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Résumé

Ces dernieres années, 1'utilisation d’images satellitaires et drones a connu un développement
exponentiel dans le domaine agronomiquee . Ces deux approches semblent trés complémentaires
en termes de couverture temporelle et de résolution spatiale. L'objectif principal de ce travail est
de confronter les deux a I’échelle d"une parcelle de froment d’hiver au fil d"une saison de culture
via des séries temporelles de la fraction de couvert vert (FCOVER) et de les combiner pour carac-
tériser mieux de la croissance de la culture. Les images multibandes sont couplées a des images
Sentinel2 sur la méme période. L'objectif secondaire consiste en 1’exploitation les outils implé-
mentés pour déterminer l'influence d’éléments micropaysagers de la parcelle sur la croissance
de la culture. Les premiers résultats de cette étude sont purement méthodologiques. Comparer
efficacement ces séries temporelles a nécessité la mise en place d'un algorithme permettant de
condenser l'information dans les paramétres d'un modele de croissance et d’exploiter finalement
ce moléle pour simuler le rendement via d’Aquacrop OS. L'ensemble de ces parametres sont syn-
thétisés sous forme de cartes. Une carte de rendement au moyen d"un modele empirique a permis
de confronter les performances des différentes approches. Les données Sentinel2 (resp. drone)
débouchent sur une sous-estimation (resp. sur-estimation) du rendement a I'hectare, tandis que
les méthodes combinant les données tendent vers une estimation plus proche de la carte de ré-
férence. En outre, une comparaison entre les résultats développés ci-dessus et un ensemble de
covariables liées a la topographie, a la date de labour et a la présence d’aire de faulde ont mis en
évidence une croissance plus rapide et des rendements plus élevés sur le versant orienté au sud,
tendance accrue par un labour précoce et les aires de faulde.

Mots clés : Froment d’hiver, modele de croissance, Aquacrop, SNAP, FCOVER, FVC, télédétection,
drone, Belgique, rendements a 1'hectare, aire de faulde

Abstract

These last years, the use of spaceborne remote sensing and unmanned aerial vehicles (UAV)
has grown exponentially in agronomy. Their abilities are theoretically complementary in terms of
temporal coverage and spatial resolution. This work aims to compare both approaches at the scale
of a winter wheat experimental parcel during a complete growing season using green fractional
cover time-series (FCOVER) and combine them to improve crop growth characterization. UAV
multibands images and Sentinel2 images are analyzed on the same time interval. Eventually, the
influence of landscape elements on crop growth-related variables is studied. The methodologi-
cal results of this study are the processes used to transpose FCOVER time-series into a reduced
amount of crop growth parameters and quantify their uncertainties. These parameters allow pre-
dicting yield using the Aquacrop Model and finally summarizing this information on a set of
maps. A comparison between yield predictions to a reference yield map based on field measure-
ment shows that yield prediction using S2 (resp.UAV) FCOVER tends to underestimate (resp.
overestimate), while data combination tends to be closer to reference values.UAV provides earlier
and faster growth curves, reaching higher maxima. Growth process variables are compared to co-
variables describing topography, the presence of historical charcoal kilns, and the ploughing date.
South facing half of the parcel experiences faster growth and higher yield; an earlier ploughing
date and biochar patches emphasize this trend.

Keywords : Winter wheat, crop growth, Aquacrop, SNAP, remote sensing, unmanned aerial ve-
hicle, FCOVER , FVC, Belgium, Yield, historical kilns
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Contextualisation

For decades, the acquisition and the processing of images of the Earth’s surface have become
priorities of multiple space agencies. These last years, the advent of an open access policy,
materialized by publicly funded space programs such MODIS, LANDSAT, MERIS and more
recently Copernicus, has dramatically creased the use of remote sensing data in environmen-
tal sciences and agronomy.

Remote sensing allows study areas at a considerable scale at a reduced cost for agronomists;
it has become one of the primary data supplies used by a new trend in agronomy, while data
sciences expand concomitantly in agronomy giving rise to Smart Farming. More recently,
UAV data collection tools have also opened to civil society providing datasets whose spatial
accuracy at a local scale surpass what already existed in remote sensing.

Usually, both approaches provide results whose potentialities are pretty complementary;
satellite data are provided regularly at coarse resolution, while UAV data resolution is very
high but available less frequently and requires the presence of a human operator. As a re-
sult, crop growth monitoring tools focus on satellite datasets processing. However, UAV-
resolution datasets require more storage resources, and processing them is more computa-
tionally expensive for equivalent area coverage. Consequently, algorithms used to extract the
same features varies depending on the used resolutions. UAV high resolution allows quickly
implementing semi-empirical models from field data, such as predicting the yields, develop-
ing crop health/development indicators, or decision support systems dedicated to irrigation
and fertilization. Data fusion processes between satellite images of different resolutions are
studied for years. However, the scale disparity between UAV and satellite images is so high
that it requires innovative methods to practice data fusion and existing algorithms to serve a
specific scientific purpose.

Xi



Contextualisation xii

This work aims to compare both kinds of processing at the scale of a winter wheat exper-
imental parcel during a complete growing season using green fractional cover time-series
(FCOVER) and attempts to combine both datasets with improving crop growth characteri-
zation. FCOVER is one of the easiest proxies of the green biomass to measure using remote
sensing. In 2019 UAV images were collected by (Heidarian Dehkordi et al. 2020) in order to
compare crop growth on century old biochar spots and the adjacent soils. This parcel lies
on loamy soil in Isnes, Belgium. This study compares these high resolution UAV images to
Sentinel2 images with a 10m resolution.

Aquacrop is an open-source freeware developed by FAO. This software is dedicated to
the decision support system, simulating variables of interest such as daily evapotranspi-
ration and yield according to different scenarios. The model’s inputs are climate datasets,
soil hydrological properties, and crop characteristics, including a growth model based on an
FCOVER parametrization. Simulations are performed at the scale of the studied parcel to
predict yield maps from the FCOVER time series.

The results of the different models are compared to various parcel covariates to determine
their influence on growth process variables and yield. Most of the covariates are related to
topography except ploughing date and the presence of century-old biochar patches.



CHAPTER ].

State of the Art

1.1 Crop of interest - Winter Wheat

In 2019, wheat was grown on 215 million hectares, a surface equivalent to Greenland dis-
tributed worldwide (FAOSTAT 2019). This same year, the world wheat production reached
747 million metric tons (USDA 2021)) while being the second most consumed directly by man
after rice. The nutritional value of Wheat Grain is very high; wheat contains fibers, vitamins,
amino acids, and minerals (Sramkova, Gregovd, and Sturdik 2009).

Moreover, its domestication induced the emergence and development of agriculture in
middle-east during the neolithic (Venske et al. 2019)). As a result, this cereal is the most
studied in the history of humanity; centuries of genetic selection created countless regional
strains with different yields and abilities to resist environmental stress such as diseases, ex-
treme temperature, and precipitation (Cossani and Reynolds 2012)).

Phenology : Growth Cycle

Winter Wheat (Triticum aestivum L.) is a strain of wheat that is sowed in Belgium from au-
tumn to the beginning of winter and harvested during the following summer. The growth
rate depends mainly on temperature and photoperiod in optimal growing conditions with-
out biotic or water stress. Dependence on photoperiod disappears after wheat flowering
(Brisson et al. 2010)). Figure[1.1/shows the complete growth cycle of winter wheat.

The emergence stage starts when the first leaf crosses the rigid and protective sheath that
surrounds the coleoptile. The duration of this stage is the time between the sowing date
and the emergence date. Different steps occur during this stage: germination, elongation of
the first leaf’s coleoptile, and growth. A molecular regulation prevents a direct transition to

1
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Figure 1.1: Winter Wheat Development - (Hyles et al. 2020)

reproductive development before exposure to the prolonged cold of winter (G. Li et al.2013)).
This mechanism is called vernalization. Young plants are very resistant to frost, while frost
resistance progressively decreases during heading and flowering. Vernalization can last 30
to 60 days of cold winter temperature, wheat growth restart, and complete emergence. The
next step is tillering; grassland produces a stem, which is followed by tillering. On average, a
temperature sum of 550 to 650 degrees day (base 0°C) is required after sowing to reach this

stage (Gate[1995)).

The plant counts three or four leaves; tillering occurs at the emergence of a new stem
(called a tiller). When tillering stage ends, the plants straighten, and the first node appears
on the tillers. Simultaneously, first leaf sheaths lengthen (Gate 1995). Terminal spikelets
starts developing.

It marks the beginning of stem elongation. The stem consists of stacked nodes; internodes
are the length of the stem between nodes. The growth of the first internodes is the first step
of stem elongation begins, and internodes elongate in their order of successive appearance.
Leaf-sheaths are now strongly erected.



3 1.2. Remote sensing - Sentinel2

At the end of stem elongation, the sheath of the last leaf is spreading and the top of the ear
is coming out (Wise et al. 2011)). Then, the booting phase starts, the stems keep elongating,
spikelets become more and more visible. Eventually, the booting stage is completed when
50% of the ears have half emerged (Gate 1995). Booting is followed by heading step, stems
elongation ends, and flowering occurs at the end of heading phase (Gate [1995)).

