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Abstract

With the advent of high throughput experiments, researchers are more and more of-
ten confronted to really big datasets especially in biology. The number of variables can
reach several thousand and to deal with this increasing number of features, researchers
are using feature selection techniques to reduce the size of the datasets and so reduce
the costs linked to the experimentation.

In machine learning, the objective is to learn a model on a dataset in order to predict
the target variable of a second one drawn from the same distribution. Sometimes, the
distribution is not the same between the two databases. For example, in biology, an
experiment on the genes can be done on population from various places on earth. Since
the genomes between different population present some variations, it is important to
take them into account before selecting genes to predict the result of the experiment.
These variations can also come from external agents like drugs which manipulate some
features.

In this thesis, we focused on data generated from causal graph because it is repre-
sentative of the phenomena met in biology like gene network. We were interested in a
particular situation where the target is provided for an unmanipulated dataset but the
objective is to predict the target of a manipulated database.

We developed a three stages process to find an optimal subset of features involving
causal feature selection, filtering and two algorithms developed in the framework of this
thesis.

The first step was to find a small set of features made of both highly correlated ma-
nipulated and unmanipulated variables. The two following steps focused on retrieving
the manipulations and removing the bad features.

The whole process was able to significantly increase the prediction efficiency com-
pared to classical feature selection techniques.



Figure 1: Graph of the LUCAS dataset showing the edges between the different features
when there is no manipulation. The red, orange, green and white colors respectively
represent the target, the Markov Boundary, redundant features and independent fea-
tures.

Figure 2: Graph of the LUCAS dataset showing the edges between the different features
when there are some manipulations. The red, orange, green and white colors respec-
tively represent the target, the Markov Boundary, redundant features and independent
features. The features circled by a red line represent the manipulated features.



Acknowledgment

First I would like to thank my supervisor Professor Pierre Geurts for his guidance,
innovative ideas and his availability.

I particularly want to express my gratitude to Vân Anh Huynh-Thu for her precious
help through the different stages of this thesis. Many thanks for her availability and
technical support.

I also want to thank all the participants to the LAB meeting for their constructive
discussions.

Finally, I thank all those who have contributed to the achievement of this work, in
one way or another, and who are not mentioned here.



Contents

1 Introduction 1
1.1 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction to classical and causal feature selection 5
2.1 Classical feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Causal feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Datasets 15
3.1 Causality Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 REGED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 P1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Chandran and Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Algorithms 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 DPED Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 DCED Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Results based on the observational data set 34
5.1 Reged dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 P1000 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Results using the manipulation information 50
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 REGED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 P1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Chandran and Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusion and perspectives 75
7.1 Perspectives and further improvements . . . . . . . . . . . . . . . . . . 76



List of Figures

1 Graph of the LUCAS dataset showing the edges between the different
features when there is no manipulation. The red, orange, green and
white colors respectively represent the target, the Markov Boundary,
redundant features and independent features. . . . . . . . . . . . . . . 2

2 Graph of the LUCAS dataset showing the edges between the different
features when there are some manipulations. The red, orange, green and
white colors respectively represent the target, the Markov Boundary,
redundant features and independent features. The features circled by a
red line represent the manipulated features. . . . . . . . . . . . . . . . 2

1.1 Graph of the LUCAS dataset showing the edges between the different
features when there is no manipulation. The red, orange, green and
white colors respectively represent the target, the Markov Boundary,
redundant features and independent features. . . . . . . . . . . . . . . 2

1.2 Graph of the LUCAS dataset showing the edges between the different
features for two different sets of manipulations. The red, orange, green
and white colors respectively represent the target, the Markov Boundary,
redundant features and independent features. The features circled by a
red line represent the manipulated features. . . . . . . . . . . . . . . . 3

2.1 A view of feature relevancy and redundancy[18] . . . . . . . . . . . . . 9
2.2 Graph around the target for the P1000 dataset [15] . . . . . . . . . . . 12
2.3 Pseudo code of the IAMB algorithm [16] . . . . . . . . . . . . . . . . . 13
2.4 Pseudo code of the HITON PC algorithm [16] . . . . . . . . . . . . . . 14

3.1 Example of the effects of manipulations. T is the target (response) vari-
able. In the original network, both A (direct cause of T) and C (direct
effect of T) are predictive of T. However, once C and A are manipu-
lated, only A remains predictive of T in the manipulated network while
B remains predictive in both distribution.[9] . . . . . . . . . . . . . . . 17

3.2 Local graph of T in the REGED network . . . . . . . . . . . . . . . . . 18

4.1 Example of a k-fold cross validation . . . . . . . . . . . . . . . . . . . . 23
4.2 Example of the K matrix for REGED1 with Xhiton as input subset . . . 25
4.3 Example of the features ranking after one iteration for REGED1 . . . . 25
4.4 Example of a local causal graph and the correlations between the vari-

ables without manipulation (a black line corresponds to a correlation and
a dashed line represents a possible correlation) . . . . . . . . . . . . . . 31

5



4.5 Effects of a manipulation on a parent or a child on the correlations be-
tween the variables in the Markov Boundary with a black line represent-
ing a correlation and a red line the absence of correlation . . . . . . . . 31

4.6 Example of the K matrix for the DCED algorithm with Xhiton . . . . . 32

5.1 Scores for the Markov Boundary features and the 21 more important
features from RandomForest algorithm feature_importances_ attribute
(max_features = None, n_estimators = 1000 and random_state = 1)
for the REGED dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Nature of the 21 more important features computed with the feature_importances_
attribute of the Random Forest Algorithm for the REGED dataset . . 38

5.3 Nature of the 21 best features computed with the linear Support Vector
Classifier absolute weight ranking for the REGED dataset . . . . . . . 38

5.4 Scores for the Markov Boundary features and for the 21 more important
features from univariate filter with t-test for the REGED dataset . . . 39

5.5 Nature of the 21 best features computed with the t-test filter for the
REGED dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Features selected as a function of the statistical threshold with the HI-
TON PC algorithm for the REGED dataset . . . . . . . . . . . . . . . 41

5.7 Features selected as a function of the statistical threshold with IAMB
algorithm for the REGED dataset . . . . . . . . . . . . . . . . . . . . . 42

5.8 Nature of the 5 more important features and scores for the 10 more
important features from Random Forest algorithm features importance
attributes ( n_estimators = 1000 and random_state = 1) for the P1000
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.9 Nature of the 5 best features and scores for the 10 more important fea-
tures from Support Vector Regression with a linear kernel for the P1000
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.10 Nature of the 5 best features and scores for the 10 more important fea-
tures from univariate filter with Pearson coefficient for the P1000 dataset 46

5.11 Number of selected features as a function of the statistical threshold with
the IAMB algorithm for the P1000 dataset . . . . . . . . . . . . . . . . 47

6.1 Nature of the features of the subset Xhiton before and after filtering with
the 20 best features ranked with the feature_importances_ attribute of
a Random Forest model (max_features = None, n_estimators = 1000)
learned on all the features from the observational dataset for REGED1 52

6.2 Nature of the features of the subset XIAMB before and after filtering with
the 20 best features ranked with the feature_importances_ attribute of
a Random Forest model (max_features = None, n_estimators = 1000)
learned on all the features from the observational dataset for REGED1 53

6.3 Evolution of the number of features after filtering as a function of the
k best features ranked with the feature_importances_ attribute of a
Random Forest model (max_features = None, n_estimators = 1000)
learned on all the features from the observational dataset . . . . . . . . 53

6



6.4 Evolution of the number of good and bad features in XDPED as a function
of ε with Xhiton and Xhiton filtered as input of the DPED algorithm with
the max increment mode for REGED1 . . . . . . . . . . . . . . . . . . 55

6.5 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB and XIAMB filtered as input of the DPED algorithm with
the max increment mode for REGED1 . . . . . . . . . . . . . . . . . . 55

6.6 Evolution of the number of good and bad features in XDPED as a func-
tion of ε with the 21 best features computed with the Random Forest
feature_importances_ attribute as input of the DPED algorithm with
the max increment and the last mode for REGED1 . . . . . . . . . . . 56

6.7 Evolution of the number of good and bad features in XDPED as a function
of ε with Xhiton and Xhiton filtered as input of the DPED algorithm with
the max increment mode for REGED2 . . . . . . . . . . . . . . . . . . 58

6.8 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB and XIAMB filtered as input of the DPED algorithm with
the max increment mode for REGED2 . . . . . . . . . . . . . . . . . . 58

6.9 Evolution of the number of good and bad features in XDPED as a func-
tion of ε with the 21 best features computed with the Random Forest
feature_importances_ attribute as input of the DPED algorithm with
the max increment and last mode for REGED2 . . . . . . . . . . . . . 59

6.10 Evolution of the number of good and bad features in XDCED as a function
of ε with Xhiton and Xhiton filtered as input of the DCED algorithm with
the max increment mode for REGED1 . . . . . . . . . . . . . . . . . . 61

6.11 Evolution of the number of good and bad features in XDCED as a function
of ε with XIAMB and XIAMB filtered as input of the DCED algorithm with
the max increment mode for REGED1 . . . . . . . . . . . . . . . . . . 61

6.12 Evolution of the number of good and bad features in XDCED as a function
of ε with Xbest 21 as input of the DCED algorithm with the max increment
and last mode for REGED1 . . . . . . . . . . . . . . . . . . . . . . . . 62

6.13 Evolution of the number of good and bad features in XDCED as a function
of ε with Xhiton and Xhiton filtered as input of the DCED algorithm with
the max increment mode for REGED2 . . . . . . . . . . . . . . . . . . 63

6.14 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB and XIAMB filtered as input of the DCED algorithm with
the max increment mode for REGED2 . . . . . . . . . . . . . . . . . . 64

6.15 Scores of the features in Xbest 21 with the DCED algorithm and the max
increment mode for the first iteration. The first column is the score,
the second is the id of the features and the last column is the increment
between two consecutive features . . . . . . . . . . . . . . . . . . . . . 65

6.16 Evolution of the number of good and bad features in XDPED as a function
of ε with Xbest 21 as input of the DCED algorithm with the max increment
and last mode for REGED1 . . . . . . . . . . . . . . . . . . . . . . . . 65

6.17 Nature of the features of the subset XIAMB_1 before and after filter-
ing with the 40 best features ranked with the feature_importances_ at-
tribute of a Random Forest regressor (max_features = None, n_estimators
= 1000) learned on all the features from the observational dataset for P1000 67

7



6.18 Nature of the features of the subset XIAMB2 before and after filtering with
the 40 best features ranked with the feature_importances_ attribute of
a Random Forest model (max_features = None, n_estimators = 1000)
learned on all the features from the observational dataset for P1000 . . 67

6.19 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB1 as input of the DPED algorithm with the max increment
and the last mode for the experimental set . . . . . . . . . . . . . . . . 68

6.20 Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB1 as input of the DPED algorithm with the max
increment and the last mode . . . . . . . . . . . . . . . . . . . . . . . . 69

6.21 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB2 as input of the DPED algorithm with the max increment
and the last mode for the experimental set . . . . . . . . . . . . . . . . 69

6.22 Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB2 as input of the DPED algorithm with the max
increment and the last mode . . . . . . . . . . . . . . . . . . . . . . . . 70

6.23 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB1 as input of the DCED algorithm with the max increment
and the last mode for the experimental set . . . . . . . . . . . . . . . . 70

6.24 Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB1 as input of the DCED algorithm with the max
increment and the last mode . . . . . . . . . . . . . . . . . . . . . . . . 71

6.25 Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB2 as input of the DCED algorithm with the max increment
and the last mode for the experimental set . . . . . . . . . . . . . . . . 71

6.26 Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB2 as input of the DCED algorithm with the max
increment and the last mode . . . . . . . . . . . . . . . . . . . . . . . . 72

6.27 Evolution of the score on the prediction for the Chandran dataset as a
function of ε with Xhiton filtered as input of the DPED algorithm with the
last mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of Tables

3.1 Reference prediction scores for REGED computed with a Random Forest
classifier (n_estimators = 1000) and different subsets of features . . . . 19

3.2 Reference prediction errors for P1000 computed with a Random Forest
Regressor (n_estimators = 1000) and different subsets of features . . . 20

3.3 First column shows the dataset name, the second and third column de-
scribe the number of normal and tumor samples and the last column the
number of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Scores of the predictions for REGED with different learning algorithms
and all the features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Performances of the Random Forest algorithm for REGED with different
classical feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Results from the HITON PC algorithm with a statistical threshold of 0.05 40
5.4 Results from the IAMB algorithm with a statistical threshold of 0.0001 41
5.5 Scores of the predictions for REGED with two different causal feature se-

lection (HITON PC with α = 0.05 and IAMB with α = 0.0001) obtained
with a Random Forest learning algorithm . . . . . . . . . . . . . . . . . 42

5.6 Overview of the manipulations in the subset of features selected by the
algorithm HITON PC with the statistical threshold equals to 0.05 for
the REGED1 database . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Scores of the predictions for P1000 with different learning algorithms and
all the features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8 Scores of the predictions made with a Random Forest Regressor for P1000
with different classical feature selection (For SVR, Random Forest and
Pearson coefficient, the score is computed with the 5 more important
features) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.9 Overview of the subsets computed with the IAMB algorithm with a
statistical threshold α of 0.0002 and 0.005 for the P1000 database . . . 48

5.10 Overview of the manipulations in the subset of features selected by the
algorithm IAMB with α = 0.0002 for the P1000 database . . . . . . . . 48

5.11 Prediction scores for P1000 with the subsets computed with the IAMB
algorithm with a statistical threshold α of 0.0002 and 0.005 . . . . . . . 48

6.1 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
learned on a subset obtained by applying the DPED algorithm with the
max increment and last mode and different values of ε to Xbest 21 . . . . 56

9



6.2 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
for different subsets obtained by applying the DPED algorithm with the
max increment mode and different values of ε to five different subsets . 57

6.3 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
for different subsets obtained by applying the DPED algorithm with the
max increment mode and different values of ε to five different subsets for
REGED2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
for different subsets obtained by applying the DCED algorithm with the
last mode and different values of ε to Xbest 21 . . . . . . . . . . . . . . . 62

6.5 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
for different subsets obtained by applying the DCED algorithm with the
max increment mode and different values of ε to five different subsets . 62

6.6 Scores of the predictions made with a Random Forest algorithm(n_estimators=1000)
for different subsets obtained by applying the DCED algorithm with the
max increment mode and different values of ε to five different subsets for
REGED2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.7 Scores of the predictions made with a Random Forest Classifier(n_estimators=1000)
for different subsets of features for Chandran . . . . . . . . . . . . . . . 73



Chapter 1

Introduction

Since Newton, we know that any action causes a reaction but when you observe an
experiment it is always quite hard to know which action generates which reaction. The
reflection leading to the attribution of causes to effects is a part of our daily life in-
volving analysis of a situation and decision making. Sometimes, it is not necessary to
understand the whole process to be able to predict the final result of an experimentation
even if some parameters are manipulated. Predicting effects of a particular experiment
is important (for investor before modifying a policy) or vital (for patients) especially
when the experiment is expensive or unethical (one can not force people to take a drug
to see if it works to cure a specific disease).

1.1 Definition of the problem
In machine learning, feature selection is one of the most important step to reach good
predictive efficiency. Moreover, some features may be expensive to sample and it is
important to limit the number of features to avoid useless cost. Recently, people got
interested by not only selecting features based on their information for prediction but
they also want to know how these features interact with the target. In this context,
some researchers developed some theories to introduce the concept of graph and causal-
ity in feature selection. Their objective is to find the graph used to generate the data
with the purpose to have a better understanding of all the underlying mechanisms be-
hind the dataset. This is a crucial operation in biology to find the responsible genes of
a particular disease in order to develop specific drugs to cure the patients.

