
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Mobile application and software development at Foot 24-7

Auteur : Meyers, Cédric

Promoteur(s) : Donnet, Benoît; 15861

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "management"

Année académique : 2021-2022

URI/URL : https://github.com/ErwanThebaultDeuse/foot247; http://hdl.handle.net/2268.2/14507

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



University of Liège - Faculty of Applied Sciences

Civil engineering - Master in computer science

Mobile application and software development
at Foot 24-7

Master thesis carried out in fulfilment of the requirements for obtaining the Master’s
degree in Computer Science and Engineering by Cédric Meyers

Author: Cédric Meyers Supervisor: Pr. Benoit Donnet

Academic year 2021-2022



Acknowledgements

Even though a Master thesis is mainly about personal effort, exchanging with others is essential
and can prove to be very valuable in order to achieve a qualitative work.

Therefore, I would first like to thank my industrial supervisor, Rayan Kassir, for giving me
the opportunity to work on this project and for our many instructive exchanges.

I would also like to extend my thanks to Erwan Thebault and the Deuse company in general
for the training they offered me but also for their support during the course of this project.

Of course, I would also like to express my sincere gratitude to my academic supervisor, Mr
Benoit Donnet, for his insightful feedback and valuable guidance.

Finally, I also wish to thank my family and friends for their support, advice and for proof-
reading this thesis.

University of Liège -i- Academic year 2021-2022



Abstract

This Master thesis addresses the development and improvement of the Foot 24-7 mobile appli-
cation, an application which connects amateur footballers together to facilitate the practice and
organisation of football games.

Nowadays, mobile applications have become an integral part of our daily lives. Statistically
speaking, 4 out of 5 people in the world own a smartphone. On top of that, the average daily
time people spend on their smartphone is over 3 hours and most of this time is spent using an
application. To appraise the importance of mobile applications in today’s industry, we can men-
tion that the number of mobile application downloads worldwide reached 230 billion in 2021 and
this number is only increasing over time. It is therefore quite clear that the mobile application
industry is thriving and will continue to do so in the coming years.

On the other hand, there is no denying the importance of football in our modern societies.
As a matter of fact, football is the most played and followed sport in the world. As a result,
almost everyone wants to play football. However, for many football enthusiasts, the practice of
this sport is sometimes very difficult: lack of partners, difficulties in finding an available pitch or
venue, last-minute withdrawals, etc.

In this context, the Foot 24-7 mobile application provides a solution to all of these short-
comings that any football fan knows only too well. In a continuous effort to enhance the user
experience on their mobile application, Foot 24-7 is constantly seeking to improve their applica-
tion in order to meet their users’ expectations. Consequently, the purpose of this thesis was to
research, design and implement the most relevant improvements to the Foot 24-7 mobile appli-
cation.

This thesis addressed the following development tasks using well-known application develop-
ment technologies such as the Flutter framework, the Django framework and the Django REST
framework: debugging of the original application, development of player and team rating sys-
tems, addition of the possibility to create team games, access to a user’s personal teams, redesign
of the whole invitation system, addition of the possibility to edit a created game, improvement
of the bottom navigation bar with notifications as well as the development of a brand new access
dedicated to referees.

The work carried out during this Master thesis allowed to improve the user experience on
the Foot 24-7 mobile application and will hopefully help it to reach an increasingly conquered
public.

University of Liège -ii- Academic year 2021-2022



Contents

Contents

1 Introduction 1

2 Context 2
2.1 Description of the company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Application presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Application architecture and used technologies . . . . . . . . . . . . . . . . . . . 10
2.4 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Problem statement 18

4 Approach 20

5 Development of the solution 23
5.1 Debugging the original application . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Rating other players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Rating other teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Create games with teams rather than players . . . . . . . . . . . . . . . . . . . . 40
5.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Access to personal teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Redesigning the invitation mechanism . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Game editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Improving the bottom navigation bar with notifications . . . . . . . . . . . . . . 60
5.8.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8.2 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Development of a new referee access . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.9.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.9.2 Solution design process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.9.3 Implementation & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Testing 88
6.1 Debugging the original application . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Rating other players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Rating other teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Create games with teams rather than players . . . . . . . . . . . . . . . . . . . . 93
6.5 Redesigning the invitation mechanism . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Game editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.7 Improving the bottom navigation bar with notifications . . . . . . . . . . . . . . 96
6.8 Development of a new referee access . . . . . . . . . . . . . . . . . . . . . . . . . 97

