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Abstract

The VKI Plasmatron is a plasma wind tunnel that allow the reproduction of some
of the conditions of an atmospheric reentry. A plasma is generated at low subsonic
regime at temperatures up to about 10000 K. This temperature is measured by op-
tical emission spectroscopy. More specifically, the procedure focused on the atomic
emission of the oxygen and nitrogen lines at 777 nm and 747 nm respectively. In the
measurement procedure, many parameters have uncertainties that lead to an error on
the temperature computation. In this thesis, the uncertainties on eight parameters are
quantified. These uncertainties are then propagated through the measurement chain
with the Monte Carlo propagation method. In this case, the propagated uncertainties
will depend on the emission line used to retrieve the temperature, so both compu-
tations are performed and compared. Each source of uncertainty is also propagated
individually to be compared with each other.
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Chapter 1

Introduction

The atmospheric reentry is a critical part of a space mission. During this phase, the
spacecraft enters the Earth’s atmosphere at a speed of 8 km/s. The spacecraft should
slow down to a sufficiently low speed to open its parachute. This enormous amount
of kinetic energy is converted into heat during the reentry (see Fig 1.1). That heat is
a real threat for the spacecraft as it could result in its disintegration and even in the
death of astronauts in the case of a manned mission. To avoid that, thermal protec-
tion systems are used in order to absorb the heat and evacuate it by radiation or by
ablation of the shield. Some spacecrafts however do not need to come back to earth
and once they reach the end of their life span they reenter the atmosphere to prevent
an overpopulation of space debris in space. The heat from reentry is used to disin-
tegrate these spacecraft so that they are not a threat for the population on the ground.

Figure 1.1: Atmospheric reentry of NASA Orion spacecraft

1.1 Plasma wind tunnels

The design of spacecrafts intended to reenter the atmosphere requires a very good un-
derstanding of the physical reactions and constrains applied on it during reentry. After
60 years of space exploration, a lot of data have been collected during atmospheric
reentry such as temperatures, pressures, mechanical loads, etc. However, after the
design of a component, its behaviour during reentry should still be tested. As a test
in real condition is extremely expensive, a solution has been developed to perform on
ground testing at lower costs. This solution consists of plasma wind tunnels that can
reproduce part of the conditions of an atmospheric reentry [10]. In the facility, thermal
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protection materials can be placed downstream of the plasma jet to simulate a reentry.

There are different types of plasma wind tunnels. In the past, more attention has
been paid to arc and induction plasma wind tunnels. This type of facility makes it
possible to carry out tests on a large scale and at high enthalpy [2]. However, the flow
in these arc-jet facilities is polluted by the erosion of the electrodes and the electrode
particles in the flow have an impact on the chemical reaction on the thermal protection
material.

Induction type facilities are another type of plasma wind tunnel that have much bet-
ter flow purity and can be used for the study of aerothermochemistry and gas–surface
interaction phenomena [15]. The Plasmatron (Fig 1.2) at the von Karman Institute
(VKI) is one of these facilities. With a power of 1200 kW, it is the most powerful
induction-coupled plasma wind tunnel in the world. Inside the Plasmatron chamber,
a plasma can be generated at temperatures up to about 10000 K and at a pressure
between 5 and 200 mbar1. The speed of the jet is low subsonic (Ma ≈ 0.1) and mea-
sured by a water-cooled pitot tube. This low speed implies that the pressure is almost
constant in the chamber. Local thermodynamic equilibrium can be assumed in the
chamber because the flow has a low velocity and the pressure is sufficiently high [8].
The plasma is air heated with inductively coupled plasma (ICP) torch. The torch
generates an oscillating magnetic field from a radio frequency current. By Faraday’s
law, this magnetic field induces an oscillating electric field in the torch. In the plasma,
the free electrons are accelerated by this electric field and their temperature increases.
The other particles will finally increase their temperature by colliding with the high
energy electrons.

Figure 1.2: Plasmatron facility at VKI.

The Plasmatron is used to study the reaction of a material exposed to the con-
ditions of an atmospheric reentry. Different plasma flow properties can be used in
order to simulate reentries in different atmospheres [16]. A precise characterization
of the flow is necessary to accurately define the test conditions. The method used in
this thesis to measure the thermodynamic properties of the flow is optical emission
spectroscopy [12]. It offers the advantage of being non-intrusive and remains simple
to perform with respect to other methods such as laser induced fluorescence. This

1https://www.vki.ac.be/index.php/research-consulting-mainmenu-107/facilities-other-menu-
148/plasma-facilities/71-1200-kw-induction-plasmatron
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technique has been used to measure the temperature inside the Plasmatron for sev-
eral operating conditions by Fagnani et al. [7]. Several spectrum measurements were
performed to increase the accuracy of the results.

1.2 Optical emission spectroscopy

Optical emission spectroscopy consists in measuring the spectrum of the light emitted
by a body. Due to the temperature, the atoms and molecules constituting the body
will emit photons at different wavelengths depending on the species. The emitted light
is spectrally dispersed in order to measure the energy emitted in each wavelength. This
technique can be used to determine the chemical composition of a body. By measuring
the intensity emitted in some wavelengths and if the temperature is known, it is even
possible to determine the concentrations of the components. In this case, optical
emission spectroscopy is used to retrieve the temperature of the plasma [3]. It can be
done because the components of the plasma are known and their concentrations can
be deduced assuming local thermodynamic equilibrium.

Optical emission spectroscopy has the advantage of measuring the parameters of
the plasma without interacting with it. Unfortunately, this method also has the main
drawback that the detected radiation is integrated over the line of sight. This means
that the emitted light passes through the plasma and might be reabsorbed or scat-
tered. However, this phenomenon is very small in this case and will be neglected for
simplification. The fact of having a plasma almost transparent implies that the back-
ground light is also measured. Finally, the temperature is computed from the local
emission but only the radiation integrated over the line of sight is measured as it can
be seen in Fig 1.3. An Abel inversion is applied to the measurement to retrieve the
local emission. This Abel inversion is a mathematical development that relates the
local values to the integrated values.

Figure 1.3: Schematic of the local emissions that are integrated over a line of sight to result
in the measured radiance [9].

At very high temperatures, the atoms and molecules present in the plasma radiate
their energy by means of three mechanisms [7]. The first mechanism is continuous
radiation, which means that it can radiate in all wavelengths within a certain range.
It happens when free electrons are deflected by the electric field produced by the ions
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(free-free transitions). The second mechanism is also continuous radiation and is pro-
duced when the free electrons recombine with ions (bound-free transitions). The third
mechanism is discrete radiation, which means that it can only emit energy in certain
wavelengths. It is produced when atoms and molecules transit from a high energy state
to a lower energy state (bound-bound transitions). This transition produces a pho-
ton that has the same energy as the difference of energy between the two states. This
implies that one type of transition will always produce photons of the same wavelength.

In practice, the light emitted by the plasma is focused by mirrors and spectrally
resolved by a grating. The spectrum is finally measured by a camera. The image
should be processed in order to recover the emission of the plasma. This processing
includes cleaning the signal from background noise, calibration and Abel inversion.
The details of each of these steps are explained in chapter 2. Once the emission of the
plasma has been computed, the temperature can be recovered in different ways.

A first method uses simulations of plasma emissions. From databases of atom tran-
sitions, a simulation of the spectrum emitted by the plasma can be performed. This
simulation takes as input the temperature, the pressure and the chemical composition
of the plasma. By assuming LTE and fixing the pressure, a spectrum can be fitted to
the measurement to retrieve the temperature. However, this method requires a very
accurate simulation of the spectrum and can therefore be very demanding in computa-
tions. For example, the code SPECAIR used at VKI for the temperature computation
is simulating 37 molecular transitions and radiation lines of N, O and C atoms [13].

