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1 Introduction

The attraction of investors for real estate has been known for years. Whether in Europe
or abroad, the real estate market is reaching record levels, especially in this unusual year. For
example, the French residential market has increased by 6% compared to last year and by an
average of 17% over the last five years (Savills report). According to Savills, the net rental
yields are between 3 and 3.5% according to the International Real Estate Council. Moreover,
the cost of buying a property in Europe seems to be generally increasing but at the same time
the rental income seems to be stagnating. This is where real estate investment trusts could be
of interest to the investors or portfolio managers. Indeed, due to their legal and fiscal structure,
REITs are high-dividend yield assets. REITs are also available to many more "little" investors
since one can buy a single REIT stock for 100 euros as well as 1,000 shares for 100,000.00
euros. However, these are companies listed on the stock exchange and therefore more prone to
fluctuation than a single personal property. REITs must deal with risk and therefore it is critical
for investors to understand the behavior of this risk, whether in times of economic stability or
in times of crisis such as the GFC or COVID-19.

A lot of research on REITs has been conducted in the United States, Australia and Japan
because these markets are mature. It seems that the European REIT market is much less de-
veloped; less than 20 years old. It therefore seemed crucial to me to study the European mar-
ket through different indices specific to each country of my sample: FTSE Belgium REIT,
S&P France REIT, S&P Netherlands REIT, FTSE Germany REIT, S&P Spain REIT and FTSE
United Kingdom REIT. My analysis focused on a well-known measure of risk, which is volatil-
ity. But not just any volatility, I was interested in dynamic and past-conditional volatility.
Through three different models (GARCH, EGARCH and GJR−GARCH) that capture what is
called heteroscedasticity, I have attempted to model volatility over time. The period studied is
from Q3-2007 to endQ3-2021 and is divided into three subperiods: the Global Financial Crisis
period going from 8th November 2007 to 25th March 2009, the normal economic cycle period
going from 19th September 2014 to 31st January 2020 and the COVID period going from 1st

February 2020 to 18th November 2020.
How do REITs behave, both in times of crisis and in normal times in terms of volatility?

Which GARCH model seems to best fit my REITs data, knowing that Hansen and Lunde (2005)
showed that GARCH (1,1) is often the best one? Would it be interesting for me to have European
REITs in my portfolio? All these questions are compelling to portfolio managers and risk
managers. Indeed, the former will need to have a clear idea of the volatility behavior in order to
effectively pick stocks that will maintain the level of portfolio risk1. And, the latter will be able
to compute relative measures of risk instead of absolute measures since the risk is becoming
time-varying (i.e., Value at Risk is now time-varying).

The paper is structured as follows: the next section contains a literature review and some
1The portfolio manager’s client may be risk averse or risk-seeking.
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information on Real Estate Investment Trusts as it remains a little-known financial asset by
investors. Afterwards, the following section includes a comprehensive methodology that will
encompass different GARCH models; namely three univariate models (GARCH, EGARCH,
GJR-GARCH) and one multivariate model (DCC-GARCH for correlation purpose). All the
methods used in this master thesis and all the theoretical foundations are anchored. Then, the
data are presented as well as descriptive statistics. The next section contains the analysis and the
results. A conclusion and potential suggestions for further research finalize this master thesis.
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2 Literature review and paving the way for European REITs

2.1 Definition of REITs

First of all, let’s define what REITs are. The term "REIT" stands for "Real Estate Investment
Trust". These are companies that own or finance income-producing real estate across a range of
property sectors. These real estate companies have to meet a number of requirements to qualify
as REITs. Most REITs trade on major stock exchanges, and they offer a number of benefits
to investors. REITs allow anyone to invest in portfolios of real estate assets the same way
they invest in other industries – through the purchase of individual company stock or through
a mutual fund or exchange traded fund (ETF). The stockholders of a REIT earn a share of the
income produced through real estate investment – without actually having to go out and buy,
manage or finance property. However, during this master thesis I will focus on six European
REITs: BE-REITs, SIIC, G-REITs, SOCIMI, FBI and UK-REITs. Respectively, these are real
estate investment trusts from Belgium, France, the Netherlands, Germany, Spain and the United
Kingdom.

As said in CFA level II, real estate investment trusts have specific advantages. One can
mention exemption from taxation at the corporate level if some well-defined requirements are
fulfilled or even the predictability of the earnings generated since REIT’s rental income is fixed
by contracts. Nevertheless, the major drawback is that the REIT’s price is determined by the
stock market. “While the appraisal-based value of a REIT may be relatively stable, the market-
determined price of a REIT share is likely to be much more volatile”. Moreover, volatility seems
to be poorly reflected in the appraisals and those appraisals tend to be scarce and backward-
looking whereas the stock market is evidently continuous and forward-looking.

In a general way, REITs display a number of key features in comparison to direct real es-
tate. The first one is the superior liquidity. REITs shares can be sold continuously on a stock
exchange. Then, it requires a lower minimum investment whereas one may need several thou-
sand euros to buy a real estate property. Afterwards, one can have access to premium properties,
at least a tiny share of those properties. By acquiring a REIT share, one possesses a very small
part of the whole properties’ portfolio. That is a way to benefit from diversification. Another
one comes from the fact that REITs employ active professional managers to control the whole
process of acquiring, renting or selling properties. Finally, REITs stockholders boast of high
dividend yield, which is truly a reality since Real Estate Investment Trusts must pay out most
of their income as dividends to maintain their advantageous status. It should be noted that each
country has sometimes specific rules but that the overall logic behind REIT is homogenized.

There are currently 17 BE-REITs, 27 SIICs, 6 G-REITs, 76 SOCIMIs, 5 FBIs and 57 UK-
REITs2 . They are active in various sectors such as residential real estate, retail real estate,
industrial real estate, office real estate, storage real estate or hotel real estate. A REIT can be

2https://prodapp.epra.com/media/EPRA-Global-REIT-Survey-2020-1597930925323.pdf. Notice that UK left
the EU on 31 January 2020.
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active in a single sector, such as Befimmo3 , which is only active in office real estate, or it can
diversify and invest in warehouses as well as in local shops or residential real estate – one will
call it diversified REIT.

2.2 An Overview of Related Literature

In November 2020, I attended a short webinar organized by Nareit4 and I wrote some in-
sights about the current situation. One of the speakers, Nicole Funari, NAREIT’s vice president
of research, discussed the current market conditions in the REIT industry. She said that RE-
ITs entered the COVID-19 crisis with strong balance sheets and have shown resiliency. How-
ever, the pandemic has impacted each REIT sector differently. “Almost two-thirds of REITs
aren’t affected as much by the health crisis, although they are affected by the overall economic
downturn,” said the speaker. Lodging/resorts and retail sectors have been the most negatively
impacted by the pandemic, while some sectors, such as data centers and infrastructure, have
seen a positive impact due to changing consumer habits. Those figures are quite nice but are
they reliable? We have to be careful when we look at some figures on NAREIT website since
they do promote REITs as a perfect investment and it is essentially dedicated to U.S real estate.
The question is: what about the scope I chose, i.e., the six European countries? Indeed, we
often hear during conferences, seminars or in the financial news that REITs are resilient. Is this
really the case or is it just an argument to push investors to buy some REITs to diversify their
portfolio?

There is no denying that the research and papers on the behavior of REITs were mainly con-
cerned with the US and Australian markets as they are mature and have provided this property
investment vehicle for more than 40 years. It is therefore important to try to expand the scope
of research on European REITs. As a first step, thanks to Sotelo and McGreal (2013), we need
to lay the foundations for the history and development of the European REIT market. First, the
expansion of the European REIT market has taken place in the post-2000 period5, prompted
into action by the relatively strong performance of US and Australian REITs. Due to popula-
tion growth, the need for real estate is increasingly becoming a crucial point of interest for every
single country. Real estate is the baseline for economic growth and fulfilment. Moreover, it is
a crucial source of employment. The European commercial real estate is estimated to represent
EUR 7.27 trillion6 of assets, 5.58% of which is devoted to listed real estate. This trend shows no
sign of abating in light of its strong long-term performance compared to other European assets
and its moderate long-term correlation with financial sector stocks. A recent study of Oxford
Economics (2019) demonstrated the added value of LRE in a risk-adjusted returns multi-asset

3One of the 17 belgian REITs.
4Nareit serves as the worldwide representative voice for REITs and real estate companies with an interest in

U.S. real estate.
5Except FIB (Dutch REIT) that has been introduced in 1969.
6« Features and trends in European listed real estate », EPRA (November 2020).
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portfolio. Indeed, an optimal portfolio in a mean-variance framework could be obtained by al-
locating 10% to %25 to LRE – depending on the risk aversion. Nevertheless, one must be aware
that the short-term correlation of LRE7 with equity markets is relatively high. We will have the
opportunity to investigate this latter assertion in the empirical part of this master thesis.

Figure 1: Graph showing the efficient frontier of a portfolio with and without LRE.

In addition, one of the distinctive elements of REITs compared to traditional stocks is that
they are halfway between real estate and the stock exchange market. In the introduction of their
book, Sotelo and McGreal (2013) inform us about the ongoing debate about whether REITs
reflect the behavior of the underlying direct real estate market or not. They draw attention to
the fact that the main difference between direct real estate and listed real estate is the basis of
valuation. Indeed, the former uses different valuation techniques such as DCF, cost approach or
comparable approach but the latter uses simply the quotation of the REIT on the stock exchange
with a fundamental underlying notion that is expectation. If investors expect good news, they
will be eager to buy the stock, which in turn will drive up the stock price. This is the whole
dynamic of the financial markets: how the release of news differs from market expectations.
Although, on the long run, private real estate and securitized real estate seem to display a
common trend (Campeau, 1994; Glascock et al., 2000), one must be aware of the potential
sudden turmoil8 that can affect the broad financial equity markets and consequently the REITs
stock prices. Moreover, a more severe and clear-cut view has been stated by Kizer and Grover
(2017). After performing several statistical methods, they found tangible evidence against the
legitimacy of real estate investment trusts as a different asset class. While knowing that the fol-
lowing criteria are not flawless, they listed four key criteria that prove and define that an asset
is beyond the scope of a particular asset class: low correlation with established asset classes,
statistically significant positive alpha, inability to be replicated on a comovement basis by a
long-only portfolio of established assets and improvement of the mean-variance frontier when

7Listed Real Estate= LRE.
8I am referring to the global financial crisis (GFC) or the COVID-19 crisis for example.
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added to a portfolio of traditional stocks and bonds. They point out that REITs deserve their
place in a diversified portfolio of assets but that they behave more like the stock market than
direct real estate market. All this leads us to study and understand the risks linked to REITs on
the financial markets and therefore in an inseparable way to inquire about the volatility of my
European REITs sample.