In some situations, the reference population does not have the same distribution as
the test population on which we want to predict the target. These variations of distri-
bution can be caused by manipulations of certain features such as gene knock out,etc.
. These interventions 1 have a really bad impact on the predictive performance of the
model learned on the reference population because a manipulation disconnects the vari-
able from the target and drastically decreases the amount of information possessed by
the manipulated variable and so its predictive performance.

1In this thesis, we used interchangeably "manipulation" or "intervention"
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In the framework of this thesis, we tried to find an optimal subset for predicting the
target of a manipulated dataset while learning the model on an unmanipulated dataset.
The situation can be describe as follows. We have a source dataset assumed to be non
manipulated where all inputs and the output variable are measured and a second tar-
get dataset where some inputs are manipulated but only the inputs are measured. We
called the source dataset : the observational dataset 2. While the second one is called
the experimental dataset since there are some external interventions.

Therefore, the objective is to exploit the information of the experimental dataset
even without the target to find a good set of features with only highly predictive vari-
ables for the second dataset. The first step was to approximate the Markov Boundary
(Definition 10) of the target in the observational dataset with some causal discovery
algorithm from the literature. And then trying to remove all the non-parent manipu-
lated variables to obtain an optimal subset of features. All these notions are explained
later in the thesis.

The Lucas example (from [10]) is a perfect example of the situation explained previ-
ously. This example is about predicting if a patient is suffering from lung cancer based
on eleven inputs features. The graph in Figure 1.1 shows all the causal pathway entailed
by the distribution between the eleven variables and the target. In this example the
Markov Boundary is composed of these features : Smoking, Genetics, Fatigue, Cough-
ing and Allergy. If there is no manipulations, the problem is to find an optimal subset
independently of the nature of the different variables with classical feature selection. In
this case, the optimal subset is the Markov Boundary.

Figure 1.1: Graph of the LUCAS dataset showing the edges between the different fea-
tures when there is no manipulation. The red, orange, green and white colors respec-
tively represent the target, the Markov Boundary, redundant features and independent
features.

If some manipulations are introduced, classical approach will not be enough to find
the optimal subset. Indeed, classical approach are likely to output the Markov Bound-

2We also used the term learning dataset to describe the observational dataset. When we had to
test our models on a dataset drawn from the source distribution, we called it the observational test set
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ary or a very close subset but in LUCAS1 (Figure 1.2(a)) we need to remove the variable
Fatigue from the Markov Boundary since it is disconnected from the target. In LUCAS2
(Figure 1.2(b)), all the features are manipulated and only the parents remain predictive.

(a) Graph of the dataset LUCAS1 (b) Graph of the dataset LUCAS2

Figure 1.2: Graph of the LUCAS dataset showing the edges between the different
features for two different sets of manipulations. The red, orange, green and white
colors respectively represent the target, the Markov Boundary, redundant features and
independent features. The features circled by a red line represent the manipulated
features.

The final objective of this thesis is to find an optimal subset of features to predict
the manipulated dataset based on the observational dataset.

1.2 Structure of the report
The chapter 2 draws the state of the art in feature selection. In particularly, we re-
minded the different notions about classical feature and we introduced the main theories
about causal discovery and causal feature selection. Furthermore, this chapter presents
the three different families of classical methods for feature selection. A brief description
of the two local causal discovery algorithms used in this thesis is also presented.

The chapter 3 describes the datasets used in the framework of this thesis. Since one
of the dataset is part of a challenge, we briefly discussed the context and the goal of
the challenge.

The chapter 4 presents the different steps followed in the results chapters and de-
scribes the two algorithms developed during this thesis : DPED and DCED. The DPED
algorithm tries to take advantages of the variations of prediction between two datasets
with different distribution while DCED searches for correlation variation around the
target. The intuitions and the assumptions made for these algorithms are described
and their limitations are highlighted.

3



The chapter 5 and 6 mainly focus on the results with different approaches including
a classical and a causal analysis. We first compared the efficiency of the classical feature
selection techniques and the causal discovery algorithms to find an optimal subset of
features for prediction on the observational test set. Then we highlighted the limita-
tions of these techniques in a manipulated environment before showing the capabilities
of the algorithms developed during this thesis (DPED and DCED) to find subsets with
optimal predictive performance on manipulated datasets.

1.3 Notations
In this thesis, we used some specific terms that we redefined in this section.

The nature of a feature is the nature of its connection with the target : parents if
it is a direct cause of the target, children if it is a direct effect of the target, spouses if
it is a parent of a children of the target. We also distinguish the manipulated and the
unmanipulated features. For example, if a direct cause of the target is manipulated, the
nature of this variable is manipulated parent. We used the expression external variable
to describe a variable which is not a member of the Markov Boundary.

We considered independent variable with respect to the target as irrelevant variable
because they are not connected with the target and therefore do not contain any infor-
mation about the target.

We also called the variables not included in the unique Markov Boundary as exter-
nal variable.
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Chapter 2

Introduction to classical and causal
feature selection

Nowadays, the number of features does not stop increasing due to an improve of data
acquisition techniques, for example high-throughput experiments in the case of biology.
This increase has a huge impact on the model as well as in terms of time consumption
or predictivity. Indeed, contrary to common beliefs , more variables is not synonymous
of more useful information and a better prediction while in theory the more features
are used the better. This can be easily explained by the fact that non relevant features
induce overfitting and so decrease the performances and the generalization of the model.
Therefore, it is important to reduce the number of features for several reasons such as
decreasing the size of the dataset or improving the performances of the prediction.

This chapter summarized the basic principles of feature selection in a data base
for both classical and causal techniques. We described the main methods for classical
feature selection. We also introduced two local causal pathway discovery algorithms
used in the framework of this thesis : HITON and IAMB.

2.1 Classical feature selection

2.1.1 What is classical feature selection

This definition describes simply and succinctly the concept of feature selection : "The
variable selection refers to the problem of selecting input variables that are most pre-
dictive of a given outcome" [13]. Or in other words, classical feature selection is the
process of selecting a subset of features that are the most relevant for predicting the
target. It differs from a dimensionality reduction since feature selection attempts to
remove unnecessary features while dimensionality reduction tries to reduce the number
of features by combining them. The learning algorithm has to select a subset of features
upon which to focus its attention while ignoring the rest [14].

Many machine learning algorithms are not well designed to handle large amount
of variables and are subjected to overfitting. Since, the attributes of an instance is
generically obtained by brute force, the probability to include non relevant features in
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the data set is quite high. The brute force process describes the fact that one will try
to collect all the possible attributes to define one instance. With the evolution of tech-
nologies, the number of possible attributes increases especially in biology where feature
selection is vital.

A second reason to remove some features is to decrease the cost of observations.
For example, in medicine, examination such as gene analyzing may cost a lot of money
and lead to a waste of resources if the variable extracted from this examination is not
useful for the prediction of the target. Moreover, these examinations are not necessary
harmless for the patient.

The last reason of feature selection is related to the interpretability of the variables
which is more difficult for researchers if there are some unnecessary variables. This
point will be more discussed in the causal feature selection section.

This thesis being mainly focused on supervised inductive classifier machine learning
algorithms such as Trees algorithm (RandomForest) or support vector machines (SVM),
a more formal definition can be made :

Definition 1. Given an inducer I, and a dataset D with features X1, X2, ..., Xn, from
a distribution D over the labeled instance space, an optimal feature subset, Xopt, is a
subset of the features such that the accuracy of the induced classifier C = I(D) using
only Xopt is maximal [14].

This definition takes into account the heuristics, biases and tradeoffs of the partic-
ular inducer I to define the optimal subset of features. One of the problems of this
definition is the computation of the accuracy of the induced classifier because one does
not have access to the distribution D and must estimate the classifier’s accuracy from
the data.

Some feature selection models treat the variable separately and try to remove the
independent features based on a ranking. The problem arising with this method is
linked to redundant and correlated features. Indeed, some variables contains the same
amount of information and only one should be taken but with individual selection, one
cannot distinguish between two variables with the same score. This approach keep more
features than necessary and so lead to more overfitting.

2.1.2 Relevancy and Redundancy

The relevancy notion is the core of feature selection and has to be well defined to avoid
misunderstanding on the purpose of each algorithm. The goal of a feature selection
model is to keep the relevant features and remove the non relevant feature but this, ide-
ally, has to be done independently of the metric used to compute the score of a feature
or the learning model and should be only dependent on the probability distribution of
the data. In some cases, it is more useful to consider the learning model to improve the
effectiveness of its prediction but ,in that case, interpretation of the selected variables is
biased because of the particularities of the concerned learning algorithm (e.g. a feature
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can be useful for the prediction even if it is not strongly relevant).

Through this section, a simple example will be used to illustrate the different notions
: Let features X1, ..., X5 be continuous. The target is T = X1 + X2 with X3 = −X2

and X4 = 2X5. The feature X1 and one of X2 or X3 are essential while X4 and X5

are useless to determine the target. There are two optimal subsets in this example : {
X1, X2 } or { X1, X3 }.

2.1.2.1 Individual Relevancy

The simplest way to define relevancy is to consider the dependencies between an indi-
vidual variable and the target. If a feature is not correlated to the target, it is considered
as irrelevant. A simple definition can be given by :

Definition 2. The feature Xi is individually irrelevant to the target T iff Xi is inde-
pendent of T (denoted as Xi ⊥ T ): P (Xi, T ) = P (Xi)P (T )[8].

With that definition, the relevant features are the complementary of the irrelevant
features or, in other words, the variables which depends on the target. However, in
practice, the dependency between an individual feature and the target is computed
with a statistical test based on a finite number of training samples. Two notions are
commonly used in that purpose : The sensitivity and the specificity.

sensitivity =

∑
True positive∑

Labeled positive
(2.1)

specificity =

∑
True negative∑

Labeled negative
(2.2)

These statistics vary from one statistical test to an other and must be assessed.
Since various tests offer tradeoffs between sensitivity and specificity, it must be chosen
carefully depending on the application.

From that definition, a feature can be classified in only two categories : relevant or
irrelevant. With individual relevancy, the optimal subset in the example is { X1, X2, X3

} because both X2 and X3 are correlated with the target even if only one is enough to
predict it. To discard one of them, we need to introduce a more complex and complete
concept of relevancy : multivariate relevancy and redundancy.

2.1.2.2 Multivariate Relevancy

In this section, we extend the definition of relevancy to include the impact of other
features on the relevancy of one feature.

In literature, the relevancy of a feature is often classified in three distinct categories
: strongly relevant, weakly relevant and irrelevant. Let T be the class label, X a full
set of features with Xi a feature, Si = X − {Xi} and P (T |X) is the conditional class
distribution given the values of the features in X, the different notions of relevancy can
be defined as follows [18] :
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Definition 3. A feature Xi is strongly relevant iff :

P (T |Xi,Si) 6= P (T |Si) (2.3)

Definition 4. A feature Xi is weakly relevant iff :

P (T |Xi,Si) = P (T |Si) (2.4)

and ∃S′
i ⊂ Si, such that P (T |Xi,S′

i) 6= P (T |S′
i)

Definition 5. A feature Xi is independent iff :

∀S′
i ⊆ Si, P (T |Xi,S′

i) = P (T |S′
i) (2.5)

If the feature affects the conditional class distribution, it is labeled as strongly rel-
evant and is always necessary for an optimal subset. Weak relevancy suggests that the
feature is not always necessary but may become necessary for an optimal subset at
certain conditions. An irrelevant variable is unnecessary and should not be included
in the optimal subset. A feature selection model attempts to find the strong relevant
features and some of the weak relevant to build the optimal subset. Without defining
redundancy, it is hard to understand which weak relevant features must be retrieved
while discarding the others.

Feature redundancy is directly linked to feature correlation which means that the
information carried by the features are the same and only one is enough to learn this
information. This problematic can be quite tricky and required a more complex model
such as causal feature selection and dedicated theory like the Markov Blanket which
will be discussed later.

The different notions of relevancy can be identify by four categories: strongly rele-
vant(IV), weakly relevant but non-redundant features(III), redundant(II) and irrele-
vant(I) as shown in Figure 2.1. An optimal subset is made of the part (IV) and (III).
The parts (II) and (III) are not static and the features can be swapped between both
categories. For example, two features perfectly correlated will be split and one will be
in (II) and the other one in (III) but they can be in either part without distinction as
long as they are not both in the same set.
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Figure 2.1: A view of feature relevancy and redundancy[18]

In the previous example, X1 is strongly relevant(IV) while X4 and X5 are irrelevant
(I). Either of X2 or X3 should be labeled as weakly relevant but non redundant (II)
and the other as weakly relevant but redundant (III) so the optimal subset is either {
X1, X2 } or { X1, X3 } and correspond to the correct optimal subset.

2.1.3 Filter, Wrapper and Embedded method

The feature selection methods can be divided in three categories [4] :

• Filter methods : These methods are independent of the learning algorithm and
typically provide a ranking of the features, e.g. based on computing correlation
with the output.

• Wrapper methods : Wrappers take into account the learning algorithm to find
the best subset of features over a finite space of subsets. In order to do that, the
method learns a model for each subset and associates a score to each subset based
on the prediction accuracy.

• Embedded methods : They are part of the learning algorithm and perform feature
selection during the fitting. It is a black box during the process so the user do
not have access to the selected features but the user can get the ranking of the
features after the fitting. The Random Forest algorithm is a typical example of
embedded method.

Filter methods dissociate the feature selection and the learning algorithm allowing
the selection to be more general and computed only once for various classifiers. This
family of methods is easily scaled to high-dimensional dataset due to simple and fast
computation [4]. The dissociation between the classifier and the feature selection can be
detrimental because the interaction with the classifier is ignored. Low computational
costs are always reached because these methods are univariate or low-variate which
means that each feature is considered separately which may lead to worse performance
because of the weak relevant and redundant features (II). In the framework of this
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thesis, we focused our attention on three particular univariate filters : t-test, Pearson
and Spearman correlation.

On one hand, wrapper methods integrate the learning algorithm in the feature se-
lection process and take advantage of the interaction between the features and the
classifier. On the other hand, they are computationally intensive especially if the learn-
ing algorithm has a high building cost.

Embedded methods are build-in methods and are therefore less computationally
intensive than wrapper methods but they are specific to a learning algorithm.

In conclusion, all these three methods offer various tradeoffs and can be combined
to increase the efficiency of the whole features selection process.

2.2 Causal feature selection
In this thesis, we use the expression "causal discovery" to talk about any algorithm
trying to take advantages of the underlying causal mechanisms to find a particular
subset of features(e.g. Markov Boundary). It means that we considered algorithms
which are looking for the Markov Boundary as causal even if they do not attempt to
direct the edges.

2.2.1 Definitions and theorems

In this section, we describe the basic definitions and theorems about causal discovery.
We limited our analysis to the concepts involved in the two algorithms described in
the next sections because this is a very broad subject and covering all the aspects goes
beyond the scope of this thesis.

As a reminder, a direct acyclic graph (DAG) is a finite directed graph with no di-
rected cycles. In a DAG, a node A is the parent of B (B is the child of A) if there is a
direct edge from A to B.

Definition 6. Let G be a direct acyclic graph (DAG) with vertex set V and J be
a probability distribution over the vertices in V generated by the causal structure
represented by G. G and J satisfy the Causal Markov Condition if and only if for
every X in V, X is conditionally independent of V\(Descendants(X)∪Parents(X))
given Parents(X) [11].

Definition 7. Bayesian Network <V,G,J>. Let V be a set of discrete variables and
J be a joint probability distribution over all possible instantiations of V. Let G be a
directed acyclic graph over a set of variables S ⊂ V. Let all nodes of G correspond one-
to-one to members of V. We require that for every node V ∈ V, V is probabilistically
independent of all non-descendants of V, given the parents of V (Markov Condition).
Then we call the triplet <V,G,J> a Bayesian Network (BN) [13].
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This condition translates the fact that every node is only conditioned by its parents.