A second method, which is the one used in this thesis, is based on the discrete ra-
diation of atoms transiting between two states of known energy. The photons emitted
by one type of transition all have exactly the same wavelength. Therefore, they can be
isolated from the other radiations by spectral dispersion and the total energy emitted
by this type of transition can be measured. This quantity of energy depends on the
temperature and the density of atoms. Since the pressure and the molar fractions are
known, the temperature can be computed from this measurement. This technique is
faster to compute than the fitting method because only one emission line is considered
here while the whole spectrum is used for the fitting method, which will make the
propagation of uncertainties a lot less demanding in computation time.

1.3 Objectives and overview

After measuring the temperature of the plasma inside the Plasmatron an uncertainty
analysis is required in order to be confident on these results. For this thesis, a code
for the temperature computation from spectroscopic measurements has been imple-
mented along with an uncertainty analysis. The first objective of this thesis is to
determine the source of uncertainty in the temperature measurement. For each un-
certain parameter, the uncertainties should be quantified as well as their probability
distribution (uniform, Gaussian, etc). The second objective is to propagate those un-
certainties through the measurement chain and to evaluate their impact on the final
measure of the temperature.

One similar uncertainty quantification has been performed by Laux [14] for a differ-
ent ICP facility. That analysis accounted for the uncertainty on three main parameters:
the uncertainty on the measurements, on the absolute calibration and on the Einstein
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coefficient. The propagation of these uncertainties has been done by analytical de-
velopments. In this thesis, the same three uncertainty sources are taken into account
but in order to increase the accuracy of the results, five additional sources of uncer-
tainty are considered. Furthermore, the propagation method differs since a numerical
method is adopted for this thesis. The use of a numerical method is much easier to
implement than an analytical method because it does not depend on the measurement
procedure and the code can be used as a black box. However, it has the drawback of
requiring a lot of computations. Nevertheless, an analytical propagation inspired by
Laux has been performed in this thesis in order to be compared with the results of the
numerical method.

This work is divided in five main parts, the first being this introduction. In the
second chapter, the procedure of the temperature measurement is described. Every
step is explained with an example of a temperature computation from a real spectrum
measurement taken at the Plasmatron. The third chapter is dedicated to the theory of
uncertainty quantification. The characterization of uncertain parameters is explained
as well as the Monte Carlo method used to propagate those uncertainties. In the fourth
chapter, each step is recomputed by taking the uncertainties into account. The sources
of uncertainties are first identified and measured. Afterwards, the uncertainties on the
parameter are propagated using the Monte Carlo propagation method. Then, in the
last section of the same chapter, the uncertainties on the temperature measurement
are computed considering all uncertain parameters combined. The different sources of
uncertainties considered in this analysis are also summarized and compared. Finally,
some conclusions are drawn in the last chapter with recommendations for further work.
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Chapter 2

Measurement procedure

The details of the temperature measurement by optical emission spectroscopy are de-
scribed in this chapter. The process is detailed at each step with an example of a
temperature computation from a real spectrum measurement taken at the Plasma-
tron. In this chapter, the computation is performed without taking any uncertainties
into account.

The measurement of the temperature can be divided in a few simple steps that
are computed one after the other. This chain can be summarized in a flowchart with
inputs, computation boxes and outputs as displayed in Fig 2.1. Here, the uncertain
inputs are represented with blue boxes and the computation boxes are in red. Only
parameters with uncertainties are displayed. All the measurement steps are explained
in the following sections.
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Figure 2.1: Flowchart summarizing the chain of the temperature measurement of the plasma
inside the Plasmatron with the blue boxes as uncertainty inputs and the red boxes as com-
putation boxes.
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2.1 Measurement of the spectrum

The first step consists in measuring the light emitted by the plasma and only one slice
of the jet is measured at a time. A slit is used for the slice selection and can be shifted
along the jet direction to measure a different slice. Then, mirrors and a diffraction
grating are used to resolve and focus the spectrum on a CCD camera as depicted in
Fig 2.2. The detector is a PI-MAX3 from Princeton Instruments that has a size of
1024 by 1024 pixels and a pixel size of 12.8 µm.

Figure 2.2: Schematic of the experimental set-up, showing the Plasmatron chamber and
the components of the spectral imaging system [7].

An example of an image taken by the camera is depicted in Fig 2.3. The horizontal
axis corresponds to the wavelength of the photons, measured in a range of 100 nm.
The vertical axis is the spatial dimension of the jet. The camera is placed in order to
have the jet at the center of the detector. The camera measures the photons emitted
by the atoms and molecules constituting the plasma. These components emit photons
following the three mechanisms explained above.
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Figure 2.3: Example of a raw spectrum image taken by the camera.

The signal measured by the camera is disturbed by a background noise. This noise
is due to some reflections of the light by the walls but also to the infrared emission of
the camera or the walls. The signal is then a combination of the plasma emission and
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this background noise. The noise can induce a small bias in the final determination
of the temperature, it is therefore subtracted from the spectrum measurement. The
noise is measured by taking a spectrum image of the Plasmatron chamber under the
same conditions, without the plasma. This background spectrum is then subtracted
from the raw image to obtain a spectrum accounting only for the photons emitted by
the plasma.

2.2 Calibration

The image obtained after the first step is a 2D matrix where each pixel takes a numeri-
cal value that characterizes the intensity of the radiation. However, this value depends
on the parameters of the camera such as the exposure time or the gain that ampli-
fies the signal. Thus, a calibration must be performed in order to retrieve the value
of the radiance of the plasma which is defined as the energy emitted by the plasma
and received by a given surface, expressed in W/(m2 nm sr). In order to perform
the calibration, the plasma is replaced by a tungsten lamp of a known radiance. The
same configuration and conditions are used to take a spectral image of the lamp. The
radiance of the plasma is then retrieved from the formula:

Lmeas
λ =

Smeas/∆tmeas

Scalib/∆tcalib
Lcalib
λ , (2.1)

where Lmeas
λ is the unknown radiance of the plasma and Lcalib

λ is the radiance of the
tungsten lamp in W/(m2 nm sr). These two radiances are both a function of the
wavelength. Smeas and Scalib are the intensities measured at each pixel, for the plasma
and the tungsten lamp, respectively, after the background subtraction. Finally, ∆tmeas

and ∆tcalib are the exposure times of the camera. These two times are different be-
cause the tungsten lamp is much more radiative than the plasma and ∆tcalib must be
shorter to avoid saturation of any pixels of the camera. As the calibration depends
on the wavelength and the signals, this calibration equation is applied on each pixel
individually.

2.3 Line selection and integration

The calibrated measurements are a function of the wavelength and the radial coordi-
nate. However, only a small portion is useful for the next steps. Indeed, the atoms in
the plasma that transit between two states emit light in a very particular wavelength
and only the measurement of one type of transition is required for the computation of
the temperature.

The first step is to choose the atom transition and therefore the corresponding
emission line. Here the best choice would be the atomic transition that corresponds
to the strongest emission line. This line has the higher signal to noise ratio and will
therefore provide a better precision. In order to better see the strength of the different
lines, the central line of Fig 2.3 is plotted in Fig 2.4. In this figure, four emission
lines can be clearly identified. The three small peaks at 742.4, 744.2 and 746.8 nm
correspond to the emission of nitrogen atoms transiting from a high energy electronic
configuration to a lower energetic level. The larger peak at 777 nm is in fact the sum
of three different transitions of oxygen atoms emitting in a very close wavelength range
(777.2, 777.4 and 777.6 nm) which is called a triplet.
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Any peak can be used for the temperature computation. Here, this larger peak is
chosen because it has the highest signal to noise ratio. Since the peak is the combina-
tion of three very close emission line, the total radiance of the peak is the sum of the
radiance of the three emission line. A comparison of the temperatures computed from
the peak at 777 nm and the peak at 747 nm is done in section 4.6 in order to study
the effect of a lower signal to noise ratio on the temperature and the uncertainty.
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Figure 2.4: Radiance of the center of the plasma jet as a function of the wavelength showing
four strong emission lines.

