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Strokes are the second leading cause of death worldwide, the second leading cause of
dementia and the leading cause of non-traumatic acquired motor disability in adults.
Therefore, a pressing need exists to improve the revalidation treatment after strokes. The
aim of the rehabilitation research is to discover and understand the relationship between
brain, behaviour, and recovery after a stroke in order to use brain reorganization follow-
ing a stroke to predict functional outcomes. This master thesis focuses on strokes induc-
ing lesions in the left hemisphere which are causing aphasia and specifically anomia. The
research investigates the brain plasticity and tissue microstructure properties changes in
these patients through transversal studies. MRI data were acquired for both patients
and controls using a specific "multi-parametric mapping" protocol, providing quantita-
tive maps of tissue MR properties.
The first transversal study compares the brains of stroke victims against control refer-
ence subjects, from a morphological and microstructural point of view. The aim of the
microstructural comparison is to find out whether lesions in the left hemisphere induce
changes in the right hemisphere, which appears normal on conventional MRI. The sec-
ond research compares the microstructures of patients’ brains in relation to their perfor-
mance. A third, more methodologically oriented research aims to determine the impor-
tance of the chosen data treatment pipeline by comparing the results obtained with two
different pipelines on the control subjects.
The study of brain microstructures is carried out via a voxel-based quantification (VBQ)
analysis. The data is first segmented and warped in the MNI standard space using the
"Unified Segmentation" (US) method for control subjects and its extension for lesioned
brains, the "Unified Segmentation with Lesion" (USwL) approach for patients. The data
is then smoothed using a tissue weighted smoothing approach, for GM and WM sepa-
rately.
Statistical tests showed GM atrophy for patients in some regions of the right hemisphere
(brain stem, right thalamus proper, right supplementary motor cortex and right lingual
gyrus). Futhermore, there is a significant decrease in MT values for patients versus con-
trols in a voxel located in the WM of the right hemisphere; this could reflect a variation
in the amount of myelin between patients and healthy subjects.
No voxel showed a difference within the patient group in terms of their performance.
Comparing the results of two different pipelines on the control data revealed a large
number of voxels with statistically significant differences. This highlights the impor-
tance of the data processing performed.

https://www.facsa.uliege.be/cms/c_3112656/fr/facsa
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Chapter 1

Introduction

The topic of this master’s thesis was defined in collaboration with the University College
London. In this work, quantitative images obtained via MRI in stroke patients are used
to characterize post-stroke brain tissues.

1.1 Motivation

Strokes are the second leading cause of death worldwide [2]. Furthermore, it is the sec-
ond leading cause of dementia and the leading cause of non-traumatic acquired motor
disability in adults. After a stroke, 60% of patients recover their independence and 40%
of patients retain significant after-effects [2]. These irreversible consequences of a stroke
can lead to depression [2, 17]. Furthermore, 20% of patients die within a year [2]. Stroke
is therefore a serious affliction that should not be ignored.

The aim of rehabilitation research is to discover and understand the parallel between
brain, behaviour, and recovery after a stroke in order to use brain changes following
a stroke to predict functional outcomes [36] and improve the revalidation treatment to
diminish the seriousness and the number of people suffering from disabilities. Given
the percentages of disabled and dependent people, a pressing need exists to improve the
rehabilitation after a stroke. A better understanding of our brain is crucial to achieve this
goal.

This work is based on data from patients who have suffered from stroke but more par-
ticularly patients with anomia after a stroke in the left hemisphere. The behaviour of
patients with aphasia 1, and specifically anomia 2, changes enormously over time. Such
a change in behaviour necessarily results from cerebral plasticity and / or a change in
the property of cerebral tissues. This prompts neurologists to collect data from these
patients in order to study and understand this behavioural change.

A study from Oxford University has already been conducted using fMRI data from eigh-
teen right-handed, native English speakers who suffer from aphasia as a result of a single
left-hemisphere stroke [6]. Two different experiments were realized. Each experiment
was performed at two different moments: before an anomia treatment program (T1) and
after 6-week of the anomia treatment (T2) [6].

In the first experiment, data was also acquired 3 months after treatment. The first ex-
periment consisted in asking the patient to name tasks represented on pictures without
any cues at three different times: before (T1), directly after (T2), and 3 months after (T3)

1Aphasia is a language disorder (speech, listening or reading disorder) that can occur as a result of a
stroke.

2Anomia is a part of aphasia that reflects the difficulty remembering the names of people and objects.
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anomia treatment. In the second experiment, subjects are helped with an auditory cue
to name the task in the scanner. This second experiment is performed twice, at T1 and
T2 [6]. Both experiments demonstrated the effect of a naming aid thanks to the blood
oxygen level-dependant (BOLD) signal. This signal that can be observed on fMRI shows
the activity in the brain. When there is a phonetic cue, the brain needed less activity to
perform the task. The results of the study showed that the treatment improved speech
production and that the performance following the treatment was still valid 3 months
after this latter was stopped. The study also evaluates the accuracy and reaction time
according to the phonemic cueing. As expected, accuracy was higher for word cues and
lower for no cues. Accuracy and reaction time improved over time and were further
improved in treated items than in untreated items. By observing the activity, this study
detected the parts of the brain involved in speech recovery i.e. neural mechanisms un-
derlying anomia treatment and following anomia treatment [6].

The results of this study are very interesting for developing new treatments and im-
proving speech production for these patients [6]. However, no treatment outcome was
correlated with variables such as age, time since stroke, duration of treatment or lesion
volume. Neglecting these aspects could distort the results. Furthermore, the data set
used did not allow this result to be quantified. Indeed, the study shows where changes in
the brain take place by observing its activity but does not quantify these changes. Quan-
titative images represent tissue by assigning a value to each voxel. This assigned value
reflects the physical properties of the voxel. This master thesis attempts to overcome the
limitations of conventional images by using qMR images to quantify macrostructural
and microstructural measure of GM and WM through an in vivo voxel-based quantita-
tive (VBQ) analysis. Multi-parameter mapping (MPM) is used here. It is a raw data
acquisition protocol, with which the qMRIs are constructed. The validation and the fea-
sibility of the MPM approach in chronic aphasia post-stroke populations were already
studied [15]. Indeed, London study results reveal GM and WM differences between pa-
tients with aphasia and control subjects through a MPM approach [15]. This study was
performed using SPM 12. This thesis continues this work. As the MPM approach is
valid and feasible on patients with aphasia following a stroke, it can be used to deter-
mine structural brain plasticity and the changes in tissue microstructure properties in
these patients.

In this master thesis, the idea is not to evaluate one type of treatment and observe the
consequences but rather to characterize the change in different brain tissues in aphasic
patients following a stroke compared to healthy people. Since this work would allow
us to observe the microstructural changes in the brain, the outcome will be connected to
behavioural changes. A better understanding of behavioural changes would allow the
development of better post-stroke treatments for aphasic patients.

1.1.1 Aim of the thesis

The goal of this master thesis is to investigate whether the qMRI data are sensitive to
structural brain plasticity and tissue microstructure properties changes. The study of
this brain plasticity and microstructure will help to improve validation treatment.

Concretely, this document attempts to answer the following two questions:

1. Are there any morphological or microstructural differences in the right hemisphere
between patients and controls?

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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2. Are there microstructural differences between patients according to their perfor-
mance?

The analysis of damaged data is difficult, which encourages universities to collaborate
(see 1.2). This master thesis aims to bring together the methods developed by two uni-
versities, the University College London and the University of Liege. These two uni-
versities share their segmentation method. The delineation of lesions is very important.
Lesion segmentation is the first step in the neuroimaging process to find links between
brain structure, function and behaviour after a stroke. This accurate segmentation of
post-stroke lesions is important to further characterize healthy looking tissue. It is a crit-
ical step in assessing the relationship between behavioural changes and microstructural
changes in brain tissue [12, 36]. A good segmentation method is therefore desirable.

1.2 Collaborating researchers

Data has been collected by the University College London and they was then provided
by Jenny Crinion, the Professor of Cognitive Neuroscience in University College Lon-
don.

Acquiring data for such a study takes a tremendous amount of time. It is therefore cru-
cial once the data has been collected to use the best possible method in order to obtain
an optimal result. Collaboration between researchers improves both efficiency and prof-
itability. When the communication channels are open, it is easier to find the desired
information or to find advice from other researchers in order to use the data collected
optimally to obtain the most accurate result possible. Basing new research on studies
previously carried out saves time and therefore increases the speed of medical progress.
University College London and University of Liège collaborate in order to share their
discoveries and thus help science to progress more quickly.

The manual detection of abnormal brain tissue by a trained professional is laborious,
time-consuming and depends on the person who segments the data [12]. It is therefore
necessary to use automated methods to detect brain damage. A combination of meth-
ods involving collaboration between different universities using different methods to
segment seems to be a good idea to find the optimal automatic segmentation.

Two different methods to delineate lesions will be merged in this study.

• The first one is the method developed by the Institute of Neurology in University
College London. It is an automated lesion identification (ALI) method based on
the detection of outlier voxels.

• The second one was developed by the Cyclotron Research Centre of the University
of Liège which is called Unified Segmentation with Lesion (USwL)

1.3 Outline of this thesis

Firstly, medical knowledge about stroke and the imaging means to detect it will be pre-
sented. Then, MRI analysis techniques will be discussed.

Similar work on other pathologies will be briefly introduced in order to show examples
of the results of the method used in this master thesis. These previous works show the
usefulness of the use of parametric maps to detect and quantify microstructural changes
in the brain.
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The next chapter will list the materials available to carry out this work i.e. all data used
as well as a description of the method used previously to obtain the a priori lesion masks,
which were available prior to the thesis.

The second half of the work will explain the method used on the data to achieve the
objective. The data pipeline, both on patients and controls data consists into 4 main
parts: segmentation, normalization, smoothing and mask creation.

• Segmentation: Estimation of the probability maps of each brain tissue

• Normalization: Warping all images in a common space

• Smoothing: Blurring of the data to reduce variability between images and noise

• Mask creation: Assignment of one tissue class per voxel

Different statistical tests are then performed and explained. These different tests attempt
to discover if there are any morphological or microstructural differences in the right
hemisphere between patients and controls and/or if there are microstructural differences
between patients according to their performance. Furthermore, two different pipelines
are used on control subjects and a F-test is realized to know if there are any differences
between the results of these two pipelines.

Finally, this master thesis shows the results obtained from these statistical tests before
ending with a short discussion and conclusion.
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Chapter 2

Background

This chapter covers the necessary background about the medical condition considered
here, MR imaging, and previous works.

2.1 Medical Background

The focus on this work is on stroke, and more specifically stroke induced aphasia with
anomia.

2.1.1 Stroke

From a medical point of view, neurologists already know what a stroke is and how it
happens. A stroke is the sudden death of brain cells caused by a heart or vascular prob-
lem [1]. There are two types of stroke [17, 35, 49, 52]:

• Ischaemic stroke: The blood is not delivered to its destination, the brain. Either
blood is blocked by a clot formed in an artery inside the brain (thrombotic stroke)
or blood is not delivered to the brain because of a blood clot in an artery outside the
brain (embolic stroke). This type of stroke represents about 80% to 90% of cases.

• Haemorrhagic stroke: Stroke is caused by a ruptured blood vessel causing blood
to escape into the brain.

Some factors can increase the risk of stroke. They are basically the same as those for
coronary heart disease and other vascular diseases [17]. There are lifestyle-related fac-
tors: current smoking, alimentation (fruits and vegetables), physical activity and alco-
hol intake. History of hypertension, diabetes, heart problems, psychosocial stress and
depression can also increase the risk of a cerebrovascular accident [13]. Despite these
known causes, in 30% of cases, no cause could be detected [5].

The impairment due to a stroke shows a wide diversity of symptoms [48]. Disability
varies according to the location of the damaged cells, the premorbid condition and the
neurological recovery of the patient [48]. Impairments after a stroke can be spatial ne-
glect, visual neglect, language problems, paralysis and/or sensory loss. Most people
are right-handed and thus have the language areas in the left hemisphere, while visual
and spatial perceptions are located in the right hemisphere. Sensory and motor areas are
found in both hemispheres. After a stroke affecting a motor or sensory area in the brain,
motor and/or sensory loss will be seen in the part of the body opposite the lesion. This
is due to the fact that the right (left) hemisphere controls initiating motor activity and
receives sensory information from the opposite site of the body, i.e. the left (right) side
[48].
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2.1.2 Aphasia

FIGURE 2.1: Brain lateral view [37].

Stroke can lead to aphasia. Apha-
sia is a language disorder rang-
ing from difficulty of finding
words to a complete loss of the
ability to express oneself [42].
Aphasia is usually caused by le-
sions in perisylvian regions in
the left hemisphere [15]. This re-
gion is located around the syl-
vian fissure, circled in red in FIG-
URE 2.1. Indeed, 97% of people
have language control primarily
in the left hemisphere [48]. How-
ever, studies show that the right
hemisphere is also involved in
language recovery [6, 15, 16]. For
instance, a patient touched by
aphasia caused by a left middle
cerebral artery ischaemic stroke developed a sudden worsening of speech production
following another stroke in the right hemisphere [16]. That leads to the following hy-
pothesis: there is the plasticity of the right hemisphere to improve the recovery of the
capacities following a stroke affecting the left hemisphere.

Anomia

Anomia is the most relevant symptom of aphasia [51]. Anomia is characterized by dif-
ficulty naming objects when speaking and writing. Nevertheless, the ability to speak is
not affected [42] and the understanding is intact [48].

2.2 Technical Background

This section contains all the techniques (machines, data acquisition, analysis methods,
conventions) that are necessary for the understanding of this work.