Ripening corresponds to grain formation stages once flowering ends, while the senescence
of green parts occurs. Grain development splits into two steps, milk development, and hard
dough. Milk development occurs once the flowering is complete, the envelopes of future
grains grow. The dough development represents the attainment of maximum dry weight
with approximately 30 % moisture content. This stage is also known as physiological matu-
rity. (Gate|1995). Eventually, ripening complete, the seed moisture will decrease down to 13
to 14 % (Wise et al.[2011; Gate [1995)).

1.2 Remote sensing - Sentinel2

Sentinel-2 (S2) is the second high-resolution multispectral imaging mission of Copernicus
Mission . It consists of a constellation of two polar-orbiting satellites placed in the same
sun-synchronous orbit, phased at 180° to each other. The mission objective is monitoring
variability in land surface conditions and satellite wide swath width (290 km) and allows a
high revisit time (2 satellites under cloud-free conditions results in 2-3 days cycles at mid-
latitudes).

Sentinel-2 satellites are equiped with a MultiSpectral Instrument (MSI). The MSI captures
the light reflected by the Earth and separates the different wavelengths using specific filters.
Three types of resolution characterize the information recorded by the sensor of a Sentinel-2
satellite. The purpose of each spectral band and its raw resolution is summarised in Table

L1l
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Table 1.1: Sentinel2 Bands and their original purpose - (GDAL 2019)

Central Band

Band Range  Resolution (m) wavelength (nm) width (nm) Purpose
BO1 60 443 20 Aerosol detection
B02 Visible 10 490 65 Blue
B03 10 560 35 Green
B04 10 665 30 Red
B05 20 705 15 Veetation
B06 Red-Edge 20 740 15 geatie
classification
B07 20 783 20
B08 NIR 10 842 115 Near infrared
Bosa IR 20 865 20 Vegetation
narrow classification
B09 60 945 20 Water vapour
B10 SWIR 60 1375 30 Cirrus
B11 20 1610 90 Snow / ice /
B12 20 2190 180 cloud discrimination

1.3 Introduction to biophysical vegetation variables

The different spectral range corresponds to different information in terms of vegetation clas-
sification and phenology. Visible bands corresponds to absorption bands of pigments that re-
sides in outer palisade leaf (Chlorophyll pigments,carotene, Xantholphyll), (Eumetrain.org
2018)

The infrared lights splits into different subranges. NIR is mainly reflected by leaf internal
structure[[|(Eumetrain.org[2018). Red-edge is the transition zone of the vegetation reflectance
spectrum between visible and NIR. The absorption of radiation by water has a dominant
influence on SWIR reflectance, but cellulose and lignin also absorb radiation in this range.

FCOVER, LAI & FAPAR

Despite this work mainly focus on FCOVER, many different ways exists to characterize the
canopy chlorophyll content, each of one having its own meaning and sensitivity to environ-
mental parameters. (Weiss 2019) provides a summary of how these different variables are
used in agronomy, FCOVER is mainly used to asses evapotranspiration of crops, other vari-
ables are used to directly study the evolution of carbon balance in the system by studying

!t consists of spongy mesophyll cells located in the leaves’ interior or back
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respiration/phytosynthesis, while LAI is also used to study nitrogen cycle in crops (Jay et
al. 2017} Liu et al. 2018)) Compared to other vegetation indices, FCOVER has the advantage
to have a quasi-linear relation with reflectances and a lower scale dependence than other
indicators (Weiss 2020)).

Table 1.2: Summary - a) crop processes and their variables of interest - (Weiss 2019), b)
Relationship between variables and measurement parameters - (Weiss 2020)

(a)

Crop processes LAI FAPAR FCOVER
Photosynthesis +++ +++
Evapotranspiration  ++ +++ +++
Respiration ++

Nitrogen +++

Phenology +++  ++

(b)

Sensitivity /Dependence
Variable | Orientation Scale  Reflectances Obserx./atlon
conditons
LAI Yes Strong Non-Linear = No
FAPAR | Yes Strong Non-Linear  Yes
FCOVER | - Weak Quasi-Linear No

(Weiss 2020) defines LAI as half the developed area of photosynthetically active elements
of the vegetation per unit horizontal ground area. According to Weiss 2020, it provides a
proxy for the size of the exchange interface for energy (including radiation) and mass trans-
fers between the canopy and the atmosphere.

FAPAR corresponds to the fraction of photosynthetically active radiation absorbed by the
canopy (Weiss [2020). Thus, the FAPAR value results directly from the radiative transfer
in the canopy, which is instantaneous. It depends on canopy structure, vegetation element
optical properties and illumination conditions. Usually FAPAR values are integrated on a
time scale.

Fractional vegetation cover ) is generally defined as the ratio of the vertical projection area
of above-ground vegetation organs on the ground to the total vegetation area. FCOVER is
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used to separate vegetation and soil in energy balance processes, including temperature and
evapotranspiration (Weiss 2020)).

1.4 Fraction of green Vegetation Cover - Monitoring
Methodologies

— @

-
L

" @

- -

(a (b)

Figure 1.2: Example of sampling grid historically used to perform field FCOVER measure-
ment (Liang and Wang 2020)- a) FCOVER is given as the proportion of the corners of the
grid that that touch vegetation, b) FCOVER is given by the proportion of grid cells where a
bush is present

® o

Historically, agronomists performed FCOVER measurement based on sampling methods
on field, what is shown on Figure using statistical methods to upscale FCOVER estima-
tions at the scale of a parcel (Carpenter et al. [1999). These methods were initially based
on visual estimation, which added a huge subjectivity component (Liang and Wang 2020)).
Currently, thanks to the advent of numerical photography and UAV technologies, FCOVER
estimations grew out of these subjectivity factor.
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Table 1.3: Indicators used into optical measuring methods

Name Color Space Symbol Indicator

Green Component RGB G (1.2)
Green Excess RGB EGI 2G-R-B (1.3)
Green Excess RGB EG min(G—-R,G—B) (14)
Greenness LAB a (1.5)

Optical measuring instruments

Optical measurement are the most direct ways to provide an estimation of FCOVER using
field measurement. (Liang and Wang 2020) recommends to select carefully the moment at
which photographs are taken, illumination conditions should be selected. A cloudy day, the
morning or the evening are the moment at which the the effect of shadows is minimal. Morn-
ing dew might also affect the photography,so early morning is not recommended. Different
kind of images can be used : RGB and Multispectral. Multispectral sensors additional bands
have usually a biophysical meaning for vegetation, NIR or Red-edge. Post-acquisitipn pro-
cedure can involve a segmentation step at which a methodology is used to separate green
vegetation from soil background.

The post-acquisition process is crucial, and this step consists of image segmentation; it
consists of classifying pixels into multiple classes to partition images into regions sharing
similar classes. In the case of FCOVER, classes are the vegetation and the soil. FCOVER of an
image (or a window of a given size in an image) is computed by computing the proportion
of vegetation pixels over the complete size of the mask, what is expressed by ([I.1)).

FCOVER — 1 Veartation (1.1)
# Pizels
Vegetation detection is usually related to color components and color components infor-
mation has to be summarized preferentially in one value. Most basic applications select the
reflectance band associated to green, but there exist multiple ways to summarize informa-
tion. Table[1.3|describes different proxies of greenness that are used to implement FCOVER
estimators.
Supervised segmentation requires human intervention by manually selecting criteria based
on color or creating training datasets. Unsupervised methods create classes automatically,
but the computational cost of unsupervised methods is usually higher, while interpretation
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Table 1.4: Some Vegetation Indices used in crop modelling - (Heidarian Dehkordi et al. 2020)

Index Name Symbol Formula)

Normalized difference vegetation index NDVI w (1.6)
Pnir Pred

Green normalized difference vegetation index GNDVI w (1.7)
Pnir Pgreen

Weighted difference vegetation index WDVI puiy — apreawhere a = Puir —soil (1.8)

Pred —soil
Normalized difference red edge index NDRE Pnir — Pred-cdge (1.9)
Pnir + Pred-edge
o . . . . Pnir — Pred
Opt d soil adjusted tat d OSAVI 1.16 1.10
ptimized soil adjusted vegetation index o a1 0.16 (1.10)

Chlorophyll vegetation index CVI Puic__Pred (1.11)
Pgreen Pgreen

Enhanced vegetation index EVI 25 Puix  Pred (1.12)

Pnir + 6pred - 7-5pb1ue + 1
Chlorophyll index red CI —red Puic (1.13)
Pred
NDRE
Simplified canopy chlorophyll content index ~ sCCCI NDVI (1.14)

of the results is sometimes complex and depends on the selected algorithm. Figure(l.3|shows
how the segmentation masks and FCOVER can vary in the case of unsupervised methods ap-
plied on similar images.

k-means and ISODATA consist of iterative clustering algorithms (Merzougui et al. 2016).
During the initial step, cluster centroids are assigned, potentially randomly. Then distances
to cluster centroids are computed, and points are classified into the cluster of the nearest cen-
troid at the end of the second step. Next, new cluster centroids are calculated from existing
centroids. The second step is repeated until "change" between iterations becomes negligible.
Process can be repeated by varying initialization of centroids to determine the robustness of
the result. The difference is that k-means use a definite number of k classes, while ISODATA
merges or split clusters depending on the distance of the centroids or the number of pixels
of each class. k-means and isodata can be slow compared to other algorithms but adding
additional classes is simple to consider heterogeneities in images.