In Fig 2.4, it can also be seen that, even if the atoms emit in one given wavelength,
the camera does not measure a perfectly sharp peak. The peak is a bit broadened,
mainly due to the grating and other optical instruments that are not perfect. Because
of this broadening, the radiance must be integrated over a small range of wavelengths
in order to retrieve the total radiance of the emission line.

Unfortunately, the plasma is composed of many atoms and molecules and some of
them emit photons at the exact same wavelength as the peak. This peak is actually
the sum of the emission line and some other small continuous radiations emitted by
molecules. The intensity of the emission line is almost ten times greater than the
intensity of the molecules radiation. It is unfortunately impossible to isolate the radi-
ation of the emission line from the other molecules radiation. The only way to measure
the radiance of the emission line is to estimate these small molecule radiations and
subtract it to the total radiance of the peak. Away from the peak, the radiance mea-
sured is only due to these molecules radiation. Knowing this, the molecules radiation
is approximated by a line that fits the radiations on both sides of the peak. The line
is fitted to the points that are far enough from the peak so that these points are not
influenced by the emission line.

Concretely, the computation is performed as follows: two integration points are
chosen on both sides of the peak. Then, the peak is integrated between these two
bounds in order to retrieve the total radiance. Finally, a line is drawn between the two
integration points and the area below this line (corresponding to the approximation of
the base radiations) is subtracted from the total radiance. Fig 2.5 shows the integration
of the peak of the oxygen emission triplet (three emission lines) with the radiance
that is due to the oxygen radiation (in blue) and the approximation of the molecule
radiations that is called the baseline (in red).
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Figure 2.5: Zoom in Fig 2.4 centered at 777 nm showing the emission intensity of the
oxygen triplet and the baseline emission.

This graph is plotting the radiance for one radial coordinate (the center of the jet)
but the integration should be performed for all radial coordinates. The result of the
integration and the baseline subtraction is then a scalar which is a function of the
spatial coordinate corresponding to the radiance of oxygen atoms for the three types
of transition. This radiance is plotted in Fig 2.6 for all radial coordinates.

In Fig 2.6, a spatial calibration has been performed to convert the spatial coordi-
nate, that has a size of 1024 pixels to mm. It has been measured that this image of
1024 pixels long corresponds to a length of 200 mm. After finding the center of the
plasma which is fixed at 0 mm, the radial coordinate r is computed for each pixel.
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Figure 2.6: Spatial emission of oxygen triplet (Integrated between 776 nm and 779 nm).

A careful attention should be paid to the distinction between Fig 2.5 and Fig 2.6.
Indeed, both functions have a similar shape but have a completely different interpre-
tation. Fig 2.5 is the emission of the oxygen triplet as a function of the wavelength for
one radial coordinate (here the center line). For each radial coordinate, the baseline
and the blue area are computed and Fig 2.6 plot the size of the blue area for each
coordinate. After a certain coordinate (r = ± 50 mm), the signal measured is mainly
due to the baseline radiation and the emission of the oxygen triplet is close to 0.
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2.4 Abel inversion

The light is emitted by the whole volume of the jet which means that the radiance
measured by the camera is the sum of the local emissions on a line of sight.

Figure 2.7: Diagrammatic representation of Abel inversion geometry for observations of
plasma sources with cylindrical cross section. [17]

If the plasma is optically thin and radially symmetric, meaning that it does not
absorb the light it emits, then the radiance measured by the camera is simply the
integration of the local emission and can be computed with the equation:

Lλ(y) = 2

∫ R

y

ελ(r)r√
r2 − y2

dr, (2.2)

where Lλ(y) is the radiance measured on a line of sight, ε(r) is the local emission
depending only on the radius from the center of the jet and R is the edge of the jet
where the emission is assumed to be null.

In this case, the radiance is known since it has been computed in the previous
step and the local emission is needed for the temperature computation. Equation 2.2
should then be reversed to express the local emission as a function of the radiance
leading to the Abel inversion equation:

ελ(r) = − 1

π

∫ R

r

dLλ(y)

dy

dy√
y2 − r2

. (2.3)

Unfortunately, this equation cannot be applied directly because the derivative of the
radiance Lλ(y) must be computed and this term is very sensitive to noise. The curve
must first be smoothed to account only for the global variation of the curve that is
the variation that is due to the temperature. An example of the radiance and the
smoothing is given in Fig 2.8.

In this figure, it can also be seen that the radiance is not perfectly symmetrical.
Indeed, due to buoyancy, the top half of the plasma is a little hotter (the right part
of the graph) than the bottom part (the left of the graph). This problem is solved by
taking the average of the top and the bottom part. It is mandatory that the smoothed
curve is symmetrical because the Abel inversion can only be applied on a radially
symmetrical profile.
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Figure 2.8: Example of the noisy radiance computed in Fig 2.6 and a smoothing of the
curve.

Now, the Abel inversion equation (Eq. 2.3) is applied to the smoothed curve to give
the local emission which is radially symmetric and thus depends only on the distance
to the center. By symmetry, only one half of the curve is inverted and plotted in
Fig 2.9.

0 20 40 60 80
Radial coordinate, [mm]

0

100

200

300

400

500

600

700

800

Lo
ca

l e
m

iss
io

n,
 [W

/(m
³)]

Figure 2.9: Local emission of oxygen triplet (776 nm - 779 nm).

To recapitulate, Fig 2.8 represents the radiance of the plasma (in W/(m2 sr)) which
is the energy received by the camera. Fig 2.9 on the other hand, represents the local
emission of the plasma (in W/m3) which is the energy radiated by the atoms in all
directions by one unit of volume.

2.5 Temperature computation

An atom in an exited level emits light when changing its state to a less energetic level.
The intensity of this emission is computed from Eq. 2.4 [12].

εu =
Eu − E1

4π
Aunu,i (2.4)
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Where εu is the local emission computed in the previous step. Eu and E1 are the energy
of the two states retrieved from the NIST database1 which provides these values with
great accuracy (on the order of a few percent). The Einstein coefficient Au is the
number of atoms that transit between the two states per second.

From this equation the population of the atoms nu,i is firstly computed. Secondly,
if this population follows a Boltzmann distribution then it can be computed with
Eq. 2.5. The Boltzmann distribution is only valid for plasma in local thermodynamic
equilibrium (LTE), that is achieved when the different species constituting the plasma
(atoms, molecules, electrons, etc) all have the same temperature. In this case, the
ICP torch transmits energy only to the electrons and LTE is therefore not reached in
the heating zone. However, at 100 mbar, the pressure is sufficiently high so that the
electrons rapidly transmit their energy to the other particles and LTE can be assumed
in the chamber. This assumption can lead to uncertainties but they are very difficult
to estimate. Moreover, since the plasma is very close to LTE, these uncertainties are
probably small and for these two reasons, they will not be considered in this thesis.

LTE is then assumed meaning that the population nu,i follows a Boltzmann distri-
bution that is computed with:

nu,i = ni (TLTE, p)
gu,i exp

(
− Eu,i

kBTLTE

)
Qint,i (TLTE)

. (2.5)

gu,i and kB are the degeneracy of the energy level and the Boltzmann’s constant,
respectively. Both are constant given in the NIST database. Qint,i is the internal
partition function and is a function of the temperature only. The ground population ni
is the density of the atoms in the least energised level and depends on the temperature
and the pressure. This population is computed with Mutation++, a library developed
at VKI [18].

The temperature is finally computed with Eq. 2.5 by subtracting nu,i from both
sides and using a root-finding algorithm. The method used is the Newton-Raphson
method where the slope at each iteration is computed by resolving Eq. 2.5 for T
and T+1 K. The temperature is computed for different radial coordinates in order to
retrieve the curve of the temperatures as a function of the radius of the jet as depicted
in Fig 2.10. In this figure, the temperatures computed from the oxygen triplet 777 nm
is plotted along with the temperatures computed from the nitrogen line 747 nm in
order to compare the temperatures computed from different lines.

