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UNIVERSITY OF LIÈGE

Abstract
Bitcoin hedge capacity for high risk portfolio

by Nicolas LECLÈRE

This master’s thesis proposes an analysis of the hedge capacities of Bitcoin in
the particular case of high risk portfolio. The impact of Bitcoin on the portfo-
lio optimisation and efficient frontier is also studied.

The statistical models GARCH, eGARCH, GJR-GARCH and DCC-GARCH
are build in order to compute the correlation between Bitcoin and the portfo-
lio using the software Matlab. Univariate models are compared and provide
volatility of assets, while a multivariate model is built to assert the hedge ca-
pacity of Bitcoin.

Montecarlo simulations are performed for the volatility of Bitcoin and
correlation are established between the portfolio and Bitcoin. Portfolio are
built, efficient frontiers drawn and optimal portfolio studied using the Sharpe
ratio.

Final results suggests that Bitcoin can have hedge capacities over a port-
folio composed of risky assets depending on the time period considered. At
least it is of great interest in the construction of portfolio. The efficient frontier
is displaced upward, meaning higher returns, when Bitcoin are considered
in the portfolio.
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Chapter 1

Introduction

For the last few years, Bitcoin and cryptocurrency in general have been men-
tioned on a daily base in the media. The reason being the significant profit
that it can provide but also the stories about huge losses that exist around. It
quickly became an asset that everyone knew about and could play with full
of hope. For experienced traders and finance enthusiasts Bitcoin arrived like
a UFO on the market and in the portfolio. No one knew the potential effect
it may or may not have on the optimisation of portfolios or if it could hedge
risky assets. It is in this context that this work is proposed, where the goal is
to identify if Bitcoin present hedge capacities when a portfolio is considered
risky and how it impacts the expected returns of a portfolio.

The master’s thesis is separated in three different chapters. The first chap-
ter concerns an introduction to the world of cryptocurrencies, when and how
they appeared, how do they work and what effect they have on the world.
The second chapter lays down the mathematical basis that are used to obtain
the results. Statistical tools, theory of portfolio optimisation and the data that
are used are presented. The third chapter concerns the results. The data are
fed to the models and the obtained figures and solutions are discussed. A
conclusion is then drawn about the work that is proposed.

In the scope of the master’s thesis, the software Matlab and Excel have
been used to compute and model.
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Chapter 2

Cryptocurrencies

In this chapter we present Bitcoin, the origins and the technologies that made
it a reality are presented. The drawbacks of Bitcoin are also addressed.

2.1 A short history of cryptocurrencies

The first cryptocurrency ever created and holding a defined monetary value
is also the most famous one, Bitcoin (Figure 2.1). In 2009, a person or group
of people, named Satoshi Nakamoto, their real identity remains unknown
to this day, created Bitcoin. The emergence of the bitcoin and other cryp-
tocurrencies is directly connected to the 2008 financial crisis that plunged the
world into dark times of bankruptcy and debts (Kostakis and Giotitsas, 2014).

FIGURE 2.1: Physical representation of bitcoin credits : Pixabay.

At first, bitcoin was not recognised as a valid form of payment. It was
disregarded for the first few year of its existence. This clearly appears on
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Figure 2.2 where the trading volume in USD is represented. It corresponds
to the amount of Bitcoins that are bought and sold on specific exchanges. It
also helps with deriving the general interest in the crypto market. More and
more companies started to accept it as payment, this lead to the famous pizza
day, where a man named Laszlo Hanyecz happily paid for two pizzas with
10 000 bitcoins. At the time of the transaction, in may 2010, it represented 41
USD. Nowadays, those two pizzas would have had a value of hundreds of
millions USD. This small story shows by itself how big the market of cryp-
tocurrencies have grown in merely one decade.

However the bitcoin market is still considered to be high stakes gam-
bling.There are countless stories of people that became rich thanks to invest-
ing in bitcoin. Sadly, there are even more stories about people that lost a lot
of money. The high volatility of the price of bitcoin may lead to significant
profits but significant losses as well. Exterior actors may have a real impact
on the price variations of bitcoin, one such case can be seen in notorious CEO
of Tesla and SpaceX, Elon Musk (Ante, 2021). The simple act of modifying
his bio on Twitter by adding #bitcoins highly impacted the market. Figure 2.3
displays the variation of bitcoin price over the day on which the bio Twitter
was changed, the impact of the event was sudden and noticeable.

FIGURE 2.2: Exchange Trade Volume of Bitcoins in USD from
blockchain.com/charts.
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FIGURE 2.3: Impact of Elon Musk’s change
of twitter bio on the price of bitcoin from

https://coinmarketcap.com/fr/currencies/bitcoin/.

There are three main criterion that make bitcoin and cryptocurrencies in-
teresting assets to have, hold or trade with compared to the fiat currencies,
which is another word for paper money (Marella et al., 2020). Firstly, bitcoin
is a non-centralized money (Scott, 2016). Secondly, bitcoins are generated and
managed via a block-chain technology (Zheng et al., 2017). Thirdly, the digi-
tal nature of bitcoin as all of the cryptocurrencis makes them easy to transfer
across the world. the first two concepts are developed in the following sec-
tions.

2.2 Centralised or decentralised ?

As mentioned in the previous section, bitcoins and more generally cryptocur-
rencies are non-centralised. A non-centralised system does not depend on a
unique system that would gather all the information at the same place. In the
case of Bitcoins, the information is accessible to all of the users. In the case of
hacking, the centralised system is much more at risk than the decentralised
system since all the data is available to all users. A hacker would need to ac-
cess all the users together, which is nearly impossible. The decentralisation
is great for anonymous operation, in order to access the system you just need
the private and public key. Figure 2.4 gives a graphical representation of the
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two systems.

FIGURE 2.4: Graphical representation of the centralised and de-
centralised system

The decentralisation is made possible thanks to block-chains (Y. Chen,
2021)

2.3 Block-chain technology

The block-chain is the most important aspect that made bitcoins and all cryp-
tocurrencies that followed possible. A block-chain is made of data sets that
are composed of chains of data packages called blocks. Those blocks include
multiple transactions. The addition of blocks extends the block-chain and
therefore provides a complete history about all past transactions. Not only
are the transactions stored in a block but there is a value corresponding to
the previous block, the block parent as well as a timestamp and a random
number that insures the integrity of the block-chain (Nofer et al., 2017). A
graphical representation of what a block-chain looks like is given on figure
2.5.

FIGURE 2.5: Graphical representation of the block-chain
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So how does it work in practice? Let us assume Alice makes a transaction
with Bob. All the transactions that happen during a given period of time are
gathered together to create a block, including the one that Alice just made.
Then the block is validated by the nodes of the network, the so called miners
that must solve mathematical problems of cryptography. The new block is
then added to the chain, only then Bob will receive the transaction that Alice
previously made. A graphical summary of the process can be found on fig-
ure 2.6

FIGURE 2.6: Blockchain process extracted from
https://blockchainfrance.net/decouvrir-la-blockchain/c-est-quoi-

la-blockchain/.

Now that we understand what the basis of Bitcoin is and how it works, it
will be interesting to look at how it is perceived nowadays.

