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Abstract

The annotation of histological images through different stains is an important task for
diagnosis of diseases such as cancer, but it is also very time-consuming. Despite its
repetitive nature, doing such annotations for a same tissue in several stains still requires
specialized skills to be done. Nevertheless, the usage of computer vision and machine
learning techniques may be used to reduce the time needed to perform this task.

This thesis will try to reduce the time needed by developing methods allowing to use the
annotation from one tissue image and transfer it to its other modalities (i.e. images with
other stains). The annotations considered are freehand polygons, delimiting the area of
interest, and up to 25 stains per tissue are available in the dataset used.

To achieve such a transfer of annotation, several global feature-based and pixel-based reg-
istrations of the whole images are compared. Afterwards, local registrations are performed
following the global ones to enhance the results. Those local adjustments are done either
using a second time the best techniques from the global registration or by performing a
local segmentation using a deep neural network. From those techniques, only the feature-
based methods lead to honorable results, with a second local adjustment achieving either
a much better or much worse registration. Even though the performances are not suf-
ficient to reliably perform the fully automatic transfer of annotations, the feature-based
methods may be used to give an estimate and reduce the interaction required from the
annotator.
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Chapter 1

Introduction

The world is full of information which comes in plenty of flavour. For example, when
an object burns, it is possible to sense it in multiple ways. The most natural way to
perceive it is to see the flame, the smoke and so on. Moreover, it is also possible to smell
the smoke or to feel the heat on the skin. All those channels of perception are called
modalities. When people try to solve a problem by using different available modalities of
a single object or event, they work on a multimodal framework. However, being able to
link such modalities can be very challenging for many reasons such as the difference in
physical units, in resolution or the synchronization of the different available modalities
[1].

Multimodality can be used to accomplish many interesting tasks that can be divided in 5
categories [2]. The first is the representation whose goal is to summarize the information
embedded in multiple modalities into a single object [3]. Then there is the translation
where the objective is to build one modality from another one [4][5][6]. The third one
is the fusion where the information is fused from multiple modalities often to perform
a prediction. This step of fusion can take place at many different levels [7][8]. The
fourth one is the co-learning where other modalities are used at the training to enhance
the comprehension of a first modality, while this first modality will be the only one
available at the prediction step. Finally, there is the alignment which aim at synchronizing
the information embedded in different modalities [9]. The latter is the one that will
be interesting to tackle the given problem. Though, those categories are not mutually
exclusive as an alignment or a translation is often a good start to perform other multimodal
tasks.

Researchers encounter multimodality in many fields. Some are quite natural like audio-
visual multimodality [10] where sounds and images are both modalities used or meteo-
rological monitoring where rain, wind or pressure (among many others) may be used to
create forecast. Multimodality can also be out of the usual human perception field. In
remote sensing, many types of images such as hyperspectral, multispectral, synthetic aper-
ture radar or light detection and ranging can be used in addition to usual optical images
[7][8]. The usage of multiple types of images is also present in the biomedical domain,
especially for histopathology, such as bright-field or second-harmonic generation [3].
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CHAPTER 1. INTRODUCTION

The histopathology is the field on which this work will focus. To be more precise, the
histopathology is "the diagnosis and study of diseases of the tissues, and involves exam-
ining tissues and/or cells under a microscope" to cite the Royal College of Pathologists in
UK[11]. They consider that around 20 millions slices are examined in the UK each year.
An important part of the histopathology concerns the detection of cancer cells and their
seriousness, but it is used for many other diseases/viruses. However, to be able to analyze
the microscopical structure, they often need to use stains (e.g. Fig 1.1). Those stains
allow to highlight different parts of the tissues, different types of cells or different parts
of the cells. It is often useful to consider multiple stains (i.e. multiple modalities) for a
given tissue. In this work, 51 different stains will be used. Moreover, multiple stains can
also be used in a single image. In this category, 45 unique mixings of stains are present
in the dataset that will be used1.

Figure 1.1 – Example of stains that can be used, multiple stains can be used for a single
image. [12]

With the rise of machine learning (and more recently deep learning) techniques, people
have tried to apply those techniques to histopathology. But such techniques often require
the usage of annotated dataset which can be quite troublesome to do. To ease this task,
a software called Cytomine [13][14] has been created.

1Actually, most of the images in the dataset are stained using a mix of different stains.
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CHAPTER 1. INTRODUCTION

The core part of Cytomine is an "Open-source rich internet application for collaborative
analysis of multi-gigapixel images using machine learning". However, the software is also
available for images of more standard resolutions. It allows multiple collaborators to
create annotations of many kinds : bounding boxes, landmarks or freehand polygons (e.g.
Fig 1.2). Those annotations are then available through an API for Python and Java
[15].

Figure 1.2 – Example of freehand polygons’ annotations. In this image two annotations
can be seen, one on the left part and another, highlighted in blue, on the right.

Those features make researchers’ lives easier. Nevertheless, Cytomine aims at making
their lives even easier by doing research and development in machine learning, image
informatics, and big data to enhance the features available.

Recently, they released a new package of features enabling to create image group (Fig
1.3) and linked annotation (Fig 1.4) to enhance the way people can deal with multimodal
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CHAPTER 1. INTRODUCTION

dataset. This allows to visualize them more easily through the web application but also
to detect easily such group through the API.

Figure 1.3 – Example of a few images from the same image group seen through the web
service of Cytomine. The 4 images (from a group containing a total of 17 images) are
stained with different stains’ mixings. The two images at the bottom look similar because
they were stained using a mixing of stains including the stain ca199 in both case.
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CHAPTER 1. INTRODUCTION

Figure 1.4 – Example of linked annotations seen through the web service of Cytomine.
When selecting the annotation in the viewed image, the other annotations (in the other
images from the same image group) of the same region that were linked to this one can
be seen on the left panel.

Annotating such dataset is still very time consuming. The creation of linked annotations
allow to transfer naively an annotation from an image to another of the same image group
by printing the same polygon at the center of the view. As this may save a bit of time,
it is still quite inefficient. Indeed, doing multiple stains of the same tissue is not an easy
task. It involves to manipulate the tissue and it often ends up with the tissue not well
aligned in the different pictures. Moreover, while it is sometimes possible to wash a stain
to use another one, it is a heavy procedure. Most of the time, the different stains are
applied to successive slices of the tissue which leads to non-rigid deformation among the
different modalities. Finally, the images used in histopathology are captured in very high
resolution (several gigapixels). They are known as whole slide images (WSI) and present
opportunities for some applications but should also be manipulated with caution as many
image processing techniques can not deal with such resolution in a reasonable time. For
all those reasons, transferring annotations is thus quite challenging.

Chapter 2 will first present more formally the problem that will be treated and the dataset
used to test the different methods. Then Chapter 3 will provide the required knowledge
to understand the object manipulated and general techniques used in this work. After-
wards, Chapter 4 will describe the exact protocols in which the elements presented in
the previous chapter are used and combined to solve the problem. The different proto-
cols include first global registration using feature-based detector or similarity metric, and
local registration using feature-based detectors again or a segmentation technique based
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CHAPTER 1. INTRODUCTION

on a deep neural network. This chapter will also present the metrics used to assess their
respective performances. Chapter 5 will follow and provide the results of the protocols.
The last two chapters, Chapter 6 and Chapter 7, will respectively present the limitations
and perspectives of this work in a first time, then provide a final conclusion to it.
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Chapter 2

Problem & Dataset

This chapter will focus on describing more formally the specificity of this work. First
the problem tackled will be precised, then the dataset used to experiment the different
methods will be presented.

2.1 Problem specification
This section will try to give a better view of the objective of this thesis. As said in
the previous section, Cytomine has developed a new system of linked annotations within
annotation group. The current tool allows to add an annotation in one of the images and
to paste it, either at the center of the view, either at the same pixel position in the other
image (Fig 2.1). Then a few tools allow basic transformations : translation, scaling and
rotation.

Figure 2.1 – Example of direct transposition. The annotation was done on the left image
and transferred at the same location in the right image (from the same image group). In
this case, the transfer ends up a bit too low and not exactly with the right rotation in
the second image. Such transfer is however often much further than this from the right
location.

The idea here is to improve this feature by providing a more precise way to transfer the
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CHAPTER 2. PROBLEM & DATASET

annotation through the images. More precisely, this work will focus on freehand polygons.
The end goal is to have the annotators to only annotate one of the images from an image
group, then an automatic annotation would be made for all the other images. Afterwards,
the only other interaction from the annotators may be an approbation as quality check
which would be much faster than the actual procedure.

Fig 2.2 shows a simple example of an annotation registration. The first two images are
respectively the fixed image on the left, the one where the annotation is supposed to
be missing, and the moving image on the right, which contains the original annotation.
The two following images show the initial respective places of the annotation to be found
(the ground truth) in the fixed image, the blue one, and the original annotation from the
moving image, the orange one. Finally, the last two pictures show an attempt to translate
the original annotation on the ground truth.

Fixed image Moving image

Figure 2.2 – Simple example of annotation translation. In this case a global registration of
the moving image to the fixed image is performed (the frames represent the border of the
images). Aligning globally the whole tissues (represented by the red and green frames)
allow to also align more or less their substructures (colored in orange and blue).
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CHAPTER 2. PROBLEM & DATASET

In practice, the manually annotated image would contain many annotations (Fig 2.3),
each of them transferred to all the other images in the image groups.

Figure 2.3 – Example of an image with all its annotations that should be transferred to
the other images in its image group.

This is a quite novel challenge for several reasons. First, it needs to work for any type of
organ (lung, bladder,..) as well as tissue subtypes (tumor regions, inflammatory cells, ...).
Secondly, it also involves many different stains. Usual papers dealing with those kind of
images often limit themselves to precise stains, precise organs and/or precise tissues [9]
[16].

Another important part of the challenge is the usage of freehand polygons instead of
simpler annotations such as landmarks (as in the ANHIR challenge [17]). Considering
the non-rigid nature of the transformation for the tissue regions, the best annotation for
the second image may not be achievable through a direct geometric transformation of the
annotation in the first image. As an improvement of the current usage of the pasting,
annotators may however be satisfied with such a transfer of annotation. This work will
try to cover both possibilities to find the best compromise.

2.2 Dataset presentation
The dataset used for this work is called "KI-GASTROINTESTINAL" from the Karolinska
Institute [18] and is currently still in creation process, as it started at the birth of this
project. Carlos Fernandez Moro and Marco Gerling should be thanked for the creation of
the dataset. This however also means that, unfortunately, there will not be other results
to compare this work with at this stage. This section will thus try to be as precise as
possible concerning the current state of the dataset used.

The dataset currently contains 291 images and 454 manual annotations. The details of
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CHAPTER 2. PROBLEM & DATASET

the partition into image groups can be found in Table 2.1 and an example of all the images
present in an image group (PKR-1) is shown in Fig 2.4. The original images are about
100k x 100k pixels.

Image group Number of images Total number of annotations

PKR-1 17 47
PKR-2 25 68
PKR-3 19 35
PKR-4 20 37
PKR-5 20 36
PKR-6 11 33
PKR-7 15 51
PKR-8 19 42
PKR-9 12 41
PKR-10 23 64
PKR-11 17 0
PKR-12 16 0
PKR-13 16 0
PKR-14 17 0
PKR-15 9 0
LVR-1 17 0
CRLM-* 18 0

Table 2.1 – General state of the dataset

Figure 2.4 – All images present in the image group PKR-1
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CHAPTER 2. PROBLEM & DATASET

However, to assess the result of this work, only the annotations that are linked within
images can be used. So here is the summary of such available groups (19), represented
by their unique id, in Table 2.2. Two things should be noted from this table. First, the
number of annotations in a group is sometimes much less than the number of images in
that group (represented by the "/x", x being the number of images in the image group).
Second, some annotations are very small compared to their respective images. This is
shown in the last column which tells the surface of the annotation with respect to the
image (averaged over all the annotation of the groups). Some of the groups have an
average below 0.1% which may represent a much harder task than for the larger ones.
The total number of annotations involved in those groups is also shown at the bottom of
the table, which represent a bit more than half of the total number of annotations. All
annotations from 529103480 (the id of the annotation group) in PKR-1 can be seen in
Fig 2.5 with the annotations organized as their native images in Fig 2.4. The different
annotation groups can also be seen through their first annotation in the appendix at
Section 8.1.

Group ID Image group Number of annotations Average size

526756968 PKR-2 25/25 0.441%
527083083 PKR-2 25/25 0.110%
527268885 PKR-7 15/15 0.125%
529103480 PKR-1 15/17 1.139%
529104012 PKR-1 15/17 0.127%
529108168 PKR-1 2/17 0.018%
529118038 PKR-3 18/19 0.409%
529119861 PKR-3 3/19 0.559%
529121751 PKR-4 20/20 0.302%
529123859 PKR-5 20/20 0.547%
529125794 PKR-6 11/11 0.453%
529129437 PKR-7 12/15 1.439%
529830333 PKR-8 15/19 0.030%
529832314 PKR-9 11/12 0.761%
529836154 PKR-9 2/12 1.841%
529837579 PKR-10 16/23 0.048%
529839089 PKR-10 16/23 0.038%
529840812 PKR-10 15/23 0.224%
529842978 PKR-10 2/23 0.058%

Total / 258 /

Table 2.2 – Description of the annotation groups in the dataset

15



CHAPTER 2. PROBLEM & DATASET

Figure 2.5 – First annotation group (529103480) in the PKR-1 image group. The anno-
tation are ordered as in Fig 2.4 and the two images that does not have the annotation are
left blank.

As stated in Chapter 1, many stains are used in the different images. The stains can
be use either alone or combined with others in a single image with up to 4 stains in a
single image. To understand the impact of the stains on the registration process, results
per stain will be performed as well. But beforehand, some statistics associated to each
stain are presented here. In the Tables 2.3 and 2.4 (45 entries), each image staining is
considered as a unique stain, whatever the number of stains used within it (called mixed
stains here). Examples for each of these stains are available in the appendix at Section
8.2. Then in Tables 2.5 and 2.6 (51 entries) each unique stain is considered, meaning
that an image (and its annotations) containing 4 stains will be classified in these 4 stains
(called single stains here).

The statistics performed for each stain, for both cases, include several things. First the
number of images using this stain is counted. In the case of the mixed stain it will
correspond to the number of image groups with an image using such combination, but for
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CHAPTER 2. PROBLEM & DATASET

the single stain several images in the same image group can use combination including
that stain. The second statistic is the number of annotation. So if an image found above
contains several annotations (linked with at least one other in its image group), they will
all count as one in this category. The third statistic is the number of pairings. The number
of pairings is the number of times an annotation from a moving image using such stain
can be used. In other words, if an annotation from an image stained with muc5ac_muc6
is linked with 10 others annotations (i.e. 10 other stains in the same image group), it will
account for 10 pairings as it is the number of times this annotation will be tested as a
moving annotation by the various algorithms. The last statistic is the average relative size
of the annotations within their image for each stain1. The first three statistics represent
a kind of diversity : the number of organs, the number of tissue subtypes and the number
of other stains it is paired with. The last states more about the "difficulty" as a smaller
region will likely be harder to find, there are however many other factors more subjective
such as how different they are from their surrounding that can not easily be described
with numbers.