During the years surrounding the financial crisis, Real Estate Investment Trusts in the U.S.
have shown a towering volatility, much higher than direct real estate for example. In the Real

Estate Economics, Sun and al. (2015) highlighted that the riskiness of REITs largely increased
during the global financial crisis. Between 2007 and 2009, the beta of NAREIT index fluctuated
between 1 and 1.2, which indicates that REIT stock prices swing more widely in comparison
to the overall market. The REITs experiencing a high debt-to-asset ratio, more variable interest
rate debt and more debt coming due in 2008-2009 were the most affected by the GFC. This
article bears out the time-varying risk faced by REITs in the sense that volatility will not be the
same in periods of turmoil and in periods of relatively steady growth.

The subprime crisis has considerably weakened the REITs industry. Indeed, they are legally
bound to pay out 80 to 90 percent of their net income (depending on the country-specific regula-
tion), which limits their ability to use retained earnings to finance their acquisitions. During the
2007-2009 financial crisis, it was complicated to raise fund on the market (Case and al., 2012).
In their paper, Huerta and al. (2016) argue that the financial crisis helped explain the signifi-
cant increase in REITs volatility. They assert that the lack of funds available on the markets or
from banks and the lack of opportunities have plunged the whole REITs industry in a period
of disorder. By adding the behavioral finance viewpoint, one can say that investor perception
and expectations can have huge influence on the behaviors of REITs volatility since a positive
change in aggregate sentiment (herding behavior) will affect volatility negatively.

In the figure 2, one can observe the V2TX on a daily basis, which is the volatility benchmark
for EU.

“The VSTOXX Indices are based on EURO STOXX 50 real-time options prices and are
designed to reflect the market expectations of near-term up to long-term volatility by measuring
the square root of the implied variance across all options of a given time to expiration. The
VSTOXX Indices are part of a consistent family of volatility indices: VSTOXX based on the
EURO STOXX 50 and VDAX-NEW based on the DAX.”

Nonetheless, REITs are subject to risks. One of the major threats is the mismatch between
supply and demand. During COVID-19, one can imagine that the occupancy rates of hotels
drastically decrease and lead to a lack of rental incomes. For retail stores, it is slightly dissimilar
because they are contractually obliged to pay rent – but obviously the slowdown of activities can
lead to bankruptcies and consequently a higher uncertainty on the market. Since early March
2020, European financial markets are experiencing high volatility with the V2TX reached a
peak of 84.79 on March 16th 2020 (data displayed on a daily basis).

In their paper entitled “Dynamic correlations between REIT sub-sectors and the implica-
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Figure 2: VSTOXX gaph and evolution through time

tions for diversification”, Chong and al. (2012) focus on the existing relationship between
REITs, depending on their membership to a particular property sector (i.e., residential, retail,
health, office). Through the use of a Generalized Autoregressive Conditional Heteroscedastic-
ity Dynamic Control Correlation (GARCH-DCC) framework, the daily conditional correlations
disclose that since the 1990’s there has clearly been a progressive upward trend in terms of
correlation between US REITs sub-sectors. More generally, this means quite precisely that,
regardless of their preferred sector type, REITs would behave in an increasingly homogeneous
way. This could lead to significant consequences for asset managers, individual investors or
risk managers. As far as REITs are concerned, one could imagine two axes of diversification:
diversification by property type and geographical diversification. Let us remember that for this
master thesis I have favored a scope of 6 European countries with multiple Real Estate Invest-
ments Trusts engaged in several sectors. After studying volatility and drawing conclusions, it
would be interesting to study the correlation among REITs sub-sectors, both during the global
financial crisis and the COVID-19. Notice that a correlation based on geographical position
could also emerge.

As of December 2020, in the table 1 below one will find, for each country of my scope,
the market capitalization and the number of REITs. Notice that my wish to examine those
six countries in order to best represent the European market is motivated by the values of the
different market capitalizations.
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Number of REITs Market cap. ($ Bln.)
Belgium 17 23.16
France 27 51.90

The Netherlands 5 13.71
Germany 6 5.56

Spain 76 26.36
UK 57 83.19

Total 188 203.88

Table 1: Overview of my six European REITs

At the tip of 2020, all European markets unveiled recoveries with positive market cap
growths. Germany was one of the best performers with a 24% annual market capitalization
growth. On the other hand, Belgium proved to be rather resilient as it reached its pre-COVID19
market cap level. However, some countries are still lagging behind as of at the end of 2020: the
UK, France and the Netherlands experienced an annual market decrease of respectively -13.5%,
-19.6% and -46.4%. Health care sector has benefited from the population growth. Moreover,
the ongoing frightening expansion of e-commerce has impacted both retail and industrial (ware-
house and storage) assets – the former in a negative way and the latter in a positive way. Periods
of economic distress can generate a broad variability in geographical and sector performance.
During both GFC and COVID-19, real estate seemed exposed and displayed different level of
volatility. Although these two slowdowns are not of the same nature, can we identify volatility
patterns? Do those two crises look alike? Through my different readings I noticed a gap in
the field of research on European REITs, in contrast to American, Australian or Japanese Real
Estate Investment Trust which benefit from a quite broad and comprehensive analysis.
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3 Methodology

3.1 Elementary notions

In this master thesis, several volatility models are explored. One cannot imagine starting
this part without defining volatility in a fairly simple way. According to Corporate Finance
Institute9, volatility is “a measure of the rate of fluctuations in the price of a security over time.
It indicates the level of risk associated with the price changes of a security. Investors and traders
calculate the volatility of a security to assess past variations in the prices to predict their future
movements.” Yet volatility can be distinguished into two forms: implied volatility and realized
volatility. The former is calculated from the price of an option, this is the volatility options’
traders expect to be realized in the period from now until the expiration of the option. The latter
is calculated from underlying price changes over a certain period of time.

The standard deviation is frequently used in order to determine the volatility of an asset or
a dataset. It gives the magnitude of deviations between the observed returns around the mean:

σ =
√

1
n−1 ∑

n
i=1(ri− r)2 (1)

Notation:
rt : return at time t
r : mean return
σ : standard deviation
n: number of observations

The notion of return is also essential in this research. The arithmetic rate of return (simple
net return) is defined as the capital gain divided by the initial price:

Rt =
Pt+Dt−Pt−1

Pt−1
(2)

Notation:
Rt : simple net return
Dt : potential dividends at time t
Pt : stock price at time t

Notwithstanding this correct computation, there exists another manner that is more conve-
nient to use: the geometric rate of return (also called continuously compounded return or log
return). It is the natural logarithm of the simple gross return of an asset.

9Definition of volatility: https://corporatefinanceinstitute.com/resources/knowledge/trading-
investing/volatility-vol/
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rt = ln(1+Rt) = ln Pt
Pt−1

(3)

There are several advantages to manipulating geometric returns (Jorion, 2006). Firstly, if
geometric returns are normally distributed, then the distribution can never lead to a price that
is negative since the ln function is undefined when Pt

Pt−1
is negative. Meaningful here for asset

prices that logically cannot be negative. The second major advantage is the additivity property
of the compounded returns when it comes to compute multiperiod returns. Meaning that the
2-month return is simply the sum of the two monthly returns.

rt [k] = ln(1+Rt [k]) = ln [(1+Rt)(1+Rt−1)....(1+Rt−k+1)]

= ln(1+Rt)+ ln(1+Rt)+ ....+ ln(1+Rt−k+1) (4)

= rt + rt−1 + ....+ rt−k+1

So far, the investor gets an overall indication of the volatility and the risk of a particular
investment. Nevertheless, there is another paramount concept that derives from the value of
the volatility: Value at Risk10. "The VaR is the maximum amount expected to be lost over
a given time horizon, at a pre-defined confidence level"11. The three components – loss size,
probability and time frame – makes VaR a practical and helpful metric in order to determine the
risk of an asset. Indeed, risk managers may be obliged to maintain a certain limit of uncertainty
in a portfolio and thus they will not engage in investments that risk exceeding the limit allowed.

qt(α) = Φ−1(α)σt (5)

where Φ−1 is the quantile function of the Gaussian distribution.
One cannot be satisfied by a fixed volatility. That is the reason why some volatility models

emerged in order to model volatility more accurately. At the dawn of the eighties, volatility and
consequently VaR became time-varying. Both metrics evolve through time and so this time-
varying characteristic opened the road to more precise predictions. This is the beginning of
the GARCH models and the volatility modelling of financial assets such as REITs; which are
the purpose of this master thesis. In the following paragraphs, I am going to explain different
GARCH models.

10VaR = Value at Risk
11https://www.risk.net/definition/value-at-risk-var
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3.2 Foundations of the GARCH models

First, GARCH stands for Generalized AutoRegressive Conditional Heteroscedasticity. A
far-reaching understanding of these terms is crucial.

3.2.1 The Autoregressive models

The sample Autocorrelation function (SACF) answers the question: do past returns tell us
something about future returns? We can visualize it graphically as done in my MATLAB script
but for ease I can perform Ljung-Box to test serial dependence between returns or, even more
interesting, between the squared returns. We will then reject the null hypothesis of no serial
correlation if p-value is less than or equal to the significance level. Moreover, in the case where
the Ljung-Box test on the squared returns display even stronger rejection of H(0), it means that
the squared returns of the past (that represent the variance in volatility models I would say)
tell us something about the future returns. It is important to note that this power of prediction
decreases when the number of lags increases.