2.4 Bitcoin nowadays: its usage and impact

As stated at the beginning of this chapter the perception of the bitcoin has
changed a lot over the years. From a fraction of a cent to more than thirty
thousand dollars, the bitcoin has seen its value increase massively. But what
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drove this significant increase? There are internal and external factors that
can act on the price of bitcoin. As part of the internal factors one can observe
the supply and the demand that directly impacts the price of bitcoin, the
more people want bitcoin the more pricey it becomes. The external factors
are related to political decisions, the global market and the speculation about
bitcoin evolution. A short list of a few of those factors is given on figure 2.7
(Poyser, 2017).

FIGURE 2.7: Factors influencing bitcoin prices (Sovbetov, 2018)

The growing popularity of bitcoins is probably the main factor that drove
up its price but it is without a doubt the combination of all those factors that
made the bitcoin what it is nowadays.

When the block-chain was presented, the term of miners and mining ap-
peared but what does it refer to? As mentioned, it consists of solving complex
mathematical problems, this creates bitcoins (thus the term mining, appar-
enting to ore extraction from the ground). A simple analogy of how it works
is "guess what number I am thinking of" with no limit of guesses. The trick
is that the pool of numbers is extremely large, up to 64-digit hexadecimal
numbers. The one that guesses correctly gets the bitcoins. In 2009, there was
few miners and every block created gave 50 bitcoins. Today, it only gives
6.25 bitcoins, figure 2.8. With the value of each block created decreasing, the
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difficulty of creating a block increases. It corresponds to how many hashes
must be generated to to find the solution to the problem. The evolution of
the difficulty over the years can be found on figure 2.9

FIGURE 2.8: Miner’s reward for completing a block
https://www.investopedia.com/terms/b/bitcoin-mining.asp.
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FIGURE 2.9: Difficulty of mining bitcoin over the years

With the difficulty increasing over the years, the need for highly opti-
mized computer power became more and more important. While in 2009
mining could have been achieved with a family computer, in 2020 it requieres
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full GPU servers that can cost up to a few ten of thousand dollars. Obvi-
ously the energy consumption and the environmental impact are consider-
able (Bondarev, 2020). The energy consumption of bitcoin usage and pro-
duction has increased over the years, figure 2.10 represents the cambridge
bitcoin electricity consumption index.

FIGURE 2.10: Bitcoin electricity consumption (Cambridge Bitcoin
Electricity Consumption Index)

Another environmental aspect that can be measured and compared is the
carbon footprint associated to the bitcoin, figure 2.11 represents the compar-
ison to the annual consumption of some countries. It is important to empha-
sise the fact that the bitcoin carbon footprint is worldwide, but it still helps
to grasp to size and the importance of the carbon footprint.

FIGURE 2.11: Comparison of Bitcoin’s carbon footprint to na-
tional annual CO2 emissions (deVries et al., 2021)
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To conclude this chapter a SWOT analysis can be seen in table 2.1. It in-
cludes what has already been presented but also helps to present a clearer
picture of Bitcoin strengths, weaknesses, opportunities and threats.

One can observe that overall, Bitcoins presents a wide range of advan-
tages, but some of them involve drawbacks. For instance, the anonymity
may lead to illegal activities. The list of opportunities and threats is also full
of different aspects. This proves that there is still place for the Bitcoin to grow
or perish.

In this chapter, the Bitcoin has extendedly been introduced, from its cre-
ation and introduction into the market to the present day with the impact it
produces economically and ecologically. It went over the technological foun-
dations and briefly detailed the underlying processes. Lastly, a SWOT analy-
sis of the Bitcoin in its globality is proposed. The next chapter introduces the
mathematical concepts that have been applied in this thesis.
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Strengths Weaknesses
• Bitcoin saves the time and physical
space of those involved in transactions,
using the virtual environment

• Increased volatility in all markets

• It created the impression of freedom,
not implying the existence of a central
authority

• Prohibition of the use of Bitcoin in
certain countries

• It is not controlled by any authority,
being able to circulate freely, directly
between people, without intermedi-
aries imposing transaction costs simi-
lar to commissions charged by banks.
However, there are charged some min-
ers fees.

• Representatives of several banks
around the world believe that investig
in Bitcoin is risky

• It does not involve the payment of
commissions that banks usually charge

• High environmental costs, gener-
ated by electricity consumption and
CO2 emissions

• The price of Bitcoin results from the
confrontation of demand with supply

• Increased vulnerability generated
by the use of online environment, in
which security breaches can also occur

• It does not involve bureaucracy in
any of the stage of obtaining or using

• Lack of an institution/central bank
to protect users in case of speculative
attacks

• Beacause it exists in limited quati-
ties, it does not generate inflation

• Accessibility conditioned by level of
training compatible with new commu-
nication technologies

• It maintains the anonymity of eco-
nomic operators that carry out transac-
tions and are interested in this issue

• Limited trust, due to use of illegal
activities - cryptocurrency in general
can encourage gambling, tax evasion,
terrorism, transactions with goods
prohibited by law (drugs, weapons),
money laundering, etc.

• Bitcoin illustrates the free market
model that spontaneously self-orders

• Lack of intrinsic value for correlation
with the price of traded goods and ser-
vices

• It meets the requirements of the "IT
generation"
• It is compatible with the globaliza-
tion of financial markets
• The number of traders accepting Bit-
coin is growing
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Opportunities Threats
• The use of Bitcoin-based technology
can lead to unsuspected performance
in the virtual environment, associated
with different areas of activity

• Authorities publicly expressed con-
cern about the possibility of using
cryptocurrencies for money launder-
ing and other ilegal activities

• It simulates older generations to
adapt to new technologies

• Losses suffered by states due to non-
taxation of transactions/use in illegal
activities with Bitcoin may lead in time
to a ban or its use

• It is not related to issues of a patriotic
nature, anthem or state, without thus
arousing disputes of a nationalist na-
ture

• High costs for purchasing the tech-
nology needed to obtain Bitcoin

• The number of those who accept
BTC is increasing all over the world -
restaurants, cafes, shops, universities,
etc.

• The attraction to using Bitcoin is a
sufficient cause for concern for tradi-
tional, conservative and rigid markets

• Unlike traditional currency, Bitcoin
has no material basis, therefore it does
not require a very elaborate process for
issuing money

• The pressure exerted by the foollow-
ers of the classical monetary canons,
especially in the direction of Bitcoin
recognition through a political act of
the state

• Being still unregulated in many
countries, it leaves the impression of a
real freedom

• Lack of intrinsic value for correlation
with the price of traded goods and ser-
vices
• Human errors, like losing the pass-
word, losing the memory, etc
• Cyber risks

TABLE 2.1: Bitcoin SWOT L.Badea and Mungiu-Pupazan, 2021
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Chapter 3

Method

In this chapter, the mathematical basis of this thesis is presented. A detailed
look at statistics in the scope of finances alongside the usage of numerical
methods are proposed. The main models considered in the scope of the work,
the GARCH model family, are laid out. The theory of portfolio optimisation
is also presented.

3.1 Fundamentals

Numerical methods are usually associated to engineering and scientific fields
rather than finance but the amount of papers, research and books on the sub-
ject keeps on growing (Brandimarte, 2006). In finance, one word can be used
to describe the general feeling, uncertainty, which is a common term within
the field of statistics (Stockhammer and Grafl, 2008). To illustrate mathemat-
ically what uncertainty is, we assume that a variable, for instance the price of
a stock, is modelled as a random variable. To this random variable, a proba-
bility distribution is associated, which gives a picture of the uncertainty asso-
ciated to the price of the stock. However, this simple approach assumes that
in terms of the probability distribution the history of the stock will repeat it-
self as future probabilities are equivalent to past probabilities.