1The size is averaged over the number of annotations and not on the number of pairings.
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CHAPTER 2. PROBLEM & DATASET

Stains # of image # of annotation # of pairing Average size

muc5ac_muc6 8 12 190 0.335%
wt1_ca125 10 15 234 0.405%
ki67_p16 1 2 48 0.268%
smad4 6 10 172 0.360%

ki67_vim 8 12 199 0.344%
p53_cd34_cald_ck19 9 12 190 0.484%

pdl1_cd8 1 2 48 0.268%
pdl1 6 8 133 0.481%

p53_d240_cald_maspin 9 19 234 0.429%
p40_ck5 2 3 67 0.355%

muc2_muc1 7 11 165 0.339%
p63_ck17 4 8 130 0.264%

he 8 13 175 0.521%
ent1 4 6 112 0.507%

ck20_ck7 7 11 189 0.306%
ck17_ceam 10 15 234 0.401%
chra_cd56 4 7 128 0.257%

ceam 1 2 48 0.281%
cdx2_ca199 7 11 185 0.371%
cd146_ngfr 10 15 234 0.408%
cd68_ca199 6 8 136 0.367%
cd15_ck19 1 2 48 0.300%
hmga2_ck19 7 11 180 0.326%

Table 2.3 – Mixed stains statistics in the dataset [1/2]
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CHAPTER 2. PROBLEM & DATASET

Stains # of image # of annotation # of pairing Average size

cd3_cd20 6 9 144 0.454%
cd3_actinsm 2 3 65 0.292%
cd4_cd8 2 3 39 0.518%
cd68_ck18 1 2 25 0.762%

ck18_actinsm 3 4 49 0.534%
foxp3 1 1 14 0.162%
m30 1 1 14 0.176%
mpo 1 1 14 0.178%

chroma_cd56 1 1 19 0.298%
ck5_cd10 2 4 63 0.152%

berep4_ema 1 1 19 0.547%
cd10 1 1 19 0.547%

ck19_ck18 1 1 19 0.547%
d240_ck18 1 1 19 0.547%
maspin 1 1 19 0.547%
mesoth 1 1 19 0.547%
muc5ac 1 1 19 0.547%
muc6 1 1 19 0.547%
pdx1 1 1 19 0.547%
cd4 1 1 10 0.453%
cd8 1 1 10 0.453%

trypsin 1 3 44 0.103%

Table 2.4 – Mixed stains statistics in the dataset [2/2]
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CHAPTER 2. PROBLEM & DATASET

Stain # of image # of annotation # of pairing Average size

muc5ac 9 13 209 0.352%
muc6 9 13 209 0.352%
wt1 10 15 234 0.405%
ca125 10 15 234 0.405%
ki67 9 14 247 0.333%
p16 1 2 48 0.268%

smad4 6 10 172 0.360%
vim 8 12 199 0.344%
p53 18 31 424 0.450%
cd34 9 12 190 0.484%
cald 18 31 424 0.450%
ck19 18 26 437 0.405%
pdl1 7 10 181 0.438%
cd8 4 6 97 0.424%
d240 10 20 253 0.434%

maspin 10 20 253 0.434%
p40 2 3 67 0.355%
ck5 4 7 130 0.239%
muc2 7 11 165 0.339%
muc1 7 11 165 0.339%
p63 4 8 130 0.264%
ck17 14 23 364 0.353%
he 8 13 175 0.521%
ent1 4 6 112 0.507%
ck20 7 11 189 0.306%
ck7 7 11 189 0.306%

Table 2.5 – Single stain statistics in the dataset[1/2]

20



CHAPTER 2. PROBLEM & DATASET

Stain # of image # of annotation # of pairing Average size

ceam 11 17 282 0.387%
chra 4 7 128 0.257%
cd56 5 8 147 0.262%
cdx2 7 11 185 0.371%
ca199 13 19 321 0.369%
cd146 10 15 234 0.408%
ngfr 10 15 234 0.408%
cd68 7 10 161 0.446%
cd15 1 2 48 0.300%
hmga2 7 11 180 0.326%
cd3 8 12 209 0.413%
cd20 6 9 144 0.454%

actinsm 5 7 114 0.430%
cd4 3 4 49 0.502%
ck18 6 8 112 0.594%
foxp3 1 1 14 0.162%
m30 1 1 14 0.176%
mpo 1 1 14 0.178%

chroma 1 1 19 0.298%
cd10 3 5 82 0.231%
berep4 1 1 19 0.547%
ema 1 1 19 0.547%

mesoth 1 1 19 0.547%
pdx1 1 1 19 0.547%
trypsin 1 3 44 0.103%

Table 2.6 – Single stain statistics in the dataset[2/2]
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Chapter 3

Theoretical background

In the theoretical background chapter, the different technical contents required to un-
derstand this work are developed. The first three sections describe general purpose or
academical contents whereas the last gets deeper in the specific state of the art tech-
niques/models used.

3.1 Computer vision
In this section, several generalities about how to deal with digital images, transformations
and other computer vision tools will first be explained. Then the two main frameworks
of the registration, pixel-based and feature-based, will be presented.

3.1.1 Image representation

A picture is like a glimpse of the world. However, whereas the world is continuous, it is
not affordable to represent such a glimpse continuously on digital memory. The solution
to settle this issue is thus to limit an image to a set of points organized as a matrix, each
point having its own value.

The following problem is to represent colors. The usual way to represent physically a color
is through its wavelength (roughly from 380nm to 750nm for the visible spectrum). But
the colors perceived are a mixing of several wavelengths at their own intensities, which
is again continuous. The idea this time is to mimic the human eyes. The human eyes
possess three types of cones whose responses to wavelengths vary. Those three responses
are commonly simplified to red, green, and blue. There are many other ways to estimate
colors through colorspaces [19] but the RGB one is the most common, and most cameras
are designed to perceive colors through those three color channels with Bayer filter [20].
The image is now represented by a tri-dimensional matrix where the two first dimensions
are the width and the height and the third represents the different color channels (Fig
3.1).
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Figure 3.1 – RGB representation of an image in a tri-dimensional matrix. The depth is
used to store the different color components.
Credits : Diane Rohrer

Afterwards, one may want to convert an RGB image to a grayscale image, thus turning
the three color channels into a single one. Such a conversion may be useful in image
processing for several reasons. The main ones are that it is enough to encompass the
useful information, to identify features such as edges for example, and that it avoids
to treat less useful information, focusing on what is important. Doing this leads to a
significant gain in complexity (for the task as well as for the time). Grayscale can be seen
as a representation of the luminance, which is itself roughly the brightness of a pixel. As
the perception for red, green, and blue of the brightness is not equal at equal intensities,
the following weighted average has been empirically found by researchers :

Grayscale = 0.2126 ·Redlin + 0.7152 ·Greenlin + 0.0722 ·Bluelin (3.1)

However, there is another factor. The eye is more sensitive to variation in low intensity.
In order to make a better usage of the memory allocated to a color, they are usually
stored using gamma compression [21]. To apply the formula above, one should first
revert the gamma compression process through gamma expansion to recover the linear
values of the three channels. The non-linearity of the process makes it quite heavy, so
most applications prefer to use the ITU-R 601-2 luma transform (3.2) which is a linear
approximation applied directly to the pixels RGB values.

Grayscale = 0.299 ·Red+ 0.587 ·Green+ 0.114 ·Blue (3.2)

Finally, the last kind of image used in this work is the binary mask. In this case the image
contains a single channel (as for grayscale), but the values are either 0 or 1. Such images
are often used for segmentation purpose, where the pixels corresponding to the object of
interest in another image are represented by 1′s in the binary mask while irrelevant pixels
are set to 0′s (Fig 3.2).
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Figure 3.2 – Example of an image and a mask highlighting an object/a region of interest

3.1.2 Coordinate systems & Transformations

In geometry, points are represented through their (x,y) coordinates in a cartesian system
(Fig 3.3). This system is unfortunately not sufficient to perform efficiently transformation
of space. A new representation, the homogeneous coordinates(3.3), is introduced to solve
that issue.

(x, y) ≡ (x, y, 1) = (λx, λy, λ) (3.3)

Figure 3.3 – Cartesian coordinate system
Credits : Khan Academy

With the homogeneous coordinates, one can easily represent any transformation from a
point x to a new point x′ through a 3x3 matrix (for 2D images) which will multiply
the original point x (3.4). This process can be repeated as much as wanted. So if
multiple successive transformations T1, T2 and T3 have to be performed, one may simply
compute T = T3 ·T2 ·T1 (with T1 the first to be applied) and directly multiply by the
matrix T obtained instead of doing 3 vector-matrix multiplications for each point to
transform.

x′ = T · x (3.4)
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The main category of transformations is the affine transformation, which preserves the
parallelism and the linearity of the lines. There exist five sub-categories within affine
transformations.

The first one is the translation (3.5). As it does not depend on the current position of
the point, it will use the trailing 1 at the end of the homogeneous coordinates to impact
the values of the transformed x′ and y′.x′y′

1

 =

1 0 tx

0 1 ty

0 0 1

 ·
xy
1

 (3.5)

Figure 3.4 – Example of translation with tx = 1 and ty = 2

The following one is the reflection (3.6) where a symmetry around the axis x and/or y is
performed. The idea is simply to take the opposite value for each x and/or y.x′y′

1

 =

−1 0 0

0 1 0

0 0 1

 ·
xy
1

 (3.6)

Figure 3.5 – Example of reflection (for x values i.e. around y axis)

The third one is the rotation (3.7). This time a rotation of angle θ is performed around
the point (0,0). To perform a rotation around another center, one must combine the
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rotation with 2 translations (one before to center the object on that center and one after
to go back to the initial frame of reference).

x′y′
1

 =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 ·
xy
1

 (3.7)

Figure 3.6 – Example of rotation with θ = 30◦

The fourth one is the scaling (3.8) where every coordinates are multiplied by a given
factor. This means that, for a scaling of 2, the objects will be twice larger and will be
twice as far as they were before from (0,0). When s11 = s22, it is called a uniform/isotropic
scaling. When they are not equal it is called a non-uniform/anisotropic scaling.x′y′

1

 =

s11 0 0

0 s22 0

0 0 1

 ·
xy
1

 (3.8)

Figure 3.7 – Example of scaling with s11 = 2 and s22 = 5
2

The last one is the shearing (3.9). This affine transform is the one responsible for the
change of angle after transformation (whereas parallelism is always conserved).x′y′

1

 =

 1 s12 0

s21 1 0

0 0 1

 ·
xy
1

 (3.9)
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Figure 3.8 – Example of scaling with s12 = 1 and s21 = 0

In general, any affine transform is defined as

a b c

d e f

0 0 1

, and any multiplication of such

matrices keeps this form. This means that any application of affine transform to an
homogeneous point will leave its trailing 1 unchanged.

There however exists another type of transformation known as homography, also known as
projective transformation, where the two 0’s at position T31 and T32 may be non-zero. In
this case the trailing 1 is affected and each transformed point needs to be normalized with
a trailing 1 to recover the cartesian coordinates. This kind of transformation basically
encompasses the possible projections of a plan over another one (Fig 3.9).

Figure 3.9 – Homography example
Credits : OpenCV, Basic concepts of the homography explained with code

The last remark concerning coordinate systems is about how images are stored on com-
puter. While cartesian system is commonly used in geometry, computers (and many
image processing applications) index the images differently. Instead of having the (0,0)
at the bottom left of the image, they chose to start the (0,0) at top left corner instead.
This is done because screens start the rendering from the top left. When dealing with
several sources using both systems, some conversions may be needed to swap from one to
another. The transformations needed in this case are a reflection for y values followed by
a translation again for y of the image height. Such transform is shown in (3.10) and is its
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own inverse, meaning that it is applied for swapping in both directions.

T =

1 0 0

0 −1 HEIGHT
0 0 1

 (3.10)

Additionally, when two images of different heights are superimposed, it also means that
the non-overlapping region is different as the (0,0) are matched. In the cartesian system
case it is the top part of the highest image that does not overlap while in the computer
system case it is the bottom part.

3.1.3 Morphological operations

The mathematical morphology is a theory and technique for the analysis and processing of
geometrical structures, based on set theory [22]. Even though it is applicable to grayscale
images, this section will limit to binary images (such as binary mask presented in the end
of Section 3.2).

The two main basic operators are the dilation and the erosion. The rough idea is to
modify the shape of a polygon by applying another shape, the structuring element B
(which is often a disk), at its frontier. In other words, the structuring element is pasted
with its center on the frontier of the original shape, for all points on this frontier. If the
operator is the dilation, the additional area covered by all those pasting is added to the
shape. For the erosion, every area covered by the pasting which is part of the original
shape should be removed from it. Those explanations may not be totally accurate in
the case of non-symmetric structuring element but such structuring element will not be
needed.

Mathematically, the dilation is written as :

A⊕B =
⋃
b∈B

Ab (3.11)

where Ab is the original shape translated by a vector b, which is a vector starting from
(0,0) and whose endpoint is included in the structuring element (considered itself centered
at (0,0)). So here it is defined as the union of all translations of the original shape where
the vector of translation is limited to the structuring element. This has the exact same
effect than the explanation given above (for a symmetric structuring element).

The erosion is defined in the same fashion as this :

A	B =
⋂
b∈B

A−b (3.12)

This time it is defined as the intersection of all translations of the original shape where the
vector of translation is limited to the structuring element (actually the opposite vector
but it is meaningless for a symmetric structuring element).
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Figure 3.10 – Example of an arbitrary mask (on the left) and its dilation/erosion (respec-
tively on the middle and on the right) by a disk of radius 10

Once those two basic operators are defined, the two others can be directly derived from
them. The first is the closing (3.13) which is a dilation followed by an erosion, using the
same structuring element. The main effects of the closing, with a disk, is to absorb small
holes and to smooth interior corners. The second one is the opening (3.14) which is an
erosion followed by a dilation, again using the same structuring element. For this one, the
effect will be to remove thin parts of the shape and to smooth exterior corners. The effect
of smoothing can be combined by applying successively both operators but the order of
application may impact the final result.

A •B = (A⊕B)	B (3.13)
A ◦B = (A	B)⊕B (3.14)

Figure 3.11 – Example of an arbitrary mask (on the left) and its closing/opening (respec-
tively on the middle and on the right) by a disk of radius 10

3.1.4 Histograms

An interesting measure in image processing is the histogram. The histogram of an image is
a 1D function that counts the number of times each intensity value is present in an image

29



CHAPTER 3. THEORETICAL BACKGROUND

(considering pixel values discretized) as in Fig 3.12. One can also compute a histogram
that counts intensity values included in several ranges that cover the whole intensity space.
Those ranges are often called buckets or bins.

Figure 3.12 – Example of an histogram of an image (256 bins). The occurrence of each
intensity in the image on the left is represented on the bar plot on the right. [23]

When two images are compared, the concept of histogram can be extended to joint his-
togram. This time all pixels sharing the same location in both images are matched by
pair, then the joint histogram is built as a bi-dimensional input function where the first
axis represents the bin in which the pixel from the first image fall and the second axis the
bin in which the pixel from the second image fall. So two pixels sharing the same value
in the first image will always fall in the same bin in the marginal histogram. However,
they may not be in the same bin in a joint histogram with a second image.

