
https://lib.uliege.be https://matheo.uliege.be

Automatic Abstractive Text Summarization : A deeper look into convolutional

sequence-to-sequence networks

Auteur : Vermeylen, Valentin

Promoteur(s) : Ittoo, Ashwin; 12800

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2020-2021

URI/URL : http://hdl.handle.net/2268.2/13292

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège
School of Engineering and Computer Science

Faculty of Applied Sciences

Automatic Abstractive Text
Summarization

A deeper look into convolutional sequence-to-sequence networks

Author
Valentin Vermeylen

Supervisors
Ashwin Ittoo
Samy Doloris

Master’s thesis carried out to obtain the degree of Master of Science in
Computer Science and Engineering by Valentin Vermeylen

Academic year 2020-2021

Abstract

As the amount of information produced everyday continually increases, the desire for
summaries containing only the most salient parts of the texts continues to gain traction.
Even though the possibility to extract parts of texts and gluing them together already
exists, we usually prefer fluent, human-like summaries.

That is the concern of the Artificial Intelligence subfield of Automatic Abstractive Sum-
marization. Although the task is typically solved using recurrent neural networks, that
architecture comes with several challenges, the biggest being the amount of time and com-
putational power required to train the models. Fortunately, another less computationally
intensive paradigm exists, based on convolutional networks, even though it has not been
as extensively studied.

This thesis is concerned with that convolutional framework, and explores questions and as-
sumptions that have not been answered previously, such as the advantages and drawbacks
of using pretrained embeddings, or the tradeoff between performance gains and the added
complexity of mechanisms such as reinforcement learning or pointing-generation. Exper-
iments about the abstractiveness of the models, their fine-tuning on a different dataset,
and their ability to capture long-distanced dependencies are also performed through the
use of both the CNN/DailyMail dataset, and the XSUM dataset.

Those experiments show that using more convolutional blocks in the model makes sense
up to a certain point, that the use of pretrained embeddings is advisable, as is the use
of the pointer-generator network implemented in this work. The use of reinforcement
learning is also advisable at the end of the model training.

Finally, this thesis is concluded with additional experiments that could be implemented in
future works, as well as practical advises regarding the use of abstractive summarization
in the context of general terms and conditions summarization.

1

Acknowledgements

First of all, I would like to thank NRB, and especially the team responsible for the
submission of this subject, both for allowing me to work on such an interesting topic while
broadening my understanding of the Natural Language Processing field, and for giving
me access to their computational power, without which this work would not have been
possible. I would especially like to thank Samy Doloris, for his guidance, his proofreading
of this thesis and the time he dedicated to providing me with an access to the GPU
cluster.

I would also equally like to thank Pr. Ashwin Ittoo for his guidance in the definition of
the research questions, as well as his availability to answer my questions, read this thesis
and refer me to relevant works.

Finally, I would like to thank my family who supported me through this peculiar year.

2

Contents

1 Introduction 5

2 Necessary background 7
1 Recurrent Neural Networks[43] . 7

1.1 Variant RNN architectures . 8
2 Sequence-to-sequence network . 9
3 Attention . 10
4 Convolutional Neural Networks[11] . 10
5 Evaluating Natural Language Processing tasks 11
6 Embeddings . 13

6.1 Pretrained embeddings[45] . 14
7 Decoding process and Beam Search . 15

3 Literature Review 17
1 Early works - Extractive methods[8] . 17
2 The First Seq2Seq model applied to Abstractive Text Summarization . . . 18
3 Introducing Recurrent Neural Networks in the Decoder 18
4 Handling various shortcomings . 19
5 Multi-sentences summarization . 20
6 Moving beyond RNN-based sequence-to-sequence models 21
7 Introducing CNN-based abstractive models 22

7.1 Convolutional Sequence to Sequence learning[18] 23
7.2 Proposed improvements for Convolutional Sequence-to-Sequence learn-

ing . 28
7.3 Other improvements . 31

4 Architecture and experiments 32
1 Early work and problems encountered . 33
2 Training and Evaluation methodology . 34
3 Comparison with RNN-based sequence-to-sequence models 35

3.1 Time comparison . 35
3.2 Performance comparison . 36

4 Influence of the number of convolutional blocks over the quality of the
summaries . 37
4.1 Time comparison . 37
4.2 Evaluation of the models . 38

3

5 Influence of the use of pretrained embeddings versus trained ones 40
5.1 Embeddings Comparison . 41
5.2 Assessing the performance of the models trained on CNN/DailyMail

on XSUM . 42
5.3 Assessing the performance of the models trained on XSUM on CN-

N/DailyMail . 43
5.4 Assessing the performance of the models on XSUM and CNN/Dai-

lyMail on Gigaword . 44
5.5 Conclusion of the experiments . 45

6 Convolutional Pointer-Generator and Byte-Pair Encoding 47
6.1 Architecture of the pointer-generator network 48
6.2 Pointer-generator model training and performance 49
6.3 A deeper look into the generated summaries of the pointer-generator

network . 50
6.4 BPE results . 50
6.5 Conclusion of the experiment . 52

7 Use of Reinforcement Learning training . 52
7.1 Experiment . 53

8 Unrealized experiments . 54
8.1 Hierarchical Attention . 54
8.2 Introduction of topic information in the models 55
8.3 Use of Intra-attention on top of regular attention 55
8.4 Ideas for future works . 55

5 Conclusion 57
1 General conclusions about the use of convolutional sequence-to-sequence

networks for the task of Abstractive Summarization 57
2 My recommendations for training a model for insurance policy summarization 58

Appendices 60

A Problems encountered Appendix 61

4

Chapter 1

Introduction

As the amount of information people have access to grows exponentially, the desire to
automatically summarize large texts in order to extract the key ideas and concepts drew
a lot of traction in the recent years. Among the practical examples already deployed, we
can cite bots on websites such as Reddit automatically extracting the most important
parts of news articles, effectively reducing the size of the text by 80 to 90%. Other fields
where this idea could be of high interest are, for example, in the cases of long technical
texts, of the ever-increasing amount of scientific publications, or in the case of general
terms and conditions of use, which few people ever read. In all of those, having a concise
summary of the text would result in important gains of time for many people; and in
people actually reading what they are signing in the latter example.

That summarization task, given the name of Automatic Summarization, is part of the
Artificial Intelligence subfield called Natural Language Processing (abbreviated NLP), and
has been tackled by various methods falling under the categorization of either Abstractive
Summarization, or Extractive Summarization.

As the name suggests, Extractive Summarization techniques aim at extracting the most
salient (important) sentences or parts of sentences to create an shorter, information-dense
version of the original text. This task produces summaries that are, qualitatively, far from
human-generated ones, since no creative process needs to take place (no reformulation/-
paraphrases/real summarization). The models only produce a patchwork of sentences and
parts of sentences taken from the original texts.

Abstractive Summarization techniques, on the other hand, aim at summarizing texts by
having a neural network generate an original summary, in a fashion that is much more
human-like. Indeed, when we think of summaries, we usually picture texts that are
not simply bits of the original document glued together, but rather an original, fluent
creation.

With the advent of deep neural networks enabled by ever-increasing computational power,
Abstractive Summarization overtook Extractive Summarization and its mainly statistical
methods in recent years, in terms of research and publications.

Many network architectures have been proposed and tested on the task, but the most

5

common ones are based on Recurrent Neural Networks (RNN), a kind of networks par-
ticularly well adapted to data that presents itself as an ordered sequence, as is the case
for texts, where the relative order of words is of great importance.

There are however several shortcomings with that kind of neural networks. First of all,
their structure does not permit one to parallelize the training process in the time dimen-
sion. What this means is that, per batch of sentences, words from the same summary
have to be generated sequentially. This obviously impairs the training time of the net-
works, oftentimes resulting in trainings that take weeks to produce results and that are
computationally-intensive, which makes such architectures hardly handy for the individ-
ual. A second problem that occurs with such networks comes from the complex gradient
flow arising during the backpropagation process. As weights are shared during the pro-
duction of the whole sequence, the gradients must also flow through time (i.e. through
the whole sentence), which can easily lead to exploding or vanishing gradients, impairing
the training and performance.

To answer those shortcomings of RNN-based networks, several works have looked into
Convolutional Neural Networks, inherently able to parallelize computations and show-
casing a gradient flow that is less complex and more linear. However, works on such
methods have been few and disparate and the preferred methods to tackle the task of
Text Summarization still seem to rely on recurrent neural networks.

This thesis briefly answers the question of whether or not CNN-based Abstractive Sum-
marization methods can achieve similar, or even better, results than RNN-based networks,
and at what cost. Is the tradeoff between performance and training time interesting ?
Does adding complexity to the CNN via concepts taken from other works in the field of
NLP yield better results ? On top of those considerations, we will also conduct some
experiments to answer questions that have not been addressed in CNN-based Abstractive
Summarization papers, such as the role of pretrained embeddings in the quality of the
generated texts, the influence of the number of convolutional blocks on the performance,
or the inherent abstractiveness of the models.

6

Chapter 2

Necessary background

This chapter introduces the background necessary to understand the methods discussed
both in the review of the literature and in my own experiments. The notions that are
addressed in this chapter should be known to one who is already well-versed in the field
of Natural Language Processing and can thus be skipped if the reader is comfortable with
them.

1 Recurrent Neural Networks[43]
Recurrent Neural Networks are a special kind of artificial neural networks that are par-
ticularly well-tailored for processing data that are intrinsically sequential, such as text
or speech, two kinds of data made from individual ordered entities (words). The main
difference between Convolutional or Feedforward neural networks and Recurrent ones is
that the latter have some kind of memory that allows them to influence the current out-
put via data that they have already processed. This mechanism is critical in applications
where the output of the network at a given time depends on what has previously been
outputted or inputted, such as is the case for text generation, where subsequent tokens
are not independent (The word to be produced at time t depends on what has already
been produced in the t− 1 previous timesteps).

Figure 2.1: Difference between a feedforward neural network and a recurrent neural net-
work.

Source: https://www.researchgate.net/figure/Recurrent-versus-feedforward-
neural-network_fig5_266204519

7

https://www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_fig5_266204519
https://www.researchgate.net/figure/Recurrent-versus-feedforward-neural-network_fig5_266204519

As can be seen in Figure 2.1, the difference between feedforward and recurrent neural
networks comes from the recurrent loop located in the neurons that allows the recurrent
network to maintain an internal state from iteration to iteration, acting in practice as
some sort of memory of the previous inputs. This is made clearer when taking a look at
Figure 2.2, where the network is unrolled through time and where we can see that the
recurrent loop feeds the previous state to the cell.

Figure 2.2: Unrolled Recurrent Neural Network

Source: https://www.researchgate.net/figure/Schematic-representation-of-
RNN-a-in-rolled-form-b-in-unrolled-form-from_fig3_343206534

Another difference is that, in such networks, instead of simply using backpropagation, we
have to use backpropagation through time (BPTT) in order to determine the gradients
used in the learning process. The main difference between the two algorithms, which poses
some problems in the case of RNNs, is that the errors used to compute the gradients must
be summed across the input sequence, since the weights associated with a layer do not
change across parts of the sequence being passed through them. All tokens produced
in the several timesteps it takes to output a sentence therefore share a common weight
matrix, which leads to the problems of vanishing and exploding gradients, as weights
matrices are multiplied many times over.

1.1 Variant RNN architectures

Bidirectional RNN

Whereas the unidirectional RNN just mentioned only uses previous inputs in order to
make predictions, bidirectional networks are also able to use future data. That is done by
stacking two unidirectional RNN together, one reading the sequence forward and the other
reading it backwards. The resulting hidden states h are simply concatenated together
afterwards to produce a bidirectional context.

Long Short-Term Memory (LSTM)

Long Short-Term Memory networks aim at answering the aforementioned problem of
vanishing gradients while also addressing the problem of long-term dependencies. Indeed,

8

https://www.researchgate.net/figure/Schematic-representation-of-RNN-a-in-rolled-form-b-in-unrolled-form-from_fig3_343206534
https://www.researchgate.net/figure/Schematic-representation-of-RNN-a-in-rolled-form-b-in-unrolled-form-from_fig3_343206534

RNN models do not capture well those kinds of far-distanced dependencies in the input.
For example, the dependency of two tokens that are highly correlated but far from one
another in the input sentence will most probably not be picked up by a regular RNN. To
solve that issue, LSTM networks use multi-gated cells in the hidden layers of the network,
able to control the flow of information and to restrict the magnitude of the gradients,
eliminating the problem of vanishing gradients. The issue of exploding gradients, however,
are not being taken care of by that kind of network but must be eliminated through
weight-clipping.

2 Sequence-to-sequence network
Sequence-to-sequence networks are a special type of RNN networks designed to solve
complex linguistic tasks such as machine translation or text summarization. They are
encoder-decoder architectures in which, historically, both the encoder and decoder were
recurrent networks, most commonly LSTM. They can however be CNN-based, as will be
seen further in this work.

The role of the encoder is to read the input sequence and produce a context vector that
contains some kind of summary of the sequence. Outputs from that part of the network
are typically discarded, as only the hidden states representing the context are of interest.
This is illustrated in Figure 2.3, where the hidden states are represented by hi and ci.

Figure 2.3: Encoder part of a Sequence-to-Sequence network[3]

The decoder part of the network, on the other hand, is in charge of producing the output
of the whole architecture. In the case of the summarization, it will be fed the previously
decoded tokens as well as the context vector that has been produced by the encoder (it

9

thus does not get fed the input themselves, but some kind of fixed-size summary of it
typically in the form of ht). An example of such a network is provided in Figure 2.4.

Figure 2.4: Example of a Sequence-to-Sequence network

Source: https://stackoverflow.com/questions/47400126/optimizing-the-neural-
network-after-each-output-in-sequence-to-sequence-learnin

Although these networks work well for sequential data, they are still subject to some
problems :

• The memory of this architecture is very limited. As the whole input sequence is
crammed in a fixed-size context vector, the encoding tends to be lossy for longer
sequences, and proves unable to capture longer-range dependencies.

• The deeper the network, the harder it is to train, and the more the effect of vanishing
or exploding gradients are felt, especially in RNN-based networks. However, deep
networks are necessary to obtain quality summaries.

3 Attention
In order to answer the aforementioned problems, a mechanism called attention can be
implemented in the sequence-to-sequence model. The idea for attention stems from the
fact that not all input tokens are of equal importance for predicting each output token.
In attentional networks, the context vector that is fed to the decoder at each decoding
step is a weighted sum of all the encoder hidden states. The decoder can thus rely on a
dynamic context vector that will focus on different input tokens at different time steps.
In other words, that mechanism enables the network, during the decoding phase, to know
which tokens from the input it should pay attention to to produce a given token, and
those important input tokens change at each decoding step.

4 Convolutional Neural Networks[11]
Convolutional Neural Networks (or CNNs) are a type of neural networks that are most
often used in the field of Computer Vision, since they are able to easily identify patterns

10

https://stackoverflow.com/questions/47400126/optimizing-the-neural-network-after-each-output-in-sequence-to-sequence-learnin
https://stackoverflow.com/questions/47400126/optimizing-the-neural-network-after-each-output-in-sequence-to-sequence-learnin

in an image and extract the relevant features.

CNNs are composed of 3 main types of layers :

• The Convolutional layer : This is the main building block of a CNN, where most
of the computations occur. It receives the input as a matrix and will then slide a
fixed-sized kernel across it, allowing the network to check whether or not the feature
that should be captured by that kernel is present in the area under examination.
That step is called a convolution, and one convolutional layer will typically have
hundreds of kernels, all looking for different features in the input.