For a more mathematical perspective, one can consider the current price
of a stock, denoted S0. This price can either go up, Su

1 , or down, Sd
1, with a an

associated probability p for either possibilities. The basic rules of probability
can be gathered from equation 3.1

n

∑
k=1

p(k) = 1; with 0 ≤ p(k) ≤ 1; k = 1, . . . , n (3.1)
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This approach can be considered as "discrete" in which only a limited
amount of time instances are taken into account. It is opposed to a "con-
tinuous" approach, in which the time step trends towards zero.

All of all the combined values of the variable as well as the associated
probabilities are considered and plotted. This is known as the probability den-
sity function. It can take various shapes depending on the problem studied.
One of the most famous probability density functions is the normal distri-
bution, or the gaussian distribution (Ahsanullah, Kibria, and Shakil, 2014).
It is a distribution centred around the mean, µ. The "sharpness" of the curve
depends on the standard deviation, σ also called the volatility in finance, or
more precisely of the square of σ known as the variance of the distribution. It
describes the dispersion of the results. One can look at the associated math-
ematical expressions equation 3.2 for the mean and 3.3 for the variance.

µ =
1
n

n

∑
i=1

xi =
x1 + x2 + . . . + xn

n
(3.2)

σ2
X = Var(X) = E[(X− µ)2] =

1
n

n

∑
i=1

(xi − µ)2 (3.3)

The variance is the expected value of the squared deviation from the
mean, where the expected value takes the mathematical form of equation
3.4, which is also known as the standard deviation. Graphically the proba-
bility density function of a normal distribution results in figure 3.1. Another
famous distribution law is the Student’s t-distribution. It is symmetric and
bell-shaped like the normal distribution but the tails are heavier. It means
that the extremes are more reduced.

E[X] =
n

∑
i=1

xi pi = x1p1 + x2p2 + . . . + xn pn (3.4)

When two variables are considerate, the variance between the two can be
expressed as the covariance. If the two variables have great values together,
the covariance is positive, if the first variable is high while the second is low
the covariance is negative. Equation 3.5 is the mathematical expression of the
covariance.

Γxy = Covar(X) = E[(X− E[X])(Y− E[Y])] (3.5)
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FIGURE 3.1: Histogram and interpolated probability density
function of a random number generated 5000 times with a

mean of 5 and a standard deviation of 2

The definition of the covariance allows the definition of an important sta-
tistical element, the correlation between two variables. It corresponds to the
degree of linear relation two variables have together. It ranges between -1
and 1, in which a correlation of -1 indicates an anti-correlation, whereas a cor-
relation of 1 indicates a perfect correlation. A correlation of 0 means that the
two variables are uncorrelated. Naturally the correlation between a variable
and itself is strictly equal to 1. Mathematically, the correlation coefficient is a
relation that depends on the covariance and the standard deviations of two
variables X and Y.

ρxy = Corr(X, Y) =
cov(X, Y)

σXσY
=

E[(X− E[X])(Y− E[Y])]
σXσY

(3.6)

There is another formulation for the correlation coefficient that depends
on the number of observations N, the mean (µ) and the standard deviation
(σ) of two variables X and Y. This formulation is known as the Pearson’s
correlation coefficient.

ρ(X, Y) =
1

N − 1

N

∑
i=1

(
Xi − µX

σX

)(
Yi − µY

σY

)
(3.7)
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Two additional parameters are interesting to look at for probability den-
sity functions, the skewness and the kurtosis. The skewness measures the
asymmetry of a pdf around its mean. It can either be positive or negative
depending on the side on which the tail of the graph is. The kurtosis also
describes the shape of the pdf, it provides information on the tail distribu-
tion. A phenomenon known as the kurtosis risk exists for investors which
describes an event in which investors experience more extreme returns than
usual, good or bad. Their respective mathematical expressions are corre-
sponding to 3.8 and 3.9.

S = µ̄3 = E

[(
X− µ

σ

)3
]

(3.8)

Kurt[X] = K = E

[(
X− µ

σ

)4
]

(3.9)

3.1.1 Jarque-Bera Test

The Jarque-Bera test is a process that verifies if the sample data match a nor-
mal distribution as the one represented in figure 3.1. It is based on the skew-
ness and the kurtosis. The equation used for the test is:

JB =
n
6

(
S2 +

1
4
(K− 3)2

)
(3.10)

In which n is the number of observations. The test returns a value that
can be compared to a critical value, if the returned value is larger than the
critical one, the data does not fit a normal distribution.

The basic concepts of statistics have been laid out in this section; Thanks
to this short introduction the more complex method that is used in this thesis
can now be presented. This method is known as the GARCH method.

3.2 ARCH/GARCH Model

The ARCH (Autoregressive Conditional Heteroskedasticity) model (Engle,
1982), is a statistical model that is used to compute and study the volatil-
ity in time series. The goal of the method is to somehow predict the future
behaviour of the volatility. Obviously, it is of great interest in the financial
world, where the method is used to estimate the risks of the markets (Lam-
oureux and Lastrapes, 1990, Dyhrberg, 2016). The general idea behind the
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method, is to consider the volatility at a previous time in the determination
of the time series. Mathematically it corresponds to equation 3.11.

at = εtσt (3.11)

Whereas at is the solution at time t of the time series, εt is a stochastic part
associated to noise (close to 0) and σt is the volatility at time t, or yet again
the standard deviation. It can also be written with the value of the time series
at the previous time, t− 1, and two undetermined constants as in equation
3.12.

at = εt

√
ω + α1a2

t−1 (3.12)

The issue with this model is that it can be characterised as "bursty", mean-
ing that it can produce burst in the time series before going back to a nominal
value. In order to avoid such behaviour, one can consider the GARCH model
(Francq, Horvath, and Zakoïan, 2011).

The GARCH model is a particular case of the ARCH model. The model
is often use to show the hedging capabilities of gold (Dyhrberg, 2016,Basher
and Sadorsky, 2016).

σt = ω + α1a2
t−1 + βσ2

t−1 (3.13)

This last equation is the particular case of the GARCH model, referred
as GARCH(1,1) in which α ≥ 0, β ≥ 0 and α + β ≤ 1. The general case
is written GARCH(p,q), in which one considers the "p" previous results of
the time series and the "q" previous volatility forecasts which gives equation
3.14.

σ2
t = ω +

p

∑
i=1

αia2
t−i +

q

∑
j=1

β jσ
2
t−j (3.14)

Another method directly derived from the GARCH method is the eGARCH
method, standing for exponential GARCH. The corresponding equation is
Equation 3.15, in which one can observe that the result is the logarithm of
the variance. Contrarily to the classical GARCH method, it can be negative
or positive which removes condition on the parameters α and β. g

(
Zt−p

)
=

θZt + λ(|Zt| − E(|Zt|), with Zt being a generalised error distribution and θ a
coefficient.
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log σ2
t = ω +

p

∑
i=1

αig
(
Zt−p

)
+

q

∑
j=1

β j log σ2
t−j (3.15)

The last GARCH model studied in this thesis is the Glosten-Jagannathan-
Runkle GARCH (GJR-GARCH) model. Its expression is close to the classical
GARCH, it incorporates another parameter γ and It−1 that depends on the
expected return µ such that

σ2
t = ω + (α1 + γIt−1) a2

t−1 + βσ2
t−1 (3.16)

It−1 =

0 ifµ + εt−1 ≥ µ

1 ifµ + εt−1 < µ

To select the most suited model statistical tests exist. Two criterions are
considered in this thesis, the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). Both are model selectors that compare
models to each other. These methods are based on the maximum of the like-
lihood function L̂, which is already a measurement for the good fit of data
and models, k the number of estimated parameters in the model and n the
number of observations for the BIC. Equations 3.17 and 3.18 are the respec-
tive equations for the AIC and BIC. The lower the value of the AIC and BIC
the more suited the model.