1National Institute of Standards and Technology. This database contains critically evaluated
NIST data for radiative transitions and energy levels of atoms and atomic ions. [11]
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Figure 2.10: Temperatures of the plasma computed from the three emission lines of oxygen
between 776 nm and 779 nm and from the nitrogen line of 747 nm.

2.6 Validation of the code

The code used to compute the temperature from a spectrum image should now be
validated. On that purpose, an external program called SPECAIR [13] is used to
simulate a spectrum from a given temperature. Afterwards, the temperature computed
from this synthetic spectrum is compared with the temperature given in input to
SPECAIR. The other inputs are the pressure and the mole fractions of molecules
and atoms. SPECAIR is capable of computing chemical reactions and the final mole
fraction of components at a given temperature but only for a pressure close to 1 atm.
For this reason, the validation is performed at a pressure of 1 bar and the final mole
fractions are computed automatically from an initial mixture of 78.8% of nitrogen,
21.18% of oxygen and 0.02% of carbon which correspond to the mixture of the air in
the Plasmatron. The validation is performed for five temperatures: 7300 K, 7000 K,
6500 K, 6000 K and 5000 K. The results are compiled in Fig 2.11 in comparison with
the five input temperatures.

(a) (b)

Figure 2.11: Computation of the temperatures from a synthetic spectrum generated with
SPECAIR.

The validation shows that the code is very good at retrieving the temperatures from
the oxygen triplet 777 nm. However, for the temperatures computed from the nitrogen
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line 747 nm, the errors are larger at lower temperatures. The spectrum generated by
SPECAIR does not need to be calibrated and has no noise. The only approximation in
the temperature computation is the baseline subtraction. The errors on this validation
can therefore be explained by this baseline subtraction. The errors are larger on the
temperatures computed from the nitrogen line because this line radiates less energy
than the oxygen and therefore the signal to baseline ratio is lower. This effect is even
more pronounced for lower temperatures where the radiation of nitrogen is of the same
order of magnitude as the base radiations.

In order to prove that these errors are due to the signal to baseline ratio and the
baseline subtraction, SPECAIR is used to compute the energy radiated by the oxygen
and the nitrogen atoms only and ignoring the baseline radiation. Computing the tem-
peratures from these clean signals leads to Fig 2.12, where the recovered temperatures
now have relative errors lower than half a percent.

(a) (b)

Figure 2.12: Computation of the temperatures from a synthetic spectrum generated with
SPECAIR without the baseline radiation.
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Chapter 3

Theory of uncertainty
quantification

3.1 Modeling of the measurement chain

The program computing the temperature from a spectrum measurement can be re-
sumed as the function:

T (r) = f(x1, ..., xm, r), (3.1)

where the variables xi are the inputs to the measurement chain and T (r) is the com-
puted temperature depending on the radial coordinate. In the temperature measure-
ment, many parameters have uncertainties that lead to an uncertainty in the final
temperature. The first step is to characterize the uncertainties on the inputs. Then,
in a second step, these uncertainties are propagated through the measurement chain
using the Monte Carlo method [6, 19].

3.2 Characterization of uncertainties on inputs

In this analysis, eight uncertainties (the eight blue boxes in Fig 2.1) are considered and
propagated to the temperature computation. Of course, more than eight parameters
have uncertainties and are involved in the temperature computation but only these
eight could have been investigated due to time constrain. However, they are the main
parameters involved in the computation and the other parameters have either small
uncertainties or a small impact on the temperature. The propagation of these uncer-
tainties is done by the Monte Carlo method. It consists in considering all parameters
with uncertainties as random variables:

X = (X1, ..., Xm) , (3.2)

where Xi is a random variable characterizing a parameter. For each random variable
corresponds a probability distribution function PXi

. This function characterizes, for
any given subset A of Rm, the probability PXi

(A) for the random variable Xi to be
equal to this subset A.

For example, the pressure inside the Plasmatron has been measured at 100 mbar
with an uncertainty of 2%. Unfortunately, this uncertainty alone is not a probability
distribution function and assumptions should be made. Many solutions are possible
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but two reasonable choices would be either to consider that the uncertainty of 2% is a
strict bound and that the probability distribution function is constant between these
two bounds as depicted in Fig 3.1. Another solution could be to say that the probability
distribution function is a normal distribution and that the 2% of uncertainty is a
confidence interval corresponding to two times the standard deviation as plotted in
Fig 3.2. This confidence interval has a probability of 95% of containing the real
pressure.

Figure 3.1: Probability distribution
function of the random variable charac-
terizing the pressure assuming a uniform
distribution.

Figure 3.2: Probability distribution
function of the random variable charac-
terizing the pressure assuming a normal
distribution.

3.3 The Monte Carlo propagation method

Considering the temperature computation at one radial coordinate, the measurement
chain can be expressed as a function of the inputs:

Y = f(X1, ..., Xm), (3.3)

with Y that is the random variable characterizing the temperature. The objective
of this thesis is to determine the probability distribution function PY of this random
variable. Probability theory states that [1]:

PY (A) = PX(B) B = {X ∈ Rm : f(X) ∈ A} (3.4)

The probability that the temperature is included in a subset A is equal to the
probability that the inputs are contained in a subset B such that any points in B
results in a temperature included in A. In other words, if a set of inputs has a
probability P1 of being observed, then the temperature computed from those inputs
also has a probability P1 of being observed.

This statement means that taking a random realisation of the set of inputs X
and computing the temperature from these inputs is the same as taking a random
realization of the temperature from its probability distribution function. Performing
this process a large number of time will lead to many random realizations of the
temperature that can be used to compute an estimation of the probability distribution
function of the random variable characterizing the temperature.
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The Monte Carlo propagation method is a very simple way to perform uncertainty
propagation. It has the advantage to be nonintrusive, which means that the code
computing the temperature can be used as a black box since only the inputs vary
and no modifications of the code are required. One drawback of this method is that it
requires a lot of computations. Fortunately, the computation of the measurement chain
takes a fraction of a second and, therefore, thousands of samples can be computed in
a few minutes.
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Chapter 4

Uncertainty propagation through
the measurement chain

In the following sections, the temperature is recomputed by taking the uncertainties
into account where each uncertain input is analyzed independently. First, the source
of uncertainty is discussed and the probability distribution function of the input is
determined. Afterwards, one thousand iterations of the measurement chain are per-
formed by taking a random realization of this input for each iteration while all other
parameters remain constant. The one thousand temperatures computed at the cen-
ter of the jet are then compiled in a histogram plot. Finally, a normal distribution
function is fitted to this histogram and the standard deviation σ of this normal dis-
tribution is computed. For each computation, a confidence interval is provided. This
interval corresponds to the mean temperature plus or minus two times the standard
deviation (Tmean±2σ). By the definition of the normal distribution, this interval has a
probability of 95% of containing the real temperature. In section 4.6, the uncertainty
propagation is applied considering the uncertainty on all parameters combined.

4.1 Measurement of the spectrum

4.1.1 Error due to unsteadiness

A first bias comes from the fact that the plasma is not steady [5]. The plasma is
oscillating with an unknown amplitude at a high frequency. The frequency of the
oscillation is faster than the time of capture of the camera [4]. This means that the
signal measured by the camera is an integration of the intensity of the light emitted
by the plasma over many oscillations. The emission of a plasma as a function of
its temperature follows an exponential shape (Eq 2.4 and Eq 2.5). Therefore, the
temperature computed from the average radiance is not the average of the temperature.
Since the camera can only measure the average radiance, this results in a bias in
the measurement of the temperature. In order to measure this bias, a simulation is
performed considering an oscillating temperature of amplitude A. Then, the oscillating
emission is computed and averaged. Finally, the temperature is retrieved from this
mean emission and plotted in Fig 4.1 for several amplitude of temperature oscillation.
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Figure 4.1: Error in the temperature computed from an oscillating light emission.

This graph plots the error on the temperature computed from the average light
emission with respect to the average temperature. The error computed is always
positive which leads to the conclusion that taking an average of the radiance always
leads to an overestimation of the temperature of a few percent. This bias is not
an uncertainty. Indeed, if the amplitude of the oscillation is known, the bias can be
removed by reducing the temperature by the corresponding error. Unfortunately, since
the amplitude of the oscillation is hard to estimate so this bias will not be considered
on the measurement chain.