3.1.5 Registration

The image registration is simply "the process of spatially aligning two images of a scene/object
so that corresponding points assume the same coordinates" [23]. So registration deals with
pairs of images. The first one, the reference, is called the fixed image. The fixed image is
the one that will never move during the process of registration. The other one is called the
moving image and is the one that will be affected by the transform obtained. There are
two main families of registration algorithms : the pixel-based and the feature-based.
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(a) Fixed image (b) Moving image

(c) Moving image registered to fixed image

Figure 3.13 – Example of a registration. The moving image (on the right) is translated
and rotated such that it is aligned with the fixed image (on the left).

Additionally, the notion of pattern matching can be introduced as the process of finding
an instance of an object in a more global scene. While the application may be slightly
different, the same methods can be applied to both problems.

3.1.6 Interpolations

When a transformation is applied to an image, it is important to remember that the
resulting image will still be stored in a rectangular matrix. There are very few transfor-
mations which will keep all the points of the original image in the rectangular grid after
applying them (translation of a whole number, reflection and rotation of a multiple of
90◦). Most of the time, the points will fall in between four points of the grid (or in the
opposite direction, the points of the grid will fall in between the original image grid). To
solve that issue, it is needed to have an interpolation method for such points.

The simplest method to estimate the value of such points is to use the nearest neighbor
interpolation. As its name says, the principle is to look at the closest neighbor (i.e. the
closest point on the grid, which thus has a known value) and to just take the exact same
value without considering any other point. As it is easy to implement and fast, it is often
a good method when the objective is the rendering. Nonetheless, its discrete nature (a
small variation in the transform may not impact at all the result) can be annoying for
some applications.

The following method is the bilinear one. This interpolator, very roughly, try to approx-
imate the point by doing a linear interpolation in both dimension. Mathematically it
comes as follows.
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Considering the four points (x1, y1), (x2, y1), (x1, y2) and (x2, y2) surrounding the unknown
point (x, y) and the function f(x, y) which is responsible to give the value of a point (x, y) ;
the bilinear interpolation can be written as a weighted mean :

f(x, y) ≈ w11f(x1, y1) + w12f(x1, y2) + w21f(x2, y1) + w22f(x2, y2) (3.15)

where the four weights w11, w12, w21 and w22 are found thanks to the following sys-
tem :


1 1 1 1

x1 x1 x2 x2

y1 y2 y1 y2

x1y1 x1y2 x2y1 x2y2

 ·

w11

w12

w21

w22

 =


1

x

y

xy

 (3.16)

By solving this system, the following solutions are found for the weights :



w11 =
(x2−x)(y2−y)

(x2−x1)(y2−y1)

w12 =
(x2−x)(y−y1)

(x2−x1)(y2−y1)

w21 =
(x−x1)(y2−y)

(x2−x1)(y2−y1)

w22 =
(x−x1)(y−y1)

(x2−x1)(y2−y1)

(3.17)

Those weights can actually be seen as the area covered by the rectangle "opposite to the
point it weights" (over the total area) as shown in Fig 3.14.

Figure 3.14 – Bilinear interpolation weighting. The areas of the colored rectangles repre-
sent the relative weights of the corner point with the same color. [24]

There also exist higher degree interpolators such as the bicubic. They produce smoother
interpolation but require more points (16 instead of 4 for the bilinear interpolation) and
are thus much slower. They will not be covered here but a visual comparison of nearest
neighbor, bilinear and bicubic can be seen in Fig 3.15.
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Figure 3.15 – Visual comparison of interpolators (1D and 2D) [24]

The last interpolator that will be covered is the Lanczos resampling. It is not exactly an
interpolator (even though it could be used as one) in the sense that it is more designed
for resizing image. The Lanczos kernel acts as a low pass filter by using the Lanczos
window. This window will affect the range and the magnitude at which a sample on the
grid will impact the value to interpolate. It is mathematically designed as a normalized
sinc function (3.18) shown in Fig 3.16 where a is the size of the window.

L(x) =

{
sinc(x)sinc(x/a) if− a < x < a

0 otherwise
(3.18)

Figure 3.16 – Lanczos window of different sizes (a = 1, 2 and 3) [25]

The interpolated/resampled values are then constructed from all neighboring samples si
(convoluted with the Lanczos window). The equation (3.19) is a simplification as all
samples are considered but in practice only the samples close enough to not be zeroed-out
by the window are considered for a location x.

f(x) =
∑
si

f(si) · L(x− si) (3.19)

The application in two dimensions is straightforward as L(x, y) = L(x)L(y).
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3.1.7 Pixel-based registration

The pixel-based approach is an iterative approach to the problem. It consists in finding
a registration where the pixels supposed at the same location agreed the most on a given
measure. The general framework can be seen in the Fig 3.17.

Figure 3.17 – Typical metric-based registration framework. The moving image is trans-
formed with the actual transformation parameters and compared with the fixed image
through a similarity/dissimilarity metric. The transform is then optimized according to
the result on the metric. [26]

It includes four main components. The transform (Section 3.1.2) and the interpolator
(Section 3.1.6) have been reviewed in previous sections. The two remainings are the
metric and the optimizer.

The metric is what will allow to assess the quality of a registration. It can be a pixel-
wise comparison or a more complex measure. A simple example of pixel-wise comparison
is the square L2 norm. In this case, all pixels that are supposed at the same location
(after transformation of the moving image) are compared through a square error of their
respective intensities, and the sum for all pairs of pixels is computed. There exist two
categories of metrics : the similarity and the dissimilarity measures. The only difference
between them is that the first should be maximized while the second should be minimized
(though the measure can be moved to the other category by multiplying with −1). The
L2 square norm is typically a dissimilarity measure as we want this error to be as low as
possible such that most pixels at same locations have roughly the same intensity.

The last component is the optimizer, also called search algorithm. It is responsible to
generate the next transformation(s) that will help to find the extremum of the metric.
The main difference here between algorithms is the properties that will be required from
the metric used.

The simplest method, the exhaustive search, does not even care about the value of the
metrics to progress in the algorithm. It predetermines at which position it will sample
the transformation parameters and then picks the best one. Then there is the 0th order
methods that make use of the value of the metrics. There are plenty of methods in this
category such as the coordinate-search method that samples close values at a given step
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distance (within the parameter space), and change to the minimal value if it is smaller than
the current one or reduce the step length until it is too short. There is also the simulated
annealing [27] which mimics the annealing in metallurgy. Here a random neighbor is
picked and is accepted with a probability proportional to how better (or worse) is the
new value and how long the algorithm has been running (the later, the less a worse value
is likely to be accepted).

Then there are higher order search algorithms. the higher the degree, the higher derivative
the algorithm will require. In the category of the first order method, one of the most
popular is the gradient descent which, at each iteration, take a step in the parameter
space in the direction of the gradient (of the metric with respect to the parameters)
proportional to this gradient and a given constant called learning rate. There also exist
variants of the gradient descent as well as higher order method such as the Newton method
for the second degree.

As most pixel-based methods progress by looking at variation of the metric in the close
neighborhood, the choice of the interpolator may be important. The nearest neighbor
interpolator may keep the exact same result for small variation which can be problematic
for some search algorithms, It is thus preferable to select a bilinear or a bicubic interpolator
for those kinds of applications.

To enhance (and speed-up) pixel-based registration, a good practice is to perform it in
multi-resolution. First the images are registered at low resolution to focus on coarse details
and to compute the metrics for less points. Once it is done, the process of registration
restarts at a greater resolution but starting from the transformation obtained at the
previous step, up to the original resolution.

A last point, when performing pixel-based registration, is that one must always pay at-
tention that the metrics are evaluated on overlapping parts of the image. This means
that a step too large in a search algorithm may completely suppress the overlapping, thus
making the algorithm unable to continue and find a solution.

3.1.8 Feature-based registration

The feature-based registration can be decomposed in four main successive steps : the
location, the description, the matching and the fitting.

The first step, the location, aims at finding points of interest in the image, called keypoints.
Such interesting points can be edges, corners, blob1 centers and so on. This operation is
performed separately on both images (see Fig 3.18). It is important that the detection
is invariant to transformations (as most as possible) to have a higher chance to detect a
common keypoint in both images.

1A blob is a group of pixels sharing some properties such as a similar intensity value.
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Figure 3.18 – Example of feature detection. The points represent the different keypoints
identified by the feature detector in both images, but no link between them is done at
this stage.

Once the interesting keypoints are found, they need a descriptor. The descriptor is a vector
that will describe the keypoints detected at the previous step. Two main properties are
required for these descriptors. They need to be transformation invariant as well, such
that similar keypoints in both image are described the same way, but they also need to
be as discriminative as possible such that a keypoint in an image does not have many
matches in the other.

Once those descriptors are computed, they need to be matched as stated above. This is
often done using a brute-force matcher that will simply compare a descriptor from the first
image to each descriptor in the other and find the best match(Fig 3.19). An additional
option, the cross-check, is also possible. It will ensure that, considering descriptor a in
first image and descriptor b in second image, b is the best fit from the second image for
a but a is the best fit from the first image for b as well. If not, the match is discarded.
This method allows to remove a good proportion of false matches while keeping enough
true matches for the last steps. Regarding the comparison measure, it may depend on
the nature of the descriptor. A binary descriptor will probably use the Hamming distance
while a continuous one could use the norm of the vector difference (L1 or L2).

Figure 3.19 – The 20 best matches between keypoints, by comparison of their descriptors,
are shown here. In practice, much more than 20 keypoints are matched together.

The last step after matching the keypoints is to find the transformation parameters that
explain the more accurately those matches. The technique often used for this task is
Random Sample Consensus (RANSAC) [28]. The idea is quite simple. The minimal
number of matches2 that allows to compute uniquely a transform is taken randomly from

2This number will depend on the kind of transform selected i.e. dependent on its degree of freedom.
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the matches pool. This transform is applied to each point of the moving image and then
the "agreement" is computed. A pair of points will agree to the transform if they are
close enough (given a residual threshold) after registration and will be considered as inlier,
while pairs that disagree will be considered as outlier. This process is repeated as many
times as affordable and the transform with the most inliers is kept. The process can
also be stopped if it is highly confident that it has encountered a good model. For this
confidence, RANSAC looks at how many iterations it has already performed and what is
the current ratio of outliers with respect to the number of points. If the probability of
selecting only inliers (in the set used to compute uniquely the model) with such outliers
ratio and such number of trials is higher than a given probability, often 99%, then the
iteration stop and the best model is kept as well. Note that considering a smaller outliers
ratio after the same number of iterations gives a even higher probability as it is "easier" to
pick only inliers with this hypothesis. So the confidence is not only about the probability
to find a model a good as the current one but also any better models.

This algorithm is likely to not consider the remaining false matches. It also highlights
the importance of having well placed keypoints in the location step as the final transform
will only depend on a few points with RANSAC3.

3Some version, including the OpenCV one, also perform a refinement of the model by doing a few
iterations of the Levenberg–Marquardt algorithm.
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3.2 Information theory
This small part will introduce the essential components of information theory to under-
stand the notion of mutual information. This notion will be use as a similarity metric for
the pixel-based registration (Section 3.1.7).

3.2.1 Entropy

The entropy is the unknowness of an event, how uncertain the outcome is. Considering a
random variable X with n possible outcomes and their respective probability P (xi), the
entropy is defined as :

H(X ) = −
n∑
i=1

P (xi) log2 (P (xi)) (3.20)

As an example, X can represent a coin toss in which case the probabilities are P (x =
head) = P (x = tail) = 1

2
. In that case, the entropy is :

H(X ) = −1

2
log2

(
1

2

)
− 1

2
log2

(
1

2

)
(3.21)

= 2

(
−1

2
· (−1)

)
(3.22)

= 1 (3.23)

Actually, it is the highest value that can be obtained with a binary random variable as
can be seen in Fig 3.20. It is quite legitimate as the uniform distribution is the one on
which we can make the less hypothesis on the outcome. This reasoning is valid as well
for random variable with more than two possible outcomes.

Figure 3.20 – Entropy of a binary event. The entropy is maximum when the event is the
more uncertain i.e. when the probability distribution is uniform. [29]

3.2.2 Joint/conditional entropy and mutual information

In probability, there is often more than one random variable involved and they may not
be completely independent. It is thus interesting to have a look at the entropy shared by
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several random variables. Several notions are then derived from the entropy. First there
is the joint entropy H(X ,Y) which is the total entropy encompassed by both variables
X and Y . Then there is the conditional entropy H(X|Y) that depicts the portion of the
entropy of one of the random X conditionally independent of the other random variable
Y . And finally the mutual information I(X ;Y) which is the entropy shared by X and
Y . There are some direct relationships between those notions. For example, the entropy
of X is the sum of the entropy unique to X (the conditional one) and the entropy that
is shared with the other variable Y (the mutual information). Such relationships can be
seen through a Venn diagram shown in Fig 3.21.

Figure 3.21 – Venn diagram of two random variables. The entropy of an event can be
decomposed into the "entropy" shared with another event, the mutual information, plus
the entropy that is conditionally independent of that second event. [30]

One way to write the mutual information, which will be interesting for later, is the fol-
lowing :

I(X ,Y) =
∑

xi∈X ,yj∈Y

P (xi, yj) log2

(
P (xi, yj)

P (xi)P (yj)

)
(3.24)
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3.3 Deep Learning
This section will first introduce the field of machine learning and the notions associated
(training set, bias and variance, ...). Then it will focus on neural networks, deep neural
networks and finally convolutional neural networks.

3.3.1 Machine learning

The machine learning is a part of the the artificial intelligence field. It encompasses the
algorithms that make use of a set of data, the training data, to learn a task. The training
data contains two components. There are the inputs/features which are the part of the
data used to make a prediction, and the output/label/ground truth which is the prediction
that should be made.

The kind of task is also often divided in 2 categories : the classification and the regression.
The former, the classification, aims at determining whether a sample belongs to one class
or another (there can be more than two possible classes). For example, one can try to
classify a set of pictures to determine if a cat is present on the picture. The latter, the
regression, aims at predicting one of several continuous values. A simple instance is the
estimation of a function from a set of experimental points. Here, from a set of (xi, yi)
points where the xi’s are the inputs (which may be multidimensional) and yi’s are the
outputs, the algorithm will try to predict a new value y for a given x whose value has not
been observed empirically beforehand (Fig 3.22).

Figure 3.22 – Estimation ŷ of a function g(x) from a set of 50 empirical points g(x) + ε
[31]

3.3.2 Under-fitting and Over-fitting

Under-fitting and over-fitting often appear when the models used are not appropriate.
Under-fitting appears when the model used is too weak compared to the "function" it tries
to estimate (Fig 3.23a). On the other hand, over-fitting appears when the model is too
complex. In this case, the model will fit the given data very well but the generalization
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will be worse as the model has put too many effort in fitting the known samples (Fig
3.23b).

(a) Under-fitting (b) Overfitting

Figure 3.23 – Estimation ŷ of a function g(x) of degree 3 by a function of (a) degree 1 (b)
degree 10. The first model can clearly not represent the function while the second gives
a too complex solution to explain the empirical points. [31]

This problem can be represented by the bias-variance error tradeoff. The bias can be seen
as how far the estimating model is from the true model given any set of training data.
A high bias thus represents the under-fitting phenomenon as the chosen model can not
encompass the complexity of the training set, whatever it is, because the complexity of the
model is too low. The other parameter, the variance, is an indication of how dependent
from the data is the model. Indeed, the high complexity of the model will fit extremely
well the training data and thus varying very much from one training set to another. This
time the phenomenon linked with a high variance is the over-fitting as the model fits too
much the data. Those are the two main sources of error while training data4. The tradeoff
comes from the complexity of the model chosen that will decrease (resp. increase) the bias
and increase (resp. decrease) the variance as the complexity increases (resp. decreases)
as shown in Fig 3.24. The only way that really allows both bias and variance to decrease
is to increase the number of samples in the training set.