AIC = 2k− 2 ln L̂ (3.17)

BIC = k ln n− 2 ln L̂ (3.18)

The usage of a univariate model helps to describe the volatility of one type
of asset. The main interest lays in the interaction of one item with another, in
the case of the thesis, Bitcoin with stocks (Silvennoinen and Teräsvirta, 2008).
This new tool is useful for the optimisation of portfolios since it helps to de-
termine correlations and volatility between the different assets of a portfolio.

The classical method to do so is known as the Dynamic Conditional Cor-
relation, or DCC (Engle, 2002,Celik, 2012)). Engle’s idea is to consider a co-
variance matrix filled with returns, Ht:

Ht = DtRtDt (3.19)
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in which

Dt =


a1, t . . . 0

... . . . . . .
0 . . . an, t

 (3.20)

and Rt is a n× n correlation matrix containing the conditional correlations
that varies in time:

Rt =



1 q12,t q13,t . . . q1n,t

q21,t 1 q23,t . . . q2n,t

q31,t q32,t 1 . . . q3n,t
...

...
... . . . ...

qn1,t qn2,t qn3,t . . . 1


(3.21)

Let us note that the matrix Ht must be positive definite, which means that
Rt has to be as well. Dt is already positive due to its diagonal form filled with
variances. Another requirement is that the elements of the matrix Rt must be
less or equal to one, it takes the form:

Rt = (diag(Qt))
∗−1 Qt (diag(Qt))

∗−1 (3.22)

In which the matrix Qt is the n × n time varying covariance matrix of
standardised residuals in the case of a DCC-GARCH(1,1):

Qt = (1−Ψ− ζ) Q̄t + Ψδj,t−1δi,t−1 + ζQt−1 (3.23)

In equation (3.25), Q̄t is the unconditional correlations of δi,tδj,t, and Ψ and
ζ are scalars greater or equal to zero that must satisfy Ψ + ζ < 1. The matrix
Q∗t is a diagonal matrix with the square root of the ith diagonal element of Qt.

Q∗t =


√q11,t 0 . . . 0

0
√

q22,t . . . 0
... 0 . . . ...
0 0 . . .

√
qnn,t

 (3.24)

The most general form of the DCC-GARCH(p,q) is:

Qt =

(
1−

p

∑
i=1

Ψi −
q

∑
j=1

ζ j

)
Q̄t +

p

∑
i=1

Ψiδj,t−1δi,t−1 +
q

∑
j=1

ζ jQt−1 (3.25)
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Typically the DCC-GARCH method is used for modelling hedging capa-
bilities of gold or cryptocurrencies (Chu et al., 2017). It is worth mentioning
that other models derived from the GARCH model exist (Siu, Nawar, and
Ewald, 2014). Models such as IGARCH, QGARCH, for an exponential ap-
proach, integrated or even quadratic. The comparison of the precision be-
tween GARCH and eGARCH for normal and student’s t distributions is pro-
posed in the following chapter.

3.3 Modern Portfolio Theory

In 1952, Harry Markowitz (Markowitz, 1982) presented a theory about how
risk-averse investors can build a portfolio to maximise the expected return
based on the risk, this theory is known as the Modern Portfolio Theory (MPT).
His work has been used as a reference for decades now (Fabozzi, Gupta, and
Markowitz, 2002), Markowitz even won a Nobel Prize for the MPT.

The basic hypothesis behind the MPT is that any investors will prefer and
prioritise a less risky portfolio if given the opportunity. This means that in
order to consider a portfolio with a higher risk, it must be compensated by
higher expected results. This approach can also be constructed the other way
around; To increase the expected result, one must be willing to accept more
risk. Using equation 3.4, the expected return takes the form

E(Rp) = ∑
i

wiE(Ri) (3.26)

In which Rp is the return of the portfolio, wi is the weight parameter of
the asset i or yet again the percentage of asset i one has in his portfolio, and
Ri is the return of the asset i.

Under the assumption that assets are not perfectly correlated, investors
can reduce the risk of holding only one type of assets by diversifying the
portfolio. The relation between the risk and the return is known as the effi-
cient frontier.
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3.3.1 Efficient Frontier

The key to the MPT is to determine how to diversify the portfolio, what per-
centage of each asset should be considered and how many assets should
compose the portfolio. The efficient frontier presents all the possible com-
binations of portfolio with the optimal levels of return compared to the asso-
ciated risk (Broadie, 1993). Any portfolio in a region outside of the efficient
frontier is considered sub-optimal as they present too great of risk in com-
parison to the expected return. Figure 3.2 is a graphical representation of the
efficient frontier.

FIGURE 3.2: Efficient frontier
https://www.guidedchoice.com/video/dr-harry-markowitz-father-

of-modern-portfolio-theory/

The efficient frontier is built by minimising the matricial problem given by
equation 3.27 given a certain risk tolerance parameter q that must be greater
or equal to 0.

wTΓw− qRTw (3.27)
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In which w still represents the portfolio weights, Γ is the covariance ma-
trix of the returns of the various assets in the portfolio, R is the vector of the
expected results. In other words, this equation can be read as the minimi-
sation of the difference between the variance of the portfolio return and the
expected return modulated by a risk tolerance parameter.

A parameter of interest when working with efficient frontier is known as
the Sharpe ratio. It helps measuring the performance of a portfolio. When
maximised the associated portfolio is the portfolio tangent to the efficient
frontier (Sharpe, 1994). It mathematically corresponds to the ratio between
the expected value of the difference between the asset return and the risk-free
return, and the standard deviation of the asset (Eq. 3.28).

Sa =
E[Ra − Rb]

σa
(3.28)

The key element of the modern portfolio theory lays in the diversification
of assets. Risk will always exist in the stock market; it can be divided in two
distinct types. While the first type of risk does not depend on the level of
diversification and the amount of assets in the portfolio, the second type de-
pends on the asset itself and the company it is related to, the more diversified
the portfolio the lower the second type of risk becomes. An illustration of the
effect of the diversification can be seen in figure 3.3.

FIGURE 3.3: Effect of diversification over the risk (Hundal, Es-
kola, and Tuan, 2019).
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3.4 Hedging or Safe Haven

The term of hedge has appeared multiple times the introduction and through-
out the previous chapters, but it has not been clearly defined to this point.
A hedge is a type of investment made in order to reduce the risk associated
to the price movements of an asset. It can be viewed as an insurance against
significant losses. In (Baur and McDermott, 2009), Baur proposes a defini-
tion for what exactly a hedge is: "A strong (weak) hedge is defined as an asset
that is negatively correlated (uncorrelated) with another asset or portfolio on aver-
age". This definition provides a mathematical and quantifiable way of what a
hedge is. An historical example of hedge can be found in Gold and US Dollar
(Kunkler and MacDonald, 2016, Cappie, Mills, and Wood, 2004). Figure 3.4
depicts the relation between gold and USD during the first decade of the 21st
century. During this period, the price of gold and the value of the USD seem
to behave almost as opposites to each other which indicates a strong negative
correlation.