• The Pooling layer : This layer is used to perform some dimensionality reduction (re-
ducing the number of parameters of the input) by applying an aggregation function
to its input.

• The Fully-connected layer : This layer acts as a part of a multi-layered perceptron
in which all nodes are interconnected. It allows to perform the final computations
in the network and to shape the output in the desired form.

Although CNN are usually used in the field of Computed Vision, their use in the field of
NLP makes sense, as the input matrix can represent embedded words, and the kernel of
size n that passes across it effectively enables the network to read multiple (n) words at
once. This means that the network is inherently able to concurrently process one word
and n

2
words on each side, which amounts to being able to process the central word and its

bidirectional context. We thus already see an advantage of using CNN-based sequence-to-
sequence networks instead of RNN-based ones : the bidirectionality that requires almost
twice the parameters in the encoder of RNN-based networks is given for free in their
convolutional counterparts.

5 Evaluating Natural Language Processing tasks
In order to evaluate tasks such as machine translation and text summarization, several
metrics have been devised., such as WER, BLEU and ROUGE.

The first metric used to assess such tasks was the Word Error Rate (WER), i.e. the
proportion of common words between the prediction and the ground truth. However, one
obvious problem with that metric is that there was no sense of syntactical order taken
into account. The sentence

The man ate the apple

had the same WER score as the two following sentences :

The apple ate the man
The the ate man apple

Which made little sense when trying to evaluate the quality of generated texts. Fluency
was not taken into account; the metric just relied on some kind of accuracy.

Then came the BLEU score (BiLingual Evaluation Understudy), initially developed for
text translations. Its formulation is :

11

BLEUn = min

(
1,

output-length
reference-length

)(n∏
i=1

precision i

) 1
n

It is not perfect but offers 5 advantages[1] :

• It is quick and inexpensive to compute

• It is intuitive

• It is language-independent

• It correlates with the human way of evaluating such tasks

• It is now widely adopted and the preferred method to benchmark results

The idea behind BLEU is to compute the fraction of n-grams1 in the generated text that
appear in the ground truth (unigrams, bigrams, trigrams etc), while penalizing too short
texts through the first term in the formula. Although the positions of the n-grams in
both texts are not relevant to the score, the relative order of tokens inside the n-grams is,
and so the higher-level n-grams that show a match, the closer the generated summary is
to the target one and the better the fluency and order of words. One obvious drawback
of this method, which will be brought again in section 2 of chapter 4 is that this metric
tries to force the summaries to be as close as possible to the target one in order to get a
high score, which does not make a lot of sense in an abstract summarization setting where
the goal is specifically for the network to produce new original sentences, as opposed to
Extractive Summarization where some sentences had to be selected while other not, and
no creative sentences were permitted. Using the BLEU score, paraphrases, synonyms
and correct but differently formulated sentences will be penalized as if they were flat
out wrong, although they may make sense. A perfect score of 1 is therefore usually not
obtainable, not even for humans, who typically score in the low 0.3 range when evaluated
using BLEU. That problem is even greater for automatic summarization than it is for
machine translation (for which the metric was created), as the latter has less leeway to
improvise. Translations are often close to 1-to-1, whereas summarization is much further
away from that bijection.

However, we do not have much choice, as there is no other metric that could solve such
problem, currently and probably in the future. Aside from using human labour to evaluate
the quality of the summaries, we are stuck with using BLEU, as everyone else does for
the task. Furthermore, the fact that BLEU has become the de facto metric to measure
performance in many NLP tasks would make it hard to replace, as all performances in the
literature and all baseline results are reported using the BLEU score, or its counterpart,
ROUGE.

ROUGE score

Whereas the BLEU score measures how much the n-grams in the machine-generated
summaries appear in the human reference summary, the original ROUGE (Recall-Oriented

1n-grams correspond to contiguous sequences of n tokens in a text.

12

Understudy for Gisting Evaluation) score measured the reverse, i.e. how much the n-
grams in the reference text appear in the machine-generated one. In effect, the BLEU
score measures some kind of precision whereas the ROUGE score measures recall[40],
as its name implies.

More precisely, the usual implementations of ROUGE measure the precision, the recall
and the F1-score of predicted sentences with regards to target ones. ROUGE-N measures
those metrics with respect to only the N-grams, and ROUGE-L measures the longest
matching sequence of words.[5]

Both kinds of scores are correlated and will be used in the experiments.

6 Embeddings
One section of the experiments will be concerned with the concept of word embeddings,
and they are thus introduced here.

Word embeddings are a way to represent words and sentences in a compact and consistent
way. Neural networks work with numbers, but would be unable to handle words as
such. In order to provide texts to the networks, we have to somehow transform the
words or the characters into something that the network would be able to work with, i.e.
tensors of numbers. Word embeddings allow one to do just so by mapping words to a
numerical vector of fixed size that represents the word in a lower-dimensional space, since
the dimension of the embedding would typically be far lower than the dimensionality of
one’s whole vocabulary. Otherwise, we would simply have to represent the words as one-
hot vectors. The reason we do not do so is to reduce the input dimensionality, but mainly
because one property of word embeddings is that words that are close in meaning will
have close embeddings and consistent relationships, as is illustrated in Figure 2.5. Word
embeddings should allow the network to predict words that are close to a given word and
to capture semantic information automatically.

Figure 2.5: Word Embeddings[21]

For example, an embedding of size 100 will represent any given word with a vector of
100 numerical values, effectively reducing the dimensionality of the input. Such embed-
dings can either be learned on-the-fly by the network (in such cases, the embedding layer

13

contains weights that are trainable), or they can be pretrained.

6.1 Pretrained embeddings[45]

Pretrained embeddings are embeddings that have been trained on a given corpus and for
a given task, and that are transferred and used as is in your network, for datasets and
tasks that are not necessarily those the embeddings were created on. In this work, we
will mainly use the Word2Vec and GloVe word embeddings, and therefore mention only
those here.

Word2Vec

In this scheme, words are initially assigned either a random or a one-hot vector. The
training corpus is then enumerated. Two models are possible. In the Continuous Bag
of Words model, the vector representations of the neighboring words will be made to
resemble that of the central word. In the Skipgram model, we do just the opposite,
and we aim at making the representation of the central word closer to the neighboring
word representations. The Skipgram model has been shown to produce more meaningful
embeddings[45] and is therefore the one used in the experiment comparing the word
embeddings.

The above process is then repeated iteratively until we get the desired word embed-
dings.

GloVe

GloVe is the result of applying another method to create word embeddings. In that
method, we iterate over a corpus and build the co-occurence matrix containing the co-
occurencces of each word with all other words in the corpus. This means that words

separated by n words will get a co-occurence value of
1

n+ 1
.

Concerning the word vectors, they are initially assigned randomly, then their relative
distances are modified so that words that occur frequently together or have a high co-
occurence value but are far apart are brought closer together; and words that are close in
distance but rarely seen together are brought apart.

That process is repeated many times until we end up with a set of vectors that approximate
the information contained in the co-occurence matrix.

This method is the preferred one in the literature, since it is able to capture both semantic
and syntactic information better than Word2Vec. As a result, this is the embedding that
will be used by default in the experiments, unless stated otherwise.

Selecting the corpus to train the embeddings on

If the embeddings were trained by a single person on a small corpus, one problem would
arise, namely that the embeddings would be highly biased towards the corpus they were
trained on. This would be problematic, since embeddings are made to be used on other
tasks and on new corpora.

14

Fortunately, word embeddings of both GloVe and Word2Vec kinds are available online,
and were trained on a variety of corpora, the main one being the entirety of Wikipedia in
a given language. Training the embeddings on such an extensive text source is the best
way to reduce the bias problem aforementioned, but is obviously not available to the lone
computer scientist given the huge training cost associated with such a task, and are thus
typically offered by technology giant such as Facebook or Google.

7 Decoding process and Beam Search
Whenever a Natural Language Processing model has some text as its output, one is faced
with several choices for the final text that will be produced by the model. The networks
will typically generate a probability distribution over the output vocabulary (if you set
the output vocabulary of the network to 1 million possible words, the model will output
1 million values, with the largest ones corresponding to the preferred words). One simple
algorithm to handle that distribution and produce a single word is to use a greedy
search algorithm, i.e. always selecting the word that corresponds to the highest value
in the probability distribution. This method is often used because it is quick, simple to
implement, and results across different models are still comparable so long as they all use
such a search algorithm.

However, the final sentences that are produced are not optimal, since the greedy search
is a heuristic method. A better algorithm is the so-called Beam Search algorithm, that
builds upon the greedy search.

Beam Search improves the naive greedy search in 2 ways :

• First of all, Beam Search will select the best N (a parameter known as the beam
width) words at each step (for example, the first word to be decoded will be a list
of N possible words in this paradigm), whereas greedy search selects the single best
word per step.

• Secondly, Beam Search does not consider each individual word in the final sentence
as independent, but rather considers the joint probability of the sentence it is build-
ing. In comparison, in greedy search, once a word has been outputted, it is set and
does not influence the probabilities of the remaining part of the sentence.

Since, as humans and evaluators of the model, we are interested in the complete sentence,
it makes sense that a decoding procedure that considers the whole sentence jointly would
produce better results than a naive heuristics simply selecting the most probable word
at each time step without regards for what will be outputted afterwards or what has
previously been outputted[17]2. An example of beam search with a beam width of 3 is
provided in Figure 2.6. How the leaves are selected to be added to the queue is not how
it is done for text summarization, but should illustrate the point regardless.

However, although this procedure will produce better summaries than the naive greedy
search, it is also much more expensive and could not be done for all models and exper-

2The reader interested in a more detailed explanation of the inner working of the Beam Search algo-
rithm is welcome to visit this intuitive explanation : https://towardsdatascience.com/foundations-of-nlp-explained-visually-
beam-search-how-it-works-1586b9849a24

15

https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24

Figure 2.6: An example of beam search with a beam width of 3

Source: https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/46927-f97/
slides/Lec3/sld023.html

iments. Since the greedy search produces results that are already satisfactory and that
enable comparison between models, that is the decoding scheme that will be used in most
of this work. Whenever applicable, I will explicitly mention that the results have been
obtained through beam search.

16

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/46927-f97/slides/Lec3/sld023.html
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/46927-f97/slides/Lec3/sld023.html

Chapter 3

Literature Review

This chapter aims at introducing and summarizing the literature produced in the field
of Automatic Abstractive Summarization, focusing particularly on Convolutional Neural
Networks methods, as it is what this thesis is concerned about. The timeline for this
chapter is partly inspired by the work of Shi et al. [38], as well as personal research about
the relevant literature. This chapter introduces the various papers related to the thesis’
subject while staying relatively high-level in the explanations of the methods.

1 Early works - Extractive methods[8]
As previously mentioned, the earliest works concerned with automatic text summarization
typically utilized extractive methods, as those researches were conducted long before the
Neural Network boom that was seen in recent years and which was enabled by ever-
improving hardware. The use of fully data-driven methods as we see today was simply
not achievable at the time automatic text summarization was first explored.

In extractive methods, the summary that is produced is a patchwork of sentences and
parts of sentences coming from the input document and simply glued together, hence the
name extractive.

Without entering into too much details, extractive text summarization was, in the early
days, done using rule-based, deterministic algorithms that ranked the various sentences
composing the text based on their perceived importance, before extracting the top n ones
and gluing them together. Such an algorithm was called an importance evaluator, and
it used both a hard-coded set of rules for determining the importance of sentences, as
well as an "encyclopedia" that contained knowledge related to a specific domain. It was
a far-cry from our current methods, where no a priori knowledge about the language or
the corpus is fed to the networks.

As time went by and more research came out of the field, developments were made that
allowed one to better determine the importance of sentences in a document. One such
method, for example, measured the importance of a sentence by the order of relatedness it
has with the other sentences (the more related one sentence is to the set of other sentences,

17

the more important it is). However, those systems still required some knowledge about
the subject of the texts to be summarized, and were still extractive by nature.

Many subsequent works expanded over that framework, introducing more complex statis-
tical models for the task.

Finally, the advent of neural networks enabled important developments in the field of
automatic summarization. The paradigm shifted, as the networks were then trained on
a large corpus of texts and their corresponding summaries, and learned to infer such
summaries. No rules had to be fed to the network, as it learned the relevant ones itself.
Thus was opened the road to the subfield of abstractive text summarization.

2 The First Seq2Seq model applied to Abstractive Text
Summarization

The first work about abstractive text summarization entirely driven by data and not
making use of a priori human knowledge was published in 2015 by Rush et al.[33]. They
recognized that extractive methods were inherently limited and that designing an abstrac-
tive generalization-style summarizer had been proven both challenging and unsatisfying.
However, witnessing the success Bahdanau et al. who applied the Sequence-to-sequence
model to Machine Translation the year prior[7], the authors set out to applying that
framework to the task of abstractive summarization.

The idea behind their model was to combine a neural language model as a decoder with a
contextual input encoder. That encoder was similar to the attentive encoder introduced
by Bahdanau et al. and also made use of attention.

As opposed to previous works in the field of automatic summarization, the authors in-
corporated less linguistic structures but relied instead on learning such language features
from the data directly, paving the road for future data-driven abstractive summarization
methods while showcasing results that were either better than or on par with current
methods at that time.

3 Introducing Recurrent Neural Networks in the De-
coder

Chopra et al.[10] later (in 2016) built upon the work of Rush et al. and replaced the
feed-forward neural language model used as decoder by a conditional recurrent neural
network, more fitted to NLP tasks. They also encoded the positions of the tokens ap-
pearing in the input text in the encoder part of their network, and the results obtained
on the summarization datasets showed an increase in performance when compared with
the network the authors extended upon.

18

4 Handling various shortcomings
Recognizing several critical problems with the models presented before, Nallapati et al.[24]
proposed some new mechanisms to improve the overall quality of the generated sum-
maries.

The first problem they set out to solve was the one of identifying key concepts and enti-
ties in the input document. Their thesis was that to accomplish such a goal, they would
have to go beyond the word-embedding-based representation of the document and capture
linguistic features such as parts-of-speech, named-entity tags and words statistics in the
document (in the form of term frequency or IDF for example). They therefore created
additional embedding matrices for the vocabulary of each tag-type, one-hot vectors for
continuous measures such as TF, etc. The final embedding vector was simply a concate-
nation of all those elements. However, although the idea was interesting, it was not used
extensively in future works, probably because it reverted the trend to incorporate as little
a priori human knowledge as possible in the networks.

The second problem they identified was the modeling of rare / out-of-vocabulary (OOV)
words. Typically, words that are not part of the training data cannot be modeled at test
time, as they are either transformed into unknown tokens in the embedding phase of the
encoding or left as is but not part of the output vocabulary anyway since the latter is fixed
and determined at training time. One obvious way to solve that problem would be to
increase the size of the output vocabulary to encompass all words in a given language, but
we can directly see that this idea would not hold practically, due to the ever-increasing
size of a language’s vocabulary and the inability to have enough training data containing
all words anyway.

The way such out-of-vocabulary words were historically handled was thus to replace them
with an unknown token at test time, resulting in sub-optimal and sometimes non-legible
summaries.

One intuitive way to handle such words, which is the one used by the authors, is to
simply point the location of the rare word in the input text for the decoder to copy in
the decoding process, if that word is perceived as important through the mechanism of
attention. That is implemented through a switching decoder/pointer architecture that is
depicted in Figure 3.1.

The decoder is equipped with a switch that decides between using either the generator
or the pointer mechanism in order to produce the next token at every decoding step.
When the switch is turned on, the normal behaviour of the encoder-decoder is altered
and the word that is outputted corresponds to a rare word at a given position in the
input text.

