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Abstract

The field of micromechanics aims to model the behaviour of the continuum of the materials at mi-

croscopical level. This work takes a code for a Mean-Field-Homogenization scheme for composite

materials and applies a different derivation with the aim of being able to model the continuous reality;

to then use a mathematical discretization and be able to draw the stress-strain curve of a number

of two-phase composite materials. This model is based on the limit of the classical MFH system of

equations to an infinitesimally small time step. This results in a new strain localization tensor that

relates the strains in the matrix and inclusion phases, allowing to modify said system and obtain an

improved solution.

Wit this new model, one can obtain results with a similar accuracy with respect to the original in

one of its variants, the residual-incremental-secant scheme, with a bigger step size in the stress-strain

curve. Therefore, the modification of the code performed could be potentially adapted to obtain faster

first-order results with an acceptable accuracy.
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Chapter 1

Introduction

Be it buildings, bridges or aircraft, one crucial point of an engineer’s job is to have an understanding

of the forces that interact within a structure. The columns not being thick enough or the momentum

over a heavy wing are miscalculated, fatal consequences can occur.

This is where the field of continuum mechanics becomes important. One of its aims is to explain the

physical behaviour of solid materials when subject to different forces. Being able to determine the

limits of a material in different terms allows not only to push the materials knowing they will not fail.

One can then obtain better performance and achieve more efficiency in terms of design, while also

improving the safety conditions during operation.

When dealing with complex structures and geometries, the theoretical tools that one has at hand

become more complicated to use in an efficient way. This is because at some point, idealizing the whole

structure as one block and computing approximations stops being accurate, and more sophisticated

methods appear. In particular, the Finite Element Method (FEM) is one of the most popular to make

structural analysis.

The main idea is to break down the structure to analyze in several pieces, or ”elements” which are

connected to each other through boundaryes. Inside each of these elements, the material laws are

applied with the given geometry in order to compute the information of that specific element. The

delicate point is that the elements have to exchange information to each other in order to accurately

represent the problem as a whole. In order to achieve this, a set of boundary conditions is given as

input to the problem, as well as the loads that are expected to appear. These boundary conditions

are paired with the ordinary or partial differential equations that represent the physics of the problem

at hand.

This makes the computation of the problem a matter of solving a large number of equations which

depends on the total degrees of freedom of the structure. Each element has its own degrees of freedom

based on the characteristics of the problem (it may have an axis fixed, be 2 or 3 dimensional, etc...).

The differential equations have to be solved at each of the elements that the structure is broken down

into. Inside these elements, there is a known number of integration points, at which the local variables

are used to perform a numerical integration. To compute these integrals, a set of boundary conditions
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and loads, defined by the problem, are needed.

The fact that the integration is numerical instead of analytical means that the FEM computations

have a certain accuracy with respect to the real behaviour of the material or structure being tested.

Still, FEM analysis is a faster and cheaper way of testing designs before assessing which is the best

solution and proceeding with the real world testing.

FEM methods are not new and, in general, the current products offer very accurate results for most

of the uses when homogeneous materials are used. However, some industries, specially the aerospace,

have been increasing their use of composite materials in the past few years [14], [15], [2].

Figure 1.1: Use of composites in aviation in the past decades. Picture taken from [2].

Composite materials are different from commonly used materials in the sense that their microstructure

is not homogeneous. Composite materials are constituted by two different materials (also called

phases): the material and the inclusions. The inclusions are strong elements whose purpose is to

withstand the loads imposed on the composite material. The matrix, on the other hand, is a less

resistant element that serves for holding the inclusion phase, protecting the fibre and transmitting the

loads to the inclusions.
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Figure 1.2: Illustration of a composite material. What is called a ply is represented, and a small
piece to showcase the microstructure is zoomed in. The two phases, matrix and inclusion, are clearly
indicated. Picture taken from [3].

The main advantage of using two different materials is the potential to select each phase in order to

taylor the mechanical properties of the resulting composite for a specific application. One of the most

common applications in aerospace is to mix a light matrix with an inclusion that is very resistant.

The result is a highly resistant material that is at the same time lighter than metal. Some of the most

common composites for this applications include Glass Fibre Reinforced Polymers (GFRP) or Carbon

Fibre Reinforced Polymers (CFRP). Metal Matrix Composites (MMC) are also very commonly used

in a broader field of applications.

On the downside of things, the use of composites also presents a set of drawbacks. Some of them

include manufacturing complications, increased complexity of failure mechanics and the fact that

composites present anisotropic properties. Under the frame of this project, focus will be made on the

fact that the microstructure is inhomogeneous. Figure 1.3 illustrates how the microstructure around

an integration point could be when it is taken from a non homogeneous material such as composites.

This increased complexity in the material increases the difficulty of computations.

Figure 1.3: Zoom to an arbitrary area at a point of integration for a heterogeneous microstructure.
Picture taken from [4].
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As mentioned previously, in FEM analysis the integration of the differential equations is performed

using local variables at the integration point. However, these local variables are evaluated at the

macroscopic level, ranging from a few milimiters up to meters. For the most used metals in aerospace,

such as Aluminum or Titanium, it is possible to be accurately modelled with homogeneous mechanical

properties. However, for composite materials, the microstructure being heterogeneous means that

there must be an information exchange between the two different scales (macroscopic and microscopi),

specially in non-linear cases. This depends on the type of the analysis carried out and the complexities

that one intends to model and simulate [16], [17]. In the worst cases, the inhomogeneities can make

classical FEM analysis have an error of the order of magnitude of 10% or more [18]. The lack of more

reliable virtual solutions for the implementation of composite materials makes it necessary to use a lot

of physical testing in various phases of the whole process. This is translated to more time and cost.

In order to reduce this error and provide quicker solutions, a number of methods have appeared with

the aim of characterizing the composite material and allow a more accurate FEM computation at the

macroscopic level. Some methods adapt the FEM to use it to compute the microstructural properties

[19], [13], [20]. Other known types include semi-analytical methods; Kanouté et al. provide a review

of different methods in [21]. Another promising branch of methods is called the homogenization. The

method developed in this project falls inside this branch.

The main idea of homogenization is to generate and compute a Representative Volume Element

(RVE) around an integration point. This RVE is a portion of the microstructure that serves as a

statistical representation of the behaviour at macroscopic scale. The RVE is used to obtain a set of

characteristics that can then be used for the FEM formulation. When computing deformations, since

the microstructure may vary with load and time, the RVE has to be recomputed whenever there is a

change in load at macroscopic level. This defines time or strain increments, depending on if the material

is dependent or not on the strain rate. Hence, there is a feedback loop in which the macroscopic FEM

solver sends information to the homogenization method, which computes the RVE to be used for the

whole model and gives it back to the FEM to perform a new calculation. Ultimately, this results in

an iterative procedure that converges on the macroscopic result for the stress-strain relation. it must

be noted that computing an RVE is very time consuming so the semi-analytical methods are a way of

tackling this setback.

The main pillars for homogenization methods are the Rule of mixtures, relating the stress and strain

of the material phases and their volumetric fractions with the stress and strain at the macroscopic

level of the composite; and the Eshelby solution [22]. This solution provides a tensor coming from the

resolution of the problem of obtaining the strain field around an elastic inclusion in an infinite media.

This tensor, along with a number of assumptions on the inclusions interactions allows to obtain models

for the microstructure of the RVE. Depending on the model used (such as the Reuss [23], Voigt [24] or

the Mori-Tanaka [25]), different expressions are obtained for what is called a strain localization tensor.

This tensor relates the strain field in the inclusion with either the strain field of the matrix phase or

the macroscopic phase.
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The strain localization tensor, along with the rule of mixtures for the stress and strain in the composite

allow to write a system of equations that, when solved, gives the macroscopic stress and strain field

of the RVE or, in other words, the homogenized characteristics around the integration point for the

FEM solver.

What this project aims to achieve is to implement a new formulation, based on the incremental-secant

mean-field homogenization (MFH) proposed by Wu et al. in [1]. Said paper serves as reference for the

present work. The method developed there, which relies on a finite time integration, proved to require

a small size of the strain increment (or time step/increment, if the material is strain-rate dependent)

in order to reach a converged solution. This leads to the necessity of increasing the number of strain

increments used just for the sake of accuracy, which increases the computational time.

The continuous formulation developed herein shows an alternative version of that same code that, in

theory, could allow more flexibility in its time integration (methods, size of increments...).

As will be seen in the following chapters, the basis of the new formulation is to develop a new strain

localization tensor under the condition that the time increment is infinitesimally small. This will

provide an approach different from the original paper’s one which, again, could allow for a faster first

moment calculation.

Before going into the homogenization methods, the constitutive laws used at component level are

detailed in Chapter 2. As mentioned, there are different scales of interest in the whole MFH procedure.

The J2 elasto-plasticity model explained in said chapter is used for each material phase of the composite

separately. Most of it rests separatedly from the MFH theory but, in some cases, concepts from MFH

are be introduced. These cases have the necessary remark and are explained further in Chapters 3

and the following.

Chapter 3 explains the resolution scheme that was developed by Wu et al. in [1], the paper that

serves as basis for the present work. The concepts that have been mentioned in the introduction are

explained in detail. Furthermore, notation for both macroscopic and microscopic scale is introduced.

After explaining the base formulation, Chapter 4 introduces the proposed one. The main hypothesis

for the work is explained and then the new strain localization tensor is developed. Afterwards, the

new code (which is the result of a modification of the original) is outlined.

Chapter 5 includes the results of the new formulation. A comparison with the results from both [1]

and the very same experiments the paper uses to check its code against is made and partial conclusions

are drawn from the results.

Chapters 6 and 7 give closure to the document by assesing the results and the feasibility of the

formulation developed, as well as commenting on improvement possibilities to the code that can be

introduced in future works.
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Chapter 2

J2 elasto-plasticity

2.1 Constitutive Elasto-Plasticity

The aim of this section is to present the constitutive material laws that are used in the project. These

are implemented with the objective of obtaining the stress-strain curve of the phase by computing a

set of mechanical states. Each state has a set of properties (such as the internal variables) which can

be used to determine the stress when the strain is given. For this, apart from the stress-strain relation

itself, the so-called J2 plasticity theory is used, devised by von Mises in [26].

The stress-strain relation in elastic conditions is modelled by Hooke’s law for continuous media,

σ = Cel : εel , (2.1)

where Cel is Hooke’s operator. It characterizes the interaction between the stress and strain tensors

in elastic conditions.

When there is also plastic deformation, the total strain can be additively decomposed into elastic and

plastic parts, as ε = εel + εp (for small deformations). When this happens, one can re-write Eq. (2.1)

with the elastic strain as a function of the total and plastic ones. This strain separation is easily seen

in Figure 2.1.
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Figure 2.1: Separation of the strains in a typical stress-strain curve. Point A presents purely elastic
behaviour, whereas B has undergone plasticity. Picture taken from [5].

Plugging this decomposition into Equation (2.1) yields:

σ = Cel : (ε− εp) (2.2)

The J2 elasto-plasticity model defines an equivalent stress (the so-called von Mises Stress) to which

the material is subjected. This stress is used as an indicator of yielding in said material, by comparing

it with the yielding point. The theory defines a ”yield surface function” f :

f = σeq − σY −R(p) ≤ 0 (2.3)

Here, σY is the initial yield stress of the material, which does not change nor with time nor with stress.

R(p) is the hardening model applied, whose expression (and therefore its derivatives) is known and

dependent on the accumulated plastic deformation, p. The expression for the equivalent plastic strain

is:

p(t) =

∫ t

0

√
2

3
ε̇p : ε̇pdt (2.4)

The term ε̇p is the plastic strain rate, the variation of plastic strain with time. It is modelled by the

plastic flow rule:

8



ε̇p = ṗ
∂f

∂σ
(2.5)

Here, ṗ is the plastic multiplier and it is always equal to or greater than zero. This is defined by the

state of the yield function: In elasticity, ṗ = 0 (plastic strain is not increasing, so p does not vary),

whereas ṗ > 0 in plasticity (p increases, which shows that ε̇p is not zero and therefore εp is changing).

Lastly, σeq is the aforementioned von Mises stress. Its expression reads:

σeq =

√
3

2
s : s

s = Idev : σ

(2.6)

Here, Idev represents the deviatoric part of the fourth order identity tensor. It is computed as Idev =

I − 1
3I ⊗ I.

As said, the von Mises stress is used to evaluate if there is plasticity. In the cases where f < 0, one

can say that the evaluated state is ”inside” the yield surface, and is therefore in elastic state. In the

opposite case, there is already plasticity involved. In this model, basically, the equivalent stress cannot

be greater than the initial yielding stress plus the hardening in order to avoid plasticity.

The plastic regime introduces some nonlinearities that make it more difficult to compute the stress

from a known variation in strain. The next two sections detail how the theory tackles this case.