Definition 8. DAG-faithfulness: A Directed Acyclic Graph G is faithful to a joint
probability distribution J over a set of variables V iff every independence present in J
is entailed by G and the Markov condition, that is (∀A ∈ V; ∀B ∈ V and ∀C ⊂ V),
A 6⊥G B|C⇒ A 6⊥J B|C [8].

When the objective is to select some important features around the target, the
notions of Markov Blanket and Markov Boundary are the most interesting in causal
discovery because they offer subsets of features containing a lot of information about
the target.

Definition 9. Markov blanket: A Markov blanket M of the response variable T∈ V in
the joint probability distribution J over variables V is a set of variables conditioned on
which all other variables are independent of T, that is, for every X ∈ (V\M\{T}), T ⊥
X|M [16].

Trivially, the set of all variables V excluding T is a Markov blanket of T. From
any small Markov Blanket, one can add arbitrary (predictively redundant or irrelevant)
variables to generate a larger Markov Blanket. Hence, only minimal Markov blankets
are of interest.

Definition 10. Markov boundary: If no proper subset of M satisfies the definition of
Markov blanket of T, then M is called a Markov boundary of T [16].

In other words, the Markov boundary M is a minimal set of variables conditioned
on which all the remaining variables in the data set, excluding the response variable
T, are rendered statistically independent of the response variable T [16]. This set of
variables is the minimal set with optimal predictive performance.

Theorem 1. If a joint probability distribution J over variables V satisfies the faithful-
ness property, then for each X ∈ V , there exists a unique Markov boundary of X [16].

Furthermore, from Definition 10 and Theorem 1, we can derive this theorem :

Theorem 2. If a joint probability distribution J is DAG-faithful to G, then the set of
children, parents, and spouses of T is a unique Markov boundary of T [16].

The faithfulness between the distribution and the DAG is one of the core notion
for a lot of causal discovery algorithms. If the faithfulness is violated, it is possible to
find two variables with exactly the same behaviors that cannot be distinguished and
therefore cannot be correctly processed.

We introduced the notion of redundancy in the last section without any proper
definition. From Definition 9 of the Markov Blanket, we can define a redundant feature
:

Definition 11. Redundant feature : Let X be the current set of features, a feature
is redundant and hence should be removed from X iff it is weakly relevant and has a
Markov blanket Mi within X [18]
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Figure 2.2: Graph around the target for the P1000 dataset [15]

When the graph faithfulness assumption is violated, algorithms for discovery of local
causal pathway members from observational data may include false positives in their
output while missing some true positives. Consider an example of causal network in
Figure 2.2 where the distribution and the graph are not faithful. Indeed, all the vari-
ables in the same color contain equivalent information about the target T which violates
the assumption made for the faithfulness between the distribution and the graph. The
two set {X1 , X7, X12, X18, X21} and {X2 , X8, X13, X19, X22} are equivalent con-
sidering their information about the target T but only one is equivalent to the unique
Markov Boundary. Local causal discovery algorithms that assume faithfulness can out-
put any of them. In this example, there are 1620 equivalent set of variables in terms of
information about T and each of these sets can be arbitrarily output by a local causal
discovery algorithm. Therefore, there is a multiplicity of local causal pathways consis-
tent with the data [15]. The impact of this multiplicity on prediction is limited since
only the information is important and not the exact nature of the features if there is no
manipulation. On the other hand, if a children of a children of the target is selected in
the final output as member of the Markov Boundary and if the children of the target is
manipulated, the information about the target contained by the children of the children
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is very low. When this variable is not manipulated, we will tend to keep it since it is
labeled as an unmanipulated member of the Markov Boundary. For example, in Figure
2.2,if we select the variable 22 instead of 21 because of the multiplicity of local causal
pathway when the variable 21 is manipulated, the variable 22 should be removed even
if this variable is unmanipulated.

2.2.2 IAMB algorithm

This algorithm is explained in [13] and [17] and implemented in the Causal Explorer
Toolkit [1]. IAMB stands for Incremental Association Markov Boundary and is divided
in two phases : a forward and a backward one. The goal of this algorithm is to find the
Markov Boundary of a target variable T. In the forward phase, a set of features (CMB)
is filled with all the variables in the Markov Boundary of T and possibly more variables
called false positives. The backward phase focus on removing all the false positives in
CMB while keeping all the true positives. The output is the final set found at the end
of the backward phase.

The two major assumptions to have a good behavior of IAMB are described below:

• DAG faithfulness of the graph used to generate the data

• Reliable statistical conditional independence tests and measures of associations for
checking independence and strength of association of T with some other variable
X given a set of variables Y [13]

A pseudo code of the IAMB algorithm is shown in Figure 2.3 emphasizing the two
phases. We can notice that the conditional independence test in line 6 and 11 is done
by conditioning on the entire temporary Markov Boundary (CMB).

Figure 2.3: Pseudo code of the IAMB algorithm [16]
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A statistical threshold α allows the user to have a control on the number of included
features.

2.2.3 HITON algorithm

The HITON algorithm was first introduced in [2] and then redefined in [3]. The Hi-
ton algorithm has the same well-specified set of assumptions for inducing the Markov
Boundary including faithfulness between the graph and the distribution and reliable
statistical tests of independence.

This algorithm mainly differs from IAMB in the conditioning set of variable while
testing the conditional independence of the variable Y (line 6) or X(line 10) in Figure
2.4). Reducing the size of the conditioning set is really important for discrete data
where the sample size required for high-confidence statistical tests of conditional inde-
pendence grows exponentially in the size of the conditioning set [16].

Figure 2.4: Pseudo code of the HITON PC algorithm [16]

The implementation of the HITON algorithm used in the framework of this thesis
come from the Causal Explorer Toolkit [1]. There are two derived algorithms from the
HITON algorithm : HITON pc and HITON MB. The first one only tries to find the
parents and children of the target while the other tries to also include the spouses.

A statistical threshold α allows the user to have a control on the number of included
features.
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Chapter 3

Datasets

3.1 Causality Challenge
In this section, we introduced the causality and prediction challenge from WCCI 2008
[10] from which most example are drawn. This challenge is focused on feature selec-
tion to predict a database manipulated by an external agent with a model learned on
an unmanipulated dataset but also on discovering underlying mechanisms linking the
different variables. In the framework of this challenge, we focused on a local causal
discovery around the target without attempting to uncover the full graph behind the
database. It is important to take care of causality when there are some manipulations
on the variables in the test set because these manipulations remove any correlation
between the features and the target and must be taken into account when selecting
predictive features.

There are some important fields where causal feature selection is vital to obtain
good results for both prediction and comprehension of the phenomena such as :

• Medical domain : In the case of a cancer, we need to know what are its causes
and on which variables do we need to act to cure it. For example, in lung cancer,
we have smoking and coughing as variables and we need to know which is a cause
and a consequence because treating coughing which is a consequence will not cure
the cancer while prohibiting smoking may prevent the cancer because it is a direct
cause.

• Econometrics : Investors want to know the effect of a new policy before investing.

In order to explore all the possibilities, four families of datasets are provided by the
organizer : REGED, SIDO, CINA and MARTI. This thesis only focus on the REGED
family which is described in Section 3.2. In the REGED family, one learning set and
three test sets are provided : REGED LS, REGED0, REGED1 and REGED2.

3.2 REGED
REGED is a re-simulated dataset and stands forResimulatedGeneExpressionDataset.
A simulator of gene expression data trained on real DNA microarray data is used to
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generate REGED. The data are gene expression while the target is lung cancer subtype.
The target is binary and separates two subtypes of cancer. The task is to discover genes
which allow a good prediction on the subtype of cancer. In medical domain, there are
multiple external agents acting on the expression of the genes. Some manipulations were
introduced to simulate the effect of agents such as drugs or gene knockout (when a gene
is suppressed). We called observational the dataset without any external manipulations
and experimental the dataset with manipulations. In REGED, the training set and the
test set REGED0 are drawn from an observational distribution while REGED1 and
REGED2 are drawn from an experimental distribution. On the observational test set
REGED0, the task is to discover genes which directly impact (causes) or are directly
impacted (effects) by the disease because this set of genes is optimal for prediction.
When there are some manipulations in the test set (REGED1 and REGED2), the task
is to find the genes that are still predictive in the experimental test set after manipu-
lations based on the observational learning set.

All the datasets include 999 continuous features describing the genes expression. The
data are preprocessed to obtain features in the same discrete numerical range [0,999].
The learning dataset is made of 500 training samples drawn from the unmanipulated
distribution. The training set is the same for the three test set independently of the
manipulations in the different test sets. There are 20000 samples in each test set. An
example of manipulation and its impact on the set of predictive variables is shown in
Figure 3.1.

In this thesis, we used the expression "observational dataset" to describe the learning
set and the expression "experimental dataset" to describe both REGED1 and REGED2.
For REGED0, we used observational test set.
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Figure 3.1: Example of the effects of manipulations. T is the target (response) variable.
In the original network, both A (direct cause of T) and C (direct effect of T) are
predictive of T. However, once C and A are manipulated, only A remains predictive of
T in the manipulated network while B remains predictive in both distribution.[9]

The test sets REGED1 and REGED2 are drawn from manipulated distributions.
In order to do that, the network graph is manipulated and then the network is re-
parameterized accordingly and data (20 000 samples) is generated from it. This implies
that the manipulations are propagated in the distribution allowing the parents to be
still predictive even if they are manipulated what would not have been possible if the
manipulations were done directly after the sampling on the genes expression. Here are
the details of the manipulations for both REGED1 and REGED2 :

• REGED1 : 1 direct cause of the target, 5 of its mostly predictive direct effects and
94 randomly selected variables, which do not belong to the local neighborhood of
the target, are manipulated for a total of 100 manipulated variables

• REGED2 : 1 direct cause of the target, all (13) of its direct effects and 86 randomly
selected variables, which do not belong to the local neighborhood of the target,
are manipulated for a total of 100 manipulated variables

In the case of REGED1, the organizers provided the list of manipulated features :
83, 251, 321, 409, 593, 939 for the local neighborhood. We also had access to the list
of the 94 randomly selected variables.
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Figure 3.2: Local graph of T in the REGED network

In Figure 3.2, we can see the local neighborhood of the target T in REGED net-
work. The features are numbered from 1 to 999. This set of features corresponds to
the Markov Boundary of T if the graph faithfulness is respected. We tried different
approaches to find this subset of features in Chapter 5.

In order to assess the efficiency of the prediction on the three datasets, a score is
computed for each prediction. The score used in the framework of this challenge is the
area under the ROC curve which is identical to the balanced accuracy (BAC) in this
particular case:

BAC =
sensitivity + specificity

2
(3.1)

The definitions of sensitivity and specificity are described in equations 2.1 and 2.2.

We computed some reference scores to be able to compare the results presented in
Chapter 5 and 6. We used different particular subsets of features :

• XAll : Subset with all the features

• XMB : Markov Boundary

• XMB/manip : Markov Boundary without the features manipulated to generate
REGED1

• XParents : Only the parents of T

We used a Random Forest Classifier implemented in Scikit Learn with 1000 estima-
tors and all the other parameters are left by default. The results are shown in Table
3.1.
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XAll XMB XMB/manip XParents

Reged0 0.8164 0.9835 0.9314 0.8122
Reged1 0.5114 0.5751 0.9271 0.8079
Reged2 0.5011 0.5140 0.6240 0.8233

Table 3.1: Reference prediction scores for REGED computed with a Random Forest
classifier (n_estimators = 1000) and different subsets of features

We can highlight the efficiency of the subset XMB on the observational test set
REGED0 while removing the manipulated features used to generate REGED1 has
huge impact on the score for REGED1. When only the parents are used, the scores are
almost the same for all test set. The only significant score for the highly manipulated
test set REGED2 is obtained with XParents showing the importance of retrieving the
parents in such context.

In Chapter 5 and 6, we used support vector machine which requires a preprocessing
of the dataset such as standardizing the features by removing the mean and scaling
to unit variance. This is done with the help of the StandardScaler function provided
by Scikit Learn. We did this preprocessing only for the prediction made with a SVM
algorithm.

An important fact is that we assumed the REGED database to be faithful.

3.3 P1000
The P1000 dataset is generated from an artificially simulated network [15]. The graph
of the network is manually generated and parameterized using Gaussian distribution.
The structure of the dataset is separated in two parts : a causal graph and some inde-
pendent variables. The causal graph is made of 54 variables including the target while
the rest of the 946 variables are drawn independently. The local graph is shown in
Figure 2.2. To avoid the problem explained in the last chapter about multiplicity of
local causal pathway and to ensure the faithfulness of the graph, we added some noise
on every edges.

All the variables are continuous including the target which means that we had to
use regressor algorithms instead of classifiers. There are two test set and one learning
set. The training set and one of the test are drawn from the unmanipulated distribu-
tion and we respectively called them observational learning set and observational test
set. The second test set is simulated with a manipulated distribution and we called it
experimental test set. We manipulated one parent and the two children as well as nine
other variables. The list of the manipulated features is 1, 2, 8, 13, 16, 18, 19, 21, 22,
40, 146, 350.

In regression, one easy way to assess the performance of a prediction is to compute
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the mean absolute error :

MAE =
1

n

n∑
i=1

|fi − yi| (3.2)

where fi is the prediction, yi is the true value and n the number of samples. We
computed some reference prediction errors to be able to compare further results (see
Table 3.2). The Markov Boundary is composed of three parents and two children as it
can be seen in Figure 2.2.

XAll XMB XParents

Observational test set 0.1103 0.0960 0.0995
Experimental test set 0.7326 0.8032 0.0921

Table 3.2: Reference prediction errors for P1000 computed with a Random Forest
Regressor (n_estimators = 1000) and different subsets of features

3.4 Chandran and Singh
These datasets are built from real prostate cancer micro array [12]. The micro array
technology is the same for both dataset making possible to apply all the algorithms de-
veloped in this thesis. The problem is a classification between two classes : normal and
tumor tissues. The type of tumor tissues is not especially the same for the two dataset
since, for Chandran, there are two type of tumor samples : primary and metastatic
tumor. While for Singh, there is no particular precision about the type of tumor tissue.
A brief description of the two dataset is shown in Table 3.3.

dataset Normal Tumor Features
Chandran 18 86 12 625
Singh 50 52 12 625

Table 3.3: First column shows the dataset name, the second and third column describe
the number of normal and tumor samples and the last column the number of features

We decided to used Singh as the observational dataset and Chandran as the exper-
imental dataset because of the disparity of the samples for Chandran.

The metric used to evaluate the accuracy of the prediction is the balanced accuracy
(see 3.1).
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Chapter 4

Algorithms

4.1 Introduction
One of the problems due to interventions is the very poor performance of a model
learned on an unmanipulated dataset to predict the target of a manipulated dataset.
This effect is increased by the importance of the manipulated variables. Indeed, a
manipulation on an important feature has huge impact on the prediction while manip-
ulation on an independent feature has a lower impact. In the case of causal discovery,
the difference between manipulated children and manipulated parents must be done
because the latter are the only ones still predictive after the manipulations. Indeed, the
parents (manipulated or not) always affect the target and so carry the same amount of
information before and after manipulation while unmanipulated features (children or
others) are still predictive and can be used to learn the model.