FIGURE 3.4: Gold vs Hedge
https://seekingalpha.com/article/259249-why-gold-is-no-longer-

an-effective-usd-hedge

A safe haven is similar to a hedge, the only difference lays in the timing of
the phase of negative correlation. The definition according to Baur (Baur and
McDermott, 2009) of a safe haven is: "A strong (weak) safe haven is defined as
an asset that is negatively correlated (uncorrelated) with another asset or portfolio
in certain periods only, e.g. in times of falling stock markets". The crisis caused
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by Covid-19 had a significant impact on financial markets and lead to a mas-
sive movement from risky assets to safe havens (Cheema, Faff, and Szulczyk,
2004).

3.5 Data

For most of this thesis the prices and the data are transformed into the loga-
rithmic return, which is the ratio of the price at the time t and the price at the
time t− 1, the logarithmic return takes the form:

R = ln
Pt

Pt−1
(3.29)

For instance, the logarithmic return of Bitcoin takes the form represented
in figure 3.5.
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FIGURE 3.5: Logarithmic return of Bitcoin

The time scale considered for this thesis, spans from the early 2017 up
to month of June 2021. Concerning the portfolio construction, 20 different
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stocks belonging to the S&P500 are considered. This allows the construction
of a portfolio solely composed of stocks that are risky assets. For the second
part of the study on portfolio optimization and Bitcoin impact, more general
indices are taken into accound (S&P500, Gold, Oil, USD, ...). The statistics
associated to the different assets are gathered in table 3.1 and the evolution
of the prices of the stocks over almost five years are displayed in figure 3.6.
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FIGURE 3.6: Evolution of the prices of the stocks of the assets

The returns of the assets can be shaped as histograms as has been done
in figure 3.8. At first glance, the returns seem to follow a normal distribu-
tion. Using the Jarque-Bera Test (Eq. 3.10) and representing the results on
Quantile-Quantile plots like what is proposed in figure B.1 in annexes, show
that the returns can not be approximated as normal laws.

To reject the normal distribution assumption, the Jarque-Bera result must
be lower than a critical value. The critical value is equal to 5.94 in this case.
Figure 3.7 displays the results of the test for each asset. One can clearly see
that none of the asset respect this criterion, hence the rejection of the hypoth-
esis.
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Asset Mean (%) Median (%) Variance (×10−4) Kurtosis Skewness
Apple (APPL) 0.14 0.11 3.623 10.21 -0.338
Adobe (ADBE) 0.15 0.21 4.052 13 -0.032

Amazon (AMZN) 0.12 0.14 3.412 7.41 0.049
Bank of America (BAC) 0.11 0.073 4.517 15.81 -0.108

Berkshire Hathaway (BRKB) 0.074 0.067 1.835 16.57 -0.386
The Walt Disney Company (DIS) 0.046 0.009 3.152 17.12 0.548

Facebook (FB) 0.084 0.1 4.297 16.43 -1.063
Alphabet (GOOG) 0.099 0.13 2.828 9.47 -0.278

Alphabet (GOOGL) 0.096 0.13 2.843 9.49 -0.340
Home Depot (HD) 0.070 0.1 2.670 37.6886 -2.089

Johnson & Johnson (JNJ) 0.026 0.048 1.601 14.40 -0.663
JPMorgan Chanse (JPM) 0.0656 0.047 3.545 19.75 -0.1

Mastercard (MA) 0.18 0.18 3.460 13.99 -0.002
Microsoft (MSFT) 0.11 0.11 2.947 15.06 -0.346
Nvidia (NVDA) 0.27 0.27 9.08 12.90 -0.144

Procter & Gamble (PG) 0.057 0.057 1.635 17.19 0.212
PayPal (PYPL) 0.16 0.19 4.814 10.52 -0.029
Tesla (TSLA) 0.22 0.13 14 8.81 -0.11

UnitedHealth Group (UNH) 0.086 0.09 3.222 20.58 -0.554
Visa (V) 0.086 0.17 2.662 15.83 -0.25

Bitcoin (BIT) 0.34 0.28 0.24 7.67 -0.4837

TABLE 3.1: Mean, Median, Variance, Kurtosis and Skewness of
the different assets
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FIGURE 3.7: Results of the Jarque-Bera test for every asset

In this chapter, the mathematical basis of statistics has been presented, the
fundamentals about the mean, variance, correlation, volatility and the prob-
ability density functions have been introduced. A summary of the GARCH
method family, which are the main methods used in this thesis, has been
given. At the end of the chapter the modern portfolio theory is explained
alongside the efficient frontier. The concepts of hedge and safe haven have
also been introduced.
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(A) APPL Returns (B) ADBE Returns

(C) AMZN Returns (D) BAC Returns

(E) BRKB Returns (F) DIS Returns

(G) FB Returns (H) GOOG Returns
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(I) GOOGL Returns (J) HD Returns

(K) JNJ Returns (L) JPM Returns

(M) MA Returns (N) MSFT Returns

(O) NVDA Returns (P) PG Returns
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(Q) PYPL Returns (R) TSLA Returns

(S) UNH Returns (T) V Returns

(U) BIT Returns

FIGURE 3.8: Histograms of the logarithmic returns of the assets.





33

Chapter 4

Results

In order to evaluate the hedge capacities of Bitcoin and the impact of its in-
troduction into a portfolio of stocks, a GARCH model of the various assets
must be created. The results given by the GARCH model will help to build
the DCC-GARCH that provides a clear insight into the hedge capacities Bit-
coin in the case of the studied portfolio.

A simpler method that provides a first insight into the potential hedging
capacities of Bitcoin consists of a direct computation of the covariances be-
tween the returns of the portfolio and the returns of Bitcoin. The results of
this simple approach must be compared with the ones given by the more ac-
curate DCC-GARCH model.

The direct introduction of Bitcoin into the portfolio helps to grasp the full
extent of the effect that Bitcoin has on the efficient frontier.

4.1 Direct Approach

As mentioned in the previous section, the definition of a hedge is related to
the correlation between two assets, if the correlation is a negative integer one
asset can be considered as a hedge for the other. The direct approach consists
in simply estimating the correlation between the return of Bitcoin and the re-
turn of the portfolio.

The most rudimentary and simplest approach is to first consider an equal
distribution of the assets in the portfolio, each asset corresponds to 5% of
the portfolio. The prices are represented in figure 3.6, averaging those prices
gives us figure 4.2 representing the average price at close of the portfolio. The
significant drop associated with the COVID-19 crisis can be clearly identified
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on this plot.
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FIGURE 4.1: Average of the price of the assets at close that com-
pose the portfolio

Using the relation of the return (Eq. 3.29) the logarithmic returns of the
averaged portfolio and Bitcoin are evaluated across the studied period of
time. The correlations are then obtained via the Pearson correlation coeffi-
cient equation (Eq 3.7), which returns the following correlation matrix A:

A =

(
1 0.1053

0.1053 1

)

From this result, a first interesting conclusion can be drawn. The correla-
tion between the averaged portfolio and Bitcoin is slightly above zero, which
indicates a tendency to not react like a hedge. However, this conclusion was
reached under assumption of the composition of the portfolio and using a
simplistic model.

