.2 Kernel program implementation

As the code was designed in an incremental way, it seems natural to
explain it in the same manner in order to be able to explain the built-in
functionalities as well as the associated explanations without being lost in
a mass of terms.

The following eBPF program will be executed when a packet arrives
on the interface to which an XDP-hook has been attached.

This first program (see Listing 1) is fairly basic, and it only serves
as a primer for learning and conceptualizing the many eBPF programs
implemented throughout this project.

The headers contained in the package are the first things that must be
looked at. Indeed, the first linux/bpf.h contains several fundamental BPF-
related types and constants required for using the kernel-side BPF APIs and
is needed for the next header included.

The second bpf/bpf_helpers.h file will allow us to use a whole panel
of functions to interact with bpf objects, such as BPF maps but also access
and set other structures as well as purely utilitarian functions to handle
clocks, timers, and debugging functions like bpf_trace_printk(), which
will allow you to write in a specific debug file.

The BPF program and the kernel both require and enforce the license
variable, which is located at the end of the file. It’s also worth noting that
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#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>

#define bpf_debug(fmt, ...) \
({ \

char ____fmt[] = fmt; \
bpf_trace_printk(____fmt, sizeof(____fmt), \

##__VA_ARGS__); \
})

int count = 0;

SEC("xdp_flow")
int process_packet(struct xdp_md *ctx)
{

count++;
bpf_debug("BPF program triggered successfully\n");
return XDP_PASS;

}

char _license[] SEC("license") = "GPL";

Listing 1: XDP Program basic

BPF programs without the compatible GPL license variable will be missing
out on several capabilities.

Then we have a global variable called count and set to 0 in this
example. This variable is global and will act as such in concept of the C
language. These global variables can be seen as state variables of the eBPF
program. They also have an interesting effect because they can be modified
by the user space program as well as other eBPF programs defined in
the same file. They are therefore also used as a means of communication
but especially as a means of configuration between the two layers. These
variables are often used to store settings, low overhead stats, and so on.

The core line of the BPF program listed on Listing 1 is the call to
bpf_debug() which is a macro that actually calls the bpf_trace_printk()
function. It is the BPF equivalent of a fprintf(”) call if we were
using standard C. This output however, is located in a specific file at
/sys/kernel/debug/tracing/trace_pipe that you can only access with
root privileges. This kind of printing is obviously not for production but
gives such an insight of what is going right or wrong in the BPF program
and is one of the very few ways to debug your code and log events.
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Figure 5.1: Compilation process

Data Structure

struct bpf_map_def SEC("maps") flow_map = {
.type = BPF_MAP_TYPE_ARRAY,
.key_size = sizeof(__u32),
.value_size = sizeof(struct flow_meta),
.max_entries = MAX_MAP_SIZE,

};

Listing 2: BPF_MAP definition code example

BPF map is a BPF data abstraction concept. In the BPF universe, many
different generic structures such as arrays, hash tables, and ring buffers are
abstracted and represented as BPF maps. It is the most common way for
storing data and allowing access to read, write, and delete elements via
a key/value system. Because both the user space program and the eBPF
program can access this data structure, these maps will be a second means
for them to communicate and exchange data between themselves.

To create a BPF map, we must define a global struct bpf_map_def in
the BPF program with a special section SEC("maps") as shown in the BPF
map definition example in Listing 2.

Compilation

Several compilations occur in the eBPF pipeline. The Figure 5.1 was
included to bring clarity to the different pieces and to also bring an
overview of what is in user space and in kernel space.
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BPF applications are typically written in C, LLVM-compiled [17] into
object/ELF files, processed by user space BPF and ELF loaders (such as
iproute2 or BCC or libbpf), and pushed into the kernel through the BPF
system call API. The kernel then checks thanks to the verifier and JITs the
BPF instructions, producing a new file descriptor for the program to attach
to a subsystem. If supported, the BPF software might be further offloaded
to hardware (e.g. NIC).

The eBPF JIT compiler is included in the kernel for the most
prevalent 64-bit architectures such x86_64, arm64, and ppc64, as well as
the 32-bit versions arm, and x86_32. Because it reduces the time per
instruction compared to when BPF code is parsed using an interpreter,
this JIT compiler provides significantly faster BPF code execution. This is
made feasible by a mapping of the program’s instructions to the native
instructions of the underlying architecture.

Examples

For this master thesis I have developed several BPF programs with quite
similar functionalities where only the stored data in the BPF maps changes.

First, the programs proceed to a progressive de-encapsulation of all
the different headers and a rigorous parsing by protocol by checking at
each step if the accesses are well within the limits of the packet, and that
each access is authorized in order not to be rejected by the eBPF verifier
which will prohibit the loading of the program on the interface once JIT
compiled.

Each header de-encapsulation has its own importance since the idea
is to store information about the flows consisting of a source IP address, a
destination IP address, the source and destination ports and the transport
protocol used.

These values obtained through meticulous parsing will be hashed in
order to obtain an index in the BPF map used for the program that we use
to store a value represented by a group of data such as the size of the flow,
the number of packet it is made of and the 5-tuple flow itself. The index
obtained being in a range starting from 0 to the maximum size of the BPF
map introduces a risk of collision. This collision rate is studied in section
6.1 as it will impact the accuracy of the network measurements because
some flows might get deleted or ignored in such a case.