The starting point of the GARCH model is found in the autoregressive time series model12.
The fact that a return has a statistically significant autocorrelation of lag1 stipulates that the lag

return rt−1 is consistent in predicting rt .Indeed, by taking monthly returns13, it means that the
last month return is useful in predicting the current monthly return. This statement could be
formulated by an AR(1) model such as:

rt = φ0 +φ1rt−1 +at (6)

where at is assumed to be a white noise series with mean equal to zero and a variance of σ2
a .

This model implies that the expected current return, conditional on the past return rt−1,
could be written as follows:

E(rt |rt−1) = φ0 +φ1rt−1 (7)

One could legitimately argue that there are situations in which rt−1 alone cannot determine
the conditional expectation of rt . Therefore, one can dig deeper and a meaningful generalization
of the AR(1) model is the AR(p) model:

rt = φ0 +φ1rt−1 + ....+φprt−p +at (8)

This general model states that the lagged p returns jointly determine the conditional ex-

12Autoregressive time series model = AR.
13We can also take other frequencies of data such as weekly or daily data. Higher frequency data such as intraday

returns are a possibility also.
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pectation of rt given the past data. The current return is the dependent variable and the lagged
returns are the explanatory variables. As stated by researchers: “Of course, linear AR(1) models
provide a limited class with which to model real data. However, they can be used as building
blocks for more complex models.” (Grunwald and al, 1996). The difficulty is obviously to find
the right order of the AR models (i.e., the right p order). The order determination has been
broadly studied in time series literature (de Gooijer and al, 1985). Two main approaches are
available: Partial Autocorrelation Function (PACF) or Information Criteria (IC). In the follow-
ing pages I will explain into details the two information criteria; namely AIC (Aïkake, 1973)
and BIC (Schwarz, 1978).

Some properties are inherent to autoregressive models but it is beyond the scope of this
master thesis.

3.2.2 The Moving Average models

Moving-average models are another class of simple models that are also convenient in mod-
elling return series in finance. This approach treats the model as an infinite-order AR model with
some parameter constraints. In theory an AR model with infinite order is written as follows:

rt = φ0 +φ1rt−1 +φ2rt−2 + ....+at (9)

Nevertheless, it is clearly not realistic. One solution to make this model convenient is to
suppose that the coefficients φi satisfy some constraints so that they are determined by a finite
number of parameters. That is accomplished in formula (13).

rt = φ0−θ1rt−1−θ 2
1 rt−2−θ 3

1 rt−3− ....+at (10)

In this formula, the many coefficients depend on a single parameter θ1 via φi = −θ i
1 for

i ≥ 1. For the purpose of stationarity, θ1 must be lower than 1 in absolute value. The idea
behind is that the dependence of the current return rt on its lagged values rt−i should decrease
over time.

Let us rewrite the model for rt in a compact form:

rt +θ1rt−1 +θ 2
1 rt−2 + ....= φ0 +at (11)

If we multiply this latter by θ1 and then we subtract the result from the compact equation,
we obtain rt = φ0(1−θ1)+at−θ1at−1 .The general form is stated as follows:
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rt = c0 +at−θ1at−1 (12)

Where c0 is a constant and at is a white noise series. One can conclude that the time series
rt is a weighted average of shocks at and at−1. This is a MA(1) model but we can easily extend
to a MA(q) model:

rt = c0 +at−θ1at−1− ....−θqat−q (13)

In a nutshell, we want to keep the same general structure for moving average models as
for AR models except that instead of looking at return previous values, we are interested in
errors from the past (i.e., error lags). For example, a MA(1) model shows that the actual target
variable rt depends on the error from the time period before rt−1 plus some current errors at .
The unseen shifts we did not expect in the previous time period actually permeate into the next
time period. That is the whole idea of Moving Average models. It would be fabulous to combine
the short-term memory characteristic of MA models with the long-term memory characteristic
of AR models. That is what we call AutoRegressive Moving Average models (ARMA models).

3.2.3 The AutoRegressive Moving Average models

Box, Jenkins, and Reisel (1994) introduced autoregressive moving average models. ARMA

models answer the need for high-order model with many parameters in order to represent cor-
rectly the dynamic structure of the data. While ARMA models are not suitable for returns series
in finance (or at least the likelihood to use this kind of models is kept low), the concept of
ARMA models turns out to be relevant in volatility modelling. Actually, the generalized au-
toregressive conditional heteroscedastic (GARCH) model can be seen as an ARMA model but
with nonstandard white noise series. A time series rt following an ARMA(1,1) can be stated as
follows:

rt−φ1rt−1 = φ0 +at−θ1at−1 (14)

where the left-hand side of the equation being the AR component and the right-hand side
being the MA component.We need φ1 6= θ1; otherwise the model is only represented by a white
noise series.

An ARMA(p,q) is the generalization model with p and q being non negative integers. Here
the compact form:
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rt = φ0 +∑
p
i=1 φirt−i +at−∑

q
i=1 θiat−i (15)

3.3 The Autoregressive Conditional Heteroscedasticity models and Gen-
eralized Autoregressive Conditional Heteroscedasticity models

A bit of history first. Robert F. Engle is born in 1942 in Syracuse. He obtained a Ph.D. from
Cornell University in 1969. On financial markets, fluctuations – volatility - appear through time
and it became a major concern for financial professionals since the value of shares (REITs in
our case) depends on their risk. Despite such time-varying volatility, early-stage researchers
used to assume constant volatility in their different models. In 1982, Robert Engle came out
with a masterpiece in terms of innovation. Indeed, he found that the concept of autoregressive
conditional heteroscedasticity (ARCH) accurately captures the behavior of many time series
and he implemented methods to model time-varying volatility. He was awarded the Nobel
prize in Economics by his peers: « ARCH models have become indispensable tools not only
for researchers but also for analysts on financial markets, who use them in asset pricing and in
evaluating portfolio risk. » (The royal Swedish Academy of Sciences, 2003). Afterwards, the
Danish economist T.P. Bollerslev (1986) proposed the Generalized ARCH in order to allow for
past conditional variances (lagged variances) in the current conditional variance equation.

3.3.1 Autoregressive Conditional Heteroscedasticity

As said previously and in order to deal with the foolish assumption of constant variance,
Engle (1984) proposed a new stochastic process (ARCH) with zero mean, serially uncorrelated
with non-constant variances conditional on the past, but constant unconditional variance. En-
gle’s purpose was to capture volatility clustering. He wanted to model the assertion that periods
characterized by large changes are followed by further large changes and, conversely, periods
characterized by small changes are followed by further small changes. Since this milestone,
heteroscedasticity is a well-known concept in time series modelling. It refers to the fact that the
variance of error terms is not constant over time.

rt = µt + εt ⇔ rt = σtzt (16)

σ2
t = ω +αr2

t−1 (17)

εt
iid∼ N(0,1) (18)

rt |Ωt−1 ∼ N(0,σ2
t ) (19)
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Where:
rt : return at time t
zt : follows a N(0,1)

σ2
t : current conditional variance
ω : unconditional variance
α : the alpha captures the effect of yesterday’s returns on today’s volatility.

The first equation(19) refers to the return of a stock that is composed of its expected value
plus an error term (i.e., the shock). Nevertheless, the assumption of stationarity is usually
assumed, which means that the expected value of stock returns is equal to zero. In this latter
case, the stock return equals the error term. The equation (20) displays the ARCH formula of
order 1.

But ARCH models display a major drawback and it is what times series analysts called
“bursty”. By including the conditional past variance (volatility of yesterday) into the model, it
will make it less “bursty”.

3.3.2 The Generalized Autoregressive Conditional Heteroscedasticity models

In the paper entitled “Generalized Autoregressive Conditional Heteroscedasticity”, it is ar-
gued that a simple GARCH model provides better fit than ARCH model (Bollerslev, 1986). He
decided to add a term to the initial ARCH model which is the previous variances of the time
series. GARCH models describe financial markets in which volatility can change, becoming
more volatile during crisis or during the switch from a bull to a bear market (conversely) and
less volatile during periods of relative serenity and steady economic growth. On a plot of time
series, for example, stock time series may look relatively uniform (at least not abrupt) for the
years leading up to a crisis such as the COVID-19. Nevertheless, in the period of turmoil, re-
turns may swing wildly from negative to positive region. Moreover, the increased volatility
may be predictive of volatility going forward since we condition the future volatility on all the
information we have up to now. Volatility may then return to levels similar to pre-crisis levels or
be more homogenous. A simple regression model does not account for this variation in volatil-
ity exhibited in financial markets. In a nutshell, GARCH was a milestone for risk managers.
GARCH(1,1) model can be stated as follows:

σ2
t = ω +α1r2

t−1 +β1σ2
t−1 (20)

where σ2
t−1 is the conditional variance of the day, week or month before.

Therefore, the formula of the GARCH(p,q), taking into account q lags of conditional vari-
ances and ARCH(p) effect looks like:
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σ2
t = ω +∑

p
i=1 αir2

t−i +∑
q
i=1 βiσ

2
t−i (21)

Where:
rt : return at time t

σ2
t : current conditional variance
ω : unconditional variance
α : the alpha captures the effect of the returns of yesterday on today’s volatility.

(α +β ) : this parameter measures the volatility persistence: how fast the current shock to the volatility will disappear (Ho et al., 2013).
σ2

t−i : the conditional variance of the ith day, ith week or ith month before.