The model can be extended by sorting the returns from its minimum
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value to its maximum value, which correspond to significant loss to signifi-
cant gain. The correlation coefficient between the portfolio and Bitcoin is then
computed over those specific ranges of losses and gains. The coefficients are
computed for every slice of 5%. The results are available in table 4.1.

Bounds Correlation coefficient
[0%,1%[ 0.5775
[1%,5%[ 0.1761

[5%,10%[ -0.1153
[10%,15%[ 0.1685
[15%,20%[ -0.0484
[20%,25%[ 0.2128
[25%,30%[ -0.0495
[30%,35%[ -0.0490
[35%,40%[ -0.0890
[40%,45%[ 0.2556
[45%,50%[ 0.0376
[50%,55%[ -0.0607
[55%,60%[ 0.1313
[60%,65%[ -0.0283
[65%,70%[ -0.1819
[70%,75%[ 0.1348
[75%,80%[ -0.2600
[80%,85%[ 0.0554
[85%,90%[ -0.0506
[90%,95%[ 0.0888
[95%,99%[ -0.0430

[99%,100%[ -0.0770

TABLE 4.1: Correlation coefficients between the averaged port-
folio and Bitcoin with respect to market bonds

From the table one can observe that for about half of the cases Bitcoin
seems to hedge the averaged portfolio, especially when the returns of the
portfolio are higher which is not a good thing to have. Indeed, it means that
Bitcoin goes down when the portfolio goes up. The fact that correlation coef-
ficients are maximum for the worst part of the portfolio indicated that Bitcoin
is the opposite of a safe haven. If one looks at the mean of the correlation co-
efficient gathered in the table, the resulting correlation is 0.0357 which does
not say much about Bitcoin hedge capacities. The data of table 4.1 can be
plotted to better visualise the hedging capacities. Figure 4.2 represents on
the same graph the results from table 4.1 in orange and the returns of the
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averaged portfolio in blue.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-15

-10

-5

0

5

10
S

o
rt

e
d
 R

e
tu

rn
s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FIGURE 4.2: Evolution of the correlation coefficient (orange)
and sorted returns of the portfolio (blue) with respect to the

evolution of the market

In figure 4.2, the tendencies of Bitcoin to have hedging potential are more
apparent. Overall, the orange curve decreases with the evolution of the mar-
ket. There is an alternating pattern between spikes above zero and below
zero which indicates that Bitcoin does not hedge all situations. The main ten-
dency that can be observed is that Bitcoin hedges or not more significantly in
edge cases corresponding to extremely poor and extremely good results.

Even though this method does not provide very accurate results and strongly
depends on the observation period studied, it provides a first idea of the ex-
pected results. The GARCH and DCC-GARCH methods employed in the
following sections help to clarify the true hedging potential of Bitcoin for our
portfolio.
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4.2 GARCH

Different models are applied to both the averaged portfolio and Bitcoin in
order to capture the volatility of both assets. Tables 4.2 and 4.3 present the
results of AIC and BIC for GARCH, eGARCH and GJR-GARCH models with
a normal distribution and Student’s t distribution.

Averaged Portfolio
Distribution Normal Student’s t

Volatility Model GARCH eGARCH GJR-GARCH GARCH eGARCH GJR-GARCH
AIC -7.5528 -7.5454 -7.5528 -7.6529 -7.6527 -7.6544
BIC -7.5374 -7.5300 -7.5374 -7.6324 -7.6321 -7.6339

TABLE 4.2: Comparison of AIC and BIC for the averaged port-
folio with different models

Bitcoin
Distribution Normal Student’s t

Volatility Model GARCH eGARCH GJR-GARCH GARCH eGARCH GJR-GARCH
AIC -4.1782 -4.1733 -4.1782 -4.4549 -4.4819 -4.4549
BIC -4.1628 -4.1579 -4.1628 -4.4343 -4.4613 -4.4343

TABLE 4.3: Comparison of AIC and BIC for the Bitcoin with
different models

From these tables, it clearly appears that Student’s t distribution is more
suited than normal distribution for modelling the averaged portfolio and Bit-
coin. Furthermore, one can observe that for the volatility of the averaged
portfolio the GJR-GARCH(1,1) model is more appropriate while for Bitcoin
eGARCH(1,1) is more suited.

The models associated to the averaged portfolio and Bitcoin can be writ-
ten using equations (3.16) and (3.15) which gives equations (4.1) and (4.2) and
are graphically represented on figure 4.3.

σ2
t = −4.43−6 + (0.1481 + γIt−1) + 0.8458σ2

t−1 (4.1)

log σ2
t = −0.0504 + 0.3059 (Zt−1) + 0.9902 log σ2

t−1 (4.2)

The graphical representation shows that the GJR-GARCH and GARCH
model capture the volatility of both Bitcoin and the averaged portfolio well.
The high peaks of returns are clearly marked on the volatility curve. An
interesting aspect worth mentioning is the difference of scale between the
volatility of the portfolio and Bitcoin. Indeed, Bitcoin volatility maximum is
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almost 4 times larger than the one of the portfolio, which can largely be ac-
credited to the COVID-19 crisis and the peak of interest for Bitcoin in 2018.
This result was expected due to the volatile nature of Bitcoin.
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FIGURE 4.3: Volatility with GJR-GARCH model (up) and
GARCH model (down) in orange and averaged porfolio (up)

and Bitcoin (down) returns in blue

Obviously, this result is one among many. In order to obtain a better
picture of the possibilities, a Monte Carlo simulation is performed on the
GARCH model obtained for Bitcoin. One hundred paths for the volatility
are simulated through the GARCH model. The results are corresponding
to the grey curves on figure 4.4. The red curves are the confidence bounds
at 2.5% percentile for the lower one and 97.5% percentile for the upper one.
The black dashed line is the mean result. The conditional variances simu-
lated are the nominal returns simulated squared. In direct agreement with
what has been presented earlier, the volatility, corresponding to the upper
plot, presents results that strongly vary outside of the bounds.

The GARCH models have helped to identify Bitcoin as a volatile asset
and helped to demonstrate the necessity to build a model as close as possible
to reality to forecast and predict the evolution of Bitcoin in the future. The
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FIGURE 4.4: 100 Monte Carlo simulation for GARCH model of
Bitcoin

next step is to build a DCC-GARCH model that will produce the covariance
matrix between the portfolio and Bitcoin in order to confirm the associated
hedge capacities.

4.3 DCC-GARCH

The construction of the GARCH model is used to validate the DCC-GARCH
model. The conditional variance (volatility) computed via the DCC-GARCH
is compared with the one computed with the GJR-GARCH for Bitcoin. Fig-
ure 4.5 corresponds to the comparison of the two models.