University of Liège -iii- Academic year 2021-2022



Contents

7 Conclusion 100
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A User feedback on the Foot 24-7 mobile application 107

B Edit game use case - Test cases 109

C Acceptance sheet 111

University of Liège -iv- Academic year 2021-2022



1. Introduction

1 Introduction

This Master thesis addresses the development and improvement of the Foot 24-7 mobile appli-
cation, an application which connects amateur footballers together to facilitate the practice and
organisation of football games.

In this report, we will first present the context in which this Master thesis took place. This
will allow us to understand the Foot 24-7 project as well as to explain and clearly identify the
pre-existing basis on which this thesis rests. Next, we will describe the problem as presented
by Foot 24-7 and the way I decided to approach it. The main part of this report will focus on
describing the solution to the stated problem. Finally, we will conclude by reviewing the status
of the project following the work carried out during this thesis, which will allow us to discuss
perspectives for future work on the Foot 24-7 mobile application.

The entire project implementation related to this thesis is available on the following GitHub
repository: https://github.com/ErwanThebaultDeuse/foot247.

University of Liège -1- Academic year 2021-2022

https://github.com/ErwanThebaultDeuse/foot247


2. Context

2 Context

2.1 Description of the company

As this project was conducted in collaboration with the company Foot 24-7 [28], we will first
describe this company and its project.

Foot 24-7 is a company founded by Mr Rayan Kassir in 2019. Mr Kassir is an avid football
fan and, as such, loves playing football regularly, but when he arrived in Liège in 2014 to pursue
his studies, he quickly discovered that finding players and the required facilities to play
football was particularly complex, especially in the case of university tournaments. As he
realised that many other people were experiencing the same difficulties (finding a venue or an
available pitch, lack of players, last minute withdrawals, etc.), Mr Kassir decided to propose a
solution allowing to remove these obstacles to the practice of the sport by connecting amateur
footballers, even if they are isolated: Foot 24-7 was born.

On the Foot 24-7 mobile application, it is therefore possible to search for games, players (ac-
cording to their level and position on the pitch), teams and even tournaments. It is also possible
to create your own team and organise games by choosing the date, time and pitch. Since the
mobile application is free, the user pays nothing. It is the venues, sports complexes and tourna-
ment organisers that pay a flat fee in exchange for several services: a digitalised offer, increased
visibility as well as an online booking system. Indeed, in addition to its mobile application, Foot
24-7 has also developed an online platform that tournament organisers and pitch owners use
for their organisation. Moreover, Foot 24-7 also has sponsors and partnerships with well-known
companies such as Decathlon [15] and Adeps [9].

Foot 24-7 is now available in Belgium in Brussels, Liège, Louvain-la-Neuve, Namur and
Marche-en-Famenne, but its scope should be extended in the future, notably to France.

University of Liège -2- Academic year 2021-2022



2. Context

2.2 Application presentation

In this section, we will describe and illustrate the initial mobile application in order to present
its general functioning. This will allow us to review the fundamental concepts and notions
used in the application as well as its basic functionalities.
The Foot 24-7 mobile application is available on both iOS and Google Play. Once the application
is downloaded, the user is first invited to log in with an existing account if he already has one
or to create a new account, as illustrated in the following Figure 1.

(a) User login page (b) Account creation page (c) Account creation page

Figure 1: User login and account creation pages

Once logged in, the user can then access the application and is redirected to his profile page.
The mobile application is mainly divided into 5 tabs:

• The "Profil" tab allows the user to access and edit his personal data (name, first name,
city, profile picture, level, position, etc.). In this tab, the user can also access the settings
screen. Both the profile and settings screens are illustrated in the following Figure 2.