2.2 Radial return mapping

The so-called radial return mapping allows to construct the stress-strain curve of a material with the

stress field being unknown. In order to do this, a different mechanical state, corresponding to a point

of the stress-strain curve, is considered at a specific time tn. With the known input of the strain

change from tn to the next point tn+1, ∆εn+1, one can use the method here explained to obtain the

stress at tn+1 or, in other words, update the stress field. Doing this iteratively, one can compute the

curve step by step

For the radial return mapping, a very important concept is needed, called the plastic flow direction.

It is the derivative of the yield function as a function of the stress,
∂f

∂σ
. The plastic flow direction is

commonly indicated as N . Its expression is given by:

Nn+1 =
3

2

Idev : σn+1

σeqn+1

(2.7)

This direction is normally pointing to the origin of the stress space, as seen in Figure 2.2. It is worth

noting that this quantity is defined also for the elastic region, indicating the possible direction in case

9



there were plasticity. This quantity is, however, not used in such cases.

Figure 2.2: Illustration of the radial return mapping. The image shows the classical direction pointing
to the origin. Picture taken from [1].

Pursuing the objective of updating the stress field, the trial stress σtrn+1 is defined. This is a guess

on what the stress will be when the updated strain field is applied; to be corrected using a predictor-

corrector method. The trial stress is assumed to follow an elastic behaviour, i.e.,

σtrn+1 = σn +Cel : ∆εn+1 (2.8)

Therefore, the stress in the updated mechanical state is equal to the stress in the previous onem plus

the change produced by the applied strain field. The trial stress can also be used to define a trial

plastic flow direction, N tr.

N tr
n+1 =

3

2

Idev : σtrn+1(
σtrn+1

)eq (2.9)

Figure 2.3 shows the interpretation of the general guess on the stress-strain curve.
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Figure 2.3: Illustration of the radial return mapping. The stress and strain tensors at time tn, as well
as the variation in strain, ∆ε, are known. What is sought with the radial return mapping is the new
stress state, σn+1. Picture taken from [5]

The yield condition in Equation (2.3) is tested with the obtained trial stress. If the material is under

elasticity, the trial stress is confirmed to be the correct one and the next mechanical state can be

evaluated. Clearly the interest of this method is to compute the stress when outside the elastic region,

therefore, plasticity will be assumed during the rest of the chapter. It is important to clarify

this, as some equations (e.g. Equation (2.14)) make sense under plasticity conditions.

When the material is under plasticity, the plastic corrector is used to calculate the updated stress.

With this correction, the trial point is projected over the closest point of the yield surface. Due to

hardening, this yield surface may vary from one time step to the next one, so the point is projected

over the yield surface at tn+1. The correction yields:

σn+1 = σtrn+1 −Cel : ∆pNn+1 (2.10)

Where ∆p is the variation in accumulated plastic deformation from time tn to time tn+1, such that

∆p = pn+1 − pn.

Since the yield criterion used is isotropic, Cel can be also be assumed to be isotropic. This allows to

write Cel = 3κelIvol + 2µelIdev, with µel the elastic shear stiffness of the material and κel the elastic

bulk modulus. Furthermore, the trace of the updated stress is the same as the trace of the trial stress,

so that one can write simply the deviatoric part of both of them (if N is deviatoric). Furthermore, if

N is deviatoric, one can write Cel : N = 2µelN . Modifying Equation (2.10):

sn+1 = strn+1 − 2µel∆pNn+1 (2.11)

One can also input Equation (2.7), both for the stress and trial stress.
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2

3
Nn+1σ

eq
n+1 =

2

3
N tr
n+1

(
σtrn+1

)eq − 2µel∆pNn+1 (2.12)

Since the plastic flow direction has its module normalized and, by Equation (2.12), they have the same

direction, it is deduced that: N = N tr. This allows to cancel it out and write:

(σn+1)eq =
(
σtrn+1

)eq − 3µel∆p (2.13)

Lastly, the yield function is evaluated at this updated stress in order to have a system of two equations

with two unknowns:

(σn+1)eq − σY −R(p) = 0 (2.14)

Equations (2.13) and (2.14) can be solved in a system in order to obtain the updated stress, (σn+1)eq,

and the change in plastic deformation, ∆p1. The full stress field can then be obtained from the

equivalent stress by means of the plastic flow direction.

2.3 Modified return mapping

The radial return mapping presented in the previous section shall also be modified for the present work.

In the Mean-Field Homogenization scheme that is proposed here, the updated stress is calculated not

directly from the previous state at tn, but rather from a residual stress state. This raises the need

for the use of a different operator that is not the elastic one, Cel. In order for this operator to be

isotropic, the modified return mapping described in this section has to be used.

The mentioned residual stress state corresponds to a virtual unloading performed at the mechanical

state at tn. This unloading is elastic, and thus the following is defined:

σresn = σn −Cel : ∆εun , (2.15)

where ∆εu is the so-called unloading strain, which is commonly defined inside the frame of the MFH

scheme. The main interest of this unloading strain is the fact that, if defined, the operator CSr does

not need to be isotropized and can therefore be used for the yield criteria as is, making computations

much easier. This operator is explained few paragraphs below.

A new stress increment can be defined with the superscript r, indicating the variation from the residual

state to the new mechanical state (as opposed to the change from the previous loaded state to the

updated one):

1Its derivatives are reported in Section 2.4.
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∆σrn+1 = σn+1 − σresn (2.16)

In the same fashion, the residual strain increment relating both states is:

∆εrn+1 = εn+1 − εresn (2.17)

The introduced residual stress state can be related to the updated load state through the use of the

so-called incremental-secant operator. More detail on this is be given in Section 3.3. Nevertheless,

the expression for the stress at time tn+1 is given in Equation (2.18), showcasing the use of the

incremental-secant operator.

σn+1 = σresn +CSr : ∆εrn+1 , (2.18)

where CSr is the incremental-secant operator and relates the two mechanical states as given here.

Because of the modification of the radial return mapping applied, another definition for this operator

is CSr = 3κelIvol + 2µSIdev. One can use this expression because the newly introduced operator

is isotropic, thanks to the unloading step performed. Again, κel is the elastic bulk modulus, which

is constant under the J2 plasticity frame; and µS is the so-called secant shear stiffness, defined in

Equations (3.16) and (3.17). Once more, this falls under the frame of MFH, so it is be explained

further in Chapter 3.
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Figure 2.4: Unloading performed over a single material.

Coming back to the modified return mapping, since the trial stress is now being added from a different

position in the stress space, a new definition is needed for this increment:

∆σtrn+1 = σtrn+1 − σresn (2.19)

The plastic flow direction must also be re-written:

Nm,n+1 =
3

2

Idev : ∆σrn+1(
∆σrn+1

)eq (2.20)

The trial plastic flow direction can also be re-written as:

N tr
m,n+1 =

3

2

Idev : ∆σtrn+1(
∆σtrn+1

)eq =
3

2

Idev :
(
Cel : ∆εrn+1

)(
Cel : ∆εrn+1

)eq (2.21)

As opposed to Figure 2.2, the direction is now pointing to the residual stress in the stress space,

instead of the origin. This is illustrated by Figure 2.5.

14



Figure 2.5: Illustration of the modified radial return mapping. The image shows the different direction,
pointing to the residual stress. Picture taken from [1].

Following the same procedure as with the regular radial return mapping yields the following system:

(σn+1 − σresn )eq + 3µel∆p =
(
σtrn+1 − σresn

)eq
(σn+1)eq − σY −R(pn+1) = 0

(2.22)

This gives approximations of the updated stress and accumulated plastic deformation when one parts

from the residual stress state.

2.4 Algorithmic operator

The so-called algorithmic operator allows to define slight variations around the stress and strain fields

and improve convergence and accuracy. This is in turn solved globally using the Jacobian matrix.

The algorithmic operator is defined as:

δσ = Calg : δε (2.23)

Two different algorithmic tangent operators can be defined, depending on the return mapping algo-

rithm used. The algorithmic operator is always computed at the new time step, thus, at tn+1. This

subscript has been omitted in this section, since the expressions for Calg are all evaluated at tn+1.
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2.4.1 Algorithmic operator for the radial return mapping

If one considers the updated and corrected stress given in Equation (2.10), the expression for the

algorithmic operator can be derived. As a first step, taking derivatives with respect to the strain

yields:

Calg =
∂σtr

∂ε
−Cel :

[
N ⊗ ∂∆p

∂ε
+ ∆p

∂N

∂ε

]
(2.24)

From the definition of the trial stress, its derivative is straightforward:

∂σtr

∂ε
= Cel (2.25)

The derivative of the plastic strain increment, ∆p, can be obtained by combining Equations (2.13)

and (2.14). The definition of the equivalent stress given by the former can be introduced into the

latter to give:

(
σtr
)eq − 3µel∆p− σY −R(p) = 0 (2.26)

Taking derivatives with respect to the strain yields

∂
(
σtr
)eq

∂ε
− 3µel

∂∆p

∂ε
− dR

dp

∂p

∂ε
= 0 , (2.27)

where the derivative of the equivalent trial stress reads:

∂
(
σtr
)eq

∂ε
= N : Idev : Cel = 2µelN (2.28)

The variation of the yield stress is 0 with respect to the strains. Furthermore, the variations of ∆p and

p are equivalent, so that one can take them out as common factor when differentiated. Rearranging:

∂∆p

∂ε
=

1

3µel + dR
dp

N : Idev : Cel =
2µel

h
N (2.29)

Here, the term h = 3µel +
dR

dp
, which is commonly used, is introduced. The equality Cel : Idev =

2µelIdev is also used to further simplify the expression. Moreover, since N is deviatoric, multiplying

it by Idev yields N .
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Continuing, the derivative of the classical plastic flow direction is

∂N

∂ε
=

2µel

(σtr)eq

[
3

2
Idev −N ⊗N

]
(2.30)

Finally, introducing Equations (2.25), (2.29), and (2.30) into (2.24) yields:

Calg = Cel − 1

h
Cel : N ⊗ Idev : Cel : N −

(
2µel

)2
∆p

(σtr)eq

(
3

2
Idev −N ⊗N

)
(2.31)

Here, one can again make use of the equality Cel : Idev = 2µel : Idev to simplify the expression.

Therefore, the final expression is obtained:

Calg = Cel −
(
2µel

)2
h

(N ⊗N)−
(
2µel

)2
∆p

(σtr)eq

(
3

2
Idev −N ⊗N

)
(2.32)

Note again that this algorithmic operator is only correctly defined for the classical radial return

mapping. In the case of the modified return mapping, a new definition is needed due to the changes

in the plastic flow direction.

2.4.2 Algorithmic operator for the modified return mapping

For this method, the initial point is

σ = σtr −Cel : ∆pNm , (2.33)

which leads after differentiating to

Calg
m =

∂σtr

∂ε
−Cel :

[
Nm ⊗

∂∆p

∂ε
+ ∆p

∂Nm

∂ε

]
. (2.34)

The process to obtain the derivative of the plastic deformation starts now with the equation defining

the yield surface.

(σn+1)eq − σY −R(p) = 0 (2.35)

Taking derivatives with respect to the stress gives:
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∂ (σn+1)eq

∂σ
=
dR

dp

∂p

∂σ
= N (2.36)

Multiplying on both sides by
dσ

dε
yields:

∂ (σn+1)eq

∂ε
=
dR

dp

∂p

∂ε
= N :

[
Cel −Cel :

(
Nm ⊗

∂∆p

∂ε
+ ∆p

∂Nm

∂ε

)]
(2.37)

∂∆p

∂ε
can be factored out, obtaining a final expression for it:

∂∆p

∂ε
=

2µel

hm
N − 2µel∆p

hm
N :

∂Nm

∂ε
(2.38)

where hm = 2µelNm : N +
dR

dp
.

The last derivative needed to evaluate Equation (2.34) is that of the modified plastic flow direction,

∂Nm

∂ε
=

2µel

(∆σtr)eq

[
3

2
Idev − (Nm ⊗Nm)

]
. (2.39)

Now, one can input Equations (2.25), (2.38) and (2.39) into Equation (2.34) and obtain the final

expression:

Calg
m = Cel −

(
2µel

)2
hm

(Nm ⊗N) +

[(
2µel

)2
∆p

(∆σtr)
eq

(
2µel

hm
(Nm ⊗N) + I

)](
3

2
Idev −Nm ⊗Nm

)
(2.40)
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Chapter 3

Mean-Field Homogenization scheme

This chapter summarizes the main points of the resolution scheme developed by Wu et al. in [1],

which is be compared to the present one afterwards.

3.1 Objectives of the MFH method

The final goal is to, as said, obtain the macroscopic stress at the next time step in order to build

the full stress-strain curve and characterize the material while considering the micro-structure of both

phases. The calculations are performed by a code in C, developed at University of Liège.