4The third source of error is the noise of the data, but the only way to reduce it is to collect samples
in a more accurate way or to filter out the training set before using it. This is thus not really dependent
on the choice of the model.
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Figure 3.24 – Equilibrium between under-fitting and over-fitting. In the ideal case the
algorithm ends in between the two zones where the generalization error is the lowest. [31]

3.3.3 Neural networks

The neural networks are one type of algorithm in the machine learning field. The most
inner component of a neural network is the perceptron. The principle of the perceptron
is actually very close to the behavior of a real neuron (Fig 3.25). Some stimuli enter
the neuron and, depending on those inputs, may itself produce a stimulus for the next
neurons.

Figure 3.25 – Similarity between a perceptron and a neuron. Several signals enter the
neuron and it can react or not by sending signals to other neurons. [32]

The first type of perceptron σ(x) was indeed built from a sign function where "enough
inputs" leads to a unit signal transferred (3.25). The function σ is called the activation
function.

σ

(
b+

∑
i

wixi

)
=

{
1, if (b+

∑
iwixi) ≥ 0

0, otherwise
(3.25)

where b is the bias, xi the different inputs and wi their respective contribution to the
decision. Among them, the bias b and the weights wi are the parameters of the perceptron
and will dictate the way it reacts to a set of inputs.
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The simplest neural network, the multi-layer perceptron (MLP) [33], is just a succession of
several layers composed themselves of several perceptrons. The more perceptrons/layers
are used, the more complex the model will be. In the case of a function estimation, the
size of the input layer is the number of parameters of the function and the output layer
is of size one and should not be squeezed through a sign() function.

Figure 3.26 – Example of a simple MLP architecture composed of 3 inputs, 2 outputs and
2 hidden layers with 4 neurons each. [34]

3.3.4 Training

With the current structure, the expectation is to inject the input value x at the beginning
of the MLP and to have the appropriate y value at the output after computing the value of
the different intermediate perceptrons. This is called the forward propagation. However,
this result depends on all the biases and the weights of those perceptrons. Those weights
and biases are indeed the parameters (θ) of the MLP and will dictate how it will respond
to an input. They unfortunately, and obviously, do not start with the appropriate values
for the estimation of an arbitrary function.

There is thus a need of a training procedure to determine the value of those parameters.
The first step to do so is to distinguish a good output from a bad one. This is done
through a loss function L(). This function compares the output of the network with the
expected output and grows as the output is worse compared to the expectation. The goal
then becomes to minimize the value of this function with respect to parameters (θ) of the
network.

There are many ways to optimize a function but the one of interest here is gradient
descent. The idea is to find the best step ε to take (in the parameter space) using the
first derivative of the function with respect to those parameters θ around the current
location θ0. The function L() is thus express locally with L̂() (3.26) where the last term
is a penalty that increases as the size of the step increases. λ is a constant controlling
roughly how far the step is allowed to go.

L̂(ε;θ) = L(θ0) + εT∇θL(θ0) +
1

2λ
‖ε‖2 (3.26)

The best step ε to take is thus the minimum of L̂(ε;θ) with respect to ε. From this simple
expression, the value of the minimum can be written as a closed expression by finding
where the gradient with respect to ε is equal to 0.
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∇εL̂(ε;θ) = 0

= ∇θL(θ0) +
1

λ
ε

⇒ ε = −λ∇θL(θ0) (3.27)

From (3.27), an iterative formulation to find the values of θ to minimize L() can be easily
derived :

θt+1 = θt − λ∇θL(θt) (3.28)

The constant λ is called the learning rate and a low learning rate means that the penalty
grows quickly which favors low step, thus leading to slow evolution of θt (i.e. a slow
learning).

Now, this algorithm has to be applied to the MLP introduced before. The important
property to notice from the gradient descent algorithm is the fact that the loss L() has
to be differentiable with respect to the parameters θ. The first condition implied by this
is the direct differentiability of the loss L() with respect to the output ŷ predicted by the
neural network. A very simple example of loss function for regression (e.g. a function
estimator) is square error which is differentiable :

L (ŷ(xi;θ), yi) =
1

2
(ŷ(xi;θ)− yi)2

⇒ ∂

∂ŷ
L (ŷ(xi;θ), yi) = ŷ(xi;θ)− yi (3.29)

To continue the differentiation, a simple case where the final output is a single neuron
whose computation is ŷ = a(l) = b(l) +

∑
iw

(l−1)
i a

(l−1)
i will be considered for the sake

of simplification. In this formula, l is the number of the current layer (the last in this
case), a(l−1)i are the responses of the neurons in the previous layer and w(l−1)

i the weights
associated to each of them in the last neuron. The derivative of the loss with respect to
those parameters of the network can be easily written with the chain rule :

∂L

∂w
(l−1)
i

=
∂L

∂ŷ

∂ŷ

∂w
(l−1)
i

=
∂L

∂ŷ
a
(l−1)
i (3.30)

where ∂L
∂ŷ

can be computed as in the example (3.29), considering the condition men-
tioned above is fulfilled. The value a(l−1)i was obtained previously in the forward propa-
gation.

The derivatives also have to be computed for all neurons in all previous layers.

In general, the responses of a neuron j in layer k can be written as a(k)j = σ
(∑

iw
(k−1)
ij a

(k−1)
i

)
where σ() is the activation function as introduced in (3.25) and w

(k−1)
ij is the weight in
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neuron j from the layer k associated with the response a(k−1)i of the neuron i from the
previous layer k − 1. Actually, the value of the loss L() depends on a weight w(l−1)

ij only
through a(k)j , the derivative can thus be computed using again the chain rule as :

∂L

∂w
(k−1)
ij

=
∂L

∂a
(k)
j

∂a
(k)
j

∂w
(k−1)
ij

=
∂L

∂a
(k)
j

σ′a
(k−1)
i (3.31)

The last thing to compute is thus ∂L

∂a
(k)
j

whose impact on L() occurs through all the neurons

a
(k+1)
i in the following layer k + 1. This is also written with the chain rule as :

∂L

∂a
(k)
j

=
∑
i

∂L

∂a
(k+1)
i

∂a
(k+1)
i

∂a
(k)
j

=
∑
i

∂L

∂a
(k+1)
i

σ′w
(k)
ij

=
∑
i

δk+1
i w

(k)
ji (3.32)

where δ(k+1)
i = ∂L

∂a
(k+1)
i

σ′ which can be computed iteratively from the end of the network as

δ
(k)
i =

∑
j δ

(k+1)
j w

(k)
ij σ

′. The cascading computation of the δ(k)i from the end of the network
is called the backpropagation. The derivatives with respect to any weight can finally be
written directly with the δ as :

∂L

∂w
(k−1)
ij

= δ
(k)
j a

(k−1)
i (3.33)

This procedure allows to perform gradient descent on a neural network efficiently. For
more complex architecture, the computations are summarized in a computational graph as
in Fig3.27. It represents the architecture as a directed graph (without cycles) where the
nodes are the different function applied (such as the σ, the (b+

∑
iwixi) or the loss) and

the arc the different variables (inputs, intermediate variables, weights) in the network.
The chain rule can then easily applied to this graph to compute the derivative of the loss
with respect to any of the variables by performing only local derivation in the functions
multiplied by the derivatives computed further in the graph/network. This procedure is
called the automatic differentiation.
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Figure 3.27 – Example of a computational graph. The black arrows show the forward pass
while the red ones show the backward pass. The circle represent variables (intermediate
or not) and the square the operations that should be differentiable. [34]

A last thing to notice is about the activation function σ(x), and more specifically its
derivative σ′ that appears in the backpropagation as a multiplicator in the chain rule.
The first version presented in (3.25) is unadapted as its derivative is 0 everywhere (except
in 0 where it is undetermined). A few other activation functions have been proposed
since then. The first was the sigmoid which is equal to 1

1+e−x . It is a good one but
it suffers from a problem when dealing with deep neural network. The derivative of the
sigmoid has a maximal value of 1

4
, but this value acts as a multiplicator at each layer. The

propagated gradients thus inevitably tend to 0 as they move backward in the network.
This phenomenon is called the vanishing gradient. The most common used activation
function nowadays is the Rectified Linear Unit (ReLU) which solves this problem. It is
defined as σ(x) = max(0, x). This function has a derivative of 0 in the negative and a
derivative of 1 in the positive (the x = 0 is undefined but often set to 0).

3.3.5 Optimizers & schedulers

While every deep learning optimization is based on the gradient descent algorithm, there
exist some improvements on the initial algorithm. The standard gradient descent with
a given training set is to compute the gradient for each sample, then to average them
before taking a step. However, this operation depends linearly on the size of the training
set which is not a good behavior. Thus the stochastic gradient descent (SGD), where an
update is taken at each sample, is rather used5. All samples are still often process several
times, the processing of each sample once is called an epoch.

The first parameter to play on is the learning rate λ. As stated in the previous section, it
roughly dictates how far the step can be taken. A common practice in artificial intelligence
is to favor exploration in a first time and then to be more restrictive. In the same idea,
schedulers can be used to control the value of λ. Common schedulings are the step decay
(divided after a constant number of epochs) or the exponential decay (modified at each
epoch using a negative exponential decrease).

5To make use of the parallelization, mini-batch are also often used where the update appears after a
fixed number of samples that can be process in parallel.

46



CHAPTER 3. THEORETICAL BACKGROUND

Other techniques have been applied to improve the step considered at each update. One
is the first order momentum. The idea comes from the physic of a ball rolling on a surface
and consists in keeping part of the previous step in the current one as a ball taking speed.
It formulates formally as :

ut = αut−1 − λgt
θt+1 = θt + ut (3.34)

where α is a constant governing how much impact previous steps have on the current one
and gt are the gradients computed at this step. This technique helps escaping local minima
and allows to speed up in straight descent direction. The momentum can also be improved
by computing the gradient gt directly in the position where the momentum will bring the
parameters (e.g. in θt + αut−1) in which case it is called Nesterov momentum. Similarly,
adaptative learning rates such as Adam [35] make used of the second order momentum
(in addition to the first6). This second order momentum represents the magnitude of the
previous steps and divides the learning rate as the friction would do on a ball to keep the
same analogy [36].

3.3.6 Regularization

As stated in Section 3.3.2, complex models are prone to over-fitting. Deep neural networks
are particularly complex models. A way to limit the complexity of the model is to use
regularization. The regularization aims at restraining the values that can be taken by the
parameters to reduce its potential complexity. In neural networks it can be performed by
adding a new term in the loss function (3.35).

Ltot = L+ γ
∑
i

w2
i (3.35)

This new term adds a direct gradient 2γwi to each weight wi in the backpropagation
process.

3.3.7 Data augmentation

Another way to reduce the over-fitting (and under-fitting as well) is to add training
samples. While collecting true new samples may be costly, it is possible to generate
artificial samples from old ones instead. This is called the data augmentation. In the
context of image classification for examples, one can generate random transformations
(rotation, translation, cropping/brightness changes, ...) to the images in the actual dataset
as new samples. Those artificial samples are not as good as true new samples, as they
are just altered version of other images already in the dataset, but they still may help the
network to generalize the problem.

Even though data augmentation can be performed statically before training a network,
the best practice is to used a new more or less altered version of each sample generated
dynamically at each epoch.

6The momentums used are however implemented as an exponential decaying average instead of a
pure accumulation. Bias corrections are also used to stabilize the first steps.
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3.3.8 Convolutional neural networks’ layers

Fully connected layers as in MLP use many weights and are not appropriate for all tasks.
This section will review a few interesting layers when dealing with images as input.

The first type of layer is the convolutional layer. It is defined by a kernel that is represented
as a 3D tensor sliding across the width and the height of the image. It then produces a
2-dimensional feature map whose elements are the piecewise multiplication of the kernel
with the different locations of the image (Fig 3.28). The kernel aggregates neighboring
values weighted with weights that have to be learned by the network. Several kernels can
be stacked at the same layer to produce different feature maps which will be stacked on the
third dimension (as the RGB channels) for the following layers. A standard application
of the kernel will reduce the width and the height of the image as the first valid location
for a 3x3 kernel will be centered on pixel (2,2)7, thus reducing the outputted feature map
by one pixel at each border. This can be avoided if necessary by adding padding 0’s
at the border beforehand such that the first valid center is the first pixel of the image.
One can also reduce willingly the size of the outputted feature map by moving the kernel
of more than one pixel at each application (called the stride). A stride of 2, with the
image padded, will divide by 2 the width and height of the output compared to the input
size.

Figure 3.28 – Example of convolutional kernel. Each part of the input (with overlap or
not) is multiplied point-wise with the kernel block to produce a single value. Those values
are then aggregated in a new channel. [37]

The next type of layer is the pooling layer. It performs a sort of downscaling by also
aggregating groups of neighboring values into a single value. However, the pooling layers
have some particularities compared to the convolution. It does not aggregate values
across channels, the aggregated groups do not overlap (as a convolutional layer with a
stride equal to its kernel size) and they do not have any parameters to learn as the type of
aggregation is predetermined. Two common types of pooling layer are the max-pooling,

7Considering an indexation starting at (1,1)
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taking the maximum value of the group, or the average-pooling, taking the average as its
name suggests.

Then there is the upsampling often achieved with transposed convolution. The approach
is similar to the convolution layer in the sense that a kernel is also learned by the network.
But instead of using the kernel as an aggregator, it will spread each value from the input
in the outputs. If the goal is to double the width and height, the kernel will spread the
values in the output with a stride of 2. Note that upsampling can also be performed with
more classical interpolation methods like the bilinear upsampling in Section 3.1.6 which
does not have to learn parameters. Less parameters means less complexity which may
be a good or bad thing depending on the dataset used and the objective of the neural
network.

The final type of layer, used nowadays in many other types of network, is the batch
normalization [38]. The goal of this layer is to normalize the data at a given layer to
stabilize the behavior of the model8. It is performed by computing a channel-wise com-
putation of the mean and the variance (across the width, height and various samples in
the mini-batch). The values are then re-distributed on a normal distribution of mean 0
and variance 1. This distribution can then be rescaled and shifted to a given mean β and
a variance γ2 which are both parameters to be learned by the network. Concerning the
location of such layers, it was initially recommended to use them before the non-linearity
(e.g. the ReLU activation function), but it is now yet another part of the debates around
the batch normalization.

8There are actually motivation from the weights’ initialization to perform batch normalization linked
to the internal covariate shift. The true impact of that layer is however still not completely understood
even though its effectiveness seems to not let any doubt [39].
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3.4 State of the art
The last section of this chapter is where the state of the art techniques used later are
described, using notions presented in the first three sections. Those techniques regroup
specific feature-based registration techniques, a pixel-based registration metric and the
neural network used to perform segmentation.

3.4.1 Differentiable mutual information

The mutual information (Section 3.2.2) for image registration is defined over the joint
histogram (Section 3.1.4). Whereas intensity values between stains can be quite different,
it is expected that similar tissues/cells always take the same range of intensities within a
stain. Instead of trying to align pixel with similar values, the idea here is to look for a
registration where pixels in a given range for the first image are mostly paired with value
within another single range in the second image. This would means that, knowing the
pixels from the first image, one would be able to predict what would be the value on the
second one i.e. the mutual information is high.