The conditional mean return at time t is equal to zero because:

E(rt |Ωt−1) = E(σtzt |Ωt−1) (22)

= σtE(zt |Ωt−1)

= σt×0 = 0

The unconditional mean return equals zero also. The conditional variance at time t, knowing
the information up to (t−1) is σ2

t :

V (rt |Ωt−1) =V (σtzt |Ωt−1) (23)

= σ
2
t V (zt |Ωt−1)

= σ
2
t ×1 = σ

2
t

It is essential to take a closer look at the parameters, which are the quantities of interest,
omega alpha beta. Then, the unconditional variance can be described, by using GARCH param-
eters, as follows:

V (rt) = E(r2
t ) =

ω

1−α−β
(24)

As a remainder:

Parameters:
ω : Constant term
α : ARCH effect coefficient measuring the shock disturbance
β : GARCH effect parameter measuring the volatility persistence
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Some constraints are imposed to these parameters: ω must be greater than zero, α and β

must be greater or equal than zero. Furthermore, the sum of parameters alpha and beta must be
less than unity in order to guarantee stationarity. (α +β ) is called persistence. The nonlinearity
of GARCH models is a stumbling block to econometricians because the parameters must be
estimated by maximization of the likelihood function and consequently by choosing the best
potential distribution (Engle, 2001). Hopefully, there exist packaged programs in MATLAB in
order to find out the value of these parameters.

maxF(ω,α,β |r) =
T

∑
i=1

ln f (rt |σ2) =
T

∑
i=1

(ln
1√

2πσ2
− r2

t
2σ2 ) (25)

Where f is the normal density function and T is the number of observations.

In the sight of heteroscedasticity (ARCH effects) in the residuals of the daily returns of REIT
stocks, the ordinary least square estimation (OLS) is not appropriate. On this account, ARCH-
type models cannot be estimated by simple techniques such as OLS. The method of maximum
likelihood estimation will be brought into play when facing GARCH models, regarding this
master thesis. In addition, one must be aware that the true distribution is not always normal and
it is even more true with time series returns that mostly display leptokurtic distributions.

Since the breakthrough initiated by Engle (1982) and then by Bollerslev (1986), many re-
searchers tried to improve the GARCH quality of volatility modelling by adding some terms in
order to capture well-known financial effects of volatility behaviors. Indeed, an important weak-
ness of the GARCH model is that it does not make the difference between positive and negative
movements in the market; this is because the returns are squared in the formula. One of the
first extensions is the EGARCH model (Nelson,1991). This model has the capacity to model an
empirically observed fact in finance, which is that negative shocks of yesterday have a stronger
impact in the variance today than positive shocks. We call it asymmetry and it is modelized by
an additional leverage term that captures this asymmetry. Another major characteristic is that
this model has the property to remove the non-negativity constraint of the parameters. Then,
an additional extension is the GJR−GARCH model (Glosten, Jagannathan & Runkle, 1993).
It is also a non-linear model for the volatility but it denotes a different specific parametric for
the conditional heteroscedasticity. These two models are explored and explained in depth in the
following two paragraphs.

3.3.3 EGARCH - Exponential Generalized Autoregressive Conditional Heteroskedastic-
ity model

In 1976, the researcher Black found evidence that returns are negatively correlated with
changes in returns volatility. Indeed, volatility will have a tendency to increase when excess
returns are lower than expected. Conversely, volatility will have a tendency to decrease when
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excess returns are higher than expected. Nevertheless, in the classical GARCH model, only the
magnitude of the past returns is taken into account while the sign of the past excess returns
(i.e., positivity or negativity) is ignored. In other words, only the size and not the sign14 of the
lagged residuals determines the conditional variance (Nelson, 1991). Thus, a model in which the
conditional variance captures this asymmetry could be fruitful. This is accomplished through
the leverage effect parameter “gamma”. If γ < 0 negative shocks will increase the volatility
more than positive shocks. If γ > 0 positive shocks increase the volatility more than negative
shocks.

Another characteristic is that EGARCH formula models the natural logarithm of the con-
ditional variance and it has a huge impact on the parameters’ constraints. Indeed, since the
value logarithm function can be either positive or negative, the parameters α , β , γ and ω can be
potentially of any sign. If one turns this characteristic the other way round, it means that even
if the parameters are negative, the variance will still be positive. EGARCH(1,1) is defined as
follows:

lnσ
2
t = ω +α(|rt−1|−E(|rt−1|))+ γrt−1 +β lnσ

2
t−1 (26)

3.3.4 GJR - Generalized Autoregressive Conditional Heteroskedasticity model

Another regularly used model to capture asymmetric volatility was developed by Glosten,
Jagannathan & Runkle (1993). This is called GJR−GARCH and has the advantage to straight-
forward model the conditional variance. Indeed, it does not make use of the natural logarithm
anymore, like it was the case for the EGARCH formula.

σ
2
t = ω +(α + γIt−1)r2

t−1 +βσ
2
t−1 (27)

In GJR−GARCH models, the leverage effect is translated through the parameter γ . One
denotes the emergence of It−1 which is the identity matrix or indication function. In a GJR−
GARCH(1,1), it can be seen as a dummy variable. It will take the value 1 if the previous shock
is negative (i.e., rt−1 is lower than zero) and it will take the value 0 if the last shock is positive.

It−1 =

{
1 if rt−1 < 0
0 otherwise

(28)

14This is due to the squaring imposed to past returns in the GARCH formula proposed by Bollerslev.
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To be more pernickety, bad news will be represented by (α + γ) and good news will be
represented by α itself. Notice that the equation becomes a simple GARCH(1,1) model if γ is
equal to zero (Asgharian, 2016).

3.4 Multivariate model

3.4.1 Dynamic Conditional Correlation – GARCH model

First of all, DCC-GARCH stands for Dynamic Conditional Correlation Generalized Autore-
gressive Conditional Heteroscedastic model. The concept of correlation is of paramount impor-
tance for portfolio risk managers who manage large multiple stocks portfolios or for hedgers
who try to reduce the risks associated with uncertainty. GARCH methods can potentially be
used in order to capture time variation in correlation. Moreover, correlations can be derived
from multivariate GARCH models and it provides us with a better understanding of the expo-
sure (Jorion, 2007). Furthermore, DCC-GARCH is modelling the conditional variances and the
conditional correlations in order to find out the conditional covariance matrix ; if one attempts
to directly model the conditional covariance matrix, it could lead promptly to the “curse of
dimensionality” phenomenon.

The DCC GARCH method is designed in three steps. The first step consists in estimating
the conditional variance Ht of each portfolio from a univariate GARCH process. Moreover,
from the information criteria analysis, one must be able to infer the best univariate model for a
particular REIT, resulting in a comprehensive insight of the parameters needed for the first step.
Then, the second step is to construct the diagonal matrix containing the previously calculated
conditional variances (from previously computed univariate GARCH model). Then, by taking
the square root of this matrix, we obtain the matrix of standard deviations, noted Dt . Finally, in
the third step, the residuals obtained by the regressions of the first step are used to construct the
correlations in an autoregressive manner, which results in a conditional correlation matrix that
evolves as a function of time.

The density of the returns is characterized by the absence of serial correlation in the mean
returns, and by the presence of time-varying second-order moments.

rt |It−1 ∼ B(µ,Ht) (29)

where B is a generic multivariate density function.

The model can thus be written as follows:

Ht = DtRtDt
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where Ht stands for the dynamic conditional covariance matrix. Dt stands for the dynamic
conditional standard deviations matrix and Rt stands for the dynamic conditional correlations
matrix.

Dt is decomposed as stated below and its elements can be seen as univariate GARCH mod-
els:

Dt =


√

h1t 0 .... 0
0

√
h2t ... 0

.... .... .... ....

0 .... 0
√

hnt

 (30)

with hit = ωi +∑
Pi
p=1 αipr2

i,t−p +∑
Qi
q=1 βiqhi,t−q

Rt is a symmetric correlation matrix and can be seen as follows:

Rt =


1 φ12,t .... φ1n,t

φ12,t 1 ... φ2n,t

.... .... .... ....

φ1n,t .... φn−1,n,t 1

 (31)

Consequently, the elements that form Ht are : [Ht ]i j =
√

hith jtρi j with ρi j = 1 if i = j.
The dynamic correlation matrix, Rt , is not explicitly driven by a dynamic equation, but is

derived from a standardization of a different matrix, Qt , which has a dynamic structure. The
form of Qt determines the model complexity and feasibility in large cross-sectional dimensions.
Moreover, some requirements exist in order to ensure Rt to be equal or less than one and not
inferior to −1 (by definition of the correlation) and Ht to be positive definite.

Rt = Q∗−1
t QtQ∗−1

t (32)

where Qt = (1−α−β )Q+αεt−1εT
t−1 +βQt−1(33)

and Q∗−1
t =


√

q11t 0 .... 0
0

√
q22t ... 0

.... .... .... 0
0 .... 0

√
qnnt

 (34)
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And Q is the unconditional covariance matrix of the standardized residuals. Q∗−1
t is a diag-

onal matrix with the square root of the diagonal elements of Qt .
The parameters α and β are quite similar to the ones presented in GARCH models but this

time they have to deal with covariance matrix and correlation structure. Moreover, α and β

must satisfy three conditions to certify the positivity of Ht :

a≥ 0

b≥ 0

(a+b)< 1

Dynamic conditional correlation (DCC) estimators entail the flexibility of univariate GARCH

models but not the convolution of multivariate GARCH models.

3.5 Goodness of fit

3.5.1 Information Criteria

The three different GARCH models adopted in this master thesis are now fully explained.
They will be used to analyze the volatility of the European REITs of my sample and we will
find out the volatility patterns. One must be aware that the performance of each model varies
and it would be useful to determine the best fitter among the three models. Moreover, Georges
E. P. Box argued that “All models are wrong, but some are useful”. Knowing the goodness of fit
of a particular model is convenient in order to assess how accurate a model is and, consequently,
how useful a model can be in order to forecast the future behaviors of European REITs’ time
series.

Firstly, if one faces nested models, the model selection is achieved through the likelihood-
ratio test (i.e., LR). In this study, I encountered only non-nested models15 and so, in this case,
Information Criterion16 formula is used. Furthermore, IC can be divided in two close concepts:
AIC17 and BIC18. The former, AIC, is a single number score that can be used to determine which
of multiple models is most likely to be the best model for a given dataset. It estimates models
relatively, meaning that AIC scores are only useful in comparison with other AIC scores for the
same dataset. The latter, BIC, has the same background as AIC but it adds a larger penalty term
for the complexity of the model than AIC. The smaller the IC, the better the fitting. One must
not forget that it is all about trade-off between over-fitting and under-fitting. Intuitively, one can

15Basically, two models are said to be ’non-nested’ if one of the models can be obtained from the other one;
otherwise, they are said to be ’nested’.