Image processing widely uses the Otsu algorithm; a threshold is selected to split 2 classes

according to a histogram. The objective is to minimize (resp. maximize) intraclass (resp.
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Classified image and FVC

Automatic
Original image classification Maximum
£ g _ o ISODATA method
method (proposed likelihood method

by the authors)

s G Y

Maize

Peanuts

Weeds

69.01 : 52.63

Figure 1.3: Comparison of the classification results using different classification methods.

(Liang and Wang 2020))

interclass) variance (Bangare et al. 2015). Maximum likelihood assumes that vegetation and
soil pixels follow two normal distributions of different (and unknown) means and standard
deviation. A regression algorithm is used to estimate the values of normal distribution pa-
rameters (Raschka2015)). A threshold is finally selected to minimize misclassification prob-
abilities according to normal distribution parameters. In the assumption of normal distribu-
tion, this threshold is located at the intersection of both curves. On the contrary of iterative
algorithms, Otsu and maximum likelihood algorithm computational cost is low, while the
simplicity of the results often can’t take efficiently take into account shaded or saturated parts

of a canopy (Utstumo et al. 2018)).

Shadows or surexposition affects strongly segmentation processes. (Song et al. 2015) con-
structs a shadow resistant algorithm, this algorithm is based on a brightness correction of
the shaded part of the image and use a linear combination of a lognormal distribution and
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a normal distribution to approximate greenness histogram, to finally segment green vegeta-
tion the background to finally apply a maximal likelihood algorithm under new assumptions
on distribution. (Sadeghi-Tehran et al.2017)) developed a supervised algorithm dedicated to
RGB images, it derivates 21 color components (including colinear variables) representation
where a randomforest classifier is trained using images presenting a strong probability of
heterogeneity.

RGB - Photography at low altitude (<2m)

Low altitude photography provide an accurate estimation on a reasonable surface. Photog-
raphy at low altitude are usually either used as a part of a sampling method to characterise
FCOVER at a larger scale or to produce training datasets for different methods based, what is
show on Figure[I.4, CANEYE is a project where hemispherical pictures of crops are collected
and segmented to train an algorithm able to provide a fast prediction of FCOVER. These cal-
ibration segmented images are also used to train some remote sensing retrieval algorithm.

() S

Figure 1.4: Examples of manual photography acquisition - a)Caneye project, calibration im-
ages from (Mougin et al. 2018)), b) example of low altitude acquisition set-up (Liang and

Wang 2020)

Currently mobile phenotyping platform such as (Sadeghi-Tehran et al. 2017} Utstumo et
al. 2018) allows to automatically collect RGB images at the scale of a parcel and eventually
compute high precision FCOVER maps.
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Figure 1.5: Influence of the resolution on mixed pixel, synthetic images (L. Li et al. 2018) -a)
location of mixed pixels and b) proportion of mixed pixels as a function of spatial resolution

UAYV - Image analysis analysis based method

UAV acquisition process aims to cover a larger area than photography at low altitudes. UAV
images are taken from a high altitude, so the different images are merged using a processing
chain to produce a mosaic. Segmentation methods developed for low-altitude pictures are
currently widely used; But depending on the resolution of the final results and the crop
characteristics, they produce biased results : on the contrary of low altitude pictures, the
assumption that pixels represent bare soil or completely covered areas isn’t always valid. The
coarser is the resolution, the higher is the proportion of mixed pixels (L. Li et al.2018). Figure
illustrates this trend using synthetic images aggregated at different resolution; mixed
pixels proportion increases dramatically and greenness histograms are highly changed by
resolution; Bimodal continuous distribution of pure pixels gradually change to a uniform
distribution of mixed pixels on between two peaks representing pure pixels.

(L. Li et al. 2018]) adress this problem of mixed pixels by fitting the histograms of pure
vegetation pixels and pure background pixels are firstly fit using two half-Gaussian even this
procedure solve the mixed problem for low altitude flight, extreme cases are still difficult to
process.
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Inversion of Radiative Transfer Models

Radiative Transfer Models (RTM) are used to model the reflectance of canopies depending
on various parameters depending on canopy architecture and leaf characteristics, such as
PROSAILP (Baret and Buis 2008} Berger et al.[2018). In RTM, Canopy architecture-related
variables are LAI, Average leaf inclination angle, Soil reflectances/brightness factor, the frac-
tion of diffuse illumination, and Sun zenith angle. The description of the leaves relies on
mesophyll structure, dry matter, water, and pigment content[]| (Baret and Buis 2008} Berger
et al. 2018). The computation process is summarized on Figure

N, Cup. Cuz G Gy LAILALA, HOT Reflectance
%;{l 10.:0,:4
Leaf Optical Canopy Reflectance
Properties Model Model
PROSPECT SAIL

Observation

Absorptance FAPAR
afh)

Reference Soil G iry
Optical Properties eome
PR top O BEY

Figure 1.6: PROSAIL - Calculation of canopy reflectance - Schematic View (Berger et al. 2018)
C corresponds to pigment abundance, N to the mesophylle geometric, 6, to sun zenith angle,
g, view zenith angle, ALA is the average leaf inclination angle, Hot, the Hotspot parameter
and Bs describes soil properties (reflectance, wet or not), A is the wavelength, p the reflectance
and 7 the transitivity

Currently, these models are coupled to inversion models to associate spectral canopies to
a set of values for the parameters mentioned above, as stated by . Usually, pigments contents
and the internal structure of the leaves have to be assumed to predict LAI (Duan et al. 2014;
Wan et al. 2021]). Eventually, LAI is transcripted to fCover using a beer-lambert equation
given at (I.1I5)) taking into account viewing zenith angles # and the canopy’s structure in
parameter G(f) (Wan et al. 2021; Fang 2015).

FCOVER = 1 — ¢ ¢@aioy (1.15)

ZPROSAIL is the most used radiative model in agronomy, emerging from two initially distinct projects
optical modelization projects : PROSPECT (leaves optical parameters), and SAIL4 (canopies) (Baret and Buis
2008])

3Chlorophyll a + b, carotenoid, anthocyanin, brown pigments
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Satellite Image - The remote sensing retrieval of FCOVER

Satellite Images doesn’t offer a high enough resolution to perform predictions at the level
of leave coverage, binary models developed in the case of optical sensors doesn’t provide
reliable results because most of pixels aren’t pure bare soil or pure vegetation. Different
strategies are developed to address this issue.

Linear and Non-Linear Model of Vegetation Indices

Historically, the first strategy is based on the fact that FCOVER has a quasilinear relation with
Vegetation indices as normalized difference vegetation index (NDVI) or green normalized
difference vegetation index (GNDVI). Usual strategy consists to detect bare soil pixels and
tully covered pixels of a neighborhood, either using a supervised approach, either reference
values of vegetation indices in literature or by assuming that local minimum (resp. maxi-
mum) of these vegetation indices are bare soils (fully covered) (Gutman and Ignatov 1998)).
If a = 1, (1.16)) is linear, this is the most used form of this family of models.

FCOVER — ( NDVI — NDVI,; )

NDVIplant - NDVIsoil

a is sometimes selected with different values, (Gao et al. 2020) states that (|1.16]) can be
quadratic while other models fixed a to 0.62. Other vegetation indices are used in regressions,

(1.16)

but usually experimental datasets where FCOVER is computed using alternative methodolo-
gies are required to calibrate model.

Machine-Learning based methods

Machine-learning is widely used to retrieve Biophysical indices, one of the most used these
last years is the sentinel2 toolbox developed by (Weiss2020)). This toolbox available in SNAP,
a freeware edited by ESA allowing to compute vegetation indices directly from Sentinel2
Images. It relies on a neural network which is trained using synthetic datasets. These datasets
are generated from Prosail, a radiative transfer model presented at subsection .

This neural net is based on a single layer of five neurons with tangent sigmoid transfer
functions, 12 inputs, which means that 60 weights are required to calibrate the neural net



State of the Art 14
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Figure 1.8: Achitecture of SNAP Neural net (Weiss 2020) - The inputs are differents bands
available on sentinel2 datasets B3, B4, B5, B6, B7, B8a, B11, B12, viewing zenith, sun zenith
and relative azimuth angle.
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1.5 Canopy expansion Models

FCOVER Monitoring allows to generate timeseries and information of FCOVER timesrieshas
to be summarized into a model, based on a reduced set of parameters in order to directly
use it into a model able to describe yield and biomass production. These parameters have a
biophysiological meaning.

If time is a natural way to describe canopy development, annual climate variations makes
comparison often complicated, even at a same location. For this reason, agronomists use
multiple proxies to transcript crop development rate as a numerical value; one of the most
pragmatic and straightforward descriptions is written by (1.17)) and (1.18)).

Tonini + T
GDDZ — max ((:]7 min—1u —|2_ mar—1u _ Tbase) (1‘17)
NDays
GDDc(npays) = 3. GDD; (1.18)

=1

Trnin—i (resp. Thae—i) express daily minimal (resp.maximal) temperature, np,ys is the
number of days after sowing. GDDc is called thermal time, and its units are °Cd, while
GDD; is the daily average temperature on base 7, it describes the daily contribution to plant
development. ([I.17)) states that the temperature response of the development rate is a linear
function of temperature; if the temperature falls below the base temperature 7}, during a
significant part of the day, the development rate is assumed negligible that day.

Simultaneous crop growth and climate monitoring on the field allowed establishing corre-
spondences between crop phenological development and thermal time for the different crops
and strains. Agronomists developed standardized scales to describe crop development; the
most widely used scale in the cereal industry is the BBCH scale, where a two-figure code is
associated at each development stage from germination to maturity.