2.2.1 Stroke diagnosis

When a person is a suspected victim of a stroke, it should be taken care of as quickly as
possible. Indeed, early recognition is a key. Stroke is a medical emergency. Time is of the
essence. The brain is an energy-intensive organ. If its energy intakes are not sufficient, it
will suffer and lose a large number of its neurons very quickly. Treating a patient quickly
with the right treatment decreases the disabling consequences that the stroke can create
[30]. There are signs that alert. For example, a non-symmetrical smile, a weaker arm
less sensitive to pain than the other one, a loss of coordination, impaired speech, and
a visual change are not insignificant signs in the suspicion of a stroke. At the slightest
sign, people have to act quickly and reach for emergency care. Brain imaging should be
performed as soon as possible to confirm or not the suspicion of stroke.

There are two different imaging tests that allow to observe the inside of the head, in-
cluding soft tissue, bones, brain and blood vessels. These are CT scan and MRI. These
imaging techniques are used to diagnose stroke [49].
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CT scan

CT scan uses X-ray to take pictures through the brain. The patient is lying horizontally
on the table, which is moving very slowly in order to acquire images of small slice of
the brain and an X-ray machine rotates around his head. With the help of a computer,
it is possible to obtain the image of any slice of the brain [49]. CT scan is less expensive
and less noisy but MRI gives better images for small area in the brain [31] and so it is
generally used in confirming a stroke.

MRI

MRI uses the magnetic properties of the proton to provide images of the inside of the
body. MRI provides a more sensitive stroke diagnosis than CT [40]. MRI can detect small
brain abnormalities that do not appear on a CT scan image [49]. For its non-invasiveness
and its more detailed images, MRI is the recommended imaging technique for detecting
strokes when possible. Since MRI uses a very strong magnet, metal on or inside the pa-
tient may be dangerous. Therefore, it is forbidden to scan someone with metal parts that
are not compatible with MRI. For example, patient suspected of having a stroke with a
cardiac defibrillator will go in the CT scan and not in the MRI. MRI is a more complicated
examination with ferromagnetic contraindications and problems with claustrophobia. It
is because of these contraindications that CT scan is sometimes used to the detriment of
the accuracy of the examination.

In this work, images obtained by an MRI are analysed. It seems thus judicious to go
deeper into this technique. The following section gives more details on the acquisition
of images by MRI.

2.2.2 MRI physical principle

MRI is a non-invasive imaging technique that can look inside the brain [50]. The body
is made up largely of water molecules. MRI observes biological tissues inside the body
through the magnetic properties of one of their major constituents, the hydrogen nu-
cleus. The machine is constantly subjected to a powerful static magnetic field B0. Be-
cause the spin quantum number of an hydrogen nucleus is 1

2 , hydrogen nuclei have 2
possible states: up and down. The protons therefore align themselves parallel to this
B0 field in the two possible, up and down, orientations. There are more up spin with a
lower energy than down spin generating a net longitudinal magnetization aligned with
B0. Moreover, all the spins precess at the Larmor frequency w0, such that w0 = γB0
where γ is the gyromagnetic ratio of the nuclei. Precessing at the same frequency but
not the same phase, they are randomly oriented in any direction along the plane perpen-
dicular to B0. The resultant of all spins is therefore zero in the transverse plane, which
induces a zero transverse magnetization. At this moment, only longitudinal magnetiza-
tion is therefore present. Radio frequencies (RF) are then added to disturb the B0 field.
When wRF = w0, some up spins change their energy level to go to the next level and be-
come down, which decreases the intensity of the longitudinal magnetization. RF pulse
represents the oscillating magnetic field B1 and induces a transverse magnetization be-
cause with this RF disturbance, the spins keep on precessing but they are also rephased
together. When there is no more RF disturbance, transverse and longitudinal relaxations
take place. The transverse relaxation, corresponding to the dephasing of the spins, is
ten times faster than the longitudinal relaxation which corresponds to the energy jump
of the spins [24]. When B1 ceases, the protons return to their equilibrium state and the
time it takes to reach the initial configuration depends on what surrounds the protons
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[24, 29]. It is therefore possible to differentiate the different tissues constituting the brain
using an MRI thanks to the combination of high-powered magnets and RF pulses.

This change in magnetization when B1 ceases, corresponds to the relaxation phenomenon.
There are two variables that characterize this macroscopic effect: T1 and T2 [24, 29].

T1 relaxation time measures the time it takes for protons to return to their ground state
in the direction of B0. The Equation 2.1 represents this longitudinal relaxation. At a
time equal to T1, 63% of the initial longitudinal magnetization is recovered following the
application of RF pulse (see 2.2) [27]. In this work, the longitudinal relaxation rate R1
which is equal to 1

T1
will be used to characterize longitudinal relaxation.

Mz = M0(1− e
−t
T1 ) (2.1)

where,

• Mz is the longitudinal magnetization at time t

• M0 is the longitudinal magnetization at the equilibrium state

When t=T1, we have:
Mz = M0(1− e−1) = 0.63M0 (2.2)

T2 relaxation time measures the decrease of magnetization in the transverse plane (Mxy)
when RF excitation ceases. This decrease is the consequence of the progressive dephas-
ing of spinning dipoles [19]. The Equation 2.3 represents this T2 relaxation. At a time
equal to T2, 37% of the maximum transverse magnetization remains (see 2.4). In this
work, R∗2 will be used to characterize the transverse relaxation rate which is equal to 1

T∗2
.

The star means that the inhomogeneities in B0 within each voxel is taken into account
in addition to the spin-spin interaction characterized by T2 to prompt the progressive
dephasing of spins.

Mxy = M0e
−t
T2 (2.3)

where,

• Mxy is the transverse magnetization at time t

• M0 is the longitudinal magnetization at the equilibrium state

When t=T2, we have:
Mxy = M0e−1 = 0.37M0 (2.4)

Since T1 and T2 values are properties of tissue, we can detect different tissues by the con-
trasts that result from the image. A T1-weighted image will emphasize the contrast of
two tissues with different T1 values, whereas the contrast of a T2-weighted image will
represent the T2 variation between the tissues. There are also other contrast techniques
that can be used such as PD-weighted image which highlights the difference in proton
density between the tissues or even the MT-weighted image which refer to the interac-
tion between free proton in water and the protons bound at a macromolecule of tissue
[21]. Each tissue has its own macromolecular composition. Therefore, the degree of in-
teraction between molecules is tissue specific. This provides a contrast between tissues
[21]. The choice of weighted image acquisition will depend on what we want to see.
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2.2.3 Conventional MRI vs Quantitative MRI

Conventional MRI

Conventional images give qualitative representation of brain tissues with different con-
trasts. A conventional image of a damaged brain will give the delineation of the lesion
with very little supplementary data. Indeed, conventional MRI provides information
that can be seen directly through the naked eyes of a radiologist. It is therefore mainly
morphological information.

Quantitative MRI

Acquiring quantitative data requires more steps compared to conventional MRI [45]. De-
spite this longer acquisition time, there is a great interest in the field of neurosciences for
quantitative MRI because it provides additional information compared to conventional
images. Indeed, unlike conventional MR images, quantitative maps attributes a value on
each voxel which reflects the physical properties quantitatively and not only relatively as
in conventional MRI. It enables to study in vivo microscopic parameters in brain tissues
[10]. In quantitative images, one not only has a contrast as a result, one also has values
which are quantified in standardized units. Quantification allows a physical interpre-
tation and standardization increases the comparability across participants and scanners
[8, 14]. With quantitative images, one has information on the nature of the signal which
is linked to a biological change.

In addition to being sensitive, quantitative MRI is also specific to brain microstructures
(myelin, iron and water concentrations, etc.) [10]. Furthermore, quantitative images,
unlike conventional images, account for factors such as the sequence type and its pa-
rameters, the scanner used and so on. This facilitates comparison between images and
allows to process and compare more data together. The quantitative images allow the
control of all the uninteresting factors to make an estimate of the desired parameter.

Quantitative MRI has many advantages. However, some clinical research does not bene-
fit from it probably because of the lack of available protocol and processing software [10].
In addition, qMRI requires longer acquisition time and processing is more complicated.

2.2.4 VBM vs VBQ

Voxel-based morphometry (VBM) and voxel-based quantification (VBQ) are both im-
age analysis methods. Both are applicable in vivo to the whole brain based on medical
imaging. Their voxel-by-voxel statistical analysis makes it possible to directly identify
changes within the brain. Unlike VBM, VBQ can only be applied on quantitative images.

VBM is a neuroimaging method which determines changes in local concentrations inside
brain tissue through voxel-wise comparison of local tissue concentrations between two
or more groups of participants, or with respect to a regressor, for example age. The
VBM technique consists, first of all, in segmenting and normalizing the images in order
to ignore large-scale differences. Once normalization has been achieved, modulation
is performed to adjust the amount of material per voxel to maintain the total volume
of tissue. Indeed, modulation consists of scaling the amount of tissues in the voxels
to preserve the total volume of the different tissues. For example, the GM of a subject
with atrophied GM will be spread out in the normalized brain image. The modulation
will indicate that there is less than 100% of GM in the voxel in order to maintain the
total volume. Then, tissue segments as GM and WM segments are smoothed to have a
better overlap between images. Finally, a statistical analysis is performed on all voxels
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to detect significant differences. VBM thus compares the volume of tissue, for example
the volume of GM [3, 41].

VBQ goes further than VBM. Indeed, to carry out a VBQ analysis, it is necessary to have
a segmented image in order to know where the different classes of tissues are located.
In quantitative images, each tissue has a range of voxel values that represents it. In or-
der not to distort the values of the voxels by mixing the classes during the smoothing,
this must be done by tissue class (see 4.1.3). In the same idea of conservation of voxel
values, there is no modulation during a VBQ analysis and a mask creation for each tis-
sue class is performed after the smoothing so that a voxel belongs to only one class of
tissue. Since the values express a (semi-)quantitative physical property, VBQ provides
information about changes in tissue properties. In contrast to morphological analysis,
processing on quantitative images provides neuroimaging biomarkers for myelination
and iron content and therefore informs about the properties of the tissues. It is thus
possible to obtain information on the macrostructural and microstructural properties of
these tissues.

2.2.5 MPM protocol

MPM is a protocol which generates quantitative maps. This protocol has been validated
for use in multi-centre imaging studies. Indeed, MPM provides quantitative parameters
that are not site or time point dependent, which is an advantage. Furthermore, MPMs
have a high resolution and allow reliable observation of brain microstructures [14].

These maps generate neuroimaging biomarkers for myelination and iron content for ex-
ample and make it possible to carry out an in vivo study to analyse the macro- and micro-
structures of brain tissue [15].

Creation

Quantitative maps creation is shown in two different ways in FIGURE 2.2. The upper
part actually displays the data (left) and output (right), while the lower part shows the
underlying model.

MPM quantitative maps are created from three series of multi-echo spoiled gradient echo
images. The three series are defined by a different weighting: there are T1-, PD- and MT-
weighting. These scans are acquired with a relevant selection of the repetition time (TR),
the flip angle and the off-resonance MT pulse [10]. In order to minimize acquisition time,
TR is as small as possible but must be large enough to contain the excitation pulse and
sufficient echo. The resulting weighted images correspond to the extrapolation of the
signals to an echo time of 0 ms. This extrapolation increases the signal-to-noise ratio
(SNR). For R1, PD and MT, the echo time series is not even observed. Only the fit in
TE=0 is useful because it has a better SNR. The same flip angle for all echoes of the same
parameter is used, chosen to obtain appropriately contrasted images. The flip angle is
smaller for the PD echo series than for the T1 echo series and this is the case for this
study. Indeed, for this specific study, the MTw and PDw had a repetition time of 23.7
ms and flip angle of 6 degrees whereas these parameters for T1w were 18.7 ms and 20
degrees. MTw was achieved through the application of a Gaussian-shaped RF pulse 2
kHz off resonance with 4 ms duration and a nominal flip angle of 220 degrees.

R1 and PD can be found from only two acquisitions that have a different flip angle. To
estimate the rate of decay R∗2 , least square optimization combining PD, T1 and MT signals
was performed. ESTATICS is the acronym for "estimating the apparent transverse time
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from images with different contrasts". The combination of the 3 contrasts PD, MT and
R1 at different echo times allows to decrease the noise and to have a better robustness.
The result is an R∗2 map with high resolution and good contrast between the different
brain tissues [10, 18].

B1 corresponds to the magnetic component of the RF pulse i.e. the excitation pulse. There
are two kinds of B1 map. B1+ reflects the amount of RF which is transmitted to the sam-
ple to excite spin and create the signal whereas B1- reflects the signal that the coils receive
[29]. The RF pulse is not transmitted and detected homogeneously throughout the brain.
This transmission and this reception are done thanks to the coils around the head, which
have spatially varying sensitivity profiles. Sensitivity is higher near the coils. Therefore,
the SNR will be higher in the shallow parts of the brain. Correction of B1 field inhomo-
geneity is also included in the protocol for accurate estimation of qMRI parameters. In
FIGURE 2.2, correction B1+ corresponds to ft and correction B1- is represented by fr.

The output of the MPM protocol is the estimation of high-quality multi-parameter qMRI
maps (R1, R∗2 , PD, MT saturation).

For this master thesis, quantitative maps of 4 parameters are available. Each parameter
provides different physical information. This master thesis is not about the neurological
interpretation of the results, but it is useful to have an idea of what each parameter can
give as information. Each of the parameters R1, R2*, MT and PD provides additional
knowledge:

• The R1 signal depends on the proton density but also on the fat and lipid content.
It informs about the amount of myelin. Myelin is represented by a short T1 [28].