These algorithms try to remove all the manipulated features (except the parents)
from a subset XS previously computed (XS is an argument). The variables that we
want to remove can be separated in two different groups:

• Manipulated children

• Manipulated variables not in the Markov Boundary

These algorithms were developed in the framework of a more global view about
feature selection in a manipulated environment. We proposed a three stages approach
to find an optimal subset of features to predict the experimental dataset :

1. Select relevant feature subset XS from observational data (eg. Using SVM, Ran-
dom Forest or causal methods)

2. Filter out lowly predictive features from XS such as independent features

3. Filter out manipulated non-parent features from XS filtered using both observational
and experimental data.

Step 1 can be performed using classical feature selection techniques (eg., SVM or
Random Forests) or using causal feature selection techniques.
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Step 2 was mainly added to compensate some of the limitations of the algorithms
used in step 3.

We will present below two algorithms to perform step 3 :

4.2 DPED Algorithm

4.2.1 Introduction

In a nutshell, the objective is to remove all the manipulated features from a subset of
features except the parents (because even manipulated they are still predictive) by com-
paring the differences between the predictions from models based on single feature in
both observational and experimental dataset : Differential Prediction for Experimental
Dataset (DPED).

The inputs of this algorithm are the observational dataset with the target variable
and the experimental dataset, a subset XS made of an approximated Markov Boundary
of the target previously computed and some parameters described later in the section.
The subset XS can also be computed from a classical filter ranking by taking the k
best features. In that case, the algorithm tries to remove all the non-parent manip-
ulated features but we do not have any information on the nature of the output features.

The algorithm is based on a simple intuition that could be described by a single
statement :

Statement :
If two models respectively based on two different features make the same predictions
on the observational data set but make completely different predictions on the exper-
imental data set it is likely that one of these two features has been manipulated

This statement was inspired by the fact that a manipulation on a non-parent vari-
able disconnects it from the target and so the prediction made with this feature will be
closer to a random assignation than anything else. This variation of the prediction for
the same feature before and after a manipulation depends on the manipulation itself.
If the manipulation is strong and the feature predictive enough we assume that this
statement stands.

To highlight these variations, it is needed to learn models on an unmanipulated
database and then predict on both unmanipulated and manipulated dataset. We check
if the predictions respectively made using two features are consistent between the ob-
servational and experimental datasets. In order to do that, the algorithm takes as
argument two datasets (the observational and the experimental). The observational
dataset is used as the learning set and must include the target but the experimental
dataset is only used to predict so the target is not required. This is a very important
characteristic of the DPED algorithm because the target of the experimental dataset is
not always so easy to sample. If we had access to a learning set with the target for the
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experimental dataset, the problem would have been a classical feature selection.

Since this algorithm is used to reject all the manipulated features except the ma-
nipulated causes, the unmanipulated features which are not directly connected to the
target are kept. If one wants to get only the parents and the unmanipulated children
of the target, this algorithm needs to be combined with a causal discovery algorithm
like the IAMB or the HITON PC algorithm.

4.2.2 Implementation

The goal of this algorithm is to extract as much information as possible from the two
dataset (the observational data with the target and the experimental data without the
target). The idea is to compare the predictions made on both datasets with models
learned on each feature from the input subset XS separately to uncover the manipula-
tions done in the experimental data set. The first step is to fit n models with n being
the number of tested features. Each model is learned on a single feature. The learning
algorithm can be modified to fit the data as much as possible. We only explored the
Random Forest family in this thesis but DPED can work with any learning algorithm.

In the case of the learning dataset, if we use the same data set to learn the models
and predict the target this could lead to a perfect biased score. To avoid that the
easiest solution is to implement a k-fold cross validation where the dataset is divided
in k subsets. The prediction for each subset is done with a model learned on the k-1
other subsets. We repeat this process for each feature in XS.

Figure 4.1: Example of a k-fold cross validation

To predict the target for the experimental dataset, a model is learned on the whole
observational set for each tested feature. The fitting is really time consuming especially
if the number of tested features increases because for each additional feature the algo-
rithm have to fit k+1 models (the k models for the k-fold and one for the experimental
data set). By default, the number of fold is ten and could be modified directly in the
code but it is not an argument of the final function to avoid an excess of parameters
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for the user.

At this stage, there are n predictions vectors for the learning set and n predictions
vectors for the experimental set. These arrays can be of different size and a normaliza-
tion is required to be able to compare them. For example, in the REGED database, the
learning sample contains 500 samples but the experimental set contains 20000 samples.

To compare the different prediction from the models learned on a single feature,
we introduced an equation which can be seen as an error rate between two predictions
(See equation 4.1). The easiest way to compute the error rate is to take the absolute
value of the difference between two predictions arrays for some particular features i
and j then sum all the values of this array and divide it by the number of samples to
normalize the error rate. The main advantage of this error is that we can apply it to
both classification and regression. This error is also called the mean absolute error:

Mi,j =

∑m
k=1 |fi(Xk)− fj(Xk)|

m
(4.1)

m is the number of samples.
fi(X) is the model learned on the ith tested feature
fi(X

k) is the prediction of the kth sample computed with the fi(X) model

The equation 4.1 is applied to all the predictions arrays of both database (obser-
vational and experimental) to generate two n-by-n matrices MLS and MTS. MLS is
the error rate matrix for the learning set (also called observational set) and MTS is
the error rate matrix for the test set (also called experimental set). The M matrices
are symmetrical and the diagonal values are equal to 0 this can be easily noticed from
equation 4.1 if i = j. The values of these matrices follow different distributions due
to the manipulation on some features of the tested subset. The goal is to find these
variations and the manipulated features causing them.

This is simply done by taking the difference between MLS and MTS as shown in
equation 4.2.

K = |MLS −MTS| (4.2)

At this point, the matrix K should include very low values when the predictions
done with two different models on the two data base are close and large values when
they are very different. If the Ki,j value is small, it means that the predictions done
with the ith and the j th features are as close in the experimental data as they are in
the observational data, which suggests neither feature i, nor feature j are manipulated
in the experimental data.

At this stage of the process, we have a n-by-n matrix containing the variations of
the error rate between the observational and the experimental dataset with low values
for unmanipulated variables and large values for manipulated ones.

In Figure 4.2, we can see an example of the matrix K from a real run on the REGED
dataset and in particular on REGED1. Here, the eight first features corresponds to the
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good features (parents and unmanipulated children) while the last ones are bad features
(manipulated children). We can clearly see the area corresponding to the good features
because their values are very low in contrast with differential error rate for the bad
features.

Figure 4.2: Example of the K matrix for REGED1 with Xhiton as input subset

After computing the matrix K with the initial n features, the objective is to remove
the features with the highest values in a clever way. In order to do that, a score is
computed for each feature based on the K matrix. The score used in the framework of
this algorithm is the sum of the values within the column corresponding to each feature.

Figure 4.3: Example of the features ranking after one iteration for REGED1

The Figure 4.3 shows an example of the features ranking. The first column is the
score computed as follows :

sj =
∑

i∈XDPED

Ki,j (4.3)
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The second column is the feature’s label and the last column is the increment be-
tween two consecutive features.

The problem appearing at this stage is the threshold because the user has to define
what is a low and a high value of the score to allow the algorithm to identify and then
reject the bad features. The first idea was to find the biggest increment between two
consecutive scores after sorting all the scores. Indeed, all the good features (unma-
nipulated features and the parents) should have low scores while manipulated features
should have significantly higher scores. Even if one cannot know before all the compu-
tations the absolute values of all the scores, the good and bad features should always be
separated by a significant increment as it can be seen in Figure 4.3. After multiple tests,
this approach was not good enough because there were often more than two distinct
areas. For example in Figure 4.3, we can see multiple areas : {929} , {320, 408}, {938},
{738, 250,343} and {452, 592, 82, 424}. In this example we only want to retrieve {929}
and {320, 408}. That’s why, we implemented an iterative process to remove the last
distinct area at each iteration to isolate the good features. At each iteration, a new
score array must be computed without the bad features found at the previous iteration
and so a new maximal increment by removing the lines and the columns correspond-
ing to the bad features in the matrix K. This process is repeated until the maximal
increment reaches a stop criterion ε set by the user . This is implemented as the "max
increment" mode.

Another idea was to remove the feature with the biggest score and repeat this until
the maximal increment decreases below some threshold set by the user. This is imple-
mented as the "last" mode.

A pseudo-code is provided below for the DPED algorithm :
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Algorithm 1 DPED
Input: observational data XLS, observational target TLS, experimental data XTS,
tested features subset XS, learning algorithm, mode, ε

Output: XDPED

k ← 10
Divide the observational data set into k subsets
for i = 0 to length(XS) do
Learn the model fi using (XLS,TLS)
Predict the targets of XLS using the k-fold cross validation
Predict the targets of XTS using fi

end for
for i = 0 to length(XS) do
for j = 0 to length(XS) do
Compute MLSi,j

Compute MTSi,j

end for
end for
Compute the matrix K
XDPED ← XS

Compute the scores of the features in XDPED with sj =
∑

i∈XDPED

Ki,j

Sort the features based on their scores
Compute the increment between each consecutive features and search for the maxi-
mum increment
if mode = "max increment" then
while max increment > ε do
Remove the features with higher score than the feature with the max increment
in XDPED

Recompute the scores sjforj ∈ XDPED

Recompute a new max increment
end while

else if mode = "last" then
while max increment > ε do
Remove the feature with the highest score in XDPED

Recompute the scores sjforj ∈ XDPED

Recompute a new max increment
end while

end if
return XDPED

4.2.3 Limitations

Like all algorithms, there are some drawbacks. Their effects can be mitigated by correct
settings and good preprocessing. There are two main limitations of this algorithm :

• Lowly predictive variables
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• Model learned on a single variable

These limitations are described below.

4.2.3.1 Lowly predictive variables

During the test phase of the algorithm, it appeared that the performance were affected
by the nature of the features in XS. Two different types of feature were problematic :
irrelevant features and lowly predictive manipulated features. If there are one or more
lowly predictive features in the input subset, they were systematically selected even if
they are manipulated because their prediction performance are not particularly modi-
fied by the manipulation. This implies that their final score are quite small despite any
manipulation. Indeed, since this algorithm is based on differences between predictions,
a lowly predictive feature always gives the same kind of prediction independently of its
nature (included in the Markov Boundary or not) and manipulations. This explains
why the score of such a feature is significantly low and considered as a good feature by
DPED. The irrelevant features has the same behavior because their prediction is closer
to a random assignation in both dataset independently of the manipulations.

These features are not such a big problem when it comes to prediction because
learning a model with the observational dataset on lowly predictive features is not
supposed to affect too much the performance if there are enough good (parents and
unmanipulated children) and highly predictive features in the final subset and if the
chosen learning algorithm is robust with respect to irrelevant features. Indeed, the
learning algorithm will automatically give low importance to these features but in the
case where lowly predictive and irrelevant features are dominating, poor performances
may be expected. Moreover, these features have a really bad impact on the features
ranking because they may push out good features from the selected area. For example,
such a feature may have a score smaller than the ε value provided by the user and so
kick out all the good features.

The presence of these features in the tested subset can be limited by a correct
Markov Boundary discovery to avoid any error concerning the nature of the features
and has to be done through a good selection of the parameters of the algorithm used
to discover the Markov Boundary like the threshold for the statistical test in HITON
PC or IAMB. Even if the approximated Markov Boundary contains no wrong features
(only parents, children and spouses of the target), there are still a probability to have
lowly predictive variables that should be removed.

A preprocessing step was essential to remove the lowly predictive manipulated fea-
tures and the irrelevant features. We implemented a function feature_filtering which
removes these features in XS by selecting the features with a score higher than a thresh-
old set by the user in a Random Forest ranking or a linear SVM ranking. The function
compares XS and the k more important features from the considered ranking and only
keeps the variables present in both subsets. In this context, the most suitable ranking
is from learning algorithm such as Random Forest or linear SVM. The model used to
compute the score of each feature and the value of the parameter k are provided by the
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user to allow more flexibility of the code.

4.2.3.2 Models learned on a single feature

To compute the prediction, we only used models learned on a single feature to be
able to easily compute a score for each feature. The simplicity of this approach has
an important drawback, the prediction may not be good even if the variable used is
predictive. For example, let’s take X1,X2 and X3 as boolean variables :

X1 = X2 ⊕X3 (4.4)

In this example, X2 or X3 alone will not give significantly good predictions while
taken together they perfectly predict the target X1. To take into account this phe-
nomenon, we should repeat the same procedure for all the possible subset but this
approach is too much time consuming and almost intractable.

4.2.3.3 Other limitations

Since this algorithm involves prediction and fitting multiple times, it is quite time
consuming. Moreover, the choice of the model and the settings have big impact on
the prediction and may possibly affect the final results. For example, Random Forest
introduces a lot of randomization and if a feature’s score is really close to the threshold,
it is possible to observe some variations in the final subset due to the randomization.

4.3 DCED Algorithm

4.3.1 Introduction

In some context, the target can be hard to sample and we could only have observa-
tional and experimental data without the target variable but we still want to be able
to retrieve the useful features for prediction. Indeed, if the target can be expensive
to observe, it is the same for the other variables and reducing the number of selected
features is really important especially in biology where sampling can be dangerous for
the patient.

The DPED algorithm can be time consuming due to the multiple fitting inherent
to the process. The DCED algorithm tries to give fast results based on more simple
function to compute the score of each feature for more interpretability.

The inputs of this algorithm are reduced to two datasets (one without manipula-
tions and one with manipulations) without their respective target, a subset made of an
approximated Markov Boundary of the target previously computed and some parame-
ters described later in the section.

29



4.3.2 Implementation

The idea behind this algorithm is mainly the same as DPED algorithm but without
prediction and without the target. In order to do that, the error rate between the
predictions of the variables is replaced by a correlation coefficient. In other words, this
algorithm exploits the variation in correlation between variables in the two datasets
(observational and experimental). DCED stands for Differential Correlation for Exper-
imental Dataset.

This approach is motivated by the impact of interventions on the correlation between
two variables and the simplicity of the evaluation function as well as the interpretation
of the results. Indeed, correlation coefficient can help to understand some simple un-
derlying mechanisms. In the framework of this algorithm, we focused our attention on
two correlation coefficient : Pearson and Spearman correlation coefficient.

• Pearson : benchmarks linear relationship

• Spearman : benchmarks monotonic relationship

Let’s take an example of a small local causal graph around a target T to illustrate
the different cases that we have to deal with. The variables X1 and X2 are the parents
of T while X3 and X4 are the children. These connections are shown in Figure 4.4(a).
All the different connections between the variables imply different level of correlation.
For example, there is a direct correlation between the two children X3 and X4 of T
due to their common parent. Since X1 and X2 are ancestors of X3 and X4, there is
also a big correlation between these variables. These correlations are reported by black
lines on Figure 4.4(b). The dashed line between the two parent translates the fact
that there might be a correlation between these two variables but it is not necessary.
Indeed, X1 and X2 may be totally independent and not be correlated at all. This pos-
sible correlation between the parents of the target can be a problem through the whole
process of this algorithm because the correlation present in the observational dataset
may disappear in the experimental dataset if one of the parent is manipulated as shown
in Figure 4.5(b) while conserving the correlation with the children. In Figure 4.5(a),
we can see the effect of a manipulation on a child on the correlation between this child
and the other members of the Markov Boundary of the target. All the correlations be-
tween a manipulated child and the other variables of the Markov Boundary are strongly
affected and this algorithm attempts to highlight these variations to detect a manipula-
tion. Indeed, an intervention on a parent only affects the hypothetical correlation with
the other parents but the correlations with the unmanipulated children are conserved
inducing small variations between the two datasets.
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(a) Example of a causal graph (b) Correlation between the variables

Figure 4.4: Example of a local causal graph and the correlations between the variables
without manipulation (a black line corresponds to a correlation and a dashed line
represents a possible correlation)

(a) Example of a manipulation on a child (b) Example of a manipulation on a parent

Figure 4.5: Effects of a manipulation on a parent or a child on the correlations between
the variables in the Markov Boundary with a black line representing a correlation and
a red line the absence of correlation

From these different possible cases, we can highlight three different areas in the
variation of correlation between observational and experimental dataset :

• Big variations when a child is manipulated

• Small variations when a parent is manipulated because of the possible correlation
between the parents in the observational dataset

• Very small variations when there are no manipulations

The two last areas include all the good features and must be kept. In figure 4.6,
we can see the three different areas. The first area corresponds to the last six columns
and lines. The second area can be seen in the two first lines and columns because
they correspond to the parents. The high values of K0,1 and K1,0 are explained by the
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manipulation of one of the parent. The lines and columns from 2 to 6 correspond to
the last area.