Agronomists currently work on new proxies in crop modeling software, directly incorpo-
rating phenological characteristics of crops, for example, by adding penalty factors (1.17)) or
by including day length into the computation. The penalty factors allow decreasing develop-
ment rate depending on vernalization, photoperiod, and temperature stress as development
indicator introduced by (Rosillon et al. 2020)).

This kind of model is summarized by the equation system available in Appendix
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Mathematical formulations of Canopy Growth Cycle

Growth Cycle are studied using various variables, Table [1.5| provides a short summary of
methodologies used to describe canopy expansion and senescence during a growing season.

Table 1.5: Examples of crop growth models used to model Ecosystem canopy expansion

Growth Model

Source )
Formulation

Context

Biomass production
(Richter and Seppelt 1996)) Differential Equation modelling as a function
of nitrogen balance

(Fischer 1994) Double logistic function Crop monitoring

Linear Model by connecting
(Badeck et al.|[2004; Doktor et al.2009) maximal value to the Forest Canopy
beginning of growth cycle
(Zhang et al. 2003; Soudani et al. 2008) Double sigmoidal function = Ecosystem monitoring
(Myers et al. 2019) Piecewise logistic function =~ Crop Monitoring

Mechanistic model developed by (Richter and Seppelt|1996) is formulated as a differential
system describing biomass production W as a function of growth rate, NV nitrogen resources
consumption, senescence f, and fertilizer inputs U. Similar models are applied to FCOVER
expansion. This kind of mechanistic model allows to represent a complete growth cycle as a
function of resources, but there isn’t any simple explicit equation to perform regression on
FCOVER measurements.

W = rmaxt(N) fo(GDDe)W — uW (1.19)
N

r(N) =+ v (1.20)

ae—pGDDc
fs(t) = T+ cro_pGDDE (1.21)
N = —d(W,GDDc) — kN + kuW + U(GDDc) with N(0) = N (1.22)

p

U(GDDc) = » ;6 (GDDc — GDDc;) (1.23)

1=1
Explicit equations are required to perform efficient regression on parameters and inter-
pret the results. (Fischer|1994; Zhang et al. 2003} Soudani et al. 2008)) models are quite similar
despite mathematical formulations vary, growth functions have at least six parameters to be
titted and equations are provided on a continuous domain. Double logistic function is de-
scribed by ([I.5), this function is continuously derivable and continuous but the number of
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parameters imposes a high number of observations to fit the model. CC; is the baseline, CC,
represents the amplitude and CC, is the value at the end of growing season. GDDc; (resp.
GDDc,) describes when the maxima increase (resp. decrease) occurs, p (resp. ¢) is related
to the slope at this the thermal time. % is a parameter.

k k+ CC, — CC,

CC(GDDe) = CCy + 1+ exp(—p(GDDc — GDDc;)) 1+ exp(—¢(GDDc — GDDcy))

(1.24)

(Myers et al. 2019) provides a generalisation of double logistic/sigmoid where growth
curve is fitted on piecewise domain. Parameters are very similar to , but approach is repeated
on four distinct domains are defined on Figure On each of them GDDc;_; (resp. GDDcy_;
) is the thermal time associated to maximal increase (resp. decrease).

CC(GDDe) = CC, +; CC, [tanh (p - (GDDe — GDDe; ) — tanh (¢ - (GDDe — GDDeq_))]
(1.25)
Looking for these characteristic points requires to approximate second derivatives.

Time-series fit to asymmetric double sigmoid function
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Figure 1.9: (Myers et al. 2019) - Piecewise logistic function - Geometrical interpretation of
the parameters
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Aquacrop uses an alternative piecewise representation using exponentials on different
intervals, which is close to a double sigmoid representation. This representation is conti-
nous and derivable and offering a simplified representation that can be easily linked to the
phenology of crops that are studied using a reduced number of parameters that directly have
a physiological meaning.

Table 1.6: FCOVER Piecewise Exponential Model - Aquacrop

CcC Range Phase
0 (1.26) [0; GDDcy) Emergence
CCy exp(CGC(GDDe — GDDey)) (1.27) [GDDey: GDDeg] o bonential
CC, Exponential
cec, {1 ~ 025" exp(~ CGC(GDDe - GDDCO))} (1.28)[GDDesg; GDDCymas | Deﬁay
Maximum
CC, (1.29) [GDDcypaa; GDDcgep) Cover

(1.30) [GDDcgen; GDDc gl Decline

cc, {1 0.0 {exp (3.3SCDC(GDDC - GDDCSen)> _ 1”

CCyho +2.29

Maturity/

0 (1.31) [GDDcppg; +00] Post-Harvest

Implicit parameters GDDcsp9 and GDDcgyq are computed as :

CC, 1 CC,
CC(GDDC50%) = 5 — GDDC50% = GDDCU +@ ln (2 CCO) (132)
CCyro+2.29
D = DD = GDD ————— In(21 1.
CC(GDDepng) = 0 — GDDepna = GDDesen +—amm In(21) (1.33)

Model explicit parameters are defined as
e GDDcy : thermal time at 90% of the emergence
e GDDcg,,, : thermal time at start of the senescence
e CC, : maximal canopy cover that can be reached [-]
e CCj : Canopy Cover at 90% of the emergence [-]
e CGC : Canopy Growth Coefficient [(°Cd) )]
e CDC : Canopy Decline Coefficient [(°Cd)~1)]

An interpretation of these six parameters is provided on Figure Growth is splitted
into five thermal time intervals.
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Figure 1.10: FCOVER as a function of thermal time - Aquacrop Model

Model states that soils is completemy bare during emergence. This period is followed
by exponential growth which includes tillering and stem elongation, which corresponds to
(1.27)). Exponential decay corresponds to a decrease of growth rate, as stated by (1.28)). This
step occurs simultaneously to the beginning of inflorescence formation. Flowering occurs
during the maximum canopy cover, which is followed by senescence. Ripenning occurs dur-
ing the senescence, what is modeled by (1.30). The most import parameter to estimate is
implicit : GDDcgsgy is the thermal time at which the maximal growth rate, which equals to
CGC occurs, it corresponds to an inflexion point. It also determines the transition time be-
tween exponential growth and decay.



State of the Art 20

1.6 Yield and biomass production modeling

Currently, yield and biomass production have been modeled of winter wheat is using various
software (Palosuo et al. 2011)).

Yield production shows a strong correlation with the integral of FCOVER, which can be

written using (1.27)), (1.28)), (1.29)), and ([1.30)), what is written in Appendix

GDDCEnd
Y x / FCOVER d GDDe (1.34)
0
0.5CC, — CC
x T 04 ce, |[GDDcpaz — GDDesgy | +
CC, — CGC(GDDemaz — GDDesgo)
0.25 555 [1-e |+

CCho+2.29

Ccm (GDDCsen - GDDCW‘H) + Ccm(095 In21 - 1) 3.33CDC

(1.35)

Aquacrop Model

AquaCrop is water driven model simulating crop productivity and yield edited by FAO.
Crops are modeled as an ecosystem split into different functional subsystems exchanging
water according to environmental conditions (Wellens et al. 2014). The model separates
non-productive consumption (soil evaporation, runoff, infiltration) from the productive con-
sumption of water (transpiration) (Steduto et al. 2013)).

It allows modeling crop growth-related variables, such as Canopy cover, biomass accumu-
lation, and yield, and many others such as water flux and water content in root zone layers,
crop transpiration. Compared to other crop growth modeling software, Aquacrop uses ei-
ther robust models or semi-empirical equations based on easily measured parameters to offer
a pragmatic approach to agronomists.

Following (Wellens et al. 2014), inputs of the model are divided into four categories: cli-
mate, soil properties, crop characteristics and crop management. Aquacrop requires a re-
duced amount of climate variables daily, air temperature, precipitations, the potential evap-
otranspiration ETy, and carbon dioxide concentration. ET is , which can be computed using
the Penman-Monteith equation. Soil properties are defined by horizons, which are splited
into layers of given thickness whose properties are water content at wilting point, water con-
tent at saturation, water content at field capacity, conductivity at saturation, and drainage
characteristics. Crop characteristics include the start of the growing cycle, the production,
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Figure 1.11: Aquacrop - Systemic view - (Steduto et al. 2013))

evapotranspiration parameters, stresses (water, fertility, temperature), calendar of the grow-
ing process. Management operations affecting growth are either irrigation (irrigation sched-
ule and method can be fixed) or field management (fertilization, mulches, field surface prac-
tices — runoff control, soil bunds). However, the consequences of pests, diseases, or weeds
on the crop are not considered.

Water exchange between subsystems and crop growth related variables are computed us-
ing the different modules shown at Figure [I.11] Roots depth and Canopy cover are consid-
ered as independent modules. Phenology describes growth rate of the canopy as a function
of thermal time and how canopy cover reacts as a function of plant development to different
kind of stress and potential early senescence that could be transcripted by a reduced canopy
development compared to theoretical model fixed by user inside crop parameters. Water
balance module allows to quantify total available water in root layers and how water fluxes
evolves as a function of climate and plant development.
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T, = Kg - CC-K¢ - ET, (1.36)
NDays
B=WP ¥ T. (1.37)
Y = HI, fm(GDDc) - B (1.38)
. GDDc — GDDCmianF
frm = min [max (0, A7, GDDo > : 1] (1.39)
(1.40)

T, represents crop transpiration [mm |

B is the accumulated biomass [kg/m?]