The hashing functions used are jhash_3words() and jhash2(). Few
concatenations of different variables representing the flow had to be made
in order to respect the definitions of these two functions and to include all
the parameters defining a flow.
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In order to access this element we will use one of the many functions
discussed earlier available from the bpf_headers.h to access an element
of the BPF map which is bpf_map_lookup_elem(). It’s a straightforward
system call wrapper that works with the map File Descriptor (FD). The
system call retrieves the value from the key and puts it in the memory
location provided by the value pointer.

Then, after checking that the access was done without error, several
possibilities are open to us depending on what is already present in the
BPF map.

hash = hash_tuples(&f, is_ip6);
key = hash % MAX_MAP_SIZE;

v = bpf_map_lookup_elem(&flow_map, &key);
if(!v)
{

return XDP_PASS;
}

__sync_fetch_and_add(&v->count, 1);
__sync_fetch_and_add(&v->bytes, (data_end - data))

Listing 3: BPF_MAP access and basic value modifications

The implemented logic is as follows: if the entry is brand new it means
that no flow had been mapped on this key yet and therefore the value
is instantiated with the values collected from the packet. If the input is
already in use and the flow corresponds to the received packet information
then the statistics are incremented by their respective values. If the input
is already in use and the flow does not match the received packet then we
are in a situation where we would like to use this key to initiate a new flow
while there is already one stored for that same key. However, we will first
check if the flow in the table has been recently modified, in which case we
would keep the current entry and just dump the new flow defined by the
received packet. If not recently modified, the current flow is overwritten
by the new one defined by the packet parsed.

This will obviously not guarantee 100 percent accuracy because some
flows will be forgotten after a while, others will never be taken into account
or only partially. It is a compromise that was made in the implementation
of this collection of statistics by flow that we considered good enough
considering the exploitation that we were going to make out of it.

On the listing 3 you can see an example of instruction sequence and
especially the use of atomic operations on BPF map values. Indeed, the call
to __sync_fetch_and_add() is often used. It provides a sequential access
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between potentially different processors for a same data and increment it
by the specified value.

5.1.3 User space program implementation

Once the kernel program is implemented we have to think about how to
extract this data quite frequently given the implementation seen in the
previous section.

The user space program is a program written in C but it could have
been written in another language as there were several ways to access the
maps as we saw with either BCC or libbpf. Since BCC is also supported on
python it was just as valid to switch to another programming language to
produce a similar result.

The user program is separated into two threads. Indeed, the first
one will have for role to poll the data of the BPF map every two seconds
approximately. Depending on the eBPF program at the kernel level, and
especially on the map settings, this thread will have to create a series of
events with a format that will be discussed in a few moments. These
events, made of the statistics collected in the maps, will be assigned to
two queues and these queues will then be emptied as they are transmitted
to the lambda server by the second thread. The second thread is named
"communication thread" to have an explicit notion of its unique role which
is to send all collected events to the lambda server.

Polling thread

The data-structure utilized for the value record is unknown to the BPF
map; it just knows the size. As a result, it is up to the two sides (user space
and eBPF kernel side program ) to keep the content and structure of value
in sync.

This verification can be seen on Listing 4. Once this is done, we are
sure that the map setting matches and the values can be accessed by their
corresponding key.

In this example, each value in the data structure is of type struct
flow_meta and has a field that contains the time of last update. It allows
the polling thread to determine whether or not an event should be created
from this entry based on the update time and the time it is retrieved from
the map. We chose an acceptance window that was smaller or equal to
the polling frequency, such that only values that had changed since the
last evaluation were the only considered. This prevents retransmission
of irrelevant messages and avoids utilizing more bandwidth than truly
necessary.
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// Look for map file, file descriptor
stats_map_fd = find_map_fd(bpf_obj, "flow_map");
if (stats_map_fd < 0)
{ // could not find map fd

xdp_link_detach(cfg.ifindex, cfg.xdp_flags, 0);
return EXIT_FAIL_BPF;

}

/* check map info, e.g. value is expected size */
map_expect.key_size = sizeof(__u32);
map_expect.value_size = sizeof(struct flow_meta);
map_expect.max_entries = MAX_MAP_SIZE;
err = __check_map_fd_info(stats_map_fd, &info, &map_expect);
if (err)
{

fprintf(stderr, "ERR: map via FD not compatible\n");
return err;

}

Listing 4: BPF_MAP compatibility check from userspace program

Communication thread

The role of the communication thread has already been introduced. It con-
sists mainly in acting as a sender in the designed event exchange protocol.
It is therefore equivalent to explaining the protocol implementation to un-
derstand how it works. This is done in the following section (see 5.2.2).

5.2 Protocol specifications

5.2.1 Event format

The payload of the UDP datagram, also called a transaction in the context
of this work, has a specified format that must be followed in order to be
correctly read by the receiving server.

Figure 5.2: Transaction Header
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This one is made up of a fixed-size header represented in red on Figure
5.2 that the protocol requires in order to distinguish between defective and
good datagrams. This means that regardless of how many events are put
in it, the header will always be present and will not change. This header is
10 bytes in length and is composed of 4 elements.

On the first byte, a version of the protocol is encoded, which may
enable for backward compatibility if the protocol is drastically updated
or modified. This is followed by a 4-byte identifier that is unique to each
sending switch or router, allowing us to have statistics per machine and
thus better visualize which network element is sending the most data, or
to have a unique configuration per machine that would be mapped onto
the identifier if we wanted to implement it. The header’s third field is a
sequence number. Remember that some transactions will only be made
if the situation allows them, and only for events that require a server
acknowledgement. This means that the server will utilize the transmitted
sequence numbers to detect if a packet has been ignored or lost along the
way, and will compel a retransmission of those packets. The number of
events to expect to parse in the transaction is the last element in the header
and is encoded on a single byte.