• R∗2 refers mainly to the amount of iron in the tissue. The age can be estimated using
this parameter. This is a study that had already been done with MPM protocol (see
2.3.1). With age, haemoglobin will build up in some areas of the brain. The more
haemoglobin there is, the more iron there is. The more iron there is , the faster the
phase shift and therefore the larger R∗2 .

• PD parameter detects water levels. The PD parameter can highlight certain lesions
such as those caused by oedema, for example.

• The MT signal highlights macromolecules. Therefore, myelin represents a large
portion of the MT signal.

Available data to create qMRI

All the images needed to create the quantitative maps have been previously acquired.
These data (called "raw data") are images not used in the processing of this work but
useful for constructing the quantitative maps on which this work is based. For each
subject, raw data consists into:

• 6 echo’s of MT-weighted data (magnitude and phase)

• 8 echo’s of PD-weighted data (magnitude and phase)

• 6 echo’s of T1-weighted data (magnitude and phase)

• B1 mapping

• B0 mapping

• 3 localizer slices
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These main images were acquired with a 1 mm isotropic resolution using a field of view
of 256 mm head-foot, 240 mm anterior-posterior and 176 mm right-left. Gradient echoes
were acquired with alternating readout gradient polarity at six equidistant echo times
(TE) ranging between 2.2 and 14.7 ms for T1w and MTw acquisitions and at eight TE
ranging between 2.2 and 19.7 ms for PDw.

2.2.6 MNI brain

MNI space is a common brain space defined by the Montreal Neurological Institute. This
standard space was built by using a large series of MRI scans on healthy brains [23]. The
aim of this standardization is to define a brain that is as representative as possible of
the population. The use of this template improves communication between researchers.
Indeed, if all researchers use the same brain template, the coordinates will be the same
and it will be easier to compare the results. The MNI template has been used in the work
with this objective in mind. The images used in this work have therefore all been warped
to be in standard MNI space.

2.3 Previous work

This section gives examples of studies that have already been carried out, using quantita-
tive MRIs built with MPM (which are created with the hMRI toolbox). These have taken
advantage of qMRI over conventional MRI to obtain results using statistical analysis.
Three studies are highlighted here:

• Age-related differences in brain microstructure [11]

• Multiparameter quantitative histological MRI values in high-grade gliomas to pre-
vent recurrence [8]

• Alterations in normal-appearing gray and white matter of patients with multiple
sclerosis [7]

2.3.1 Age-related differences in brain microstructure

Neurodegenerative diseases increase with age. However, what alters normal ageing
processes to cause neurodegeneration is still unclear [11].

The use of quantitative maps created with the MPM protocol has enabled age-dependent
differences in healthy brain microstructures to be highlighted in order to quantify the
normal changes in brain microstructures during aging.

A VBM analysis and a VBQ analysis were performed. Statistical analyses were then used
to highlight differences in the brain, taking into account age, gender, total intracranial
volume and scanner used [11].

This study led to several results. First, the VBM analysis showed the regions where GM
atrophy occurs. Reductions were primarily discovered in frontal regions. The paper also
reports normal changes with age in R1, R∗2 , PD, and MT signals depending on location
in the brain. The effective transverse relaxation rate increases in some areas of the brain
where the iron level increased ( basal ganglia, red nucleus, extensive cortical regions) and
decreases in others where the iron level is reduced (along the superior occipitofrontal
fascicle and optic radiation). The MT saturation decreases with demyelination and so
signal decrease is identified within WM. The longitudinal relaxation rate also decreases
with demyelination. The results were located along the optic radiation and in the genu

https://github.com/CyclotronResearchCentre/hMRI-toolbox
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of the corpus callosum with age. The effective proton density decreases in some areas
of the brain (putamen, pallidum, caudate nucleus, red nucleus) and increases in other
parts (optic radiation, superior regions of WM) [11]. FIGURE 2.3 reflects the whole brain
pattern of aging obtained with this study.

Furthermore, the F-test result shows a negligible dependence on the scanner used [11].

The results help to build a quantitative baseline. From this base, it is easier to differenti-
ate between healthy ageing and pathological neurodegeneration [11].

2.3.2 Multiparameter quantitative histological MRI values in high-grade gliomas
to prevent recurrence

Quantitative MRI has also been exploited to detect the risk of recurrence after surgery
for a brain cancer that is high-grade gliomas. It is very complicated to detect the dam-
aged part of the brain with conventional MRI because brain parenchyma microscopically
impaired by high-grade gliomas is difficult to identify with this technique [8]. The aim
of this neuro-oncology study is to find the relationship between microscopic parame-
ters in the area surrounding the surgical cavity and the existence of high-grade gliomas
recurrence [8].

This study shows that quantitative MR parameters differ within the initial perioperative
area between the region where high-grade gliomas will subsequently reappear and the
area where it will not [8]. In the region where it recurs, the MTsat and R1 have smaller
values. Furthermore, R∗2 is also lower in this region. Note that another paper [9] stud-
ied glioblastoma effects on quantitative MRI of contralateral normal-looking WM and
noticed that R∗2 was smaller in the peritumoral brain zone compared to the contralateral
hemisphere [9]. This suggests looking also at the values of the voxels that are located in
the healthy part of the brain.

To conclude, this study on high-grade gliomas shows that recurrence can be detected by
observing the voxel values before it is clinically and radiologically evident on conven-
tional MRI.

2.3.3 Alterations in normal-appearing gray and white matter of patients with
multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous sys-
tem. There are two main types of multiple sclerosis. The first is relapsing-remitting MS
characterized by the onset of disorders within a few days happening in isolated attacks
and which may or may not regress completely within a few weeks. The second is pro-
gressive MS which progresses steadily over time. Quantitative MRI and MPM protocol
were used to analyse the change in brain microstructure because conventional MRI does
not detect changes in normal appearing brain tissue [7].

This study involves two groups. The first involves 36 MS patients and the second 36
age-matched healthy controls. This study compares these two groups.

After data processing (segmentation, normalization, smoothing), a statistical analysis
on voxel values of quantitative parametric maps highlights that patients with multiple
sclerosis have a lower value in MT, R∗2 and R1 within normal-looking cortical GM and
normal-appearing WM. However, in normal appearing deeps GM, MT value is smaller
but R∗2 and R1 values do not significantly differ. Furthermore, cognitive score was related



Chapter 2. Background 14

to MT within lesions, which was not suspected at all beforehand. This study also showed
the link between atrophy and changes in quantitative parameters [7].

2.3.4 Conclusion

These previous studies highlight the interest of using qMRIs. The analysis of these quan-
titative maps allows the extraction of microstructural information, which is not possible
with conventional images.

In this work, the same idea as these previous studies has been considered. Quantitative
MRIs are used for the same reasons as in these studies. The aim is to extract more in-
formation that cannot be seen with the naked eye or by volume change. This additional
quantitative information could highlight brain plasticity and changes in the microstruc-
ture of brain tissue that could be located in the healthy-looking part of the brain. With
quantitative maps, the detection of abnormal variation in brain tissue could be faster and
thus give earlier warning of a disease that already exists or is about to appear. Quantita-
tive maps could therefore be useful to prevent a possible relapse of a cured patient, for
example.
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FIGURE 2.2: MPM creation [10].
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FIGURE 2.3: Whole brain pattern of aging. Demyelination is reflected by
a decrease in the MT and R1 signal. An increase in the R∗2 signal means an
increase in the iron level. This figure shows the results of a t-test with an

uncorrected p of 0.001. [11]
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Chapter 3

Materials

This chapter refers to the material resources used for this master thesis. First, it explains
the data used in this work. Secondly, it explains the method used previously by the
University College London to find an a priori mask of the damaged areas in the brain.

3.1 Data

The data used has been acquired at the National Hospital for Neurology and Neurosurgery-
University College London. Participants were scanned in a 3T whole body MR system
(Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany) using the standard 32
channel transmitter-receiver headcoil. The data used in this master thesis are listed in
this section. This thesis focuses on using the 4 parametric maps obtained via the MPM
approach and to analyse them.

3.1.1 Patients

Data has been collected from 29 patients. All patients are English native speakers who
had a left hemisphere stroke for at least 5 months before the scanning session. In addi-
tion, they present premorbid right handedness and have a normal or corrected to normal
vision and hearing.

In addition to raw data, there were, for each patient, 4 quantitative maps as well as the
lesion mask obtained with the ALI method.

• Quantitative maps: The quantitative maps A, MT, R1 and R∗2 were previously ac-
quired. Note that the quantitative map A is directly related to the proton density
but is different from the quantitative map PD. The FIGURE 3.1 shows the qMRIs of
Patient 35.

• Lesion masks: All images obtained by the ALI method (see 3.2) were provided.
Among these images, there are the tissue probability maps of GM, WM, lesions
and CSF, the deformation indices to go from subject space to MNI space and vice
versa and the lesion mask obtained.

All subject-specific information are listed in the TABLE A.2 in the Appendix. This infor-
mation, such as age, gender, time after stroke and scores obtained in the linguistic as-
sessment, is necessary for the statistical analysis. The different linguistic tests performed
in this study are detailed in section 5.1.

Two patients, P32 and P34, were removed from the study because the information on
these patients was not complete. Patient P14 was also removed from the study because
the mask obtained with the ALI method was completely wrong (outside the brain). Poor
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FIGURE 3.1: Quantitative maps of patient 35. From left to right and top to
bottom: A, MT, R1 and R∗2 maps.

normalization with the ALI method for this subject could explain this unlikely result.
Furthermore, the A map of patient 16 contains outliers for GM and WM and will there-
fore not be used in the statistical analyses.

3.1.2 Control subjects

Similar to the patient data, raw data and qMRI from 17 healthy individuals were avail-
able. An example of qMRIs is represented in FIGURE 3.2. This FIGURE shows the qMRIs
corresponding to control number 23. The selection of healthy subjects was based on the
age of the patients in order to feature age-matched controls.

It was relevant that the controls were of a similar age to that of the patients. Indeed,
there are changes in the brain with age such as: significant demyelination (principally in
the WM), GM volume reduction, decrease and increase in iron concentration in specific
regions [11]. If an elderly control is compared with a young patient, the microstructural
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FIGURE 3.2: Quantitative maps of healthy control subject 23. From left to
right and top to bottom: A, MT, R1 and R∗2 maps.

changes in the brain tissue may reflect this age difference and thus not only the differ-
ences due to stroke as desired [12].

3.2 Automatic Lesion Identification

As explained in Chapter 1, this work is a continuation of a study carried out within
University College London. Lesional masks have already been detected using the Au-
tomatic Lesion Identification (ALI) method. FIGURE 3.3 shows two examples of masks
obtained by ALI method, one for patient 3 and one for patient 35. This section explains
the different steps to obtain these masks.

The segmentation method implemented in SPM 12 is designed for non-injured brains.
Therefore, another method must be found when analysing a lesioned brain. The first
step in analysing such a brain is to detect where the lesion is located. A method based on



Chapter 3. Materials 20

FIGURE 3.3: ALI mask in green superimposed on warped MT qMRI. Left:
Patient 3; Right: Patient 35.

quantitative voxel values has been previously used to detect an a priori mask of lesions.
This method is "Automatic Lesion Identification" (ALI).

In this ALI method, lesion voxels are supposed to be those with particular GM or WM
values, which deviate from the usual tissue value found in controls. Therefore, this
method considers lesions as outliers in GM and WM tissues [12]. Due to financial and
time constraints in clinical studies using MRI, it is not uncommon for only one anatomi-
cal image to be acquired to perform these studies. Typically, it is the T1-weighted image
that is acquired. The advantage of the ALI method is that only one reference anatomical
image is required to use the method [12]. Furthermore, this method is valid for any brain
lesion, regardless of size and location [12].

The ALI method consists in 4 main steps [12]

1. Segmentation and normalization of the reference anatomical image.

2. Smoothing of normalized GM and WM segments.
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3. Outlier detection

4. Outlier voxels assignation to the lesion class

The FIGURE 3.4 schematizes and illustrates the different steps of ALI method.

3.2.1 Segmentation and normalization

First, the segmentation is performed on the reference anatomical image by using a modi-
fied segmentation procedure of the unified segmentation-normalization implemented in
SPM software in Matlab [12]. Indeed, using the unified segmentation-normalization, the
damaged voxels are misclassified, identified as healthy tissue even if their values differ.
A modified procedure is thus necessary. The solution is to add a class to the algorithm.
Thus, there would be a lesion class in addition to the GM, WM and CSF classes. A voxel
belongs to this lesion class if its value deviates from the values expected in the other
tissue classes. It turns out that lesions are more evident in WM than in GM. Therefore, it
was decided to ignore the GM when calculating the spatial prior of the lesion class. The
prior of this class is defined as [12]:

Pextra =
PWM + PCSF

2
, (3.1)

where PWM is the standard priors of WM and PCSF the one corresponding to the CSF.

Following this segmentation with the addition of the lesion class, some abnormal voxels
are still misclassified. To overcome this issue, the segmentation method can be applied
iteratively by considering the estimated extra class acting as prior to the next generation
in order to gradually decrease the number of misclassified voxels.

3.2.2 Smoothing

Smoothing reduces noise and variability between different segmented images, making
it easier to compare them. It should be noted that only lesions within GM or WM are
detected using the ALI method. Therefore, smoothing is performed only on GM and
WM. A Gaussian kernel of 8 mm FWHM is applied [12]. If the method is applied to
identify tiny lesions, it is better to use low smoothing.