4.1.2 Uncertainty on the spectrum image

The CCD camera takes an image of the spectrum emitted by the plasma. It is however
very difficult to characterize the uncertainties of these images. this can be due to the
fact that the camera is not perfect or that some pixels might be dead or saturated. In
addition, some photons can be absorbed or reflected away by the air, the grating or
even the plasma itself. A very simple method used to quantify these uncertainties is
to take more images. In this way, as each image is subjected to the uncertainties, they
are samples of a random variable and for a sufficiently large number of realizations,
it is possible to draw the probability distribution function of this variable. Here, ten
images of the spectrum are provided and are used to estimate the uncertainties.

Now, these ten images could be used directly in the measurement chain by ran-
domly taking one of the ten images at each iteration but using always only the same
ten images is not very representative of the reality. One better way is to generate these
images from a normal distribution. First, the mean and the variance of each pixel are
computed. Then, the intensities of the pixels are randomly generated considering a
Gaussian distribution with the computed mean and variance. A drawback in this case
is that the images are 1024 by 1024 pixels which means that more than one million
values must be generated. Furthermore, the covariance of each pixel with the other
pixels should be computed in order to have accurate random generations. This covari-
ance matrix would be a one million by one million matrix which is simply impossible
to compute. To solve this problem, only two cases of correlation are considered: either
each pixel is independent and the covariance matrix is diagonal or on the contrary
the pixels are fully correlated and the covariance matrix is filled with ones except the
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diagonal. These two cases have the advantage of being easy to compute and of being
the most extreme cases. Therefore, comparing the two will give a good idea of the
influence of the correlation between the pixels on the final uncertainty on the temper-
ature. An example of an image randomly generated considering uncorrelated pixels
is shown in Fig 4.2 next to an image randomly generated considering fully correlated
pixels in Fig 4.3.
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Figure 4.2: Image randomly generated
from the mean and the standard deviation
of the pixels (uncorrelated).
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Figure 4.3: Image randomly generated
from the mean and the standard deviation
of the pixels (fully correlated).

These two images appear to be very similar but in fact they can result in very
different temperature determinations. In order to have a better appreciation of the
variations in these images, the temperature is first computed from each of the ten
sample images and depicted in Fig 4.4. Then, one thousand images considering un-
correlated pixels are generated and the temperatures at the center of the plasma jet
computed from each of the images are compiled in a histogram plot in Fig 4.5. The
same procedure is performed considering fully correlated pixels in Fig 4.6.
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Figure 4.4: Temperature computations
from each of the 10 measurement images.
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Figure 4.5: Temperature at the center
of the jet considering the uncertainty on
the spectrum image for the uncorrelated
case.
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Figure 4.6: Temperature at the center
of the jet considering the uncertainty on
the spectrum image for the fully corre-
lated case.

The ten measurement images yield temperatures in the interval 7180±15 K. For the
uncorrelated case, the normal distribution fitted has a standard deviation of 1.95 K
meaning that 95% of the temperatures are contained in the interval 7177±3.9 K. On
the other hand, for the fully correlated case, the normal distribution has a standard
deviation of 14.75 K meaning that 95% of the temperatures are contained in the
interval 7177±30.5 K. Since the ten measurement images yield temperatures in a
range between these to cases, it can be concluded that the pixels of the spectrum
image have some correlations. The random process that generates the spectrum image
is somewhere between these two extreme cases. In the end, only fully correlated pixel
images are considered since it is the case with the largest range. In this way, the actual
uncertainties are guaranteed to be within the computed range.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.7.

0 10 20 30 40 50
Radial coordinate, [mm]

0

5

10

15

20

25

30

35

Ab
so

lu
te

 e
rro

r, 
[K

]

Uncorrelated case
Fully correlated case

(a)

0 10 20 30 40 50
Radial coordinate, [mm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e 

er
ro

r, 
[%

]

Uncorrelated case
Fully correlated case

(b)

Figure 4.7: Error on the temperature measurement considering the uncertainty on the
spectrum image.

4.1.3 Uncertainty on the background image

For a better accuracy on the results, a background image of the facility without the
plasma is taken and then subtracted from the spectrum image of the plasma. An
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example of a background image is given in Fig 4.8 as well as a histogram plot of all
pixels in Fig 4.9.
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Figure 4.8: Background image of the
Plasmatron facility.
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Figure 4.9: Histogram plot of the pixels
constituting the background image.

The background is not perfectly uniform but the pixels are all included in a range
of approximately 250 photons. That range is actually relatively small compared to
the spectrum image which can go up to 25000 photons captured by pixel for regions
of an emission line. Moreover, the shape of the histogram is nearly Gaussian which
means that the probability distribution function of the background pixels can be ap-
proximated by a normal distribution (the red dotted line). This normal distribution
has a mean value of 567.07 photon and a standard deviation of 23.1 photon.

Now, a random background can be generated by assuming that each pixel follows
this normal distribution. The Monte Carlo method is used to propagate the uncer-
tainties on the background image through the measurement chain. One thousand
iterations are computed considering all other parameters constant. The one thousand
temperatures at the center of the jet are plotted in Fig 4.10 and fitted by a normal
distribution. This normal distribution has a standard deviation of 0.25 K meaning
that 95% of the temperatures are contained in the interval 7177±0.5 K.

The one thousand temperatures at 50 mm from the center are plotted in Fig 4.10
and fitted by a normal distribution. This normal distribution has a standard devi-
ation of 3.95 K meaning that 95% of the temperatures are contained in the interval
5367±7.9 K.
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Figure 4.10: Temperature at the center
of the jet considering the uncertainty on
the background image.
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Figure 4.11: Temperature at 50 mm
from the center considering the uncer-
tainty on the background image.
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The standard deviations of the background pixels are very small compared to the in-
tensities in the spectrum image, explaining why this uncertainty has a minimal impact
on the temperature. However, as the signal to noise ratio decreases, the uncertainty
increases. For example, at the center of the jet, the signal to noise ratio is 44 and the
uncertainties are ±0.5 K. At 50 mm from the center, the signal to noise ratio drops to
2 and the uncertainties rise to ±7.9 K.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.12.
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Figure 4.12: Error on the temperature measurement considering the uncertainty on the
background image.

4.2 Calibration

A calibration is performed on each pixels in order to retrieve the value of the radiance
using the following equation:

Lmeas
λ =

Smeas/∆tmeas

Scalib/∆tcalib
Lcalib
λ (4.1)

Where Lmeas
λ is the radiance of the plasma. Lcalib

λ is the radiance of the calibration
source which is known with an uncertainty. Smeas is the cleared signal measured by the
camera when observing the plasma that is the spectrum image minus the background.
This value has uncertainties as discussed in section 4.1.2. Scalib is the cleared signal
measured by the camera when observing the calibration source that is also subjected
to uncertainties. This signal is a spectrum image of the calibration source minus the
background.

4.2.1 Uncertainty on the calibration image

The uncertainties on the calibration image are computed in the same way as for the
plasma image. Ten spectrum images are taken, then an image is generated from the
mean and the standard deviation of each pixel of the ten images considering a case
with no correlations between the pixels and a case with full correlation between them.

The Monte Carlo method is used to propagate the uncertainties on the calibra-
tion image through the measurement chain. One thousand iterations are computed
considering all other parameters constant.
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The one thousand temperatures are plotted in Fig 4.5 for the uncorrelated case and
fitted by a normal distribution. This normal distribution has a standard deviation of
0.85 K meaning that 95% of the temperatures are contained in the interval 7177±1.7 K.