Figure 5.3: Event Header

We can see in Figure 5.3 that each event has a fixed size header and a
variable size payload. The length of the event header is the first field and
is 4-byte long. Indeed, because a transaction can be made up of numerous
events, each of which is identified by the general header field, several of
them can be encoded one after the other and are not always of the same
length. Instead of using the length field, a delimiter might have been used
between each event to indicate when one concluded and another began.
The second header field unique to an event is its identifier, which is also
encoded on 4 bytes just like the length field. As a reminder, we decided
to divide the actions to be conducted into categories based on the data
collected in the form of network events. This may be a simple update of
a flow or an alert of new routing or a link that is operating better, and
each would have a distinct payload format because it would be made up
of different data. If the client wants to ensure that the server receives the
event, there is an acknowledgement flag encoded on a single byte that
must be set to 1, otherwise it is set to 0. This event header is 9 bytes
long, and it is followed by the payload. The payload is formatted to match
the event identifier. As a result, it is critical that both the client and the
server understand how to parse the payload of each event for a certain
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event identifier.

5.2.2 Exchange protocol

The client, which in this work is either a switch or a router, will handle two
queues: one for events that will lead to transaction requiring an ACK from
the server and another for events that will not require a response from the
server.

The decision to proceed with two queues was made for the following
reasons: to avoid superfluous ACK exchanges on the network and to
always strive to minimize the impact of packets in transit that are not
allocated to monitoring. As a result, the client will have two timers for the
two event queues. The first is to send transactions that are only made up
of events that do not require an ACK to be received. The second will use
a stop-and-wait approach, sending the transaction first and then waiting
for an acknowledgement from the remote server. If no response is received
within the time limit set by the programmer, the timer will cause the last
transaction from the client to be resent.

It seems natural that rather than merely retransmitting the previous
transaction we could include fresh events if the capacity still allows it.
It would then not be purely a retransmission per se but seems like an
improvement to consider right off the bat. However, such techniques
complicate the client’s logic, whether at the sequence number algorithm,
for example. To allow the insertion of new events that were not in the
transaction in the first place we would need some kind of per event
acknowledgment over a transaction-based acknowledgment and would
result in a per event sequence number type of algorithm.

The more we wish to optimize the amount of events per transaction,
the more complicated the software running in user space on the switches
and routers can be. It is a compromise we made from the start since we
wanted a working draft of a protocol without being too greedy and killing
the network performances with too much additional telemetry packets
once it was released.

The choice of using two queues for two types of events introduces a
risk of race condition if no synchronization mechanism is used.

In fact, these queues are implemented as linked lists and used on
one end by the polling thread, which adds events (elements) at a regular
interval. On the other end the same queue is used by the communication
thread that removes these events to transmit them to the server. It is
therefore possible that these data structures are accessed at the same
time, that some pointers are erroneously assigned resulting in lost events,
memory leaks, or worst-case scenario a program shutdown.
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To solve this problem, the header <pthread.h> is included, which
allows us to call the function pthread_mutex_lock(pthread_mutex t
*mutex) which locks a mutex object that identifies a mutex. If another
thread has previously locked the mutex, the thread waits for it to become
accessible. When a thread locks a mutex, it becomes the current owner and
remains so until another thread unlocks it. These functions were used to
perform add and delete operations on the two queues.

Another technical detail can be found in the recvfrom() method used
to read on the socket. This call is blocking by default. It means that when
a process issues a recvfrom() that cannot be completed immediately (due
to the lack of a packet arrival), the process is put to sleep until a packet
arrives on the socket. As a result, if a series of events are available and the
thread is blocked on a recvfrom() call waiting for an ACK response, there
is a missed opportunity to send a transaction that does not require an ACK.

There are numerous ways to make this call non-blocking, one of which
is to use the O_NONBLOCK flag in the fcntl() function to set the socket to
non-blocking mode, used in the implementation.

5.2.3 Framing

When creating a transaction it is imperative to define its maximum size
so that it does not exceed the maximum size of a UDP datagram which
is ≈ 65Kb. However, rather than deciding to create huge transactions
approaching the maximum payload size of a UDP datagram, it is probably
just as interesting to reduce it to avoid IP fragmentation.

Indeed, when a source sends an IP packet on the network, it cannot be
transmitted in its entirety if its size is greater than the smallest Maximum
Transit Unit (MTU) of the network through which it is transmitted. In other
words, this means that if each link has an identical MTU an IP packet larger
than the MTU would be broken into several fragments all smaller than
the MTU, which on Ethernet networks are 1500 bytes. This phenomenon
is called IP fragmentation. The fragments are then reassembled at the
destination to reconstruct the original IP packet sent by the source.

However, these fragments are routed as standard IP packets and
therefore can be lost, dropped, delayed by switches or routers on the path
from the source to the destination.

Fragmentation has several disadvantages but there is one that is of
great concern in our case.