3.2.3 Outliers detection

Each voxel belonging to a lesioned segment in the GM is compared to the corresponding
voxel in a healthy brain. When the voxel in the lesioned brain has a very low probability
of belonging to GM, it is part of the fuzzy set FGM. The same method is applied to the
WM to find the fuzzy set FWM [12].

3.2.4 Grouping GM and WM lesions

Once the two fuzzy clustering of outliers FGM and FWM are determined, they must be
combined to obtain the fuzzy set Fles. Indeed, FGM and FWM represent voxels that have a
very low probability of belonging to GM and WM respectively. There is therefore a high
probability that they are part of Fles. The fuzzy set of lesion class is determined by the
union of FGM and FWM :

FLES = FGM ∪ FWM = max(FGM, FWM) (3.2)
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FIGURE 3.4: Schematic view of the different steps and illustration, from
segmentation to grouping, of the automatic lesion identification method

[12].
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Chapter 4

Methods

This chapter describes the different processing steps carried out on patients and control
data in order to achieve the aim of the work. As a reminder, the idea is, using qMRIs, to
detect structural brain plasticity and tissue microstructure properties changes in aphasic
stroke patients with anomia diagnosis. All processing is done with SPM12 and some
home-made scripts.

The first part of this chapter describes the pipeline used to process both the patients and
control data. The processing on the control data was adjusted to be as close as possible
to the one applied to the patients in order to compare the quantitative values of the brain
tissues between the two groups.

The second part explains an alternative pipeline applied to the control subjects which
differs from the one used on patients. This section highlights the importance of using
the same pipelines on both groups of data that one wishes to compare in order to avoid
introducing bias in the results.

4.1 Similar pipeline for patients and control subjects

4.1.1 Spatial pre-processing

The patient data, in contrast to the data from healthy subjects, contains lesioned tissue.
Therefore, a modified version of the segmentation method used on healthy subjects must
be used to introduce the lesion class. The segmentation of lesioned brains requires an ad-
ditional step compared to healthy brains. Indeed, in order to perform the segmentation
on patients using the USwL method, it is necessary to have an idea of the location of the
lesion and therefore to have an a priori mask. Thereby, an a priori lesion mask must be
defined before starting the segmentation of the lesioned brain.

Masks cleaning

It is necessary to have approximate lesion masks to use the Unified Segmentation with
Lesion (USwL) approach. The ALI approach previously performed on the data provided
a lesion mask. A visual check of the masks given by the ALI method was performed.
After this visual inspection, the masks were cleaned. Some masks obtained with the ALI
method contained small portions in inappropriate places, where the brain appeared to
be healthy. For most patients, keeping the largest lesion found by ALI when the MT
image was the input image of ALI method seemed to be a good solution. Nevertheless,
for the others the processing to obtain some masks had to be adapted. TABLE 4.1 shows
all the masks that have undergone different pre-processing.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Subject Mask description Mask cleaning
01 The mask extends into the right

hemisphere covering the ventri-
cles.

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0.

11 The mask extends slightly into
the right hemisphere and three
small volumes are badly seg-
mented as lesion

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0 and only
the biggest volume is kept for
the lesion

14 Normalization with ALI seems
to have failed, the mask is out-
side the brain

This patient is not included in
this work.

18 The mask extends into the right
hemisphere covering the ventri-
cles.

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0 and only
the biggest volume is kept for
the lesion

21 The mask extends slightly into
the right hemisphere.

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0 and only
the biggest volume is kept for
the lesion.

24 The mask extends slightly into
the right hemisphere for no rea-
son.

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0.

25 The mask extends slightly into
the right hemisphere covering a
part of ventricule.

The lesioned part of the right
hemisphere was removed by
setting the voxels to 0 and only
the bigger volume is keeped for
the lesion.

34 The lesion mask contains 4 sepa-
rated parts. The two larger ones
are indeed lesions while the two
smaller ones are segmentation
errors and are not lesions

The two largest lesions are kept
with a threshold of 1200 mm3 on
the volume

TABLE 4.1: Tips for cleaning uncommon masks.

Masks in the subject space

The USwL approach needs a predefined lesion mask in the subject space. However, the
masks in the dataset received from London is normalized in MNI space. Therefore, the
cleaned masks must be uned to obtain masks in subject space. Knowing the deforma-
tions from MNI space to subject space (this information was included in the data), the
inverse normalization was easily done using NORMALIZE WRITE module in the SPM
Batch. Since this is a deformation of a binary image because it is a mask, a nearest-
neighbours interpolation has been performed.
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Co-register

In order to run the USwL method with images of the same size that have identical coor-
dinates, the mask images were aligned with the qMRI images. This correction has been
achieved using COREGISTER-RESLICE module in the SPM Batch.

4.1.2 VBM

The VBM analysis provides information on the volumes of each tissue by observing
the concentrations of voxels in the standard MNI space. There is a density modulation
by the volume change induced by the elastic ing of the image. If the tissue had to be
stretched during the fitting to be in the MNI space, its proportion in the corresponding
voxel will have decreased in order to preserve the total volume of the tissue. Conversely,
a compressed tissue will have a higher concentration. [3, 41] VBM is a data processing
and statistical analysis approach which uses template priors and a segmentation method
to extract some information in the image [12] and specifically the morphological changes
[39], relying on estimated maps of local tissue volume/density. In this work, the VBM
analysis for the stroke patient data is performed using USwLesion toolbox and the data
from the control subjects is performed using the segmentation process implemented in
hMRI toolbox.

Segmentation and normalization on patient data

Once the lesion masks were cleaned, in the subject space and aligned with the qMRI im-
ages, the USwL approach could be performed. The toolbox USwL has been developed
by the University of Liege and is compatible with SPM12 on Matlab. The method used is
the same as in the usual US approach available in SPM12 which normalizes brain images
into a standard reference space and gives posterior probability maps of the brain tissue
for healthy tissue [20]. In USwL, the algorithm is adapted to handle brain lesions. In
this case, compared to US approach, a tissue class, the lesion class, is added. Indeed,
in USwL approach, the standard tissue probability map (TPM) used for healthy brain is
extended by adding a subject-specific lesion probability map. This extension is derived
by estimating a preliminary spatial deformation from subject to the MNI space and care-
fully updating the TPM with a new tissue class, the lesion class, showing which healthy
tissue class can be affected by the lesion [22].

The FIGURE 4.1 shows the USwL method. First, this method takes as input the standard
healthy TPM. The TABLE 4.2 indicates which class correspond at which tissue.

Class numbers 1 2 3 4 5 6
Tissues GM WM CSF skull soft tissues air

TABLE 4.2: Different classes considered in the TPM of the healthy brain.

In addition of standard healthy TPM, there are the patient’s anatomical reference MRI
(in our case, the T1-weighted image), the patient’s approximate lesion mask (in our case,
the mask obtained with ALI method) and the patient’s multiple anatomical MRIs (in our
case, the A, R1 and MT qMRIs).

First step: The first step of USwL consists in masking out the patient’s anatomical refer-
ence image with the approximate mask and segmenting the masked out resulting image,
which only shows healthy tissues.

https://github.com/CyclotronResearchCentre/USwLesion
https://github.com/CyclotronResearchCentre/hMRI-toolbox
https://github.com/CyclotronResearchCentre/USwLesion
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Second step: The estimated deformation is then applied to the approximate mask to
bring this one into the same space as the TPMs.

Third step: “TPM updating” is performed, adding a seventh class, the lesion class, to
take lesions into account along with affected healthy tissue [22], e.g. GM and WM for
an anomia stroke patient. The lesion class is inserted in third position between WM
and CSF. This first segmentation, which adds the class of lesions, is based only on the
anatomical reference image, the T1-weighted image.

Fourth step: A second segmentation based on the new subject-specific TPM is per-
formed. This second segmentation takes into account additional information from the
quantitative images A, R1 and MT. Therefore, since the segmentation is based on more
than one image, this second segmentation is a multichannel segmentation.

Fifth step: All the patient’s images and posterior probability tissue maps (for GM, WM
and CSF) are warped into the MNI common space. After the normalization, a modula-
tion (i.e. scaling the warped images by the Jacobian determinants [46]) is applied to the
warped probability maps in order to preserve the quantity representing the total volume
of each tissue.

FIGURE 4.1: Unified segmentation with lesions [22].

The use of multiple patient’s anatomical MRIs has already been successful in a previ-
ous study on multiple sclerosis [7] and the use of the multi-channel approach with dif-
ferent qMRIs was also successful in that study. The multi-variate approach with well-
contrasted patient’s anatomical MRIs can be useful. Indeed, lesion voxel values may be
similar in one tissue class for one qMRI but quite different in another. In our case, since
we are using A, MT and R1 qMRIs as anatomical MRIs, there are 3 values that are differ-
ent in nature per voxel. The more anatomical MRIs there are at the input and therefore
the more variables there are in the multi-variate model, the more hope there is that the
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lesion has a different value on at least one of the dimensions. It is for this reason that the
multi-variate approach has been used here. This allowed to use the advantage of having
several anatomical images at our disposal but note that R∗2 map is not used to perform
USwL. The R∗2 map was not included to add a variable in the USwL multi-variate ap-
proach because the image is noisy and not well contrasted.

Knowing that WM and GM can be directly affected by this type of lesion [15], the USwL
implementation is launched with the constraint that the WM and GM are potentially
affected by the lesion and therefore may need to be updated. Furthermore, a bias cor-
rection is applied with a light regularization (0.001) and a 60 mm cutoff. MRI images are
usually biased by a smooth artefact that modulates the intensity of the image, which can
hamper automated image processing. In addition, an intra-cranial volume (ICV) mask is
applied on the images. The qMR image showing high intensity noise outside the brain,
it is relevant to suppress everything outside the brain because only the tissue inside the
brain is of interest for this work.

In summary, after the application of USwL method, images are segmented (i.e. prob-
ability maps of each brain tissue are estimated) and normalized (i.e. registered into a
common space). FIGURE 4.2 shows the results of segmentation and normalization on
two patients. By observing the segmented images, it can be concluded that the USwL
processing has worked correctly.

Segmentation and normalization on control subjects

For the 17 control subjects, the same process as applied to the patients is used. How-
ever, here there is obviously no lesion class and since the tissue distribution in a healthy
subject is already more or less known, the segmentation process in controls is much eas-
ier compared to patients. The US method, implemented in hMRI toolbox, which does
not include the lesion class can be used. The segmentation and normalization process
is therefore simplified, with one less class for the controls. In fact, the segmentation
and normalization process for the control subjects is equivalent to the second part of the
USwL process. FIGURE 4.3 illustrates the segmentation and normalization process of the
control subjects. It is important to carry out similar processing on patients and healthy
subjects in order to be able to compare the results obtained in the two groups.

One of the spatial processing modules of the hMRI toolbox is called SEGMENTATION and
takes care of both segmentation and normalization of the data. In order to ensure that
the segmentation parameters are equivalent in patients and controls, a multi-channel
segmentation is performed with the 3 parametric maps A, MT, R1. In addition, as in the
patient processing, an intensity bias correction is applied to multiple anatomical MRIs,
i.e. on A, MT and R1 qMRIs. This bias correction has a light regularization (0.001) and
60 mm cutoff for the bias FWHM in order to apply exactly the same correction as on the
patient data. Then the normalization is performed with a nonlinear spatial registration
by warping the images to align them in the MNI space.

FIGURE 4.4 shows the results obtained on subject control 01 and control 23 after seg-
mentation and normalization. The segmentation of the 3 tissue classes looks all fine.
These images show that the images in the subject space have been warped in a common
standard space and that the normalization has been carried out without incident.
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4.1.3 VBQ

Warped qMRIs

The VBQ analysis is applied to the warped qMRIs. However, at this stage, these maps
are not yet created for patient data. To compensate for this, a normalization of the qMRIs
is carried out on patient qMRI. The USwL method outputs the deformation from subject
space to MNI space. This deformation is then applied to the patients’ qMRIs to obtain
the warped qMRIs in the MNI space. For the control subjects, the warped qMRI were
already created at this step because they are created directly with the SEGMENTATION

module of the hMRI toolbox.

One way of finding out whether the normalization went well is to create the 4 average
maps of the 4 warped qMRI types (A, MT, R1 and R∗2). FIGURE 4.5 shows the different
averages of the patients warped qMRIs whereas FIGURE 4.6 is the one related to the
control subjects. By observing the different contrasts between the tissues in each image,
it can be concluded that the normalization went smoothly. Mean qMRI images of both
patients and controls maps have also been created. These mean images of all subjects can
be used as representative anatomical maps of the data being processed. A visual way to
observe the results is to superimpose the significant voxels, found during the statistical
analysis, on these anatomical maps when the two groups are compared.

Tissue specific smoothing

Although the images have been warped to be in the common MNI space, there are resid-
ual misalignments between the subjects as well as some potential noise in the images.
Smoothing allows to reduce noise and the remaining inter-subject anatomical variability
[10, 12]. Smoothing must be used carefully with an adequate method to preserve the
quantitative character of the qMRIs. Indeed, the problem with quantitative maps is that
a certain value is attributed to GM and another to WM. If one blurs the image, one mixes
the signal from different tissues, WM with GM for example. This would introduce a
partial volume effect. The solution to overcome this problem is to perform a tissue class
specific smoothing, taking into account the amount of tissues in each voxel when not
mixed, thus the quantitative values can still be interpreted. In tissue specific smooth-
ing, the signal is not modulated. Here, the aim is to preserve the concentration and not
the volume. Therefore, in tissue specific smoothing, unlike in VBM analysis, there is no
modulation so that the different tissue classes are not mixed [10, 43]. This approach to
smooth within a specific tissue when a VBQ analysis is performed was introduced in a
previous study to detect changes in normal ageing [4].