Finally, the last problem that the authors tackled is that of capturing hierarchical structure
in a document. When the input text is very long, it is important to identify the key
sentences from which the summary can be derived on top of identifying the important
keywords. The way the authors dealt with this idea is through the use of two RNN
networks on the input side, one dealing with the word level and the other one dealing
with the sentence level. The attention mechanism operates at both levels, and the word-

19

Figure 3.1: Switching generator/pointer model[24].

level attention is then re-weighted by the corresponding sentence-level attention.

Furthermore, the authors created the CNN/DailyMail dataset. Previous works were evalu-
ated on datasets such as DUC or Gigaword, which only consisted of one-word summaries.
Although such limited datasets were enough for training simple networks and have a
common benchmark, they would not reflect a real-world use for automatic abstractive
summarization. The CNN/DailyMail dataset was the first dataset comprising multiple
sentences summaries originating from news articles. Most works on the field published
after this article then used this dataset as benchmark, either on top of the previously
mentioned ones, or by itself entirely.

5 Multi-sentences summarization
Once the CNN/DailyMail dataset was released, several works began investigating the
possibility of generating longer, multi-sentences summaries. However, several obstacles
quickly arose.

Firstly, the longer the source document, the less reliably the summarizer is able to ex-
tract salient, useful information from it. Furthermore, they tend to exhibit severe word-
and sentence-level repetitions, as the model cannot keep track of what has already been
synthesized.

In order to handle those problems, See et al.[35] proposed the pointer-generator network,
as well as a coverage mechanism to keep track of what has already been summarized. Their
architecture also deals with out-of-vocabulary words and with the longer summaries used
in the CNN/DailyMail dataset, outperforming the then current state-of-the-art by at least
2 ROUGE points.

Their pointer-generator network allows them to copy words from the input text via point-
ing, as was already done by Nallapati et al.. Where the two networks differ is in the way
the pointing mechanism is handled, since the baseline for the two networks is the same
and is represented in Figure 3.2.

Where Nallapati et al.[24] trained their pointer component to only activate for out-of-

20

Figure 3.2: Baseline sequence-to-sequence model with attention[35].

vocabulary words and did not mix probability distributions from pointing and generation,
See et al. allowed the pointing mechanism to activate for any word, and mixed the prob-
ability distributions given by both the generator and the copier to output a given word,
as is represented in Figure 3.3. From the study they conducted on the abstractiveness of
their model, they found out that their pointing mechanism made the abstractive system
more reliable, as it copied factual details accurately more often than previously introduced
models, in part because it can copy whole salient sentences, but that actually made it
partly extractive. However, since the datasets used at that time (GigaWord, CNN/Daily-
Mail) exhibited more extractiveness than abstractiveness, the BLEU and ROUGE scores
obtained by the authors increased with respect to the previous state-of-the-art.

Figure 3.3: Pointer-generator model[35].

To deal with the second problem the authors observed, namely that of repetitions in the
outputted summaries, they implemented a coverage mechanism, originating from Neural
Machine Translation, stopping the models from outputting the same n-gram more than
once.

NB : More mathematical information about the pointer-generator network is provided in
section 6 in chapter 4, and compared with the one I used for CNN-based pointer generators
as I felt it made more sense to have both formulations near one another.

6 Moving beyond RNN-based sequence-to-sequence mod-
els

Most of the early work in the field of abstractive neural summarization had been con-
ducted using RNN-based sequence-to-sequence models, initially with simple recurrent

21

neural networks, and afterwards with more intricate models such as Long Short-Term
Memory networks (LSTM) or Gated Recurrent Units (GRU). Those more complex net-
works deal with the issue of vanishing gradients, which typically make RNN-based net-
works harder to train. However, one problem that cannot be solved by these models is
that of parallelization. Indeed, the fact that sequences must be processed sequentially in-
curs very long training times, especially when dealing with multi-sentences summary tasks
such as the CNN/DailyMail dataset induces. This inability to parallelize RNN-based net-
works along the time dimension leads to training times that are challenging, especially for
low-resources teams and organizations. It is therefore no surprise that all previously men-
tioned papers were released by teams that had the backing of big technological companies
such as Google Brain, and/or large universities such as Stanford.

For this reason, this work, and several ones that preceded it, is concerned with CNN-based
methods.

CNN-based neural networks have the ability to parallelize along the time dimension during
training, alleviating the previously raised issues. Furthermore, the computational com-
plexities of such convolutional models grow linearly with respect to the sentences length,
and the amount of non-linearities that are applied to the input are fixed and independent
from the length of the source, whereas RNN-based networks apply non-linearities linearly
with the length of the input. The paths from output to input are also short, linear, and
do not pass through gates or recurrent links, which allows the gradients to be propagated
more efficiently than for RNN-based networks and bypass the problems of vanishing and
exploding gradients. Finally, as mentioned in the Background section of this work, convo-
lutional models inherently offer the benefits of bidirectional networks without any added
complexity.

7 Introducing CNN-based abstractive models
The earliest CNN-based model that has been proposed for the task of neural machine
translation, a task which suffers from the same aforementioned problem as abstractive
summarization, was called ByteNet and was developed by Kalchbrenner et al.[22]. The
model is a one-dimensional CNN composed of an encoder and a decoder, stacked on top
of one another. It reached state-of-the-art performance on character-to-character trans-
lation of a benchmark dataset, outperforming RNN-based methods running in quadratic
time.

The idea behind CNN-based methods is to use the various kernels present in each convo-
lutional layer to extract features from the input text. If the first convolutional layer has
a filter width of x, it is able to see concurrently x consecutive tokens. Each layer having
hundreds of these filters, different kinds of features and information will be extracted by
each one as they slide across the input sentence, looking at x tokens at a time to catch
close dependencies. The output produced by passing through such a layer can then be
fed to subsequent convolutional layers, allowing the network to catch word dependencies
that are further apart, as the effective receptive fields increases linearly with the number
of convolutional layers1.

1If 6 subsequent convolutional layers each have a kernel width of 5, a single cell in the last layer would

22

7.1 Convolutional Sequence to Sequence learning[18]

Several further works continued exploring the use of CNN in neural machine translation,
but it is Gehring et al.[18] that really took the framework and applied it to neural ab-
stractive summarization as a side experiment in their neural machine translation-centered
paper, in 2017.

Their approach is based entirely on Convolutional Neural Networks used in the context of
a sequence-to-sequence model, with attention added to the decoder. As previously men-
tioned, the effective context size of such a network can be either increased or decreased by
stacking multiple Convolutional layers on top of one another in the encoder. Furthermore,
stacking such layers inherently creates hierarchical representations of the input sequence,
as words that are closer together interact at lower layers while more distant words interact
at higher layers. This enables the network to capture long-distance relationships better
than a recurrent neural network could, as long-term dependencies are typically lost in
RNN-based sequence-to-sequence networks, and they must tweak the vanilla networks to
overcome that problem.

On top of convolutional layers, the authors also use Gated Linear Units (GLU), and
residual connections, as well as attention at every layer of the decoder, all of which does
not add significant overhead. As this architecture is the basis for this thesis, I will now
present it in more details. The following sections are obviously heavily influenced by
the original work of Gehring et al.[18], and the illustrations come from [13]. I will first
introduce the relevant notations and concepts before illustrating the network.

Formulation

Let us first introduce the notations that will be used in this section.

• The input sequence of words x = (x1, x2, ..., xm), embedded as vectorw = (w1, w2, ..., wm)

• The embedding of the absolute positions of words in the input sequence p =
(p1, p2, ..., pm)

• The input element representations e = w + p

• The encoder state representations z = (z1, z2, ..., zm) that are produced by the en-
coder after having been fed x

• The output sequence y = (y1, y2, ..., yn) generated from the state representations z

• The decoder hidden states h = (h1, h2, ..., hn)

• The embedding of previously generated words outputted by the decoder g = (g1, g2, ..., gn)

With those notations in mind, we can start detailing the network. Both the encoder
and the decoder share a convolutional block structure that is repeated and stacked. It
computes intermediate states based on a fixed number of input elements. As multiple
hidden states will be produced in both parts of the architecture, since these blocks are
stacked on top of one another, we will denote :

depend on 25 input tokens.

23

• hl = (hl1, ..., h
l
n) is the output of the l-th block in the decoder network.

• zl = (zl1, ..., z
l
n) is the output of the l-th block in the encoder network.

Each one of these convolutional blocks contains a one-dimensional convolutional layer
followed by a non-linearity in the form of a Gated Linear Unit2 that allows the network
to either focus on some parts of the input, or the whole input. The kernel size of each
convolutional block will be set to 5, meaning that, in each layer, the network will be able
to receive the information about 5 elements from the previous layer, and each layer will
have 512 of those kernels.

Each kernel is represented as W ∈ R2d×kd, bw ∈ R2d and takes as input X ∈ Rk×d, which
is the concatenation of k input elements embedded in d dimensions, and maps X to a
single element Y ∈ R2d.

Finally, residual connections are added in each convolutional block and take the form
:

hli = v
(
W l
[
hl−1i−k/2, . . . , h

l−1
i+k/2

]
+ blw

)
+ hl−1i

One thing to keep in mind is that padding must added to both the encoder in order
for the input length to match the convolutional layers; and the decoder, so that future
information provided in the training summaries are not available to the decoder at a given
time.

At the end of the decoder’s convolutional blocks, the next word distribution is computed
thanks to a softmax function, turning an f−dimensional vector into a vector respecting
the constraints associated with a probability distribution.

Multi-step attention

On top of the attention inherent to the network that has previously been discussed (the
receptive fields obtained through the kernels allow the network to have access to dependen-
cies between both close and distant words of the input sequence), the authors introduced
another explicit attention mechanism for each decoder layer. To do so, they combined
the current decoder state of layer l hli with an embedding of the previous target element
gi in the following way :

dli = W l
dh

l
i + bld + gi

The attention alij of state i and source element j at layer l is then derived from di in the
following way :

alij =
exp

(
dli · zuj

)∑m
t=1 exp

(
dli · zut

)
2Taking Y = [A B] ∈ R2d, we have that the GLU operation is : v([AB]) = A⊗σ(B), with the sigmoid

used to control which inputs from A are relevant.

24

The input cli to the current decoder layer is then a weighted sum of the encoder outputs
and the input embeddings ej :

cli =
m∑
j=1

alij
(
zuj + ej

)
This kind of attention is slightly different from the attention introduced by Bahdanau.
Adding the embeddings in the previous formula provides point information about specific
input elements. Furthermore, whereas Bahdanau’s attention is single step, this one is a
"multi-step" attention scheme since it is implemented at each convolutional layer.

Detailed model

Encoder

The CNN-based encoder will be fed the positions and embeddings of the source text, and
will produce 2 context tokens per input token, to be fed to the attentional module in the
decoder, as can be seen from the dimensionality of Y that has been previously presented.
The two vectors of tokens thus produced correspond to the conved and combined vectors
in Figure 3.4. In order to follow this description more easily, that figure shows the archi-
tecture under consideration on the task of Neural Machine Translation, but the model for
both tasks does not differ at that stage.

Figure 3.4: Architecture of the Encoder part of the Convolutional Seq2Seq.[13]

As said in the previous section, the input of the encoder part of the model is the summed
combination of both the positions and tokens embeddings. Two embedding layers are
therefore required at the input of the network. Adding the position is not something that
must be done in regular RNN-based models, but is necessary in CNN-based ones since
we do not process sentences sequentially, but in parallel. The vector resulting from the
summation therefore encodes both the position of each token in the input sentence and
their embedding at the same time.

This vector then passes through a linear (dense) layer that outputs a vector of the expected
dimensionality to proceed in the convolutional blocks.

25

Figure 3.5: Architecture of the Encoder’s Convolutional Blocks from the Convolutional
Seq2Seq[13].

These blocks (Figure 3.5 displays a sequence of two such blocks), are first composed of a
padding operation to keep a consistent vector length throughout the network. The input
then passes through the convolutional layer, which outputs a vector twice as long as the
input since it then passes through the GLU layer, which will halve the length of the input
it receives. In effect, the size of the vector after that GLU activation layer is the same as
the size of the input vector, and it can thus be summed with the input through a residual
connection.

This output can then be fed into a similar block, since the dimensions stay the same.
In practice, for the task of abstractive summarization, both the encoder and the decoder
have 6 to 8 of these blocks in cascade.

The output vector of these stacked blocks then passes through another linear layer that
reshapes it to the embedding dimension. That final vector, which is called the "conved"
output, is finally element-wise summed with the embedding vector through a residual

26

connection, producing the so-called "combined" output.

Decoder

A schematic of the decoder architecture is provided at Figure 3.6 for ease of following the
description.

Figure 3.6: Architecture of the Decoder part of the Convolutional Seq2Seq[13].

The main input of the decoder is either the whole sentence to be predicted during training,
or the output generated by itself up to a given point at test time (and in practice), as
is the case for RNN-based Sequence-to-sequence models too. Where this decoder differs
from the aforementioned one, however, is in the parallelized way the output is produced
during training, as opposed to the sequential way that RNN-based methods use.

In this model, all output tokens are generated in parallel, this is problematic with regards
to the possibility of using reinforcement learning where we may want the network to
generate a sentence by itself without feeding it the expected previous tokens at each step.
Optimizing the network to generate a complete sentence that makes sense by itself is not
possible without losing the benefits of parallelization. However, one possible reinforcement
learning scheme that can be applied to this framework is given in the next section, and
is explored in the experiments.

The architecture is similar to that of the Encoder, and as such we will not repeat already
mentioned information, only the parts where they differ. Among the differences, we
have no residual connections after the convolutional blocks between the outputs and the
embeddings. Furthermore, the convolutional blocks take as input both outputs of the
Encoder, as can be seen in Figure 3.7.

As the whole expected sentence must be fed to the decoder and is processed in parallel,
the padding must be done in such a way that the filter does not have access to future
ground-truth information at any given point. The padding is therefore only done at
the beginning of the sentences, and the last token of the expected sentence, which is an
"end-of-sentence" token, is omitted.

27

Figure 3.7: Architecture of the Decoder’s Convolutional Blocks from the Convolutional
Seq2Seq[13].

The second part that differs from the encoder’s convolutional blocks is the computation
and appliance of the attention mechanism after the GLU activation layer. This is where
the encoder’s outputted contexts are used in the network, as well as the decoder’s input
embeddings3, through the attention formula outlined previously.

7.2 Proposed improvements for Convolutional Sequence-to-Sequence
learning

After the release of ConvSeq2Seq, presented just above, few papers tackled the problem of
convolutional-based abstractive summarization methods, but some works have nonetheless
been published. We are now going to take a look at these articles, which will partly make
the focus of this thesis.

A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Ab-
stractive Text Summarization[42]

The first paper we will take a look at was published in 2018 by Wang et al.[42] and aims
at incorporating context information in the convolutional sequence-to-sequence model.
Furthermore, it tackles the problem of the inconsistency of training and testing measure-
ments through reinforcement learning. Indeed, in typical sequence-to-sequence training,
the model is trained by minimizing a cross-entropy loss between the ground-truth tokens
and the output of the model. However, in order to evaluate the performance of the model,
it is the BLEU or ROUGE score that is used, as it makes more sense in the context of

3It must be noted that the Figure is not totally accurate for the sake of clarity. Indeed, each token
gets access to its embedding, not just the last one.

28

natural language processing. The reason one of those measures is not used during training
is that they are not differentiable, which means they cannot be used as the loss in a neural
network. The way this is dealt with in RNN-based abstractive summarization models is
through reinforcement learning and curriculum learning. However, such a method could
not transposed to CNN-based models since, as previously mentioned, the model cannot
use its own prediction as input during the training, as the whole summary is computed
in parallel and going to a sequential decoding would go against the very purpose of using
CNN-based networks in the first place4.