16IC = Information Criterion
17Akaike Information Criterion
18Bayesian Information Criterion
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easily understand that if the number of parameters increases, one seeks a much better likelihood
of his data.

• AIC mathematical expression

AIC =−2log(L)+2k

with k is the number of parameters and L is the maximum likelihood.

• BIC mathematical expression

BIC =−2log(L)+ klog(n)

with k is the number of parameters, L is the maximum likelihood and n is the number of obser-
vations in the dataset.

These information criteria will thus be used to determine the most apposite model - among
the three GARCH models.

4 Presentation of the dataset and descriptive statistics

4.1 Data retrieval

I carried out some research on Eikon to retrieve the required data. Refinitiv Eikon is a
software system used to monitor and analyze financial information. Thanks to HEC Liège,
students can have access to a number of market data ranging from stocks time series to financial
derivatives products. Firstly, I retrieved the close share prices of the 6 stock market indices19

needed to perform a Markov-switching model (see next paragraph) - it will produce a big picture
of each national economy. The whole study period goes from January 2nd 2007 until June 10th

2021. Then, I computed the log-returns of each REIT index as mentioned at the beginning of
the methodology part of this master thesis. Afterwards, I stored them in a type “double” matrix
with the intention of doing a number of computations.

In the next step, I used Thomson Reuters DataStream extension which is only available on
the main computer in the trading room at HEC Liège. This is designed for economists and

19Indices retrieved from Eikon: BEL20 for Belgium, CAC40 for France, AEX for the Netherlands, DAX for
Germany, IBEX35 for Spain and FTSE100 for the United-Kingdom.
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research communities as it offers the world’s most comprehensive financial historical database.
Thanks to a dialogue I had with Georges Milunovich20, I knew that DataStream provided RE-
ITs’ country-specific indices (one single index for Belgian REITs, another one single index for
G-REITs, etc.). It will be useful to investigate the volatility of certain countries as a whole, as
studying all the REITs individually would be too laborious. Thus, I chose 6 country-specific
indices21 which are the following: FTSE Belgium REIT, S&P France REIT, S&P Netherlands
REIT, FTSE Germany REIT, S&P Spain REIT and FTSE United Kingdom REIT. The Global
Financial Crisis took root in the summer of 2007 in the US-based financial institutions and
outspreaded throughout Europe by the first half of 2008. That is why I decided to select a
reasonable timeframe going from November 8th 2007 to June 10th 2021 for the REIT indices;
with the exception for Spain REIT index for which I did not find any consistent indices starting
before September 19th 2014. Although the SOCIMI regime was enacted in 2009, a substan-
tial change of the SOCIMI regime was approved in December 2012, with effects as of the first
quarter of 2013. As a result, the new SOCIMI regulation has been assimilated to other Euro-
pean REITs, in which the main feature is the elimination of direct taxation on the SOCIMI,
transferring such taxation to the final investors.

4.2 REIT indices graphs

In figure 3, REIT indices time series by country are displayed.
Log-returns of each country-specific REIT time series are presented in figure 4.

4.3 Descriptive statistics

Then I decided to draw up descriptive statistics for two sub-periods for the 6 country-specific
REIT indices: the first from Q32014 to 31-01-2020 and the second from 3-02-2020 to 10-
06-2021. The latter being the period I will call the "COVID crisis period" and the former
representing an economic cycle (i.e., expansion-recession-expansion). From the descriptive
statistics, one can clearly notice leptokurtosis22 and negative skewness of COVID crisis and-
after log-returns; meaning that we expect more negative returns than normality and, in addition,
it will occur in many more situations since the log-returns are leptokurtic. Periods of turmoil
disrupt totally the normality of returns. And the standard deviation of each index has increased
during crisis.

20Associate Professor of Business Analytics at Macquarie University (Sydney, Australia). He wrote the paper
entitled “Speculative bubbles, financial crises and convergence in global real estate investment trust.”

21These indices are constructed by Thomson Reuters DataStream.
22« A state in which the volatility of a security is itself not volatile. That is, leptokurtosis is a state in which

the volatility of a security changes at a relatively low rate. This is shown on a chart by a distribution line with
data points resembling fat tails and a higher mean, with an even distribution. » (Leptokurtosis. (n.d.) Financial
Glossary. (2011). Retrieved August 4 2021 from https://financial-dictionary.thefreedictionary.com/Leptokurtosis )
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Figure 3: Graph showing the time series of the six EU indices time series

Figure 4: Graph showing the log returns of each index during the whole period.
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Figure 5: Standard deviation of each index compared to the mean, the skewness and the kurtosis.

In the table 2, one will find the values of the descriptive statistics in order to complement
my graph.

To support my assertions concerning the non-normality of returns during crisis period, I
drew a common graph on MATLAB with the normal distribution and the distributions of returns
during COVID time for France REIT Index. I can definitely assert that the true distribution of
returns is left-skewed and platykurtic. I decided to deliver the example for France REIT index
returns but it remains true for the other indices of my European sample.

Skewness Kurtosis Mean return Std deviation
pre pre pre pre

crisis covid crisis covid crisis covid crisis covid
Belgium REIT -0.19 -1.96 5.2 18.4 0.41 -0.1 0.0078 0.0172
France REIT -0.18 0.19 4.9 10.5 -0.1 -0.86 0.01 0.03

The Netherlands REIT -0.54 -0.69 5.6 11.1 -0.39 -0.25 0.01 0.013
Germany REIT -0.03 -3.46 -3.46 40.14 0.004 -0.003 0.008 0.013

Spain REIT -1.54 0.19 20.6 12.2 0.43 -0.76 0.01 0.02
UK REIT -2.5 -0.42 37.8 8.38 -0.00 -0.00 0.013 0.0184

Table 2: Values of the descriptive statistics of the six REIT indices.
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Figure 6: Graph showing the true distribution of France index returns vs. the normal distribu-
tion.

4.4 Testing ARCH effects for the six European REIT time series

I can perform Ljung-Box to test serial dependence between returns or, even more interesting,
between the squared returns. In essence, the ARCH effect test is a white-noise test, but for the
squared time series. In other words, we are investigating a higher order (non-linear) of auto-
correlation23. We will then reject the null hypothesis of no serial correlation if p-value is less
than or equal to the significance level. I chose a confidence level of 95% - a significance level of
5% - to run the Ljung-Box test of lag 1 on the squared returns. In the table 3, the results of the
test on the squared REIT returns series are exhibited and they plainly display strong evidence
against H(0). It means that the squared returns of the past (which represent the variance in
volatility models since E(r2

t ) =V ) tell us something about the future returns.

Many sub-period time series unveiled a p-value lower than 0.05 and a rejection parameter
H = 1. Nevertheless, three times series (UK Covid, UK GFC and Spain Covid) do not display
enough statistical evidence to reject the null hypothesis. One must be aware that by taking a
larger lag (r = 5 for example) when performing the Ljung-Box test, I can override this issue and
end up with a relevant rejection of H(0) for each single time series. So, I can prove that ARCH
effects are a reality for my European REIT indices and, consequently, it seems suitable to plead
in favor of making the analysis going further by implementing three well-defined GARCH
models.

23Autocorrelation in the squared REIT return proves the phenomenon of conditional heteroscedasticity.
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H decision
for r = 1 for r = 5 p− value Q− statistics

Belgium GFC 1 1 0.0064 7.44
Belgium NEC 1 1 0 38.88
Belgium Covid 1 1 0.0004 12.7

France GFC 0 1 0.065 3.39
France NEC 1 1 0 46.96
France Covid 1 1 0.0113 11.11

The Netherlands GFC 1 1 0 6.41
The Netherlands NEC 1 1 0 52.12
The Netherlands Covid 1 1 0.0003 12.81

Germany GFC 1 1 0 49.9
germany NEC 1 1 0 27.6

Germany Covid 1 1 0.011 6.47
Spain GFC / / / /
Spain NEC 1 1 0 27.26
Spain Covid 0 1 0.61 0.25

UK GFC 0 1 0.209 1.58
UK NEC 1 1 0 113.04
UK Covid 0 1 0.602 0.27

Table 3: Table with the decision value for Ljung-Box test (0 or 1), p-values and Q-statistics.

4.5 Markov switching model

Financial analysts are often concerned with recognizing when markets "change": a market’s
particular behavior over months or even years can suddenly transition to a completely new
behavior (Hamilton, 1988). Investors would prefer to be able to notice these shifts as they
occur so that they may adapt their strategy accordingly, but this is difficult to achieve. Markov
switching models are a popular class of models that incorporate time-variation in parameters in
the form of state- or regime-specific values. On one hand, a bull market is defined as a period
of time during which the markets increase in value on average with little volatility. On the
other hand, a bear market is defined as a market that is trending downhill and has a high level
of volatility. By simply observing the daily changes in price, it can be hazardous to capture a
change in state (i.e., from a bull market to a bear market; and conversely). It is understandable
that this model will be used to divide my study period (from x to x: a determiner plus tard)
into distinct sub-periods in order to finally compare my GARCH models; according to whether
my REITs follow a steady economic cycle or a period of turmoil. Thus, I will perform a quick
Markov-switching model on each stock market index (AEX for the Netherlands, IBEX35 for
Spain or Bel20 for Belgium). Consequently, I will find out very accurately the timeframe when
the market is in a crisis phase and when it is in a steady economic growth for each European
country.