For both patients and control subjects, this tissue specific smoothing has been realized
thanks to the hMRI toolbox. The paper [10] describes this tool which allows to create
MPM maps. There is in this toolbox a process hMRI maps module of which one of the
spatial processing operations is tissue-weighted smoothing. Using this part of the hMRI
toolbox, tissue specific smoothing for GM and WM, was applied to the warped qMRIs. A
Gaussian smoothing of 6 mm seems to be a good compromise to minimize the variations
between subjects while keeping sufficient spatial resolution.

This combination of weighted and smoothing is carried out in the following way [4, 10,
43]:

signalTWS =
g ∗ wjs(φj)

g ∗ wj
mTPMmj (4.1)

https://github.com/CyclotronResearchCentre/hMRI-toolbox
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where,

• signalTWS is the signal in the resulting tissue-weighted smoothed image

• g* indicates the convolution with a Gaussian smoothing kernel

• wj is the tissue weights for the participant j in the MNI space

• s(φj) represents participant-specific quantitative map warped to group space by
deformation φj

• mTPM is the TPM-specific mask identifying voxels with probability > 5%. Only
voxels with a minimum amount of available tissue are considered.

• mj is the participant-specific mask defined as g ∗ wj > 5%. Voxel with a value
smaller than 5% are set to zero.

The smoothed tissue class of the participant j is thus represented by g ∗ wj which is in
the denominator in Equation 4.1. Thus the resulting signal takes into account the entire
class of tissue.

Mask creation

This smoothing allows to facilitate comparison between individuals. Indeed, spatial
smoothing minimizes inter-subject anatomical variability during the creation of the GM
mask and the WM mask.

Note that after smoothing, a voxel can belong to several tissue classes. Therefore, creat-
ing a tissue specific binary mask is useful to ensure that a given voxel belongs to only one
class. The mask creation is the next step after the smoothing. To create masks, the MASK

CREATION module of hMRI toolbox is used. This step, which follows smoothing, makes
it possible to associate each voxel with a single class of interest, GM and WM, or none.
The idea is to look at the whole population. At this stage, for each patient we have the
smoothing of modulated warped tissue segments for the GM tissue and the WM tissue.
However, one considers that the patient brain is composed of GM, WM but also CSF and
lesions. Therefore, the data corresponding to the CSF and lesions must also be entered as
input. Since the algorithm for creating the masks only takes smoothed images as input,
the images representing the CSF and lesion probability maps in MNI space were sim-
ply smoothed with the SMOOTHING module implemented in SPM. For these two classes
of tissues, tissue specific smoothing was not used as the smoothed parametric maps of
these tissues are not required to perform the voxel-wise mapping analysis.

The algorithm creating the masks takes all these smoothed tissue maps and gives a per-
centage of belonging to each tissue class for each voxel. Then the tissue with the highest
average probability map for a certain voxel is assigned to that voxel. However, in addi-
tion to having the highest probability to belong to a tissue, the average probability of the
voxel must exceed 20% for the voxel to be included in the mask. This makes it possible to
have a delimitation, that the GM does not extend outside the brain, for example. These
two conditions to belong to the mask ensure that only one class is associated at a specific
voxel and that non-brain tissues are excluded.

The creation of the tissue masks is carried out in the same way in the control subjects,
except that there is no lesion class.

https://github.com/CyclotronResearchCentre/hMRI-toolbox
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4.2 Alternative pipeline for control data

The hMRI toolbox contains a pre-defined spatial processing pipeline wrapping up all
the steps to perform the spatial processing. Once started, this processing performs seg-
mentation, normalization, tissue-weighted smoothing and mask creation in one go with
the process and the parameters previously encoded.

In order to get a first idea and to use a previously implemented tool, one started to play
with the control data by applying this pipeline. However, this latter is a bit different
from the one used on the patient data. Indeed, it performs the segmentation based on a
single anatomical image (uni-channel US). The MT map was used as anatomical image.
Furthermore, no bias correction is applied on the anatomical image given as input to the
program. Nevertheless, as can be seen in FIGURE 4.7, it seems to segment the different
tissues and warp into MNI space just as well.

The processing of the controlled data using this pipeline has allowed to get a taste of the
results we could obtain. By using two different pipelines, one can observe whether the
processing on the data has an influence on the voxel values and thus whether the result
is influenced by the processing (see section 6.3).

https://github.com/CyclotronResearchCentre/hMRI-toolbox
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FIGURE 4.2: Superposition of the 4 main classes of tissues: GM (red), WM
(light blue), CSF (purple) and lesion (green). Left: Patient 3; Right: Patient

35; Top: subject space; Bottom: MNI space.



Chapter 4. Methods 32

FIGURE 4.3: Unified segmentation (adapted from [22]).
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FIGURE 4.4: Superposition of the 3 main classes of tissues: GM (red), WM
(light blue) and CSF (purple). Left: Control subject 001; Right: Control

subject 23; Top: subject space; Bottom: MNI space.
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FIGURE 4.5: Mean of warped qMRI in the patients. From left to right and
top to bottom: warped A qMRI, warped MT qMRI, warped R1 qMRI and

warped R2s qMRI.
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FIGURE 4.6: Mean of warped qMRI in the control subjects. From left to
right and top to bottom: warped A qMRI, warped MT qMRI, warped R1

qMRI and warped R2s qMRI.
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FIGURE 4.7: Superposition on control subjects using alternative pipeline
of the 3 main classes of tissues: GM (red), WM (light blue) and CSF (pur-
ple). Left: Control subject 001; Right: Control subject 23; Top: subject

space; Bottom: MNI space.
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Chapter 5

Statistical Analysis

This chapter begins by explaining the set of parameters used for the statistical analyses.
It then details the statistical analyses performed during this study and how they were
carried out. These statistical analyses attempt to answer the two main questions of this
study:

1. Are there any morphological or microstructural differences in the right hemisphere
between patients and controls?

2. Are there microstructural differences between patients according to their perfor-
mance?

A third, more methodologically oriented question was also addressed: Are there any dif-
ferences between the results obtained on the control subjects with two different pipelines?

5.1 Parameters

Prof. J. Crinion provided a list of parameters for each subject that are likely to explain
the results obtained by observing brain tissue. For the controls, the age and the gender
are known (see A.1 to have information of these parameters for each control subject). For
the patients, in addition to age, gender and post-stroke time, other information was pro-
vided (see A.2 for the values). This additional information is detailed in the subsections
below.

5.1.1 Total lesional volume

Clinicians at the University College London had already computed the total volume of
the lesions. The idea here is to calculate the lesion volume obtained after USwL process-
ing in order to observe the difference between the volumes obtained using USwL and
those obtained with the ALI method.

The USwL does not provide a binary lesion mask but a probability map representing the
probability for each voxel to belong to the lesion class. In order to obtain a lesion mask
and to be able to calculate its volume, the lesion probability maps were binarised.

This binarisation was carried out using the function crc_binarise_segm available in the
USwL toolbox. This function takes as input the probability maps of GM, WM, CSF and
lesion class in MNI space. It also needs a parameter imposing that the probability of the
chosen class for the voxel must be greater than 0.2 and that the chosen class must be the
most likely class. The function outputs the binary mask of each tissue for each subject.
Therefore, the mask of the lesions in a specific patient is part of the output of the function
crc_binarise_segm.

https://github.com/CyclotronResearchCentre/USwLesion
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By running the function crc_lesion_volumes (also available in USwL toolbox) in with
the lesion mask, the lesion volume is obtained. This function is called with the lesion
mask of each patient to calculate the lesion volume for each patient. The lesion volumes
obtained are shown for each patient in cm3 in the TABLE A.2.

5.1.2 Boston naming test

As discussed in section 2.1.2, anomia is characterized by impairment of the ability to
name objects. The Boston Naming Test (BNT) is performed on patients with anomia.
This test measures the ability to name objects. It consists into showing to the subject
images of objects (usually 60), with black and white lines, one after the other. For each
image, the subject is given a 20 second interval to name it. In general, patients with
anomia have greater difficulty in naming low frequency objects. [44]

For each image correctly named by the patient, 1 point is awarded. For each error, two
types of cues can be given to the patient: a stimulus cue or a phonemic cue in order
to facilitate the task. When the correct answer comes after a phonemic cue, it is not
considered. Therefore, the total score reflects the number of correct responses obtained
spontaneously or with the help of a stimulus cue. [44]

5.1.3 Comprehensive aphasia test

The comprehensive aphasia test (CAT) is relatively new, being published in 2005 [26].
This test gives a maximum of information on the language skills of the subjects in a
reasonable time (90-120 min) [34].

In CAT, there are six specific points which are listed below:

• Naming objects (Nam-O)

• Naming actions (Nam-A)

• Comprehension of spoken words (Co-SW)

• Comprehension of written words (Co-WW)

• Comprehension of spoken sentences (Co-SS)

• Comprehension of written sentences (Co-WS)

The TABLE 5.1 provides information on the evaluation score. The cut-off is the threshold
for being diagnosed as aphasic.

Nam-O Nam-A Co-SW Co-WW Co-SS Co-WS
Number items 24 5 15 15 16 16
Maximum score 48 10 30 30 32 32
Scoring with correct
answer

2 2 2 2 2 2

Scoring with de-
layed response or
self-correction

1 1 1 1 1 1

Scoring with incorrect
answer

0 0 0 0 0 0

cut-off 43 8 25 27 27 23

TABLE 5.1: Parameters of comprehensive aphasia test.

https://github.com/CyclotronResearchCentre/USwLesion
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5.1.4 Psycholinguistic assessment of language processing in aphasia

Psycholinguistic assessment of language processing in aphasia (PALPA) is a process for
assessing patients undergoing treatment for aphasia. It was introduced in the 1980s. It
is based on the assumption that the language system is composed of separate modules
in the brain and that these can be impaired selectively by brain damage [33].

In the case of this study, three tasks were assessed. One task consisted of reciting mono-
syllabic words aloud (Mo-w). Another task consisted of repeating invented words,
which do not exist (NW). The last one, named "word minimal pairs" (Min-P) is a subtest
of the PALPA language battery - auditory discrimination of real word minimal words.
For example, are the words man and van the same or are they different?

5.2 Controls vs Patients in right hemisphere

The aim of this study is to determine whether there is a change in the microstructures of
the tissues in the hemisphere opposite to the injured one, i.e. in the healthy hemisphere.
Is there plasticity in the right hemisphere to compensate for the lesions encountered in
the left hemisphere? In order to answer this question, all the statistical analyses are car-
ried out only in the part of the brain of interest to the study, i.e. in the right hemisphere.

5.2.1 Global statistical analysis

The global statistical analysis compares, patients against controls, for each tissue of in-
terest the overall average of values over all the voxels belonging to the tissue in the right
hemisphere.

The first step in extracting the voxel value of the tissues in the right hemisphere is to
create a right hemisphere mask and a mask of each tissue which will be applied to each
MPM map individually.

The mask of the right hemisphere is created from the ICV mask obtained by applying
the USwL algorithm. This ICV mask corresponds to the inside of the skull (summation
of GM, WM and CSF with the addition of smoothing). By taking this ICV mask in a
normalized space and setting all the voxels of the left hemisphere to 0, the mask of the
right hemisphere is obtained. The ICV mask and the right hemisphere mask are shown
in the FIGURE 5.1.

For each subject, the probability maps of each tissue were found using the USwL method
for patients and the US method for controls. As explained in 5.1.1, it is possible to ex-
tract the masks using the crc_binarize_segm function implemented in the USwL toolbox.
Therefore, for each subject, the necessary masks for statistical analysis (i.e. GM and WM)
are available.

By combining these tissue masks with the right hemisphere mask, we obtain the right
hemisphere GM mask and the one of WM for each subject. FIGURE 5.2 shows the right
hemispheric GM and WM mask in patient P35 and control C23.

Now, for each subject, the position of the voxels of each tissue class is known through
the mask. Therefore, since images have the same dimensions and the same orientations,
it is sufficient to search for the corresponding values in the 4 qMRIs and to extract the
median value for each subject and tissue class. The values of the medians obtained are
available in Appendix B.
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FIGURE 5.1: Entire and right hemisphere ICV.

Once the medians have been calculated, a two-sample t-test can be performed using the
ttest2 function already implemented in Matlab. This statistical inference tests the hypoth-
esis that the two independent sample sets, the patient group and the control group, have
a median distribution with similar means. The t-test is performed by assuming that the
medians of the two groups follow a normal distribution and the variances are not equal.
This test, called Welch’s t-test computes the t-value as follows [47]:

t =
X1 − X2√

s2
1

n1
+

s2
2

n2

(5.1)

where,

• X1 and X2 are respectively the averages of group 1 and group 2

• s1 and s2 are respectively the unpool standard deviation of group 1 and group 2

• n1 and n2 are respectively the size of group 1 and group 2

The two-sample t-test allows to determine if the difference between the mean of the two
groups is significantly different. The difference between the two groups is significant if
it is very unlikely to be due to chance.

Performing a global analysis on the entire right hemisphere for each tissue class is not
the most sensitive technique. Indeed, the right hemisphere is seen in its entirety, sum-
marized by a single number for each tissue class. However, it is a sane check to observe
if values make sense and if there are no subjects with outliers. The global analysis is a
preliminary step to ensure the quality of the data.