In this context, the joint probability P (M,N ) is defined as the number of samples in the
bin bmn over the total number of samples, where m is the id of the range of values for
the pixel in the first image and n the id of the range for the second one. The marginal
probability of the variableM is directly derived by summation of the joint probabilities
over the variable N (and vice versa).

While this would be enough to apply 0th order search algorithm, the discrete nature of
this joint probability makes it impossible to differentiate, and thus to apply to higher
order method.

Many papers have been published on the subject [40][41][42]. The common idea in those
papers is to compute an estimate of the continuous joint probability through Parzen
windows. This method allows to estimate a distribution from a set of N samples xi
using a positive kernel w(t) ≥ 0 with unit integral (

´∞
−∞w(t)dt = 1) with the following

formula :

pes(x) =
1

N

N∑
i=1

w
(
x−xi
ε(N)

)
ε(N)

(3.36)

where ε(N) is a scaling factor for the width of the window.

With the same methodology, the continuous joint histogram can be estimated :

h(m,n;µ) =
1

εMεF

N∑
i=1

w

(
m− fM (g(xi;µ)

εM

)
· w
(
n− fF (xi)

εF

)
(3.37)

where M and F represent the moving and the fixed image, εM and εF their respective
scaling factor, fM() and fF () the intensity of a pixel at a given location x for the mov-
ing/fixed image, µ are the transformation parameters and g(x;µ) is the transformation
function.
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The continuous joint distribution and the marginal distribution are directly derived from
it :

p(m,n;µ) =
h(m,n;µ)∑

m

∑
n h(m,n;µ)

(3.38)

pM(m;µ) =
∑
n

p(m,n;µ) (3.39)

pF (n;µ) =
∑
m

p(m,n;µ) (3.40)

Then the mutual information can be formulated as in (3.24), or rather the opposite of it
as a gradient descent will be applied, thus solving a minimization problem (whereas the
initial mutual information should be maximized). The detail of the differentiation can
be found in the paper linked above. However, a point to notice in the development is
the fact that the marginal distribution of the fixed image pF (n;µ) depends on µ from
its construction (3.40) although it should not be impacted by it. But fortunately, an
additional constraint on the Parzen window9 allows to remove that effect of coupling. It
is called the partition of unity and states that :∑

x∈Z

w(x+ a) = 1, ∀a ∈ R (3.41)

Knowing these, the last part is to choose a Parzen window w(). A popular choice satisfying
all the conditions mentioned above is to take one of the normalized B-spline functions
βn(x)[43]. The B-spline function of degree 0 β0(x) is defined as the unit square impulse
(3.42) and the higher orders βn(x) are defined as a convolution with the previous order
(3.43). The four first orders can be seen in Fig 3.29.

β0(x) =


1, if − 1

2
< x < 1

2
1
2
, if x = ±1

2

0, otherwise
(3.42)

βn(x) =

ˆ ∞
−∞

βn−1(x)β0(x− t)dt (3.43)

9It actually also impose a condition on the εM and εF stating that m
εM

and n
εF

have to be in Z for all
value of m and n. See the papers for more details.
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Figure 3.29 – Normalized B-spline function up to order 3
Credits [43]

3.4.2 SIFT feature detector

SIFT (Scale Invariant Feature Transform) [44] is a state of the art feature detector used
to perform the two first tasks mentioned in Section 3.1.8, namely the location (finding
keypoints) and the description (finding descriptors).

The location of keypoints is performed through three main steps. First Gaussian blurs
are applied with increasing "magnitude" (more blurred) five times. Then the difference
of successive blurred images is computed (Difference of Gaussians) as in Fig 3.30a. This
DoG is actually an approximation of the Laplacian of Gaussian. The idea here is to detect
sharp changes in intensity that will describe interesting points such as corners. The DoG
has moreover several advantages over the LoG. It is much faster to compute, it is less
sensitive to noise and it is already scale invariant. For the second step, local extrema are
found by taking points where the 8 neighboring pixels in the blurred image and the 9
neighboring pixels at adjacent blur magnitude are all greater or smaller than the point
considered as in Fig 3.30b. The exact location of the point is refined by using a second
order Taylor expansion.
This whole process is repeated for several resolutions (called octave in the paper) to sample
more accurately the scale-space.
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(a) Difference of gausians across scales (b) Finding local extrema

Figure 3.30 – Sift feature detection. The difference of Gaussians is performed between
the different successive blurring magnitudes to find sharp changes in intensities (on the
right). The local maximums of those changes are then found across the DoG.[44]

However, this detection mechanism may also detect uninteresting points. The first cat-
egory of removed points is those with low contrast, which is easy to filter as they are
too sensitive to noise. The seconds are the edges as those are often not so interesting for
feature matching because there may have several successive points on a long edge that
would look similar. The idea to remove those ones is to analyze the curvature in two
perpendicular directions and see if the value is high for both (which is expected for a
corner, whereas an edge will only have one high value). The exact procedure followed by
SIFT is to estimate the Hessian matrix (for second derivatives) with neighboring pixels
and assess that the ratio between the eigenvalues is small enough (as it is possible to do
it faster than computing the eigenvalues themselves).

The last step is to compute the feature descriptor. As stated above, we want it to be scale
and rotation invariant. The first thing to do is actually to assign a scale and an orientation
to each keypoint, such that in the end we can "normalize" our descriptor knowing these
special properties of the actual keypoint. For the scale factor, it is assigned at the detection
step and is proportional to the level of blurring and the resolution (which octave). Now
an orientation have to be assigned. To do so, a window around the keypoint is taken
(sized and blurred according to the keypoint scale factor) and the gradient magnitude
and orientation is computed for all points in the windows (estimated from the 4 neighbor
points). The angular space (360◦) is then decomposed in 36 bins covering 10 degrees
each. Then, according to the orientation computed, each gradient point magnitude is
weighted by a Gaussian circular window around the keypoint (with σ equals to 1.5 times
the scale factor), and summed in the appropriate bin. Once the histogram representing
degree range is computed, the maximum bin is taken and the orientation factor of the
keypoint is estimated by a parabola fitted by this maximum and its 2 neighbors. If it
appears that there is another local maximum (peak) in the histogram that is not the
global maximum but of at least 80% of the maximum found, a new keypoint is created at
the same location and with the same scale factor but another orientation corresponding
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to this other peak. This means that several keypoints can share the same location but
different orientation factors, and this is also the case for the same location and different
scale factors as maximum can be found at the same location but at another DoG10 or at
another octave in the first step.

Finally, the feature vector is computed with a procedure quite similar to the orientation
assignment mentioned above. A 16x16 sample array around the keypoint is taken and
divided in 16 subsquares of 4x4 samples (from the image blurred according to the scale
factor). This sample array is taken of size according to the scale factor as above and
oriented according to the orientation factor (then resized to fit the 16x16 size). Afterwards,
the angular space is divided in 8 bins and a histogram is built for each of the 16 subsquares
by summing the magnitude of the samples11 within them (weighted by a Gaussian circular
window centered on the keypoint, and with σ equals half of the window size used above
to determine the orientation factor). An example with a smaller sample array is shown
in Fig 3.31.

Figure 3.31 – Example of SIFT feature descriptor with a 8x8 sample array divided in 4
subsquares. The gradients are then combined in each subsquare to describe the magnitude
in the eight main directions.[44]

In the end, the 8 values of the 16 subsquares are aggregated in a feature descriptor vector
of 128 values. This vector is also slightly post-processed by normalization to unit length
(to reduce the effect of constant/affine illumination changes), then the values above 0.2
are reduced to 0.2 (to reduce the effect of non-linear illumination changes) and normalized
again to unit vector.

10If 5 scales are used per octave, then two maximum at the same location and from the same resolution
should be at scale 2/5 and 4/5 as they cannot be neighbors in scale according to the way maximum are
found in DoG (and knowing that no maximum are taken from the greatest and lowest scale, as they only
have a single neighbor in scale while the procedure requires a greater and a lower one).

11The magnitude of a sample is actually also weighted by its difference in orientation with the central
value of the bin it is putted in.
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3.4.3 ORB feature detector

ORB (Oriented FAST and Rotated BRIEF)[45] is another feature detector developed by
the OpenCV team [46] which first goal was to provide a feature detector that was not
under patent in opposite to SIFT12[44] and SURF[47]. The ORB detector is actually a
mixing between the FAST keypoints detector [48] and the BRIEF descriptor [49] with
some additional features.

About the FAST detector, the principle is to take a circle of radius 3 around a potential
keypoint and check the 16 pixels on this circle (Fig 3.32), if among them there are at
least 12 contiguous points with intensities all greater (resp. smaller) than the keypoint
value plus a treshold value t (resp. minus that threshold value t), the central point is
considered as a corner. To speed up the process, it starts by looking at 4 extreme points
on the circle and check if 3 of them can be grouped as greater or smaller.

Figure 3.32 – Example of FAST circle used to evaluate a point p. p will be considered as
a keypoint if 12 consecutive pixels among the enumerated ones are all greater or smaller
in intensity than p. [48]

In the case of ORB, FAST-9 is used (looking for 9 contiguous value greater/smaller) and
is applied at multiple scale (to detect features in a scale invariant manner). Then the
features are ranked using the Harris score [50] where the idea is very roughly to check if
a small translation in every 8 directions induces a high change in intensity value (which
is expected from a corner). Only the top N features are kept afterwards. The first main
addition from ORB is the implementation of a rotation compensation. To do so, they
compute the moments of the patch (3.44) and with them they compute the centroid
C (3.45) and the orientation θ (3.46) of the patch. To improve the rotation-invariant
property, they only consider the points within a circle of radius r equal to the patch size

12SIFT patent has expired a bit more than a year ago (March 2020).
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for the computation.

mpq =
∑

(x,y)∈patch

xpyqI(x, y) (3.44)

C =

(
m10

m00

,
m01

m00

)
(3.45)

θ = atan2(m01,m10) (3.46)

The final step is the descriptor and for ORB, it is a binary vector. To determine one of
the value of the descriptor, a simple binary test τ is performed. A pair of points is taken
within the patch (at fixed locations for a given element of the descriptor to be consistent)
and if the first point of the pair as a higher (or equal) value the result is a 0, while a first
point with a lower value will give a 1 (3.47).

τ(x1,x2) =

{
0, if f(x1) ≥ f(x2)

1, if f(x1) < f(x2)
(3.47)

Such choice of pair has been precomputed by randomly taking a first pixel in a Gaussian
distribution around the keypoint, then a second random point in a Gaussian distribution
around the first point with a σ twice the first one. In the case of ORB, 256 features
are computed so this procedure has been done 256 times. Moreover, ORB computes an
orientation for the keypoints, thus the coordinates of the pixel to consider for a test are
rotated to match the orientation of the keypoint (steered BRIEF ). To be more precise,
the rotations of the binary test are also precomputed, to make it faster, and are stored in
a lookup table aggregated by range of 12◦.

However, while the BRIEF original binary tests had a nice property that the tests were
not correlated (i.e. with a mean of 0.5 and a large variance), it was not really the case
anymore for the steered BRIEF. They design an algorithm of greedy search to find an
uncorrelated binary tests set, for all orientations, to recover that property. This final
version is called rBRIEF.

3.4.4 U-net & losses

U-net [51] is a state of the art deep neural network architecture used for segmentation
(e.g. producing binary mask). Its name comes from its U-shape (Fig 3.33).
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Figure 3.33 – U-net architecture with the input image on the left and the outputted
segmentation mask on the right. [51]

The left part is the contracting path reducing the width and height into a feature map of
1
16

of the original size with 1024 channels, and the right part is the expansive path going
back to the initial width and height and number of channels. Each stage of the contracting
path starts by performing two successive convolutions with a kernel of size 3x3 without
padding that double the number of channels (except the first one where the number
of channels is set to 64). Each of the 2 convolutions is followed by a ReLU activation
function. Afterwards, a max-pooling with a 2x2 kernel is used to downsample the image
by a factor of 2 to the lower stage. For the expansive path, it starts with the same double
convolution but the number of channels is divided by 2 instead of being multiplied. Then
a upsampling convolution with a kernel of size two is performed to double the size and the
number of channel is again divided by 2. The output is however stacked with the output
from the end of the "symmetric" contracting path such that the number of channels is
doubled (thus only divided once in the double convolution). The part of the contracting
path concatenated also has to be cropped due to the border pixels lost within unpadded
convolutions. The very last step is a 1x1 convolution used to readjust the number of
channels to 1.

In addition to this architecture, two loss functions will be used. The first one is the binary
cross entropy (BCE). This loss function considers labels y (equal to 0 or 1) and compares
them with a predicted probability p1 to be from the class labelled as 1. The BCE loss is
written as follow :

LBCE(p1(y), y) = − [y · log (p1(y)) + (1− y) · log (1− p1(y))] (3.48)
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In this loss, only one of the two term is effective at a time. If the true class is 0, the first
term is always equal to 0 and the second term becomes − log (1− p1(y)). But as there are
only two classes ; p0 = 1− p1 and the loss is − log p0(y). Similarly, the loss for a sample
with true label of 1 is − log p1(y). In both cases, the loss is equal to 0 when the probability
associated to the true label of the sample is maximal and it increases exponentially as it
goes down. In the case of a binary mask, this is performed on every pixel prediction.

The second loss is the intersection over union (IoU), which will be also used as a metric
to assess performance of the different methods. Here the label 0 is associated to the
background and is not considered as interesting. The important parts are the pixels with
label 1 in both mask and predicted mask. First, the number of pixels labelled as 1 in both
masks are computed as the intersection of the masks. This can be performed by a pixel-
wise multiplication of the labels then summing all values obtained. Second, the number
of pixels labelled as 1 in at least one of the masks is computed as the union of the masks.
This step can be done by summing all the label values in both images and retrieving the
union computed at the step before (as those pixels as been counted twice). The IoU can
finally be computed as intersection

union . As this metric should be maximized, 1 − intersection
union is

taken for the loss.

Using c(x, y) as the true class label and ĉ(x, y) as the predicted label, the loss is written :

LIoU (c(x, y), ĉ(x, y)) = 1−
∑

(xi,yi)∈mask c(xi, yi) · ĉ(xi, yi)(∑
(xi,yi)∈mask c(xi, yi) + ĉ(xi, yi)

)
−
(∑

(xi,yi)∈mask c(xi, yi) · ĉ(xi, yi)
)

(3.49)

However, the network will output prediction as a probability to be labelled as 1 (as in
the previous loss). The final prediction is done by thresholding the probabilities that are
above or below 1

2
. This thresholding is nevertheless not a differentiable operation. The

loss will thus use directly the probability in ĉ(x, y) instead of exact label predictions.
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Protocols & metrics

The Protocols and metrics chapter will present the exact protocols that will be deployed in
order to solve the problem described in Chapter 2, i.e. the registration of two linked anno-
tations within a same image group. This will be done using either only global registration,
with feature-based and pixel-based methods (Section 4.1), or a global registration followed
by a local one, with again feature-based registrations (Section 4.2) or deep neural network
segmentation (Section 4.3). The metrics that will be used to assess the performances are
also described in Section 4.4.