Fig 4.6 plots the temperatures for the fully correlated case. The normal distribution
has a standard deviation of 7.5 K meaning that 95% of the temperatures are contained
in the interval 7177±15 K.
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Figure 4.13: Temperature at the center
of the jet considering the uncertainty on
the calibration image for the uncorrelated
case.
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Figure 4.14: Temperature at the center
of the jet considering the uncertainty on
the calibration image for the fully corre-
lated case.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.15.
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Figure 4.15: Error on the temperature measurement considering the uncertainty on the
calibration image.

4.2.2 Uncertainty on the radiance of the calibration source

The radiance of the calibration source have been measured with uncertainties. How-
ever, this radiance depends on the wavelength. In the Monte Carlo method, a vector
of radiance is randomly generated from the uncertainties. In the same way as or the
spectrum image, the values of this vector might be correlated with each other. This
correlation is unknown and impossible to determine with precision. In order to ana-
lyze the importance of this correlation, a case with completely uncorrelated values is
considered as well as a case assuming fully correlated values.
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Figure 4.16: Radiance of calibration
source generated considering uncorrelated
random variables.
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Figure 4.17: Radiance of calibration
source generated considering fully corre-
lated random variables.

The Monte Carlo method is used to propagate the uncertainties on the radiance of
the calibration source through the measurement chain. One thousand iterations are
computed considering all other parameters constant.

The one thousand temperatures are plotted in Fig 4.18 for the uncorrelated case and
fitted by a normal distribution. This normal distribution has a standard deviation of
0.7 K meaning that 95% of the temperatures are contained in the interval 7177±1.3 K.

Fig 4.19 plots the temperatures for the fully correlated case. The normal distribu-
tion has a standard deviation of 1.35 K meaning that 95% of the temperatures are
contained in the interval 7177±2.7 K.
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Figure 4.18: Temperature at the center
of the jet considering the uncertainty on
the radiance of the calibration source for
the uncorrelated case.
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Figure 4.19: Temperature at the center
of the jet considering the uncertainty on
the radiance of the calibration source for
the fully correlated case.

When the radiance is randomly generated considering uncorrelated values, it leads
to smaller uncertainties in the final temperature. This is due to the fact that the
uncertainties mostly cancel out after the integration of the emission line in the case of
an uncorrelated vector.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.20.
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Figure 4.20: Error on the temperature measurement considering the uncertainty on the
radiance of the calibration source.

4.3 Line selection and integration

4.3.1 Uncertainty on the baseline subtraction

At this state, only one portion of the calibrated image must be integrated in order
to retrieve the line emission of an atom transition. However, the other atoms and
molecules constituting the plasma radiate energy at different wavelength and the sig-
nal measured is actually a combination of all these radiations. At the considered
wavelength, the radiation due to the atom transition is much stronger than all other
radiations but these radiations should still be subtracted. The baseline is an approx-
imation of the radiation from other atoms and molecules and is subtracted after the
integration. The baseline is a line drawn between the two integration points. The
boundaries of the integration must be far from the peak in order to account for all the
energy of the peak but not too far to have an accurate approximation of the baseline.

In Fig 4.21 and Fig 4.22, an integration range is shown. The range is equal to six
times the width at half maximum of the peak. If this range is smaller, the integration
would not take into account all the energy of the peak. This range can also not be
larger because in this case, the integration of the nitrogen line would be impacted by
another emission line at 744.5 nm as it can be seen in Fig 4.22. This range of six
times the width at half maximum is arbitrary so the effect of an alternative choice of
integration range is studied below.

31



775 776 777 778 779 780
Wavelength, [nm]

0

10

20

30

40
Ra

di
an

ce
, [

W
/(m

² n
m

 sr
)]

Oxygen line radiation
Baseline

Figure 4.21: Emission of the central line
centered at 777 nm showing the emission
intensity of the oxygen triplet and the
baseline emission.
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Figure 4.22: Emission of the central line
centered at 747 nm showing the emission
intensity of the nitrogen and the baseline
emission.

Fig4.23 is a zoom in the left boundary of the integration of Fig 4.21 and shows that
the radiation is very noisy. The baseline is drawn between the two integration points,
so it depends only on these two values and changing these boundaries, even a little,
could leads to a large variation on the baseline.
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Figure 4.23: Zoom in Fig4.21 centered at the left boundary of the integration.

The dependency on the integration bounds can be reduced by averaging the noisy
signal. Instead of taking only two points and drawing a line between them, five con-
secutive points are taken at the left boundary and five others at the right boundary.
Then, a line is fitted through these ten points.

Now the baseline is more accurate but still has an uncertainty. This uncertainty is
evaluated by considering an uncertainty on the boundary. Concretely, the boundaries
are computed by taking six times the width at half maximum of the peak. Then, an
uncertainty of ±0.3 nm is applied to the boundaries. In this way, the baseline will vary
at each iteration of the Monte Carlo method and account for the uncertainty coming
from the approximation of the base radiation.

This uncertainty has a very small impact on the temperature computation because
the signal to baseline ratio is very high. In Fig 4.24 and Fig 4.25, the signal to baseline
ratio is plotted for the different radial coordinates for the oxygen triplet 777 nm and
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the nitrogen line 747 nm respectively. It can be seen that the signal to baseline ratio
is much lower for the nitrogen line 747 nm. Also, in both figure, at approximately
40 mm, the signal to baseline ratio increases while it should continue to decrease.
This is due to the fact that both the signal and the baseline are very weak and are too
affected by noise. The results after 40 mm, when the signal to baseline ratio starts to
increase, are then considered irrelevant.
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Figure 4.24: Signal to baseline ratio of
the emission of oxygen triplet 777 nm.
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Figure 4.25: Signal to baseline ratio of
the emission of nitrogen line 747 nm.

In Fig 4.26, the temperature is computed from the oxygen triplet 777 nm and from
the nitrogen 747 nm. The Monte Carlo method is used to propagate the uncertainties
on the baseline subtraction through the measurement chain. One thousand iterations
are computed considering all other parameters constant. The figure shows that the
uncertainties due to the baseline approximation are much larger for the nitrogen line
where the signal to baseline ratio is smaller. It can also be seen that, after 40 mm,
the temperatures diverge. As explained above, at this distance, the signal is too weak
and the computation are too noisy which explains this divergence.
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Figure 4.26: Uncertainties on the temperature accounting for the uncertainty on the base-
line subtraction (the continue line is the nominal temperature).

The uncertainties on the temperature computed from the oxygen triplet 777 nm
are 7177±7 K at the center of the jet and 5369±8 K at 50 mm from the center. For
the uncertainties on the temperature computed from the nitrogen line 747 nm, they
are 7235±15 K at the center of the jet and 5636±20 K at 50 mm from the center.
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4.4 Abel inversion

4.4.1 Uncertainty on the spatial dimension

During the integration of an emission line, another calibration is performed. The spa-
tial coordinate, which has a range of 1024 pixels, is converted to mm. This calibration
is done by taking an image of a checkerboard pattern. Afterwards, by knowing the
size of the pattern, the pixels are converted to a length in mm. Unfortunately, some
pixels overlap two squares and counting the number of pixels in one square can be an
arduous task as shown in Fig 4.27.

Figure 4.27: Example of a checkerboard pattern used for a spatial calibration.

The Abel inversion computes the local emission from the radiance but the equation
involves the derivative of the radiance with respect to the spatial dimension. There-
fore, an uncertainty on the spatial dimension will leads to an uncertainty on the local
emission. In order to account for this uncertainty, a random variable is added to the
number of pixels counted in one square. This variable has a uniform probability dis-
tribution between -0.5 and 0.5 pixel.

The Monte Carlo method is used to propagate the uncertainties on the spatial
calibration through the measurement chain. One thousand iterations are computed
considering all other parameters constant. The one thousand temperatures are plotted
in Fig 4.28 and fitted by a normal distribution. This normal distribution has a standard
deviation of 0.2 K meaning that 95% of the temperatures are contained in the interval
7177±0.4 K.
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Figure 4.28: Temperature at the center of the jet considering the uncertainty on the spatial
calibration.

The propagated uncertainty is very small because the uncertainty is only one pixel
for the whole image which contains about one thousand pixels.