For the sake of this master thesis, I am going to write some simple mathematical expressions
to briskly shed light on the major concepts.
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We make the assumption that the stock return rt follows a distribution that depends on a
latent process St+1. The distribution in regime 1 and in regime 0 can obviously be different.

rt ∼

{
N(µ0,σ

2
0 ) if St = 0

N(µ1,σ
2
1 ) if St = 1

(35)

The latent process St follows a first order Markov chain24. It means that the probabilities
are defined in terms of transition from one state to the other state (remember that in our case
we have to deal with only two different regimes). The probability for regime 0 to occur at time
(t +1) depends exclusively on the regime at time t.

Transition probabilities look like ρi j = Pr[St = i|St−1 = j]

So, the transition matrix is the following:

P =

(
ρ00 ρ01

ρ10 ρ11

)
=

(
ρ00 1−ρ11

ρ00 ρ11

)
(36)

Finally, by replicating the Markov-switching model on country-specific indices, I will point
out accurately the time periods during which the different markets were mainly up and mostly
down.

From a practical point of view, below you will find the results I found by applying a Markov-
switching model on each stock market index for the whole period going from January 2nd 2007
to June 10th 2021. Thus, I have now the ability to discern the bull and bear periods. Moreover,
I am delighted to conclude that the Markov analysis corroborates the primary conclusions I had
by simply looking at the time series of each index (figure 7).

According to these charts, there were three major crises that strongly affected financial
markets. First, the well-known global financial crisis25 of 2007-2008 that has been considered
by many economists as the most severe economic crisis since the Great depression in 1929. The
GFC has been initiated by the bursting of the United States housing bubble and the subprime
mortgage crisis which followed. Then came the shock of the European debt crisis that has been
translated on the financial markets by the end of 2011 and 2012. Some countries such as Spain,
Greece, Cyprus and Portugal were unable to repay or refinance their debt. Finally, the horrific
health crisis we are facing today and its terrible virus COVID-19 which is a contagious disease.
Since the moment the first case was revealed in December 2019 in Wuhan, the coronavirus
disease has been spreading worldwide.

24“A Markov chain is a stochastic model describing a sequence of possible events in which the probability of
each event depends only on the state attained in the previous event.” (Wikipedia)

25Global Financial Crisis = GFC.

28



Figure 7: Graph showing each country market index.
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4.5.1 Belgium

Figure 8: Graph exhibits changes from bull to bear market.

For the Belgian stock market, one can notice a change in regime - from bull to bear market -
at the 162nd observation. This observation corresponds to the date of February 20th 2020. Then,
at the 248th observation, corresponding to June 24th 2020 (the end of the first quarantine) and
regaining a little freedom, a switch in regime takes place – from a period of turmoil to a period
of economic growth even if a second COVID-19 wave is expected. Afterwards, some back and
forth movements are following until the 348th observation, corresponding to November 11th

2020. From that time, Belgium would have presumably followed a steady economic growth
(i.e., no collapse of index prices that could have led to a change in regime). To conclude, the
crisis period would extend from February 20th 2020 to November 11th 2020.

In the next paragraphs, I am going to perform the same Markov analysis for the 5 stock
market indices left.

4.5.2 France

Figure 9: Graph exhibits changes from bull to bear market.

For the French stock market, one can notice a change in regime - from bull to bear market -
at the 163rd observation. This observation corresponds to the date of February 21st 2020. Then,
at the 250th observation, corresponding to June 26th 2020 (the end of the first quarantine) and
regaining a little freedom, a switch in regime takes place – from a period of turmoil to a period
of growth even if a second COVID-19 wave is expected. Afterwards, some back and forth
movements are following until the 346th observation, corresponding to November 9th 2020.
From that time, France would presumably follow a steady economic growth. To conclude, the
crisis period would extend from February 21st 2020 to November 9th 2020.
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4.5.3 The Netherlands

Figure 10: Graph exhibits changes from bull to bear market.

For the Dutch stock market, one can notice a change in regime - from bull to bear market –
at the 163rd observation. This observation corresponds to the date of February 21st 2020. Then,
at the 248th observation, corresponding to June 24th 2020 (bars and restaurants are allowed to
open) and regaining a little freedom, a switch in regime takes place – from a period of turmoil to
a period of growth even if a second COVID-19 wave is expected. Nevertheless, from that time
the Netherlands would apparently follow a steady economic growth. To conclude, the crisis
period would extend from February 21st 2020 to June 24th 2020.

4.5.4 Germany

Figure 11: Graph exhibits changes from bull to bear market.

For the German stock market, one can notice a continuous change in regime – from bull to
bear market – at the 162nd observation. This observation corresponds to the date of February
20th 2020. Then, at the 254th observation, corresponding to July 2nd 2020 (by this time most of
the lockdowns of the country districts have ended up) and regaining a little freedom, a switch in
regime takes place – from a period of turmoil to a period of growth even if a second COVID-19
wave is expected. Afterwards, many back and forth movements are following until the end of
my sample period – that is to say June 6th 2021. Albeit the German economy tipped drastically
into a recession, it recovered well and DAX experienced an upward trend since the end of the
first restrictions. To conclude, the crisis period would extend from February 21st 2020 to July
2nd 2020.

31



Figure 12: Graph exhibits changes from bull to bear market.

4.5.5 Spain

For the Spanish stock market, one can notice a change in regime – from bull to bear market
– at the 161st observation. This observation corresponds to the date of February 19th 2020.
Then, at the 256th observation, corresponding to July 6th 2020 (the end of the first quarantine)
and regaining a little freedom, a switch in regime takes place – from a period of turmoil to a
period of economic growth even if a second COVID-19 wave is expected. Afterwards, the state
of emergency has been reimposed in October 2020 and the national market reacted negatively
to this information (334th observation, corresponding to October 22nd 2020). Nonetheless, by
mid-November, Spain has apparently followed a steady economic growth. To conclude, the
crisis period would extend from February 19th 2020 to July 6th 2020.

4.5.6 The United Kingdom

Figure 13: Graph exhibits changes from bull to bear market.

For the British stock market, one can notice a change in regime – from bull to bear market –
at the 148th observation. This observation corresponds to the date of January 31st 2020. Then, at
the 232nd observation, corresponding to June 2nd 2020 (announce of an easing of the lockdown
with people able to meet friends and family outside in groups of not more than eight) and
regaining a little freedom, a switch in regime takes place – from a period of turmoil to a period
of economic growth even if a second COVID-19 wave is expected. Afterwards, a temporary
bear market took shape at the 322nd observation, corresponding to October 6th 2020. From that
time, the United Kingdom would have presumably followed a steady economic growth (i.e.,
no collapse of index prices that could have led to a change in regime). To conclude, the crisis
period would extend from January 31st 2020 to June 2nd 2020.
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5 Empirical results : volatility analyses

The first purpose in this master thesis is to be acquainted with the volatility structure of my
6 European REIT indices. As explained in the methodology chapter, three different GARCH
models will be used to model the volatility of these time series: GARCH (1,1), EGARCH (1,1)
and GJR-GARCH (1,1). I divided the whole period into three distinct episodes: the Global Fi-
nancial Crisis period going from 8th November 2007 to 25th March 2009, the normal economic
cycle period going from 19th September 2014 to 31st January 2020 and the COVID period go-
ing from 1st February 2020 to 18th November 2020. As a first step, I am going to implement
these models on each subperiod and analyze the parameters of each model. Then, I am going
to deduce which one best captures the volatility patterns by means of the Akaike Information
Criterion and the Bayesian Information Criterion.

5.1 Results in graphical form

To introduce this section, three graphs(figure14 , figure 15 and figure 16) are exhibited
below. Each graph represents one of the three subperiods I am investigating. On each graph,
the Belgium REIT index returns and the three respective conditional volatilities, computed with
GARCH model, EGARCH model and GJR-GARCH model, are displayed. Note that the graphs
for the other country indices can be found in the appendices.

5.2 Estimation of the parameters

The estimation of GARCH (1,1) models for the Global Financial Crisis period display
highly significant ARCH parameters and GARCH parameters for the six European REIT in-
dices. Alpha stands for short-run persistency of shocks, while beta stands for long-run persis-
tency of shocks. Moreover, the alpha answers the following question: “Does the volatility from
yesterday have an explanatory power for the current volatility?”. In addition, the beta parame-
ter will answer the question: “Does the innovation from yesterday have an explanatory power
for the current volatility?”. Regarding our results, long-term shocks seem to generate larger
impacts on REITs volatility compared to short-term shocks (β > α). This result holds for the
overall scope of my study (i.e., each REIT index and each subperiod studied).

When it comes to asymmetric models, one must be aware that EGARCH does not lay down
any restriction on the estimated parameters, whereas GJR-GARCH imposes (α +β ) to be posi-
tive as well as ω , α and β . The stylized EGARCH fact is the following: if γ < 0, negative shocks
will increase the volatility more than positive shocks. On the contrary, if γ > 0positive shocks
increase the volatility more than negative shocks. Finally, the specificity of GJR-GARCH mod-
els is that bad news will be represented by (α+β ) and good news will be represented by α . This
suggests that negative returns from yesterday will have a bigger impact than positive returns on
today’s volatility.
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Figure 14: Volatility modelling during GFC.
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Figure 15: Volatility modelling during NEC.
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Figure 16: Volatility modelling during Covid.
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5.3 Study of the volatility behaviour during Global Financial Crisis

The results are provided in the table 4. Note that Spain index has been excluded from the
GFC period analysis because no information could have been retrieved before year 2014.

The GARCH model has very low ω but it does not seem significant because of the high
p-values. Regarding the α and β paraemeters, they are all strongly significant. Belgium REIT
index GARCH (1,1), for example, indicates a value of 0.0931 for α and a value of 0.8785 for β .
It shows that the volatility of yesterday is an important piece of evidence in the explanation for
the current volatility. In addition, the returns from yesterday also has a role to play; but to lesser
extent. Furthermore, the persistence (α + β ) is very high for each single country ; between
0.97 and 0.995. The "half-life"26 of volatility is calculated through (log(0.5)/ log(α +β ). Note
that if the sum of the arch and garch parameters is equal to 1, the half-life becomes infinite and
so, the persistence. For example, the half-life of the Dutch REIT index is 172.94, meaning that
it would take 173 days to move back to the mean volatility whereas the Belgian REIT index
would recover faster (i.e.,24 days) due to the lower value of its α and β .