University of Liège -3- Academic year 2021-2022



2. Context

(a) Profile page (b) Settings page

Figure 2: Profile and settings pages

• The "Chat" tab allows the user to access all the chats in which he participates. This
includes of course chats between 2 users but also chats associated with a team or a particular
game (see Figure 3).

Figure 3: Chat page

University of Liège -4- Academic year 2021-2022



2. Context

• The "Tournois" tab allows the user to view all the tournaments currently in progress. By
clicking on a tournament, the user has access to the details of this tournament, i.e. the
phase of the tournament (group phase or elimination phase), the participating teams, the
ranking, the upcoming games as well as the history of the games. All these elements are
depicted in the following Figure 4.

(a) Tournament page (b) Tournament detail

(c) Tournament group (d) Tournament group

Figure 4: Tournament pages

University of Liège -5- Academic year 2021-2022



2. Context

• The "Calendrier" tab allows the user to keep track of all games in which he participates,
whether they are tournament games or unofficial games. In addition, this tab also offers
the user the possibility to create his own game by specifying the date, place, number of
participants, duration, etc. All these pages are presented in the following Figures 5 and 6.

Figure 5: Calendar page

University of Liège -6- Academic year 2021-2022



2. Context

(a) First page (b) Second page

(c) Third page (d) Fourth page

Figure 6: Game creation pages

University of Liège -7- Academic year 2021-2022



2. Context

• The "Pannas" tab allows the user to access a list of products that he can purchase using
pannas. Pannas are a kind of currency specific to the Foot 24-7 mobile applica-
tion that users can spend on various products offered by Foot 24-7 which are displayed in
the "Pannas" tab. Users earn pannas during their experience on the application. Indeed,
users can collect pannas for example when they complete their profile information, when
they win a game, when they are elected most valuable player (MVP) of a game or when
they share a game on their social networks. This system of earning pannas according to
the actions performed on the application aims at stimulating users so as to maximize their
use of the application and this strategy is actually called gamification. As a matter of
fact, a gamification strategy is a process of taking an existing software and using gaming
techniques to motivate user participation. The list and detail pages of the products that
a user can purchase using the pannas he collects via the application are illustrated in the
following Figure 7.

(a) Product list (b) Product detail

Figure 7: Product list and detail pages

Besides these 5 main tabs, the user can also search for games, players or teams by pressing the
search icon in the application bar. When pressing this button, the user is redirected to the search
page illustrated in the following Figure 8.

University of Liège -8- Academic year 2021-2022



2. Context

Figure 8: Search page

To conclude this section presenting the original application, we can summarise the set of
features initially offered to a user of the Foot 24-7 mobile application in the following diagram 9.
This diagram provides a high-level view of the original functionalities and serves as a benchmark
for comparison with the high-level diagram presenting the set of functionalities available following
the work carried out during this thesis, which can be seen in Figure 66.

Figure 9: High-level diagram of original features

University of Liège -9- Academic year 2021-2022



2. Context

2.3 Application architecture and used technologies

The entire Foot 24-7 project relies on a Docker [22] [20] architecture allowing to easily repli-
cate the production environment on any machine. As it happens, Docker is an open source
platform which enables developers to package applications into isolated environments called con-
tainers. Containers are standard software units encapsulating code and all its dependencies to
provide a portable runtime environment for an application. In other words, Docker containers
are lightweight standalone executable software packages containing everything needed to run an
application [21]. As a result, Docker allows to isolate an application from the local infrastructure.
This enables to quickly and reliably develop, distribute and run an application on any computing
environment.

As with most applications, the Foot 24-7 mobile application is built around a frontend and
a backend.

In the case of Foot 24-7, the frontend is implemented using the Flutter framework [27].
Flutter is a popular frontend development framework developed by Google that enables de-
velopers to build beautiful user interfaces. Flutter is designed to ease the development of
cross-platform applications. As a matter of fact, it allows to develop applications for Android,
iOS, Linux, Mac, Windows, etc. from a single code base. To build these applications, the
Flutter framework relies on the Dart programming language [14].