What the authors of this paper proposed to alleviate that issue was to use Self-Critical
Sequence Training (SCST) for optimization. This new kind of training also helps with the
aforementioned problem of exposure bias [31], which occurs because text generation models
are typically trained to predict the next word in a sequence given the expected previous
words but, at test time, the model must generate the entire sequence from scratch and
does not have access to ground-truth tokens. This difference between training and testing
usually deteriorates the quality of the generated summaries, as errors and inaccuracies
tend to accumulate as words are decoded and the mechanism makes use of previously
outputted and not necessarily correct words to generate the rest of the sentence.

Self-Critical Sequence Training, introduced by Rennir et al. [32] in 2017, differs from other
reinforcement learning methods in that the network being trained uses its own output to
normalize the rewards. This avoids the need for a second model to estimate the reward
signal (as is done in Actor-Critic algorithms), and "harmonizes the model with respect to
its test-time inference procedure", enabling the benefits mentioned above.

The way this training procedure is used by the authors of [42] is by generating 2 sentences
given any one input sentence x. The first one, denoted ŷ, is obtained by greedily selecting
the most probable words for each token while the second one, denoted ys, is generated
by sampling the vocabulary distribution generated by the model. The ROUGE score for
both sentences is then computed to act as the reward signal, and the reinforcement loss
that will have to be minimized is the following :

Lrl = − (r (ys)− r(ŷ)) log pθ (ys)

It is easier to see why the exposure bias is reduced in this training regime. Indeed, the
baseline against which the model is compared is its own prediction at test time, in the
form of r(ŷ). The model is thus exposed to its own distribution and the algorithm forces it
to produce an output with a large ROUGE score, which reduces the exposure bias.

In practice, this loss is slowly combined with the cross-entropy loss as training progresses
and as convergence nears.

Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional
Neural Networks for Extreme Summarization[25]

In this work, Narayan et al. introduced the task of extreme summarization, which aims
at summarizing a document into a single sentence in an abstractive manner. The ques-

4i.e. having a faster training time through parallelization.

29

tion that should be answered by that sentence is "What is this article about ?" Their
approach is a purely convolutional-based one, and their model was trained on a dataset of
BBC articles they created and called the XSum dataset. As was done for the previously
mentioned paper, the model is conditioned on the article’s topics.

This paper is interesting because the goal it pursues is entirely abstractive summarization.
Previous models, trained on Gigaword, DUC or CNN/DailyMail, were mainly extractive
methods which showcased a bit of abstractiveness. That is because these datasets favored
such results inherently. Extreme summarization, on the other hand, is not amenable
to extractive summarization and must be approached in an abstractive way, since the
summaries from XSUM are widely different from the titles of an article for example, as
can be seen in Figure 3.8. The goal is to generate a human-like summary containing
paraphrases, reformulations, synthesis,...

Figure 3.8: An abridged example from our extreme summarization dataset showing the
document and its oneline summary. Document content present in the summary is color-
coded.[25]

Since the objective of the authors was to summarize "long" documents, they argued that
Convolutional Neural Network-based models are more suited when compared to RNN-
based ones, since they can capture longer-term dependencies more effectively, as we have
already mentioned. Document-level summarization is therefore possible, as opposed to
paragraphs-level summarization usually enabled by RNN-based networks.

The way their encoder incorporates topical information is by associating each input token
with a topic vector that determines whether it is representative of the document’s content.
The decoder, on the other hand, conditions each predicted token on the document topic
vector. Aside from that addition, the architecture is the same as for Gehring et al.’s
convolutional sequence-to-sequence model.

30

Word’s and document’s topical information can be obtained by any topic model, but the
authors used Latent Dirichlet Allocation for the task.

Controllable Abstractive Summarization[16]

In this article, Fan et al. tackle the problem of including user preference such as sum-
mary length or style into the summarization process. Those are not inputs we are really
interested in for this work, but the authors briefly mention some ideas and concepts that
are interesting. Among those, one can name the use of Byte-Pair Encoding to deal with
rare and out-of-vocabulary words, as opposed to the traditional pointer-generator model;
or the use of intra-attention on top of a Bahdanau’s like attention traditionally used in
convolutional sequence-to-sequence models. Those are elements we will explore in the
experiments, and we will therefore introduce them in their respective sections.

7.3 Other improvements

On top of the improvements that are highlighted in the previous section, some that have
been tried on RNN-based models have not been applied to CNN-based models, to the
best of my knowledge.

Among those, we can cite mechanisms such as coverage and pointing, that were presented
earlier, and which we will implement in this work.

Something else that will not be explored in this work due to time/computational power
requirements is the use of a generative adversarial network (GAN) framework in which
the generator would be a CNN-based sequence-to-sequence model. Such a framework has
only been tested on LSTM-based networks[23] in 2018, where the authors showed that,
qualitatively, their model generated more abstractive, readable and diverse summaries
than their current counterparts.

31

Chapter 4

Architecture and experiments

The basic architecture used in this thesis is that of Gehring et al.[18], since it is the one
that most works have built upon over the years, and is therefore the baseline I will use
to assess the effectiveness of what will be implemented in the following sections. It has
been implemented from the original paper, with at times the help of codes from this
repository[14] and from this repository[37] implementing various sequence-to-sequence
models with pytorch. That ended up being the framework I used, and the basic model I
use, in its most vanilla form, is heavily inspired by that latter repository. The Byte-Pair
encoding script I used in section 6 to produce the abridged vocabulary and to preprocess
accordingly the datasets comes from this repository[9]. The pointer-generator architecture
used in section 6 is entirely my own and adapted from the original RNN-based paper[19]
and one of its implementations[30]. All the results are solely mine, as are codes written
with regards to the convolutional pointer-generator, reinforcement learning, embeddings
and intra-attention.

Concerning the dataset used to train and assess the performance of the models, the XSUM
dataset will be the main one used, supplemented with the CNN/DailyMail dataset. The
reason behind this choice is that the XSUM dataset has been specifically tailored for
abstractive summarization and has been released more recently than its counterpart,
making it less explored in the literature. Models trained using the CNN/DailyMail dataset
are also typically much more extractive by design, as will be shown in sections 4 and
5.

As a reminder of the goals of these experiments, we will first start by assessing the per-
formance of one of our convolutional model against RNN-based networks, both in terms
of training time and ROUGE scores. Afterwards, we will take a look at the importance of
the number of convolutional blocks in the model on both a more extractive dataset (CN-
N/DailyMail), and a more abstractive one (XSUM). This will be followed by an extensive
study of word embeddings and the usefulness of pretrained ones, before introducing a
pointer-generator model and comparing it to a scheme serving a similar purpose (BPE).
Finally, we will conclude with an experiment about reinforcement learning and its use in
the framework of convolutional sequence-to-sequence training, before mentioning aborted
experiments and possible future works.

32

https://github.com/tobyyouup/conv_seq2seq
https://github.com/tobyyouup/conv_seq2seq
https://github.com/bentrevett/pytorch-seq2seq
https://github.com/rsennrich/subword-nmt

Before that, however, I will mention my early work that did not made its way in this
thesis, some problems encountered and the training methodology I used.

1 Early work and problems encountered
Before devising the research questions this work would be based on, and before realizing
that training a regular RNN-based sequence-to-sequence model for the task of abstractive
summarization on a dataset large and complex enough to get interesting and applicable
results would require very large amount of computational time and power, I familiarized
myself with the task by implementing simple RNN-based models on the Amazon Review
dataset[39], a small dataset that summarizes Amazon products reviews into the title of
the review. Although such an approach could not yield good results, it provided me with
some experience with regards to the task, its challenges and the overall framework of
sequence-to-sequence and pointer-generator models. Due to the lack of relevance of these
experiments in the final version of this work, I will not mention it further, continuing
this section by explaining the various challenges that appeared when working with the
convolutional models directly.

The problems I encountered during the development of the code were mainly the incom-
pleteness of some papers, making it quite difficult to pinpoint the exact architecture and
training procedure the authors used to reach their results. As training a simple model
on a reasonably sized dataset takes between 3 and 4 days, the process of fine-tuning the
parameters, training process and architectures took some time and could not really be
parallelized.

The hardest parameter to tune was beyond a doubt the learning rate. Selecting it too
high (0.25) quickly led some models to output exploding prediction values, leading to Not-
a-Number losses that could not be optimized. Selecting it too small, on the other hand,
led to very slow improvements in the training and evaluation of the model. The game was
therefore to find both the right starting point and decreasing method so that the results
would improve over training and not stall/violently decrease in performance.

On top of being quite sensitive to the learning rate, the models were also very sensitive
to the optimization technique. Although Adam or Adagrad were used in several papers, I
found that it led to very poor results and a very hard fine-tuning of the parameters. The
selection of an appropriate learning rate was even more critical in that case.

Finally, I used the training procedure that was used by Narayan et al.[25] for all datasets
and models, which gave the best results and allowed to start training with a large learning
rate. That enabled me to speed up training, as the number of epochs required to reach
convergence decreased. The training procedure in question consists in starting with a
learning rate value of 0.1 and optimize using the Stochastic Gradient Descent algorithm
with Nesterov Momentum (with a momentum of 0.99). Using such a momentum scheme
allows to accelerate training progress, avoids the model getting stuck in a flat loss area
and slows down the search when approaching a local minimum. The learning rate is also
divided by half when the validation loss does not decrease from epoch to epoch, until
reaching a lower bound of 1e− 4. Those parameters were tested in my own experiments
and I found out that selecting a bigger initial learning rate (0.25) did not speed up the

33

convergence, and lowering the lower bound had the effect of slowing the training without
inducing any benefit.

Taking a look at a typical training and plotting the losses, the models initially showcased
losses that were similar in form to the one plotted in Appendix A in Figure A.1. Although
it is not clear from the magnitudes displayed in the graph, the training loss was of 57547
with a validation loss of 1330 at the end of the first epoch before shooting to losses in
the order of 1e6 with an initial learning rate of 0.001. At that point, the learning rate
was cut by a factor 10 and the model started producing decreasing losses, but still ended
the training with a validation loss of about 75 and not much decrease from one epoch to
the next. That loss was too high for the model to produce anything remotely correct,
and the learning rate was then too small to see any significant progress in a respectable
training time. When we compare those losses to the ones that were obtained using SGD
with Nesterov Momentum (all else being equal except for the initial learning rate being
even bigger for SGD), however, we see directly that the latter is poised to produce better
results. Those losses are presented in Figure A.2. As we can see, even though the learning
rate is much greater than for the Adam optimizer, the losses immediately start decreasing
and continue to do so until about 35 epochs, where they begin to converge. In light of
such graphs and corresponding results, this is the training method that will be used in all
experiments.

Another problem I faced with the Covid situation was that I did not receive the full GPU
access before mid-July 2021, making it hard to test and train the models, and reducing
the amount and breadth of experiments I would be able to conduct.

Finally, one problem I encountered while sending jobs to IBM Cloud is that some of
them were marked as running, and were actually executed for some time, before stalling.
They were still considered as being executed, but seemingly stopped making any progress.
When I realized that issue, I relaunched some of those scripts, but that problem seemed
more prevalent when a lot of jobs were running simultaneously, and therefore some of
those relaunched jobs were halted again. That problem with batches of experiments also
limited the number of scripts I could run at any one time. The only way to detect the
halting problem, however, was to wait for the expected number of days to check if the
execution was over and, if not, sometimes the log indicated that a problem with the server
had occurred. For example, one job I monitored ran for 2 days before entering that state
of non-execution. Most of my script ran, and I have results for all experiments, especially
for the XSUM dataset, which is the main one under consideration, but I still lacked results
from some scripts that should have complemented the results or answered some of my
hypotheses. Whenever applicable, I will reference such scripts, my hypotheses regarding
them and the results I expected.

2 Training and Evaluation methodology
For all experiments, the dataset in use was divided in 3 parts : A training set consisting
of two-thirds of the examples, a validation set consisting of a fifth of the examples, and a
test set containing the remaining data samples. The models were trained on the training
set, evaluated at each epoch on the validation set to decide whether or not the learning

34

rate should be decreased and the model saved as a checkpoint, and finally assessed on
the test set. For the two first kinds of sets, the models were trained and evaluated using
the cross-entropy loss and, for the test set, they were evaluated using either the BLEU or
ROUGE scores. As a reminder, the BLEU score assesses the accuracy of the predictions
outputted by the model by comparing various n-grams to the target summaries. One
drawback of that method is that if no n-gram of a given order are found in the predicted
summary, the whole score will be 0, even if the summary makes sense. Furthermore, this
score only assesses the accuracy of the summary when compared with a predefined ground
truth. If the model is truly abstractive and can produce novel sentences, it is very well
possible that it will obtain a low BLEU score, as paraphrasing a summary is considered
as erroneous, even if the whole sense of the sentence is there. Those problems also occur
for the ROUGE score, which is just an offshoot of the BLEU score but works on the same
principles. To summarize the point, evaluating an abstractive model automatically and in
a meaningful way when compared with our human intuition is much more difficult than
to create an abstractive model. As a matter of fact, it may even be impossible.

One possibility that had been envisioned by a research group in May 2021 was to use
Generative Adversarial Networks[46] for the task. However, this does not alleviate the
whole problem, as the summaries are still evaluated using the ROUGE score. One idea
could be to use the accuracy of the discriminator as the scoring system, but it comes with
its own problems and biases. In fine, there is currently no automatic method that can
determine the validity of a summary with the same acumen as a human being could, and
therefore it can be of interest to personally review some summaries in some cases, as will
be done at some point in this thesis.

3 Comparison with RNN-based sequence-to-sequence
models

The first experiment we will mention is obviously the one that sparked the desire to tackle
the task of abstractive summarization with a convolutional sequence-to-sequence model
instead of a RNN-based one.

I will compare the various models through two considerations : training time and perfor-
mance. Obviously, as I could not train the RNN-based models to convergence to obtain
similar results, I will, when comparing ROUGE scores, take results from the literature for
those models.

3.1 Time comparison

Let us start this time comparison section by stating that training a simple RNN-based
network for one epoch on the XSUM dataset took 11 hours, and this does not take into
account the time needed to assess the evaluation loss of the model. When we combine those
two steps, we reach a training time of 16 hours per epoch. In other words, if we wanted
to train this network for as many epochs as the CNN-based networks, it would require
the model to run for close to 27 days, before even being able to assess the performance of
the model using BLEU or ROUGE ! And this training took part on the XSUM dataset,

35

which is smaller in practice than the CNN/DailyMail dataset.

The reasons why this training is so slow is because of the inability for recurrent networks
to parallelize through the time dimension, as previously mentioned. Furthermore, since
the computations of the gradients in such networks are more complicated and involve
tensors having to be kept in memory until the whole sentence has been outputted, the
memory requirements per batch processing are more important than they are for CNN-
based models, inducing the requirement for smaller batch sizes, which further slows the
training.

The training and inference times for the CNN-based model, on the other hand, can be
seen in Table 4.2. As expected, they are much more tractable for a Master’s Thesis, and
for smaller organizations.

3.2 Performance comparison

Now, let us see how the results we obtain with our convolutional sequence-to-sequence
model compare to those obtained with regular RNN-based sequence-to-sequence networks.
The results for the RNN-based networks come from the paper Don’t Give Me the Details,
Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summariza-
tion[25], which introduced the XSUM dataset, and are therefore related to that dataset.
Results are given in Table 4.1, and are measured using the F1 ROUGE score. The con-
volutional model that is provided is one I trained myself and that has 6 convolutional
blocks in both the encoder and the decoder.