The asymmetric EGARCH model shows statistically significant leverage effects for every
REIT index, except for UK and Germany REIT indices. The estimate of γ in almost all time
series is negative. It indicates that negative shocks will increase the volatility more than positive
shocks. The UK index is an outlier since γ is positive and consequently, past positive returns
would increase the volatility more than negative-returns shocks (but this is tremendously in-
significant with a 0.85 p-value).

The second asymmetric model, GJR-GARCH, shows statistically significance for parameter
β but demonstrates insignificance for many of the other parameters. These are some clues to
expect that GJR-GARCH will not be chosen as the best fitter, at least for the GFC period.
Considering the GJR-GARCH(1,1) model for the Netherlands, the estimate of γ is positive. It
stipulates the presence of the asymmetric effect of the past returns on the current conditional
variance27.

5.4 Study of the volatility behaviour during Normal Economic Cycle

The results are provided in the table 5. For the period going from September 2014 to January
2020 (NEC period), the GARCH model is highly significant at a 1% significance level for all
parameters and all indices (except the intercept of the variance ω for Belgium). In comparison
to GFC period, the past returns in normal economic cycle time seem to play a bigger role than
during the financial crisis (except for france and belgium REITs that denotes a very similar
value for parameter α). Furthermore, the volatility persistence (α + β ) is lower than during
GFC ; between 0.92 and 0.987. The half-life of the Dutch REIT is now 9 days versus 173

26It can be defined as the time needed for the volatility to move halfway back towards its unconditional mean
following a deviation from this mean.

27Since the indication function takes the value 1.
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Table 4: GARCH models results during Global Financial Crisis

38



during GFC. It indicates that the volatility behaviour would go back to normal faster in steady
economic growth situation than in periods of turmoil.

Concerning EGARCH model, the estimate of γ in almost all time series is negative. It in-
dicates that negative shocks will increase the volatility more than positive shocks. The Nether-
lands depict an outlier with a γ value of0.23. Meanwhile, the presence of asymmetric effect
on the conditional variance makes it more volatile than symmetric GARCH model (bigger β

parameter).
The second asymmetric model, GJR-GARCH, shows statistically significance for parame-

ters α and β . Both, the past returns and the past conditional variance play a role in the determi-
nation of the current conditional variance. Moreover, in case of negative last-period return, this
negative returns will have an impact of (α + γ) on the current conditional variance. As one can
see in table 5, the effect of a negative return on Dutch index conditional variance will be 0.1743
(i.e., 0.12134+0.053).

5.5 Study of the volatility behaviour during COVID

The results are provided in the table 6.
The results are provided in the table 6. For the period going from January 2020 to November

2020 (COVID period), the GARCH model is significant at a 1% significance level for parame-
ters α and β (except for α France at 5% level and α Spain that is not significant). In comparison
to GFC period, the past returns (i.e, immediate disturbance) during the health crisis seem to play
a bigger role than during the financial crisis. This goes hand in hand with a lower β . Further-
more, the volatility persistence (α +β ) does not give clear-cut results. Actually, I would have
expected a greater persistence for COVID than for NEC but it is not necessary the case and it
is essentially due to the fast recovery that took place in summer 2020 after the end of the first
lockdown.

Looking at EGARCH model, the estimate of γ is negative in all time series and it is signifi-
cant for all indexes, except for UK. It confirms that negative shocks will increase the volatility
more than positive shocks. In addition, the absolute value of nearly all γ are superior to the ones
exhibited during NEC; meaning that negative past disturbance would have a more substantial
impact on the current conditional variance. Meanwhile, the presence of asymmetric effect on
the conditional variance makes it more volatile than symmetric GARCH model (bigger β pa-
rameter). I have to point out an issue regarding the β value of Germany. Indeed, |β | must be
strictly lower than 1. I challenged my MATLAB code but did not manage to find where the
problem could come from.

The second asymmetric model, GJR-GARCH, shows statistically significance for parame-
ters β and λ . So, the past conditional variance plays a role in the determination of the current
conditional variance. Moreover, in case of negative last-period return, this negative disturbance
will have an impact of (α + γ) on the current conditional variance. As one can see in table 6,
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Table 5: GARCH models results during Normal Economic Cycle
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the effect of a negative return on France index conditional variance, for example, will be 0.2470
(i.e., 0.077+0.17).
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Table 6: GARCH models results during Covid
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6 Model evaluation

6.1 Testing the no autocorrelation for residuals and squared residuals

Ljung-Box test and Engle’s test are applied on both residuals and squared residuals for each
subperiod. There is clearly no strong evidence to reject the null hypothesis. This is a more
than appreciable result because it indicates that the serial dependency disappeared. As argued
by Burns in 2002, the principle is that the GARCH models should capture the dynamics of
the REIT returns which means that the squared standardized residuals should be independently
distributed. To visualize these results effortlessly, I plotted the autocorrelation diagram up to
lag 20. I did this manipulation for Belgium REIT index but for information, the other graphs
are available in the appendices.

Figure 17: SACF of residuals and squared residuals for Belgium REIT index.
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6.2 Model selection

Thanks to IC in tables 4, 5 and 6, we found out that EGARCH (1,1) model seems to be often
the best one in order to capture the dynamic volatility. Nevertheless, GARCH (1,1) performed
extremely well also. The main advantages of GARCH (1,1) sit in its simplicity and overall, its
parsimony in terms of parameters needed. Moreover, the results of the goodness of fit are mixed
and I was expecting more clear-cut results in favor of GARCH (1,1). Thus, I took the decision
to opt for GARCH (1,1) but I want to point out that EGARCH (1,1) slightly outperformed
GARCH (1,1). One can denote that the GJR-GARCH (1,1) is rarely considered as the best
fitter.

Figure 18: Easy way to get an overview of the best fitters according to BIC and AIC.
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7 Usefulness of these models for portfolio or risk managers

In the past, portfolio managers used the volatility as a fixed value based on the past obser-
vations. Now, thanks to the GARCH models I built, portfolio managers can interpret volatility
as a dynamic time-varying concept. Thus, financial analysts who have an interest in REITs,
and in stocks broadly, have access to more accurate measures of REITs behaviors. It would be
fruitful for a portfolio manager to detect precisely what is the volatility pattern of some stocks
in comparison to other stocks, for example European REITs.

Figure 19: Fixed versus time-varying volatility for REIT index during Covid.

On the graph 19, on one hand, the fixed volatility underestimates the volatility explosion that
occurred in March 2020. On the other hand, it overestimates the volatility for the months fol-
lowing the first wave of the health crisis. This awareness could have led to changes in portfolio
strategies or hedging strategies.

But, a more relevant measure of risk used by risk managers is the Value at Risk28. VaR
is essential in that it takes into account the direction of an investment’s fluctuation. Indeed, a
high volatility could be linked to a surge in REITs prices, which is positive for an investor. For

28Value at risk = VAR.
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portfolio managers, the risk is about the probabilities of losing money due to a downside market
movement and that is the essence of VaR. “What is the maximum loss?”. So, I computed the
dynamic 1% VaR for each REIT index using my three conditional variance models and also
the fixed VaR (i.e., homoscedasticity). I am pleased to prove that I always improve my VaR
estimation (and so the forecasting) while using GARCH models estimates. To be consistent I
plotted these measures for the Belgium REIT index on figure20 during the period of turmoil
due to the health crisis. Furthermore, the unconditional VaR is only violated at the peak of the
COVID period. The three dynamic models give similar VaR values that are time-varying. The
hazardous belief that unconditional VaR is more restrictive than dynamic VaR is disproved. The
well-informed investors could thenceforth review their investment strategies or their hedging
strategies.

Figure 20: Value at risk is becoming time-varying.

46



8 DCC-GARCH model implementation

First, the correlations between REIT are exhibited in the tables 7, 8 and 9 for the REIT
indices returns throughout all time periods analyzed. The correlation between REITs are mostly
high (0.33-0.85). Correlations differ according to the time period studied. An apparent increase
in correlation can be detected during the health crisis downturn- in comparison to the level of
correlation observed during the “Normal Economic Cycle”. During the global financial crisis,
the correlation coefficients follow the same upward trend (GFC vs. NEC) even if the results are
more contrasted than for the NEC-Covid period.

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

BE-REIT 1
FR REIT 0.69 1

Neth REIT 0.77 0.83 1
GE-REIT 0.38 0.41 0.42 1

Spain REIT / / / / 1
UK REIT 0.54 0.73 0.68 0.34 / 1

Table 7: Table – Global Financial Crisis period – REITs fixed correlation

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

BE-REIT 1
FR REIT 0.7 1

Neth REIT 0.65 0.76 1
GE-REIT 0.52 0.42 0.5 1

Spain REIT 0.55 0.57 0.51 0.39 1
UK REIT 0.59 0.69 0.63 0.33 0.54 1

Table 8: Table – Normal Economic Cycle period – REITs fixed correlation

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

BE-REIT 1
FR REIT 0.69 1

Neth REIT 0.70 0.58 1
GE-REIT 0.57 0.52 0.53 1

Spain REIT 0.62 0.75 0.75 0.56 1
UK REIT 0.70 0.70 0.72 0.61 0.72 1

Table 9: Table – Covid health crisis period – REITs fixed correlation

Moreover, one can be interested in comparing the correlation between REITs and Eu-
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roStoxx5029 during the three subperiods. These findings highlight that the REIT market is
correlated to the stock market in periods of turmoil. This is essentially true for the health crisis
as well as for the GFC period but to a lesser extent. During the period 2014 - end 2019, it seems
that the correlation is close to zero. The different correlations can be found in tables 10 ,11 and
12.