5.2.2 Local statistical analysis - VBQ

Local statistical analysis is a voxel-wise analysis. In this type of analysis, a statistical
value is assigned to each voxel. Therefore, the analysis is an imaging problem that is
performed using SPM as opposed to the global analysis where a single value represented
the entire grey or white matter tissue of the right hemisphere.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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FIGURE 5.2: Right hemisphere mask of GM (left) and WM (right) in pa-
tient P35 (top) and control subject C23 (bottom).

General Linear Model

General linear model (GLM) is a way of performing a linear regression to find a relation-
ship between the observed results for each voxel and parameters, called regressors, that
explain the results obtained. The effects that explain the result are assumed to be linear
and additive and the error in a GLM is assumed to follow a normal distribution [25]. The
GLM mathematical model for k regressors is described in the Equation 5.2 [32].

Y = Ŷ + e
= β0 + β1X1 + β2X2 + ... + βkXk + e

(5.2)
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where,

• Y is the column matrix containing the observed value for each subject in the voxel.
This is what is measured.

• Ŷ is the column matrix that contains the predictions of the values obtained by the
GLM model.

• βi is the weight assigned to the regressor i.

• Xi is the ith regressor.

• e is the error.

SPM allows the creation of a GLM via the SPECIFY 2ND-LEVEL button in its menu. A
GLM is created for each tissue class and each relevant quantitative map. All GLMs are
created independently of each other.

The A maps were not analysed with a GLM for two reasons. First the values in the A map
for one patient, number 16, seemed incorrect. Furthermore, the quantitative map A is
in fact a semi-quantitative map with uncorrected B−1 bias. It refers to the proton density
but does not directly represent the proton density. There are thus two arguments for not
considering the A-maps. Firstly, proton density is not the most important parameter in
this study and secondly, the deletion of a patient in a study where the number of subjects
is already very limited is not recommended if one wants to have relevant results.

The design of the model was developed using the FACTORIAL DESIGN SPECIFICATION

module. In order to establish this model, it is necessary to specify that two different
groups (patients and controls) are considered, and that the variance in the two groups is
probably different. The smoothed parameters maps obtained with the tissue-weighted
smoothing for the tissue considered must be provided for each subject. These images
define the Y of the Equation 5.2. Moreover, one has to add the covariates, i.e. the age and
gender regressors which could explain the differences obtained between the subjects but
whose effects are not interesting for the study.

When designing the GLM, it is also necessary to determine an explicit mask that repre-
sents the set of voxels to be considered in the analysis. In this study, the GLM is either
applied to GM or to WM. Therefore, depending on the tissue to be analysed, the mask
will be either that of the GM in the right hemisphere, or that of the WM in this same
hemisphere.

In the design of the model, it is imposed that an implicit mask is calculated during the
estimation of the model. This is explained in the next section named "Model Estimation".

After running the FACTORIAL DESIGN SPECIFICATION module specifying all the infor-
mation to create the model, a SPM.mat file is created. This file contains all the information
about the model such as the number of subjects, the different groups represented, their
ages, their genders, the degree of freedom of the model... In other words, it contains the
Y and X matrix of the model. The SPM.mat file is the input for estimating the model.

Model Estimation

The MODEL ESTIMATION in SPM takes care of the model estimation and is available in
the STAT part of the SPM batch editor.

First, the algorithm calculates the implicit mask. This latter is based on the intensity of
the images. By considering all the images and averaging the intensities of the voxels, the
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algorithm obtains an average signal. If the value in a voxel is too low compared to this
average signal, the voxel will not appear in the study even if it is in the explicit mask.
The final mask that determines which voxels will be analysed is a combination of the
explicit mask and the implicit mask.

The estimation of the model consists of estimating two quantities. On the one hand, the
β values that best explain the results obtained and, on the other hand, the variance of the
residuals.

Since the variance is not identical between the two groups, an ordinary least square pro-
cedure cannot be used to estimate the model parameters. These parameters are therefore
estimated using a weighted least square approach. In this method, the variance is first
estimated. The variance obtained determines the weighting applied to each voxel. The
weight applied is inversely proportional to the noise variance. Thus, data with a large
variance are weighted with a smaller weight compared to data with a small variance.
The value of the weighting is equivalent to the inverse of the variance.

When the estimation is completed, the parametric maps of each β are created as well as
the residual mean square.

Once the set of parameters has been estimated, the model can be analysed through sta-
tistical tests.

Statistical tests

When performing the statistical test, there are several ways to ask the question to obtain
the desired results. Knowing that X1 is the matrix designating the group 1 (patient) and
X2 that designating the group 2 (control). Therefore β1 is related to the average signal of
group 1 and β2 to that of group 2. The three ways of asking the question to find out if
there is a difference between the right hemisphere of the patients and that of the controls
are as follows:

1. Is β1 different from β2?

2. Is β1 larger than β2?

3. Is β1 smaller than β2?

The last two questions require directionality. When directionality is not known, which is
the case for this study, the first question is asked.

In SPM, it is possible to perform either a t-test or an F-test. The t-test implemented
in SPM is uni-directional, while the F-test is bi-directional, i.e. looks for any differ-
ence. Since directionality is not known in this study, the latter will be used to determine
whether there are differences in the right hemisphere between the two groups.

F-test This test is a classical statistical inference. β1 6= β2 is the interesting hypothesis.
The null hypothesis is therefore β1 = β2 and is assumed valid for the whole population.
When dealing with real data, the difference is never exactly zero. The calculation of
the F-value makes it possible to determine the probability that the observed deviation
occurred by chance. A large F-value means a very low probability that it happened by
chance. Therefore, when the F-value exceeds a certain threshold, the null hypothesis can
be rejected, which means that the alternative hypothesis is accepted.
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In SPM, an F-test can be performed via the RESULT button in the menu. Then, by impos-
ing a contrast and a p-value, the software has all the necessary information to perform
an F-test.

Testing β1 − β2 = 0 or β2 − β1 = 0 is equivalent. The contrast used here is 1 -1 but a -1 1
contrast would give the same results.

There are several ways of determining the threshold, by controlling the risk of false pos-
itives. This threshold, called p-value, false positive rate or significance level is the min-
imum probability to reject the null hypothesis. The first possibility to determine this
p-value is to perform a single voxel inference and to determine the acceptable error for
each voxel. The more voxels there are, the higher the chance of having a high number of
false positives. When this method of determining the p-value is chosen, one works with
an uncorrected p. In studies with a large number (typically more than 10000) of voxels,
it is preferable to determine a family-wise error rate (FWER). In this case, a corrected p
threshold is used. For example, a corrected p-value equal to 0.1 means that on 10 rep-
etitions of experiments, only one will show some false positive voxel anywhere in the
image, in the brain. [25]

When a corrected p of 0.05 is applied, there are two different definitions of whether or
not there is a significant difference within a voxel: peak level and cluster level. For the
peak-level inference, the voxel has a large enough F value that the voxel has a probability
p < 0.05 of incorrectly rejecting to the null hypothesis. For the cluster-level inference,
the statistical map is first thresholded at an uncorrected p-value threshold, typically p <
0.001, then the size of each cluster is examined. Then the null hypothesis is rejected
if the cluster size has a probability of occurring under the null-hypothesis at p < 0.05
corrected for all clusters. The cluster level takes into account the search space. The larger
the search volume, the more clusters it is likely to have. The more clusters there are, the
more likely there are to be large clusters. [25]

Direction of the effect The problem with the results obtained with an F-test is that
there is no information about the direction of the effect. The result shows the parts of the
right hemisphere where there is a difference between the two groups but does not show
which group has a larger β. One way to overcome this issue is to look afterwards at the
direction of the effect by checking the sign of the difference between β1 and β2.

5.2.3 Local statistical analysis - VBM

In VBM, the objective is to compare tissue, for example GM, volume or density across
subjects over the whole brain. The image used, for each subject are the segmented tissue
class, warped into a reference space and smoothed, i.e. each voxel contains a value
which is representative of the amount of tissue around that voxel. Therefore, since a
VBM analysis is performed on patient data and on control data, a comparison of the GM
volume between the two groups is possible.

General Linear Model and model estimation

The pipeline for performing a statistical analysis in a VBM analysis is similar to that for a
VBQ analysis. The first step is also to develop a GLM. The GLM design is a two-sample
t-test as two groups are compared. The first group is the patients and the second is
the healthy subjects. In a VBM, whose aim is to detect GM volume change, the images
introduced into the model are the smoothed modulated quantitative grey matter maps.
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These images used here are the results of segmentation, normalization and smoothing on
the R1 map. Furthermore, the explicit mask is the right hemisphere mask. Since the aim
here is to look at the difference in GM volume between the two groups, it is preferable to
look at all the voxels rather than those belonging only to the GM mask built from patient
and control data.

Then, the GLM is estimated using the MODEL ESTIMATION implemented in SPM as ex-
plained in 5.2.2.

Statistical tests

Patient < Control By performing a t-test with a contrast [-1 1] and a corrected p of 0.025,
the voxels that show a significantly smaller amount of GM in patients than in controls
according to their peak level are displayed. The second type of inference evaluated is
based on clusters. Cluster-level inference, based on an uncorrected p < 0.001 voxel-
wise cluster forming threshold, shows the cluster whose size (number of voxels) has a
p < 0.025 of showing up by chance. Therefore, using an uncorrected p of 0.001 and
imposing a minimum number of voxels in a cluster for there to be a probability greater
than 0.025 of observing a difference in this cluster, all voxels belonging to a significant
cluster with a pFWE−corr < 0.025 are obtained.

Patient > Control Similarly by performing a t-test with a contrast [1 -1] and a corrected
p of 0.025, voxels that have significantly more GM in patients than in controls are de-
tected.

5.3 Differences within the patients in right hemisphere

The aim of comparing patients with each other is to relate brain microstructures to pa-
tient parameters. These parameters will therefore be modelled as regressors of interest
in this study. Several tests were performed on the patients in order to obtain several
kinds of parameters related to their performance. The different parameters available are
explained in 5.1 and the values for each patient are given in the TABLE A.2.

The TABLE A.2 is missing one piece of data, the value of the parameter NW for patient
P21. In addition, for patient P21, there is the value 0 assigned to the parameter Min-
P. However, when we look at the values of the other patients for this parameter, the
minimum value after 0 is 38. It is therefore assumed that the value 0 is a wrong value.
The sample of patients is not large and deleting a patient seems in this case not to be the
best solution.

Instead of deletion, an imputation of missing data is performed. The idea is to fill in the
table by adding a value for the missing data and changing the supposedly wrong value.
When information is missing, the data should be completed without providing addi-
tional information. A solution is to complete data by imputing the mean value from the
other subjects. In this way, patient P21 was assigned a value of 33 for the NW parameter
and a value of 97 for the Min-P parameter.

5.3.1 Principal Component Analysis (PCA)

The number of parameters to describe performance is relatively large. Indeed, 10 differ-
ent parameters are assigned for each patient. Using 10 regressors of interest in the GLM
model is too high as there are only 26 patients. So we have a maximum of 26 degrees of
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freedom. The more regressors we use in the analysis, the more this degree of freedom
decreases. A solution is to perform a principal component analysis in order to reduce
the number of regressors while retaining a maximum of information. Indeed, PCA is a
technique that suggests that the variables vary together and thus makes it possible to
reduce the number of variables by choosing the best combinations of variables to keep a
maximum of information [38].

The Matlab function pca has been used to perform a PCA on the 10 performance pa-
rameters. This function returns the coefficients of the principal components, the score
for each patient and for each PCA and the percentage of the total variance explained by
each principal component.

One decided to take a number of components that explain 90% of the variance. By tak-
ing the first 3 PCAs, more than 90% of the variance is explained. Indeed, PCA1 explains
57.5393% of the variance, PCA2 20.2008% and PCA3 14.0686%. Principal component
coefficients for these first three principal components are displayed in TABLE 5.2. The
first component is mainly correlated with the BNT, Nam-O and NW score. As anomic
patients tend to have difficulty naming objects, it is not surprising that these three vari-
ables are positively correlated and that the first component is more strongly correlated
with the BNT, Nam-O and NW variables.

PCA1 PCA2 PCA3
BNT 0.5369 0.0154 -0.5213

Nam-O 0.4321 0.0578 -0.4564
Nam-A 0.0992 -0.0177 -0.1122
Co-SW 0.0683 0.0524 -0.0258
Co-WW 0.0312 0.0749 -0.0347
Co-SS 0.0526 -0.0686 -0.0017
Co-WS 0.0298 -0.0396 -0.1280
Mo-W 0.1975 -0.1455 0.1593

NW 0.5767 -0.5302 0.5408
Min-P 0.3664 0.8241 0.4139

TABLE 5.2: Principal component coefficients/loadings for the first three
principal components.

5.3.2 General Linear Model and model estimation

Equation 5.2 explains the GLM principle. This model explained above, in section 5.2.2,
is also used here to detect correlations within a single group of subjects. Since we are
working with a single group, the design is that of a one-sample t-test where only the
weighted average parameters maps of the patients are entered into the model.

When one looks at the group of patients, there are regressors that are not of interest.
These are regressors that could explain some of the results but are not investigated in
this study. However, even if they are not interesting for the study, they should be con-
sidered. Age, gender and time post stroke are regressors of no interest. In addition to
these regressors of no interest, there are 3 regressors of interest represented by the first 3
PCAs. These regressors of interest represent patient performance.

Once the model is created, it is estimated using the MODEL ESTIMATION module.
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5.3.3 Statistical tests

F-test The F-test detects whether inter-patient variability can be explained by the re-
gressors of interest. An F-test is performed with a contrast that allows testing the effect
of the 3 regressors of interest taken together. Thereby, the contrast used in the F-test is
the following:

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

In this contrast, each column is linked to a regressor. The first is the average of the
patients. Then, in column order, there are the following regressors: age, gender, time
post stroke, PCA1, PCA2 and PCA3. This contrast will thus highlight voxels whose
inter-patient variability can be explained by a linear combination of the 3 PCAs, i.e. the
performance parameters.