As far as the backend is concerned, it is implemented through the Django framework [19].
Django is a fully-featured Python [32] web framework that enables rapid development of secure
and maintainable web applications. Django is based on the very popular Model-View-Controller
(MVC) pattern, which is an architectural pattern that separates an application into three main
logical components: the model, the view and the controller. These components are designed to
handle the three main pieces of logic separately:

• The model is the functional core of the application. It represents the data, provides access
to the data. It defines the processing and operations that can be applied to the data and
thus exposes the application’s functionalities.

• The view is the representation of the data in the model. It ensures consistency between
the representation it gives and the state of the model (i.e. the context of the application).
Hence, the view represents the outputs of the application.

• The controller represents the behaviour of the application in response to the user’s actions.
It provides the translation of the user’s actions into actions on the model and provides the
appropriate view following the user’s actions and the model’s reactions. The controller is
therefore responsible for the behaviour and input management of the application.

Although based upon the MVC pattern, the architecture used by Django is actually slightly
different as Django handles the controller part itself. Therefore, the pattern Django utilizes is
called the Model-View-Template (MVT) pattern, where the view and the template in the MVT
pattern make up the view in the MVC pattern.
In the context of the Foot 24-7 mobile application, since the frontend is implemented using
Flutter, Django only serves as a backend through the definition of the models.

University of Liège -10- Academic year 2021-2022



2. Context

To transfer information between the Flutter frontend and the Django backend, the appli-
cation uses the Django REST framework [18]. The Django REST framework (DRF) is a toolkit
built on top of the Django web framework that allows to create REST interfaces. As such, the
Django REST framework allows a frontend and a backend to communicate with each other
through a REST API. REST APIs operate via requests and responses which means that such
APIs provide a series of endpoints in the form of urls that a client can call in order to perform
a request. As REST is actually built on top of existing HTTP methods, a REST API uses HTTP
requests to perform standard database functions such as creating, reading, updating and deleting
records. The format of the data sent back and forth in the body of a REST command is up to
the implementer but, in the case of Foot 24-7, the serialization of data is implemented via JSON
objects. On the one hand, this means that Django models get paired with DRF serializers that
specify how to turn the content of a Django model into a JSON object that will be sent to the
frontend (and inversely). On the other hand, it means that there also exist serializers in the
frontend in order to transform JSON objects into Dart objects (and inversely). This double
serialization of data is a central piece in the structure of the application and is fundamental
to ensure communication between the Flutter frontend and the Django backend.

University of Liège -11- Academic year 2021-2022



2. Context

2.4 Code structure

As can be seen in the following Figure 10, the initial code structure consists of 5 main folders:

1. The cron folder

2. The mobile_app folder

3. The nginx folder

4. The redis folder

5. The web folder

Figure 10: 5 main folders of the code structure

The 2 most important folders of this structure are the mobile_app folder and the web folder.

mobile_app folder
mobile_app is the folder containing the frontend of the application. Inside this folder, one can
find the structure of a classic Flutter application, as shown in the Figure 11 below.

Figure 11: mobile_app folder

University of Liège -12- Academic year 2021-2022



2. Context

Hence, the source code of the Foot 24-7 mobile application can be found in the mobile_
app/lib folder. In this folder, the source code is logically divided into several sub-folders, each
of which concerns a particular component of the mobile application. The following Figure 12
illustrates the contents of the lib folder.

Figure 12: lib folder

Most of the directories in the lib folder contain the same 2 sub-directories: api and screens.
The screens folders contain Dart files that correspond to the actual screens that can be found
on the mobile application while the api folders contain the API between the frontend and the
backend as well as data serializers (from Dart objects to JSON objects and inversely). An example
of such a structure can be found in the following Figure 13.