First, the idea of how the code solves the problem is recalled. The stress-strain curve is built by

obtaining the mechanical state at each point of the curve, with the updated strain field known as

an input. This means that a number of points have to be calculated. In each of them, a value of

the macroscopic ∆ε̄n+1 is given. This value is used to compute the values of stress and strain at

microstructural level (i.e., values from each material phase). After a homogenized macroscopic stress

value is obtained using the microstructure, this one is used to solve the FEM boundary value problem

at macroscopic level. This requires an iterative procedure on ∆ε̄n+1, that is updated and sent back

to the homogenization procedure once more if the macroscopic FEM has not converged. New and

more accurate material phase magnitudes are computed and then a new macroscopic stress value is

computed to be fed again to the FEM code.

In general,the points of the stress-strain curve are separated by ”time steps”, or ∆t. One wants to

calculate the next point of the curve. The previous time step is regarded as tn and, the one of interest,

tn+1, also called current time step. It must be noted that this nomenclature makes sense mostly for

cases with strain-rate dependency, such as elasto-viscoplastic materials.

In the cases in which the time dependency is not important, the different time steps could still indicate

points in the curve. These points are distinct points that represent all the mechanical states. However,

for the sake of being clear, istead of time steps, the variation from one mechanical state to another is

measured in in strain increments whenever the cas is not strain-rate dependent.
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As said, for each of these mechanical states, the J2 plasticity model is applied to each phase and afer-

wards a set of equations is solved. The full resolution of the equations gives the updated macroscopic

stress at the end of the time step or strain increment consider considered, i.e., at tn+1. For linear

cases, the system reads:

ε̄ = v0ε0 + vIεI

σ̄ = v0σ0 + vIσI
(3.1)

εI = B
(
Cel

0 ,C
el
I

)
: ε0 (3.2)

B
(
Cel

0 ,C
el
I

)
=

{
I + S

(
CLCC

0

)
:

[(
Cel

0

)−1
: Cel

I − I
]}−1

(3.3)

The two first equations are the rule of mixtures. They allow to compute the averaged stress and strain

over the RVE with the information of both material phases. The subscripts ”I” and ”0” stand for the

inclusion and matrix phases, respectively. As an example, vI and v0 refer to the volumetric fraction

of inclusion and matrix phase, respectively.

The bar notation introduced over the strains and stresses is commonly used in the frame of homog-

enization. It indicates that a tensor or quantity is defined uniformly over its phase. For the present

work, the bar is used mostly to refer to the composite level, meaning that it is an average value over it.

The absence of both bar and subscript means that the magnitudes can refer to either the composite

or the phase level. Also, subscript ”r” is used to refer to a generic material phase, such that it can be

substituted by either I or 0.

The last two are related to the so-called strain localization tensor1, B. As it can be seen, this invertible

tensor relates the variation in strain in the matrix to the one in the inclusions, allowing to directly

compute the average over the RVE once one of the two phase strains is known.

The expression for the localization tensor, given in Equation (3.3), comes from the so-called Mori-

Tanaka (or simply MT) scheme developed by Mori and Tanaka in [25]. This is one way of computing

the strain localization tensor that, as shown by Wu et al. in [1], gives good results when it is applied

to two-phase composites. Since it is used in the reference paper and thus implemented in the code,

the MT scheme is utilized for the present work.

The tensor S appearing in this expression is the so-called Esheelby tensor that was mentioned in the

introduction. Again, it is coming from the fundamental solution of [22] and its expression depends

on the geometrical properties of the inclusion phase (shape, aspect ratio). For the case being, its

expression can be found in Appendix C.

1Another strain localization tensor is commonly defined defined and, in fact, is also used in the code developed before
this work. This tensor is called A and relates the strains in the inclusion to the strains in the RVE. It is introduced in
Section 3.4.
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To close the system of equations, Hooke’s law can be used for each phase. Since this Section considers

only the elastic case, one has:

σr = Cel : εr (3.4)

Lastly, an important assumption is that the macro-scale strain obtained from the FEM is constant

over the RVE2. This can only be applied if the representative lengths of the macro-scale, micro-scale

and the RVE are separated well enough. As stated by Noels [29], the assumption of the macro-scale

strain being constant over the RVE holds if:

lM >> lV E >> lm (3.5)

Note that the present method only uses teh macroscopic and microscopic scale, so that lV E is not

used here.

3.2 The Linear Comparison Composite

There are cases in which the behaviour of a material is not linear, such as with composites. For such

cases, the concept of a Linear Comparison Composite (LCC) is introduced.

The idea behind the LCC is to linearize the local response over the RVE in a macroscopic point. This

linearization is valid only for a finite time step, meaning that the LCC has to be re-defined at each

point of the stress-strain curve. This way, one can obtain a stress-strain relation that is linear, but

can be used to approximate the actual non-linear behaviour. Different methods can be used to define

different LCC’s, which modify the operator used in Equation (2.1) (whenever the case is non-linear,

s.t. one does not have only εel on the RHS).

The definition of this new operator, called CLCC generically, allows to approximate the material’s

stress-strain curve by linearizing each point of the curve. Different methods that are explained for

example by Brassart in [30] define a variety of operators that are used to obtain this curve. In

general, one is always interested in how an input in the strain is going to affect the stress over the

RVE, following the interaction given by CLCC . This operator varies over the stress-strain curve, so it

has to be recalculated for each mechanical state.

The use of the Linear Comparison Composite allows to write the strain localization tensor as a function

of the new operator:

∆εI = B
(
CLCC

0 ,CLCC
I

)
: ∆ε0 (3.6)

2This assumption of homogeneity over the RVE might not hold near regions with high gradients such as free edges or
macroscopic cracks, as mentioned in [27] or [28]. Still, addressing the impact of this assumption on the results is not
the scope of this work.
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B
(
CLCC

0 ,CLCC
I

)
=
{
I + S

(
CLCC

0

)
:
[(
CLCC

0

)−1
: CLCC

I − I
]}−1

(3.7)

As said, the LCC is a construct that allows to linearize the non-linear behaviour of the real material.

Different LCC’s can be defined depending on the method one has developed. In the present work, the

so-called incremental-secant method is used as basis. This method is explained in the next section.

3.3 Incremental-Secant Scheme

The aforementioned incremental-secant method is a way of defining a Linear Comparison Composite

that relies on the use of finite time steps. These time steps introduce in turn finite strain and stress

differences in the formulation. From now onwards, the LCC operator will be indicated as CS because

it is now particularized to secant methods.

In order to define incremental schemes, a virtual unloaded state is defined. In this state, the residual

stresses and strains are introduced (σresn and εresn , respectively). In this unloaded state, the composite

sees no residual stress by definition, which is translated to imposing:

σ̄resn = v0σ
res
0,n + vIσ

res
I,n = 0 (3.8)

Where v0 and vI are the volume fraction in the matrix and inclusion phases, respectively.

This gives an extra equation to be used with the system of equations to solve for the MFH. Apart

from σ̄resn being 0, the residual stresses at phases, as well as the residual strains at all levels (both

phase and composite) might be very well expected to be different from 0. They need therefore to be

calculated.

In order to do so, at each time step, the LCC undergoes a virtual, elastic unloading. This unloading

moves the state from the considered mechanical state (either at time tn or tn+1) to a residual stress

state. Again, the objective of this unloading is to obtain a zero residual stress over the whole composite.

The unloading is always performed using the elastic operator Cel, thus, the unloading strain (indicated

by εun) varies slightly along the stress-strain curve. Even so, it must still be recomputed at each time

step.

The representation of the unloading can be seen in Figure 3.1 at time tn. The line with the slope

defined by Cel goes from εn to εresn .
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Figure 3.1: Stress strain curves comparing both methods at phase level. (a) Shows the Sr method, or
residual-incremental-secant. (b) Shows the S0, or zero-incremental-secant method.

Performing the unloading step consists on solving the system of equations coming from (3.8), the rule

of mixtures over the whole composite and the use of the localization tensor in elastic conditions. The

latter evaluates the localization tensor at the elastic operator, Cel
0 . The system is thus:


∆ε̄un = vI∆ε

u
I,n + v0∆εu0,n

0 = vI

(
σI,n −Cel

I : ∆εuI,n

)
+ v0

(
σ0,n −Cel

0 : ∆εu0,n
)

∆εuI,n = B
(
Cel

0 ,C
el
I

)
: ∆εu0,n

(3.9)

The system has been written at time step tn, but it can also be evaluated at the beginning of the

next time step, tn+1. This can depend on the time integration scheme used, or simply on the order

in which the algorithm is written (it can be computed at the end of the time step, but remain unused

until the next time increment).

Rearranging the system gives the solution as:


∆εu0,n =

(
vI
v0
Cel
I : B

(
Cel

0 ,C
el
I

)
+Cel

0

)−1
:
(
vI
v0
σI,n + σ0,n

)
∆εuI,n = B

(
Cel

0 ,C
el
I

)
: ∆εu0,n

∆ε̄un = vIB
(
Cel

0 ,C
el
I

)
: ∆εu0,n + v0∆εu0,n

(3.10)

Once the unloading step has been performed, even if the overall residual stress of the composite is zero,

this does not happen at phase level. The residual stress that appears at phase level may or may not be

considered. This is what defines two different methods. On one hand, the residual-incremental-secant

method (abbreviated to ”Sr”), which considers the residual stress per phase. On the other hand,

the zero-incremental-secant method (S0) considers the residual stress per phase as 0. The difference

between each method can also be seen in Figure 3.1.

On the left (3.1 (a)), the operator CSr allows to reach the stress at the next time step directly from

the residual stress. On the right (3.1 (b)), the slope defined by the operator CS0 is drawn instead
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from the point of no residual stress. In both cases, the operator relates the unloaded state with the

loaded state at tn+1. The strain increment between these two states is indicated by ∆εrn+1. It is called

residual strain increment to indicate that it comes from the residual stress (or unloaded) state.

This ∆εrn+1 is a useful quantity when performing the resolution scheme that allows to define the Linear

Comparison Composite in the MFH method. Since the unloading strain ∆εur,n+1 is a virtual quantity,

it can take any sign. Following the convention of the reference paper’s work, which is explicited in

Figure 3.1, the unloading strain is defined as:

∆εrn+1 = ∆εn+1 + ∆εun (3.11)

In order to start the MFH computations, an FEM solution is needed for the first step. In this case,

the value for the composite strain variation, ∆ε̄rn+1 is known from this FEM solution and it is used as

input. This is used to have an initial guess on the Inclusion phase strain increment, ∆εrI,n+1, which

is set to be equal to the known value ∆ε̄rn+1. This guess is used for an iterative procedure, detailed

later.

Imposing Equation (3.8) on the composite results in the phases having non-zero residual stresses.

These, as well as the residual strains, can be computed through:

σresI,n = σI,n −Cel
I,n : ∆εuI,n

σres0,n = σ0,n −Cel
0,n : ∆εu0,n

(3.12)


ε̄resn = ε̄n −∆ε̄un

εresI,n = εI,n −∆εuI,n

εres0,n = ε0,n −∆εu0,n

(3.13)

With the two definitions of operators, the reference paper develops the following definitions of LCC

to update the stress at each phase:

σr,n+1 = σresr,n +CSr
r : ∆εrr,n+1

σr,n+1 = CS0
r : ∆εrr,n+1

(3.14)

The fact that a method uses the residual stresses while the other one sets them to zero produces

differences in the stiffness of the results. In the reference paper (by Wu et al. [1]) studied the effect

of using different combinations of these operators on the two material phases.

Generally, the zero-secant method produces softer results, which are closer to the reality with the use

of a first-order method such as this one. The residual-incremental presents over-stiff predictions that

are normally paired with second-order methods to become more accurate.
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A different version of the radial return mapping has to be used for each operator due to their different

considerations of the residual stress. While CS0
r goes with the classical formulation stated in Section

3.3, CSr
r makes use of the modified formulas. The modification is applied so that the secant operators

always remain isotropic. One can define the operators as:

CS
r = 3κelIvol + 2µSr I

dev (3.15)

Holding for both cases. Here, κel is the elastic bulk modulus and µSr is the shear stiffness. A definition

of the latter is also provided by the J2 plasticity model. The expression is taken from Wu et al. [1].

For the case in which the residual stresses are not being considered, one has:

µS0
r = µel −

3
(
µel
)2

∆pr,n+1(
σtrr,n+1

)eq (3.16)

On the other hand, when the residual stresses are being taken into account:

µSrr = µel −
3
(
µel
)2

∆pr,n+1(
∆σtrr,n+1

)eq = µel −
3
(
µel
)2

∆pr,n+1(
Cel : ∆εrr,n+1

)eq (3.17)

Here,
(
∆σtrr,n+1

)eq
=
(
σtrr,n+1 − σresr,n

)eq
.