5.4 Pipeline effects on control data

Two different pipelines were used to spatially process the control data. A first pipeline
uses the default parameters of the spatial processing pipeline of the hMRI toolbox (see
4.2) and a second tries to get as close as possible to the pipeline used to analyse patient
data.

The comparison of these two pipelines would allow to know the influence of the pipeline
used on the results obtained. As the input data to the two pipelines is identical, there is a
correlation between the images obtained with the first pipeline and those obtained with
the second pipeline. Therefore, a paired samples t-test is used to compare the results of
the two pipelines and see if there is a significant difference between these latter.

5.4.1 VBQ

General Linear Model and model estimation

Six GLMs are designed: there is a GLM for the MT, R1 and R∗2 quantitative maps and
the two tissue classes (GM and WM). For each GLM, the model design is based on 17
pairs of data since there are 17 healthy subjects. The first image of each pair is the image
obtained with the pipeline close to the one used in the patients and the second image
is the one obtained with the full pipeline already implemented in the hMRI toolbox. In
addition to these images, an explicit mask is introduced to inform on which voxel the
model should be performed. Thus the explicit mask corresponds either to the voxels
of the GM of the right hemisphere or to the voxels of the WM of the right hemisphere,
depending on the tissue under consideration.

Once this model is created, it is estimated with the MODEL ESTIMATION module.

Statistical tests

F-test The F-test detects if there are differences between the two pipelines. The applied
contrast is [1 -1]. The null hypothesis is therefore β1-β2=0 which means that the average
of the two populations are equal. If F is large enough, this hypothesis is rejected in favour
of the alternative hypothesis that the two means are different. The acceptable range of
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F values for the null hypothesis depends on the p-value used. For this statistical test a
threshold at p < 0.05 after FWE correction was applied.

5.4.2 VBM

Similarly, a paired t-test on the modulated quantitative GM maps indicates whether
there is a difference in volume between the morphological results of the two pipelines.

General Linear Model and model estimation

One GLM where the input images are 17 pairs of images, one pair for each control sub-
ject. The first image of each pair is the modulated quantitative GM map obtained with
the pipeline that is similar to the pipeline applied on the patient data while the sec-
ond image of each pair is the modulated quantitative GM map obtained with the default
pipeline implemented in hMRI toolbox. The explicit mask is that of the right hemisphere
as this is the hemisphere on which the analysis takes place.

Statistical tests

F-test The use of a corrected p of 0.05 imposes a threshold to determine whether the
difference is significant or not. Significance is looked at the peak level but also at the
cluster level. Indeed, a voxel may not be significant but could belong to a significant
cluster.
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Chapter 6

Results

This chapter presents the results obtained following the analysis described in the previ-
ous chapter. First, the chapter refers to the differences observed between the two groups
(patients and controls). Secondly, it explains the results found in the patient group in
relationship to patient performance. Finally, the chapter is concluded by pointing out
the differences observed between the two pipelines used on the control subjects.

6.1 Controls vs Patients in right hemisphere

6.1.1 Global statistical analysis

Global statistical analysis is a preliminary step to ensure the quality of the data. It allows
to see if the observed values are well within the norm or if there are some outliers. TA-
BLES 6.1 and 6.2 show the mean of the median voxel values for each patient and control
in grey and white matter respectively. Furthermore, these tables contain the p-value of
the two sample t-test between the means of the two groups. If we consider that the result
of the parametric test is significant when the p-value is less than 0.05, we conclude that
there is a significant difference between the patients and the control subjects in the GM
of the quantitative map R∗2 .

Except for the GM signal in R∗2 , the values between patients and controls are very similar,
so it is difficult to conclude anything. Maybe there is no difference, maybe the signal
values are higher in one part of the brain and lower in the other, which cannot be seen
in such a global analysis like this. There is a need for further analysis and local analysis
(see sections 6.1.2 and 6.1.3). The global analysis, which is easy to perform, does not give
much information except that some subjects have outlier medians.

Indeed, before computing these averages for all patients and all controls, it was neces-
sary to compute the median values of GM and WM for each subject. These values are
available in Appendix B. The values of the controls were similar to each other. Similarly,
the median values for each patient were similar except in A map for patient 16 where
the values are outliers (see TABLES B.1 and B.2).

Mean
Patients Controls p-value

A 82.8369 (±6.1947) 81.2496 (±0.9574) 0.3025
MT 0.8329 (±0.0299) 0.8399 (±0.0359) 0.4895
R1 646.0553 (±24.3831) 655.4668 (±15.3711) 0.1646
R2s 0.0168 (±0.0006) 0.0173 (±0.0006) 0.0095

TABLE 6.1: Global statistical result for the GM.
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Mean
Patients Controls p-value

A 70.3867 (±5.2449) 69.2656 (±0.1764) 0.3855
MT 1.6182 (±0.0763) 1.5907 (±0.0517) 0.2001
R1 1000.2749 (±45.8651) 1000.9892 (±27.7566) 0.9544
R2s 0.0208 (±0.0007) 0.0209(±0.0007) 0.5717

TABLE 6.2: Global statistical result for the WM.

6.1.2 Local statistical analysis - VBQ

The F-test comparing the patient’s right hemisphere with that of the control taking into
account their age and gender, only detected significant results when an uncorrected p =
0.001 was used. Only one voxel in the entire local analysis is significant with a corrected
p = 0.05. This voxel is located in the WM of the right hemisphere in the MT map
(see FIGURE C.4) and the value of this voxel in patients is significantly smaller than
in healthy subjects. The results of the F-test are illustrated with the help of some brain
cross sections. FIGURES 6.1, 6.2 and 6.3 show the most interesting brain slices to illustrate
the differences between the two groups in GM in MT, R1 and R∗2 maps respectively.
Similarly, FIGURES 6.4, 6.5 and 6.6 show the significant voxels in the white matter with
an uncorrected p of 0.001 for MT, R1 and R∗2 maps respectively. The illustration of the
results in FIGURES 6.1 to 6.6 is not exhaustive. A complete list of significant voxels with
uncorrected p-value of 0.001 can be found in the Appendix C in FIGURES C.1 to C.6.

Regarding the direction of difference of the statistical test, the signal is smaller in patients
than in controls in the GM for MT map and R1 map but it is larger or smaller in the other
quantitative maps according to brain regions.

FIGURE 6.1: Statistical parameter maps of GM regions where there is a
significant difference in MT map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

6.1.3 Local statistical analysis - VBM

Two t-tests were performed at the p < 0.025 FWE corrected level. There is no voxel whose
value is significantly larger in patients than in healthy subjects.

However, in some region, there is a GM atrophy in patients. Some slices of statistical
parameter map showing GM atrophy in patients are in FIGURE 6.7. GM atrophy is lo-
cated in brain stem, right thalamus proper, right supplementary motor cortex and right
lingual gyrus. For the VBM analysis between patients and control, the exhaustive list of
significant voxel and their position in MNI space is in Appendix C, in FIGURE C.7 for
peak level and in the FIGURE C.8 for cluster level.
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FIGURE 6.2: Statistical parameter maps of GM regions where there is a
significant difference in R1 map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

FIGURE 6.3: Statistical parameter maps of GM regions where there is a
significant difference in R∗2 map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

6.2 Within patient analysis in the right hemisphere

After performing an F-test as explained in subsection 5.3.3, no voxel is significant when
a corrected p of 0.05 is applied. Similarly for an uncorrected p of 0.001, there is no results
in the WM of the MT map and R1 map. Significant voxels with an uncorrected p of 0.001
are listed in FIGURES C.9, C.10, C.11 and C.12 respectively for the GM of the MT, R1 and
R∗2 maps and the WM of the R∗2 map. For a visual interpretation, FIGURES 6.8, 6.9, 6.10
and 6.11 each display 4 brain cross-sections for GM in MT map, R1 map and R∗2 map and
WM in R∗2 map respectively. In these figures, significant voxels with an uncorrected p
equal to 0.001 are displayed in colour according to the colour scale of the F values.

6.3 Pipeline effects on control data

6.3.1 VBQ

The choice of pipeline influences the results. FIGURES 6.12 to 6.17 show the brain regions
with a significant difference (p < 0.05 FWE corrected level) in peak and cluster level
between the two pipelines in GM (FIGURES 6.12, 6.13 and 6.14) and WM (FIGURES 6.15,
6.16 and 6.17).

For more information, Appendix C enumerates all significant voxels. Indeed, FIGURES

C.13, C.15, C.17 list voxels whose the corrected p is inferior at 0.05 in peak level in the
GM in the MT, R1 and R∗2 maps respectively. Similarly, FIGURES C.19, C.21 and C.23
enumerate voxels whose the corrected p is inferior at 0.05 in the WM in the MT, R1
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FIGURE 6.4: Statistical parameter maps of WM regions where there is a
significant difference in MT map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

FIGURE 6.5: Statistical parameter maps of WM regions where there is a
significant difference in R1 map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

and R∗2 maps respectively. Furthermore, FIGURES C.14, C.16, C.18 list voxels whose the
corrected p is inferior at 0.05 in cluster level in the GM in the MT, R1 and R∗2 maps
respectively and the same for FIGURES C.20, C.22 and C.24 but for WM.

6.3.2 VBM

There are morphological differences between the results of the two pipelines. These
differences in grey matter volume are illustrated in FIGURE 6.18.
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FIGURE 6.6: Statistical parameter maps of WM regions where there is a
significant difference in R∗2 map between patients and controls with an
uncorrected p at 0.001. The results are superimposed on the mean MT

map in MNI space of all subjects.

FIGURE 6.7: Statistical parameter maps showing GM atrophy in patients
with p<0.025 FWE corrected level in peak level (top) and cluster level (bot-
tom). Statistical parameter maps are superimposed on the mean MT map

in MNI space of all subjects.
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FIGURE 6.8: Statistical parameter maps of GM regions where there is a
significant difference in MT map within the patient group with an uncor-
rected p at 0.001. The results are superimposed on the mean MT map in

MNI space of all patients.

FIGURE 6.9: Statistical parameter maps of GM regions where there is a
significant difference in R1 map within the patient group with an uncor-
rected p at 0.001. The results are superimposed on the mean MT map in

MNI space of all patients.

FIGURE 6.10: Statistical parameter maps of GM regions where there is a
significant difference in R∗2 map within the patient group with an uncor-
rected p at 0.001. The results are superimposed on the mean MT map in

MNI space of all patients.

FIGURE 6.11: Statistical parameter maps of WM regions where there is a
significant difference in R∗2 map within the patient group with an uncor-
rected p at 0.001. The results are superimposed on the mean MT map in

MNI space of all patients.
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FIGURE 6.12: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in MT map grey matter.
The results are superimposed on the mean MT map in MNI space of all

controls.

FIGURE 6.13: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in R1 map grey matter.
The results are superimposed on the mean MT map in MNI space of all

controls.
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FIGURE 6.14: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in R∗2 map grey matter.
The results are superimposed on the mean MT map in MNI space of all

controls.

FIGURE 6.15: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in MT map white matter.
The results are superimposed on the mean MT map in MNI space of all

controls.
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FIGURE 6.16: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in R1 map white matter.
The results are superimposed on the mean MT map in MNI space of all

controls.

FIGURE 6.17: Statistical parameter maps of significant difference in peak
level (top) and cluster level (bottom) with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in R∗2 map white matter.
The results are surperimposed on the mean MT map in MNI space of all

controls.
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FIGURE 6.18: Statistical parameter maps showing significant differences
in peak level (top) and cluster level (bottom) with a p corrected at 0.05
in GM volume between the two pipelines on the control data. Statistical
parameter maps are superimposed on the mean MT map in MNI space of

all controls.
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Chapter 7

Discussion

Segmentation and normalization worked well, both on patients using the USwL ap-
proach and on control subjects using the US approach.

The lesion volume obtained after the USwL approach can vary greatly from the lesion
mask volume obtained with the ALI method. For two patients, P30 and P33, the lesion
volume is slightly larger (114.33 cm3 vs. 112.62 cm3 and 133.54 cm3 vs. 130.10 cm3) with
the USwL approach while for all other patients the lesion is much larger with the ALI
method. Visually, it can be seen that the mask obtained with ALI tends to overestimate
the lesion volume. This overestimation can explain the observed difference in volume:
the USwL method adapts the mask obtained with ALI by adjusting it as good as based
on the multichannel data.

The VBM analysis between patients and controls revealed significant results, namely de-
creased local GM volume in patients compared to controls in the following regions: brain
stem, right thalamus proper, right supplementary motor cortex and right lingual gyrus.
Another significant result, after the whole right hemisphere correction, is the significant
decrease in MT values for patients versus controls in one voxel in the right cerebral WM;
this could reflect a variation in the amount of myelin between patients and control sub-
jects. This was not an expected result. Indeed, one expected to see increased changes
in the right hemisphere of the brain, in regions homologous to the damaged regions in
the left hemisphere. Different significant results were expected, but one must put this
into perspective and acknowledge that this study nevertheless allowed to distinguish
morphological changes and, for one voxel, a change in the microstructure of the brain.
A larger sample size would probably have allowed to obtain more significant results.
Moreover, the five-month delay before observing the injured brain may not be sufficient
to observe changes in the microstructure. It is possible that a longer period of time is
needed for changes to appear.