If at the receiver end a fragment is missing at the time of reassembly
then all the fragments initially associated with the data to be sent are resent
by the source in the case of a reliable transport layer protocol like TCP
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or are simply ignored and dropped in the case of an unreliable transport
layer protocol like UDP which is used in our implementation. This would
mean that a lost fragment of 1500 bytes out of 65Kb (1 fragment out of 43)
would cause our protocol to retransmit the 65Kb in the case of a transaction
requiring an acknowledgement or a loss of 65Kb of events if the transaction
did not require an acknowledgement. An alternative would be to ensure
that each transaction contained in a UDP datagram encapsulated in an
IP packet does not exceed 1500 bytes of MTU. That way, only the lost
transaction (composed of fewer events) will be retransmitted, as if only the
missing fragment were retransmitted rather than all the fragments.

A design approach that takes advantage of the application-specific
semantics details of network environments in order to be efficient and thus
give the programmer control over the data transmission is a concept called
Application Layer Framing (ALF) introduced by D. D. Clark and David L.
Tennenhouse [9] and is applied.

Since we considered an Ethernet network in our implementation, the
maximum payload size is 1500 bytes. From this we have to subtract the
20-byte IP header and the 8-byte UDP header that together would give a
maximum transaction size of 1472 bytes. However, if we want to go deeper
we must also take into account the 9 bytes that could be introduced within
the Logical Link Control (LLC) layer which is the upper sublayer of the
data link layer (layer 2) of the seven-layer OSI model. We also decided
to introduce a safety margin of 28 bytes 1 to ensure that no fragmentation
would occur resulting in a maximum transaction size of 1435 bytes.

5.3 Lambda server

The lambda server will load a JavaScript Object Notation (JSON) config file
that contains a mapping between the event identifier and the identification
of the lambda function associated with it when it first starts up. This
mapping can obviously contain many event identifiers for a single lambda
or multiple lambdas. This file must be manually configured and is written
in the form of a dictionary for readability and simplicity.

Because the server was developed in C++, it was great to be able
to leverage external libraries to read and write JSON files, as well as
manipulate them in memory. To do so, I utilized Niels Lohmann JSON
C++ library [14]. It’s currently available from a Github repository and it’s
one of the most popular C++ references with over 25k stars.

If the server loads this mapping in memory it is because it is the
role of the lambda server or lambda servers that are in the network to

1Related to other protocols that might be used (e.g MPLS) or if IPv6 is used instead of
IPv4
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trigger the lambda functions associated with the events received from the
programmable devices.

In this work we gave the lambda server three main functionalities with
the first one being the set up of a UDP socket to receive event transactions
from all the routers and switches of the network.

The second is to parse these transactions and respond to the initial
sender with an acknowledgement or not if no response is required. To this
end, we are using a sequence number system implemented as an array
where each index corresponds to a switch identifier number and whose
state is kept at any time.

The third entails triggering the execution of one or more lambda
functions that are linked to each event identifier in the transaction. We
are re talking about triggering the execution here and not direct execution,
because the piece of code associated with the event identifier will be
executed by the various host machines in the Kubernetes cluster and not
on the lambda server itself as previously described in the architecture.

5.4 Lambda functions and lambda triggers

Once Kubernetes is up and running and that Kubeless is installed the next
step is to register the function with Kubeless. Registering the function with
Kubeless involves telling Kubeless few bits of information such as :

1. Name of the lambda function

2. Trigger type

3. File location

4. Function name to call within the file

5. The runtime to be executed to run the code

6. Dependencies (external libraries)

The command used looks like this

$ kubeless function deploy lambda1 --trigger-http --runtime \
nodejs8 --handler lambda1.main --from-file \
/road/to/file/lambda1.js --dependencies package.json

Kubeless will create a new lambda1 function. It is important to note
that this does not have to be the same as the function name used within the
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code. It will be possible to trigger the execution of the function via HTTP.
The runtime instructs Kubeless to run the code using NodeJS v8, and the
handler specifies which function within our code should be executed, as the
file may contain several other functions. The dependencies settings specify
the runtime libraries that might get accessed and must be included to be
able to run the code.

Deploying a function has never been so easy and really sums up in
a few words why a serverless infrastructure is advantageous and how it
allows the developer to not spend hours managing code deployment. Once
the lambda function is deployed it is fully supported by Kubernetes and
Kubeless whether it is for scaling or allocating the execution environment,
executing it, logging it, freeing the space once executed.

The two lambda functions developed for this master thesis are very
close in terms of implementation.

The first one, called heavy-hitter-detection, aims at detecting heavy
hitters. The heavy hitters are in fact streams that exceed a certain
accumulative size over a time window. This size is defined by the network
administrator as a realistic threshold for what he expects to receive or
observe in general. A heavy hitter could be a stream exceeding Terabytes at
Netflix while on the university campus one might associate this behavior
with several tens of gigabytes for example.

The lambda function will have the simple goal of determining whether
or not this flow passed to the function is considered as a heavy hitter
or not by exploiting information passed in the HTTP request as well as
information stored in the database hosted in the Kubernetes cluster. If it
was not a threat, it would simply update the corresponding entry in the
database with the new information received. If it was, the lambda function
would log the detection of a heavy hitter in a log file for further analysis.

The second function, called port-scan, aims to detect different
behaviors related to port scanning. In the same way the lambda function
will receive as argument of the HTTP request emitted by the lambda server
the data of the flow and its statistics associated. The statistics collected
are no longer the size and number of packets described for the previous
lambda function but rather the number of TCP segments with SYN flag,
the number of empty UDP packets, and the number of TCP segments with
RST flag. The thresholds will be checked for each of them and if one of
them is exceeded the lambda function will alert in a log file that someone is
potentially scanning the ports of different services present in the network
or might be doing something fishy by bombarding SYN segments that
might be associated with a SYN flooding attack.