It must be noted that Equations (3.16) and (3.17) are being evaluated at a specific time step, due to

their dependency on the plasticity. The term µel is simply the shear stiffness evaluated when there

is no plasticity, i.e., when ∆pr = 0. Being p the accumulated plastic strain, ∆pr is the increment in

plasticity from the previous time step to the next one. This means that evaluating µSr at time tn+1

(as expressed by the equations above) makes ∆pr = pr,n+1 − pr,n.

The system of equations to be solved can be now re-written with the use of the residual strain

increment. Equations (3.1) and (3.6) are thus finally re-written as:

∆ε̄r = v0∆εr0 + vI∆ε
r
I

σ̄ = v0σ0 + vIσI
(3.18)

∆εrI = B
(
CS

0 ,C
S
I

)
: ∆εr0 (3.19)

B
(
CS

0 ,C
S
I

)
=
{
I + S(CS

0 ) :
[(
CS

0

)−1
: CS

I − I
]}−1

(3.20)

Once the operators for each phase are obtained and the stress at the following time step can be

calculated, the total macroscopic strain is calculated as:
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σ̄n+1 = v0σ0,n+1 + vIσI,n+1 (3.21)

Therefore having obtained the updated mechanical state from the stress-train curve. This stress is

used for the macroscopic level FEM boundary value problem. Once this one is also converged, the

following mechanical states can be calculated in the same fashion.

3.4 MFH as a material law

Here, the procedure followed in [1] to solve the problem is briefly explained. As a remark, the time tn

is sometimes referred to as ”previous”, whereas ”current” is used for tn+1, since it is the one of most

interest.

1. The known inputs from the previous time step are:

Mechanical state: ε̄n, εr,n, σ̄n,σr,n

Internal variables: ηr,n
(3.22)

The internal variables are those that indicate the accumulated plastic strain and strain tensor,

as explained in Section 2.1.

The core function, the constitutive box, is called after second. The following steps are contained

inside it.

2. The unloading step explained in Section 3.3 is carried out at the beginning of the time step.

This is, unloading from σn to σresn .

3. Having performed the unloading, one can proceed to solve the MFH. The system of Equations

(3.18) to (3.20), which gives the homogenized response, is initialized and solved iteratively.

The function that calculates the homogenized response is called here. Section 3.5 offers a detailed

explanation of the procedure that the function follows to obtain 3.21.

4. The MFH outputs can be retrieved. Namely, the homogenized stress and the jacobian at homog-

enized level. These have been calculated inside the call to the homogenized response, explained

in Section 3.5.
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3.5 Homogenization Resolution

This section aims at explaining the resolution of the MFH scheme inside the code. As said, this

function is called in steps number 3 and 4 of the function explained in Section 3.4.

1. The first guess on the inclusions strain is initialized inside this function. As explained in Section

3.3, ∆ε̄rn+1 is recovered from the FEM solution at this mechanical state. Then, ∆εrI,n+1 is set

to be equal to that value. The incremental strain in the matrix phase can then be obtained as

∆εr0,n+1 = ∆ε̄rn+1.

2. A Newton-Raphson function is called. Its aim is to iteratively solve the system composed by

Equations (3.18) to (3.20), as a function of ∆εrI,n+1. This system is re-written under the form

of a residual stress vector, F . This vector can be seen in Equation (3.23).

F = CS
0,n+1 :

[
∆εrI,n+1 −

1

v0
S : (CLCC

0 )−1 :
(
∆εrI,n+1 −∆ε̄rn+1

)]
−CS

I,n+1 : ∆εrI,n+1 (3.23)

This vector is evaluated at the guessed ∆εrI,n+1 and progressively corrected until it has ap-

proached 0 below a specified threshold (normally 10−6 or 10−4, depending on the feasibility of

obtaining the level of accuracy needed). In order to correct it, the Jacobian, J , is calculated

and the guessed strain is updated as:

(
∆εrI,n+1

)i+1
=
(
∆εrI,n+1

)i − J−1 : F (3.24)

Here, ”i+1” and ”i” indicate the present and next iteration steps. If the tolerance is not met,

the procedure has to be started all over again.

Once the method has converged, Equation (3.21) is used to obtain the homogenized stress over

the RVE.

The iterative procedure is thus as follows:

(a) The elasto-plastic model, explained in Section 2.1 is solved in the first place. With the

known inputs from Equation (3.22) and the residual strains obtained during the virtual un-

loading in Equations (3.12) and (3.13), one can obtain the updated stress, internal variables

and the algorithmic tangent operator at the current time step from ∆εrI,n+1.

In other words, the outputs from the call to this model are σr,n+1, ηr,n+1 and Calg
r . Note

that all of this is computed only at phase level.

(b) After solving the elasto-plastic model, both load states, tn and tn+1 are known at phase

level. Hence, the secant operators are readily obtainable at this point. This means that

CS
r,n+1 can be obtained from Equation (3.14) depending on the secant method being used

for the considered phase.

(c) With the known secant operators, the Eshelby tensor S also follows from a straightforward

computation. The expression for the components of the Eshelby tensor are given by Wu et

al. in [31] and indicated in Appendix C.
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(d) Everything needed to compute the residual stress vector F is now known. Therefore,

Equation (3.23) is evaluated.

(e) Likewise, the Jacobian J is also computed. This expression can be found in Appendix B.

(f) The convergence is evaluated, comparing F = 0 under a given tolerance. If the result is

converged, the loop is exited and the code proceeds to step 3.

(g) In the case that the method has still not converged, the initial guess on the residual

strain increment is corrected with Equation (3.24). The residual strain increment in

the matrix phase is also updated to be used in the next iteration, as
(
∆εr0,n+1

)i+1
=((

∆ε̄rn+1

)i+1 − vI∆εrI,n+1

)
/v0. The loop then starts again from step (a) with the new

values.

3. After convergence, the average homogenized stress is computed as:

σ̄n+1 = v0σ0,n+1 + vIσI,n+1 (3.25)

With this and the macroscopic strain variation, one can also compute the homogenized algorith-

mic tangent operator at composite level, which is used to characterize the material. From the

development in [1], it can be obtained as:

C̄alg
n+1 = vIC

alg
I,n+1 :

∂εI
∂ε̄

+ v0C
alg
0,n+1 :

∂ε0

∂ε̄
(3.26)

The phase algorithmic operators Calg
I,n+1 and Calg

0,n+1 can be obtained using Equations (2.32) and

(2.40), depending on the method used. The term
∂εr
∂ε̄

is also reported in the paper:

∂εI
∂ε̄

= −J−1 :
∂F

∂ε̄
;

∂ε0

∂ε̄
=

1

v0

(
I − vI

∂εI
∂ε̄

)
, (3.27)

with
∂F

∂ε̄
=

1

v0
C̄S

0 : S−1.

After exiting the loop and having computed the outputs, the code performs a series of updates with

the obtained information, in order to have the inputs ready for the following time step.
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Chapter 4

Continuous formulation

4.1 Derivation of the new localization tensor

As mentioned in previous sections, one of the main drawbacks of the incremental-secant method is

its slow convergence with the strain increment. The method converges with the use of smaller strain

increments. This is depicted by Figure 4.1.

Figure 4.1: Sensitivity to time steps of the incremental-secant formulation.

For a very basic case without strain hardening, whose characteristics are detailed in Tables 4.1 and

4.2, results differ in a visible way as seen in the picture.
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Table 4.1: Matrix properties

Matrix properties

E0 8.18 GPa

ν0 0.36

v0 0.83

σY 0 100 MPa

R(p) 0 MPa

Table 4.2: Inclusion properties

Inclusion properties

EI 16.36 GPa

νI 0.3636

vI 0.17

α 1

Therefore, as a means of improving the sensitivity to the time step size, the present work intends to

add a variation to the formulation of the strain localization tensor, B
(
CS

0 ,C
S
I

)
. Note that from now

onwards, due to the inclusions being assumed elastic, the strain localization tensor will only have a

dependency on the matrix secant operator. It will be therefore written as B
(
CS

0 ,C
el
I

)
= B

(
CS

0

)
.

This tensor depends on the matrix operator considered and, as such, it can be evaluated at the elastic

operator (Cel
0 ) or at different definitions of the Linear Comparison Composite operator (LCC). This

includes the secant-incremental method or the zero-incremental (as mentioned in Section 3.3).

The new proposed definition for B
(
CS

0

)
comes from the use of the continuous formulation or, in

other words, using an infinitesimal strain increment. This is translated as obtaining an expression for

B
(
CS

0

)
using dε̄ instead of ∆ε̄. This is still a first order approximation that takes into consideration

small variations around the tensor B
(
CS

0

)
evaluated at Cel

0 . The expression obtained with this

method can afterwards be tested for bigger strain increments.

An important note is that some expressions are derived in the general case and then approximated

to the small strain increment. This is equivalent to evaluating some of this expressions at the elastic

value. In such cases it is indicated that the expression has been derived in a generic case but being

evaluated at this elastic value. This is done by including a vertical bar to the right of the expression.

An example for the strain localization tensor is: B
∣∣∣
Cel

0

, where the dependency of the function on

the secant operator has been made implicit, such that B = B
(
CS

0

)
. Notice that, ultimately, all the

expressions whose dependency is evaluated ”at the elastic value” are dependent on the shear stiffness,

which is the one that is being evaluated at elasticity in the small strain increment limit.

As said, here the strain increment is considered to be infinitesimally small, which allows to consider

a series of approximations. First, Equation (3.11) is introduced into (3.19). Then, for the limit case

in which the strain increment is very small, one can make ∆ε̄n+1 → dε̄. This allows to introduce the

aforementioned continuous formulation.

Equation (3.11) can be applied to both the macroscopic strain and the strains on the inclusion. This

allows re-writting (3.19) as:

(
B(CS

0 )
)−1

: (dεI + ∆εuI ) = dε0 + ∆εu0 (4.1)

At the mentioned limit, an approximation can be made, in which the strain localization tensor eval-
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uated at (CS
0 ) can be substituted by its evaluation at the elastic operator, plus a small difference

coming from its derivative. Rewriting Equation (4.1):

((
B
∣∣∣
Cel

0

)−1

+
d
(
B(CS

0 )
)−1

dµSr

∣∣∣
Cel

0

dµSr

)
: (dεI + ∆εuI ) = dε0 + ∆εu0 (4.2)

Developing the product results in:

(
B
∣∣∣
Cel

0

)−1

: dεI +

(
B
∣∣∣
Cel

0

)−1

: ∆εuI +
d
(
B(CS

0 )
)−1

dµS
r

∣∣∣
Cel

0

dµS
r : dεI +

d
(
B(CS

0 )
)−1

dµS
r

∣∣∣
Cel

0

dµS
r : ∆εuI = dε0 + ∆εu0

(4.3)

The term
d
(
B(CS

0 )
)−1

dµSr

∣∣∣
Cel

0

dµSr : dεI contains a multiplication of two differentials. Since this is a first

order approximation, second order terms are neglected, therefore it is disregarded. Furthermore, the

term

(
B
∣∣∣
Cel

0

)−1

: ∆εuI is, by definition of the localization tensor, equal to ∆εu0 . The reason behind

this is that, as said, for the virtual unloading one always uses the elastic operator. This allows to

cancel the unloading strain term in the RHS, eliminating the influence of most of the elastic part of

the strain.

The derivative of B−1 can be obtained from its expression in Equation (3.20).

B(CS
0 )−1 = I + S

(
CS
)

:
[(
CS

0

)−1
: CS

I − I
]

= I + P :
[
CS
I −CS

0

]
Here, the equivalence with the definition using the Hill tensor P has been shown simply to indicate

that this method can be followed with either Eshelby or Hill ([32]) tensors. Each of them presents

slightly different characteristics that allow to choose between them as a matter of convenience. They

can be related through:

P = S :
(
CS

0

)−1

Back to the derivative of the localization tensor, one has:

d
(
B(CS

0 )
)−1

dµS0
=
dS(CS

0 )

dµS0
:
((
CS

0

)−1
: CS

I − I
)

+ S(CS
0 ) :

∂
(
CS

0

)−1

∂µS0
: CS

I
(4.4)

In the present case, this expression is evaluated1 at Cel
0 . Recall that the secant operators are defined

as CS = 3κelIvol+2µSr I
dev, with κel the elastic bulk modulus, so that the elastic value of the operator

is at µSr = µel.