Figure 13: api and screens sub-folders

The entry point of the mobile application can be found in the main.dart file which is located
in the lib folder. However, this file is mainly used to define the desired screen orientation and
only creates the application by instantiating a Routes object which is defined in the routes.dart
file (from the same folder). The routes.dart file is responsible for managing the routing of
the application. Routing is a core concept of any mobile application allowing a user to navigate
between different pages (or screens) of an application. It is thus one of the most basic things
to implement in an application. In Flutter, navigating between different routes (i.e. pages) of
an application is done with the use of the Navigator widget. The Navigator widget manages
the different pages of an application in a navigation stack in such a way that the page displayed
on the screen corresponds to the one on top of the stack. This means that when one wishes to
display a new route, the Navigator will push this route on the top of the stack. Conversely,

University of Liège -13- Academic year 2021-2022



2. Context

when one wants to navigate back to the previous route, the Navigator will pop the route on
top of the stack. There are several ways to indicate to Flutter which route to push on top of
the stack. In the case of Foot 24-7, the application uses what is called named routing. As
explained in the Flutter documentation [25] [26], in named routing, each screen is associated
with an identifier. When we want to display a certain screen, we use the Navigator.pushNamed
function, passing the name of the screen as an argument. To associate the different screens of
the application with the appropriate names, we use the routes property of the MaterialApp
widget. In some cases, it is also necessary to pass arguments to a named route. To do so, we
use the onGenerateRoute function of the MaterialApp widget. All of this is implemented in the
routes.dart file which thus allows to create the application and to call the proper screen (whose
definition can be found in one of the screens sub-folders) of the mobile application based on the
named route requested by the user.
In this file, one can also notice that the application uses the shared_preferences plugin [5] to
store locally on the device small and simple pieces of data such as the language used in the appli-
cation (i.e. locale). In this regard, we can mention that the application was structured in a way
to support internationalization (also called localization), i.e. to support multiple languages
in the application. The system used for internationalization is the native Flutter process [24]
which is based on a key-value mechanism. This means that when we want to display text in the
UI, instead of providing text statically in a widget, we have to create a relatively explicit key
and associate it with the corresponding translations in the different languages supported by the
application. The set of these key-value pairs can be found in the l10n1 folder which can be seen
in Figure 12. When examining this folder in more detail, we can observe that a structure allowing
the support of 3 different languages (French, English and Dutch) was established. However, it
is important to note that, for the moment, the application only supports one language, namely
French, since many of the texts defined in the l10n folder are yet to be translated into English
and Dutch.

web folder
web is the folder containing the backend of the application. As a matter of fact, this folder
contains the Django project of the Foot 24-7 application. Hence, inside this folder, we can find
a collection of settings for the Django project, including database configuration, Django-specific
options and application-specific settings.
Django projects are typically divided into several Django apps. An app is a web application that
provides specific functionality for a project while a project is a collection of configuration and
apps for a particular website. This means that a project can actually contain multiple apps and
that an app can also be used in multiple different projects.
In the case of Foot 24-7, the web folder is thus logically divided into several sub-folders, most of
which representing a particular app of the project, as depicted in the following Figure 14.

1Localization is sometimes written in English as l10n, where 10 is the number of letters between "l" and "n"
in "localization".

University of Liège -14- Academic year 2021-2022



2. Context

Figure 14: web folder

The inner foot247 directory is the actual Python package for the project and, as such,
contains the settings and configuration (such as the basic url declarations) for this Django project.
Besides this folder, one can find several Django applications, namely the account, game, chat,
ads, gamification and main applications.
As Foot 24-7 features both a mobile application and a web platform, these Django applications
actually split their view and url files into two different files when needed: one for the mobile
application and one for the web platform. This is why these applications generally include the
same 4 files: urls.py, api_urls.py, views.py and api_views.py, those with an api prefix
referring to the mobile application and the others to the web platform. An example of such a
structure is provided in the following Figure 15.

Figure 15: Django application structure

University of Liège -15- Academic year 2021-2022



2. Context

Besides these 2 main folders, the code structure also includes 3 other folders: the cron, nginx
and redis folders.

cron folder
The cron folder allows to schedule and run background tasks at fixed times, dates
or regular intervals. It is based on a system generally present in all computer systems, the
crontab. Via the crontab, one can define a time interval (e.g. every day, every 4 hours, every
minute, etc.) and assign it a task to run in parallel. This can be a purely backend task (e.g.
checking every minute to modify a field in the database) or it can be a task with an impact on the
frontend (e.g. notifications). Other possible uses are the renewal of SSL certificates2 (HTTPS),
a back-up system, etc.
In the case of Foot 24-7, the cron folder notably contains a 9am sub-folder which schedules to
send a set of notifications to the users of the mobile application every day at 9 am, as illustrated
in the following Figure 16.