4.1 Single step registration
The first protocols consist in a single registration to align both images. Those registrations
are performed on the images fetched with a maximal size of 512 pixels1. Working on the
original images would take too much time and, additionally, the very local feature may
more disturb the registration due to the highly non-rigid aspect of the slicing. To reduce
the impact of the various stains and speed up the processes, the images are registered
in grayscale. For the degree of freedom of the registration, two cases are tested. For
the different techniques, full affine transform (translation + rotation + scale + shear)
and partial affine transform (withouth shear) are used. As registration procedures, three
techniques are considered.

The first two are feature-based registrations, namely the SIFT detector (Section 3.4.2)
and the ORB detector (Section 3.4.3), with a maximum of 5k features for the latter. The
feature descriptors are then matched using respectively the L2 norm and the Hamming
distance (as the SIFT detector produces continuous descriptors while the ORB detector
produces binary ones) using cross-checking. The 10% worse matching are then removed
to exclude some outliers2. The remaining points are finally used to find a transformation
(with the chosen degree of freedom) with RANSAC. Those operations are performed

1Higher or smaller resolution may be tried for future works, the size of 512 pixels was a good tradeoff
to have a sufficient resolution while removing too local features. The resolution used also often affects the
speed of the method (finding features, computing mutual information) such that a too high resolution
would have made the assessment of the performance much longer.

2The value of 10% should encompass the worse outliers while not removing too many good matches.
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thanks to the OpenCV library [46].

The last technique is pixel-based. As the starting point of the process is important, the
centers of both images are aligned if their resolutions are different (and the center of
rotation of the transform is set to this transform). The images are then registered on
their mutual information (Section 3.4.1) with gradient descent using a learning rate of 1

2
.

This registration is also done in a multi-resolution fashion with 3 scales (from coarse to
fine) and is performed with the SimpleITK library [52].

Once the registration in the downscaled fetched image is found, the original annotation in
the moving image is transformed with the following successive transformations : rescaled
from the moving image original size to its fetched size, reversed on the y axis with the
fetched height (as the annotations are in cartesian system while the transformation are
computed in the computer referential), registered according to the registration found,
turned back to the cartesian system (from the fixed image referential this time) and
finally resized to the fixed image original size.

4.2 Two steps registration
To enhance the registration, a second step is added. The first registration is still performed
as above but only the centroid of the annotation (in the moving image) is registered with
the procedure explained at the end of the previous section. Then two cases are considered :
either a pattern-matching is performed or a "large window" registration.

In the first case, the annotation in the moving image is fetched from the Cytomine API
with a maximum resolution of 512 pixels3. The window fetched in the image is based on
the minimum and maximum values in both axes of the polygon of the annotation (with
a small increment of 30% in both dimensions to have a slight margin from the border
of the annotation). A window is then fetched in the fixed images around the centroid
registered. This time, the window is taken as twice the dimension used for the first
window. Additionally, if this second window is too small, i.e. smaller than 10% of the
original image’s size4, 10% of the original size is chosen (for the dimension that is too
small, both if both are too small). An example of such windows in shown is Fig 4.1.

3The whole images have been fetched in 512 pixels, extracting the annotation directly from this image
would give an image with only a few decades of pixels as width and height which is too small.

4The value of 10% has been empirically found such that most of the annotation whose average size
is smaller than 0.1% of the image size are still visible in the window, while remaining the more local
possible.
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(a) Window moving image (b) Window fixed image

Figure 4.1 – Example of the two windows extracted after the first registration in the
pattern-matching case. The first is restricted to the known annotation in the moving
image while the second is a more global glimpse around the expected location of the
annotation in the fixed image.

In the second case, the same width and height is taken for both fetched windows as 3
times the annotation size (with the same minimum size of 10% of the image size). The
windows are respectively centered on the annotation for the moving image and on the
registered centroid for the second. An example of those windows is presented in Fig 4.2.
The size has been chosen slightly bigger, 3 times instead of 2.6 times5, than in the previous
case. While only the annotation needs to be strictly present in the fixed window for the
pattern-matching case, this method rather expects the greatest overlap between the two
windows in order to obtain good results, a slightly greatest window is thus taken.

(a) Window moving image (b) Window fixed image

Figure 4.2 – Example of the two windows extracted after the first registration in the "large
window" registration case. Both contain the surroundings (a) of the known annotation in
the moving image (b) of the expected location of the annotation in the fixed image.

5In the pattern-matching case, it is the annotation size after being increased by 30% which is doubled.
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The initial annotation is then translated to the referential of the window in the moving
image (i.e. with the moving window bottom left corner), then registered with the same
procedure as in the previous section (but using the fetched and original sizes of the
windows fetched instead of the whole images) then translated again from the referential
relative to the window in the fixed image to the fixed image referential (i.e. with the
opposite of the fixed window bottom left corner).

Those registration can fail within the process. For example, the first registration can give
a transform such that the annotation center in the moving image is registered out of the
fixed image. When this happens, a window can not be downloaded to perform the second
registration and the process must abort. In such cases where the registration can not be
performed entirely, a failure is counted and the worse metric values are taken (i.e. 0 for
the IoU and 1 for the RCM).

4.3 Deep learning approach
Lastly, a deep learning approach is applied for the second local registration instead of
using a second time the same method as it has been done in Section 4.2. The idea is to
used the grayscale square windows in both images (Fig 4.3a and 4.3c) and a mask of the
known annotation in the moving image (Fig 4.3b) to predict a mask of the annotation in
the fixed image (Fig 4.3d).

The dataset is fetched the following way. First the original size of the windows is chosen as
twice the maximum dimension of the annotation size (or 10% of the maximum dimension
of the image if it is smaller). A transformation between both images is first computed
with the single step ORB detector. Then, the square window in the moving image is
fetched with the size discussed above multiplied by 3

2
with a max effective size of 1024

pixels6. This value of 3
2
comes from the worse case rotation where the angle is 45◦+k ·90◦.

In this case, the rotated square should be
√
2 ≈ 1.41 larger to be able to crop a square

(whose borders are parallel to the image’s borders) that is inscribed in the rotated one.
The value of 3

2
should thus gives windows without black padding in cases where the global

scaling is not too extreme.

This moving window (and the moving annotation) finally undergoes the following trans-
formations :

1. The window is resized to its original size and translated to its location in the moving
image, such that the window and the annotation in the moving image are aligned.

2. They are both scaled down according to the scale in which the global registration
has been performed. In other words, if the whole moving image was fetched and
registered with a resolution of 512 pixels while its original size was 2048, the image
was scaled down by a factor of 4 and the same shrink have to be applied to the
window and the annotation before using the global registration found previously.

3. They can finally be registered using the global registration found previously. Note

6A greater resolution is used to avoid the upscaling when the final window will be cropped back a
smaller version and rescaled to 512 pixels.
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that the registration preformed by OpenCV considers the computer representation
(with the (0,0) coordinate at the top left). The annotation, which is in cartesian
coordinates, have to undergo a change of coordinate (relative to the height of the
fetched moving image) beforehand. It must also be turned back to cartesian coor-
dinates as well afterwards. However, as the moving annotation is expected to be
aligned with the fixed annotation in the fixed image coordinate system, the height
of the fixed image have to be used for the second transformation.

4. Both are then rescaled to the fixed image original size. The center of the moving
window is now aligned with the center of the fixed window that will be fetched
(with the original size of the windows determined earlier). The moving window is
also cropped7 such that it recovers the original windows size with its borders parallel
to the image borders. This way the four borders of the windows are aligned as well.

5. When the fixed window is fetched, the image obtained is initially already align with
the (0,0)8 at the corner and scaled down to the 512 pixels size. To simulate the
same behavior for the moving window/annotation (and the fixed annotation used
as ground truth as well), they are translated such that the corner is aligned with
the (0,0) as well then they are also scaled down to the 512 pixels size.

If padding is required, in the case where the square window is fetched partially out of the
image or if the registering transformation is such that the cropping is not fully covered
by the window fetched, the image is padded with 0 (black pixels). The fixed and moving
polygon annotations, already aligned in the window relative coordinate system, are turned
to mask. To do so, all pixels whose centers are included in the polygon are set to 255
(white) while all the others are set to 0 (black).

To speed up the process, the different transformation matrices are pre-multiplied together
then applied to the image/annotation.

7The cropping actually appears at the end as it is not an affine transformation, but the result is the
same as the cropping is done in the final scale of the original window size (i.e. 512 pixels) instead of the
the original windows size as described here.

8The translation and the alignement with the left corner (either top or bottom) is performed in the
coordinate system of the object considered, so the window is treated using the computer coordinate
system while the annotations are treated using the cartesian coordinate system.
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(a) Window moving image (input) (b) Mask moving image (input)

(c) Window fixed image (input) (d) Mask fixed image (ground truth)

Figure 4.3 – Example of the four components of a sample. The input is composed of (a) a
window including the known annotation in the moving image and its surrounding, (b) the
mask of this annotation, and (c) a window of the expected location of the annotation in
the fixed image. The two windows are converted to grayscale such that the three inputs
are stacked as a custom three channels image. The expected output is (d) the mask of
the annotation in the second window i.e. in the fixed image.

Some pairs can not be recovered from this procedure as their registration failed so much
that the window does not exist. In the end, 3948 pairs were fetched from the 4160 possible
ones (considering that a pair of stains can be used twice by swapping the stain for the
fixed and the moving image). Each pair will then be considered as a single sample for
the deep learning algorithm. Note that among them, some still have an empty mask for
the ground truth as the registration was not good enough. To split the dataset between
the train, evaluation and test set, it was mandatory to make a split based on the image
groups and not on the annotation groups9. It has been decided to split it as presented in

9A split for the staining as well would have been ideal but this could not be afforded. Many images
would have been removed to satisfy this additional constraint and the dataset is already not very big.
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Table 4.1 to balance as much as possible the number of annotations in the different image
groups within the same set.

Set Images # of annotation groups # of annotations # of samples

Train

PKR-1

11 158 2506
PKR-2
PKR-7
PKR-10

Eval
PKR-3

3 41 671
PKR-4

Test

PKR-5

5 59 771
PKR-6
PKR-8
PKR-9

Table 4.1 – Set splitting between train set, evaluation set and testing set.

The network U-net (Section 3.4.4) is then used with the PyTorch library10 [53]. The
implementation differs slightly in some place from the original U-net. All the convolutions
are padded to recover a mask of the same size at the end and batch normalization is used
between the convolution and the ReLU layers. Predictions at the end of the network
are turned to probabilities by applying a sigmoid function, then thresholding around the
probability 1

2
to determine if the class should be 0 or 1 (this last step is not applied in

the training as the loss would not be differentiable). Two alternatives for the upsampling
are explored, either the transposed convolution or the bilinear upsampling.

Two losses are also evaluated ; the BCE and the IoU losses (Section 3.4.4). The network is
then trained with the Adam optimizer11 using an initial learning rate of 0.001 (multiplied
by 0.9 every 5 epoch) and a weight decay of 10−8 over 20 epochs with a batch size12 of 1.
Additionally, data augmentation is performed, dynamically at each epoch, with random
affine transform (rotation up to 45◦, translation up to 30% of the size, scaling from 0.8
to 1.2 and shear with factors between -10 and 10)13. The augmentation is performed
separately on the image/mask from the moving image and from the fixed image (an
image and its associated mask however undergo the same transformation).

Depending on the quality of the masks, closing and/or opening (see Section 3.1.3) could
be applied to remove noise or to fill holes within the predicted mask.

10The implementation used is based on the Github Pytorch-UNet.
11As optimizer, some tests have also been done with SGD using different learning rates but the results

were not significantly different. The same goes for the weight decay which has been tried at higher value
up to 10−4 leading to results which were either similar or worse.

12The limitation of Cuda on the computer used did not allow a batch size greater than one.
13The value for the transformations have been empirically designed such that it should simulate several

average registrations for the pairs where the initial registration is pretty good.
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4.4 Metrics
Two metrics are used to assess the performances. The first is the intersection over union
presented as a loss in (Section 3.4.4) where the ratio of the overlap of both polygons with
respect to the total area covered by at least one of them is computed (Fig 4.4). This
measure is commonly used in computer vision tasks such as segmentation.

Figure 4.4 – IoU representation. The left part shows the intersection of the two polygons
while the right part shows their unions. The IoU is then computed as the ratio between
the two found areas. [31][37]

The second metric is a custom-made metric used to discriminate slightly bad registra-
tions from very bad registrations. It is called relative centroid misplacement (RCM) and
evaluate the distance between the centroid of both polygons with respect to the diagonal
size of the fixed image. When two polygons fall one next to each other or very far away,
the IoU is equal to 0 in both cases, but the RCM makes a difference between both.
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Results

This chapter will present the different results obtained using the protocols described in
Chapter 4.

The codes used are available in this Github :
https://github.com/Asefy/Annotation-multimodal-biomedical.

5.1 Single step results
Here below the IoU and RCM for the different annotation groups can be seen in Tables
5.1 and 5.2. The statistics for each group were described at Section 2.2 and an example
for each of them in the appendix at Section 8.1.

In those tables the three methods are presented (ORB detector, SIFT detector and mu-
tual information) either with a full affine transform (FA) or a partial affine transform
(PA). Those can be compared with the inital values (Init) of the metrics as they were
before any registration. The number of pairs corresponds to the possible association
(annotation1; annotation2) −→ (moving annotation; fixed annotation), meaning that a
given pair will be counted twice for both registration directions.
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Group ID # of pairs Init ORB PA ORB FA SIFT PA SIFT FA MI PA MI FA

526756968 600 0.028 0.820 0.757 0.724 0.651 0.325 0.025
527083083 600 0.004 0.597 0.530 0.539 0.481 0.181 0.004
527268885 210 0.044 0.299 0.330 0.243 0.216 0.102 0.040
529103480 210 0.121 0.770 0.743 0.701 0.680 0.261 0.118
529104012 210 0.029 0.609 0.551 0.504 0.454 0.169 0.028
529108168 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
529118038 306 0.042 0.801 0.772 0.797 0.754 0.306 0.023
529119861 6 0.0 0.877 0.894 0.817 0.776 0.053 0.0
529121751 380 0.028 0.688 0.637 0.619 0.557 0.386 0.028
529123859 380 0.046 0.864 0.835 0.832 0.743 0.231 0.044
529125794 110 0.158 0.836 0.864 0.824 0.844 0.332 0.127
529129437 132 0.327 0.755 0.773 0.710 0.644 0.439 0.281
529830333 210 0.011 0.427 0.328 0.405 0.360 0.029 0.014
529832314 110 0.059 0.809 0.808 0.865 0.864 0.177 0.051
529836154 2 0.0 0.813 0.881 0.918 0.755 0.0 0.0
529837579 240 0.001 0.415 0.441 0.412 0.347 0.035 0.001
529839089 240 0.0 0.415 0.441 0.433 0.396 0.044 0.0
529840812 210 0.003 0.532 0.546 0.483 0.430 0.092 0.005
529842978 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Global 4160 0.041 0.655 0.624 0.609 0.555 0.217 0.036

Table 5.1 – IoU per annotation groups for one step registration
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Group ID # of pairs Init ORB PA ORB FA SIFT PA SIFT FA MI PA MI FA

526756968 600 0.123 0.004 0.007 0.027 0.044 0.086 0.124
527083083 600 0.126 0.004 0.008 0.030 0.050 0.087 0.127
527268885 210 0.044 0.016 0.022 0.069 0.147 0.038 0.047
529103480 210 0.145 0.004 0.005 0.013 0.018 0.116 0.139
529104012 210 0.146 0.007 0.009 0.014 0.021 0.117 0.143
529108168 2 0.089 0.023 0.033 0.027 0.026 0.015 0.100
529118038 306 0.248 0.010 0.017 0.012 0.033 0.217 0.242
529119861 6 0.135 0.001 0.001 0.003 0.004 0.101 0.130
529121751 380 0.094 0.019 0.020 0.024 0.051 0.058 0.092
529123859 380 0.089 0.002 0.003 0.017 0.064 0.079 0.105
529125794 110 0.034 0.002 0.002 0.003 0.002 0.030 0.044
529129437 132 0.040 0.008 0.011 0.014 0.075 0.033 0.045
529830333 210 0.045 0.033 0.062 0.187 0.110 0.041 0.050
529832314 110 0.198 0.018 0.017 0.012 0.011 0.219 1.396
529836154 2 0.368 0.004 0.002 0.002 0.008 0.416 0.418
529837579 240 0.146 0.057 0.056 0.062 0.069 0.113 0.170
529839089 240 0.148 0.057 0.056 0.062 0.071 0.119 0.271
529840812 210 0.140 0.033 0.031 0.034 0.049 0.110 0.182
529842978 2 0.290 0.203 0.200 0.197 0.209 0.322 0.350

Global 4160 0.122 0.016 0.019 0.037 0.055 0.096 0.166

Table 5.2 – RCM per annotation groups for one step registration

The results show first that the feature detectors outperform the pixel-based method used,
with an advantage for the ORB detector. The pixel-based method is showing awful
results and is actually very unstable (with the full affine version being even worse than
the initial metrics). On the other hand, the performances of the feature detectors are
quite impressive considering that they work on the pixel value despite the different stains
used (even though the images are processed in grayscale). Moreover, they are about 5
times faster than the pixel-based method, with a maximum of 5000 keypoints kept for the
ORB detector which is already quite a high setting. The value of 5000 has been chosen
as keeping all keypoints tend to give the best result. In this resolution and those kind
of images, the number of features often range between 2000 and 4000. The registration
process with partial affine has been also tested with a maximum of 2000 keypoints and
the results were slightly lower with a global IoU score of 0.633 and a global RCM of
0.018.