Method R1 R2 RL

RNN Seq2Seq 28.42 8.77 22.48

RNN-Pt-Gen 29.70 9.21 23.24

RNN-Pt-Gen + coverage 28.10 8.02 21.72

ConvS2S with 6 layers 24.89 6.43 20.34

Table 4.1: Performances of various models evaluated on the XSUM dataset

Although the convolutional model presented does not reach the performances of the other
networks, it must be noted that they are close, that these results were obtained using
a greedy search instead of the beam search results of the RNN methods reported, and
that it was not trained on the whole dataset, but rather on 4

5

th of it and not until full
convergence. In light of these considerations, using a convolutional sequence-to-sequence
model instead of a RNN-based one makes sense, especially when considering the time
required to train and fine-tune RNN-based networks.

As is also applicable to this whole thesis, the results could be made much better by
searching better hyperparameters, using a bigger (full) dataset, more complex models
(for example fully training a 8-layered one) and more training epochs, but this would
require more time and resources than I had available. My results are still valid since
they compare models trained in a similar fashion, but I believe that they could all be im-
proved significantly by doing what I just outlined. For example, the vanilla convolutional

36

sequence-to-sequence model trained by Narayan et al.[25] outperformed all the RNN-
based baselines in Table 4.1 by several ROUGE points whereas mine underperformed
those baselines.

4 Influence of the number of convolutional blocks over
the quality of the summaries

As has been hypothesized in various aforementioned works, an increasing number of con-
volutional layers, in the encoder at least, should enable the model to capture more long-
distanced relationships between input tokens, and therefore to output more meaningful
and salient summaries. The first question we are interested in answering is therefore
that of the tradeoff between the expected increase in performance enabled by more con-
volutional blocks in the model and the increase in training time and spatial complexity
of the model, as it would require linearly more parameters. My hypothesis is that the
performance gains are appreciable for larger datasets, where long-distanced dependencies
play a major role and are not captured by a few convolutional layers, but are not worth
the increased training time (induced by more parameters to train at each epochs, more
operations to be conducted, and more epochs to reach convergence) in the case of smaller
datasets.

To test this hypothesis, I will run the baseline model on the CNN/DailyMail and XSum
datasets. We will use 4, 6, 8 and 10 convolutional layers in both the encoder and the
decoder and measure the performance of the models using the BLEU metric on a testing
dataset unseen during training. The whole training methodology follows that provided in
Gehring et al.’s paper[18] and already mentioned in the previous sections. That compar-
ison concerning the number of convolutional blocks is also extended in the next section,
which tackles the concept of pretrained embeddings.

4.1 Time comparison

First of all, let us compare the change in training time when the amount of convolutional
blocks is changed, all other things being equal. All the reported times were obtained
by training the models on IBM Cloud with 1 virtual GPU and averaged over all training
epochs in the case of the training time. The inference time, on the other hand, corresponds
to the total time required to assess the performance of the model on the whole test part of
the dataset. The times reported here correspond to a greedy generation, as opposed to a
beam search. That choice was made because performances were comparable whatever the
evaluation method, but the greedy decoding took 10 times less time to obtain the results
than the beam search method. For all methods, the results were much better using beam
search, and such results will be showcased later in this work, but given the amount of
models trained and the time needed to obtain beam search results, performances are
compared using the greedy decoding in the rest of this work too, unless explicitly stated
otherwise.

As we can see in the table, and as is expected, the time complexity grows linearly with
the number of layers.

37

Dataset Number of layers Training time per epoch Inference time

XSUM
6 137′ 1h09′

8 173′ 1h14′

10 216′ 1h23′

CNN/DailyMail
6 141′ 3h57′

8 179′ 4h

10 220′ 4h12′

Table 4.2: Times comparison as a function of the number of convolutional blocks in the
encoder and decoder.

The training time is also similar for the two datasets, all other things being equal. That is
to be expected, since the models are the same and the batches are of the same dimensions.
The input text is cut to 400 tokens since previous papers[19][25] wrote that doing so did
not deteriorate the performance and even increased it while slightly reducing the training
time and model complexity. Output tokens are also bounded to a length of 80 tokens,
as is typically done in the literature. Doing so does not impair the performance of our
models, since they typically never output above 80 tokens when the length is not limited,
at least in our experiments. Therefore, the dimension of the batches for the two datasets
are the same, and thus the models take the same time per epoch to train, as we set as
equal the sizes of the training sets in both cases.

Another point that needs to be taken into account, however, is that the larger the model,
the more training epochs it would need to converge and stabilize, which adds to the
training time. This must be taken into account, as we will see in the next subsection.

Concerning the inference times, the CNN/DailyMail dataset requires more time than its
XSUM counterpart because it is larger and therefore has more samples remaining after
having set the training and evaluation sizes of both dataset as equal. However, since
the BLEU scores are normalized, having more samples to test on does not induce much
change in the scores when we work with tens of thousands of samples already.

4.2 Evaluation of the models

Concerning the performances, the networks have been trained for 40 epochs using the
training procedure described in section 2. Let us first evaluate them on the XSUM
dataset, which requires a higher level of abstractivity than the CNN/DailyMail one.

XSum dataset results

In order to evaluate the models, I first used the BLEU score as provided by torchtext1.
I will evaluate the predictions of the models using n-grams going from 1 to 4, all equally
weighted in the BLEU score.

1See https://pytorch.org/text/stable/data_metrics.html

38

https://pytorch.org/text/stable/data_metrics.html

With the output length limited to 80 tokens, the scores are given in Table 4.3.

Number of layers BLEU-1 BLEU-2 BLEU-3 BLEU-4

4 21.66 10.77 5.88 3.53

6 22.89 11.66 6.55 4.01

8 23.35 12.07 6.83 4.29

10 22.59 11.44 6.30 3.75

Table 4.3: BLEU scores for models containing various numbers of convolutional blocks
models, trained and tested on the XSUM dataset with an output size limited to 80 tokens.

We can see here that the results for the lower BLEU scores do not differ widely based
on the number of convolutional blocks. However, as we increase the order of the BLEU
score under consideration, the relative differences become greater. Whereas going from 4
to 6 layers only increased the BLEU-1 score by about 5.68%, the increase in the BLEU-
4 score was of 13.6%! What this means is that the models with bigger layers are able
to better capture long-distanced dependencies in the original text, particularly in this
dataset, where sentences in the summaries (and therefore the n-grams of higher orders)
contain words from all over the text and are not mainly extractive (recall Figure 3.8), as
would be the case for the CNN/DailyMail dataset.

Another point that must be noted when looking at the results is that the relative increase
in performance slows as we add more layers, and even becomes a decrease at some point.
The reason for that is that all models were trained for the same number of epochs, and
it is a well-known fact that models having more capacity (more parameters, in this case
coming from more convolutional blocks) are harder to train and take more epochs to do
so. I therefore believe that the smaller models, after the 40 training, were close to their
local minimum in terms of convergence, while the larger models were not. Looking at
the losses, however, it was clear that the improvement had slowed significantly for those
larger models after about 35 epochs. Increasing the number of training epochs for those
larger models too much would nonetheless improve the results displayed here, but one
should be careful to avoid overfitting.

In light of these results, either 6 or 8 layers will be used in subsequent experiments.

CNN/DailyMail dataset results

With 80 tokens and pretrained embedding (GloVe 100 dimensions), the results for the
CNN/DailyMail dataset are given in Table 4.42 :

As we can see, there does not seem to be much difference in this case when selecting
either 6 or 8 layers, but the bigger the capacity of the network, the slightly better the
results nonetheless. This may be explained by the fact that the CNN/DailyMail dataset
encourages the models to be mainly extractive by design, and so the possibility to capture

2The 4 and 10 layers models were part of the models that ran forever on the cluster, and therefore I
do not have their scores.

39

Number of layers BLEU-1 BLEU-2 BLEU-3 BLEU-4

6 21.99 11.44 6.93 4.79

8 22.54 11.71 7.16 4.97

Table 4.4: BLEU scores for models containing various numbers of convolutional blocks
models, trained and tested on the CNN/DailyMail dataset with an output size limited to
80 tokens.

longer-term dependencies that is enabled by more convolutional blocks in the network does
not shine here.

Conclusion of the experiment

Is the added training cost required to train a bigger network worth these small improve-
ments in the performances ? I would say that it is up to a certain point. Selecting 8 layers
over 4 or 6 in this context makes sense, but choosing 10 layers does not, as it would require
longer and more numerous epochs to reach convergence, for an increase in performance
that may not justify it.

On another note, is it possible that the 8-layered model would require more training
epochs to reach even better performance ? It should not be excluded and is certainly
true, but the relative shapes of the losses for both the 6-layered and 8-layered networks
are similar, suggesting a similar convergence rate at the end of training. Nonetheless, if
one had as much time as he wanted to train the models, he should train them until the
validation loss begins increasing from epoch to epoch, at which point he will know that
it is starting to overfit.

5 Influence of the use of pretrained embeddings versus
trained ones

The second experiment I have conducted is one measuring the influence of using a pre-
trained embedding layer when compared with the training of the layer concurrently with
the rest of the network.

One downside of using a pretrained embedding is the size of the files that need to be stored
in memory. As such files contain embeddings for hundred of thousands of tokens, they
usually take several gigabytes and contain a lot of rare and unneeded embeddings. Apart
from that small downside, however, there is no real reason not to use them. Nonetheless,
several papers[18][25] exploring the use of convolutional sequence-to-sequence networks
said that they trained the embeddings with the rest of the network, without necessarily
providing a reason as to why they did so. Given the fact that there are really only up-
sides to using pretrained embeddings, that it speeds up the training as the network does
not have to re-learn the weights associated with the embeddings and offers semantic and
syntactic informations about the words, I was led to wonder why the use of pretrained
embeddings was not the default option. Are there benefits to training the embeddings

40

yourself (aside from setting the desired dimension for the embeddings, as not all possi-
bilities are offered by pretrained embeddings, although that reason does not make sense
to me given the increase in performance we will see in the experiments) ? If anything,
this should simply lead to less robust networks that are not able to transfer their skill
(summarization) to a different domain (for example, from one dataset to another).

That assumption will be evaluated in this experiment by applying the summarization
model trained on the XSUM dataset on the CNN/DailyMail dataset and vice-versa. One
consideration to keep in mind with that approach, however, is that the XSUM dataset
was designed for the models to produce more abstract summaries (the summaries have
been made by humans with the purpose of creating a small summary in mind, contrarily
to CNN/DailyMail where the summaries are typically more extractive). In a second time,
I will also evaluate models trained on the CNN/DailyMail and XSUM datasets on the
GigaWord dataset, which is related to the CNN/DailyMail due to its more extractive
nature, but is also related to the XSUM dataset given the size of the summaries that
are typically much shorter than those of CNN/DailyMail. That is not to say that the
summaries produced by the model trained on XSUM will necessarily be out-of-touch with
those expected by CNN/DailyMail, my expectation is that they will fare quite well, but a
model trained to abstract (i.e. trained on XSUM) may not do well when evaluated using
the BLEU or ROUGE score, as paraphrases, synonyms and words reordering are simply
considered as wrong in the eyes of the metrics, even if they make perfect syntactical and
semantic sense.

In a second time, I wondered if one embedding, between GloVe and Word2Vec, both
trained on Wikipedia, was particularly better than the others. This question is easier to
answer and will therefore be presented first.

5.1 Embeddings Comparison

First of all, let us evaluate trained and pretrained embeddings on the XSUM dataset
alone. For this, the model we will use is the simple convolutional sequence-to-sequence
network containing 8 convolutional blocks for both the encoder and the decoder, and
trained for 40 epochs using the procedure described in section 2. The embeddings we will
use are GloVe with 100 dimensions, GloVe with 300 dimensions and Word2Vec with 100
dimensions. The dimensionality of 100 will also be used for the trainable embeddings to
keep consistency and obtain comparable results. Furthermore, the output will be limited
to 80 tokens, as is usually done in the literature3.

Comparing the various embeddings, we can see that the choice of pretrained embedding
does not influence much the performance of the model. Word2Vec, however, shows slightly
worse results than its GloVe counterpart, which is a result that is typically observed, as
has been mentioned in section 6 of the background.

The greatest difference in performance, as expected, comes from the use of trainable
embeddings, which is also confirmed by looking at Table 4.6. One thing to observe is that

3The results for CNN/DailyMail are not shown here since the Word2Vec version got halted on the
GPU cluster, and simply comparing the use of pretrained versus trained embedding will be done just
after.

41

Word embedding BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pretrained (GloVe 100D) 23.35 12.07 6.83 4.29

Pretrained (GloVe 300D) 23.85 12.80 6.95 4.35

Pretrained (Word2Vec 100D) 21.56 10.79 5.98 3.63

Trained 18.16 8.01 3.96 2.20

Table 4.5: BLEU scores for various word embeddings trained and evaluated on the XSUM
dataset

the trained embeddings fare slightly better on the CNN/DailyMail dataset than they do on
the XSUM dataset. My guess is that the CNN/DailyMail is easier to train on, since it is a
dataset that favors extractivity, while the XSUM dataset favors abstractivity and therefore
requires more training as well as the ability for the network to predict related words (more
easily enabled by pretrained embedddings) to reach similar performances.

The results obtained from the trainable embeddings models are not horrendous, and would
certainly benefit greatly from more training, although the losses showed the same signs
of convergence as the other models after the 40 epochs, but that is the point : why would
you increase your training time to reach performances that will either be on par with what
one would obtain by using pretrained embeddings, or better but more biased towards the
training dataset. I do not have an answer to that question, but my guess is that, to get the
best results and reach state-of-the-art scores on a given dataset, having word embeddings
that are biased towards the dataset is preferable. However, as we are now going to see,
this can come at the cost of the generalizability capacities of the models.

Word embedding BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pretrained (GloVe 100D) 23.53 11.91 7.36 5.17

Trained 18.13 8.49 4.79 3.25

Table 4.6: BLEU scores for 8-layered models trained and evaluated on the CNN/DailyMail
dataset

5.2 Assessing the performance of the models trained on CNN/-
DailyMail on XSUM

In order to assess the performances of the models on a different dataset, we will consider as
testing set the entirety of the second dataset. The testing time is therefore extended, but
we obtain more representative results. This consideration is valid for both this subsection
and the next. However, the ROUGE scores have been obtained by evaluating the models
on 30000 examples instead of the whole testing set. The results are provided in Tables
4.7 and 4.8.

In this case, the scores of the 6-layered model with pretrained embeddings far outweighs
those of its trained counterpart, as expected. What is unexpected, however, is that

42

Word embedding Number of convolutional blocks BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pretrained (GloVe) 6 10.40 3.67 1.51 0.74

Pretrained (GloVe) 8 11.50 4.24 1.76 0.92

Trained 6 6.32 1.89 0.53 0.14

Trained 8 10.09 3.80 1.45 0.59

Table 4.7: BLEU scores of models trained on CNN/DailyMail and evaluated on XSUM
as a function of their embeddings.

Word embedding Number of convolutional blocks ROUGE-1 ROUGE-2 ROUGE-L

Pretrained 6 17.67 2.32 13.92

Pretrained 8 19.09 2.61 15.14

Trained 6 13.41 1.48 12.15

Trained 8 18.13 2.67 15.44

Table 4.8: ROUGE scores of models trained on CNN/DailyMail and evaluated on XSUM
as a function of their embeddings.

the trained 8-layered model has BLEU scores that are only slightly below those of its
pretrained counterpart, and ROUGE scores that are even slightly better of ROUGE-2.
That result may be explained by the fact that the model with trainable embeddings
outputted shorter summaries that were more on par with the ones expected by XSUM,
while the model with the pretrained embeddings outputted slightly longer summaries,
possibly resulting in that discrepancy in ROUGE-2 results. However, that is just an
hypothesis.