Figure 16: cron folder

nginx folder
Nginx [29] is a web proxy that allows to perform load balancing. Essentially, it is a service
that allows to catch web requests and to redirect them accordingly depending on the protocol
used (HTTP, websocket or other). In practice, this means that before arriving in the Django
backend system, any request is first captured by the Nginx proxy (whether the request is an API
request or a request to load a page, a static file such as an image, a JavaScript file, etc.) and the
latter will then redirect it to the appropriate service (the web service, the media service, etc.). As
it is a proxy, this is also where we generally define the security rules to avoid any type of network
attack: addition of SSL certificates, security headers, blocking of IP addresses, limitation of
upload data, 301 redirects3, etc. There exists a multitude of possible options depending on the
network needs of the project at hand.

redis folder
Redis [33] is a database optimisation system, based on a key-value scheme, allowing to
manipulate relatively simple data (e.g. strings, lists, etc.). It is commonly used as a cache to
store frequently accessed data in RAM so that applications can be responsive to users. To avoid
losing the data stored in the Redis cache (in case of any problem such as a power outage), it is
possible to backup the Redis data in a file.

2SSL stands for Secure Sockets Layer and, in short, is a security technology for establishing encrypted links
between networked systems.

3A 301 redirect refers to the HTTP response status code 301 used for permanent redirecting.

University of Liège -16- Academic year 2021-2022



2. Context

To conclude this section, we can represent the application and code structure in the following
high-level diagram 17.

Figure 17: High-level diagram of application and code structure

University of Liège -17- Academic year 2021-2022



3. Problem statement

3 Problem statement

In an effort to enhance the experience of their customers on their mobile application, Foot 24-7
is constantly seeking to make changes and improvements to their application in order to meet
the users’ expectations. In this context, Foot 24-7 was looking for an intern whose responsibility
would be to research, design and implement the best improvements to the Foot 24-7
mobile application.

The job description for this project was quite general and suggested a great deal of auton-
omy and freedom to carry it out. As it happens, Foot 24-7’s priorities were mainly focused on
customer satisfaction and improving the user experience on their application but the best im-
provements to bring to the Foot 24-7 mobile application were yet to be determined. To answer
this question, I first had to explore the application in detail in order to identify the issues that I
felt were most important to address and then present and discuss them with Foot 24-7. Besides,
Foot 24-7 also provided me with a list of suggestions of possible development tasks that might
be interesting to develop. However, the tasks from this list that were actually considered in this
thesis had to be re-evaluated according to the outcome of my research and my own suggestions,
as we shall see in section 4.
In any case, it is important to realise that this project was highly user-oriented.

For the sake of completeness, I present here the list of task suggestions proposed by Foot 24-7:

• Establish a rating system for players based on 5 defined criteria: technical level, fair-play,
physical condition, game vision and punctuality.

• Add the possibility to use Facebook credentials to sign in and log in to the application,
also known as Signle Sign-On (SSO).

• Create a player invitation and referral system that allows users of the application to earn
pannas by inviting their friends to join the application.

• Further development of the gamification system, which is currently only linked to the
organisation of tournaments (e.g. rating of players encountered, creation of games, team
meetings outside of championships, booking of pitches, etc.).

• Develop a pitch reservation system including integrated payment and allowing to distribute
the amount paid among the different players on the application. This system should be
linked to an online platform to enable pitch managers to better monitor their bookings.

• Develop a referee section where users can offer their services as referees in exchange for
payment or free of charge. This implies the creation of a new status on the application and
the addition of a section in the description of the games displaying the referee of the game.

• In the tournament organisation section, make improvements to the game sheet part.

• In the tournament organisation section, make improvements to the game rescheduling part
in order to facilitate the modification of games. This should be achieved by providing a
view directly on the application allowing players to consult the possible dates and to select
them more quickly.