1The expressions are first derivated and then evaluated at the corresponding point. Due to this, the derivative of
(
CS

0

)−1

with respect to µS
0 becomes −2

(
Cel

0

)−1
: Idev :

(
Cel

0

)−1
after being evaluated.
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Equation (4.4) can be introduced into (4.3) to obtain:

(
B
∣∣∣
Cel

0

)−1

: dεI =

{
I −

[
dS

dµS0

∣∣∣
Cel

0

:

((
Cel

0

)−1
: CS

I − I
)
−

2S
∣∣∣
Cel

0

:
(
Cel

0

)−1
: Idev :

(
Cel

0

)−1
: CS

I

]
: ∆εuI ⊗

∂µS0
∂ε0

}
: dε0

(4.5)

Pre-multiplying by B
∣∣∣
Cel

0

and introducing the temporal variation into the strain differentials yields:

˙̄εI =

{
B
∣∣∣
Cel

0

−B
∣∣∣
Cel

0

:

[
dS

dµS0

∣∣∣
Cel

0

:

((
Cel

0

)−1
: CS

I − I
)
−

2S
∣∣∣
Cel

0

:
(
Cel

0

)−1
: Idev :

(
Cel

0

)−1
: CS

I

]
: ∆εuI ⊗

∂µS0
∂ε0

}
: ˙̄ε0

(4.6)

The expression in braces can be grouped into a single matrix called, for example, BCont
(

∆εuI ,
∂µS0
∂ε0

)
.

This is the new localization tensor used in the resolution scheme. This new tensor can be written as:

BCont = B
∣∣∣
Cel

0

−B
∣∣∣
Cel

0

:

[
dS

dµS
0

∣∣∣
Cel

0

:
((
Cel

0

)−1
: CS

I − I
)
− 2S

∣∣∣
Cel

0

:
(
Cel

0

)−1
: Idev :

(
Cel

0

)−1
: CS

I

]
: ∆εuI⊗

∂µ̃S
0

∂ε0
(4.7)

The derivative of the Eshelby tensor,
dS

dµS0
is developed in Appendix C.

Notice the addition of the tilde over the derivative of the shear stiffness in Equation (4.7). This is

once more a result of making the approximation of the continuous formulation, in which the time step

approaches zero and thus the functions of the shear stiffness approach their elastic value.

To obtain this term, one starts at Equation (3.16):

µS0 = µel − 3(µel)2∆p

(σtr)eq
(4.8)

One can express the derivative of µS0 as:

∂µS0

∂ε
=

1

(σtr)eq

[
µel

∂
(
σtr
)eq

∂ε
− 3

(
µel
)2 ∂∆p

∂ε
− µS0∂

(
σtr
)eq

∂ε

]
(4.9)

In order to develop this equation, one has to use the derivatives developed in Section (2.4). More

specifically, Equations (2.28) and (2.29) can be plugged in:

∂µS0

∂ε
=

2µel

(σtr)eq

[
µel −

3
(
µel
)2

h
− µS0

]
N (4.10)
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Introducing the equation of µS0 and rearranging gives a more simplified final expression:

∂µS0

∂ε
=

6
(
µel
)3

(σtr)eq

[
∆p

(σtr)eq
− 1

h

]
N (4.11)

It is important to comment that the continuous strain localization operator uses its formulas in the

approach to elastic values, this is, for very small strain increments. This is the reason why, for example,

the Eshelby tensors used in Equation (4.7) are evaluated at the elastic shear stiffness. In the same

fashion, (4.11) can be adapted to this limit by setting ∆p = 0 and yielding a simpler equation.

∂µ̃S0

∂ε
=
−6
(
µel
)3

(σtr)eq h
N (4.12)

Equation (4.12) is the one to be used for the subsequent evaluations of the derivative of µS0. On the

other hand, for µSr, one begins with Equation (3.17):

µSr = µel − 3(µel)2∆p

(∆σtr)eq
= µel − 3(µel)2∆p

(Cel : ∆εr)
eq (4.13)

The procedure to obtain the derivative is similar as with the zero-incremental method.

∂µSr

∂ε
=

1

(∆σtr)eq

[
µel

∂
(
∆σtr

)eq
∂ε

− 3
(
µel
)2 ∂∆p

∂ε
− µSr

∂
(
∆σtr

)eq
∂ε

]
(4.14)

The term
∂
(
∆σtr

)eq
∂ε

is:

∂
(
∆σtr

)eq
∂ε

= 2µelNm (4.15)

Recovering the term
∂∆p

∂ε
from Equation (2.38) and setting ∆p = 0 allows to write:

∂µ̃Sr

∂ε
=
−6
(
µel
)3

(∆σtr)eq hm
N (4.16)

This is the expression to be used when evaluating the derivative of the residual-incremental shear

stiffness, µSr0 .

The expression for this new strain localization tensor can be evaluated at different times, depending

on the numerical scheme used for the integration of Equation (4.6). This varies the points at which
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∂µ̃S0
∂ε0

is considered. Likewise, ∆εuI can be evaluated at either tn or tn+1, although its value is expected

to change less.

Explicit schemes, such as the forward Euler, will evaluate both of these functions at the previous time

steps, i.e., tn when one wants to compute the macroscopic mechanical state at tn+1. Implicit schemes

will either only use their evaluation at tn+1 (backward Euler) or use a mix of both (Crank-Nicholson

scheme). In the present work, the implicit backward Euler is the scheme used.

4.2 MFH system

A priori, the major advantage of using a continuous formulation is allowing a bigger strain increment

to be used while keeping a good accuracy, once a discretization is chosen. This is still intended to be

used under the frame of the incremental-secant method.

The main difference of the CS formulation is that, with the aim of having a better approach at the

continuous nature of the materials, the strain localization tensor BCont is derived before introducing

the finite differences in the method. This can be appreciated by the substitution of the differentials

dε by the finite strain increments ∆ε between Equations (4.6) and (4.18).

In this work, the input used is not the residual strain increment, but rather the strain increment from

tn to tn+1, both at loaded state. Therefore, the system of equations that is intended to solve is still

the same as in Section 3.3. Equations (3.18) and (3.19) are re-written as:

∆ε̄ = v0∆ε0 + vI∆εI

σ̄ = v0σ0 + vIσI
(4.17)

∆εI = BCont : ∆ε0 (4.18)

Lastly, Equation (3.20) is updated to the new definition of the strain localization tensor given by

Equation (4.7).

The resolution of this new system of equations is performed by adding modifications to the code used

in the reference paper. The resolution scheme is detailed in the next section and follows a similar

structure.

Note that here the continuous formulation has already been discretized. One can do this with any

time discretization in order to apply different integration methods to the same model definition. Given

that the continuous strain localization tensor depends mainly on the unloading strain of the inclusion

and on the shear stiffness derivative of the matrix, the type of discretization (implicit, explicit, etc...)

is given by the choice of these two variables.
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The work has been performed by using an implicit time scheme to compute the new tensor. The term
∂µ̃Sr
∂ε0

is evaluated at tn+1 (therefore being an implicit term). However, ∆εuI is evaluated simply at tn,

although its evaluation time could also be set to either tn+1 or a mid-point. The basis for the validity

of this is that the unloading strain varies only slightly between the different mechanical states. The

shear stiffness derivative, on the other hand, presents greater variations and thus must be evaluated

implicitly.

From now onwards, this method will be referred to as Continuous-Secant (CS) discretization. This is

not to give an official name, but rather to make a simple distinction with respect to the original in

chapters where several references to both have to be made.

4.3 Constitutive box

In this section the resolution scheme is explained thoroughly. As said, it is based mainly on the work

presented in Section 3.3.

1. The internal variables, strains and stresses at the previous time step are known. Again:

Mechanical state: ε̄n, εr,n, σ̄n,σr,n

Internal variables: ηr,n
(4.19)

2. The virtual elastic unloading is performed at the previous time step. σresn and εresn are thus

obtained at phases and at composite level. Note that now the unloading strain at inclusions

phase, ∆εuI is kept as an important value, since it is needed to later compute BCont.

Due to the strain localization tensor being evaluated with the elastic operator, the unloading can

be done at this point. As mentioned in Chapter 3, the unloading system is defined in Equation

(3.9). The solution presented in terms ofB can be recovered and adapted to the slight differences

in notation: 
∆εu0,n =

(
vI
v0
Cel
I : B

∣∣∣
Cel

0

+Cel
0

)−1

:
(
vI
v0
σI,n + σ0,n

)
∆εuI,n = B

∣∣∣
Cel

0

: ∆εu0,n

∆ε̄un = vIB
∣∣∣
Cel

0

: ∆εu0,n + v0∆εu0,n

(4.20)

Equations (3.12) and (3.13) do not present any change and are used as they are in this method.

3. The function that solves the MFH system is called at this step. Like done previously, this

function is explained in-depth separately, in Section 4.4.

4. The outputs obtained in the MFH function are retrieved here as a result of the time step. These

are used as inputs into the macroscopic-level solver. This solver computes a suitable equilibrium

equation resolution with the given σ̄.
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4.4 Homogenization resolution

The function that solves the MFH system, this time posed by Equations (4.17) and (4.18), along with

Bcont from Equation (4.7). The process is the following:

1. In this case, the scheme starts by giving an initial guess to ∆εI,n+1. As mentioned before, this

guess is drawn from the FEM solution, since the resulting macro-scale strain is considered given.

Therefore, the first value is initialized as: ∆εI,n+1 = ∆ε̄n+1
(2).

The strains in the matrix are also initialized as ∆ε0,n+1 = ∆ε̄n+1.

2. The Newton-Raphson loop can be entered. Again, the resolution method is based on using a

residual function F that is iteratively compared to 0. In this case, the variable to be corrected

in each iteration is the strain increment between steps in the inclusions phase: ∆εI,n+1.

Equation (4.17) is re-written under the form of this residual function as:

F = v0

(
BCont
n+1

)−1
: ∆εI,n+1 + vI∆εI,n+1 −∆ε̄n+1 (4.21)

Where BCont
n+1 = BCont

(
∆εuI,n,

∂µ̃S0,n+1

∂ε0

)
and the strain increments can be calculated from last

step as ∆εn+1 = εn+1 − εn.

To obtain the localization tensor, it is necessary to previously evaluate
∂µ̃S0,n+1

∂ε0
at the current

time step. Recall that the approximation to small time steps used, so that
∂µ̃S0,n+1

∂ε0
is in fact

used in the code. This term is obtained in Appendix D. Depending on the method used, either

Equation (4.22) or (4.23) has to be used.

∂µ̃Sr

∂ε
=
−6
(
µel
)3

(∆σtr)eq hm
N (4.22)

∂µ̃S0

∂ε
=
−6
(
µel
)3

(σtr)eq h
N (4.23)

The increment in the inclusions phase is corrected as

(∆εI,n+1)i+1 = (∆εI,n+1)i − J−1 : F , (4.24)

being the expression for J provided in Appendix E, as it has a different expression from the one

used in Section 3.5.

The iterative procedure is:

2This particular assumption corresponds to the so-called Voigt assumption for axial loading. Roughly, it means assuming
that the strains are evenly distributed over the two phases. The application of both this and the Reuss estimate are
detailed in by Hill in [33].
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(a) The elasto-plastic model can be solved in the first place with the information known at this

point.

(b) The residual increment of strain ∆εrn+1, needed to evaluate ∆σrn+1, can be obtained as:

∆εrn+1 = ∆εn+1 + ∆εun , (4.25)

for both phases. Then, the shear stiffness is computed with the corresponding equation

depending on the method. Their derivatives are also evaluated at this point, again with

Equation (4.22) or (4.23).

(c) The Eshelby tensor is computed afterwards. Its expression is still the one given in Appendix

C.

(d) Everything is needed to evaluate the residual function F from Equation (4.21).

(e) The Jacobian J is also evaluated, see Appendix E.

(f) Again, the convergence is assessed within the user-specified tolerances. If the solution is

accurate enough, the loop is exited and the outputs are calculated. If it is not, the next

step is conducted to correct the guess on the strains.

Furthermore, the residual is also compared to the one from the previous iteration. This is

done in order to ensure that the residuals keep decreasing each time, so that the iterative

process is actually converging towards a solution. The correction applied to the strain is

reduced in case that the residual has increased; and the loop is exited with an error if the

corrections are not useful to make the procedure converge.

(g) The correction in Equation (4.27) is applied to obtain a value for (∆εI,n+1)i+1. The strain

in the matrix is also re-computed with the new value of the inclusion strain with the formula:

∆ε0,n+1 = (∆ε̄n+1 − vI∆εI,n+1)/v0 (4.26)

3. After convergence, outputs are obtained. Recovering the equations from the incremental-secant

method, one has:

σ̄n+1 = v0σ0,n+1 + vIσI,n+1 (4.27)

For the macroscopic algorithmic operator,

C̄alg
n+1 = vIC

alg
I,n+1 :

∂εI
∂ε̄

+ v0C
alg
0,n+1 :

∂ε0

∂ε̄
, (4.28)

The phase algorithmic operators can be obtained by the use of Equations (2.32) or (2.40),

depending on the method.