To enable function routing, Kubeless uses Kubernetes Ingress. A
deployed function is matched to a Kubernetes service by default, with
ClusterIP as the service name. That is, the feature isn’t available to the
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whole public and stays private to the Kubernetes network.

These services are therefore reachable via HTTP as mentioned previ-
ously. From there, the lambda server written in C++ must be able to com-
municate via this protocol and this is only possible if an external library is
used. For that cpp-httplib [10] of Yuji Hirose under MIT license has been
used. Again, this is very well supported and up to date as well as very easy
to use for the present purpose.

5.5 Kubernetes

5.5.1 Minikube

Minikube is a command-line tool for running Kubernetes (k8s) on your
own PC. It produces a virtual machine-based single-node cluster. This
cluster allows you to demonstrate Kubernetes operations without having
to install full-fledged K8s, which takes time and resources.

You can quickly try out Kubernetes installations, conduct develop-
ment activities, and test settings thanks to this flexibility.

The Minikube 1.22.0 was used for this work alongside the kubectl
client 1.16.0 and Kubernetes 1.21.2 running on Docker 20.10.7

5.5.2 MongoDB

The set up of MongoDB on Kubernetes was highly inspired through the
article [24] and the official documentation provided directly by Kubernetes
official website [29]

It takes a lot of effort to run and manage stateful applications or
databases like MongoDB and MySQL. When a container is shut down or
moved to a different node, stateful applications must keep their data (for
example, if during a failover or scaling operation, the container was shut
down and re-created on a new host).

So we’re aiming for a MongoDB replica set, which consists of multiple
instances of the database distributed across multiple nodes for redundancy.
A master with read and write permissions is necessary for synchronization,
while secondaries can only do reads and must be synced with the master
to stay up with changes such as Figure 5.4.

In order to implement this, we can find the Kubernetes ReplicaSets and
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Figure 5.4: Typical MongoDB structure with replicas

StatefulSets. The goal of a Kubernetes ReplicaSet 2 is to keep a consistent
set of replica pods running at all times. As a result, it’s frequently used to
ensure the availability of a certain quantity of identical Pods. A ReplicaSet
ensures that a specified number of pod replicas are running at any given
time and can share the same persistent volume. However, this would
not work for Database nodes because no synchronization would allow for
pod coordination, and the ReplicaSet does not include any stateful features
required for such applications.

A StatefulSet 3, on the other hand, can correctly detect pods in stateful
applications with persistent storage in order to preserve the state. This
feature is provided by StatefulSet, which creates pods with a persistent
identity that will remain relevant throughout rescheduling. This way, even
if a pod is recreated, the storage volumes will be correctly mapped, and the
application state will be retained. Pods in a StatefulSet are launched in a
prescribed order. The next pod will not be launched until the preceding
one has been successfully initialized. This manner, you can plan your
pod deployment with confidence, knowing that "name-0" will be the first
to launch. The master node in MongoDB will create a replica set. The
pods with the names "name-1," "name-2," will identify that a replica set has
already been formed and will connect to the existing nodes.

To obtain a MongoDB replica set (not to be confused with the notion
of Kubernetes ReplicaSet seen before) we will need three things:

1. The StorageClass is there to define the type of database that we will
use for the nodes that will be in charge.

2. Then, we create a dedicated service that points to each of its member
pods. This service must be "headless", i.e. it does not create a
ClusterIP for load balancing, but is used for the static DNS naming
of the pods that will be launched. This service will cause the creation
of DNS records listed in this format: "name-0", "name-1", "name-2" as
explained above.

2https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
3https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
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3. The StatefulSet is the most important component of the three because
it is the one that will glue everything together and will allow
MongoDB to run properly by specifying how to use the storage, what
volumes to mount, and the specifications of MongoDB replica set
such as the number of members in the replica set and ports to use.
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Chapter 6

Evaluation

The purpose of this evaluation is to determine the suitability of this
framework for the task at hand and to ensure scalability.

6.1 Architecture analysis

The analysis of the architecture consists in analyzing in more detail the
numbers and giving an order of magnitude of the load introduced in the
network as well as the various parameters which influence it in order to be
able to adjust these at best. This analysis can also be used to transpose this
solution to other problems that require the same needs but might operate
in a different environment with more or less constraints on the network
parameters. This section also tackles the limitations of the implemented
protocol and the way the counters are stored and polled from the switches.

This section is going to analyse the first steps of the whole pipeline
described in this work and for that they are briefly summarized below.

Counters are incremented internally in a table in the internal memory
of the switch each time a packet is received on one of its interfaces. It is
made possible thanks to an XDP hook attached to it, allowing a small BPF
program to be executed. Its role is to parse the packet and store information
related to it in a BPF map. This data structure called BPF map is a hash
table where the key is a hash of the fields defining the flow and where the
associated value is composed of the flow itself as well as counters that are
called statistics of the flow such as its size, its number of packets, TCP flag
counter and a last important data that the time of last update of this entry
in the table.

At the same time a part of the program in user space has for only role
to read this BPF map every two seconds and from the entries modified
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between the last poll and the current one, to create events to be inserted in
queues intended to be sent to the lambda server.