4.4.2 Uncertainty propagation

The Abel inversion computes the local emission from the radiance of the plasma. The
uncertainties on the radiance computed above should therefore be propagated trough
the Abel inversion. Thankfully, the Monte Carlo method allows a very simple propa-
gation in this case. Indeed, in order to compute the uncertainties on the emission, the
Abel inversion should simply be applied to the radiance without introducing uncer-
tainties, as it is implemented in the measurement chain. The result of the propagation
is plotted in Fig 4.29.
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Figure 4.29: Uncertainty on the local emission of the jet considering the uncertainty on all
parameters.
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The results are now compared to an analytical method. However, there are several
methods that can be used to compute an Abel inversion. In this thesis, the method
used is the Hansen–Law [9] method and unfortunately, it is too complex and impossible
to propagate by an analytical development. Therefore, another method is described
in the next section and implemented for an analytical propagation.

4.4.3 Analytical propagation

Polynomial fitting

In this section, a polynomial fitting is used to compute the Abel inversion of the
radiance. This method has the advantage of being simpler to implement than the
method used previously. It is also possible to propagate the uncertainty by analytical
development as done by Laux in his thesis [14]. A polynomial fitting is used to smooth
the curve of radiance and also allows the equation of the Abel inversion to be very
simple to apply. With Lλ = a0 + a1x+ a2x

2 + ...+ amx
m, equation 2.3 becomes:

ελ(r) =
1

π

[∫ R

r

a1√
x2 − r2

dx+

∫ R

r

2a2x√
x2 − r2

dx+ . . .+

∫ R

r

mamx
m−1

√
x2 − r2

dx

]
(4.2)

The degree of the polynomial is chosen large enough to fit the data well but not too
large to limit the time of computation. The radiance is radially symmetric and then
has a zero slope at the center line. The coefficient a1 is set to zero to satisfy this
condition. Here are some examples of fitting:

Figure 4.30: Fitting of the radiance by
a polynomial of degree 7.

Figure 4.31: Fitting of the radiance by
a polynomial of degree 9.

Figure 4.32: Fitting of the radiance by
a polynomial of degree 10.

Figure 4.33: Fitting of the radiance by
a polynomial of degree 20.
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Particular attention should be paid to the center line because the result of the Abel
inversion is greatly dependent on this value. No difference can be seen between a
polynomial of degree 10 and a polynomial of degree 20 while degree 9 differs slightly.
These polynomials are Abel inverted to retrieve the local emission:

Figure 4.34: Abel inversion of a polyno-
mial of degree 8 (in orange) in comparison
with an other method (in blue).

Figure 4.35: Abel inversion of a polyno-
mial of degree 9 (in orange) in comparison
with an other method (in blue).

Figure 4.36: Abel inversion of a polyno-
mial of degree 10 (in orange) in compari-
son with an other method (in blue).

Figure 4.37: Abel inversion of a polyno-
mial of degree 11 (in orange) in compari-
son with an other method (in blue).

The results are compared to the Hansen–Law method which uses Fourier trans-
forms. After degree 10, the degree is too high and the polynomial starts to fit the
variation due to the noise. This increasing slope at the central line is an error of the
fitting and does not exist in reality. The polynomial of degree 9 gives the closest result
to the first method which is supposed to be the best. This polynomial is therefore
used for the next computations.

Propagation of uncertainty

For a set of data X = (x1, x2, ..., xn)T where xi is a realization of a random variable,
the covraiance matrix is defined as:

ΣX = (X −X)(X −X)T (4.3)

Where X is the mean of all the realizations of the random variable. A linear transform
can be applied to this set of data to give:

Y = AX +B (4.4)
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Now computing the covariance of the new set of data leads to:

ΣY = (AX +B − AX +B)(AX +B − AX +B)T

= (AX +B − (AX +B))(AX +B − (AX +B))T

= (AX − AX)(AX − AX)T

= A(X −X)(X −X)TAT

= AΣXA
T

(4.5)

Both the polynomial fitting and the Abel inversion are linear transform. Therefore,
the covariance matrix can simply be propagated using Equation 4.5.

The polynomial fitted is the function: I = a0 + a2x
2 + ... + amx

m so that a set of
points D = (I1/σd1 , . . . , In/σdn) is a linear function of the fitting coefficients and of a
constant vector:

D = PRF + C =



x21
σd1

x31
σd1

· · · xm1
σd1

...
...

...
...

...
...

x2n
σdn

x3n
σdn

· · · xmn
σdn




a2
a3
...
am

+



a0
σd1
...
...
...
a0
σdn


(4.6)

In Eq 4.6, D is known and the vector of the fitting coefficient is the unknown. The
equation should then be rewritten. After some transformations, the vector of coefficient
is expressed as a function of the radiance:

PTD = PTPRF + PTC

(PTP)−1PTD = RF + (PTP)−1PTC

RF = (PTP)−1PTD− (PTP)−1PTC

(4.7)

Which is a linear transformation with A = (PTP)−1PTD and B = −(PTP)−1PTC.
The covariance matrix of the fitting coefficient is then: ΣRF

= AΣDA
T . Where ΣD is

the covariance matrix of the radiance.

Since the Abel inversion is also a linear transformation, it is again possible to
propagate the uncertainty using the formula: ΣR = AΣRF

AT . The Abel inversion
equation can be written:

R = ARF = − 1

π


∫ R
r1

2xdx√
x2−r21

· · ·
∫ R
r1

mxm−1dx√
x2−r21

...
...∫ R

rn
2xdx√
x2−r2n

· · ·
∫ R
rn

mxm−1dx√
x2−r2n




a2
a3
...
am

 (4.8)

Now that this covariance matrix of the local emission is computed, it can be compared
to the uncertainty computed by the Monte Carlo method. For a more visual compar-
ison, 1000 samples computed with the Monte Carlo method are plotted in Fig 4.38
next to Fig 4.39 which shows 1000 curves randomly generated from the covariance
matrix calculated with the analytical method.
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Figure 4.38: Emission computed after
the abel inversion.
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Figure 4.39: Emission generated using
the covariance matrix propagated.

These two graphs show the same results and therefore validate the two methods.
However, they also show the limitation of the analytical method. For example, around
10 mm, a node appears but is obviously not representative of the reality. Moreover,
the polynomial is bad at fitting the extremity and this fact can be seen after 40 mm
where the emission has some oscillations that are only due to the fitting and do not
exist in reality.

4.5 Temperature computation

4.5.1 Uncertainty on the Einstein coefficient

The equation 4.9 used to compute the population of atoms in the exited state involves
the Einstein Coefficient Au which has been measured and registered in the NIST
database with an uncertainty of 3% [11].

εul =
Eu − E1

4π
Aulnu,i (4.9)

Unfortunately, the database does not provide any information about what this 3%
actually means. It could be a strict bound where the probability is constant within
the interval or the probability distribution function could be a normal distribution
which is more representative of the reality. In this case, the 3% would be equal to
two times the standard deviation meaning that the real Einstein coefficient has a
probability of 95% of being included in the interval ±3%.

The two cases are considered with first, on Fig 4.40, the uncertainty propagated
considering that the Einstein coefficient has a constant probability distribution func-
tion and on Fig 4.41, the uncertainty propagated considering a normal distribution.
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Figure 4.40: Temperature at the center
of the jet considering the uncertainty on
the Einstein coefficient and a constant dis-
tribution.
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Figure 4.41: Temperature at the center
of the jet considering the uncertainty on
the Einstein coefficient and a normal dis-
tribution.

The probability function is nearly constant in Fig 4.40 because the Einstein coef-
ficient varies very little which leads to a propagation through the measurement chain
that is almost linear. Since the uncertainty is computed from a uniform distribution,
the propagated uncertainty is also uniform.

The uncertainty on the temperature is 7177±16 K considering strict bounds and a
constant probability distribution on the input and 7177±13.9 K considering a normal
distribution.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.42.
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Figure 4.42: Error on the temperature measurement considering the uncertainty on the
Einstein coefficient.