ET) is the reference evapotranspiration [mm/d], it describes the atmospheric evaporative
demand as stated by (Vavlas et al. 2020)).

K. is the mid-season crop coefficient, which can be adjusted for crop ageing and possible
adverse early senescence effects (Steduto et al. 2013)).

K s describes the soil water crop coefficient integrating water logging, stomatal closure and
early senescence effects (Steduto et al. 2013)).

WP is the water productivity parameter [gm?mm™']).

HIj is the reference harvest index at the physiological maturity of the crop.

Preponderant equations describing crop growth are summarised by ([1.36)), (1.37)), ([1.38])
and ([1.39).

WP considered as a conservative parameter, independent from climate and depending

mainly from carbon dioxide concentration (Steduto et al. 2013)). Yield formation is a de-
scribed using a factor varying varying linearly from zero to one as a function of thermal
time, which is written in (). It starts when crop overreach GDDc,,,;,,—y r and reaches its
maximal value after a given amount of thermal time Ay GDDc. Figure shows a sys-
temic view of Aquacrop, showing feedbacks of the system to incorporate water stresses to
the model and adding early senescence effects to the model.
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Figure 1.12: Aquacrop Flowchart - Water Balance

Comparison with other existing Biomass production modeling

(Palosuo et al. 2011)) provides a benchmark of different models describing winter wheat crop
growth using alternatives of Aquacrop. (Palosuo et al. performed modelisation dur-
ing 49 growing seasons at eight sites in northwestern. Table [I.7]lists multiple models that
are widely used to model winter wheat growth. (Palosuo et al. 2011)) provides a compari-
son and Aquacrop is added to these models. Most of these are mechanistic and describes
photosynthesis and respiration processes.

Table 1.7: Existing producing models tested in the case of Winter Wheat, adapted fom (Palo-

suo et al. 2011))

Model Version  Description Web address

APES V.09.0.0 (Wien et al.l2010i http:/ /www.apesimulator.it

CROPSYST V. 3.04.08 1“Crop$ysl, a cropping systems simulation model"|2003p http://modeling.bsyse.wsu.edu

DAISY V. 4.01 (Abrahamsen and Hansen 2000 https://daisy.ku.dk

DSSAT V.4.0.1.0 (Jonesetal. Hoogenboom et al. https://dssat.net

FASSET V.2.0 (Berntsen et al. Doltra, Leegdsmand, and Olesen http://www.fasset.dk

HERMES  V.4.26 (Kersebaum|2007' Request from ckersebaum@zalf.de

STICS V.6.9 1“STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize”lZUOZl http://www.avignon.inra.fr/agroclim stics eng/
WOFOST V.7.1 (Boogaard et al.[2013) http:/ /www.wofost.wur.nl

AquaCrop  V.6.0 (Foster et al. http://www.fao.org/aquacrop/fr/

Benchmark of these models is available at Table[I.8} Except Aquacrop, all of them are us-
ing LAI as a proxy of biomass and use a Leaf area development model with a radiative com-
ponent. Light isn't parameter of Aquacrop on the contrary of all these models. Aquacrop use


http://www.apesimulator.it/default.aspx
http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/
https://dssat.net
http://www.fasset.dk
ckersebaum@zalf.de
http://www.avignon.inra.fr/agroclim stics eng/
http://www.fao.org/aquacrop/fr/
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Table 1.8: Benchmarking of different Crop Growth models used in a winter wheat context
(Palosuo et al.[2011))

AquaCrop APES CROPSYST DAISY DSSAT HERMES FASSET STICS WOFOST

and ight ierception® D s b s b b D D
Light utilization® - RUE RUE P-R RUE RUE P-R RUE P-R
Yield formationc Y(HIB) Y (Prt) Y(HLB) Y (Prt) Yield(HI(Gn),B) Y(HIB) Y (Prt) Y(HI(Gn),B) Y(Prt,B)
Crop phenology ¢ £(T) f(T,DL,V) f(T,DL,V) f(T,DL,V) f(T,DL,V) f(T,DL)  £(T,DL,V) f(T,DL, V) (T, DL)

Root distribution gy, EXP LIN EXP EXP EXP EXP SIG LIN

over depth ©

Stresses involved f W W, N W, N W, N W, N W, N W, N, A W, N W, NI
Water dynamics & C C C R C C C C ck
Evapo-transpiration®  PM P PT PM PT Makk PM, TWj PPTorSW P
Soil CN-model CN CN,P(3) N,P(1) CN,P(6),B CN,P(4),B CN,P(6),B N,P(2) C,P(3);B

2 Leaf area development and light interception; Simple (=S) or Detailed (=D) approach.

b Light utilization or biomass growth: RUE = Simple (descriptive) Radiation use efficiency approach,
P-R = Gross photosynthesis—respiration (for more details, see e.g. (Wien et al. 2010))).

€ Y(x) yield formation depending on: HI = fixed harvest index, B = total (above-ground) biomass, Gn
= number of grains, Prt = partitioning during reproductive stages.

4 Crop phenology is a function (f) of: T = temperature, DL = photoperiod (day length), V = vernalisa-
tion; O = other water/nutrient stress effects considered.

¢ Root distribution over depth: linear (LIN), exponential (EXP), sigmoidal (SIG).

f Stresses involved: W = water stress, N = nitrogen stress, A = oxygen stress.

8 Water dynamics approach: C = capacity approach, R = Richards approach.

h Method to calculate evapo-transpiration: P = Penman; PM = Penman-Monteith, PT = Priestley—Taylor,
TW = Turc-Wendling, Makk = Makkink, HAR = Hargreaves, SW = Shuttleworth and Wallace (resistive
model).

Soil CN model, N = N model, P(x) = x number of organic matter pools, B = microbial biomass pool.

J Nitrogen-limited yields can be calculated for given soil Nitrogen supply and N fertilizer applied.

K Only two soil layers (top- and subsoil) are distinguished.

a yield formation model based on a fixed harvest index and total biomass, while some models
partition yield computation and harvest index computation. Crop phenology of aquacrop
is independent from photoperiod while most of these include this parameter in computa-
tion. Water balance in most of models is based on capillarity approach, one model include
richards equation, which is a computationally more expensive model. Evapotranspiration
model seems to be a specificity of each model, soil parameters can include pools of organic

mater, microbial biomass, while aquacrop mainly focus on run-off.
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Figure 1.13: Prediction variation of existing Models

Figure summarises the results of these different models, they generates a quite het-
erogeneous range of grain yield value. Most of the medians are significantly different of the
real median, showing the intrinsic variability of crop growth models even using .






CHAPTER 2

Objectives & Research Questions

The primary purpose of this master thesis is to determine whether combining multispectral
UAV and Sentinel 2 datasets may offer a more efficient way to analyze crops’ growth com-
pared to current satellite-based crop modeling approaches. The crop modeling environment
used in this study is Aquacrop Model. The crop characteristics inputs of the model are par-
tially derivated from satellite imagery, and a secondary objective is to determine if Aquacrop
is adapted to high-resolution drone datasets.

Comparing crop growth models raises methodological issues; agronomists usually model
crop growth modeling as a global process on the parcel. This study also aims to analyze
growth curves locally using map displays of crop growth models. These comparisons re-
quire implementing a processing chain to retrieve crop growth models” parameters and their
uncertainties.

The secondary objective of this work consists of studying the influence of spatial covariates

on the winter wheat growth process. These covariables are related to topography, ploughing,
and biochar patches located inside the parcel. The workflow followed is shown on Figure

27
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Figure 2.1: Workflow



CHAPTER

Material & Methods

3.1 Study area and climate

) [ Boundaries (] Early Ploughing [_] Late Ploughing

Figure 3.1: Map describing Study area
The experimental parcel is located in the Gembloux (province of Namur, Belgium), at

29
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the coordinates (50° 31" 14.5524” N, 4° 44’ 56.0004” E). This field surface is nearly13 ha and
biochar patches, caused by preindustrial charcoal kiln. The field is cultivated using conven-
tional practices and a crop rotation by alternating beet, chicory, and winter wheat. According
to (IRM2019)) Gembloux has a temperate oceanic climate, the annual average temperature in
Gembloux is estimated around 9,6 °C and annual precipation around 830 mm.Parcel shows a
convex profile with a maximum at its center, what is shown at Figure The soil type is a
Luvisol characterized by a silt loam texture. According to (Legrain et al.2011)), soil typology
summarised on Figure is relatively homogeneous, imperfectly drained loamy soil, while
some parts are moderately well drained in the northern and southern borders of the parcel.
Borders are used as manoeuvring and storing areas, as they are located at the bottom of the
slope, these soils are described as weakly gleyed.

%108

5.5982 |-

A

5.5981

5.598 | |

1185
5.5979

1184

5.5978 |
183

5.5977 |

Om 100m  200m 182

-

6.238 6.239 6.24 6.241 6.242 0
x10°

() (b)

Figure 3.2: Experimental Parcel - a) Topography of the field and b) Soil typology (Legrain
et al. 2011)

5.5976

Winter wheat was sowed the 6th of december 2018 and harvested the 18th of july 2019. In
2018, this field was first used to grow chicory and harvest took place at two different periods;
a heatwave and a drought simultaneously occurs during summer 2018 (Vanhamel 2018)). The
Western[[|part was harvested in late September 2018, while the eastern part (late ploughing)

!The western (resp. eastern) is know as early (resp. late) ploughing in other parts of this document. These
areas are also represented on Figure[3.1}
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was collected at the end of November 2018, just before sowing. Ploughing date may influ-
ence soil properties depending on seasonal precipitation; when rain is over-abundant and
depends on mechanical properties of soil, plow-pans occur, decreasing draining properties
of soil and reducing root development (Bodson et al. 2011)). Late sowing emergence tends
also to be longer because of emergence, decreasing survival rate of young plants.