Figure 4.6: Example of the K matrix for the DCED algorithm with Xhiton

The implementation of this algorithm is basically the same as the DPED algorithm
with a different function to compute the matrixM. The prediction and the error rate are
replaced by a correlation coefficient and the difference between correlation coefficient
for each feature. The matrix M becomes :

Mi,j = |C(Xi, Xj)| (4.5)

With C(Xi, Xj) a coefficient corresponding to the level of correlation between the
variables Xi and Xj. The matrix K is computed with the same equation presented in
the DPED section (see Equation 4.2).

The score of each feature is computed in the same way as the DPED algorithm by
summing the columns in the matrix K. At this stage, we are expecting to see three
distinct groups in the score array because of the three different areas discussed before.
A "max increment" and "last" procedures to removed the bad features are also imple-
mented based on the same idea developed for DPED.

4.3.3 Limitations

Like the DPED algorithm, the DCED algorithm takes an approximated Markov Bound-
ary as input which can be partially wrong (some false positives and some irrelevant
variables could be included in the approximated Markov Boundary). The score of the
independent variables is very small since they are uncorrelated in both observational
and experimental dataset (a manipulation on an independent variable do not signifi-
cantly changes the correlation with the other variables). First, they are always included
in the final subset but they also may push good features out of the final subset due to
their really small scores. While false positives variables (variables considered as being
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in the Markov Boundary while they are not) do not behave like the parents and the
children and so may lead to wrong conclusion about their nature (good vs bad). A pre-
processing is really important to remove these features. An example of this limitation
is showed in the results chapters.

When there are too many manipulations like in REGED2 where all the children
are manipulated for example, the DCED algorithm cannot uncover the parents since
all the correlations between the children and the parents are removed because of the
interventions. Since the correlations between the parents in the observational data set
are random, the variations of the correlation coefficient between observational and ex-
perimental dataset may be non zero. In that case, DCED will also reject the parents
because there are also variations between observational and experimental data set and
this effect cannot be counterbalanced by the low score between the parents and the
unmanipulated children because all the children are manipulated in REGED2.
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Chapter 5

Results based on the observational
data set

This chapter is dedicated to a predictive approach only based on the observational
dataset without directly taking into account the manipulated data. A comparison be-
tween different learning algorithms and their performances on both observational and
experimental dataset is drawn before applying any feature selection. This approach
does not take advantages of any particular underlying mechanism in the database to
predict the target. Then, we introduced some feature selection and compared both
classical and causal feature selection and their impact on the performances. In Section
5.1.2, we focused on the Random Forest family of algorithm to be able to compare the
performances of the different feature selection methods.

We used the library Scikit Learn for all the learning algorithm.

5.1 Reged dataset
In this section, we will show the results obtained with the dataset REGED described
before. Since it is a classification problem, we used a specific statistical test for filtering
and some specific classifier algorithms like linear support vector classifier (LinearSVC)
for the classical feature selection. For causal discovery, we focused on two algorithms
: HITON PC and IAMB. They are quite efficient to discover local Markov Boundary
while staying generic. Indeed, they are one of the basic tools for local causal discovery
while other algorithms may be more specific to particular dataset. The IAMB algorithm
can be used for both classification and regression but HITON PC can only be used for
classification. For this reason, we applied both to the REGED dataset but only IAMB
to the P1000 dataset. We first put in contrast classical and causal feature selection to
discover the Markov Boundary followed by an analysis of the impact of the different
feature selection on prediction.
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5.1.1 Classical approach without feature selection

The principles of the classical approach is to learn a model on all the features of the
observational dataset in order to predict the target of further test set. This approach
is naive and could lead to very bad performances for some algorithms which need some
preprocessing and a good set of parameters. The next step should be a cross validation
over the parameters of all the learning algorithms but we decided to only focus on the
preprocessing such as feature selection because we are interested in the tendencies but
not in the absolute performances.

The classifiers that we considered in this section are :

• Random Forest [5]

• Extra Trees [7]

• Linear SVC [6]

We left all the parameters by default except for the number of estimators for the
tree algorithms which we set at 1000.

Random Forest ExtraTrees Linear SVC
Reged0 0.8164 0.6302 0.9695
Reged1 0.5114 0.5136 0.7545
Reged2 0.5011 0.5008 0.5703

Table 5.1: Scores of the predictions for REGED with different learning algorithms and
all the features

In Table 5.1, we can see the scores for the different test sets with the different
learning algorithms presented before. The SVC classifiers are quite good on REGED0
while tree ensemble classifiers with default parameters are much less efficient. However,
the scores drastically decrease between the observational test set (REGED0) and the
experimental test set (REGED1 and REGED2) for all classifiers. These differences can
easily be explained by the variations of the distribution between the datasets. When the
number of manipulated features increases, the score decreases as it can be seen in the
two lines corresponding to REGED1 and REGED2 since the number of manipulations
is larger in REGED2 than in REGED1.

5.1.2 Classical vs Causal feature selection for discovering the
Markov Boundary

The preprocessing mentioned before mainly consists in selecting a good set of features
on which the model is learned to improve the performance of the prediction. There are
a lot of different feature selection techniques and their performances vary a lot from a
situation to an other. This thesis do not pretend to assess all the techniques, therefore,
we focused on three classical and two causal methods for the REGED database :
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• Classical :

– Random Forest feature_importances_ attribute

– Linear support vector absolute weight ranking

– t-test filter

• Causal :

– HITON pc [3]

– IAMB [13]

One important reason of causal feature selection is the fact that the Markov Bound-
ary of a target is supposed to be an optimal subset of features for prediction. Since
the Markov Boundary is the smallest set of features containing all variables carrying
information that cannot be obtained from other variables, this subset is only composed
of strongly relevant and weakly relevant features. Some weakly relevant features may
be redundant. For example, if two children have the same amount of information as a
parent, they are redundant but are both in the Markov Blanket. Hence, retrieving the
Markov Boundary is a crucial step for predicting a variable if the dataset is obtained
from a causal distribution. Nevertheless, the Markov Boundary is not enough to predict
a variable if the distributions are not the same between the learning and the test set
(if there are some manipulations). We are expecting good results on the observational
test set (REGED0) but poor performances on both experimental test set (REGED1
and REGED 2) with the Markov Boundary subset because we do not take into account
the manipulations when we learn the model.

Since we have access to the local causal graph around the target for the REGED
dataset, we perfectly know the unique Markov Boundary since we assumed the faith-
fulness between the graph and the distribution. We can thus compare both classical
and causal feature selection with the true Markov Boundary. The local causal graph is
described in Chapter 3. There are 21 features in the Markov Boundary : 83, 251, 275,
312, 321, 324, 344, 409, 421, 425, 453, 454, 516,571, 593, 594, 739, 817, 825, 930, 939
on which we focused our analysis.

The classical feature selection techniques are divided in two stages : ranking and
selection. The first step is to compute a score for each variable depending on their
importance or the information that they contain and the second step is to select the k
best features as the new subset. The Markov Boundary being assumed to be an optimal
subset, we are expecting the features present in the Markov Boundary to be the best
features in the ranking of the classical techniques. We therefore used k = 21 to show
the ability of classical methods to retrieve the Markov Boundary.
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(a) Scores for the true Markov Boundary fea-
tures

(b) Scores for the 21 more important features

Figure 5.1: Scores for the Markov Boundary features and the 21 more important features
from RandomForest algorithm feature_importances_ attribute (max_features = None,
n_estimators = 1000 and random_state = 1) for the REGED dataset

The 21 best features found with a Random Forest ranking can be found in Figure
5.1(b). We called this subset Xbest 21. The very high score compared to the others of
feature 939 translates the high information contained in this child about the target T.
This score also implies that if there is a manipulation on this feature, the model will
give a lot of importance to a disconnected variable. An intervention on a very lowly
predictive variable is not so harmful if the set of features is big enough but when the
subset is small a single manipulated feature can be very harmful. Indeed, when an
irrelevant variable is manipulated in the whole set, the consequences are limited since
most of the learning algorithm gives low importance to irrelevant variables. It is pos-
sible that manipulations on features included in the Markov Boundary lead to smaller
impact than expected if the learning algorithm does not assign to much importance
to them. This phenomena can explain the differences between the performances on
REGED1 of the algorithms in Table 5.1.

From Figure 5.1(a), we can conclude that the distribution of the information among
the Markov Boundary is clearly not identical but the two parents rank high while
spouses do not fare well.
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Figure 5.2: Nature of the 21 more important features computed with the fea-
ture_importances_ attribute of the Random Forest Algorithm for the REGED dataset

In Figure 5.2, we can see the nature of the 21 best features based on the ranking
of Random Forest algorithm. Although, we expected to find all the Markov Boundary,
we found a lot of features not included in the unique Markov Boundary (we labeled
them as Others in the pie charts). Their presence can be explained by the redundancies
between variables. Indeed some highly predictive variables can share their information
with other variables and even if only one variable could be enough to predict the tar-
get, the model will learn from all the variables. The explanation can also come from
the violation of the faithfulness assumption. In conclusion, these Others features can
be highly predictive even if they are not part of the set of parents, children and spouses.

We repeated this analysis with a linear support vector classifier with the default
parameters. There were no major differences between the distribution of the 21 best
features but we can see in Figure 5.3 that there are two more children than in the
previous feature selection. Random Forest and Linear SVC are embedded methods and
work on similar principles. These methods were unable to find spouses for this dataset.

Parents
(2)

Children

(12)

Spouses

(0)

Others

(7)

Figure 5.3: Nature of the 21 best features computed with the linear Support Vector
Classifier absolute weight ranking for the REGED dataset

We also wanted to show the results with a filter method. We used the t-test filter
for this purpose. This test computes the dependencies between each feature and the
target giving an insight into the underlying mechanisms around the target. We are
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expecting a low correlation between the spouses and the target because they are not
directly connected to it as it can be seen in Figure 5.4(a). Some features have a lower
score than spouses showing the difficulties to retrieve the whole Markov Boundary since
some directly connected features have lower correlation than spouses or others features
(features labeled as Others). The overall distribution of the 21 best features is almost
the same for all the classical techniques tested in this thesis and their nature is almost
the same for the three methods (See Figure 5.2, 5.3 and 5.5).

(a) Scores for the Markov Boundary features (b) Scores for the 21 more important features

Figure 5.4: Scores for the Markov Boundary features and for the 21 more important
features from univariate filter with t-test for the REGED dataset

Parents
(2)

Children

(10)

Spouses
(0)

Others

(9)

Figure 5.5: Nature of the 21 best features computed with the t-test filter for the REGED
dataset

We assumed that the Markov Boundary was an optimal subset for predicting the
target. Hence, we considered a feature labeled Others as a wrong feature since it is not
a member of the Markov Boundary. However, to assess the efficiency of a subset, we
need to predict on a test set and compute the score to do a rigorous comparison. In Ta-
ble 5.2, we can see the scores for the different feature selection on the three test sets of
REGED. The prediction were done with a Random Forest classifier. On REGED0, the
true Markov Boundary is the best subset as expected but the three other subsets have
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really close performances with a variation of less than 1% around the maximum score.
We see a small increase of the score when we used a feature selection for REGED1 but
for REGED2 there is no significant improvement. Finally, classical methods are good
on the observational test set (without manipulations) but have limited impact on the
experimental test set even if there is a small improvement.

All features Markov Boundary linear SVC Random Forest t-test Filter
Reged0 0.8164 0.9835 0.9798 0.9774 0.9806
Reged1 0.5114 0.5751 0.5780 0.5653 0.5700
Reged2 0.5011 0.5140 0.5198 0.5216 0.5204

Table 5.2: Performances of the Random Forest algorithm for REGED with different
classical feature selection

To overpass the limitations met with the classical approach, we introduced a causal
approach. We used two local causal discovery algorithms : HITON PC and IAMB. The
objective of these methods is to find the Markov Boundary with a limited number of
errors. From the classical methods, we could highlight the small importance of some
Markov Boundary variables. Therefore, we are expecting the causal methods to miss
some lowly correlated variables like spouses for example. We decided to use HITON
PC over HITON MB because of the low correlation between the spouses and the target.
Indeed, HITON MB in order to find the spouses also included a lot of wrong features
in the final subset because it could not tell the difference between spouses and some
highly wrong correlated variables. In Table 5.3, we can see the output subset with the
HITON PC algorithm and the percentage of feature for each sort discovered. Since this
algorithm does not look for spouses it is normal not to discover any. By focusing on
parents and children, the algorithm could reach a really good performance and found
all the parents and 85% of the children without any errors.

Features selected percentage discovered
Parents 321,930 100%
Children 83, 251, 344, 409,

425, 453, 593, 594,
739, 825, 939

85%

Spouses - 0%
Others - -

Table 5.3: Results from the HITON PC algorithm with a statistical threshold of 0.05

If we want to include the spouses in the search, we need to use a different algorithm.
The IAMB algorithm was the most efficient among the compatible methods. The ad-
dition of the spouses lead to slightly worse performance as it can be seen in Table 5.4
especially for the children discovery. Moreover, to discover two spouses, the algorithm
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also added one wrong feature.

Features selected percentage discovered
Parents 321,930 100%
Children 251, 409, 453, 593,

594, 825, 939
54%

Spouses 312,516 33%
Others 413 -

Table 5.4: Results from the IAMB algorithm with a statistical threshold of 0.0001

Table 5.3 and 5.4 present the best results for each algorithm. The statistical thresh-
old α has a huge impact on the efficiency of the algorithms. In order to do an in-depth
analysis of the impact of α on the efficiency we plotted the number of features in the
output subset as a function of α for both algorithms. We divided the features in two
categories :

• Good features : this category includes all the members of the Markov Boundary
(parents, children and spouses)

• Wrong features : this category includes all the variables external to the Markov
Boundary

At this stage, we used these definitions to categorize the features but later in the
report we had to slightly change these definitions to take into account a new concept
that we introduced in the next chapter.
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Figure 5.6: Features selected as a function of the statistical threshold with the HITON
PC algorithm for the REGED dataset

Figure 5.6 shows the evolution of the selected features as a function of α. For a value
of the parameter smaller than 0.24, there is no wrong feature in the output subset and
between 0.05 and 0.24 we can see that the number of good features discovered is maxi-
mum. It means that any value in [0.05, 0.24] gives the best result with the HITON PC
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algorithm for the REGED dataset. Another interesting point is that the greater α is
the more features are included in the output subset and the error curve increases as well.
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Figure 5.7: Features selected as a function of the statistical threshold with IAMB
algorithm for the REGED dataset

The important range of the parameter α is sensitively different between the two
algorithms. While the good range for HITON PC is [0.05, 0.24], the good range for
IAMB is [0.00010.0004]. There is a factor 100 between the two ranges because of the
inner differences between the two algorithms despite the same default value for α of
0.05 provided by the Causal Explorer library. Around the default value, the IAMB
algorithm includes a lot of wrong features as it can be seen in Figure 5.7(a) but has the
same kind of behavior in its good range as the HITON PC algorithm (see Figure 5.6
and 5.7(b)).