4.5.2 Uncertainty on the pressure

The plasma is assumed to be in local thermodynamic equilibrium, therefore, the pop-
ulation of atoms in the exited level follows a Boltzmann distribution computed with:

nu,i = ni (TLTE, p)
gu,i exp

(
− Eu,i

kBTLTE

)
Qint,i (TLTE)

(4.10)

In this equation, Qint,i is a function of the temperature and can be considered without
uncertainty. The ground population is a function of the temperature and the pressure
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and is also considered without uncertainty. Here the pressure inside the chamber is
measured with an uncertainty of 2%.

Like the Einstein coefficient, this uncertainty can be understood in two ways. In
Fig 4.43, the probabilities are propagated considering that the probability distribution
function of the pressure is constant. If it is considered that the probability distribution
function is normal and that the 2% corresponds to two times the standard deviation,
the propagated uncertainty leads to the temperatures depicted in Fig 4.44.
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Figure 4.43: Temperature at the center
of the jet considering the uncertainty on
the pressure and a constant distribution.
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Figure 4.44: Temperature at the center
of the jet considering the uncertainty on
the pressure and a normal distribution.

In fig 4.43, the pressure has a constant probability distribution function because
the propagation is almost linear. The uncertainty in this case is 7177±10.7 K and
7177±9.8 K when a normal distribution is considered.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.45.
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Figure 4.45: Error on the temperature measurement considering the uncertainty on the
pressure.

4.6 Complete problem and final results

4.6.1 Uncertainties on all parameters combined

The temperature can be computed from different emission lines. In Fig 4.46 two
temperature computations using the oxygen and the nitrogen lines are compared with
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the uncertainties on these computations. The uncertainties are propagated using the
Monte Carlo method with ten thousand iterations. More iterations are needed in order
to have an accurate uncertainty propagation because in this case, all eight uncertain
parameters are considered.

Some parameters could be generated in different ways. For example, the spectrum
image and the calibration image have been generated by considering different cases of
correlation between the pixels. For this computation, only the cases that lead to the
largest uncertainties are considered. In this way, the computed uncertainties will be
larger than the actual uncertainties, which ensures that the real temperature will be
included in the computed interval.
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Figure 4.46: Uncertainties on the temperature accounting for the uncertainty on all pa-
rameters (the continue line is the nominal temperature).

The temperatures computed from the nitrogen line at 747 nm diverge after 40 mm
from the center of the jet. This divergence can also be observed in the validation in
section 2.6. In the same section, it was concluded that this divergence was due to the
baseline subtraction which is a bad approximation especially for low signal to baseline
ratios.

Concerning the temperatures computed from the oxygen triplet, the propagated
uncertainties at the center of the jet are plotted in Fig 4.47 next to the temperature
at 50 mm from the center at Fig4.48
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Figure 4.47: Temperature at the center
of the jet considering the uncertainties on
all parameters
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Figure 4.48: Temperature at 50 mm
from the center considering the uncertain-
ties on all parameters

At the center, 95% of the temperatures are included in the interval 7177±38.9 K
while at 50 mm, this interval is 5369±38.1 K. In terms of percentages, that is an
uncertainty of 0.54 % at the center and 0.71% at 50 mm.

Concerning the temperatures computed from the nitrogen line 747 nm, the propa-
gated uncertainties at the center of the jet are 7235±40 K and 5636±44.6 at 50 mm
from the center. In terms of percentages, that is an uncertainty of 0.55 % at the center
and 0.79% at 50 mm.

The maximum error corresponding to two times the standard deviation is computed
for each radial coordinate and plotted in Fig 4.49.
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Figure 4.49: Error on the temperature measurement considering the uncertainty on all
parameters.
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4.6.2 Summary

Each parameter has a different impact on the temperature. To remind, all parameters
considered and their impact on the central temperature are the following:

• Uncertainty on the plasma spectrum image, ± 30.5 K for the fully correlated
case

• Uncertainty on the calibration spectrum image, ± 15 K for the fully correlated
case

• Uncertainty on the Einstein coefficient, ± 13.9 K

• Uncertainty on the pressure, ± 9.8 K

• Uncertainty on the radiance of calibration source, ± 2.7 K for the fully correlated
case

• Uncertainty on the baseline subtraction, ± 0.7 K

• Uncertainty on the background image, ± 0.5 K

• Uncertainty on the spatial calibration, ± 0.4 K

The sum of all these uncertainties is 73.5 which is larger than the uncertainty computed
by considering all the uncertainties. Actually, these uncertainties correspond to two
times the standard deviation and the combined uncertainty is not computed by the
sum of the uncertainties but by:

σtot =

√√√√ n∑
i=1

σ2
i (4.11)

Applying this equation leads to a total standard deviation of σtot = 19.06 K or an
uncertainty of ±38.1 K. This result is much closer to the computed uncertainty which
is ±38.9 K. In this equation, the standard deviations are squared implying that the
larger uncertainties have a larger impact on the temperature than smaller ones. This
means that accounting for more small uncertainties would have a very small effect on
the temperature computation.
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Chapter 5

Conclusion

A data processing procedure was implemented to measure the temperature of the
plasma jet from locally resolved emission spectroscopy measurements. The procedure
focused on the atomic emission of the oxygen and nitrogen lines. The code was val-
idated using a spectrum generated with SPECAIR. The procedure was analyzed at
each step to identify possible sources of uncertainty in the measured quantity. Eight
parameters were investigated: the measurement spectra, the calibration spectra, the
Einstein coefficient, the pressure, the radiance of the calibration source, the baseline
subtraction, the background image and the spatial calibration.

These uncertainties were propagated through the measurement chain using the
Monte Carlo method in order to computed the total uncertainty on the temperature.
The propagated uncertainty depends on the emission line used to retrieve the temper-
ature. If a strong line is used, like the oxygen triplet at 777 nm, the uncertainty is
about ±35 K for all radial coordinates of the jet. If the temperature is computed from
a weaker line however, the uncertainty is close to ±40 K at the center of the jet but
increases to ±45 at 50 mm from the center.

These results can be compared to the uncertainty propagation performed by Laux
[14] on another plasma facility in 1993. In his study, Laux considered the uncertainty
on the measured spectrum, the calibration and the Einstein coefficient and computed
a total uncertainty of about 100 K. This difference can be explain by the fact that
the uncertainties on the parameters were larger at that time. For example, in his re-
port, the Einstein coefficient is given with an uncertainty of 10% while the uncertainty
propagated in this thesis is only 3%.

Among these eight parameters, some uncertainties could not be accurately deter-
mined. In the spectrum images, the correlation between pixels is still unknown but
two different cases were still considered in this thesis. Investigating the correlation be-
tween pixels would lead to a better estimation of the uncertainties on the temperature.
The vector of the radiances of the calibration source also has an unknown correlation
but once more, two correlation cases were implemented. The probability distribution
function of the Einstein coefficient and the pressure is also unknown but a constant
distribution and a normal distribution were both implemented and found to have a
very small impact on the final uncertainty.

Some parameters still have uncertainties that were not investigated in this thesis.
The unsteadiness of the plasma have been discussed but the uncertainties could not be
estimated. Another uncertainty can come from the assumption of local thermodynamic
equilibrium. It has been assumed that the plasma is in local thermodynamic equilib-
rium, but even if this approximation is very close to reality, it involves uncertainties.
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The asymmetry of the plasma is also an uncertainty that was not implemented. Due
to buoyancy, the plasma at the top is a little hotter than the plasma at the bottom.
This problem was solved by taking the average of the top and bottom but this of
course generates uncertainties.

Finally, taking into account smaller uncertainties would not have a meaningful
impact on the total uncertainty since it is equal to the root sum of the squared indi-
vidual uncertainties. This thesis focused on the most significant uncertain parameters.
Therefore, it is a good estimation of the uncertainty on the temperature and allow a
better understanding on the measurement steps that should be improved in order to
increase the accuracy of the temperature computation.
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