3.2 Software environment

Most of the implementations of this work are done using Matlab. AquaCrop0S_v60a code,

available at https://www.aquacropos.com was modifie to perform fast yield simulations.
Additional toolbox used for this work are export_fig,gmregress,GrTheory,plot2svg, stud-evapotransy
subaxis and topotoolbox. Code are available at https://github.com/Ibataille/Ibataille.github.io.git

3.3 UAV and Sentinel2 Datasets

The experimental set-up used ot collect multispectral UAV datasets is described by (Hei-
darian Dehkordi et al. 2020). The multispectral images were collected using a MicaSense
RedEdge-M and downwelling light sensor, onboard a DJI Matrice 100 platform. The differ-
ent bands, their wavelength range, and the S2 equivalent bands are summarised in Table
3.2

(Heidarian Dehkordi et al. 2020). developed a postprocessing chain to construct a 3D
representation of crops with of 3.7cm for hyperspectral images. Sentinel2 Images were col-
lected on Copernicus, only dates providing a 5% or less cloud cover are selected. Figure
describes images availability during growing season.

By

S
11/04 21/04 13/05  02/06 27,06 05/07  17/07
17/02 25/02 27/02 19/03 22/03 29/03 23/05

01/04 18/04

Figure 3.3: Timeline - Datasets Availabilities

20/03  28/03 16/04 29/04 13/05 24/06



https://www.aquacropos.com
https://github.com/lbataille/lbataille.github.io.git
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Table 3.1: Matlab script and function

filename function
addNorth.m Add a north pin on maps
applyMontecarlo.m called by scriptMC to perform a Montecarlo Simula-

applyMontecarloClass.m

applyMonteCarloFull.m
calcHYPRES
calcloc
computeBBCHUPVT
convertData2Grid
convertReg2Grids
corr2neigh
day_length
generateBoxplotFC
generateDailyData
getS2Images
plotTimeline

showResultsF

tion

called by mcClass to perform Montecarlo Simulations
and aggregate data by ploughing date or membership
to biochar patches

perform a Montecarlo on each pixel
Pedotransfer functions

compute Indicators of convergence
Estimation of the phenology of crop
convert vector data to grid

convert table of coeff to maps
spatial correlation

compute day length

show errorbar diagram

transcript Weather dataset to a daily dataset
find Sentinel2 images close to a date
show phenological timeline

graphical features to build results of this master thesis

Table 3.2: UAV Spectral Bands and Sentinel2 Equivalent

Band Name Wavelenght Sentinel2 Equivalent

Red 668 + 5 B04
Green 560 + 10 B03
Blue 475 £+ 10 B02
NIR 840 + 20 B8/B8A
Red-Edge T1T£5 B05
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3.4 FCOVER Estimators

Sentinel2 Processing

Sentinel2 SEN2COR Sentinel2 I;eigﬁphng > ?g)gﬁ{sff& > FCOVER
TOA TOC MAPS

Figure 3.4: RGB components of Sentinel-2 Images and their corresponding FCOVER Maps

Sentinel2 images are processing on SNAP, a software edited by ESA dedicated to Satellite
Image Processing. Processing steps are summarised on Figure Raw Sentinel2 images
represent top of the atmosphere reflectances (TOA) which may differ from top of canopy
reflectance due to atmospheric conditions. A preprocessing toolbox based on SEN2COR ap-
ply atmospheric corrections to perform conversion. After a resampling procedure to get all
the reflectance at a 10m resolution, a biophysical toolbox based on machine-learning satellite
image retrieval method described in[I.4/converts TOC into FCOVER maps. Finally, sentinel2
Images are cropped to the study area using a R script. Example of these FCOVER maps are
shown at Figure

UAYV - Segmentation and FCOVER Inference

UAV images are processed using a uniform threshold established by (Heidarian Dehkordi
et al. 2020), segmentation process is described by (3.1)). R,G,B are the digitial number de-
scribing red, green and blue reflectances.

[(G—B)>a«aand [(G— R) > ] where a = § = 20 (3.1)

This segmentation allows to transcript multispectral reflectance images into masks. A
zoom on mask is shown on Figure FCOVER is computed by measuring the proportion
of Segmentation pixels inside a grid of given width and height. Two grid resolution are tested
a 10m grid which corresponds to Sentinel2 images pixels and a 2m square grid.
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2019-02-27 2019-04-01 2019-04-21 2019-06-02 2019-07-05

Figure 3.5: RGB components of Sentinel-2 Images and their corresponding FCOVER Maps
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20/03/19 28/03/19 16/04/19 29/04/19 13/05/19 24/06/19

ANANAN
\\\\

Figure 3.6: RGB, Masks and FCOVER (2m grid aggregation) at the parcle scale

13/05/19 24/06/19

20/03/19

Figure 3.7: Zoom a 10m x 10m square and segmented pixels corresponding to this area
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3.5 FCOVER Model - Regression Method

Aquacrop is based on a FCOVER model presented in section ?? by (1.26]) , (1.27)), (1.2§),

1.30)) and ((1.31)). This kind of model defined by a piecewise non-linear equation re-
quires to implement a regression, which is presented on Figure

FCOVER
rasters during
all the season

Data gathering
and
Zeropadding

FCOVER
Timeseries
sorted by

location

Climate
Dataset

| Phenological
Wheat Model

Yy !

Weights derived Initial FCOVER

from FCOVER — i
. < | P t
Spatial Variance WLS regression RZ;rgsee;{cztion

at each timestep

Final FCOVER Incertitude on
Parametric Parametric
Representation Representation

Error Envelope
on Curve Fitting

Figure 3.8: FCOVER Regression - Block-diagram representation
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Data Preprocessing & Zero Padding

Preprocessing steps are described on Figure Information of multiple rasters is gathered
in a table sorted by position and by date. Zero padding is applied to artificially impose a
zero value long time before emergence and long after senescence. A phenology model de-
scribed by Appendix[A.2]is used to make assumptions on emergence date. Total Senescence
is assumed after crop harvest.

Zero Padding (Virtual Dates Dates Zero Padding (Virtual Dates
 before Crop Emergence) o > Iafter Crop Senescence)
0]0|0|]eee®|[0]|O0]|O Fi; [Fi2[Fi3| @ @ @ [Fy |Fy,|Fy 0[0j]0|eee|0]|0]|O
0]0(0|eee@|[0]|O0|O Fy |F|Fys| @ © @ [Fy [Fo [Foy 0[0|]0|eee 0|00
0ofo[o|eee]O|O]O F31|Fx|Fs| @ @ @ [Fyn|Fsn|Fso 0[0[0|eee]O OO
oO[ojo|eee|O|O|O Fyy |Fy|Fy| @ © @ [Fy [Fy [Fy 0[0J0|eee]|O[O]|O
Position
e o 0 000 0 o o e 0 0 000 o o o e 0o 0o 0600 o o o
e o 0 000 o o o e e 0 000 o o o e o 0 000 ¢ o o
e o 0 000 o o o e o 0o 000 o o 0 e o 0o 000 o o o
oflolo]eee]OfO]O Fy|Fp|Fis| @ @ o [Fi|Fi |F 0[0J0]eee]O[O]|O
ojlojlo|eee|0]|0]O Fj|F,|Fs| @ @ @ [Fj[Fn[Fo ojlojo|eee|0]|O0]O
Y o[ofo|eeefof0]0]| [FulFul[Fs|e e e [FuFu[F] [0]0[0]eee[o]0]0
o [ofoJoJeeefoJofo] [o]osJos]eeefouloafrs] [00J0]eeefofo]0]
W [wfww] e e e [wlw.lw] [wiwi]w]e e e fwawi]wo] [wo[w.[w.] o & [w[w]w]
F;: FCOVER at positioni & timej ¢ ;: FCOVER w;: weight at timej  w, : weight of zero padded data
variance at time j w L w, = max w;
)i = 3 ;
J

Figure 3.9: FCOVER Regression - Block-diagram representation

FCOVER - Initial Estimation of Growth Curve Parameters

Initialisation is described on Figure First step consists in interpolation data and detect-
ing GDDcs, a linear regression is applied selecting datas around this value to determine
CGC. These values are used to compute CCy. Maximal value is initialized as the 95" per-
centile of FCOVER. GDDcg,,, is initialized as the moment at which curve decreases under
90% of estimated CC,.

FCOVER - WLS Method - Iterative Process

The computation of the growth curve parameters relies on a weighted least squares (WLS)
estimator. Uncertainties are considered using variance of complete parcel at each date, to
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Figure 3.10: Initialisation of FCOVER Model Parameters - a) Graphical representation of
methodology and b) Flow chart describing initialization of Growth Curve paremeters
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prevent the influence of outlier on regression.