For the degrees of freedom of the transform, it seems that restricting to partial affine leads
to better results than with the shearing. Both of the above observations are supported by
the IoU and the RCM obtained, consistently higher for the IoU and lower for the RCM
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for the three methods (on the global average).

About the annotation groups, the annotations with an average size below 0.1% (529108168,
529830333, 529837579, 529839089, 529842978) tend to have worse results for the IoU but
also for the RCM which is more surprising. In particular, the last group (529842978) with
two annotations has a particularly high RCM (0.2). This can however be explained by
the fact that the tissue is duplicated thrice on one of the two images as can be seen in Fig
5.1. While the annotation on the first image is only on one of the three duplicates, the
registration process aligns one of the two others with the single tissue in the second image
(obviously containing the linked annotation). The IoU is thus of 0 and the RCM depend
on the distance between the "good" tissue, with the annotation, and the duplicate whose
registered with the tissue in the second image.

Figure 5.1 – Images in last annotation group. The organ is duplicated thrice in the first
image such that a successful registration has only one chance out of three to be done with
the duplicate containing the annotation.

Another factor that may impact the registration processes is the fact that the fetching
of images from Cytomine replaces some transparent areas with black pixels as in the
pictures above (Fig 5.1). Features are detected on the corners of the frontier between
black and white pixels. As they are not very discriminating, many should be filtered by
the cross-checking but the ones that are kept are among the top matches as can be seen in
Fig 5.2. Hopefully, the worse matches are removed with such sorting but the scoring does
not impact the RANSAC algorithm. If enough features are used, those false features will
be removed by it. The fact that those borders get such keypoints have been discovered
late as most annotations used at the early stage of this project did not suffer from those
black pixel effects. They do not seem to alter that much the registration process thanks to
RANSAC. If further works tend to show a more significant impact, one may try to replace
black pixels by white pixels. This may help the SIFT detector. On the other hand, the
ORB detector will likely rank them lower (as the Harris score is based on the derivatives)
but they will keep the same descriptors (or rather the "opposite" descriptor in the binary
sense) as the actual white already present in the image is likely not a perfect white.
The binary tests will then always give the same kind of results, and thus the matching
will remain as perfect as before. The maximum number of features should probably be
restricted to a lower value in ORB to have them removed before the matching process.
However, it has been said earlier that lowering the number of features kept within ORB
also decreases the performances. This would suggest that the cross-checking associated
with RANSAC is efficient to filter those keypoints.
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Figure 5.2 – Features matched at black borders (top 20 matches are shown). None of
those matches corresponds to the true transformation.

In Fig 5.3, a few examples of registration with partial affine transforms found with the
ORB detector are shown. Even though some are really well registered (a), most have a
good overlap but suffer from the local variation with respect to the whole tissue (b-c-d-
e). These are the annotations expected to be improved by the second local registration.
Lastly, some are already very poorly registered (f) and will obviously not be enhanced
by a second local registration as the true annotation will not be present in the locality
encompassed by the window taken in the fixed image.
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(a) 526756968 (b) 529129437 (c) 527083083

(d) 529830333 (e) 527268885 (f) 529832314

Figure 5.3 – Examples of annotation registrations with the ORB detector and partial
affine transform. The plots are captioned with their annotation group such that the
corresponding subtype of tissue can be seen in Section 8.1.

5.2 Two steps results
Tables 5.3 and 5.4 show the results of the IoU and the RCM for the ORB and SIFT
detector (with a partial affine transform) used in two steps, either for pattern-matching
methodology (2P) or the "large window" one (2L). Those can be compared with the initial
value for the metrics as well as with the results for the ORB detector using a partial affine
transform, the best one at the previous step.
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Group ID # of pairs Init ORB PA ORB 2P ORB 2L SIFT 2P SIFT 2L

526756968 600 0.028 0.820 0.290 0.673 0.222 0.523
527083083 600 0.004 0.597 0.107 0.508 0.120 0.305
527268885 210 0.044 0.299 0.320 0.408 0.186 0.203
529103480 210 0.121 0.770 0.485 0.757 0.487 0.769
529104012 210 0.029 0.609 0.125 0.531 0.147 0.298
529108168 2 0.0 0.0 0.0 0.0 0.0 0.221
529118038 306 0.042 0.801 0.304 0.738 0.348 0.580
529119861 6 0.0 0.877 0.759 0.545 0.396 0.614
529121751 380 0.028 0.688 0.109 0.379 0.160 0.262
529123859 380 0.046 0.864 0.132 0.649 0.220 0.548
529125794 110 0.158 0.836 0.603 0.859 0.517 0.774
529129437 132 0.327 0.755 0.480 0.833 0.472 0.618
529830333 210 0.011 0.427 0.041 0.454 0.026 0.309
529832314 110 0.059 0.809 0.435 0.875 0.431 0.831
529836154 2 0.0 0.813 0.452 0.819 0.791 0.897
529837579 240 0.0 0.415 0.277 0.530 0.226 0.400
529839089 240 0.0 0.415 0.062 0.553 0.105 0.355
529840812 210 0.003 0.532 0.454 0.735 0.365 0.618
529842978 2 0.0 0.0 0.0 0.0 0.0 0.0

Global 4160 0.041 0.655 0.237 0.600 0.231 0.454

Table 5.3 – IoU per annotation groups for two steps registration
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Group ID # of pairs Init ORB PA ORB 2P ORB 2L SIFT 2P SIFT 2L

526756968 600 0.123 0.004 0.030 0.013 0.067 0.049
527083083 600 0.126 0.004 0.018 0.008 0.056 0.052
527268885 210 0.044 0.016 0.013 0.012 0.080 0.078
529103480 210 0.145 0.004 0.025 0.006 0.041 0.012
529104012 210 0.146 0.007 0.023 0.012 0.030 0.024
529108168 2 0.089 0.023 0.030 0.025 0.034 0.006
529118038 306 0.248 0.010 0.037 0.018 0.043 0.028
529119861 6 0.135 0.001 0.007 0.019 0.016 0.018
529121751 380 0.094 0.019 0.041 0.032 0.054 0.058
529123859 380 0.089 0.002 0.044 0.015 0.068 0.047
529125794 110 0.034 0.002 0.010 0.002 0.015 0.007
529129437 132 0.040 0.008 0.032 0.004 0.044 0.058
529830333 210 0.045 0.033 0.052 0.048 0.124 0.120
529832314 110 0.198 0.018 0.038 0.015 0.039 0.016
529836154 2 0.368 0.004 0.075 0.004 0.005 0.002
529837579 240 0.146 0.057 0.215 0.207 0.218 0.217
529839089 240 0.148 0.057 0.213 0.207 0.205 0.193
529840812 210 0.140 0.033 0.164 0.105 0.111 0.088
529842978 2 0.290 0.203 0.605 0.601 0.603 0.603

Global 4160 0.122 0.016 0.059 0.043 0.079 0.069

Table 5.4 – RCM per annotation groups for two steps registration

The results for those two steps registrations are quite disappointing, especially for the
pattern patching where the performances fall abruptly. The results for the large windows
are worse but more comparable to the initial ones. Nevertheless, this account for the
IoU while the RCM is better for ORB than for SIFT with both methods. This can be
explained by the fact that the second registration is limited to an area around the first
registration. The worse RCM achievable is thus dependent of the RCM of the first method
which was better for the ORB detector than for the SIFT one.

Some examples, for the same pairs as in the previous Section 5.1, using the two steps (large
window) partial affine ORB detector are shown in Fig 5.4. Several cases are derived from
them. The annotation that was already well registered (a) is still very well registered
(probably even better). Among the ones that were averagely registered, some got a
significant improvement (b-e) while some other became worse (c-d). How much worse
will vary from slightly (c) to a unexpected behavior where the window is registered at a
kind of random place by being hugely squeezed (d), but the reasons causing such strange
registration have not been determined precisely. However, this may be due to the fact
that the local windows suffer more from the difference in staining. When performing the
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global registration, many interesting keypoints can be found at the border of the organs
where the external white points are likely to be brighter than any points within the organ
whatever the stain used, leading to more common descriptors across modalities. On
the other hand, the local windows mainly (or only) see tissues whose colors/intensities
depend on the stain used, thus leading to more different descriptors if the stains have
very different aspects in grayscale. This behavior actually happens more often with the
pattern-matching methodology. Finally, the last annotation (f) which was already very
far away is still as far as expected from the method used. Even though there is no case of
"perfect" registration in one step that became terrible after the second step, this behavior
likely exists as a very good first registration or an averagely good first registration does not
make much difference for the large window methodology using a feature detector.

A last remark can be made about the maximal potential of the methods. As can be seen
in (e) and in a lower measure in (a), some non-rigid transformations can not be done
through an affine transform (and maybe even not with an homography). If such details
are needed, which may be debatable, other techniques would be needed (either in addition
or in place of the presented category of methods).

(a) 526756968 (b) 529129437 (c) 527083083

(d) 529830333 (e) 527268885 (f) 529832314

Figure 5.4 – Examples of annotation registrations with the two steps ORB detector and
partial affine transform for "large patch". The plots are captioned with their annotation
group such that the corresponding subtype of tissue can be seen in Section 8.1.

5.3 Stain results
The main idea of this work was to have to annotate only one image (with as many anno-
tations as needed), and then to have all of the annotations done transferred automatically
to the other images in the same image group. It is interesting to see which stains (as

75



CHAPTER 5. RESULTS

moving image where the known annotation is) give the best results to know which images
are the best candidates to be the one to be manually annotated. Table 5.5 gives the
average results over all the pairings where the stain is used in the moving image for the
IoU and the RCM with the best registration method found i.e. ORB 1 step with partial
affine). Those tables are for single stain meaning that a single image with several stains
is counted for all its stains. All stains with less than 10 annotations are filtered out from
the table.

Considering the number of different annotations that are used for each, it is hard to
determine without any doubt that a stain is clearly better or worse as there IoU’s are all
roughly between 0.55 and 0.75 which probably does not give differences high enough to
consider a classification. The only one that slightly more underperforms is the he stain
but it is also the one with the worse initial IoU and RCM. The tables for the full stains
(mixing of stains considered as a unique one) is available in the appendix (Section 8.3)
but the results are similar such that no conclusion can either be made.
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Stain name # of annots # of pairing Init IoU Reg Iou Init RCM Reg RCM

muc5ac 13 209 0.031 0.761 0.121 0.007
muc6 13 209 0.032 0.766 0.124 0.007
wt1 15 234 0.047 0.740 0.113 0.005
ca125 15 234 0.047 0.740 0.113 0.00
ki67 14 247 0.026 0.664 0.120 0.015
smad4 10 172 0.043 0.637 0.106 0.022
vim 12 199 0.027 0.641 0.119 0.018
p53 31 424 0.053 0.705 0.120 0.008
cd34 12 190 0.052 0.717 0.114 0.007
cald 31 424 0.053 0.705 0.120 0.008
ck19 26 437 0.038 0.729 0.118 0.006
pdl1 10 181 0.040 0.636 0.165 0.015
d240 20 253 0.056 0.711 0.121 0.009

maspin 20 253 0.056 0.710 0.121 0.009
muc2 11 165 0.040 0.628 0.102 0.017
muc1 11 165 0.040 0.628 0.102 0.017
ck17 23 364 0.027 0.645 0.138 0.017
he 13 175 0.019 0.518 0.205 0.045
ck20 11 189 0.047 0.647 0.108 0.015
ck7 11 189 0.047 0.647 0.108 0.015
ceam 17 282 0.035 0.593 0.128 0.018
cdx2 11 185 0.048 0.548 0.113 0.033
ca199 19 321 0.053 0.593 0.111 0.027
cd146 15 234 0.056 0.567 0.132 0.027
ngfr 15 234 0.056 0.567 0.132 0.027
cd68 10 161 0.064 0.642 0.100 0.016
hmga2 11 180 0.024 0.736 0.131 0.008
cd3 12 209 0.057 0.631 0.098 0.009

Table 5.5 – IoU and RCM per single stain. Both the initial values of the metric (Init)
and the the values after using the best registration (Reg) i.e. the global ORB registration
with a partial affine transformation are shown.

5.4 Deep learning results
The last part is the U-net training. The different versions are evaluated using the IoU
score of the images obtained as described in Section 4.3 and compared with the results
from Section 5.1 using the ORB method for a global registration as for the creation of the
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deep learning dataset (and the best as well). Note that the measurement is not evaluated
exactly in the same way for both. In the deep learning case, the performances are assessed
such that only the prediction within the window matters. It is thus slightly in the favor of
the deep learning in the case where the window obtained does not encompass the whole
annotation. In particular, for the few cases from the test set where the annotation is
completely out of the window (38), a prediction of an empty mask gives an IoU of 1 for
the deep learning method whereas it is a failure from the viewpoint of the first global
registration (and is thus a score of 0 for the ORB method). There are also the pairs that
have been removed from the test dataset (41) because it was so bad that a proper window
could not be extracted, which likely account for a score of 0 in the ORB case while it is
simply not counted in the deep learning score. Unfortunately, the results obtained are
still much worse as can be seen in Table 5.6. The score for the ORB is an average of the
5 annotation groups from the images used in the test set weighted with the number of
pairs involved (as it is implicitly done in the deep learning case).