Finally:

∂εI
∂ε̄

= −J−1 :
∂F

∂ε̄
;

∂ε0

∂ε̄
=

1

v0

(
I − vI

∂εI
∂ε̄

)
, (4.29)

with
∂F

∂ε̄
= −I.
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Chapter 5

Analysis of the results

As it was mentioned in the beginning, the objective of this work is to prove if the approach of

the continuous formulation is indeed a useful modification of the residual-incremental formulation

developed by Wu et al. in [1]. Therefore, the first section of this chapter is devoted to analyzing

the reliability of the implemented code by comparing the CS discretization with the results of the

original code developed in [1]. This is first done via a test with simple conditions. Once the reliability

of the formulation is proved, its reduced sensitivity to strain increments is demonstrated. Latter

sections showcase the adaptability of the CS discretization method to more complex computations.

The material properties of each case are also drawn from [1] and used as a basis for comparison. Lastly,

the results used in that paper to serve as basis are used here for comparison. These results come from

methods such as direct finite element simulations (FE), Fast Fourier Transforms or experimental

results.

The main points of interest of the method developed here can be recalled now. Firstly, having a

continuous formulation allows for the use of any time discretization scheme that one wants. Secondly,

given how this formulation is defined, for an infinitely small strain increment, its results should converge

to the ones of the original formulation. Lastly, the discretizations achieved should be less sensitive to

an increase in strain increment size (when comparing models of the same order between the original

formulation and the new one).

Unless stated otherwise, the results shown here correspond to uni-axial tests.

5.1 Reliability of the approach

5.1.1 Convergence with strain increments

The first step to be able to test the code and compare it, is to check that, in fact, the code has achieved

convergence with the strain increments. As user input, an increasing number of strain increments was

used (so, ∆ε becomes smaller) in order to see when this stopped affecting the results.
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For simplicity, the modification of the base code is tested first in a case of uniaxial tension and no

strain hardening. The conditions are:

Table 5.1: Matrix properties

Matrix properties

E0 75 GPa

ν0 0.3

v0 0.85

σY 0 75 MPa

R(p) 0 MPa

Table 5.2: Inclusion properties

Inclusion properties

EI 400 GPa

νI 0.2

vI 0.15

α 1

Furthermore, inclusions are considered elastic and are spherical with the given aspect ratio α = 1.

The size of strain increments for the different computations is: ∆ε = 1 · 10−3; 2 · 10−5; and 4 · 10−6.

The stress-strain curve of the composite (i.e., the macroscopic curve) under uniaxial loading is plotted

for each one of these strain increment sizes. Figure 5.1 shows the results for the convergence of the

CS discretization using both residual (use of Equation (4.22)) and zero residual stresses (employing

Equation (4.23)), as well as the results using the original code with CSr and CS0.

Figure 5.1: Convergence of the CS discretization using CSr. FE results from Brassart et al. [6]

For both cases, CSr and CS0, the lines converge from, at least, ∆ε = 2 · 10−5 onwards. The residual

case seems to be presenting convergence much before, since the three lines are very close together.

The zero method, however, needs a bigger reduction of the strain increment. In any case the lines

appear to indicate a convergence of the results. The macroscopic stress can be set as a figure of merit
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to measure the accuracy of the calculations.

More precisely, its value at the last converged strain increment is the one used. The reason behind

this is that, since the elastic region is linear, any strain increment used gives the exact same solutions.

Therefore the difference in results starts at the yielding point and grows with computations. Looking

the converged value at the last strain increment indicates the maximum shift between two different

∆ε curves.

Tables 5.3 through 5.6 showcase the values of σ̄ for each of the strain increments tested. Furthermore,

the relative error column shows the variation of results with respect to ∆ε = 4 · 10−6.

Table 5.3: Residual-incremental accuracy of CS
discretization.

CS discretization: Residual-incremental

∆ε [-] σ̄ [MPa] Relative error

4 · 10−6 190.257 0%

2 · 10−5 190.234 0.012%

1 · 10−3 189.664 0.412%

Table 5.4: Residual-incremental accuracy of
original formulation.

Original formulation: Residual-incremental

∆ε [-] σ̄ [MPa] Relative error

4 · 10−6 190.247 0%

2 · 10−5 190.228 0.009%

1 · 10−3 1.526% 1.526%

Table 5.5: Zero-incremental accuracy of CS
discretization.

CS discretization: Zero-incremental

∆ε [-] σ̄ [MPa] Relative error

4 · 10−6 156.334 0%

2 · 10−5 156.662 -0.210%

1 · 10−3 174.937 -11.900%

Table 5.6: Zero-incremental accuracy of original
formulation.

Original formulation: Zero-incremental

∆ε [-] σ̄ [MPa] Relative error

4 · 10−6 106.364 0%

2 · 10−5 106.484 -0.113%

1 · 10−3 112.954 -6.196%

In the residual-incremental case, there is a clear improvement of the error coming from the use of

the CS discretization. The relative error drops from 1.526% to only 0.412%. In the zero-incremental

case, it looks like the original formulation is still better. This is due to the CS discretization results

becoming stiffer much faster when the strain increment size is increased.

In fact, the CS discretization presents an overstiffness with respect to the original formulation. This

oversitfness is seen in the zero-incremental results (even at converged values) as well as slightly in

the residual-incremental. In the last case, however, the converged values are the same so that the

overstiffness can be aleviated with a decrease in strain increment size.

This overstiffness is likely due to how the continuous strain localization tensorBCont is defined. As can

be seen in Equation (4.7), the continuous approach defines this tensor as the elastic one plus a small

variation of this tensor, evaluated at the elastic value. Given that second order (and higher) terms

are disregarded, this approximation is linear, meaning that with big strain increments the linearized

behaviour is made more evident. In the zero-incremental case, disregarding the residual stresses makes

the solution more compliant. This, at the same time, provokes that the use of a linear approximation

is not that obvious: as seen in the results, the residual-incremental plastic region looks somewhat as

a straight line, whereas the zero-incremental presents a curved slope.
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5.1.2 Comparison with the residual-incremental formulation when ∆ε→ 0

The results from 5.1.1 are used again here and compared with the base code. Ideally, both formulations

should converge for the same results when the strain increments are approaching zero. Note that this

only applies when the residual stress is considered non-zero.

For a very small strain increment, ∆εn+1 is very small, so that ∆εrn+1 approaches ∆εun+1. When this

happens, the secant operator CSr connecting the residual state and the state at time tn+1 becomes

very close to the elastic operator. Recovering its expression as CSr = 3κelIvol + 2µSIdev and recalling

that the bulk modulus is constant, it is explained why the evaluation of the tensors at the elastic value

falls down to evaluating the shear stiffness at elasticity.

(a) Residual-incremental convergence. (b) Zero-incremental convergence.

Figure 5.2: Convergence of CS discretization and original formulation with small strain increment.

The curves for ∆ε = 4·10−6 have been omitted for simplicity, as they did not add any new information.

The curves in Figure 5.2 can be seen to overlap at ∆ε = 2 · 10−5, meaning that they are converging

to the same values. For ∆ε = 1 · 10−3, it can be observed that the CS discretization is slightly closer

to the curves with finer strain increments, indicating a close convergence at this size.

From these results it is clear that, for an infinitely small strain increment, both formulations will end

up converging, therefore confirming the hypothesis first stated of both formulations being equivalent

on the limit ∆ε→ 0.

Note that this only applies to the residual-incremental case. The zero-incremental is a specific case

of the residual incremental method, in which the residual stress is purposely set to 0 to increase the

compliance of the results. In this specific case, the CS discretization does not mathematically tend to

the original code with an infinitesimally small strain increment.

5.1.3 Reduced sensitivity to strain increments

The main advantage of the CS discretization is that results do not change as much with strain incre-

ment, when compared with the incremental-secant formulation. This allows for faster computations

without losing so much accurracy, saving time. In order to test the accuracy of the results, the code

has been tested under a number of strain increments and the results compared. The figure of merit
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here is once more macroscopic stress, σ̄. Since now the interest is to increase the size of the strain

increment, the values tested go down from the converged value of ∆ε = 1 · 10−3. The values used now

are: ∆ε = 0.02; 0.01; 4 · 10−3; 2 · 10−3 and again 1 · 10−3. Figure 5.3 showcases the results obtained.

Figure 5.3: Sensitivity to strain increments of the CS discretization. Left shows the CS discretization.
The figure on the right, the original formulation,

On the left, except for the 0.02 s line, the rest are very close to each other. In fact, the slope in the

plastic region is almost similar on all the cases. This shows how an even bigger strain increment size

could be used; as the results on the right can be seen to deviate faster from the converged solution.

For sizes 0.02 and 0.01 in the CS discretization, the results are much stiffer than they should, suggesting

an overshooting due to the worse accuracy. When it reaches 4 · 10−3, it starts slowly becoming stiffer,

by converging to the actual solution that has been corroborated with the original formulation.

This improvement is only seen when using the residual-incremental method. For zero-incremental, as

explained in 5.1.2, the overstiffness makes the CS discretization results much worse with increasing

strain increment size.

5.2 Comparison with the results from [1]

Once the results have been validated and the potential of the new formulation seen in the reduced

sensitivity, the final step is to test the cases of the reference paper and see how the CS discretization

works with more complex materials. Given the result on the accuracy over the strain increment, the

comparisons are performed using ∆ε = 1 · 10−3.

5.2.1 Case 1

The first case presents an MMC composed by an elastoplastic matrix with continuous fiber inclusions

embedded in it. The matrix phase follows the power hardening law R(p) = kpm0 . The properties of

each phase are:
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Table 5.7: Matrix properties

Matrix properties

E0 68.9 GPa

ν0 0.26

v0 0.45

σY 0 95 MPa

k0 578.25 MPa

m0 0.529

Table 5.8: Inclusion properties

Inclusion properties

EI 344.5 GPa

νI 0.26

vI 0.55

α ∞

Figure 5.4 showcases the results of this case. For the longitudinal loading, both formulations are very

close to the FE results. Comparing one method to the other, the CS presents reliable results that are

as close to the reference results as the original code. On the transversal case, however, the overstiffness

of the CS discretization is very pronounced on the zero-incremental case. The residual-increment, on

the other hand, does present results that are closer to the original code, once more slightly overstiff.

(a) Longitudinal loading. (b) Transverse loading.

(c) Longitudinal loading. (d) Transverse loading.

Figure 5.4: Results of case 1. FE from Jansson [7].

5.2.2 Case 2

This case is based on a Glass Fibre Reinforced Polymer with short unidirectional, ellipsoidal fibres

with α = 15. The matrix follows a hardening law R(p) = k1p+ k2(1− e−m0p).
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Table 5.9: Matrix properties

Matrix properties

E0 2.1 GPa

ν0 0.3

v0 0.843

σY 0 29 MPa

k10 139 MPa

k20 32.7 MPa

m0 319.4

Table 5.10: Inclusion properties

Inclusion properties

EI 72 GPa

νI 0.22

vI 0.157

α 15

The results of the residual-incremental formulation are once more very similar between CS discretiza-

tion and the original formulation. This applies to both loadings.

On the zero-incremental case, however, now it is the longitudinal loading that aggravates the differences

due to overstiffness.

(a) Longitudinal loading. (b) Transverse loading.

(c) Longitudinal loading. (d) Transverse loading.

Figure 5.5: Results of case 2. FE from Doghri et al. [8].

5.2.3 Case 3

A Glass Fibre Reinforced Polymer with continuous unidirectional fibres. The continuous fibres are

represented in the code as spherical inclusions with aspect ratio tending to infinity. The hardening

law of the matrix is now R(p) = k0(1− e−m0p).
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Table 5.11: Matrix properties

Matrix properties

E0 2.89 GPa

ν0 0.3

v0 0.50

σY 0 35 MPa

k0 73 MPa

m0 60

Table 5.12: Inclusion properties

Inclusion properties

EI 238 GPa

νI 0.3

vI 0.50

Once more, the results from the CS discretization are overstiff, being the zero-incremental softer than

the residual-incremental.

(a) Transverse loading. (b) Transverse loading.

Figure 5.6: Results of case 3. FE from Wu et al. [9].

5.2.4 Case 4

The fourth case is a group of four different MMC’s, each with different characteristics.

The first one is a Metal Matrix Composite with spherical inclusions and power hardening law for the

matrix: R(p) = k0p
m
0 .