The two models are consistent, validating the results obtained with the
DCC-GARCH method. The DCC-GARCH(1,1) model seems to better model
the ups and downs without bursting when there is a peak. It is interesting to
look at the relative error between the two curves. They are drawn in Figure
4.6. With a maximum relative error of 1% the model can be considered vali-
dated.
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FIGURE 4.5: Comparison of the GJR-GARCH and DCC-
GARCH on the averaged portfolio
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FIGURE 4.6: Relative error between the GJR-GARCH and DCC-
GARCH on Bitcoin

Remembering the equations presented in the previous chapter about the
method, the matrix Rt (Eq 3.21) containing the conditional correlations is of
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interest for the determination of hedges. This matrix and the equations glob-
ally are solved using a gradient descent algorithm with the goal of maximis-
ing the likelihood ratio over the studied period. The correlations over time
are plotted on figure 4.7.
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FIGURE 4.7: Evolution of the correlation between the averaged
portfolio and Bitcoin.

The first thing to stand out is that the correlation is overall negative be-
fore the COVID-19 crisis early 2020 and beside the year 2018, indicating the
tendency of Bitcoin to act like a hedge. The second thing that can be exposed
is the trend of the correlation factor after the COVID-19 crisis, despite re-
maining positive it gets closer and closer to 0. The correlation will eventually
become negative early 2022. The last thing to note is that the averaged corre-
lation is about 0.0526. This is consistent with what has been observed in the
beginning of this chapter in which the averaged correlation was found equal
to 0.0357.

4.4 Portfolio optimisation

In this section, the assets are first considered together in order to study the
general behaviour of the portfolio without the impact of Bitcoin. Figure 4.8
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places the 20 assets that have been considered in the thesis on a graph dis-
playing the standard deviation of the returns versus the mean of the returns,
or in other words the risk versus the gain.
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FIGURE 4.8: Portfolio risks and returns for the different assets

Quite obviously, the lower the risk the lower the gain. Most of the assets
are grouped together around the same risk level. Two assets are separated
from the pack, the stock associated to Nvidia which exhibited significant rise
of the price of the share in the last 5 years. The company is mainly selling
graphic cards so this level of potential gain can in part be explained by the
rise of cryptocurrency mining as explained in the first chapter of the thesis.
The other stray stock is Tesla, a famous electric cars company that saw the
price of the share significantly increase in recent years.

The association of these assets build a portfolio, depending on the differ-
ent combinations of the weight associated to each asset, an infinite number
of portfolios can be created. A 1000 simulations of possible portfolios have
been considered, in which the weights are decided randomly with the only
restriction being that the sum of the weights for one portfolio must be equal
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to 100%. The results are plotted on figure 4.9.
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FIGURE 4.9: 1000 simulations of the portfolio for different
weights

Globally, the portfolios are in the region of the majority of the assets which
was expected due to the method. Three different scenarios are studied fur-
ther, the first one corresponds to the case of minimised risk portfolio, the
second one is an intermediate portfolio with balanced risk and return and
the last portfolio is one in which the return is maximised. The composition
of the weights can be found in table 4.4.

Concerning the first case, in the portfolio the least risky of the main assets
is also the least risky stock, JNJ. In fact, more than a quarter of the portfolio
consists in a combination of the three assets offering the least risk. It is also
worth mentioning that the second largest asset in the portfolio, with almost
10% is UNH which is about 10% riskier than JNJ. This clear evidence of the
power of the diversification of assets in the modern portfolio optimisation.
Lastly, the two riskier assets, NVDA and TSLA are the least represented in



44 Chapter 4. Results

Asset Minimised Risk Intermediate Maximised return
APPL 0.69% 1.54% 3.92%
ADBE 4.76% 6.96% 7.20%
AMZN 5.29% 0.96% 10.53%

BAC 3.82% 6.46% 2.62%
BRKB 8.81% 0.58% 2.01%
DIS 6.86% 4.84% 0.53%
FB 3.29% 8.26% 0.09%

GOOG 2.67% 5.19% 7.57%
GOOGL 7.24% 8.32% 0.32%

HD 5.06% 8.28% 3.18%
JNJ 11.46% 6.61% 6.88%
JPM 3.95% 5.70% 0.39%
MA 8.82% 0.60% 2.73%

MSFT 3.75% 7.17% 9.99%
NVDA 0.16% 0.22% 11.47%

PG 6.91% 4.66% 1.14%
PYPL 4.42% 8.33% 5.46%
TSLA 0.30% 7.93% 11.18%
UNH 9.15% 3.48% 2.47%

V 2.58% 3.91% 10.33%

TABLE 4.4: Weight of the different assets for a portfolio with
minimised risk, intermediate and maximised risk

this portfolio with less than half of a percent combined.

The second case does not reveal much, the results weights are roughly
equally distributed among the assets. Some are less represented than others,
but it depends on the portfolio. A general representation of the number of
occurrences of the different value of the weight is proposed in Appendix B.
One can observe that for less than 10% the level of occurrence is approxi-
mately the same.

The final scenario is the one in which the portfolio offers the maximum
gain. As was the case for the first scenario, the two main assets are NVDA
and TSLA which have a high return for a high risk. It is notable as well that
more than 50% of the portfolio are made up of only 5 different assets. This
portfolio provides almost the double of the gain compared to the less risky
portfolio for only 5% more of risk.

This approach is effective for grasping the general idea of diversification.
However, the selection of random numbers to determine weight with only
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20 different assets limits the possibilities of construction. It is statistically
impossible to randomly end up with 10 assets with a weight of 0. In or-
der to compensate for this problem, the efficient frontier can be drawn, and
risk/gain target can be fixed. It corresponds to figure 4.10.
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FIGURE 4.10: Efficient frontier with targeted portfolio

As presented in the previous chapter, the efficient frontier represents the
portfolio with the optimal level of return in relation to the associated risk.
The asset NVDA belongs to the frontier, the associated level of return corre-
sponds to a portfolio with 100% of this asset. Two particular cases are pro-
posed, a portfolio with a targeted risk of 20% which is about the same level
of risk of a portfolio full of asset JNJ but with a return about 5 times higher
and a portfolio with 40% of return which is higher than almost every assets
considered in the portfolio with a comparable risk level. Respectively table
4.5 and 4.6.

It requires only 6 out of the 20 assets considered in this thesis to obtain
a return of 40% with a risk of approximately 30%. All 6 of these assets are
the ones with the highest individual return in the pool of assets and the three
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Asset Weight
APPL 21.47%
ADBE 21.55%
MSFT 6.86%
NVDA 18.46%
PYPL 24.66%
TSLA 7.00%

TABLE 4.5: Weights associated to the portfolio with 40% of re-
turn

Asset Weight
APPL 10.62%
ADBE 8.65%
AMZN 14.94%
BRKB 9.60%

JNJ 6.07%
MSFT 3.37%
NVDA 1.49%

PG 25.65%
PYPL 9.75%
TSLA 3.11%
UNH 6.75%

TABLE 4.6: Weights associated to the portfolio with 20% of risk

closest to the 40% represent ≈ 75% of the portfolio. On the other hand, to
achieve 20% of risk, 11 assets are mandatory. One quarter of the portfolio is
made of stock of PG, which is a low-risk low-return asset that helps to bal-
ance and to mitigate risk associated with the other assets.

The last analysis that can be conducted concerning the portfolio optimisa-
tion is to build the tangency portfolio, which corresponds to the maximised
Sharpe ratio. Figure 4.11 shows the Sharpe ratio on the efficient frontier.

The weight associated to the Sharpe ratio can be found in table 4.7.

Despite being closer to the 40% return portfolio, the maximised Sharpe
ratio presents a weight distribution closer to the one of the 20% risk one,
with the same assets. Which shows how significant the weight distribution
among assets can be.