In the same way, another part of the program aims to send the
events of this queue to the lambda server. It is important to remember
that two queues are used rather than one: one dedicated to events that
must be acknowledged and the other not. The sending period of this
program is also 2 seconds but its starting point is slightly delayed by a
few milliseconds in order to be out of sync with the polling thread. If they
were to start their execution at the same time, new events might need to
wait a whole sending period whereas in our case it is bounded by the
delay introduced of a few milliseconds only. It is clear that an event is
not necessarily created for each packet and that it is up to the network
administrator to choose what the event is made of and if it is imperative
to send it as soon as it is created.

6.1.1 Bandwidth requirements

From that it is interesting to see the bandwidth requirements introduced by
the protocol by looking at the worst case scenario.

The first parameter that will influence this additional load is the size
of the BPF map. Indeed, let’s take an example where this hash table is
composed of 1000 entries that by definition can store up to 1000 flows. Each
of these entries must be able to store twelve integers which is equal to

12 × 4bytes = 48bytes (6.1)

of information on average for the programs provided for this project. This
includes the flow fields, counters, time of update. This would correspond
to a capacity of the BPF map of

1000 × 48bytes = 48Kbytes (6.2)

Additionally, in the worst case scenario all the entries would be modified
between two polling probe of the user program. Furthermore, to each entry
would be associated an event to be sent to the lambda server.

Let’s now calculate what will actually be sent to the lambda server in
terms of number of bytes. The transaction header is made of 10 bytes. It is
followed by several events composed of a fixed size header of 9 bytes and
their variable size payload. If we consider that each event payload is the
equivalent of what is stored in the table for each entry (that is a reasonable
assumption because that is exactly what it is doing) we would end up with
an average of
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48bytes + 9bytes = 57bytes (6.3)

per event.

With an application payload of 1435 bytes, we can transport 25 events
(25× 57bytes) plus a transaction header of 10 bytes in each packet. For 1000
events, we need 40 packets, and this every 2 sec leading to a rate of

20 packets/sec × 1500bytes = 30Kbytes/sec (6.4)
= 240Kbps (6.5)

in a scenario with 1000 active flows in the switch. This rate would vary
linearly with the number of active flows.

In conclusion, the main parameter for evaluating the throughput
introduced is the size of the hash table used. A smaller size and the
throughput will be reduced but the risk of collision will increase which
will negatively impact the accuracy of the network as such. A larger size
and the number of flows that can be stored increases but at the expense of
a larger amount of network traffic.

A collision in the implementation’s state results in the new flow
colliding being ignored in order to retain the flow currently stored for that
same key. We describe this inaccuracy as global network inaccuracy, not
the loss or incorrect change of an already existent flow. As a result, we
lose information on a flow that could be stored later if the key becomes
available but several packets would have been forgotten in the meantime,
making the statistics obtained inaccurate and resulting in another type of
inaccuracy which is a per flow inaccuracy.

The overall throughput created seems minimal but depending on the
number of switches for which these programs would have been deployed
and depending on the maximum bandwidth of the links of the topology
and the capacity of the lambda server to receive such a load, one may
wonder if this is not already too much network traffic introduced into the
network. This could negatively impact the Quality Of Service (QoS) for a
rather minimalist BPF map size of 1000 entries.

6.2 Functional tests

In order to ensure the reliability and functionality of the provided code,
several tests have been carried out. Indeed each module was tested
individually before being integrated together and proceeding to the final
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tests which consists in linking all the pieces of the puzzle and checking that
the described attacks are detected. In the same way as verifying the good
functionality of the developed product it was also important to test some
additional functionalities and the behavior of the programs under stress in
order not to bias the measures taken and presented in this thesis.

6.2.1 Mininet Testing

Regarding the tests of the different eBPF programs it was necessary to
create virtual network interfaces in order to avoid working directly on the
real interfaces of the machine. For this we chose to use Mininet 2.3 which
allows in a few commands to create a very realistic virtual internet network
with the possibility to customize the topology like the technologies used,
the protocols, the controller type as well as to take measurements and
simulate traffic between several entities.

Figure 6.1: Mininet testing topology

You will find on Figure 6.1 the Mininet topology composed of a Web
server, a client making requests to the web server and a switch linking both
entities. The lambda server is in some regards directly connected to the
switch in this configuration. This topology was used to test the different
eBPF programs but also to test the protocol between the switch and the
lambda server.
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6.2.2 Packet loss simulation

In order to test if the packet retransmission part of the protocol worked
properly for transactions that needed it we had to simulate packet loss in
one way or another. A first way of doing it would have been to simulate
this using the Mininet features but it was just as simple to simulate this
drop at the lambda server level. Indeed, when launching the server at the
command line, a parameter specifying the drop rate is requested.

6.2.3 Protocol assessment

With the help of Wireshark 1 2.6 to capture and then analyze the order
of the packets as well as their content for a more detailed analysis we
were able to test the protocol. Additionally the number of events at the
sender and the receiver end were compared as well as the buffer and events
detailed that were sent. This was mentioned briefly, but the packet loss
simulation functionality was also used to verify the operation of all parts
of the protocol as well as the correct triggering of the timers used.

6.2.4 Valgrind

Knowing that the implementation was going to be done in C and C++
languages which do not benefit from any garbage collection systems, and
that the application was intended to run on switches or routers with limited
memory capacities, it was very important to use Valgrind 2 throughout the
development. Indeed, Valgrind is a tool that allows to check for memory
leaks, out of band memory access, and many others in order to optimize
the allocation of memory space and avoid any type of error.