The subset found with the algorithm HITON PC with α = 0.05 is called Xhiton and
the subset found with the algorithm IAMB with α = 0.0001 is called XIAMB. Their
scores for the prediction on the three test sets are reported in the Table 5.5. The results
are almost the same as with classical features selection but the score with Xhiton is a
little bit better on REGED0 than the score with XIAMB.

HITON PC IAMB
Reged0 0.9850 0.9740
Reged1 0.5789 0.5749
Reged2 0.5150 0.5266

Table 5.5: Scores of the predictions for REGED with two different causal feature selec-
tion (HITON PC with α = 0.05 and IAMB with α = 0.0001) obtained with a Random
Forest learning algorithm

We used the output subset Xhiton from the HITON PC algorithm with a statistical
threshold of 0.05 reported in the Table 5.3 for the next chapter. A deeper analysis
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of the features selected is necessary to fully understand the further steps to the final
subset for both REGED1 and REGED2 described in the next chapter.

unmanipulated manipulated
Parents 930 321
Children 344, 425, 453, 594,

739, 825
83, 251, 409, 593, 939

Spouses - -
Others - -

Table 5.6: Overview of the manipulations in the subset of features selected by the
algorithm HITON PC with the statistical threshold equals to 0.05 for the REGED1
database

At the end of this section, we selected a subset of features as an approximated
Markov Boundary. In this subset, there are potentially wrong features (features which
do not belong to the Markov Blanket but still selected due to errors in the causal
discovery algorithm) and bad features for prediction (manipulated features except the
parents). The local graph (both datasets) and the list of manipulated features (for
REGED2) were not available during the challenge but we used them here to have a
better understanding of the different steps of the feature selection process. Since we
had access to the local graph and to the list of manipulated features, we knew which
features we had to remove in order to have a subset with only predictive features for
the experimental dataset.

In the Table 5.6, we can see the distribution of manipulations in the subset selected
by the HITON PC algorithm. The features we tried to remove for the REGED1 dataset
are : 83, 251, 409, 593, 939. Indeed, the selected subset was composed of only parents
and children so only the manipulated children are independent of the target and not
predictive anymore. In the case of REGED2, all the children are manipulated so the
only good features are the parents : 321 and 930.

5.2 P1000 dataset
We wanted to test our methodology on other datasets. The P1000 dataset and the
REGED dataset differ by their target nature. While the REGED target variable is
discrete, the P1000 target variable is continuous. This difference is very important
because the learning algorithms are different even if they come from the same family of
algorithms. The problem proposed by the P1000 database is a regression problem and
not a classification. We followed the same structure as in the previous section.

5.2.1 Classical approach

The regressors that we considered in this section are :
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• Random Forest regressor

• Extra Trees regressor

• Linear SVR

• SVR with a rbf kernel

Since we only want to highlight the tendencies and not the absolute value of the
score, we left all the parameters by default except the number of estimators for the tree
algorithms to have significant results. We reported all the results in the Table 5.7. We
used the mean absolute error (see 3.2).

Random Forest ExtraTrees Linear SVR SVR with rbf kernel
P1000 observational 0.1103 0.107 0.1131 0.1526
P1000 experimental 0.7327 0.6655 0.6125 0.2863

Table 5.7: Scores of the predictions for P1000 with different learning algorithms and
all the features

The two algorithms based on tree ensemble and the two support vector regressors
have similar behavior. Although, the Random Forest and Extra Trees algorithms seem
to have better performance on the observational test set, the SVR family have sensi-
tively better performance on the experimental test set. This difference comes from the
importance given to each feature by the two families. As we will show in Section 5.2.2,
it seems that tree ensemble family focuses the learning on the children while support
vector family focuses on a more mixed set composed of parents and children. This dif-
ference has low effects on the performance for the observational test set but significant
effects for the experimental test set. Indeed, if an algorithm gives much importance to
a children which is manipulated in the test set, it leads to poor performance on the test
set but it is not the case if the algorithm gives much importance to a parent because
even manipulated it is still predictive.

5.2.2 Classical vs Causal feature selection for discovering the
Markov Boundary

The P1000 dataset differs from the REGED dataset because we strictly know the whole
graph since this set is entirely artificial while for REGED we only knew the local graph
around the target. We perfectly know the Markov Boundary but also the features
around the Markov Boundary. As for the REGED dataset, we focused our analysis on
the the size of the Markov Boundary. Here we considered the five best features.

The feature selection techniques used for regression are slightly different from those
used for classification. We still used rankings from Random Forest and SVM families but
we had to replace the t-test ranking by the Pearson ranking to compute the correlation
coefficients between the target and the features for classical methods. As said previously,
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the algorithm HITON PC is not adapted for regression. Hence, we only focused on
IAMB with different ranges of values for the parameter α. Here is a list of the techniques
used in this section :

• Classical :

– Random Forest features importances attribute

– Linear support vector absolute weight ranking

– Pearson ranking

• Causal :

– IAMB with two distinct ranges of α

As said previously, the importance given to the children by the random forest algo-
rithm is much higher than the importance given to the parents. Indeed, as it can be
seen in Figure 5.8(b), one children has a score higher than 90% and it is almost the
only useful feature for this learning algorithm. The nature of the five best features is
shown in Figure 5.8(a). We can notice that there is no parent in the top five features
which explains the bad performance on the experimental set shown in Table 5.8.
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Figure 5.8: Nature of the 5 more important features and scores for the 10 more
important features from Random Forest algorithm features importance attributes (
n_estimators = 1000 and random_state = 1) for the P1000 dataset

The SVR algorithm has a more mixed result even if the best feature is still a child
(see Figure 5.9(b)). There are two parents and two children in the top five features.
This a more normal result than the subset obtained with the Random Forest ranking
since we are expecting the parents to have a big score too. If we analyze a little bit
deeper the feature labeled as Others, we realize that it is a redundant feature of a child
excepting the noise. From this observation, it is normal to find it in the top five features.
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Figure 5.9: Nature of the 5 best features and scores for the 10 more important features
from Support Vector Regression with a linear kernel for the P1000 dataset

We also computed the Pearson correlation coefficient between each feature and the
target to build a ranking that can be used as a filter. This approach leads to a mixed
ranking with more Others features as it can be seen in Figure 5.10(a).
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Figure 5.10: Nature of the 5 best features and scores for the 10 more important features
from univariate filter with Pearson coefficient for the P1000 dataset

The Markov Boundary subset has the best performance on the observational test
set but really poor performance on the experimental test set because all the children are
manipulated (see Table 5.8). We can also notice that all the subsets including children
have very bad performance on the experimental test set while keeping good results on
the observational test set. Some feature selection techniques may give more importance
to the parents than the children. In that case, the results on the experimental test set
could be sensitively better.
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All features Markov Boundary SVR Random Forest Pearson coefficient
P1000 observational 0.1103 0.0960 0.1039 0.1132 0.1117
P1000 experimental 0.7327 0.8033 0.8308 0.8781 0.8524

Table 5.8: Scores of the predictions made with a Random Forest Regressor for P1000
with different classical feature selection (For SVR, Random Forest and Pearson coeffi-
cient, the score is computed with the 5 more important features)

There is a big disparity in the nature of the features in the subsets used to compute
the scores of the Table 5.8. Moreover, we are not supposed to know the size of the
Markov Boundary and so the best value of k ( the number of selected features). We
could do a cross validation to find the best number of features for each algorithm but
this is an expensive approach and the results may never converge to a good solution.
Indeed, if the first feature is a child, there will be always a child in the subset and if
this child is manipulated all the score may be bad whatever the value of k.

We highlighted before that the Markov Boundary is the optimal subset for the ob-
servational dataset but classical techniques used to retrieve it are not robust and there
are variations between the different methods. A more robust way to find the Markov
Boundary and so an optimal set of features for the observational dataset is to use a local
causal discovery algorithm. The IAMB algorithm was the most appropriate method for
a regression problem. We were able to plot the evolution of the number of good and
wrong features in the output subset XIAMB as a function of the statistical threshold α
because we had access to the local graph. Even for very low values of α, the algorithm
find all the five members of the Markov Boundary but start to include wrong features
very fast (see Figure 5.11).
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Figure 5.11: Number of selected features as a function of the statistical threshold with
the IAMB algorithm for the P1000 dataset

In order to stay generic, we used two distinct values of α to generate two approxi-
mated Markov Boundary : XIAMB1 and XIAMB2. The details of these subsets are found
in Table 5.9. These subsets are used in the next chapter. We can see that XIAMB1 is a
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perfect approximation of the Markov Boundary while XIAMB2 includes three additional
wrong features.

XIAMB1 with α = 0.0002 XIAMB2 with α = 0.005
Features selected percentage discovered Features selected percentage discovered

Parents 1,7,12 100% 1,7,12 100%
Children 18,21 100% 18,21 100%
Spouses - - - -
Others - - 314,578,748 -

Table 5.9: Overview of the subsets computed with the IAMB algorithm with a statistical
threshold α of 0.0002 and 0.005 for the P1000 database

It is important to keep in mind the distribution of the manipulations inside the
output subset because even if the IAMB algorithm with good value of α can find the
Markov Boundary, it does not mean that the predictions will be good on an experimen-
tal test set (as shown in Table 5.8). We still need to remove the non-parent manipulated
features. These manipulations for XIAMB1 are reported in the Table 5.10.

unmanipulated manipulated
Parents 7,12 1
Children - 18,21
Spouses - -
Others - -

Table 5.10: Overview of the manipulations in the subset of features selected by the
algorithm IAMB with α = 0.0002 for the P1000 database

The performances of XIAMB1 and XIAMB2 are shown in the Table 5.11. The scores
on the experimental test set are very bad but XIAMB1 has a slightly better performance
than XIAMB2. In order to improve their performances on the experimental test set, we
need to remove the non-parent manipulated features .

XIAMB1 XIAMB2

Observational 0.0960 0.1011
Experimental 0.8033 0.8096

Table 5.11: Prediction scores for P1000 with the subsets computed with the IAMB
algorithm with a statistical threshold α of 0.0002 and 0.005
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5.3 Conclusion
The classical feature selection have big impact on the performance for the observational
test set. The causal feature selection techniques have slightly better performance than
classical ones on the observational test set. On REGED, the performances are slightly
better with the causal feature selection on the manipulated data but on P1000, the per-
formances are severely degraded because the models focused on manipulated children.

In the next chapter, we will try to find and remove the non-parent manipulated
features and the irrelevant features in order to improve the predictions on the experi-
mental test set for both dataset.
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Chapter 6

Results using the manipulation
information

6.1 Introduction
The DPED and DCED algorithms are quite sensitive to the input subset of features.
These algorithms have really bad performance if they are used with all features. In
order to provide a suitable subset, some preprocessing must be done. One approach
is to approximate the Markov Boundary because this subset is enough to predict the
target and all the features are correlated with the target. The two algorithms used in
this thesis are HITON PC and IAMB because they are the most representative of the
current causal discovery algorithm used through the world.

The next step is to remove all the lowly predictive variables included in the selected
features from the two causal discovery algorithms. There are different ways to achieve
a good sorting of the features. We mainly explored classical feature selection such as
filter or embedded methods.

At this stage, the set of features is supposed to include only high predictive members
of the Markov Boundary in the observational dataset. Some manipulated children and
spouses are still included in the subset and we want to remove them. The DPED and
DCED algorithms attempt to find them. At the end of these three steps, we have a
subset of high predictive features in the experimental dataset.

Finally, we used this subset to predict the target of the experimental dataset. The
different results are shown in the respective section in this chapter for both REGED
and P1000 dataset.

Another approach is to redefine the notion of good and bad features. Previously, we
considered a good feature as a member of the Markov Boundary still predictive in the
experimental set but we do not need to restrict the research to the Markov Boundary
since we are looking to improve the performances on the manipulated test set. If the
purpose of the process is to predict the target without paying attention to the causal
mechanisms, we can include all the unmanipulated features (even the features which are
not member of the Markov Boundary) and the parents in the final subset (manipulated
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or not) in the good features. The new definitions of good and bad features are provided
below :

• Good feature : A good feature is a highly predictive feature for the manipulated
test set including the parents (manipulated or not) and all the unmanipulated
features

• Bad feature : A bad feature is a lowly predictive feature for the manipulated test
set including all the manipulated features except the parents

We used these definitions in this chapter for both approach even for the first one
because an error (false positive) occurring during the causal discovery may still be a
good feature. The difficulties is to define highly and lowly predictive, this is done with
the help of the parameter k when we filter the subsets.

6.2 REGED
Before applying the DPED and DCED algorithms, we need to perform some filtering
to remove the lowly predictive variables to avoid the problems that they generate (see
Sections 4.2.3 and 4.3.3). We also show that this step is quite good to compensate
the possible errors of the causal discovery algorithm. These errors are features not in
the true Markov Boundary but still included in the approximated Markov Boundary
(We labeled them as Other in the following sections). It is important to remove these
features to discover the local causal graph but it is not so important for the final pre-
diction if they are predictive and not manipulated.

Then, we will introduce the algorithms developed in the framework of this thesis to
exploit manipulations in the test set.

6.2.1 Feature selection in the approximated Markov Blanket

The purpose of this section is to identify and remove lowly predictive features. These
features can be either wrong features (not in the true Markov Boundary) or some lowly
predictive members of the Markov Boundary (manipulated or not).

The function used to do that is implemented in the DPED and DCED program
under the name : feature_filtering. It compares a subset of features with the k best
features ranked with the feature_importances_ attribute of the Random Forest algo-
rithm or with the coef_ attributes if the provided model is a linear supervised vector
machine and return only the features from the input subset that are in the k best fea-
tures. The goal of this function is to eliminate the lowly predictive features to avoid
miscellaneous problem while running both DCED and DPED algorithm.

51



Parents 
unmanipulated(1)

Children 
unmanipulated

(6)

Parents 
manipulated

(1)

Children 
manipulated

(5)

(a) Nature of the features in Xhiton with manip-
ulations labels

Parents 
unmanipulated(1)

Children 
unmanipulated

(4)

Parents 
manipulated

(1)

Children 
manipulated

(5)

(b) Nature of the features in Xhiton with manipu-
lations labels after filtering

Figure 6.1: Nature of the features of the subset Xhiton before and after filtering with the
20 best features ranked with the feature_importances_ attribute of a Random Forest
model (max_features = None, n_estimators = 1000) learned on all the features from
the observational dataset for REGED1

From the Table 5.4, we can see that the feature 413 is not part of the true Markov
Boundary and should be removed if it is a bad feature. As shown in the pie chart
6.2(b), the feature 413 is removed but also the two spouses previously discovered by
the IAMB algorithm. Although these spouses are part of the true Markov Boundary, it
seems that they are lowly predictive in this context. In the case of HITON PC, there is
two removed features meaning that there are some lowly predictive children since both
parents are kept as it can be seen in Figure 6.1(a) and 6.1(b) if we take k = 20. The
concerned features are 594 and 825 which are direct children of the target. There could
still be a predictive feature in the subset which is not part of the Markov Boundary.
This category of features include both manipulated and unmanipulated features. The
next step attempts to remove the manipulated ones. We called the subsets obtained
after filtering Xhiton filtered for Xhiton and XIAMB filtered for XIAMB.
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Figure 6.2: Nature of the features of the subset XIAMB before and after filtering with
the 20 best features ranked with the feature_importances_ attribute of a Random
Forest model (max_features = None, n_estimators = 1000) learned on all the features
from the observational dataset for REGED1

We arbitrarily choose the value of k for the previous test but the choice of this value
has a big impact on the next stages of the process. It is hard to quantify lowly and
highly predictive. Therefore, a cross validation must be done to find the best value of k.
The problem with a cross validation comes from the separation between the filtering and
the DCED or DPED algorithm. The search of the best value of k must be conducted
at the same time as the optimization of the DPED or DCED algorithm. We plotted
the evolution of the number of features selected as a function of the parameter k for
both Xhiton and XIAMB in the Figure 6.3.
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Figure 6.3: Evolution of the number of features after filtering as a function of the
k best features ranked with the feature_importances_ attribute of a Random Forest
model (max_features = None, n_estimators = 1000) learned on all the features from
the observational dataset
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6.2.2 DPED and results

In this section, we will present the results on REGED using the DPED algorithm. At
this stage, we have different subsets of features obtained in the previous sections. We
focused on five of them :

• Xhiton : subset obtain from HITON PC algorithm with α = 0.05

• XIAMB : subset obtain from IAMB algorithm with α = 0.0001

• Xhiton filtered : subset obtain after filtering Xhiton

• XIAMB filtered : subset obtain after filtering XIAMB

• Xbest 21 : subset containing the 21 best features from a Random Forest ranking

We first applied DPED to REGED1 and then to REGED2 and we analyzed the
impact of the parameter ε on the output subset XDPED. We used the definitions of
good and bad features explained in the introduction of this chapter. All the scores are
computed with a Random Forest Classifier from Scikit Learn with 1000 estimators and
the other parameters are left by default. The algorithm provided to DPED to predict
all the inner models is also a Random Forest Classifier with 1000 estimators.