5.3 Assessing the performance of the models trained on XSUM
on CNN/DailyMail

Word embedding Number of convolutional blocks BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pretrained 6 8.65 3.09 1.13 0.46

Pretrained 8 11.10 3.76 1.61 0.59

Trained 6 6.67 1.98 0.52 0.16

Trained 8 7.64 2.35 0.70 0.24

Table 4.9: Performance of models trained on XSUM and evaluated on CNN/DailyMail
as a function of their embeddings.

In this setting, as expected, the use of pretrained embeddings yields better results for both
kinds of networks, as does the use of more convolutional blocks. That is the expected
result. The overall performances are also slightly worse than for the previous experiment,
which reinforces my idea that training a model on XSUM is harder to do than it is on
CNN/DailyMail and results in abstractive models that are less well-suited for the more
extractive CNN/DailyMail dataset.

43

Word embedding Number of convolutional blocks ROUGE-1 ROUGE-2 ROUGE-L

Pretrained 6 16.58 2.12 12.59

Pretrained 8 18.03 2.34 13.37

Trained 6 12.41 0.15 9.96

Trained 8 13.43 1.35 10.59

Table 4.10: ROUGE scores of models trained on XSUM and evaluated on CNN/DailyMail
as a function of their embeddings.

5.4 Assessing the performance of the models on XSUM and CN-
N/DailyMail on Gigaword

For this experiment, the models have been tested as is on the GigaWord dataset. The
BLEU and ROUGE scores are reported in Table 4.11 and 4.12.

Initial Dataset Word embedding Number of convolutional blocks BLEU-1 BLEU-2 BLEU-3 BLEU-4

CNN/DailyMail Pretrained 6 11.31 5.95 3.11 1.63

CNN/DailyMail Pretrained 8 12.00 6.21 3.31 1.71

CNN/DailyMail Trained 6 1.92 0.35 0.07 0.02

CNN/DailyMail Trained 8 5.35 2.21 0.90 0.36

XSUM Pretrained 6 8.41 3.15 1.12 0.36

XSUM Pretrained 8 9.34 3.45 1.23 0.39

XSUM Trained 6 3.56 0.64 0.12 0.00

XSUM Trained 8 4.28 1.04 0.23 0.04

Table 4.11: BLEU scores of models trained on XSUM and CNN/DailyMail and evaluated
on the Gigaword dataset.

Initial Dataset Word embedding Number of convolutional blocks ROUGE-1 ROUGE-2 ROUGE-L

CNN/DailyMail Pretrained 6 17.53 6.77 24.37

CNN/DailyMail Pretrained 8 25.01 7.24 24.71

CNN/DailyMail Trained 6 5.92 0.19 5.71

CNN/DailyMail Trained 8 14.00 2.07 13.18

XSUM Pretrained 6 13.94 1.83 12.71

XSUM Pretrained 8 16.82 2.87 15.12

XSUM Trained 6 5.24 0.16 4.91

XSUM Trained 8 7.02 0.40 6.64

Table 4.12: ROUGE F1 scores of models trained on XSUM and CNN/DailyMail and
evaluated on the Gigaword dataset.

What we can see is that models trained on CNN/DailyMail consistently fare better than
the ones trained on XSUM. That is to be expected, since both GigaWord and CNN/Dai-
lyMail share some extractivity and therefore favor the same kind of extractive-oriented
networks. Their target distribution are also similar, both consisting of article summaries
obtained in a similar way. The use of pretrained embeddings also consistently produces
better results. This is actually what we expected from an experiment measuring the

44

ability to generalize. Let us now have a look at the fine-tuning of these models on the
GigaWord dataset.

Fine-tuning on GigaWord

In the final experiment for this section, I explored the results obtained by finetuning the
convolutional models trained on XSUM and CNN/DailyMail on the GigaWord dataset.
The convolutional models contain 6 convolutional blocks in both the encoder and the
decoder, and either pretrained or trainable embeddings. The finetuning process was done
by taking the models trained on either the XSUM or CNN/DailyMail dataset and training
them for two additional epochs on a subset of GigaWord (30000 samples for the training
phase and 10000 for the testing phase). The results are given in Table 4.13. The first
thing we can say is that fine-tuning on GigaWord resulted in much better results than
those previously observed. As expected for XSUM, which has an output distribution
that is far from the GigaWord corpus, using a pretrained embedding led to better and
more consistent results. For CNN/DailyMail, on the other hand, the results were slightly
better when using a trained embedding. My guess as to why it happens is that both
CNN/DailyMail and GigaWord share a common target distribution, as they are both
mainly extractively built articles datasets. The bias that is learned on CNN/DailyMail
therefore plays in favor of the trainable embedding here, and the more generalizable
pretrained embedding yields slightly worse results, which corroborates the hypotheses
emitted previously.

Concerning the ROUGE scores for XSUM, they follow the same trend. On top of having
models that are more in line with the dictribution of GigaWord, that is also due to the
fact that fine-tuning on the dataset had the effect of reducing the summary lengths that
were generated, especially for CNN/DailyMail which typically outputs longer summaries,
which improves the F1 scores of the sentences.

As we can see in Table 4.14, the summaries that are generated by the XSUM-based
model are not necessarily worse than the ones generated by the CNN/DailyMail-based
ones (Table 4.15), but were trained to learn to paraphrase and not so much extract, which
we see here. This further shows that simply using the BLEU or ROUGE scores as is does
not necessarily tell the whole story, particularly in the case of inter-dataset evaluations.
However, there is no other alternative aside from reviewing some summaries.

Initial Dataset Word embedding Number of convolutional blocks BLEU-1 BLEU-2 BLEU-3 BLEU-4

CNN/DailyMail Pretrained 6 29.17 17.81 11.24 7.36

CNN/DailyMail Trained 6 29.71 18.10 11.39 7.42

XSUM Pretrained 6 21.51 12.07 7.05 4.25

XSUM Trained 6 7.35 2.90 1.47 0.87

Table 4.13: BLEU scores of models finetuned and evaluated on the Gigaword dataset.

5.5 Conclusion of the experiments

As we can see from the results, not using a pretrained embedding seems to not make sense.
The performances may not be disastrous when evaluated on the same dataset as the one

45

Target summary Predicted summary

russia slams <unk> ukraine russia condemns ukraine against <unk>

oil prices up in asia on hurricane fears oil prices rise in asian trade
spanish official inflation slows sharply on oil
price fall spanish inflation fall in march

Table 4.14: Outputs generated with the XSUM-based 6-layered network with pretrained
embeddings and fine-tuned on GigaWord

Target summary Predicted summary
pakistan army commanders meet after us
raids row

pakistan army commanders meet on <unk>

<unk> shares close percent lower seoul shares close percent lower
mozambique ruling party readies to pick
presidential candidate

mozambique ruling party to hold talks to
choose presidential elections

Table 4.15: Outputs generated with the CNN/DailyMail-based 6-layered network with
pretrained embeddings and fine-tuned on GigaWord

the models were trained on, but when evaluating in an inter-dataset way, the results back
up our intuition that the models which do not have a pretrained embedding are less able
to generalize their performance on other datasets than models equipped with pretrained
embeddings. That is to be expected since the embeddings that are trained are especially
tailored for the dataset at hand, and therefore I do not believe that a longer training
for such models would result in vastly different performance, or different conclusions.
Furthermore, as we can see in Table 4.5, the difference in performance for models having
a pretrained embedding when compared to those which have not are much less than the
ones we can observe in table 4.9. It thus reinforces my belief that both kinds of models
reached the same level of convergence, due to the similar scores observed in Table 4.5,
but that training our embeddings ourselves leads to poor inter-dataset performance, and
training further the model not equipped with pretrained embeddings would only further
the bias towards its own training dataset.

As it stands, I thus do not see any good reason not to use pretrained embeddings. On the
contrary, training a model not equipped with a pretrained embedding for more epochs
than I did would probably produce better results on the dataset on which it was trained
on than using pretrained embeddings, but it is my guess that such models would fare even
worse than the ones I showed here when evaluated on other datasets, since the weights
of the embeddings would overfit the training dataset instead of being general and relying
on the other layers to account for that generality. It is also my believe that this kind of
inter-dataset evaluation should be performed more often, as the results presented in most
scientific papers come from models trained on one dataset and evaluated on the same one.
For the task of text summarization, it does not make sense, in my opinion, to not study
the inter-dataset performance of your models and parameters, as real-life applications of

46

your methods will most probably never involve the exact data domain as the one the
model was trained on.

However, if you know that the domain your models will be used on is very close to the
one it will be trained on, as is the case for GigaWord and CNN/DailyMail, it may make
sense to use trainable embeddings and fine-tuning the training. Otherwise, I would advise
against using trainable embeddings and rather using pretrained ones.

6 Convolutional Pointer-Generator and Byte-Pair En-
coding

In this experiment, let us measure the influence of the use of a pointer-generator mech-
anism in the Convolutional Sequence-to-Sequence model. To the best of my knowledge,
this is something that has been mentioned before, but not implemented. Fan et al.[16]
mentioned said that they used a combination of sub-word tokenization and weight shar-
ing to deal with the problem that is solved by pointer-generator networks, namely the
handling of out-of-vocabulary and rare words. The authors claimed that their solution
answered the same problem, while at the same time being less complex and having fewer
parameters.

I decided to test that hypothesis in this work, since they did not conduct it, and therefore
to check whether or not the use of sub-word tokenization and weight sharing produced
results that were on par with the use of a pointer-generator network, all else being equal.
My best guess is that pointer-generators should produce better results, because they
not only have the ability to copy rare words, but also to copy any word of the input
directly, provided that it is important enough. A switching mechanism would provide the
same benefits as the sub-word tokenization scheme, but a convolutional pointer-generator
network should produce better results, and that is what we will test here.

For the sub-word tokenization, I used the Byte-Pair Encoding (BPE) scheme. That
scheme has been adapted from the field of data compression to deal with the problem of
rare words not being taken into account in regular word embeddings. To perform subword
tokenization, BPE starts from the initial vocabulary at the character-level and merges
together the most frequently occurring pairs into subwords. The process is repeated
iteratively until the desired vocabulary size is obtained, making the scheme strike a balance
between character- and word-level representations that enables it to tackle large corpora
with a predetermined vocabulary size, and to handle out-of-vocabulary words effectively
without using unknown tokens[9]. This scheme is therefore very cost-effective, since it only
involves replacing both the input and output vocabularies by the ones generated by the
procedure given above. Nothing more needs to be added to the network. Concerning the
weight sharing, using pre-trained embeddings already takes care of that consideration.
Using Byte-Pair Encoding is therefore very easy and cost-effective. Is it thus of any use
to implement the more complex pointer-generator network ? I believe so, but let us find
out after a presentation of the formulation I modified to implement the convolutional
pointer-generator.

47

6.1 Architecture of the pointer-generator network

As pointer-generators have not been adapted to Convolutional Sequence-to-Sequence
models, or at least the formulation of the architecture, dimensions and equations have
not been written in any paper, I had to work from the original paper[35] and adapt the
ideas and equations to the convolutional paradigm.

The basic idea is however the same for both architectures :

The vanilla sequence-to-sequence model produces as output the vocabulary distribution
Pvocab over the static vocabulary that has been determined prior to the training. There-
fore, that static vocabulary cannot take into account rare, or unseen words in a manner
other than by producing an unknown token. The pointer part of the network, on the other
hand, will enable it to copy words from the input to the output. How the network chooses
between generating or pointing is through the generation probability pgen.

In the RNN-based pointer-generator, pgen is computed at each time step t from the context
vector h∗t , the decoder state st and the decoder input xt and takes the form :

pgen = σ
(
wTh∗h

∗
t + wTs st + wTx xt + bptr

)
Where bptr corresponds to a bias parameter.

Finally leading to a vocabulary distribution :

P (w) = pgen Pvocab (w) + (1− pgen)
∑
i:wi=w

ati

Where ati is the attention distribution at time step t. The use of attention allows the
network to know which input tokens are important, and to copy them if they are relevant
enough, whether they are unknown tokens or regular ones.

For the convolutional-based pointer-generator, we will keep the same form for pgen, but
several changes will have to be made, both to the convolutional sequence-to-sequence
model we have used until now, and to the pointer-generator formulation. First of all, the
computations for all timesteps will be done in parallel, which introduces an additional
dimension to the problem4 and a reshaping of the relevant tensors.

As all timesteps are computed in parallel in this setting, we do not need the t indices in
the formulation of the probability pgen. The sigmoid is still present, but the parameters
h∗, s and x will have to be modified to fit our framework. From the decoder, we will define
the s parameter as the internal state of the network directly following the convolutional
blocks, acting as a decoder state since it contains the information about the previously
decoded words. The parameter h, which corresponds to the encoding context in the RNN-
based formulation, is here computed in a similar manner, as a sum of the input vector
weighted by the respective attention of each word in the vector. Finally, the x parameter
also corresponds to the input of the decoder, albeit of a different dimension suitable for
this convolutional framework.

4A literal dimension, going from a 2-dimensional formulation to a 3-dimensional one.

48

To take into account unknown tokens, an extended source embedding is passed to the
network, in which unknown tokens are replaced by numerical values outside the range per-
mitted by the vocabulary length. The output predictions are then padded with 0 at those
positions, and both that output distribution and the attentional part of the combined
probability distribution are added together to produce the end distribution.

It can be noted that I also implemented the coverage mechanism in the first iteration of
the model. However, the training was rendered exceedingly slow (two weeks and still no
results), and I could not determine whether the problem came from my code or from the
Cloud. For that reason, this mechanism, that was introduced in the same paper as the
pointer-generator idea, was not implemented in the models which the results shown below
are taken from.

6.2 Pointer-generator model training and performance

My implementation of the convolutional pointer-generator had to undergo several iter-
ations before reaching satisfying results, as the only guidance I could rely on was the
original paper and code, both designed for RNN-based sequence-to-sequence models. Al-
though both kinds of resources were useful to grasp the ideas behind the framework, I still
navigated in somewhat dark waters, not knowing whether or not the model would output
results that were any good, since no previous work on which parameters would work best
had been done. I also would have neither the time nor the computational power to con-
duct an extensive grid search to determine the optimal hyper-parameters. My training
procedure was therefore chosen to be the same one as for the vanilla CNN-based sequence-
to-sequence network I had used, the reasoning behind that decision being that both models
were very similar, and "simply" computing additional probabilities and adding some lay-
ers should not induce the requirement for a vastly different training methodology. It is
therefore entirely possible that this training methodology is not optimal for the network,
but the results are still on par with what I expected.

The model used for the experiments was therefore trained in the same way as was pre-
sented previously, and contains 6 convolutional layers in both the encoder and the decoder,
as well as the pretrained GloVe embedding with 100 dimensions.

After tinkering with my code to obtain a model that seemed promising, I first made it
run for 20 epochs to assess its performance before letting it run for the 40 epochs I used
for all models. That 40-epochs model got halted, but I have the result of the 30-epochs
one, provided below. The results for all experiments are given in Table 4.16. It should be
noted that the pointer-generator trained on CNN/DailyMail was one of the models that
got typically stopped by the GPU cluster and, therefore, I do not have its results to show
here. My hypothesis regarding the results that should have been produced is that the
increase in relative performance when compared to its baseline should be greater than for
XSUM, since the CNN/DailyMail dataset is more extractive, and so the ability for the
network to copy any word from the input should have resulted in a better score.