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

EuroStoxx50 0.06 0.05 0.09 0.11 / 0.09

Table 10: Table – correlation EuroSTOXX50 vs. REITs - GFC

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

EuroStoxx50 0.02 0.04 0.03 0.03 -0.03 0.03

Table 11: Table – correlation EuroSTOXX 50 vs. REITs – NEC

Correlation Belgium France Netherlands Germany Spain UK
REIT REIT REIT REIT REIT REIT

EuroStoxx50 0.52 0.46 0.42 0.55 0.39 0.45

Table 12: Table – correlation EuroSTOXX 50 vs. REITs – Covid

But the preceding results do not take into account the time-varying characteristic of both
the variance and the covariance. This is where DCC-GARCH comes into play. DCC-GARCH
is implemented to detect the degree of volatility correlation changes between two or more vari-
ables, namely REIT returns. We want to investigate if there are links or comovements between
REITs volatility pattern and also between REITs and EuroStoxx50 (representing the overall
European stock market).

The figures 21 illustrates the dynamic correlation between Belgium REIT and the other
five indices. Belgium REIT index seems to have the same correlation behaviour, except for
France REIT which demonstrates a much higher correlation with Belgium REIT. Moreover,
the increase of the correlation in periods of high correlation is even more marked with France,
representing by the blue spikes. In figure 22, one can notice that the France REIT index appears
more correlated to The Netherlands REIT and UK REIT than it was on graph 21.

For the sake of meticulousness, the figures corresponding to the correlation behaviour be-
tween ,respectively, The Netherlands, Germany, Spain and UK and the other REITs are dis-
played in the appendices.

Considering the correlation between EuroStoxx50 and REIT indices, each REIT index fol-
lows the same correlation behaviour. Indeed, the dynamic correlation is between -0.1 and

29"The EURO STOXX 50 is a stock index of Eurozone stocks designed by STOXX. It is made up of fifty of the
largest and most liquid stocks.” (Eikon software).
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Figure 21: Dynamic Conditional Correlation for period Q42014 - Q42019 (Belgium point of
view).

0.15/0.1 which is lower than the REIT vs. REIT correlation. Consequently, the REIT indices
do not seem strongly correlated to the European stock market (figure 23).
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Figure 22: Dynamic Conditional Correlation for period Q42014 - Q42019 (France point of
view).
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Figure 23: Dynamic Conditional Correlation between EuroStoww50 and REIT indices for
period Q42014 - Q42019.

The spectrum is open for future research in the area of REIT volatility. One element that
would be interesting to study is the behaviour of volatility no longer by distinguishing geo-
graphically but by distinguishing by property types (i.e., residential, warehouse, hotels). Now
that the GARCH models are defined, it is possible to make forecasts in the future and to study
the quality of these forecasts.
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9 Conclusion

First of all, the theoretical models of GARCH, EGARCH and GJR-GARCH allowed me to
have a precise idea of the structure of the volatility. More precisely, the first purpose in this
master thesis is to be acquainted with GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1).
Each conditional variance model gives me useful insights for the three subperiods studied : the
Global Financial Crisis period going from 8th November 2007 to 25th March 2009, the normal
economic cycle period going from 19th September 2014 to 31st January 2020 and the COVID
period going from 1st February 2020 to 18th November 2020. Thanks to the estimation of the
parameters of each model, I could see the specificity of the conditional volatility for each period.
Both α and β parameters are most of the time significant. It means that the answer to the two
following questions is YES : “Does the volatility from yesterday have an explanatory power
for the current volatility?” and “Does the innovation from yesterday have an explanatory power
for the current volatility?”. In a nutshell, it shows that the yesterday’s volatility is an important
piece of evidence in the explanation for the current volatility. That was the idea behind the
breakthrough initiated by Bollerslev in 1986.

Furthermore, the two asymmetric models, EGARCH(1,1) and GJR-GARCH(1,1), prove
generally the usefulness of their respective leverage parameter γ . In this sense, considering
EGARCH(1,1), γ is almost every time negative. It indicates that negative shocks will increase
the volatility more than positive shocks.Meanwhile, It is also important to note that the presence
of asymmetric effect on the conditional variance makes it more volatile than symmetric GARCH
model (bigger β parameter). Considering GJR-GARCH, the study of the different coefficients
and parameters shows that in case of negative last-period return, this negative returns will have
an impact of α +γ on the current conditional variance. This is caused by the positive sign of the
leverage effect that makes the indicator function being equal to 1 and, consequently, it would
transfer to negative disturbance a power of α + γ . This conclusion applies to all the subperiods
studied and all the indices (i.e., Belgium REIT, France REIT, The Netherlands REIT, Germany
REIT, Spain REIT and UK REIT; respectively for the three periods studied, except for Spain
GFC period for which no information was available).

When it comes to volatility persistence, all REIT indices display larger and so longer per-
sistence in crisis periods compared to economic cycle period. The uncertainty associated with
periods of high stress or major changes affects the persistence of volatility, which may provide
opportunities for some investors.

From a pragmatic point of view, all my models have efficiently captured the conditional
variance. This is proved by the Sample Autocorrelation Function performed on the residuals of
each model. There is clearly no more strong evidence of serial dependency.

Regarding the quality of the models and which one is the best fitter, the results show a ten-
dency for the EGARCH(1,1) model which is opposite to Lunde’s belief (" We find no evidence
that a GARCH(1,1) is outperformed by more sophisticated models in our analysis of exchange
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rates, whereas the GARCH(1,1) is clearly inferior to models that can accommodate a leverage
effect in our analysis of IBM returns."). Perhaps we can say that the EGARCH(1,1) is better
suited to REITs? We have to be careful because we did this analysis with order p and order q

equal to 1 and thus maybe a GARCH(3,1) or a GARCH(1,2) would have given a better AIC or
BIC. Moreover, the differences of fitting between the three models are thin and so it will lead
me to prefer GARCH model for its parsimony.

The study of the correlation between the REITs confirms the true belief that the correlation
in times of crisis increases relative to its value in normal times. Furthermore, it is essentially for
portfolio managers to say that the correlation between REITs and the European stock market,
represented by the EuroStoxx50, is quite low or even zero during calm period. But, it will
drastically increase during a crisis period such as COVID-19. The results are more tempered
concerning the GFC. In a nutshell, the six REITs seem to have a similar dynamic correlation
pattern and are correlated to the overall stock market in periods of turmoil.

To conclude, what is crucial to understand is that volatility is time-varying. Having the abil-
ity to model volatility over time gives huge advantages to portfolio managers and risk managers.
It would lead them to take wiser decisions when it comes to hedging strategies or portfolio allo-
cation. Indeed, the well-known fixed standard deviation tends to overestimate or underestimate
the risk according to the periods that the markets go through because it is a fixed value that does
not allow this essential nuance. Thanks to the models I described and applied on my data, the
road is open to different forecasts, which is the ultimate goal for financial analysts.
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Appendices

I Graphs for each REIT index where the three volatility mod-
els are exhibited as well as the returns

I.1 France REIT index

Figure 24: Volatility modelling during GFC.
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Figure 25: Volatility modelling during NEC.

Figure 26: Volatility modelling during Covid.
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I.2 The Netherlands REIT index

Figure 27: Volatility modelling during GFC.
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Figure 28: Volatility modelling during NEC.
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Figure 29: Volatility modelling during Covid.

I.3 Germany REIT index

Figure 30: Volatility modelling during GFC.
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Figure 31: Volatility modelling during NEC.
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I.4 Spain REIT index

Figure 32: Volatility modelling during NEC.
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Figure 33: Volatility modelling during Covid.
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I.5 UK REIT index

Figure 34: Volatility modelling during GFC.
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Figure 35: Volatility modelling during NEC.

Figure 36: Volatility modelling during Covid.
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II SACF for each REIT index

II.1 France

Figure 37: SACF of residuals and squared residuals for France REIT index.
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II.2 The Netherlands

Figure 38: SACF of residuals and squared residuals for The Netherlands REIT index.
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II.3 Germany

Figure 39: SACF of residuals and squared residuals for Germany REIT index.
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II.4 Spain

Figure 40: SACF of residuals and squared residuals for Spain REIT index.
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II.5 UK

Figure 41: SACF of residuals and squared residuals for UK REIT index.
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III Fixed vs. dynamic VaR for REIT indices during COVID

III.1 France

Figure 42: Value at risk for France REIT during health crisis.
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III.2 The Netherlands

Figure 43: Value at risk for Dutch REIT during health crisis.
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IV Fixed vs. dynamic VaR for REIT indices during Global
Financial Crisis.

IV.1 Belgium

Figure 44: Value at risk forBelgium REIT during GFC.
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V DCC-GARCH graphs that are not presented in the body
of the text

V.1 The Netherlands versus the other REIT indices correlation

Figure 45: Correlation behaviour of The Netherlands REIT index versus the other indices.
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V.2 Germany REIT versus the other REIT indices correlation

Figure 46: Correlation behaviour of Germany REIT index versus the other indices.
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V.3 Spain REIT versus the other REIT indices correlation

Figure 47: Correlation behaviour of Spain REIT index versus the other indices.
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V.4 UK REIT versus the other REIT indices correlation

Figure 48: Correlation behaviour of UK REIT index versus the other indices.
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Executive summary

The purpose of this master thesis is to provide an overview of the structure of conditional
volatility for a sample of six European countries: FTSE Belgium REIT, S&P France REIT, S&P
Netherlands REIT, FTSE Germany REIT, S&P Spain REIT and FTSE United Kingdom REIT.
By introducing both univariate and multivariate GARCH models, the reader of this paper will
be accustomed to understanding GARCH volatility structure and patterns regarding European
REITs. Furthermore, he will discover the intrinsic parameters of theses models, namely α , β

and γ . The way to interpret them will no longer be a secret. The inexperienced person will
also understand the masterpiece that has been the discovery of conditional variance models
and its usefulness for risk and portfolio managers. He will be warned that the best model for
REITs seems to be the EGARCH but that the parsimonious nature of the GARCH also has
its advantages. The time span being divided into three sub periods (Global Financial Crisis,
Normal Economic Cycle and COVID-19), the reader of this master thesis will receive the keys
to understand the differences between each subperiod in terms of conditional volatility structure
and in terms of correlation.
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