6.2.2.1 Reged1

The most important parameter of DPED is the threshold ε. Indeed, the higher ε is, the
larger the number of features in XDPED is. The problem is to find the optimal value of ε
which maximize the performance of the prediction. The "last" mode was only efficient
on Xbest 21 therefore we only showed the results of the max increment mode for the four
other subsets.

In Figure 6.4, we can see that both Xhiton and Xhiton filtered have the same kind of be-
havior but the maximum number of good features for Xhiton filtered is a little bit smaller
than for Xhiton. Here, the filtering was not particularly important even if it delayed
the first appearance of bad features. We also could take a higher value of k to have
Xhiton = Xhiton filtered. Under a particular value of ε which we called the critical ε (εcrit),
the output is only composed of one feature. In the case of Xhiton filtered, after that par-
ticular value, we immediately got all the possible good features. One can clearly see
the different distinct areas in both Figure 6.4(a) and 6.4(b). The first area is almost
the same and appears for ε < 0.01. For Xhiton filtered, the second area spans over 0.01
to 0.12 and includes six good features while for Xhiton this area is divided in two parts
and stops at 0.1 before including some bad features.
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Figure 6.4: Evolution of the number of good and bad features in XDPED as a function of
ε with Xhiton and Xhiton filtered as input of the DPED algorithm with the max increment
mode for REGED1

The evolution of the composition of XDPED with XIAMB and XIAMB filtered as input
is shown in Figure 6.5(a) and 6.5(b). Unlike the subsets obtained with the algorithm
HITON PC, the subsets XIAMB and XIAMB filtered include directly after the critical ε a
bad feature. We can notice that the filtering on XIAMB did not have the intended effect.
We were expecting it to remove the first bad feature included but this feature was not
a lowly predictive variable. The bad feature concerned is the feature 409 which is a
manipulated children. Throughout this section, the feature 409 was hard to process
because its predictions on both observational and experimental datasets were quite bad
and, therefore, it was hard to highlight the differences of predictions between the two
datasets.
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Figure 6.5: Evolution of the number of good and bad features in XDPED as a function of
ε with XIAMB and XIAMB filtered as input of the DPED algorithm with the max increment
mode for REGED1

Since the DPED algorithm also works with a set of highly predictive features, we
used Xbest 21 to show the differences between the two kind of preprocessing (causal and
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classical). On one hand, With the max increment mode, there are three distinct areas :
under εcrit, between 0.04 and 0.1 and one last area beyond 0.1 (see Figure 6.6(a)). On
the other hand, with the last mode, the number of features in XDPED increases on a
more regular basis (see Figure 6.6(b)). Moreover, the last mode is able to include more
good feature than the max increment mode before including a bad feature. We can
see in Table 6.1, the score obtained with different values of ε and for the two different
modes. The last mode has a significantly better performance for low values of ε and
close performances for higher values. In this context, the last mode is really helpful
because there are a lot of Others variables which have particular behavior and tends to
make harder the search of the good features.
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Figure 6.6: Evolution of the number of good and bad features in XDPED as a function
of ε with the 21 best features computed with the Random Forest feature_importances_
attribute as input of the DPED algorithm with the max increment and the last mode
for REGED1

Xbest 21 ε = 0.01 ε = 0.05
max increment 0.6356 0.8180

last 0.8973 0.7831

Table 6.1: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) learned on a subset obtained by applying the DPED al-
gorithm with the max increment and last mode and different values of ε to Xbest 21

The Table 6.2 shows the results for the prediction with XDPED for different values of ε
and different input subsets with the max increment mode. When ε = 0.05, the subsets
from HITON PC (Xhiton and Xhiton filtered) have the higher scores while for ε = 0.15,
XIAMB has the best score because this is the only subset with only one bad feature for
this particular value of ε.
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without DPED ε = 0.05 ε = 0.15
Xhiton 0.5789 0.9345 0.7647
XIAMB 0.5749 0.8108 0.8108

Xhiton filtered 0.5706 0.9228 0.7373
XIAMB filtered 0.5609 0.7746 0.5609
Xbest 21 0.5653 0.8180 0.6813

Table 6.2: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) for different subsets obtained by applying the DPED al-
gorithm with the max increment mode and different values of ε to five different subsets

On overall, all the scores significantly increased from predictions without DPED
and after processing with DPED if ε is small enough to avoid to include all the bad fea-
tures (e.g. XIAMB filtered with ε = 0.15). The best score is obtained with Xhiton showing
the importance of a causal feature selection before applying DPED. It is important to
notice that a single bad feature in XDPED drastically decreases the performance while
the addition of a good feature does not always lead to an improve of the prediction.

6.2.2.2 Reged2

After the good results obtained in the last section, we applied the DPED algorithm to
an heavily manipulated dataset. We were expecting poorer performances on REGED2
than on REGED1 because only two variables of the unique Markov Boundary are still
predictive and it is really hard to find them among the 999 features even with all the
different feature selection applied on the initial subset. The good features are only the
two parents while all the other features are considered as bad features since we do not
know which feature is manipulated except the 13 children. Our set of bad features is
not correct because we also considered as bad feature all the unamnipulated features
not included in the unique Markov Boundary such as independent variables and par-
ents of the parents of T. This can explained why we could have fair score with subset
containing bad features. When taking the approximation on the bad features definition
into account, the more important is to notice when DPED can find the parents and at
which cost (the number of errors).

The utility of filtering can be seen in Figures 6.7(a) and 6.7(b). Indeed, the filtering
removed lowly predictive features that would have been included in XDPED . The main
difference between Xhiton and Xhiton filtered is the number of bad features because they
both can find the two parents with the same value of ε. For ε < 0.02 with Xhiton filtered,
the only feature is a parent while with Xhiton the two first feature are one bad feature
and one good feature (here two features have the same score so they are both taken).
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Figure 6.7: Evolution of the number of good and bad features in XDPED as a function of
ε with Xhiton and Xhiton filtered as input of the DPED algorithm with the max increment
mode for REGED2

The impact of filtering can also be noticed in Figures 6.8(a) and 6.8(b). Filtering
has the same kind of effect on XIAMB than on Xhiton even if the number of bad features
is slightly higher with XIAMB and XIAMB filtered. They both manage to find the two
parents.
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Figure 6.8: Evolution of the number of good and bad features in XDPED as a function of
ε with XIAMB and XIAMB filtered as input of the DPED algorithm with the max increment
mode for REGED2

In Figure 6.9, we can see that both last mode and max increment mode included
quite a lot of bad features and quite fast but most of the bad features in XDPED subset
obtained from Xbest 21 are mainly false negative. It means that we labeled them as bad
features although they are still predictive. These false negatives features explained the
high score obtained with ε = 0.04 and Xbest 21 shown in Table 6.3.
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Figure 6.9: Evolution of the number of good and bad features in XDPED as a function
of ε with the 21 best features computed with the Random Forest feature_importances_
attribute as input of the DPED algorithm with the max increment and last mode for
REGED2

The performances on this dataset are far less good than on REGED1 but we still
can highlight some quite good results in particularly with Xhiton filtered and ε = 0.04. The
increase of the score between Xhiton and Xhiton filtered shows the interest of filtering. Both
subsets from IAMB algorithm did not predict very well even if XIAMB with ε = 0.04
managed to reach a significant better score than without DPED.

without DPED ε = 0.01 ε = 0.04
Xhiton 0.5150 0.6117 0.7101
XIAMB 0.5266 0.5003 0.6886

Xhiton filtered 0.5196 0.6275 0.7820
XIAMB filtered 0.5315 0.6275 0.6275
Xbest 21 0.5216 0.5033 0.7140

Table 6.3: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) for different subsets obtained by applying the DPED al-
gorithm with the max increment mode and different values of ε to five different subsets
for REGED2

The best score for REGED2 was obtained with the subset XDPED computed with
Xbest 21, ε = 0.05, the max increment mode and the REGED1 dataset as the experi-
mental set instead of REGED2 as it should be. The score reached the value of 0.8284.
This setup corresponds to the graph shown in Figure 6.6(a). We can see that there
are six good features for the REGED1 dataset. If we analyze a little bit deeper the
features in XDPED, we noticed that there were the two parents and four features which
are not members of the Markov Boundary. It appeared that these four variables are
not manipulated even in the REGED2 dataset, explaining why we could reach such a
good score on REGED2 with a subset found with REGED1.
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6.2.3 DCED and results

In this section, we will present the results on REGED using the DCED algorithm with
the same input subset as presented in the DPED section. We followed the same outline
and we also used a Random Forest Classier from Scikit Learn with 1000 estimators with
all the other parameters left by default to predict the scores. We only used the Spear-
man correlation coefficient because it appeared that the Pearson correlation coefficient
was slightly less efficient. Moreover, the Spearman coefficient is more versatile since it
does not made any assumption about the linearity of the correlation.

The DCED algorithm needs an observational and an experimental set. We used the
learning set and REGED1 for this section and REGED2 for the next section. Like the
DPED algorithm, the most important parameter is ε. The last mode was only pertinent
for Xbest 21 therefore we focused on the max increment mode for all the other subsets. All
the dependencies entailed in this section are between variables of the Markov Boundary
through their dependencies on the target. Parents and children are dependent on each
other because their are both correlated to the target. Indeed two variable considered
independent on the target can be dependent on each other.

The DCED algorithm is very sensitive to independent features and so to errors in
the output subsets of the causal discovery algorithms. One of the best way to remove
independent features is to use a filter feature selection but this is not the panacea and
even with filtering, this algorithm efficiency relies on the efficiency of the causal dis-
covery algorithms. For example, an independent feature have a very low score and the
increment between this variable and the first dependent variable is huge compared to
the increment between the scores of unmanipulated and manipulated variables of the
Markov Boundary. It has for effect to push out all the variables except the independent
ones.

6.2.3.1 REGED1

REGED1 is a lowly manipulated dataset allowing a good efficiency of the DCED algo-
rithm contrary to REGED2. Since both Xhiton and XIAMB are really good approximation
of the Markov Boundary without too many errors, we are expecting the filtering to have
limited beneficial impact. Indeed, between Figures 6.10(a) and 6.10(b), there are no
major improvements with filtering. On the contrary, the filtering reduced the number
of good features in the output subset and also decreased the robustness of the method
against bad features. The first bad feature for Xhiton is included around ε = 0.31 while
for Xhiton filtered the first bad feature is included around ε = 0.20.
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Figure 6.10: Evolution of the number of good and bad features in XDCED as a function
of ε with Xhiton and Xhiton filtered as input of the DCED algorithm with the max increment
mode for REGED1

The conclusions for the subsets from IAMB algorithm are mainly the same than for
the subsets from HITON PC algorithm. In Figure 6.11(a) and 6.11(b), we can see that
the first features are good features but the next iteration includes some bad features
for both XIAMB and XIAMB filtered with a worse evolution for XIAMB filtered.
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Figure 6.11: Evolution of the number of good and bad features in XDCED as a function of
ε with XIAMB and XIAMB filtered as input of the DCED algorithm with the max increment
mode for REGED1

We were expecting bad performance of the DCED algorithm on Xbest 21 because
there are a lot of features which are not direct parents or children of the target. The
impact of these features is not clear on the graph shown in Figures 6.12(a) and 6.12(b)
because these features are not manipulated. Indeed, even if they are less predictive
than the set of parents/children, they are considered as good features. The real impact
can be seen in Table 6.5 with scores around 0.5 for Xbest 21 with the max increment
for all the values of ε. The last mode was able to counterbalanced this effect since this
mode is not looking for a particular set of features with very low score but remove the
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feature with the highest score until the maximal increment reaches the threshold. The
scores with the last mode for Xbest 21 are shown in Table 6.4.
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Figure 6.12: Evolution of the number of good and bad features in XDCED as a function
of ε with Xbest 21 as input of the DCED algorithm with the max increment and last
mode for REGED1

last mode without DCED ε = 0.1 ε = 0.25
Xbest 21 0.5653 0.8835 0.7435

Table 6.4: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) for different subsets obtained by applying the DCED al-
gorithm with the last mode and different values of ε to Xbest 21

We were able to reach some really good score with DCED especially for very low
values of ε. The scores obtained with Xhiton, Xhiton filtered and XIAMB filtered are computed
with only one feature to learn the model. The scores started to drastically decrease
when bad features are included.

max increment mode without DCED ε = 0.01 ε = 0.1 ε = 0.25
Xhiton 0.5789 0.9735 0.9205 0.9343
XIAMB 0.5749 0.5807 0.8019 0.8019

Xhiton filtered 0.5706 0.9729 0.9216 0.7989
XIAMB filtered 0.5609 0.9735 0.9735 0.5606
Xbest 21 0.5653 0.4998 0.5004 0.4996

Table 6.5: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) for different subsets obtained by applying the DCED al-
gorithm with the max increment mode and different values of ε to five different subsets
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6.2.3.2 REGED2

As explained in the limitations section of the DCED algorithm, it is really hard to find
the parents when all the children are manipulated because the correlation between the
parents is not systematic. If they are correlated in the observational dataset and one of
the parent is manipulated in the experimental dataset, the DCED algorithm tends to
reject the manipulated parents because there is a variation of the correlation between
the two datasets. Moreover, if there are only two parents, the algorithm is not able to
distinguish which one is manipulated and rejects both parents.