What we can say from those results is that the use of a pointer-generator seems to make
sense, as it outperforms both the baseline and the BPE-based networks. More discussion
on these results, however, will be done in the remainder of this section.

49

Model Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4

Pointer-Generator after 20 epochs XSUM 21.39 10.41 5.53 3.23

Pointer-Generator after 30 epochs XSUM 22.24 11.12 6.07 3.61

6-layered BPE after 40 epochs XSUM 21.00 10.44 5.77 3.48

8-layered BPE after 40 epochs XSUM 21.59 10.98 6.11 3.71

6-layered baseline after 30 epochs XSUM 21.92 10.64 5.85 3.53

Table 4.16: BLEU scores of models implementing either a pointer-generator mechanism,
or Byte-Pair Encoding

6.3 A deeper look into the generated summaries of the pointer-
generator network

Something that can be done to assess whether or not the pointer-generator worked as
expected is to look at how many unknown tokens it generated after processing the test
set. As is expected, no unknown token was generated, despite being present in the input
they had to process and in the outputs of the vanilla network. This fact comforts us in
the idea that the network indeed copies relevant words from the input.

Let us therefore take a look at some of those samples in Table 4.17. Although they are
far from perfect, we can see that they show the trend of being more legible than what
we can obtain with the vanilla network, while also showing the copying capabilities of
the network, for example for the word dumfries in the third summary, a rare word that
appears only in the source article the summary is based on. Keep also in mind that the
network was only trained for 30 epochs, since the 40 epochs network got halted multiple
times in its training. Those results therefore would improve given a higher training time
for the network, as we saw that the other networks started reaching some convergence at
about 35 epochs.

Target summary Predicted summary
reigning champions toulon scored late
penalty to earn vital win against bath in the
european champions cup

bath moved to the top of the pro table as
they drew up to win over toulon in the pro
champions cup

match report to follow
macclesfield extended their unbeaten run
to three matches with victory over sutton
united at moss park

worker has died in an accident on south of
scotland wind farm site

man has died after falling into the wind farm
in dumfries

Table 4.17: Summaries generated with the pointer-generator network on XSUM dataset

6.4 BPE results

Byte-Pair Encoding was tested on both the XSUM and CNN/DailyMail datasets, and the
results were as expected, not necessarily impressive when looking at the BLEU scores,

50

which do not change wildly from the vanilla networks as can be seen in Table 4.16, but
rather when looking at summaries taken at random. Although the possibility to output the
unknown token was still available to the model, it only did so once out of 30000 summaries
it generated, whereas it was commonplace for the original network (the unknown tokens
appeared in 1700 generated summaries and appeared more than 3000 times, one example
is given in Table 4.18. This means that it was easier for the vanilla model to get a larger
BLEU score than for the BPE model, as outputting unknown tokens was a good guess).
Furthermore, it also generated sub-tokens 1177 times out of the 11016 times they were
present in the target summaries. Since unknown tokens are now very rare in the target
summaries, the model has to output predictions that must be closer to the true sense of
the targets in order to keep a BLEU score that is comparable to the vanilla network. Some
summaries taken at random are given in Table 4.19, where we can see one example of the
effectiveness of BPE. Note that this network was trained for the full 40 epochs.

Target summary Predicted summary
celtic have confirmed striker colin kazim
richards has left the club to join brazilian side
<unk>

celtic have signed striker <unk> <unk>
from turkish side <unk> on loan until the
end of the season

Table 4.18: One typical example generated with the vanilla 6-layered network on XSUM
dataset

Target summary Predicted summary
reigning champions toulon scored late
penalty to earn vital win against bath in the
european champions cup

bath moved to the top of the pro table with
victory over toulon in the first leg of their
european champions cup quarter finals

man has been arrested by anti terror offi-
cers investigating bomb threat received by
mosque

man has been arrested on suspicion of ter-
rorism offences after an email messages was
published by the islamic state

leyton orient have signed former millwall de-
fender shane lowry on two year contract

leyton orient have signed former wolves mid-
fielder james lowry on two year deal

an independent inquiry is being launched af-
ter baby girl died hours after being born at
shropshire maternity unit

the family of year old girl who died after be-
ing discharged from hospital have said they
are devastated by the care watchdog

exiled russian tycoon boris bere@@ zo@@
vsky has been found dead at his home out-
side london

the family of russian businessman alexander
bere@@ zo@@ vsky ve has been found dead
in the city of st petersburg

scheme to create more than jobs on busi-
ness park next to london southend airport
has been approved by government inspector

plans to build the first runway of the sea in
southend have been approved by the council

Table 4.19: Summaries generated with BPE encoding on XSUM dataset

51

6.5 Conclusion of the experiment

As a conclusion, we can say that the use of a pointer-generator architecture makes more
sense than the use of the Byte-Pair Encoding scheme in the context of abstractive sum-
marization, since it not only allows to copy rare and out-of-vocabulary words from the
input, but also to copy any word that is considered as important enough by the network,
effectively enabling it to be more extractive, a feature that is desirable for datasets such as
CNN/DailyMail and GigaWord, but also seems to produce better results despite having
been trained for 10 epochs less than its counterpart in the case of the more abstractive
XSUM dataset, as we saw in Table 4.16.

For simply dealing with out-of-vocabulary words, the use of BPE over the pointer-
generator architecture makes sense, but given the small increase in training time in-
duced by the use of a pointer-generator (about 30%) when compared with the increase
in performance, I would advise selecting that architecture regardless, especially if my hy-
pothesis that the gains in performance are even greater for the CNN/DailyMail dataset
is true.

7 Use of Reinforcement Learning training
Finally, I conducted an experiment in which the use of reinforcement learning was studied
and compared to the use of regular training using cross-entropy loss. As has been pre-
sented in the previous chapter, the use of reinforcement learning makes it possible to train
the models by using the same non-differentiable metrics that is used to evaluate them, i.e.
the BLEU or ROUGE score. Indeed, using the cross-entropy loss between the one-hot
target distribution and the outputted distribution is not optimal, as the performance of
the model is not tested against that measure.

The Reinforcement Learning algorithm I used for this is called Self-Critical Sequence
Training (SCST), as has been presented in the previous chapter.

The first thing that is notable when training my models with that kind of training is that it
takes longer than the regular training. The models are first trained with the cross-entropy
loss, and only after several epochs is reinforcement learning brought in. That increased
training time comes from the way the reinforced learning loss is computed. Indeed, the
loss has this form :

Lrl = − (r (ys)− r(ŷ)) log pθ (ys) 5

Where r is the rouge score between its argument and the target summary, ys is obtained
by sampling the distribution outputted by the model, and ŷ is the greedily selected output
of the network. As we can see, not only do we have to compute twice the rouge score for
each training example and at each epoch, we also have to create and sample a distribution,

5The absolute value that is needed to get a positive loss compatible with the cross-entropy loss is not
included in this formulation, as it was not in the work of the authors, but is nonetheless included in my
code.

52

as well as obtaining its log-probabilities. Those are all expensive operations that together
slightly impair the speed of the training but that can be parallelized regardless.

Are the results worth of this increase in training time and complexity ?

7.1 Experiment

For this experiment, I took a model containing 6 convolutional blocks in both the encoder
and the decoder and trained on the XSUM6 dataset for 40 epochs using the regular cross-
entropy loss. Afterwards, I continued the training through the use of the reinforcement
scheme outlines earlier, making sure to decrease the learning rate to 0.0001, as is done in
the literature, and setting the number of additional epochs to 5. I also first tried to add
the reinforcement loss earlier in the training (after 20 regular training epochs), but the
results were highly deteriorated when doing so, meaning that the model should be closer
to convergence before introducing the reinforcement learning loss in the training.

The results can be seen in Table 4.20.

Use of RL Dataset Comments BLEU-1 BLEU-2 BLEU-3 BLEU-4

Yes XSUM lr set to 0.001 23.42 11.86 6.66 4.09

Yes XSUM lr set to 0.0001 22.97 11.71 6.59 4.04

No XSUM / 22.89 11.66 6.55 4.01

Table 4.20: BLEU scores of models fine-tuned using reinforcement learning.

We can see a small increase in performance when fine-tuning with the reinforcement train-
ing. Another thing to note is that the learning rate that seems to provide the best results
is ten times greater than the one proposed in the XSUM paper. This could be explained
by the fact that their model might have been trained using the cross-entropy loss until
full convergence, and therefore required a smaller learning rate during the reinforcement
training part. However, if that is the case, the best idea would be to stop training using
the cross-entropy loss before reaching full convergence, and to slowly start integrating the
reinforcement learning loss through curriculum learning, as we showed here that train-
ing using reinforcement learning while the model had not reached full convergence led
to scores that were higher than if we had continued training with the cross-entropy loss,
all other things being equal. It is possible that waiting for the model to converge before
changing the training strategy may only result in slight improvements, whereas changing
the strategy when the model has not yet converged may lead the model to converge to a
state unobtainable otherwise that exhibits better performance and fluency.

When looking at the ROUGE scores provided in Table 4.21, which is the metric that
was used in the training, we also observe a greater increase in performance for the bigger
learning rate, although they are more nuanced.

6The model that was training on CNN/DailyMail got halted, I therefore only report XSUM results
here.

53

Use of RL Dataset Comments ROUGE-1 ROUGE-2 ROUGE-L

Yes XSUM lr set to 0.001 25.18 6.64 20.78

Yes XSUM lr set to 0.0001 25.04 6.61 20.62

No XSUM Baseline 24.89 6.43 20.34

Table 4.21: ROUGE scores of models fine-tuned using reinforcement learning.

Conclusion of the experiment

As a conclusion, we can say that the increase in performance observed through the use
of reinforcement learning may be worth it, provided that we do not wait until the full
convergence of the model with respect to the cross-entropy loss before switching the
training strategy, or else the gains in performance might be small and may not make the
added computations worth it.

8 Unrealized experiments
In this section, I list the experiments that I would have liked to conduct but could not
due to time constraints, as well as some ideas for future works.

8.1 Hierarchical Attention

First of all, I would have liked to include hierarchical attention in the models. This is a
concept that has been used by Yang et al. in 2016 in their paper "Hierarchical Attention
Networks for Document Classification" [47].

Although the tasks are different and the authors use an RNN-based network, I found the
ideas interesting and worthy of a try, had I the time to do so.

The authors included two levels of attention in their models, as they observed that the
importance of words and sentences depend highly on their contexts. The use of both
word-level and sentence-level attention mechanisms allow the model to pay more or less
attention to words and sentences when encoding the document. Their network, called
the Hierarchical Attention Network (HAN) therefore consists of a word sequence en-
coder, a sentence sequence encoder, a word-level attention layer and a sentence-level
attention.

Both word-level and sentence-level attentions simply follow Bahdanau’s work on attention.
The word attentions are weighted and summed to compute the sentence vector that is then
encoded and attended to. It can be noted that Nallapati et al.[24] used that mechanism
for their RNN-based abstractive summarization model.

The reason why I did not list this experiment as a high-priority one is because the lengths
of our texts are cut after 400 tokens, whereas the authors work with whole documents,
and the use of a convolutional architecture containing stacked convolutional blocks already
creates some sort of hierarchical structure. My guess and hypothesis were that such an

54

improvement would mainly be amenable to RNN-based sequence-to-sequence models, and
less so to CNN-based ones.

8.2 Introduction of topic information in the models

In the paper introducing the XSUM dataset[25], the authors added topical information
in the model, through their so-called Topic Sensitive Embeddings. In that framework, the
topic distributions are obtained via Latent Dirichlet Allocation, and are passed as addi-
tional parameters in the embeddings. During the decoding phase, every word prediction
is then conditioned on the document topic, forcing the summary to have the same theme
as the document.

Although the idea is interesting, the gains in performance they reached, when compared
with the traditional convolutional sequence-to-sequence model, were small and, looking
at the generated summaries by myself, I found that the models already grasped the topic
of the document quite well without that costly addition. Had I had the time to do so,
however, I would have liked to explore and implement that concept.

8.3 Use of Intra-attention on top of regular attention

In their paper Controllable Abstractive Summarization[16], Fan et al. mention that they
used, on top of the Bahdanau-like attention mechanism that is frequent in sequence-to-
sequence networks, a mechanism called intra-attention that enables the model to refer
back to words it previously generated, effectively reducing the repetition of information.
However, aside from saying that they alternate both kinds of attention at each layer, they
make no mention of the specifics of the implementation, nor are they mentioned anywhere
else. From those limited details, I tried to implement my own intra-attention mechanism,
but reached bad results that showed that what I implemented did not allow the network
to refer back to previously generated words, since the predictions typically contained the
same word repeated at least twice. I therefore did not explore this concept further, but
would have liked to make it work.

8.4 Ideas for future works

Among the experiments that should have run but got halted in their execution multiple
times, the use of the pointer-generator architecture on the CNN/DailyMail network is the
one that interested me the most, for the reasons outlined in the relevant section, namely
that the increase in performance obtained on that dataset should be even better than
the one obtained on the XSUM dataset due to its more extractive nature. This is an
experiment that should be interesting to run in the future.

Another idea, already outlined in the review of the literature, would be the implementation
of a convolutional GAN architecture for the task of abstractive summarization. Although
it has been done for RNN-based networks, and shows better and more legible summaries,
it has not been conducted on CNN-based networks, and should similarly increase the
quality of the summaries. Even though the computational power required to train such
a network would be greater than the one required to train a vanilla CNN-based network,

55

it should be interesting to know whether that increase in power and hyparameter tuning
time is worth it when compared with the increase in performance.

56

Chapter 5

Conclusion

1 General conclusions about the use of convolutional
sequence-to-sequence networks for the task of Ab-
stractive Summarization

This section summarizes the questions and concerns that sparked the subject of this
thesis, and provides my personal answers with regards to the various experiments con-
ducted.

The idea of convolutional sequence-to-sequence networks applied to the task of abstractive
summarization came from two observations regarding the usual RNN-based sequence-to-
sequence networks that were typically used for the task : first of all, their training was
tricky, partly due to the problems of exploding and vanishing gradients; secondly, their
training was computationally costly.

The convolutional sequence-to-sequence network came as an answer to both of these issues,
due to its simplified path from output to input and its ability to parallelize training along
sequences. Furthermore, this kind of network exhibited an inherent ability to model
and factor in dependencies in the input document, thanks to its stacked convolutional
structure allowing for the neighboring words to be taken into account when the input was
fed to the model.

However, despite those advantages, works on convolutional sequence-to-sequence models
have not been as numerous as those of their RNN-based counterparts, and the preferred
methods recommended to address the issue of text summarization still seemed to rely on
a RNN-based structure.

This thesis therefore had the ambition to explore more deeply a convolutional architecture
that was faster to train and more adapted to the limited resources at our dispositions,
while answering some questions that had been overlooked by the literature, to the best of
my knowledge.

We started by comparing the training times and performances of both a RNN-based
network and a CNN-based network. The results corroborated our intuitions, as the RNN-

57

based network required more than 7 times the training time the convolutional network
did, while not reaching performance gains that made it worth that time increase.

Afterwards, we explored several architecture and training choices, firstly by showing that
increasing the number of convolutional blocks in the decoder and the encoder of the
networks made sense up to a certain point, as increasing the complexity of the model in
such a way ended up bringing the need for longer training to obtain slight improvements
in performance. In the context of low-resource training, we found that using more than 8
convolutional layers in the networks did not make sense.