Upsample Loss Test set IoU score

Convolution IoU Loss 0.157
Bilinear IoU Loss 0.226

Convolution BCE Loss 0.049
Bilinear BCE Loss 0.142

ORB one step 0.740

Table 5.6 – IoU score on the test set for the different cases considered as well as the best
registration found before.

Concerning the upsampling methods, the bilinear tends to give better IoU scores. For the
losses, very different behaviors have been observed. The IoU loss tends to only perform a
thresholding of the initial values in the grayscale image (Fig 5.5). On the other hand, the
BCE loss often predicts very few (Fig 5.6) to no (Fig 5.7) foreground pixel (annotation
segmented) especially in bright grayscale images. The prediction of empty mask is indeed
more expected from the BCE loss as it does not favor background from foreground. As
most images have much more background than foreground, it is not so surprising that, for
a task too hard, it ends up predicting only background. On the other hand, the IoU loss
is already trained to have the best IoU score. So even if it finds a way to have a better
IoU score than with the BCE loss, the required task is probably as far as for the BCE to
be accomplished. It may even be further as, in some rare cases, the BCE loss was able to
predict pretty good mask (Fig 5.8) that could probably be corrected by applying a closing.
Nevertheless, those good predictions do not seem to be fitted for local registration. The
same image has been tested but with a small transformation of the fixed window (3nd
input) and its mask (ground truth) to simulate the fact that such a local registration
is supposed to be performed. The mask predicted was now a kind of weird intersection
between the area of interest in the fixed window (3nd input) and the mask from the first
image (2nd input) as can be seen in Fig(5.9).
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(a) Window from mov-
ing image
(1st input)

(b) Window from fixed
image
(3rd input)

(c) Mask to predict in
fixed image
(ground truth)

(d) Mask predicted in
fixed image
(output)

Figure 5.5 – Typical prediction with bilinear upsampling and IoU loss assigning foreground
pixels to pixels with low intensities. Roughly all low-intensity pixels are classified as
foreground.

(a) Window from mov-
ing image
(1st input)

(b) Window from fixed
image
(3rd input)

(c) Mask to predict in
fixed image
(ground truth)

(d) Mask predicted in
fixed image
(output)

Figure 5.6 – Average prediction with bilinear upsampling and BCE loss giving few fore-
ground pixel. Only a few points within the region of interest are classified as foreground.

(a) Window from mov-
ing image
(1st input)

(b) Window from fixed
image
(3rd input)

(c) Mask to predict in
fixed image
(ground truth)

(d) Mask predicted in
fixed image
(output)

Figure 5.7 – Bad prediction with bilinear upsampling and BCE loss giving nearly no
foreground pixel. Nearly no points are predicted as foreground.
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(a) Window from mov-
ing image
(1st input)

(b) Window from fixed
image
(3rd input)

(c) Mask to predict in
fixed image
(ground truth)

(d) Mask predicted in
fixed image
(output)

Figure 5.8 – Rare good prediction with bilinear upsampling and BCE loss that could
be enhanced by using morphological closing. The shape seems predicted correctly even
though it is filled with small holes.

(a) Window from mov-
ing image
(1st input)

(b) Modified window
from fixed image
(3rd input)

(c) Modified mask to
predict in fixed image
(ground truth)

(d) Mask predicted in
fixed image
(output)

Figure 5.9 – What a good prediction with bilinear upsampling and BCE loss becomes if
local registration have to be accomplished by the network. It looks like the intersection
of the known region of interest in (a) with the region of interest in (b) that is expected
as an output.

About the number of epochs performed, the training losses (Fig 5.10) and the evaluation
scores (Fig 5.11) show that a longer training would more than likely not give better results.
The losses for the BCE are much lower than for the IoU loss as it gives more weight to
the prediction of background as background.
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(a) Convolution upsampling & IoU Loss (b) Bilinear upsampling & IoU Loss

(c) Convolution upsampling & BCE Loss (d) Bilinear upsampling & BCE Loss

Figure 5.10 – Evolution of the training loss evolution through epochs. The value varies
through samples but no evolution is made through time. The BCE losses have a lower
value as they are rewarded for good prediction of the background while the IoU loss only
focuses on foreground prediction.
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(a) Convolution upsampling & IoU Loss (b) Bilinear upsampling & IoU Loss

(c) Convolution upsampling & BCE Loss (d) Bilinear upsampling & BCE Loss

Figure 5.11 – Evolution of the IoU score for the evaluation set through epochs. No progress
seems to appear after the second epoch in any of the model trainings.

Given the poor results obtained, the masks could not be converted to polygons to compare
with the other methods. Even though closing and opening may help, they would obviously
not be enough to recover a proper polygon.
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Limitations & perspectives

The main difficulty of this work was the general task it is trying to solve. Many recent
papers on the registration of biomedical images relies on deep learning to perform task
more accurately, but only with two given type of stains [9]. Some of them use network
to virtually stain one modality to the other [4][6][54] or to convert both modalities to
a new more representative one [3]. Working on many stains without distinction makes
those kind of tasks much harder. Some others work on more stains but for specific type of
organs [16][55] or with "easier" annotation such as landmarks [17]. The problem tackled
here more or less combines the different difficulties encountered in those papers.

The second main limitation of this work was the dataset used. As it has been stated in the
presentation (Section 2.2), the dataset is still quite small and was smaller at the beginning
of this project. Despite a good variety in staining, it probably still lacks diversity in
annotation groups which may be particularly limiting for machine learning approaches
(such as deep learning). Additionally, the transformations between images were not known
(as ground truth) and the reference points (the annotations) were too few per image and
often too small, knowing the highly non-rigid local behaviour of the slicing procedure, to
be trusted to build such a reference. Deep learning techniques to find a transformation
were then not really applicable.

There are still improvements that can be made on this work. First the usage of another
colorspace than grayscale could be tried as the Haematoxylin [16]. For data augmentation,
channel swapping or color transfer from the same paper may be tried for deep learning
approaches.

Considering the kind of failure seen in the second registration, it may be improved by
disabling the scaling for the second transform research. This may need to extract the
scale factor from the first registration to start from the more likely scaling between both
annotations.

Another way of improvement may be to combine methods and/or annotation. As it has
been seen in the Chapter 5, the one step method often had average results while the two
steps often had perfect or terrible results. One could decide that the first one is a good
approximation and accept the second if it overlaps enough the first, or if the area covered
by the two steps is not too small or too big compared to the one step. A quick try using
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an overlap threshold1 of 1
2
was able to perform an higher IoU with a score of 0.692 (while

the best was 0.655), the RCM remains at 0.016.

Combining annotations may also be possible, even though it relaxes the initial constraint
which was to only have one image to manually annotate. Grouping methods such as
polling could then be used. A registration would be performed with, for example, the
annotations from three different images manually annotated and their results would be
combined into a single polygon. Annotating three images instead of one is annoying but
still much less than to annotate 10 to 30 images.

Finally a last word could be made on the deep learning approach. It seems clear that it
does not work to perform local registration, and it may even still had bad performances
with a greater number of annotation groups. Nevertheless, it may be still an idea to make
very local non-rigid correction due to slicing if a very good first registration is performed.
In this case data augmentation would be applied commonly on the 2 images (and their
respective masks) instead of separately for both images. It may be interesting to modify
the data augmentation process in such case. Color augmentation could also be applied,
as mentioned above, and one may forbid translation such that the annotations are always
centered.

If one would use the methods presented in this work, he probably should at least add
some translations and rotations to the annotation transferred in most case. Allowing the
second step registration with the IoU agreement (as described above) may increases the
number of times the transferred annotation is directly placed accurately. The time needed
to perform the annotations would definitely not be divided by several factors compared
to the current system, but some times could probably still be saved. However, none of
these methods performs the non-rigid local correction as the deep learning strategy, the
only one susceptible to do so, is currently not convincing. In the cases those non-rigid
local transformation were to be mandatory for the following tasks, the current techniques
would not be of any help.

1A threshold of 3
4 has also been tried but leads to a smaller improvement with an IoU of 0.673 and

again the same RCM of 0.016.
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Conclusion

Annotating histological images is a very time-consuming task which can not be done by
anybody. In the context of the multimodality, the aim of this work was to alleviate the
issue by allowing to transpose automatically polygon annotations from one modality to
another. To do so, several techniques of global registration have been tried on images
from many stains converted to their grayscale counterpart.

The feature-based detectors ORB and SIFT and a pixel-based method performing a gra-
dient descent on a differentiable mutual information (based on the joint histogram of the
images) approaches are tried. From this comparison the feature-based detectors outper-
form the gradient descent and among them the ORB detector was the best. The usage of a
full affine transform or an affine transform without shearing has been discussed and it has
been shown that allowing more degrees of freedom was not always the best choice.

A second local registration, using a second time the same technique, has been tried either
by registering the annotation alone to the second image surrounding or the surrounding
in both images. In this framework, the registration with both surroundings was the more
stable but neither of them gives solely a better performance than the registration in one
step as the non-rigid modifications due to the slicing were more present locally.

In the same purpose of second local registration, a deep learning approach has been tried
based on the well-known segmentation network U-net. The polygon, represented by a
mask, for the second image was being predicted by combining the surrounding in both
images and the mask of the annotation in the first. Two losses and two upsampling
techniques has been tried for the network but none gives satisfactory results.

In conclusion, the transposition of annotation for any stains, any tissue and any cell with
a single framework is a difficult task. Among the techniques used, the feature detectors
have shown surprisingly good results despite the different stains. They moreover tend to
be quite stable within the different stains used. Nevertheless, those results are still to be
improved to have a real potential to replace human workforce in a blind manner.
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Chapter 8

Appendix

8.1 Example from each annotation group

(a) 526756968 - 0.436% (b) 527083083 - 0.113% (c) 527268885 - 0.078%

(d) 529103480 - 1.106% (e) 529104012 - 0.124% (f) 529108168 - 0.019%

(g) 529118038 - 0.398% (h) 529119861 - 0.559% (i) 529121751 - 0.299%

Figure 8.1 – First annotation of each AnnotationLinkCollection (and the proportion of
the area cover by the annotation) [1/2]
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(a) 529123859 - 0.547% (b) 529125794 - 0.453% (c) 529129437 - 1.439%

(d) 529830333 - 0.038% (e) 529832314 - 0.761% (f) 529836154 - 1.841%

(g) 529837579 - 0.048% (h) 529839089 - 0.038% (i) 529840812 - 0.224%

(j) 529842978 - 0.058%

Figure 8.2 – First annotation of each AnnotationLinkCollection (and the proportion of
the area cover by the annotation) [2/2]
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8.2 Stains example

(a) muc5ac_muc6 : PKR-10-
muc5ac_muc6

(b) wt1_ca125 : PKR-9-
wt1_ca125

(c) ki67_p16 : PKR-2-
ki67_p16

(d) smad4 : PKR-4-smad4
(e) ki67_vim : PKR-8-
ki67_vim

(f) p53_cd34_cald_ck19 :
PKR-4-p53_cd34_cald_ck19

(g) pdl1_cd8 : PKR-2-
pdl1_cd8 (h) pdl1 : PKR-2-pdl1

(i) p53_d240_cald_maspin
: PKR-9-
p53_d240_cald_maspin

(j) p40_ck5 : PKR-2-p40_ck5
(k) muc2_muc1 : PKR-2-
muc2_muc1

(l) p63_ck17 : PKR-2-
p63_ck17

Figure 8.3 – Example of each stain [1/4]
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(a) he : PKR-7-he (b) ent1 : PKR-1-ent1
(c) ck20_ck7 : PKR-2-
ck20_ck7

(d) ck17_ceam : PKR-6-
ck17_ceam

(e) chra_cd56 : PKR-2-
chra_cd56 (f) ceam : PKR-2-ceam

(g) cdx2_ca199 : PKR-10-
cdx2_ca199

(h) cd146_ngfr : PKR-4-
cd146_ngfr

(i) cd68_ca199 : PKR-6-
cd68_ca199

(j) cd15_ck19 : PKR-2-
cd15_ck19

(k) hmga2_ck19 : PKR-8-
hmga2_ck19

(l) cd3_cd20 : PKR-2-
cd3_cd20

Figure 8.4 – Example of each stain [2/4]
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(a) cd3_actinsm : PKR-3-
cd3_actinsm (b) cd4_cd8 : PKR-8-cd4_cd8

(c) cd68_ck18 : PKR-7-
cd68_ck18

(d) ck18_actinsm : PKR-7-
ck18_actinsm (e) foxp3 : PKR-7-foxp3 (f) m30 : PKR-7-m30

(g) mpo : PKR-7-mpo
(h) muc2_muc1 : PKR-1-
muc2_muc1

(i) 1wt1_ca125 : PKR-
1wt1_ca125

(j) chroma_cd56 : PKR-4-
chroma_cd56

(k) ck5_cd10 : PKR-4-
ck5_cd10

(l) berep4_ema : PKR-5-
berep4_ema

Figure 8.5 – Example of each stain [3/4]
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(a) cd10 : PKR-5-cd10
(b) ck19_ck18 : PKR-5-
ck19_ck18

(c) d240_ck18 : PKR-5-
d240_ck18

(d) maspin : PKR-5-maspin (e) mesoth : PKR-5-mesoth (f) muc5ac : PKR-5-muc5ac

(g) muc6 : PKR-5-muc6 (h) pdx1 : PKR-5-pdx1 (i) cd4 : PKR-6-cd4

(j) cd8 : PKR-6-cd8 (k) trypsin : PKR-10-trypsin

Figure 8.6 – Example of each stain [4/4]
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8.3 Stain results (full names)

Stain name # of annots # of pairing Init ORB PA

muc5ac_muc6 12 190 0.033 0.752
wt1_ca125 15 234 0.047 0.740

smad4 10 172 0.043 0.637
ki67_vim 12 199 0.027 0.641

p53_cd34_cald_ck19 12 190 0.052 0.717
pdl1 8 133 0.041 0.597

p53_d240_cald_maspin 19 234 0.055 0.696
muc2_muc1 11 165 0.040 0.628

he 13 175 0.019 0.518
ck20_ck7 11 189 0.047 0.647
ck17_ceam 15 234 0.038 0.575
cdx2_ca199 11 185 0.048 0.548
cd146_ngfr 15 234 0.056 0.567
cd68_ca199 8 136 0.060 0.655
hmga2_ck19 11 180 0.024 0.736
cd3_cd20 9 144 0.077 0.647

Table 8.1 – IoU per stain
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Stain name # of annots # of pairing Init ORB PA

muc5ac_muc6 12 190 0.124 0.008
wt1_ca125 15 234 0.113 0.005

smad4 10 172 0.106 0.022
ki67_vim 12 199 0.119 0.018

p53_cd34_cald_ck19 12 190 0.114 0.007
pdl1 8 133 0.192 0.020

p53_d240_cald_maspin 19 234 0.126 0.010
muc2_muc1 11 165 0.102 0.017

he 13 175 0.205 0.045
ck20_ck7 11 189 0.108 0.015
ck17_ceam 15 234 0.130 0.021
cdx2_ca199 11 185 0.113 0.033
cd146_ngfr 15 234 0.132 0.027
cd68_ca199 8 136 0.109 0.017
hmga2_ck19 11 180 0.131 0.008
cd3_cd20 9 144 0.083 0.011

Table 8.2 – RCM per stain
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