Table 5.13: Matrix properties, MMC 1

Matrix properties

E0 75 GPa

ν0 0.3

v0 0.70

σY 0 75 MPa

k0 416 MPa

m0 0.3895

Table 5.14: Inclusion properties, MMC 1

Inclusion properties

EI 400 GPa

νI 0.2

vI 0.3

α 1

The second one is a Metal Matrix Composite with spherical inclusions and power hardening law for

the matrix. Two cases with m0 = 0.05 and m0 = 0.4 are presented.
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Table 5.15: Matrix properties, MMC 2

Matrix properties

E0 75 GPa

ν0 0.3

v0 0.70

σY 0 0 MPa

k0 416 MPa

m0 0.05 or 0.4

Table 5.16: Inclusion properties, MMC 2

Inclusion properties

EI 400 GPa

νI 0.25

vI 0.3

α 3

Following, a Metal Matrix Composite with spherical whiskers and power law hardening is considered:

Table 5.17: Matrix properties, MMC 3

Matrix properties

E0 68.89 GPa

ν0 0.33

v0 0.868

σY 0 277.3 MPa

k0 592.2 MPa

m0 0.52

Table 5.18: Inclusion properties, MMC 3

Inclusion properties

EI 450 GPa

νI 0.17

vI 0.132

α 6.25

Lastly, there is a Metal Matrix Composite with elastic inclusions. Two cases are present, one with

spherical inclusions (α = 1) and another one with ellipsoidal inclusions (α = 3). Once more, power

law hardening is assumed for the phase.

Table 5.19: Matrix properties, MMC 4

Matrix properties

E0 220 GPa

ν0 0.3

v0 0.75

σY 0 300 MPa

k0 1130 MPa

m0 0.31

Table 5.20: Inclusion properties, MMC 4

Inclusion properties

EI 200 GPa

νI 0.30

vI 0.25

α 1 or 3

Figures 5.7a through 5.8f show the results for all the MMC’s. The testing of the four MMC’s shows

how the CS discretization handles the different cases presenting feasible results, therefore proving to

be quite robust when it comes to the residual-incremental method.

For the zero-incremental, it is very clear that the overstiffness increases with the cases complexity

and it is generally not negligible. Furthermore, the fact that it requires more reduction in strain

increment size means that this shift of the results is not as easy to correct as it could be in the

residual-incremental case.
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(a) Longitudinal loading. MMC 1. (b) Longitudinal loading. MMC 1.

(c) Longitudinal loading. MMC 2, m0 = 0.05. (d) Longitudinal loading. MMC 2, m0 = 0.05.

(e) Longitudinal loading. MMC 2, m0 = 0.40. (f) Longitudinal loading. MMC 2, m0 = 0.40.

Figure 5.7: Results of case 4 (MMC’s 1 and 2). FE from Segurado et al. [10] and Pierard et al. [11].
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(a) Longitudinal loading. MMC 3. (b) Longitudinal loading. MMC 3.

(c) Plane strain tension. MMC 4, α = 1. (d) Plane strain tension. MMC 4, α = 1.

(e) Plane strain tension. MMC 4, α = 3. (f) Plane strain tension. MMC 4, α = 3.

Figure 5.8: Results of case 4 (MMC’s 3 and 4). FE from Brassart et al. [12]. Experimental data from
Christman et al. [13].
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Chapter 6

Conclusions

The development of a new formulation was carried out parting from the incremental-secant formulation

developed in [1]. The idea of this continuous formulation was to obtain a new model for the problem

that was not based on finite time steps from the beginning. With this, one would in theory be able

to use any discretization to switch to finite differences and then use a numerical method of choice

to obtain the solutions of the problem. To test this new formulation, a specific discretization, called

CS discretization, was implemented and its results compared with the original incremental-secant

formulation from the paper.

The results were found to be promising in general. Both formulations have the same results for

infinitely small time steps, or equivalently, strain increments for a strain-rate independent model.

The new discretization appears to be robust and achieve convergence with a bigger size of the finite

increments for the residual-incremental case. The results are not as close to the FE results as the zero-

incremental from [1]. However, it does present a way of obtaining accurate first-order moment results

in less time. This method could be paired with another one (such as second-order moment methods)

to take advantage of the improved computational time that can be achieved with this discretization.

On the other hand, the zero-incremental case presents a less increase in compliance due to the overs-

tiffness that the continuous formulation introduces in the results. Given that second-order terms were

dropped in the derivation of BCont, studying if their inclusion could solve this overstiffness problem

could be interesting to address this issue.

In conclusion, it was proved that the present method can potentially be modified in the future to obtain

quick solutions to be paired with second-order moment methods. The downside of this being, that

the zero-incremental method cannot be used to obtain compliant results within a first-order method.
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Chapter 7

Future improvements of the method

There are a number of improvements that can be added to the code in the near future. The main

ones are:

1. Right now the code only allows the use of elastic inclusions. However, the J2 plasticity equations

are implemented in a generic function. Therefore, the current code could be modified to allow

the computation of cases with plasticity in the inclusion phase as well.

2. As mentioned in Section 4.2, the code tested evaluates the unloading strain in the inclusion, for

BCont, at time step tn. Even if this value does not change much, the code could still be improved

to have a rigorously fully implicit version by evaluating this value at tn+1.

3. The use of a Crank-Nicholson scheme was also commented by the tutor and advisor; and could

be implemented when the previous point is completed.

Lastly, the code can be enhanced to allow the use of the viscoplastic models that are present in the

code, therefore expanding even more the materials one could simulate with the new method.
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Appendix A

Tensor notation

The frame of continuum mechanics usually requires the use of tensors of different orders. In the

present case, second and fourth order tensors are very commonly used, while six order tensors can

also appear, but are less frequent.

While more basic mathematics has standardized rules of expressing their different tools, tensors are

represented with slight differences depending on the work being read. The purpose of this section is

simply to explain the two notations that are used in this paper.

The first and main one, used during most of this project is the bold tensor notation. Tensors are

noted with bold symbols, as opposed to scalars which are represented by regular font symbols.

The second one is the index notation, longer but more insightful when it comes to tensor operation.

The index notation makes use of arbitrary letters to indicate each of the spatial dimentions of the

tensors they are subscripted to. A few examples of equivalences are:

A+B = C ; Aij +Bij = Cij (A.1)

A : B = c ; AijBij = C (A.2)

The index notation is also shortened by taking advantage of Einstein’s convention. Also, note that

the bold notation does not always explicitly state the order of the tensor contraction. For that, the

reader must either resort to the index notation or the theory.

The stress and strain fields are represented as second order vectors, i.e., respectively,

σ or {σij} and ε or {εij} , (A.3)

while the operators for the stress-strain relationship are fourth order tensors:
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C or {Cijkl} (A.4)

The rest of the quantities can be can be deduced quickly once these are known. Furthermore, the

second order identity tensor is written δ or {δij}, while the fourth order identity tensor is represented

as I or {Iijkl}.
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Appendix B

Calculation of the Jacobian for the

former incremental-secant method

The expression for the Jacobian, J , can be obtained from the reference paper, [1]. The definition of

the Jacobian is given as:

J =
∂F

∂εI
+
∂F

∂ε0
:
∂ε0

∂εI
(B.1)

This results in:

J = CS
0,n+1 :

[
I − S(CS

0 )−1
]
−CS

I,n+1 −
∂CS

I,n+1

∂εI
: ∆εrI,n+1−

vI
v0

∂CS
0,n+1

∂ε0
:

[
∆εrI,n+1 − S(CS

0 )−1 :
∆εrI,n+1 −∆ε̄rn+1

v0

]
−

vI
v2

0

CS
0,n+1 ⊗

(
∆εrI,n+1 −∆ε̄rn+1

)
::
(
S(CS

0 )−1 ⊗ S(CS
0 )−1

)
::
∂S

∂ε0
− vI
v0
CS

0,n+1 : S(CS
0 )−1

(B.2)

The derivatives of the secant operators are also obtained from the reference. A different result is

obtained depending on the use of the residual-incremental or the zero-incremental method. For the

former, one has

∂CSr
r

∂εr
= 2Idev ⊗

[
1

6µSrr (∆εeqr )
2 ∆σr : Idev : Calg

r − 2

3
µSrr

∆er

(∆εeqr )
2

]
, (B.3)

while for the zero-incremental, the expression is

∂CS0
r

∂εr
= 2Idev ⊗

[
1

6µ0
r (∆εeqr )

2σr : Idev : Calg
r − 2

3
µS0
r

∆er

(∆εeqr )
2

]
, (B.4)
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Lastly, the term ∆e = Idev : ∆ε. Equations (B.3) and (B.4) can be applied to either phase I or 0,

applying the corresponding stress and strain tensors and shear stiffness expression.

The phase secant operator can be used to extract the needed information to use in the formulas.



First Lamé parameter, λ =
(
CSr,n+1

)
1,2

Shear stiffness, µ = 1
2

(
CSr,n+1

)
4,4

Poisson’s ratio, ν = λ
2(λ+µ)

Bulk modulus, κ = λ+ 2
3ν

(B.5)

The numeric subscripts included on the secant operators indicate that the elements (1,2) and (4,4) of

the tensors are used. With these four quantities (along with the inclusion’s geometric characteristics,

for the correspondent phase), S can be calculated.
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Appendix C

Components of the Eshelby tensor and

their derivatives

The expression to obtain the Eshelby tensor, S, is given component by component by Wu et al. in

[34]. The base case is considering an inclusion of spheroidal shape. Its lengths along the principal

axes 1, 2 and 3, follow a1 = a2 < a3. The latter can be divided by each of the other two to define an

aspect ratio α = a3/a2 = a3/a1. This aspect ratio serves as a parameter to characterize the inclusion,

thus, the expression of the tensor is left as a function of this and the poisson ratio ν.

Note that the Eshelby tensor has been indicated to be a function of the secant operator CS
0 . As

mentioned, this dependency comes from the use of µ and where it is evaluated. Both here and in

Appendix C, µ is not explicit, but its dependency comes through the poisson ratio ν =
3κ− 2µ

2(3κ+ µ)
.

Again, κ is considered constant due to the volume of the material being so.

The components were already present in the original code and are showcased below:



S1111 = S2222 = 3
8(1−ν)

(
1 + 1

α2−1

)
+ 1

4(1−ν)

[
1− 2ν − 9

4(α2−1)

]
g

S3333 = 1
2(1−ν)

[
4− 2ν + 2

α2−1
−
(

4− 2ν + 3
α2−1

)
g
]

S1122 = S2211 = 1
4(1−ν)

[
1
2 + 1

2(α2−1
−
(

4− 2ν + 3
α2−1

)
g
]

S1133 = S2233 = − 1
2(1−ν)

[
1
2 + 1

2(α2−1)
−
(

1− 2ν + 3
4(α2−1)

)
g
]

S3311 = S3322 = − 1
2(1−ν)

(
1− 2ν + 1

α2−1

)
+ 1

2(1−ν)

(
1− 2ν + 3

2(α2−1)

)
g

S1212 = 1
4(1−ν)

[
1
2 + 1

2(α2−1)
+
(

1− 2ν − 3
4(α2−1)

)
g
]

S1313 = S2323 = 1
4(1−ν)

[
−2ν − 2

α2−1
− 1

2

(
−2− 2ν − 6

α2−1

)
g
]

(C.1)

For the rest of the components, a set of symmetries (the minor symmetries) can be used:

Sijkl = Sjikl = Sijlk ∀ i, j, k, l = 1, 2, 3. (C.2)
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Lastly, g is a function of Poisson’s ratio:

g =
α

(α2 − 1)3/2

[
α
(
α2 − 1

)1/2 − cosh−1α
]

(C.3)

For the particular case in which α = 1, the expressions here presented are not valid. Instead, one may

use:


S1111 = S2222 = S3333 = 7−5ν

15(1−ν)

S1212 = S2323 = S3131 = 2 4−5ν
15(1−ν)

S1122 = S2211 = S1133 = S3311 = 5ν−1
15(1−ν)

(C.4)

The same symmetries apply than with the previous expressions.

C.1 Derivative of the Eshelby tensor S

The derivative of the Eshelby tensor is useful in the new formulation, since it appears many times in

different expressions and derivatives (such as the Jacobian, for example). This appendix shows how

these are obtained in a simple manner so that the reader may come back to check the expressions if

needed when they are following derivations.