6.3 Measurements

In this section, a brief performance evaluation of the protocol is discussed.
It was chosen to show only the performance of the protocol and not the
lambda functions execution since it’s already been discussed partially in
section 4.6 although it still might have been interesting to draw our own
conclusion on that matter.

The Proof of Concept was developed and tested on a Ubuntu 18.04.5
Bionic Beaver 64bit distribution on virtual machine using VirtualBox 3

1https://www.wireshark.org
2https://valgrind.org
3https://www.virtualbox.org
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6.1.18. The hardware available is an Intel i5-8300H (8) CPU with a base
frequency of 2.3GHz and a max turbo frequency of 4.0Ghz with 16GB of
RAM. It is important to clarify that only 4 hyper-threads out of 8 were
assigned to the virtual environment as well as 8GB of RAM. It is the same
configuration that was used for the measurements presented in this section.

Only two processes were active during the measurements: the dummy
switch polling and delivering events to the server, and the lambda server
receiving the events. It’s important to realize, however, that these measures
will not be worth as much as if we had been able to test on equipment
that was physically separate from each other. As a result, the virtual
machine simulation operates the client and server on the same machine,
with specifications that are a priori different from what is available on the
market as server or switch configurations.

6.3.1 Results

There is a new network traffic drawback that, as we’ve seen, is proportional
to the size of the BPF map. We are entitled to wonder if the protocol would
still scale if larger BPF map sizes were used in order to limit the collision
rate and thus limit inaccuracies of what could be measured.

We begin by looking at how the size of the BPF map affects the
transmission of event transactions that do not require a response from the
lambda server. To accomplish so, we’ll simulate an addition of events to
the queue every two seconds and watch how the queue’s capacity changes.
We’ll see if the sending thread, which has a also a two-second sending time
period, is able to send the events or not.

Figure 6.2 shows a filling rate equivalent to a polling rate of 200 000
events every two seconds. We can see that the blue curve representing the
state of the queue at any time of the simulation is emptied fast enough
before the next filling cycle.

On Figure 6.3 2 000 000 events every two seconds are added to the
queue. The blue curve allows us to see that the communication thread
is no longer able to send events as fast as they are added to the queue.
Indeed, this number keeps growing as well as the number of events sent.
The protocol is still able to process them but its ability to send large amount
to the lambda server reaches a limit. It does not hold anymore and the
queue might fill up the whole memory of the device if the simulation kept
going for several minutes.

What is not shown on the graph is the tipping point at which the
polling thread is filling the queue faster than the sending thread can send
the events to the lambda server. In order to obtain that number many
simulations between 200 000 events/2s and 2 000 000/2sec were conducted
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Figure 6.2: Protocol measurement for non-ack queue with a BPF map
polling rate of 200 000 events/2sec

to conclude that 950 000 events every 2 seconds is the maximum threshold
regarding the non-ack queue alone.

In a second step we decided to analyze the performance of the stop-
and-wait type of logic used to process the events that required an ACK
from the lambda server. To this end, we simulate three different network
drop rates of 1, 3 and 5 percent for different BPF map sizes. The drop rates
are chosen in order to force retransmissions and thus be able to observe
the limit beyond which the protocol is no longer capable of working as
expected.

Figure 6.4 shows a queue filling rate of 15 000 events per two seconds.
When we look at the three graphs we can see very little variations in the
period of time necessary to empty the queue as retransmissions occur.
However, on the third graph of the same figure we can observe these
irregularities at a bigger scale because more retransmissions occur. That
being said, the queue is still emptied before the start of the next filling cycle
which ensures that the protocol can hold this rate.

In Figure 6.5, we propose 80 000 events every 2 seconds for the three
drop rates already presented.

The first graph shows no sign of weakness, but the two following
graphs allow us to observe the limit of the stop-and-wait protocol
implemented with regard to the events requiring an acknowledgment.
Even if it seems that the second graph is able to fully empty the queue
it is not the case. The size is increasing at a very slow pace.
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Figure 6.3: Protocol measurement for non-ack queue with a BPF map
polling rate of 2 000 000 events/2sec

As the size of the queue only increases, it may eventually occupy all the
memory available, ending the execution of the entire program. In fact both
maximum thresholds were also obtained by doing multiple simulations at
different filling rates. We found that the maximum rate that the process
could hold is about 70 000 events/2s for a network drop rate of 3 percent
and 35 000 events/2s for a drop rate of 5 percent. Regarding the network
drop rate of 1 percent, the sending thread went higher with a maximum of
170 000 events/2s before breaking.

These results are summarized in Table 6.1.

Max Threshold
(number of events
every 2 seconds)

Simulation Type

35 000 Stop-and-wait (ACK) with 5% network drop rate
70 000 Stop-and-wait (ACK) with 3% network drop rate
170 000 Stop-and-wait (ACK) with 1% network drop rate
900 000 No acknowledgment policy

Table 6.1: Summary of the maximum number of events that can be added
in the different type of queue when considered independently of the others
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Figure 6.4: Protocol measurements for the acknowledgment queue with
a BPF map polling rate of 15 000events/2s and a network drop rate of
respectively 1%, 3%, and 5 % (top to bottom)
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Chapter 7

Future Work

Significant improvements and additional work are possible. These are
detailed further below.