We then explored the use of pretrained embeddings in the models, which is not something
that is the default for the task. We showed that the use of pretrained embeddings made
sense in the practical context of task transfer (evaluating the model on a dataset different
than the one it was trained on), and hypothesized that, due to the generalization capa-
bilities they brought, they were less likely to show state-of-the-art results on the dataset
the models were trained on than their trainable counterparts. The use of trainable em-
beddings and the dataset bias they bring, however, could make sense if we know that the
data the model will be evaluated on is close to the one it was trained on, as the bias then
plays in the favor of the evaluator.

Afterwards, we saw that the use of a convolutional pointer-generator architecture made
sense when compared both to the vanilla network and the Byte-Pair Encoding scheme,
as the increase in training time was slight and the summaries generated were of a better
quality. The use of that architecture also eliminated unknown tokens from the generated
summaries. My guess is that this architecture should fare even better on the CNN/Dai-
lyMail dataset, but that experiment could unfortunately not be conducted.

Then, we continued with an experiment that explored whether or not the use of reinforce-
ment learning in convolutional networks made sense, the conclusion being that it does for
fine-tuning the model for several epochs near the end of its training, but it should not be
brought in too early in the training process at the risk of deteriorating performances.

Finally, we concluded this thesis with aborted experiments and ideas for future works.

2 My recommendations for training a model for insur-
ance policy summarization

As NRB, which proposed the topic of this thesis, would have use of text summarization
in the context of summarizing insurance policy texts written in various languages, I will
provide my recommendations for going about that task.

As the texts would be in French, Dutch and German, the first thing to do would be to
collect / create either a single summarization dataset for insurance texts in one of the
three languages, or to create one per language. Without a minimum of data of this kind,
I do not believe the summaries would be any good, or at least not useful, since a human
supervisor would still have to do a lot of post-processing work on the generated summaries,
as the domain of such texts is not close to the ones of the usual summarization datasets
(those are more news article-based).

58

Furthermore, it is my opinion that collecting only one dataset in a given language would be
preferable, as you would obtain a dataset thrice as big with the same amount of resources
as you would trying to collect three datasets. Two models would thus need to be used for
the summarization task : one in charge of learning the summarization in a given language,
and another one in charge of translating the summaries in the other two languages. Such
a neural machine translation model would not even need to be retrained by the team,
since they could make use of the already available and highly accurate DeepL.

With regards to the summarization method, training a model from scratch would require
a lot of data to be collected, and would therefore be very expensive. My recommendation
would be to use a pre-existing model and fine-tuning it with the limited dataset mentioned
above. In such a setting, the team takes a pretrained model and lets it run for some epochs
on the fine-tuning data to make the network fit for the new domain. Would the network
have to be convolutional ? Not necessarily. If the team does not have to train the whole
network but simply has to fine-tune it for a few epochs, it might be interesting to turn to
a state-of-the-art model such as Pegasus, developed by Google and only requiring a small
number of fine-tuning data (mentioned by the authors here[20]) to reach near state-of-
the-art performances on different datasets and that has the fine-tuning procedure readily
available on Github[29].

59

https://github.com/google-research/pegasus

Appendices

60

Appendix A

Problems encountered Appendix

Figure A.1: Training and Validation losses of a model (8 convolutional blocks in both
encoder and decoder, no pretrained embedding) trained with Adam optimizer on XSUM
dataset.

61

Figure A.2: Training and Validation losses of a model (8 convolutional blocks in both
encoder and decoder, pretrained embedding) trained with SGD optimizer with Nesterov
momentum on XSUM dataset.

62

Bibliography

[1] A Gentle Introduction to Calculating the BLEU Score for Text in Python. https:
//machinelearningmastery.com/calculate-bleu-score-for-text-python/#:
~:text=The%20Bilingual%20Evaluation%20Understudy%20Score, in%20a%
20score%20of%200.0..

[2] A Neural Attention Model for Abstractive Sentence Summarization. https : / /
arxiv.org/pdf/1509.00685.pdf.

[3] A Simple Introduction to Sequence to Sequence Models. https://www.analyticsvidhya.
com/blog/2020/08/a- simple- introduction- to- sequence- to- sequence-
models/.

[4] Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond.
https://arxiv.org/pdf/1602.06023.pdf.

[5] An intro to ROUGE, and how to use it to evaluate summaries. https://www.
freecodecamp.org/news/what-is-rouge-and-how-it-works-for-evaluation-
of-summaries-e059fb8ac840/.

[6] Attention Is All You Need. https : / / papers . nips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[8] Brief history of Text Summarization. https://medium.com/@prasasthy.sanal/
brief-history-of-text-summarization-9d1b3787a707.

[9] Byte Pair Encoding — The Dark Horse of Modern NLP. https://towardsdatascience.
com/byte-pair-encoding-the-dark-horse-of-modern-nlp-eb36c7df4f10.

[10] Sumit Chopra, Michael Auli, and Alexander M. Rush. “Abstractive Sentence Sum-
marization with Attentive Recurrent Neural Networks”. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California: Association for
Computational Linguistics, June 2016, pp. 93–98. doi: 10.18653/v1/N16-1012.
url: https://www.aclweb.org/anthology/N16-1012.

[11] Convolutional Neural Networks IBM Page. https://www.ibm.com/cloud/learn/
convolutional-neural-networks.

[12] Convolutional Sequence to Sequence Learning. https://arxiv.org/pdf/1705.
03122v3.pdf.

[13] Convolutional Sequence-to-Sequence learning Github page. https://github.com/
bentrevett/pytorch-seq2seq/blob/master/5%20-%20Convolutional%20Sequence%
20to%20Sequence%20Learning.ipynb.

63

https://machinelearningmastery.com/calculate-bleu-score-for-text-python/##:~:text=The%20Bilingual%20Evaluation%20Understudy%20Score,in%20a%20score%20of%200.0.
https://machinelearningmastery.com/calculate-bleu-score-for-text-python/##:~:text=The%20Bilingual%20Evaluation%20Understudy%20Score,in%20a%20score%20of%200.0.
https://machinelearningmastery.com/calculate-bleu-score-for-text-python/##:~:text=The%20Bilingual%20Evaluation%20Understudy%20Score,in%20a%20score%20of%200.0.
https://machinelearningmastery.com/calculate-bleu-score-for-text-python/##:~:text=The%20Bilingual%20Evaluation%20Understudy%20Score,in%20a%20score%20of%200.0.
https://arxiv.org/pdf/1509.00685.pdf
https://arxiv.org/pdf/1509.00685.pdf
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://arxiv.org/pdf/1602.06023.pdf
 https://www.freecodecamp.org/news/what-is-rouge-and-how-it-works-for-evaluation-of-summaries-e059fb8ac840/
 https://www.freecodecamp.org/news/what-is-rouge-and-how-it-works-for-evaluation-of-summaries-e059fb8ac840/
 https://www.freecodecamp.org/news/what-is-rouge-and-how-it-works-for-evaluation-of-summaries-e059fb8ac840/
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1409.0473
 https://medium.com/@prasasthy.sanal/brief-history-of-text-summarization-9d1b3787a707
 https://medium.com/@prasasthy.sanal/brief-history-of-text-summarization-9d1b3787a707
https://towardsdatascience.com/byte-pair-encoding-the-dark-horse-of-modern-nlp-eb36c7df4f10
https://towardsdatascience.com/byte-pair-encoding-the-dark-horse-of-modern-nlp-eb36c7df4f10
https://doi.org/10.18653/v1/N16-1012
https://www.aclweb.org/anthology/N16-1012
 https://www.ibm.com/cloud/learn/convolutional-neural-networks
 https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://arxiv.org/pdf/1705.03122v3.pdf
https://arxiv.org/pdf/1705.03122v3.pdf
 https://github.com/bentrevett/pytorch-seq2seq/blob/master/5%20-%20Convolutional%20Sequence%20to%20Sequence%20Learning.ipynb
 https://github.com/bentrevett/pytorch-seq2seq/blob/master/5%20-%20Convolutional%20Sequence%20to%20Sequence%20Learning.ipynb
 https://github.com/bentrevett/pytorch-seq2seq/blob/master/5%20-%20Convolutional%20Sequence%20to%20Sequence%20Learning.ipynb

[14] Convolutional Sequence-to-Sequence learning with Tensorflow Github page. https:
//github.com/tobyyouup/conv_seq2seq.

[15] Cutting-off Redundant Repeating Generations for Neural Abstractive Summariza-
tion. https://www.aclweb.org/anthology/E17-2047.pdf.

[16] Angela Fan, David Grangier, and Michael Auli. “Controllable Abstractive Summa-
rization”. In: Jan. 2018, pp. 45–54. doi: 10.18653/v1/W18-2706.

[17] Foundations of NLP Explained Visually: Beam Search, How It Works. https://
towardsdatascience.com/foundations-of-nlp-explained-visually-beam-
search-how-it-works-1586b9849a24.

[18] Jonas Gehring et al. Convolutional Sequence to Sequence Learning. 2017. arXiv:
1705.03122 [cs.CL].

[19] Get To The Point: Summarization with Pointer-Generator Networks. https://
www.aclweb.org/anthology/P17-1099.pdf.

[20] Google AI Blog - PEGASUS: A State-of-the-Art Model for Abstractive Text Sum-
marization. https://ai.googleblog.com/2020/06/pegasus-state-of-art-
model-for.html.

[21] Google Developers - Text Classification Webpage. https://developers.google.
com/machine-learning/guides/text-classification/step-3#figure-7.

[22] Nal Kalchbrenner et al. Neural Machine Translation in Linear Time. 2016. arXiv:
1610.10099 [cs.CL].

[23] Linqing Liu et al. “Generative Adversarial Network for Abstractive Text Summa-
rization”. In: 2018. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16238/16492.

[24] Ramesh Nallapati et al.Abstractive Text Summarization Using Sequence-to-Sequence
RNNs and Beyond. 2016. arXiv: 1602.06023 [cs.CL].

[25] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t Give Me the Details,
Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Sum-
marization. 2018. arXiv: 1808.08745 [cs.CL].

[26] Neural Abstractive Text Summarization with Sequence-to-Sequence Models. https:
//arxiv.org/pdf/1812.02303.pdf.

[27] Neural Headline Generation with Sentence-wise Optimization. https://arxiv.
org/abs/1604.01904.

[28] Neural Machine Translation in Linear Time. https://arxiv.org/pdf/1610.
10099.pdf.

[29] PEGASUS: A State-of-the-Art Model for Abstractive Text Summarization - Google
AI Blog. https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-
for.html.

[30] Pointer-Generator Github page. https://github.com/jiminsun/pointer-generator/.
[31] Marc’Aurelio Ranzato et al. Sequence Level Training with Recurrent Neural Net-

works. 2016. arXiv: 1511.06732 [cs.LG].
[32] Steven J. Rennie et al. Self-critical Sequence Training for Image Captioning. 2017.

arXiv: 1612.00563 [cs.LG].
[33] Alexander M. Rush, Sumit Chopra, and Jason Weston. A Neural Attention Model

for Abstractive Sentence Summarization. 2015. arXiv: 1509.00685 [cs.CL].
[34] Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. https:

//arxiv.org/pdf/1506.03099.pdf.

64

https://github.com/tobyyouup/conv_seq2seq
https://github.com/tobyyouup/conv_seq2seq
https://www.aclweb.org/anthology/E17-2047.pdf
https://doi.org/10.18653/v1/W18-2706
 https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
 https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
 https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24
https://arxiv.org/abs/1705.03122
https://www.aclweb.org/anthology/P17-1099.pdf
https://www.aclweb.org/anthology/P17-1099.pdf
 https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html
 https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html
 https://developers.google.com/machine-learning/guides/text-classification/step-3##figure-7
 https://developers.google.com/machine-learning/guides/text-classification/step-3##figure-7
https://arxiv.org/abs/1610.10099
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16238/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16238/16492
https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1808.08745
https://arxiv.org/pdf/1812.02303.pdf
https://arxiv.org/pdf/1812.02303.pdf
https://arxiv.org/abs/1604.01904
https://arxiv.org/abs/1604.01904
 https://arxiv.org/pdf/1610.10099.pdf
 https://arxiv.org/pdf/1610.10099.pdf
 https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html
 https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html
 https://github.com/jiminsun/pointer-generator/
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1612.00563
https://arxiv.org/abs/1509.00685
https://arxiv.org/pdf/1506.03099.pdf
https://arxiv.org/pdf/1506.03099.pdf

[35] Abigail See, Peter J. Liu, and Christopher D. Manning. Get To The Point: Sum-
marization with Pointer-Generator Networks. 2017. arXiv: 1704.04368 [cs.CL].

[36] sequence-to-sequence illustration. https://zhuanlan.zhihu.com/p/27608348.
[37] Sequence-to-Sequence models with Pytorch Github page. https://github.com/

bentrevett/pytorch-seq2seq.
[38] Tian Shi et al. Neural Abstractive Text Summarization with Sequence-to-Sequence

Models. 2020. arXiv: 1812.02303 [cs.CL].
[39] Summarizing Text with Amazon Reviews. https://www.kaggle.com/currie32/

summarizing-text-with-amazon-reviews.
[40] Text Summarization Evaluation - BLEU vs ROUGE. https://stackoverflow.

com/questions/38045290/text-summarization-evaluation-bleu-vs-rouge.
[41] The Most Common Evaluation Metrics In NLP. https://towardsdatascience.

com/the-most-common-evaluation-metrics-in-nlp-ced6a763ac8b.
[42] Li Wang et al. A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model

for Abstractive Text Summarization. 2020. arXiv: 1805.03616 [cs.CL].
[43] What are recurrent neural networks? https : / / www . ibm . com / cloud / learn /

recurrent-neural-networks.
[44] Wikipedia. Automatic summarization. url: https://en.wikipedia.org/wiki/

Automatic_summarization. (accessed : 10.10.2020).
[45] Word Embeddings in NLP. https://www.geeksforgeeks.org/word-embeddings-

in-nlp/.
[46] Tianyang Xu and Chunyun Zhang. Reinforced Generative Adversarial Network for

Abstractive Text Summarization. 2021. arXiv: 2105.15176 [cs.CL].
[47] Zichao Yang et al. “Hierarchical Attention Networks for Document Classification”.

In: Proceedings of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. San Diego,
California: Association for Computational Linguistics, June 2016, pp. 1480–1489.
doi: 10.18653/v1/N16-1174. url: https://aclanthology.org/N16-1174.

65

https://arxiv.org/abs/1704.04368
https://zhuanlan.zhihu.com/p/27608348
 https://github.com/bentrevett/pytorch-seq2seq
 https://github.com/bentrevett/pytorch-seq2seq
https://arxiv.org/abs/1812.02303
 https://www.kaggle.com/currie32/summarizing-text-with-amazon-reviews
 https://www.kaggle.com/currie32/summarizing-text-with-amazon-reviews
https://stackoverflow.com/questions/38045290/text-summarization-evaluation-bleu-vs-rouge
https://stackoverflow.com/questions/38045290/text-summarization-evaluation-bleu-vs-rouge
https://towardsdatascience.com/the-most-common-evaluation-metrics-in-nlp-ced6a763ac8b
https://towardsdatascience.com/the-most-common-evaluation-metrics-in-nlp-ced6a763ac8b
https://arxiv.org/abs/1805.03616
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://en.wikipedia.org/wiki/Automatic_summarization
https://en.wikipedia.org/wiki/Automatic_summarization
 https://www.geeksforgeeks.org/word-embeddings-in-nlp/
 https://www.geeksforgeeks.org/word-embeddings-in-nlp/
https://arxiv.org/abs/2105.15176
https://doi.org/10.18653/v1/N16-1174
https://aclanthology.org/N16-1174