C.2 First derivative

The derivative of the Eshelby tensor,
dS

dµSr
can be obtained from the components of S, given in

Appendix C. Since the derivative of S is easier to obtain in terms of Poisson’s ratio, the chain rule

becomes handy:

dS

dµSr
=
dS

dν

dν

dµSr
(C.5)

Then, the derivative of S with respect to Poisson’s ratio can be obtained from the components one

by one:
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

dS1111
dν = dS2222

dν = 24
64(1−ν)2

(
1 + 1

α2−1

)
+ 4

16(1−ν)2

[
1− 9

4(α2−1)

]
g

dS3333
dν = 1

2(1−ν)2

[
2ν + 2

α2−1
−
(

2ν + 3
α2−1

)
g
]

dS1122
dν = dS2211

dν = 1
4(1−ν)2

[
1
2 + 1

2(α2−1)
+
(

1− 3
4(α2−1)

)
g
]

dS1133
dν = dS2233

dν = −1
4(1−ν)2

(
1 + 1

2(α2−1)

)
+ 1

4(1−ν)2

(
4 + 3

α2−1

)
g

dS3311
dν = dS3322

dν = −1
2(1−ν)2

(
2ν − 3 + 1

α2−1

)
+ −1

2(1−ν)2

(
2ν − 3 + 3

α2−1

)
g

dS1212
dν = 1

4(1−ν)

[
1
2 + 1

2(α2−1)
+
(
−1− 3

4(α2−1)

)
g
]

dS1313
dν = dS2323

dν = 1
4(1−ν)

[
−2− −2

α2−1
− 1

2

(
−4− 6

α2−1

)
g
]

(C.6)

Regarding the missing components, the same symmetries as for the original tensor can be used to

obtain them:

dSijkl = dSjikl = dSijlk for i,j,k,l = 1, 2, 3

The term
dν

dµSr
can be evaluated from the expression ν =

3κ− 2µ

2(3κ+ µ)
, which is applicable to the matrix

phase since it is isotropic. Furthermore, the bulk modulus of the material, κ, can be assumed to be

constant.

dν

dµSr
=

−9κ

2(3κ+ µSr )2
(C.7)

dS

dµSr
is therefore readily obtainable with the chain rule.

The particular case α = 1 has a different expression for the derivatives as well.


dS1111
dν = dS2222

dν = dS3333
dν = 2

15(1−ν)2

dS1122
dν = dS2211

dν = dS1133
dν = dS3311

dν = 4
15(1−ν)2

dS1212
dν = dS2323

dν = dS3131
dν = −2

15(1−ν)2

(C.8)

C.3 Second derivative

The second derivative,
d2S

d (µSr )2 , can be obtained from the derivation of the chain rule in Equation

(C.5).

d2S

d (µSr )2 =
d2S

dν2

(
dν

dµSr

)2

+
dS

dν

d2ν

d (µSr )2 (C.9)
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d2ν

d (µSr )2 follows from differentiating dν
dµSr

,

d2ν

d (µSr )2 =
18κ

2(3κ+ µSr )3
, (C.10)

and
d2S

dν2
can be obtained once more component by component:



d2S1111
dν2

= d2S2222
dν2

= 3
4(1−ν)3

(
1 + 1

α2−1

)
+ 1

2(1−ν)3

(
1 + 8ν − 9

4(α2−1)

)
g

d2S3333
dν2

= 1
(1−ν)3

[
1 + ν + 2

α2−1
−
(

1 + ν + 3
α2−1

)
g
]

d2S1122
dν2

= d2S2211
dν2

= 1
2(1−ν)3

[
1
2 + 1

2(α2−1)
+
(

1− 3
4(α2−1)

)
g
]

d2S1133
dν2

= d2S2233
dν2

= −1
(1−ν)3

(
1 + 1

α2−1

)
+ 1

2(1−ν)3

(
4 + 3

α2−1

)
g

d2S3311
dν2

= d2S3322
dν2

= −1
(1−ν)3

(
−2 + ν + 1

α2−1

)
+ 1

(1−ν)3

(
−2 + ν + 3

2(α2−1)

)
g

d2S1212
dν2

= 1
2(1−ν)3

[
1
2 + 1

2(α2−1)

(
−1− 3

4(α2−1)

)
g
]

d2S1313
dν2

= d2S2323
dν2

= 1
2(1−ν)3

[
−2− 2

α2−1
+ 1

2

(
4 + 6

α2−1

)
g
]

(C.11)

Here, the missing components can once more be obtained with the minor symmetries. One can then

use the chain rule in Equation (C.9) and obtain
d2S

d (µSr )2 .

For the case α = 1:


d2S1111
dν2

= d2S2222
dν2

= d2S3333
dν2

= 4
15(1−ν)3

d2S1122
dν2

= d2S2211
dν2

= d2S1133
dν2

= d2S3311
dν2

= 8
15(1−ν)3

d2S1212
dν2

= d2S2323
dν2

= d2S3131
dν2

= −4
15(1−ν)3

(C.12)

C.4 Mixed derivative

Lastly, the mixed derivative with respect to the strain,
∂
(
dS
dµSr

)
∂ε

, is also needed for some computations.

It can be obtained from the previous result as:

∂2S

∂µSr ∂ε
=

d2S

d (µSr )2 ⊗
∂µSr
∂ε

(C.13)

Depending on the method being used, Equation (4.16) or (4.12) is used to evaluate this term.
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Appendix D

Derivatives of the shear stiffness µSr

This Appendix develops the second derivatives of the shear stiffness for both residual incremental or

zero-incremental methods. These magnitudes are required to compute the Jacobian (see Appendix

E). Phase subscripts will be omitted for simplicity, since the final result will be applicable to both

phases at any time step. The strain or time step subscripts will therefore also be neglected in the

appendix. It is understood that all the expressions must be evaluated at the same strain increment

(for the current use of the expressions, this is at tn+1). Note that if there is a residual stress, it is

considered in the previous strain increment (that is, tn when the expressions are evaluated at tn+1).

Furthermore, due to the two different definitions of the shear stiffness, two sections are included, one

for each formulation.

D.1 Zero-incremental shear stiffness µS0
r

Differentiating Equation (4.12) once more yields:

∂2µ̃S0

∂ε2
=

12
(
µel
)4

(σtr)eq h

[(
2

(σtr)eq
+

1

h2

d2R

dp2

)
(N ⊗N)− 3

2 (σtr)eq
Idev

]
(D.1)

D.2 Residual-incremental shear stiffness µSrr

This time, Equation (4.16) is differentiated, since the approximation is the expression needed.

∂2µ̃Sr

∂ε2
=

12
(
µel
)4

(∆σtr)eq h

[
1

(∆σtr)eq
(Nm ⊗N) +

(
2

(σtr)eq
+

1

h2
m

d2R

dp2

)
(N ⊗N)− 3

2 (σtr)eq
Idev

]
(D.2)

Lastly, note that, in the approximation to small strain increments used,
(
∆σtr

)eq
approaches the
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unloading strain as (∆σu)eq. This has not been explicited due to them being both equivalent to the

expression Cel : ∆εr. Indeed, in said limit ∆εr → ∆εu.
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Appendix E

Calculation of the Jacobian for the

proposed formulation

Due to the presence of a good number of sixth order tensors, this section has been written using index

notation. This helps clarifying the order of the contractions when several of these tensors are used to

operate.

Furthermore, the strain increment notation is also skipped. All the terms depending on time, such as

∆εI and the shear stiffness and its derivatives, are being evaluated at tn+1.

The equation for the Jacobian written in index notation is:

Jijkl =
∂Fij
∂(εI)kl

+
∂Fij

∂(ε0)mn

∂(ε0)mn
∂(εI)kl

(E.1)

The derivatives of F are obtained as:


∂Fij

∂(εI)kl
= v0


��

�
��

��*
0

∂(BCont)
−1

ijmn

∂(ε0)kl
(∆εI)mn +

(
BCont

)−1

ijmn��
��
�*

Iijkl
∂(∆εI)mn

∂(εI)kl

+ vI��
��
�* Imnkl

∂(∆εI)ij
∂(εI)kl

−
��

��*
0

∂(∆ε̄)ij
∂(εI)kl

∂Fij

∂(ε0)kl
= v0

(
∂(BCont)

−1

ijmn

∂(ε0)kl
(∆εI)mn +

(
BCont

)−1

ijmn��
��
�* 0

∂(∆εI)mn

∂(ε0)kl

)
+ vI��

��
�* 0

∂(∆εI)ij
∂(ε0)kl

−
��

��*
0

∂(∆ε̄)ij
∂(ε0)kl

(E.2)

The terms
∂∆ε̄

∂εI
and

∂∆ε̄

∂ε0
are considered 0, since during the Newton-Raphson loop resolution, the

strain at composite level is considered constant. It must be noted that this is not the case when

computing the algorithmic operator. Furthermore,
∂
(
BCont

)−1

∂εI
is only 0 whenever the inclusions

phase is considered elastic.

Introducing (E.2) into Equation (E.1) gives:
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Jijkl = v0

(BCont
)−1

ijkl
+
∂
(
BCont

)−1

ijmn

∂(ε0)ab
(∆εI)mn

∂(ε0)ab
∂(εI)kl

+ vIIijkl (E.3)

To present the final expression, the term
∂(ε0)

∂(εI)
at constant ∆ε̄ can be written as:

∂(ε0)ab
∂(εI)kl

=
−vI
v0

Iabkl (E.4)

Plugging this into Equation (E.3) and reorganizing yields the final expression to be implemented in

the code:

Jijkl = vI

Iijkl − ∂
(
BCont

)−1

ijmn

∂(ε0)kl
(∆εI)mn

+ v0

(
BCont

)−1

ijkl
(E.5)

The only term that is not known at this point is the derivative of the new strain localization tensor,

this is,
∂
(
BCont

)−1

∂(ε0)
. However, one can write

∂
(
BCont

)−1

ijkl

∂(ε0)ab
= −

(
BCont

)−1

ijxy

∂
(
BCont

)
xyrs

∂(ε0)ab

(
BCont

)−1

rskl
, (E.6)

so that the term to obtain is now the derivative of the non-inverted strain localization tensor. In order

to do this, it can be succesively decomposed into simpler expressions to perform the derivatives on.

Starting from Equation (4.7):

BCont
ijkl = Bijmn

∣∣∣
Cel

0

Hmnkl (E.7)

Its derivative is:

∂
(
BCont

)
ijkl

∂(ε0)ab
=
�
�
�
�
�
�>

0

∂Bijmn

∣∣∣
Cel

0

∂(ε0)ab
Hmnkl +Bijmn

∣∣∣
Cel

0

∂Hmnkl

∂(ε0)ab
(E.8)

Here, Bijmn

∣∣∣
Cel

0

is the strain localization tensor evaluated at the elastic secant operator of the matrix

phase, which does not depend on the strain. H, on the other hand, is the expression that multiplies

the second term in Equation (4.7). It is defined as:
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Hijkl = Iijkl

−
(
dS

dµS0

∣∣∣
Cel

0

:

((
Cel0

)−1
: CSI − I

)
− 2S

∣∣∣
Cel

0

:
(
Cel0

)−1
: Idev :

(
Cel0

)−1
: CSI

)
ijmn︸ ︷︷ ︸

(E1)ijmn

:

(
∆εuI ⊗

∂µ̃S0
∂ε0

)
ijmn︸ ︷︷ ︸

(E2)mnkl

Note that E1 and E2 have also been indexed. In fact, these two are the most important expressions

since the useful quantity is not H, but its derivative. This can be obtained by using the chain rule as:

∂Hijkl

∂(ε0)ab
= −

(
∂(E1)ijmn
∂(ε0)ab

(E2)mnkl + (E1)ijmn
∂(E2)mnkl
∂(ε0)ab

)
(E.9)

For the first term,

∂(E1)ijkl
∂(ε0)ab

= 0 (E.10)

The reason behind this is that both the Eshelby tensor S and its derivative
dS

dµS0
are being already

evaluated at the elastic value for the expression of H. This means that they are treated as being

constants and thus their derivatives are cancelled, leaving only (E1)ijmn
∂(E2)mnkl
∂(ε0)ab

to be computed.

∂(E2)ijkl
∂(ε0)ab

=
∂
(

∆εuI
∂µ̃S0
∂ε0

)
ijkl

∂(ε0)ab
=
��

�
��*

0
∂(∆εuI )ij
∂(ε0)kl

∂µ̃S0
∂(ε0)ab

+ (∆εuI )ij

(
∂2µ̃S0
∂ε2

0

)
klab

=

= (∆εuI )ij

(
∂2µ̃S0
∂ε2

0

)
klab

(E.11)

The term
∂2µ̃S0
∂ε2

0

can be evaluated from Equations (D.1) or (D.2), so
∂E2

∂ε0
follows directly from above.

The derivative of the new strain localization tensor is thus

∂
(
BCont

)
ijkl

∂(ε0)ab
= −Bijxy

∣∣∣
Cel

0

(
dS

dµS
0

∣∣∣
Cel

0

:
((
Cel

0

)−1
: CS

I − I
)
− 2S

∣∣∣
Cel

0

:
(
Cel

0

)−1
: Idev :

(
Cel

0

)−1
: CS

I

)
xyrs

(∆εuI )rs

(
∂2µ̃S

0

∂ε20

)
klab

By now, all the elements to compute
∂
(
BCont

)−1

∂ε0
and use it for the Jacobian in Equation (E.5) have

been obtained and can be coded.
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[21] P. Kanouté, D.P. Boso, J.L. Chaboche, and B.A. Schrefler. Multiscale Methods for Composites:

A Review. Comput. Methods Eng, 2009.

[22] J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related prob-

lems. Royal Society of London. Series A, Mathematical and Physical Sciences, 1957.

[23] A. Reuss. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung
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