7.1 Overall architecture

A clear limitation of the solution proposed in this work is the fact that the
BPF program which collects the data of the packets received on the NIC of
the switch could be duplicated if a frame had to pass by several switches
having the same program. Indeed, these switches would increment their
local counters each on their side and then communicate them to the lambda
server which will make the erroneous aggregation of the values that will
not correspond to the reality of things. This means that we have to discuss
on which interface of which switch we should attach these BPF programs
to avoid this kind of scenario. This limits the flexibility of the proposed
solution which, for example, will impose that only the ingress points of the
network will be equipped with these programs, thus preventing certain
monitoring metrics from being available everywhere in the network.

Secondly, there is also the weakness of the polling system in place.
Should we choose a regular polling at the expense of the intensive use of
the switch CPU ? Should we accumulate in memory longer at the expense
of the precision of the tables and the memory of the switch? This trade-off
needs to be explored in much greater depth than it has been and requires
asking the right questions about what we want to achieve and at the
expense of what service.

A third point that must be emphasized is the good collection of data.
Indeed, the lambda functions (application) will only be as useful as the
quality of the data they have. For example, the detection of SYN flooding
requires more information such as whether the 3-way handshake was
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able to complete or not in order not to confuse a client that opens many
legitimate connections with a server and an attacker that would only make
the first exchange under different IP addresses making it impossible for
him to correctly process the entire 3-way handshake. This data again
requires more storage space, more logic and therefore more CPU from the
BPF program but would drastically increase the accuracy of detection of
such an attack.

7.2 Security

Security was not a topic to consider in the development of this project. It
is therefore always wise to recall that the deliverable is not a deployment
version for this security reason and for many others described throughout
the work. The implemented protocol does not require any authentication
between the two entities (switch and lambda server) and the collected
metrics (transactions) are exchanged in clear in the network. This network
being private and the data not sensitive, we assume that this does not
represent a main threat at the time of the development of this kind of
solution and that it seems a great idea to bring security its own focus in
a follow up of this thesis only.

7.3 Implementation

There are several implementation enhancements that might be made. One
of them is about optimizing the transmission of events generated by BPF
map entries. To avoid too many collisions, it is tempting to utilize huge
hash table sizes. However, we have seen that if a big enough number
of entries are modified between two polling probes, the sending thread
might encounter serious difficulties (depending on the type of queue used
discussed during the evaluation). It would thus be interesting to cope
this limitation with a mechanism that allows some sort of filtering mode
when the number of modified BPF map entries exceeds the set threshold.
This mode would include delaying or disregarding some table entries that
convey very little new information in order to never surpass the defined
threshold and prevent the system from entering a limit condition.

7.4 Controller

The emergence and popularity of SDN networks with a controller respons-
ible for routing and decision making to ensure quality of service is signific-
ant. It is therefore also interesting to explore a way that consists in not only

57



collecting data allowing to detect attacks in the network but also metrics of
queue sizes, congestion, delays in order to have lambda functions able to
give feedback to the controller so that it can with a certain precision modify
routing and thus optimize the network load.

7.5 Protocol

The protocol developed for the exchange of transactions between the
switches and the lambda server is simple and could seem very slow or
blocking since it is based on a stop and wait protocol. It does not allow a
huge throughput but it does manage a relatively low volume of additional
monitoring data introduced on the network. This trade-off should be
studied more fundamentally in practice in order to obtain a fair balance
for the type of hypothesis made at the beginning.

7.6 Benchmarking

More benchmarking and performance testing are required. This is due to
the fact that the goal of this study is to create a platform that functions
on a rather large private network involving a wide range of hardware and
networking devices. Local testing is difficult since replicating an authentic
environment is strongly dependent on usage patterns, available resources,
and the accuracy that these tests aim for.

58



Chapter 8

Conclusion

This thesis begins by defining the objectives that are related to the detection
of attacks and network events in real time. Several assumptions are
made such as the fact that the switches and routers of the network under
consideration are programmable and that the size of the network is large.
A serverless infrastructure is suggested because it would allow to associate
lambda functions in response to events perceived in the network and
would be entirely managed by a cloud provider.

Then a study of technology and what was being done in this field
had to be researched in order to perhaps draw inspiration from previous
projects or identify helpful building blocks for the architecture’s design.

XDP was used for the packet processing part of the solution allowing
to parse packets at line rate and to be able to store the necessary information
for the detection of attacks and network events. There is also the idea
of introducing a controller called lambda server, which works as a proxy
for the lambda functions since it is in charge of triggering their execution.
A protocol to exchange data from the switches to the controller had to
be designed and implemented. It was decided to use UDP with an
acknowledgement system if it was necessary for some types of messages
or events. The part of the protocol that handles acknowledgements is
inspired by a stop-and-wait protocol and uses sequence numbers. As for
the serverless infrastructure, we finally decided to go for Kubeless, an
existing open source framework that relies on Kubernetes. We also wanted
to be able to give a maximum of data to the lambda functions other than just
the data related to the trigger of these functions. To this end, we introduced
persistent storage within the Kubernetes cluster using MongoDB deployed
with several replicas.

In the fifth chapter we discussed the details of the implementation of
a Proof of Concept and is followed by the sixth chapter which explored the
scalability of the proposed solution by focusing on the established protocol
and the limits it proposes in terms of the number of events it can route to
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the lambda server and therefore the number of lambda functions that can
be triggered per second.

Finally we discuss potential improvements that can be made to the
project, both in terms of the technologies used and the architectural choices
that can be further explored.
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