NPoints FCOVERZ )
i = Tj (3.2)
= olnts
NPoints 2
2 (FCOVERU —,le)
2 — 3.3
7i ; NPoints —1 (3:3)
1
wj =5 and w; = max w; for all zero padded data (3.4)
J

11; describes the average of complete parcel at a date j and o7. FCOVER,; describes the Frac-
tional Vegetation cover at a point i at a date j. Zero padded data have a zero variance, they
are assign the weight w;,,,,, the highest weight of non-padded datas. Optimisation problem
is expressed by an objective function (3.5])) subjected to constraints (3.6]) ,(3.7), (3.8)), (3.9),
(B.10), (3.11)) and (3.12)). GDDc3, GDDc,,,,CCf,CC;,CGC*, CDC* are the initial estimation
of fitting parameters established at subsection

NDates
min | S w;(FCOVER,; — FCOVER(GDDc;, ¢ ))? (3.5)
¢ j=1

where ¢ = (GDDcg, GDDes,n, CCo, CC,, CGC, CDC)

GDDc¢y < 0.5GDDcs, (3.6)

GDDcy.,, > GDDc},,, and GDDc,,,, < 1.5GDDc%,, (3.7)

. CCy <0.25CC (3.8)
subject

to CC, <landCC, > CC} (3.9)

CGC > 0.25CGC* and CGC < 3CGC” (3.10)

CDC > 0.005 CGC* and CDC < 2CDC* (3.11)

GDDcy, GDDcgep,, CCy, CC,, CGC,CDC > 0 (3.12)

A Levenberg-Marquardt algorithm is used to solve this optimisation problem on Matlab.
Variation range of parameter is selected to prevent convergence towards a non-physiological
minimum, while keeping enough flexibility and avoiding convergence to a local minimum
related caused by a too restrictive constraint choice.

3.6 Yield - Aquacrop Simulations

AquacropOS is a Matlab version of Aquacrop, which is available at https://www.aquacropos.com.
Source codes modifications allows to efficiently incorporate FCOVER model parameters fit-
ted from time series. Winter Wheat growing characteristics unrelated to FCOVER arise from


https://www.aquacropos.com
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a KULeuven dataset, which was used to perform crop modelling under climate change (Vanuytrecht,
Raes, and Willems 2016)). Weather data were collected during the whole growing season,

they are summarised in Appendix and soil textural fractions allows to compute hy-
dropedological parameters, using a pedotransfer function. Pedotransfer model is HYPRES, a

model dedicated to European soils (Wosten et al.1999)), hydrological properties are assumed
uniform on the parcel. Weather datasets are converted to provide daily datasets, daily ref-

erence evapotranspiration ET is computed using Penman-Monteith Equation (Allen et al.

1998). G is neglected during the period.

_ 0.408A (R, — G) + 7%1@ (es — eq)
0 A+ 7 (1 + 0.34uy)

(3.13)

e ET, reference evapotranspiration [mmd '],

e R, netradiation at the crop surface [MJm2d™!],
e G soil heat flux density [MJm~2d!],

o T, temperature at 2 m height [°C],

e u, wind speed at 2 m height [ms™],

e ¢, saturation vapour pressure [kPa],

e ¢, actual vapour pressure [kPa],

e ¢, — ¢, saturation vapour pressure deficit [kPa],
e A slope vapour pressure curve [kPa°C™!],

e 7 psychrometric constant [kPa°C~'].
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3.7 Uncertainties evaluation

Uncertainties are estimated using a Montecarlo method, objective is to determine which parts
of the growing curves are the most subject to uncertainties. The variation range is fixed
thanks to the extremal values at teach date. A function applying Montecarlo to generate an
uncertainties map towards growing curve parameters. The number of repetitions used to
generate statistics on model predictions is fixed to 150.

3.8 Covariates

Different covariates have been studied during this work to determine their influence on
FCOVER. Most of them are topographic variables, derived from a DEM layer downloaded
from (NASA 2021)). Topography of the parcel is studied using a SRTM elevation map, al-
lowing to compute different topographical variables including slope, plane curvature, pro-
file curvature, tangential curvature, the deviation of the orientation of the slope towards the
North (SDevtN) and Total Wetness Index (T'WI). These values are computed using SAGAGIS
processing tools available on QGIS. Formulae (3.14)) and (3.15]) defines respectively TWIand
SDevtN.

A
TWI=1In - where S r is the slope given in radians (3.14)
tan Sp
SDevtN = min(Aspect, 360 — Aspect) (3.15)

All these covariates are shown on Figurdl.4]in Appendix Other covariates are gen-
erated by digitalizing ploughing areas (contours of the early and late ploughing are shown
on Figure and biochar patches digitalization is illustrated at Figure 3.11}

This vector shape is vectorized using raster resolution. A pixel is considered a member
of a biochar patch when its surface is located at 60 % inside the patch.
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Figure 3.11: Biochar patches digitalization



CHAPTER 4

Results & Discussion

4.1 FCOVER Estimation and Yields - Comparison of S2 and
UAV

FCOVER Models - Comparison of the results

As described in Table 1.6, the growth curves are related to six distinct parameters. Figure
describes models generated using different different FCOVER-time-series. Predictions
performed from only UAV tend to grow earlier, faster and to a higher maximal FCOVER than

sentinel?.
1 1
Data - S2 S2
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(a) (b)

Figure 4.1: Comparison of global data - Comparison between Sentinel 2 FCOVER Maps and
UAV raw data - a) Complete parcel and b) Uncertainties

43
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The senescence process is poorly described by UAV dataset; FCOVER decreasing is caused
by the assumption that the FCOVER value is zero after the harvest. Figure is generated
using a Montecarlo process, and the variation range is fixed by spatial variation of the par-
cel. Uncertainties look higher on the UAV dataset; indeed experimental dataset reaches a
maximal plate so fast that model encounters difficulties to describe decay growing phase
properly. The maximal uncertainties is noticed at the beginning of the decline phase, and it
corresponds to a period at which data points are scarcer in each category, while the ecosys-
tem changing rate is high. Data combination provides intermediate results, higher maximal
FCOVER than Sentinel2 but decease phase is better-described thanks to Sentinel2 dataset.

Ploughing-Early Ploughing-Late

S2
09 UAV
UAV + S2

s2
09 UAV
UAV +S2

0.8 08 [
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051 05
04r 04r
03[ 03[

021 02r

0.1 0.1

. . . . . L, . .
0
Jan 2019 Mar 2019 May 2019 Jul 2019 Jan 2019 Mar 2019 May 2019 Jul 2019

(a) (b)

Figure 4.2: Comparison of global data - Early Ploughing vs Late Poughing - Comparison be-
tween Sentinel 2 FCOVER Maps and UAV raw data - a) Complete parcel and b) Uncertainties

The equivalent Montecarlo Method is applied to compare biochar patches to the rest of the
parcel and detect potential differences between early plowed and late plowed areas during
the growing process. Biochar patches don’t show an apparent graphical difference with the
rest of the parcel, while slight differences are visible on Figure The late Ploughing curve
tends to start a bit later, and the growth rate is lower than early plowing where curve usually
reaches higher levels.

Models comparison - Maps

Comparison are performed if important differences are observed. Maps of CCy, CDC and
GDDy, are shown in Appendix. Figuredescribes the thermal time at which 90% of emer-
gence occurs; it confirms previously detected trends, FCOVER models generated from UAV
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suggest an earlier emergence than Sentinel2. Peaks are noticed on the UAV FCOVER map
around some of the south-facing parts of the field, suggesting that biochar darker soils ab-
sorb sun radiations more efficiently and allow an earlier vegetation development. Sentinel2
images suggest that later plowed half of the field develop a bit later.
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Figure 4.3: GDDc - Thermal time at 90% of emergence - 10 m - a) Sentinel2, b) UAV and c)
S2+UAV

CGC descibes the maximal growth rate of crops. As FCOVER curves generated from UAV
images are always higher than Sentinel2 models, this trends is confirmed by the ranges of
values observed on Figure ??. UAV map suggests that growth curve is a bit steeper on biochar
spots located in the the southern part of the parcel. All the scenarios noticed an area in the
northern part of the parcel where growing rate is lower. This trend is confirmed by Figure

B.6and 3.5
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Figure 4.4: CGC - 10 m - a) Sentinel2, b) UAV and c) S2+UAV
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Finally, another preponderant variable describing crop growth processes is the maximal
canopy cover. This variable is uniform in UAV images, while a big difference is noted between
early and late plowed parts of the field in the case of Sentinel2 Images.
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Figure 4.5: CC, - 10 m - a) Sentinel2, b) UAV and c) S2+UAV
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Yield generated by Aquacrop simulations can summarise crop growth models results.
Figure 4.6 describes spatial distribution of yield. Figure was computed by (Heidarian
Dehkordi et al. using a semi-empiric model based on sCCCI defined in Table This
reference map has no similarity with modeled yields. Comparing ranges tends to show that
Aquacrop strongly overestimates yield in the case of the UAV dataset. In contrast, Sentinel2
leads to an underestimation. Data combination provides an intermediate value closer to the

semi-empirical map.
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4.2 Model Comparison - Correlation plot

Previous figures showed comparisons to detect a potential spatial patter Figure[d.7describes
relations between the different models. Range of the parameters are similar, correlation be-
tween UAV and Sentinel2 estimations are weak and relative bias are non-negligible.
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Figure 4.7: Model comparison Sentinel2 vs UAV - GDDc;, CGC and CCx