Furthermore, the analysis within the patient group, to know the relationship between
their performance and the observed results, did not yield any clear results. Indeed, the
significant results observed are all obtained with an uncorrected threshold. This con-
firms the idea that using a larger sample size would be beneficial. For the within patient
study, it was expected that the variation in speech production abilities would correlate
with changes of signal in structurally intact right hemisphere brain regions, especially in
Broca’s area homologue.

The significant differences between the two pipelines used on the control subjects high-
light the importance of the pipeline employed. Indeed, this study reveals that different
pipelines lead to significantly different results. Therefore, it is important that the pipeline
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applied to the healthy subjects’ data is as close as possible to the one used on the patients’
data.

Patient 14 was excluded from the study because no suitable a priori mask existed. Man-
ual segmentation could be done to obtain a suitable mask and thus include patient 14 in
the study.

Furthermore, in addition to a cross-sectional study, a longitudinal analysis could be ben-
eficial from a neurological point of view. This would allow to observe the change in the
microstructures of the brain during the recovery of language skills. One could not ac-
cess the data to perform such an analysis. However, one knows that this data has been
acquired for some patients, making a longitudinal study possible. This kind of study
would be the next step of this work and would likely provide additional information.
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Chapter 8

Conclusion

Working with quantitative MRIs is complex because of the need to manipulate complex
images while retaining all the information they provide. In addition, stroke patients have
damaged brains, which complicates the methodology for analysing the images. Indeed,
most of the properties of a healthy brain are known (tissue probability maps, etc.) but
in damaged brains, there are more unknowns, which complicates the data processing.
Therefore, working on quantitative images of patients with aphasia following a stroke is
very challenging.

MPM approach allows for the acquisition of quantitative data. The innovative ALI and
USwL methods allow segmenting and normalizing injured brains. However, in this
study it was found that the masks obtained with the USwL method seem more accurate
because the output lesion masks seem closer to the actual lesion masks. Nevertheless,
the USwL approach needing an a priori lesion mask, the mask obtained with the ALI
method shall be used. The two methods are therefore complementary.

Although the segmentation, normalization and smoothing of the data seem to be exe-
cuted correctly, the results are not as expected. Indeed, one expected to see more sig-
nificant changes in the right hemisphere of the patients. In addition to an increase in
patients in the part of the right hemisphere homologous to the injured one, it was also
expected that there would be a variation in speech production abilities correlated with
signal changes in structurally intact right hemisphere brain regions, especially in Broca’s
area homologue. These hypotheses were not confirmed in this study, but that does not
mean that they are incorrect. More research would allow understanding the plasticity
of the brain during revalidation treatment and thus to have more tools to improve these
treatments and thus reduce the irreversible impacts on these patients (disability...).

One will conclude by highlighting the importance of the processing used to treat the
data. Indeed, this master thesis shows that using slightly different processings can lead
to results with significant differences. It is therefore of utmost importance to use the
right processing tools to treat data.
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Appendix A

Additional information on subjects

TABLE A.1 informs about the age (in years) and the gender of control subjects and TABLE

A.2 gives patients’ information and raw score in the linguistic assessment. In this table,
TPS represents the time post-stroke in months, the age is in years and the lesion volume
is in cm3. The scores in bold belong to the aphasic range and N/A means not available.

ID Age Gender
C01 69 M
C02 69 M
C03 65 M
C04 69 F
C05 64 M
C06 71 F
C07 50 F
C10 72 M
C11 63 F
C13 65 M
C14 67 F
C16 69 F
C17 53 M
C18 55 M
C20 62 F
C21 56 F
C23 66 F

TABLE A.1: Control subject’s information.
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Appendix B

Global analysis: Raw values

Median in warped A map
Patients GM WM
P01 81.3605 69.6657
P03 79.4726 69.0503
P04 82.0647 69.5245
P05 80.6324 69.3861
P10 83.3746 69.7217
P11 80.9280 69.4506
P12 83.3487 69.5992
P13 82.0443 69.3371
P15 81.2830 69.9344
P16 112.4102 96.0706
P17 82.1387 69.1133
P18 84.8639 69.5457
P19 79.4264 69.0364
P20 82.0943 69.6776
P21 82.7172 69.3227
P22 82.0784 69.0294
P23 81.6261 69.3464
P24 83.9207 69.6146
P25 79.2958 69.5042
P27 79.3095 69.1910
P28 81.8715 69.3465
P29 80.1632 69.0914
P30 82.7529 69.1075
P31 81.0514 69.1260
P33 81.6916 68.8874
P35 81.8394 69.3732

TABLE B.1: Median
warped A map voxels
belonging to right hemi-
sphere GM and WM for

each patient.

Median in warped A map
Controls GM WM
C01 82.6337 69.3058
C02 80.6856 69.2494
C03 82.0200 69.5405
C04 79.6070 68.8969
C05 81.1371 69.2100
C06 80.2537 69.3168
C07 81.1756 69.2364
C10 81.6047 69.3112
C11 82.9221 69.2823
C13 79.4944 69.1563
C14 81.4437 69.1773
C16 82.0978 69.7375
C17 81.9818 69.2476
C18 81.5327 69.2537
C20 81.3044 69.1684
C21 80.4634 69.3059
C23 80.8855 69.1194

TABLE B.2: Median
warped A map voxels
belonging to right hemi-
sphere GM and WM for

each control.
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Median in warped MT map
Patients GM WM
P01 0.7662 1.4472
P03 0.8627 1.6111
P04 0.8102 1.5661
P05 0.8081 1.5062
P10 0.8207 1.6279
P11 0.8257 1.5841
P12 0.8552 1.6965
P13 0.8489 1.6219
P15 0.8298 1.4993
P16 0.7954 1.5831
P17 0.8370 1.6661
P18 0.8509 1.7487
P19 0.8622 1.5821
P20 0.8060 1.5632
P21 0.8718 1.7216
P22 0.8250 1.6744
P23 0.8374 1.6163
P24 0.8201 1.7205
P25 0.8089 1.5290
P27 0.8478 1.6364
P28 0.8680 1.7222
P29 0.8814 1.6849
P30 0.7782 1.5973
P31 0.8147 1.5845
P33 0.8776 1.6860
P35 0.8456 1.5975

TABLE B.3: Median
warped MT map voxels
belonging to right hemi-
sphere GM and WM for

each patient.

Median in warped MT map
Controls GM WM
C01 0.8241 1.6275
C02 0.8139 1.5248
C03 0.7980 1.5389
C04 0.7509 1.5519
C05 0.8489 1.5997
C06 0.8399 1.4982
C07 0.8805 1.6426
C10 0.8103 1.5624
C11 0.8606 1.6670
C13 0.8326 1.5291
C14 0.8645 1.6575
C16 0.8050 1.5627
C17 0.8575 1.6186
C18 0.8653 1.6162
C20 0.8800 1.6156
C21 0.8615 1.5782
C23 0.8856 1.6514

TABLE B.4: Median
warped MT map voxels
belonging to right hemi-
sphere GM and WM for

each control.
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Median in warped R1 map
Patients GM WM
P01 594.6948 892.8184
P03 656.4594 995.7042
P04 658.9201 996.6180
P05 626.9937 942.5966
P10 608.7685 964.8032
P11 625.1616 951.3639
P12 637.0975 1011.4070
P13 646.9993 994.5627
P15 622.2228 915.2843
P16 643.7716 994.0233
P17 634.8670 999.1631
P18 644.1038 1060.9144
P19 642.0609 962.9507
P20 616.8568 973.8965
P21 680.3984 1075.8595
P22 649.2357 1035.0546
P23 658.7140 1006.6649
P24 643.8391 1038.5808
P25 652.0826 966.8718
P27 673.9301 1038.7577
P28 685.7045 1062.6967
P29 698.5145 1068.4587
P30 618.2897 1003.7772
P31 647.3028 1004.2674
P33 657.7977 1028.1002
P35 672.6499 1021.9510

TABLE B.5: Median
warped R1 map voxels
belonging to right hemi-
sphere GM and WM for

each patient.

Median in warped R1 map
Controls GM WM
C01 637.5596 1000.9592
C02 649.6628 980.4170
C03 643.4767 988.3649
C04 630.1639 959.8559
C05 647.4498 998.2108
C06 651.9718 966.5318
C07 662.8224 998.4008
C10 645.8503 990.4243
C11 674.0198 1047.1972
C13 661.2930 985.7985
C14 679.4511 1030.3577
C16 636.0275 977.7691
C17 676.8810 1048.3699
C18 672.0001 1027.3215
C20 665.5569 1026.0634
C21 643.1607 969.4879
C23 665.5879 1021.2870

TABLE B.6: Median
warped R1 map voxels
belonging to right hemi-
sphere GM and WM for

each control.
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Median in warped R∗2 map
Patients GM WM
P01 0.0167 0.0202
P03 0.0176 0.0209
P04 0.0179 0.0217
P05 0.0167 0.0201
P10 0.0160 0.0203
P11 0.0168 0.0203
P12 0.0158 0.0205
P13 0.0177 0.0215
P15 0.0158 0.0191
P16 0.0175 0.0207
P17 0.0166 0.0208
P18 0.0169 0.0224
P19 0.0174 0.0206
P20 0.0170 0.0213
P21 0.0165 0.0218
P22 0.0168 0.0211
P23 0.0165 0.0207
P24 0.0162 0.0209
P25 0.0169 0.0206
P27 0.0172 0.0207
P28 0.0164 0.0210
P29 0.0164 0.0202
P30 0.0155 0.0200
P31 0.0172 0.0205
P33 0.0167 0.0204
P35 0.0175 0.0217

TABLE B.7: Median
warped R∗2 map voxels
belonging to right hemi-
sphere GM and WM for

each patient.

Median in warped R∗2 map
Controls GM WM
C01 0.0168 0.0212
C02 0.0174 0.0208
C03 0.0172 0.0215
C04 0.0180 0.0203
C05 0.0172 0.0210
C06 0.0166 0.0196
C07 0.0170 0.0198
C10 0.0176 0.0220
C11 0.0177 0.0216
C13 0.0186 0.0212
C14 0.0180 0.0222
C16 0.0170 0.0209
C17 0.0167 0.0207
C18 0.0165 0.0205
C20 0.0173 0.0207
C21 0.0166 0.0198
C23 0.0179 0.0213

TABLE B.8: Median
warped R∗2 map voxels
belonging to right hemi-
sphere GM and WM for

each control.
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Appendix C

Statistical Tables

C.1 Controls vs Patients in right hemisphere

C.1.1 Local statistical analysis - VBQ

FIGURE C.1: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in MT map grey

matter.
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FIGURE C.2: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in R1 map grey

matter.

C.1.2 Local statistical analysis - VBM
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FIGURE C.3: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in R∗2 map grey

matter.

C.2 Within patient analysis in the right hemisphere

No statistical results, obtained at p<0.001 uncorrected for MT and R1 in white matter.
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FIGURE C.4: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in MT map white

matter.
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FIGURE C.5: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in R1 map white

matter.

C.3 Pipeline effects on control data

C.3.1 VBQ



Appendix C. Statistical Tables 73

FIGURE C.6: Significant difference in voxel level with p uncorrected at
0.001 between patient’s and control’s right hemisphere in R∗2 map white

matter.

C.3.2 VBM
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FIGURE C.7: List of voxels in which GM atrophy in patients occurs after a
t-test with a p<0.025 FWE corrected level.

FIGURE C.8: List of voxels belonging to a significant cluster with p<0.025
FWE corrected level in which GM atrophy in patients occurs after a t-test.
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FIGURE C.9: Significant difference with p uncorrected at 0.001 between
patients’ right hemisphere in MT map grey matter.
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FIGURE C.10: Significant difference with p uncorrected at 0.001 between
patients’ right hemisphere in R1 map grey matter.

FIGURE C.11: Significant difference with p uncorrected at 0.001 between
patients’ right hemisphere in R∗2 map grey matter.
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FIGURE C.12: Significant difference with p uncorrected at 0.001 between
patients’ right hemisphere in R∗2 map white matter.

FIGURE C.13: Significant difference in peak level with p corrected at 0.05
between two different pipelines for controls’ right hemisphere in MT map

grey matter.
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FIGURE C.14: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in MT

map grey matter.
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FIGURE C.15: Significant difference in peak level with p corrected at 0.05
between two different pipelines for controls’ right hemisphere in R1 map

grey matter.
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FIGURE C.16: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in R1

map grey matter.
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FIGURE C.17: Significant difference in peak level with p corrected at 0.05
between two different pipelines for controls’ right hemisphere in R∗2 map

grey matter.
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FIGURE C.18: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in R∗2

map grey matter.



Appendix C. Statistical Tables 83

FIGURE C.19: Significant difference in peak level with p corrected at 0.05
between two different pipelines for controls’ right hemisphere in MT map

white matter.
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FIGURE C.20: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in MT

map white matter.

FIGURE C.21: Significant difference with p corrected at 0.05 between two
different pipelines for controls’ right hemisphere in R1 map white matter.
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FIGURE C.22: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in R1

map white matter.

FIGURE C.23: Significant difference in peak level with p corrected at 0.05
between two different pipelines for controls’ right hemisphere in R∗2 map

white matter.
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FIGURE C.24: Significant difference in cluster level with p corrected at
0.05 between two different pipelines for controls’ right hemisphere in R∗2

map white matter.
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FIGURE C.25: List of significant voxels in which there is a significant dif-
ference (p < 0.05 FWE corrected level) in GM volume between the two

control pipelines.
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FIGURE C.26: List of voxels belonging to a significant cluster (p < 0.05
FWE corrected level) in which a significant difference in GM volume be-

tween the two control pipelines occurs.
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