The introduction of Bitcoin in the portfolio impacts the efficient frontier
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FIGURE 4.11: Efficient frontier with portfolio associated to the
maximised Sharpe ratio.

as represented on figure 4.12. This new asset is highly profitable but also in-
duces important risks.

The previous efficient frontier is drawn in light blue while the new one is
in dark blue. This new frontier is clearly above the previous one, promising
higher level of return. It is interesting to look at the portfolio weights for
the same expected return and risk as previously done, a portfolio insuring
40% return and 20% of risk. Figure 4.13 includes the new efficient frontier
with the targeted portfolio and the old efficient frontier with the previously
target portfolio. For the same level of expected return it clearly appears that
the risk is reduced by at least 15%, the same observation can be made about
the portfolio that has targeted risk level. The simple addition of Bitcoin in
the portfolio significantly impacts the returns and the risk. The associated
weights for the portfolio can be found in table 4.8 and 4.9.
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Asset Weight
APPL 23.28%
ADBE 18.94%
MSFT 16.82%
NVDA 13.41%
PYPL 21.69%
TSLA 5.85%

TABLE 4.7: Weights associated to the portfolio with the max-
imised Sharpe ratio
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FIGURE 4.12: Efficient frontier with targeted portfolio and Bit-
coin

The results from these two tables clearly expose the role of the introduc-
tion of Bitcoin in the portfolio analysis. For the two scenario, Bitcoin repre-
sents more than 10% of the portfolio composition. Globally, the same assets
are represented with more or less the same distribution. Lastly, the portfolio
associated with the maximised Sharpe ratio can be computed and compared
to the previous one. Figure 4.14 presents the portfolio and table 4.10 the as-
sociated weights.

The new Sharpe portfolio has a risk that is barely higher for a return
clearly more important. Almost a fifth of the portfolio is made of Bitcoin,
which once again exacerbates the impact it can have on portfolio. One may
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FIGURE 4.14: 1000 simulations of the portfolio for different
weights
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Asset Weight
APPL 15.36%
ADBE 15.12%
AMZN 8.49%
MSFT 11.35%
NVDA 7.38%

PG 7.84%
PYPL 12.00%
TSLA 2.77%
UNH 3.56%
BIT 16.12%

TABLE 4.8: Weights associated to the portfolio with 40% of re-
turn

Asset Weight
APPL 7.74%
ADBE 9.44%
AMZN 15.69%
BRKB 9.26%

JNJ 6.58%
MSFT 0.25%
NVDA 1.68%

PG 25.2%
PYPL 6.85%
TSLA 2.04%
UNH 4.77%
BIT 10.51%

TABLE 4.9: Weights associated to the portfolio with 20% of risk

notice that for the most part the assets between the two portfolio are the same
beside the stock MSFT that disappeared for the benefit of AMZN.

This last chapter presents the results of the thesis. Hedge capacities of
Bitcoin have been exposed and discussed. Different GARCH models have
been created and a more complex DCC-GARCH model helped drawing con-
clusions on Bitcoin capacities. Lastly, multiple portfolio have been created
and the efficient frontier drawn. Targeted portfolio have been detailed and
the Sharpe ratio have been computed in order to find the optimised portfolio.
The impact of Bitcoin on portfolio and efficient frontier has also been shown.
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Asset Weight
APPL 17.11%
ADBE 19.52%
AMZN 2.14%
NVDA 12.40%
PYPL 15.29%
TSLA 3.57%
BIT 19.55%

TABLE 4.10: Weights associated to the portfolio with the max-
imised Sharpe ratio
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Chapter 5

Conclusion

The goal of this master’s thesis was to study the impact that Bitcoin has on
high risk portfolio and in particular its capacity to act like a hedge. The effect
of its introduction in a portfolio is also of interest.

In this work, simple method have been proposed to estimate the hedge
capacity of Bitcoin in a first time. It helped to get a first idea of the expected
results. A GARCH model have been constructed in order to capture the
volatility of Bitcoin and helped to validate the more complex model built,
the DCC-GARCH. The correlation between a portfolio of stocks and Bitcoin
over a studied period of 5 years have thus been obtained. Lastly, the efficient
frontier have been drawn for the portfolio that takes, or not, into account Bit-
coin. The weight composition of targeted portfolio is provided. The optimal
portfolio has been established thanks to the Sharpe ratio.

The results obtained throughout the thesis, indicate the possible hedge ca-
pacities of Bitcoin on a high risk portfolio made of stocks depending on the
time period studied. Even though the correlation between the portfolio and
Bitcoin is sometimes positive sometimes negative, it is close to zero. The im-
pact Bitcoin has in portfolio optimisation and the efficient frontier has been
made well apparent. However, as presented in the work, Bitcoin is a highly
volatile asset, the results depend a lot on what assets are studied and the time
period considered. Further investigations must be conducted in order to full
comprehend the complexity of Bitcoin in hedging and portfolio optimisation.
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Appendix A

QQ-Plots
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(A) QQ-Plot of APPL Returns
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(B) QQ-Plot of ADBE Returns
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(C) QQ-Plot of AMZN Returns
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(D) QQ-Plot of BAC Returns
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(E) QQ-Plot of BRKB Returns
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(F) QQ-Plot of DIS Returns
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(G) QQ-Plot of FB Returns
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(H) QQ-Plot of GOOG Returns
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(I) QQ-Plot of GOOGL Returns
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(J) QQ-Plot of HD Returns
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(K) QQ-Plot of JNJ Returns
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(L) QQ-Plot of JPM Returns
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(M) QQ-Plot of MA Returns
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(N) QQ-Plot of MSFT Returns
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(O) QQ-Plot of NVDA Returns
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(P) QQ-Plot of PG Returns

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Q
u

a
n

ti
le

s
 o

f 
In

p
u

t 
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

(Q) QQ-Plot of PYPL Returns
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(R) QQ-Plot of TSLA Returns
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(S) QQ-Plot of UNH Returns
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(T) QQ-Plot of V Returns
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(U) QQ-Plot of BIT Returns

FIGURE A.1: QQ-Plot of the logarithmic returns of the assets
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Appendix B

Histogram of the weights

(A) Histogram of the weights associated
with the APPL asset

(B) Histogram of the weights associated
with the ADBE asset

(C) Histogram of the weights associated
with the AMZN asset

(D) Histogram of the weights associated
with the BAC asset

(E) Histogram of the weights associated
with the BRKB asset

(F) Histogram of the weights associated
with the DIS asset
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(G) Histogram of the weights associated with
the FB asset

(H) Histogram of the weights associated with
the GOOG asset

(I) Histogram of the weights associated with
the GOOGL asset

(J) Histogram of the weights associated with
the HD asset

(K) Histogram of the weights associated with
the APPL asset

(L) Histogram of the weights associated with
the JPM asset

(M) Histogram of the weights associated
with the MA asset

(N) Histogram of the weights associated with
the MSFT asset
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(O) Histogram of the weights associated with
the NVDA asset

(P) Histogram of the weights associated with
the PG asset

(Q) Histogram of the weights associated with
the PYPL asset

(R) Histogram of the weights associated with
the TSLA asset

(S) Histogram of the weights associated with
the UNH asset

(T) Histogram of the weights associated with
the V asset

FIGURE B.1: Histogram of the weights associated with the as-
sets