The situation is quite similar for the yields, datasets are weakly correlated, UAV and Sen-
tinel2 estimations shows a strong difference around 4t/ha. UAV Yields are very high com-
pared to reference values shown on Figure (Palosuo et al. 2011} Vanuytrecht, Raes, and
Willems 2016)). These high value are the consequence of ohter crop characteristic data, which

are partially derivated from remote-sensing retrieval methods.
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4.3. Interpretation according to different covariates
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Figure 4.8: Yield Comparison

4.3 Interpretation according to different covariates

Categorial Variables - Kilns and Ploughing Influence

Amongst tested covariates, categorical covariables, describing the biochar patches influence
and the ploughing, tends to have a high on the crop growth process variables. COB describes
Centuries old biochar soil, while Ref describes soils of the parcel which isn’t part of a biochar
patche. Early and late describes the ploughing date. These variables are described on Figures
4.10|[4.1T]and [4.12] Stastistical tests are performed at two level; a first test is used to study

similarity betweens medians of different datasets on similar parts of the field while second
one compares medians of different field parts for the same dataset.
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Figure 4.9: CC, - 10 m - FCOVER maximal value - categorical covariate influences - a) Biochar

Patches and b) Ploughing

| 1
380 | ! 380 !
1 1
360 | : 360 :
ey 1 1
T'340 —
T340 | =340 |
Sanl ! g, !
> | -|— 5320 X -
T 1 [a)] T 1
O 300 f = . § 300 = X T
I 1 1 !
280 | J_ | 280 |
1 1
260 I 260 I
1 1
240 b2 B c 1 A B 240 B ¢ 1 A B
cOoB Ref Early Late

[C1S2-*-nCOB = 92; nRef = 172
UAV - *** - nCOB = 92; nRef = 172
[_JAl-**-nCOB = 92; nRef = 172

(a)

[_1s2-*=*.nEarly = 428; nLate = 448
UAV - *** _ nEarly = 428; nLate = 448
[ All-** - nEarly = 428; nLate = 448

(b)

Figure 4.10: GDDc, - 10 m - Thermal time required for emergence - categorical covariate
influences - a) Biochar Patches and b) Ploughing

Sentinel2 images detects less dissimilarity between COB and Ref than other methods,

test aren’t significatively different for CGC, yield and significant in the case of CC,. In the

other situations, datasets tends to vary extremely significantly on each each factor, trends

suggests that an earlier and faster growth and a higher yield are encountered in around

biochar patches and on the half ploughed in September.
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4.3. Interpretation according to different covariates

Figure 4.11: CGC-10m - Maximal Slope - categorical covariate influences - a) Biochar Patches
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Influence of the topography

Many covariates describing topography have been tested to study their influence on crop
growth parameters, but crop is indeed quite homogeneous in terms of topography, correla-
tion between topographical indicators and crop growth parameters is really weak. Correla-
tion plots are shown in Appendix SDevtN influence looks quite marginal on emergence
date compared to ploughing, while SDevtN tends to have a positive effect on CGC and yield.
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CHAPTER 5

Conclusion, Limitations
& Future Perspectives

This master thesis aimed to determine how suitable are UAV multispectral images to model
crop growth compared to sentinel2 images. Addressing this question required developing
tools to provide an exhaustive comparison of winter wheat growth models. The methodolog-
ical outcome of this work consists of a growing curve parameter providing fitting a spatial
description at a 10m resolution and using Aquacrop. In addition, a yield map is generated
at this resolution, while remote sensing methods usually characterize crop growth processes
at the scale of a complete parcel.

The results have shown that crop growth models exclusively based datasets on UAV are
significantly different from crop growth curves solely relying on Sentinel2. Growth models
estimated only from UAV methodology suggest an earlier, faster, and higher canopy expan-
sion than those based on Sentinel2 images. Data combination provides intermediate results.
Yield maps, which are correlated to the area under FCOVER growth curves, tend to confirm
this trend; yields provided using UAV datasets are higher than those generated by Sentinel2
datasets. Data combination provides an intermediates estimation closer to a map based on a
semiempirical model.

The spatial correlation between crop growth parameters estimated from the different maps
is very low. This trend is also noticeable when analyzing crop growth models’ relation with
continuous covariables. Standard deviation to the North tends to be the topographic param-
eter having the more decisive influence on the growth process; besides the low correlation
pattern, the southern slope tends to show earlier and steeper growth, while yields are also
higher. Categorial variables trends are more visible; earlier plowed half of the field offers
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higher growth rates and yields. Biochar area tends to start earlier, at a higher growth rate
and slightly higher yields. (Heidarian Dehkordi et al. 2020) already noticed an earlier devel-
opment while yields weren’t significantly different between biochar patches and reference
soil.

Future improvements could include building an alternative Aquacrop crop characteriza-
tion dataset by calibrating coefficients directly from UAV images. This kind of calibration
should be based on more complete experimental datasets to confront yield to ground truth
to compare. A multisensor analysis based on UAV and combine harvester would produce
accurate maps to submit yield characterization to a substantial robustness test (Stafford 2013;
Morari et al.2021)). Using a parallel phenotyping platform to build a map of the canopy struc-
ture would provide additional high-resolution FCOVER maps as ground truths for FCOVER
retrieval processes. Furthermore, alternative FCOVER computation, as described in (Sadeghi-
Tehran et al. 2017 L. Li et al. 2018)) based on the hypothesis of mixed pixel potentiality, could
be investigated. Uncertainties estimations of this study rely on the quantification of FCOVER
spatial heterogeneities; further researches could be led to describe experimental variability
in FCOVER retrieval processes.

The use of remote sensing and UAV imagery to study crop growth processes is still a young
research field, improvements in terms of UAV flight performances and image sensors There
isno doubt that the scientific community’s interest in these fields will continue to grow, given
the expected advances in terms of flight performance and multispectral sensors.
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Appendix

A.1 Yield approximation from

End
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A.2 Phenology Model - UPVT

SENSIPHOT = 0;
PHOBASE = 6; % Minimal day length to have a positive growth rate
PHOSAT = 20; % Maximal day length — no additonal effect for long
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A.2. Phenology Model - UPVT

RFPI = 1 — (1-SENSIPHOT) * (PHOSAT-TOD) / (PHOSAT-PHOBASE) ;
RFPI = max(min(1,RFPI),0);

% Vernalisation

TFROID = 6.5; % Vernalization temperature

AMPFROID = 10; % Amplitude of vernalization

JVC_MINI = 5; % Minimal amount of cold for

JVI = min(max((1 — ((TFROID-TCULT)/AMPFROID).”~2),0),1); % Daily con
JVI(1:iStart) = 0;

JVC_V = 50; % Cumuluated vernal

RFVI = min(max( (cumsum(JVI)—JVC_MINI)./((JVC_V-JVC_MINI)) ,0) ,1);

% Limitation in temperature

TDMIN = 0; % Base temperature

TDMAX = 28; % Maximal

TCXSTOP = 45;

UDEV ((TCULT >= TDMIN) & (TCULT <= TDMAX)) = TCULT((TCULT >= TDMIN) & (TCU

UDEV ((TCULT >= TDMAX) & (TCULT <= TCXSTOP)) = (TCXSTOP-TCULT((TCULT >= TI
UPVT = UDEV.x RFPI.* RFVI;



Appendix 58

A.3 HYPRES Model

Table A.1: Complete system of equations describing HYPRES pedotransfer function - o*, n*,
[* et K% are transformed paramters of Mualem-van Genuchten model , 05 saturation water
content; C : clay fraction (< 2um); S : silt fraction (2 pm et 50 yum) OM cartbon content; D
density (g/cm?); topsoil is one if horizon is topsoil and zero otherwise

o = —14.96 4+ 0.03135 - C 4-0.0351 - S +0.646 - OM +15.29 - D —0.192 - topsoil
—4.671 - D*—0.000781 - C* —0.00687 - OM?* 4-0.0449 - OM " 4-0.0663 - In S
+0.1482 - In OM — 0.04546 - DS —0.4852 - D - OM +0.00673 - topsoil - C
n* = —25.23 — 0.02195 - C 4+0.0074 - S —0.1940 - OM +45.5 - D —7.24 - D> +0.0003658 - C*
+0.002885 - OM? —12.81 - D' —0.1524 - S™' —0.01958 - OM ' —0.2876 - In S
—0.0709 - In OM — 44.6 - In D — 0.02264 - D C +0.0896 - D - OM +0.00718 - topsoil - C
I* = 0.0202 + 0.0006193 - C* —0.0011360 - M? — 0.2316 - In OM — 0.03544 - D - C
+0.00283 - DS 40.0488 - D - OM
K% = 7.755 4 0.0352 - S +0.93 - topsoil —0.967 - D* —0.000484 - C* —0.000322 - S*
+0.001-S71 —0.0748 - OM ™' —0.643 - InS — 0.01398 - DC —0.1673 - D- OM
+ 0.02986 - topsoil - C —0.03305 - topsoil - S
0 = 0.7919 + 0.001691 - C —0.29619 - D —0.00001491 - S* +0.0000821 - OM? +0.02427 - C!
+0.01113 - S™1 40.01472 - In S — 0.00000733 - OM - — 0.000619 - D C
—0.001183 - D - OM —0.0001664 - topsoil - S
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A.4 Climate Datasets
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A.6 Additional Results - CC0 & CDC
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Figure 1.2: CDC - Canopy decline coefficient - 10 m - a) Sentinel2, b) UAV and c) S24+UAV
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