In Figure 6.13, we can see the evolution of the number of features in XDCED. The
first included feature is a bad feature and when the good features are added to XDCED

the algorithm also includes a lot of bad features. The first included feature is a lowly
correlated feature. Hence, its score is very low and the algorithm selects it for a wide
range of ε before starting to include an other subset of features which have almost the
same score. It is important to notice that the two parents have exactly the same be-
havior than a lot of bad features. It is really hard to find them in this context.
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Figure 6.13: Evolution of the number of good and bad features in XDCED as a function
of ε with Xhiton and Xhiton filtered as input of the DCED algorithm with the max increment
mode for REGED2

The evolution of the number of features in XDCED is roughly the same for the
subsets obtained with HITON PC and the subsets obtained with IAMB. Nevertheless,
with XIAMB filtered, we can notice that the number of bad features are slightly lower than
for the three other subsets as it can be seen in Figure 6.14.
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Figure 6.14: Evolution of the number of good and bad features in XDPED as a function of
ε with XIAMB and XIAMB filtered as input of the DCED algorithm with the max increment
mode for REGED2

As said previously, the DCED algorithm has poor performances when there are
some non-parent and non-children features in the input subset because these features
do not behave like the parents and the children and so lead to wrong conclusion. A
good example of the limitations described in Section 4.3.3 of the DCED algorithm is
shown in Figure 6.16(a). Indeed, some features have such low scores that they literally
push the other features out. We can clearly see in Figure 6.15 that the four first features
has significantly lower score than the others although they are neither a parent nor a
children.
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Figure 6.15: Scores of the features in Xbest 21 with the DCED algorithm and the max
increment mode for the first iteration. The first column is the score, the second is the id
of the features and the last column is the increment between two consecutive features

The last mode can decrease the negative impact of such features but have limited
effects as it can be seen in Figure 6.16(b).
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Figure 6.16: Evolution of the number of good and bad features in XDPED as a function
of ε with Xbest 21 as input of the DCED algorithm with the max increment and last
mode for REGED1

None of the presented subsets with the DCED algorithm were able to retrieve the
good features and always included a relatively high number of bad features leading to
bad predictions and low scores. All the scores are reported in the Table 6.6. The only
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subset with an improvement with DCED is XIAMB filtered. As said before, it is the only
subset limiting the number of bad features in XDCED for low values of ε.

max increment mode without DCED ε = 0.05 ε = 0.25
Xhiton 0.5150 0.5036 0.5320
XIAMB 0.5266 0.4953 0.5409

Xhiton filtered 0.5196 0.4997 0.5434
XIAMB filtered 0.5315 0.6056 0.5315
Xbest 21 0.5216 0.5033 0.5006

Table 6.6: Scores of the predictions made with a Random Forest algo-
rithm(n_estimators=1000) for different subsets obtained by applying the DCED al-
gorithm with the max increment mode and different values of ε to five different subsets
for REGED2

6.3 P1000
In this section, we reported the results for the P1000 dataset. We focused our analysis
on the two subsets XIAMB1 and XIAMB2 described in the last chapter. We first showed
the results of a filtering on these subsets before applying the DPED and DCED algo-
rithms.

All the subsets are used to learn some models to predict the target. We used the
mean absolute error to assess the performance of each subset. Since the P1000 dataset
is a regression problem, we used a Random Forest Regressor from Scikit Learn with
1000 estimators while the other parameters are left by default to predict the target.

A brief description of the two subsets used in this section can be find below :

• XIAMB1 is the output subset of the algorithm IAMB with α = 0.0002

• XIAMB2 is the output subset of the algorithm IAMB with α = 0.005

In this dataset, both children are manipulated and the good features only contain
the parents and all the unamnipulated features not included in the Markov Boundary
since there are no spouses.

6.3.1 Features filtering in the approximated Markov Blanket

We used the same function as for REGED (feature_filtering) but we replaced the
Random Forest Classifier by a Random Forest Regressor which also implements a fea-
ture_importances_ attributes. We arbitrarily chose k = 40. Since the subset XIAMB1 is
an exact approximation of the true Markov Boundary, the filtering was not really useful
but we can highlight the fact that it does not affect the composition of the subset (see
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Figure 6.17).
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Figure 6.17: Nature of the features of the subset XIAMB_1 before and after filtering
with the 40 best features ranked with the feature_importances_ attribute of a Ran-
dom Forest regressor (max_features = None, n_estimators = 1000) learned on all the
features from the observational dataset for P1000

On the contrary, there are three false positives features in XIAMB2. These features
are part of the added independent variables (see description of the P1000 dataset in
Section 3.3). Therefore they perfectly fit in the targeted features that we try to remove
by filtering because they can be very harmful to the efficiency of DPED and DCED as
we will show in the next section. In Figure 6.18, we can see that the filter manages
to remove the false positive features and the output subset XIAMB2 filtered is exactly the
same as XIAMB1 or the true Markov Boundary.
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Figure 6.18: Nature of the features of the subset XIAMB2 before and after filtering with
the 40 best features ranked with the feature_importances_ attribute of a Random
Forest model (max_features = None, n_estimators = 1000) learned on all the features
from the observational dataset for P1000
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6.3.2 DPED and results

From the previous section, after filtering, we realized that XIAMB1, XIAMB1 filtered and
XIAMB2 filtered are exactly the same and correspond to the Markov Boundary. Hence, we
only showed the results for XIAMB1 and XIAMB2. There is no major differences between
the max increment and the last mode except for very low values of ε as it can be seen in
Figure 6.19. The graph are likely to be similar because of the small size of XIAMB1. The
DPED algorithm managed to discover all the good features with both mode. These
good features are the parents of the target and so they are the optimal subset for the
manipulated dataset.
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Figure 6.19: Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB1 as input of the DPED algorithm with the max increment and the last
mode for the experimental set

Intuitively, we can assume that the best performances and so the lowest errors are
reached when XDPED contains only the three parents. We can see in Figure 6.20 that
the value of 0.9 which is the lowest error is reached between ε = 0.05 and ε = 0.26
where XDPED is only composed of the parents. We can also notice the big negative
impact of the bad features on the error.
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(a) With the max increment mode
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(b) With the last mode

Figure 6.20: Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB1 as input of the DPED algorithm with the max increment and
the last mode

Figures 6.21 and 6.22 perfectly illustrate the effect of lowly predictive variable on
the evolution of the nature of the features in XDPED as a function of ε. For low values
of ε, only the independent features are included in XDPED leading to high errors of
prediction even if they are considered as good features since they are not manipulated.
They literally push the good and highly predictive features out of the first group of
selected features. We need to use an higher value of ε to include the parents in this
case. They delayed the detection of the parents because of their very low scores. On the
other hand, they also pushed the bad features. Hence, the minimal value of ε to include
the first bad feature is around 0.9. It is hard to be categorical about their impact on
DPED because they have both negative and positive effects even if the positive effects
are not well defined and could be not recurrent. There are no big differences between
the max increment and the last mode.
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Figure 6.21: Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB2 as input of the DPED algorithm with the max increment and the last
mode for the experimental set
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(a) With the max increment mode
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(b) With the last mode

Figure 6.22: Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB2 as input of the DPED algorithm with the max increment and
the last mode

6.3.3 DCED and results

In this section, we showed the results obtained with the DCED algorithm for XIAMB1

and XIAMB2. We only used the Spearman correlation coefficient. When the size of
the input subset of features is small, the last mode has better performances because
it ensures to check the impact of each feature on the score of the others. The graphs
in Figure 6.23 show that the last mode managed to find two out of the three parents
immediately while with the max increment mode the DCED algorithm only found one
parent. Moreover, in Figure 6.23(b), we can see that the third parent is included quite
fast. The last mode also started to include bad features for lower values of ε than the
max increment mode.
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Figure 6.23: Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB1 as input of the DCED algorithm with the max increment and the last
mode for the experimental set

The differences between the error graph for both modes highlight the robustness
of the last mode compared to the max increment mode (Figure 6.24). Indeed, they
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both were able to retrieve the optimal subset but the range of values for ε is smaller for
the max increment mode. More important, outside of this range, the max increment
mode has a really bad performance while the last mode still has good prediction even
if XDPED is not the optimal subset.
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(b) With the last mode

Figure 6.24: Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB1 as input of the DCED algorithm with the max increment and
the last mode

With XIAMB2, the negative impact of the independent features can clearly be shown
especially for the max increment mode. For this mode, the parents could be found
but only for a small range of ε and not near zero making harder the recognition of
this range as it can be seen in Figures 6.25(a) and 6.26(a). The last mode was able to
counterbalance the negative impact of the independent features making easier to find
the optimal subset (Figures 6.25(b) and 6.26(b)). For XIAMB2, the optimal subset is
composed of the six good features because it was impossible to find the three parents
with the DCED algorithms without including the three independent features.
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Figure 6.25: Evolution of the number of good and bad features in XDPED as a function
of ε with XIAMB2 as input of the DCED algorithm with the max increment and the last
mode for the experimental set
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The evolution of the error computed with XDCED found with the max increment
mode and XIAMB2 is shown in Figure 6.26(a). We can see that the smallest error only
appears for a small range of ε while for the rest of the graph the error is very high.
With the last mode, the range of values for ε with the same lowest error is wider than
the range with the max increment mode.
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(b) With the last mode

Figure 6.26: Evolution of the error on the prediction for the experimental set as a
function of ε with XIAMB2 as input of the DCED algorithm with the max increment and
the last mode

We can assess the robustness of these algorithms by looking on the range of values
for ε for which they were able to retrieve a good set of features for the prediction. In
the case of the P1000 dataset, the DCED algorithm was less robust than the DPED
algorithm but still managed to find a very good subset of features even if it is harder
to find an optimal value of the parameter ε.

6.4 Chandran and Singh
In this section, we described the results obtained with the Chandran and Singh datasets.
We did not have any information about the local graph or their distribution. We applied
the three stages previously described to find a subset of features with only predictive
features. We used Singh as the observational dataset and Chandran as the experimental
dataset. Therefore we considered that we had access to the target of Singh but not to
the target of Chandran. The scores obtained on Chandran through all stages are shown
in Table 6.7. The scores are all computed with a Random Forest Classifier with 1000
estimators and the other parameters are left by default.

We started by computing a reference score with all the features. Then we tried to
apply a classical feature selection based on the Random Forest features_importances_
attribute ranking. We selected the 20 best features to build the subset Xbest 20. Then,
we decided to use a local causal algorithm to find a new subset of features. We chose
the HITON PC algorithm with α = 0.05 and we called the output subset Xhiton. With
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the two first feature selection, the scores slightly decreased.

The second stage consisted in applying a filter to Xhiton. We compared the 40 best
features from Random Forest ranking with the features in Xhiton and only selected the
features in both subsets. We called this new subset Xhiton filtered. We finally managed
to improve the performance of the prediction.

Features selected score
All features 0.7448
Xbest 20 0.7144
Xhiton 0.7060

Xhiton filtered 0.7990

Table 6.7: Scores of the predictions made with a Random Forest Classi-
fier(n_estimators=1000) for different subsets of features for Chandran

The third stage was to apply the DPED algorithm to Xhiton filtered to try to remove
all the bad features that we could not find before. The evolution of the score as a
function of the threshold ε is shown in Figure 6.27. We can notice that the best score
is around 0.85 and so an increase of 0.1 between the score with all the features and the
best score.

The size of the output subset of the DPED algorithm XDPED for the optimal value
of ε is composed of only two features. It means that we managed to increase the score
by 0.1 while reducing by a factor 6000 the size of the input subset. This is a very
important point when we want to limit the number of experimentation without loss of
accuracy.
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Figure 6.27: Evolution of the score on the prediction for the Chandran dataset as a
function of ε with Xhiton filtered as input of the DPED algorithm with the last mode
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6.5 conclusion
The conclusion for both REGED and P1000 dataset are likely the same even if they
present slightly different situations. On REGED, some manipulated features were hard
to find due to their low performance when used alone to learn a model while on P1000
the major problem was the independent features in the input subset.

On overall, both DPED and DCED had significantly positive impact on the pre-
diction of the target for all the manipulated dataset (REGED1,REGED2 and P1000
experimental dataset). We also noticed that both algorithms showed their limits on
heavily manipulated dataset like REGED2. Indeed, they were not able to isolate the
two parents with a proper setting even if we found a subset with the two parents and
four unmanipulated external variables but with the wrong setting. This performance
was realized with the wrong dataset (we used the dataset REGED1 as input of the
DPED algorithm but we used the output subset to predict on REGED2).

The filtering applied to XS (the input subset of tested features) was really important
for P1000 to remove the independent features but had mitigated results for REGED
because the filtering mainly removed good features since both Xhiton and XIAMB were
really good approximation of the Markov Boundary. It appeared that the removed
features were predictive enough and so should be kept. Therefore, it was important to
set the parameter k with a value large enough to avoid to remove them. In that case,
the problem was to find a correct setting describing the highly and lowly predictive
features. When the features are independent, it is easy to retrieve them because they
are not predictive at all but if we want to treat lowly predictive features we need to
define what is lowly. This is done through the parameter k.

We only used Random Forest algorithms in this chapter but they were really time
consuming especially for the DPED since the number of learned models is proportional
to (k + 1) ∗ n with k the number of fold and n the number of features in XS. From
the computation time point of view, the DCED algorithm was much faster than DPED
because the computation time of the Spearman correlation was lower than the fitting
time of a Random Forest predictor.

Finally, from all the results of the chapter 6, we can conclude that including a bad
feature is more harmful than omitting a good feature in the subset used to predict the
target. Therefore, it is sometimes more interesting to use a lower value of ε to ensure
to have only good features in the final susbet.
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Chapter 7

Conclusion and perspectives

In this master’s thesis, we proposed a three stage process to select an optimal subset
of features for predicting a manipulated dataset :

1. Select relevant feature subset XS from observational data (eg. Using svm, random
forest or causal methods)

2. Filter out lowly predictive features from XS such as independent features

3. Filter out manipulated non-parent features from XSfiltered using both observational
and experimental data.

The stage 3 involved two newly developed algorithms (DPED and DCED) to ex-
tract information from both observational and experimental dataset. These algorithms
were shown to be quite effective if the number of manipulations is not too large (see
REGED2). The last stage was focus on predicting the target of the experimental test
set with a model learned on the subset found in stage 3. In the framework of this master
thesis, we limited our analysis to the Random Forest predictor thanks to its efficiency.

The algorithms developed during this master’s thesis are detailed in Chapter 4 where
the motivation and the implementation are described. Their theoretical limitations are
also exposed. It appeared that the most sensitive parameter is the input subset. There-
fore, the efficiency of the stage 1 and 2 is very important to reach good performance.

Chapter 5 detailed the results obtained in stage 1 as well as their prediction per-
formance to highlight the limitations of classical feature selection. We also compared
the classical and causal approach about the Markov Boundary discovery. Finally, we
selected some representative subset of features to process in stage 2.

Chapter 6 presented the results obtained when we tried to extract information from
the manipulation to improve the performances on the experimental test set. This chap-
ter corresponds to the stage 2, 3 and the last stage. We first showed the impact of fil-
tering on the subsets before applying the filtered subset XSfiltered to DPED and DCED.
We highlighted the difficulties to find a good definition of a lowly predictive feature
with the aid of the parameter k (the number of considered features in the ranking).
We assessed the efficiency of DPED and DCED to retrieve a good subset of features
as a function of the main parameter ε. Finally, we used some output subsets found
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at the stage 3 to predict the targets of the respective experimental test set. A clear
improve of the prediction was noticed especially for REGED1 and P1000. The heavily
manipulated dataset REGED2 was really hard to process but we managed to obtain
quite good results for a particular setting.

On the real data represented by the datasets Chandran and Singh, the DPED al-
gorithm managed to improve the predictive efficiency while drastically reducing the
number of selected features. This results is really rewarding because the DPED algo-
rithm was mainly tested during its development on artificial datasets.

7.1 Perspectives and further improvements

7.1.1 DPED

We restricted our analysis to the Random Forest algorithm but it could be interesting
to use other learning algorithms to train all the inner models of the DPED algorithms.

The score computed to rank the features is the mean absolute error because it can
be used for both classification and regression but we think that other metrics such as
balanced accuracy ( 0.5 ∗ (specificity + sensitivity)) for classification can be very effi-
cient.

The parameter ε has a huge impact on the final result and it could be very useful
to implement an automatic way to stop the iterative process when the scores of the
features are under a certain threshold . The basic idea would be to shuffle the features
in the manipulated dataset to simulate a full manipulated distribution and compute a
statistically representative value of the score over which the features are considered as
bad features.

7.1.2 DCED

In this master thesis, we focused on the Spearman and Pearson correlations but a deeper
comparison with other correlation statistical tests should be done like χ2 test.

The DCED algorithm is based on the same criteria as DPED to stop the iterative
process. Currently, we let the user set this parameter and it could be interesting to
implement an automatic process to find the best value of the threshold criteria ε.
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