• In the player’s profile section, the number of games played as well as the number of times
the player was elected player of the game are displayed. Develop a system allowing the
player’s status to evolve according to different levels. This system should be based on the
mechanism used in WoW-type games where different badges are unlocked according to the
levels reached.

University of Liège -18- Academic year 2021-2022



3. Problem statement

• Develop this same aspect of status evolution according to different levels for teams playing
and competing against other teams.

• For games that are played between teams, set up an invitation system to optimise the
organisation of such games.

• Include tournament and championship statistics in a dedicated section within each tour-
nament.

University of Liège -19- Academic year 2021-2022



4. Approach

4 Approach

In this section, we will focus on describing how I chose to approach the problem described in
section 3.

As with any project in which a substantial base already exists, the first phase of this project
was one of discovery and familiarisation with the application, the code and the function-
alities already present. In fact, it was essential to understand the general philosophy of the
initial project in order to integrate the new features in the most natural and coherent way but
also to discover all the existing functionalities in order to steer the development of the appli-
cation in the best direction. Given the significant amount of code already present, this phase
was bound to require a considerable amount of time, especially since the original application
actually contained many bugs. When I discovered this, I set myself the first objective of iden-
tifying all the bugs that already existed and solving them. Indeed, it seemed obvious
to me that I first had to solve all the existing bugs before adding any new feature. This is why
the familiarisation phase was particularly long since it required an in-depth walk through the
entire code and the testing of all the original functionalities in order not to miss any existing bug.

Moreover, as I progressed in my understanding of the initial application, code and function-
alities, I was able to forge my own critical opinion on the application.
First of all, from my personal experience with the application, I thought that the user experience
could be further improved. Beyond the fact that the original application suffered from several
bugs, there are in my opinion several other elements that put a ceiling to the quality of the user
experience on the application: the user interface is not always the cleanest and most attractive
(e.g. the "Pannas" tab, the profile page tutorial, the presentation of the ads, etc.). Besides, the
access to some features or information is not always very intuitive (e.g. the "Créer une équipe"
button should not be found in the settings of the profile page). All these elements reduce the
quality of the user experience on the application. However, as UX design was not part of Foot
24-7’s requests nor of the expectations for a Master thesis in computer science, it was not my
place to deal with such issues in the context of this thesis. Nevertheless, some inconsistencies in
the original application were too important to be ignored. In such cases, Foot 24-7 and I agreed
on developing a more user-friendly solution (e.g. see the redesign of the invitation system in
section 5.6). For the rest, I tried to integrate my newly developed features in the most intuitive
way possible into the existing application. In any case, I do believe that it would be of great
value for the future of Foot 24-7 to work on UX design in order to increase the application’s
consistency and to further improve the user experience.
From a more technical and less user-oriented point of view, I also found that some elements of the
initial code structure could be improved. For instance, while discovering the initial source code,
the game Django application felt a bit heavy (i.e. definition of many different models, views and
serializers). To lighten this application, we could split it into two different applications: game
and tournament, which would allow to reorganize things more clearly. In addition, some of the
models defined in the game application should probably not be defined in this application and
instead be relocated in the main application (e.g. City, Stadium). Moreover, while browsing
the source code, I also sometimes noticed duplication and redundancy of certain pieces of code,
which is perhaps due to the fact that several different people were involved in the implementation
of this project. However, it is important to mention that, although the structure of the code is
not always ideal, the code remains perfectly understandable and transferable as it is relatively
natural and easy to grasp the functioning and philosophy of the code the first time one goes
through it. Therefore, in order to avoid spending too much time on these structural details and
in the interest of the people who developed the initial application and who will eventually take
over the project after my thesis, I decided to prioritise the addition of new features in a way
that would give the impression that a single person had implemented the whole project. In any

University of Liège -20- Academic year 2021-2022



4. Approach

case, restructuring some elements of the code structure would also be a potential development
prospect for the future of Foot 24-7.
Furthermore, as I went through the code, I also noticed that the documentation of the original
code, although reasonable, was relatively poor. However, since the code structure is fairly natural
and consistent, this level of documentation is sufficient to approach and understand the project.
Besides all these concerns, it is important to mention that I also decided to draw up my own
list of development points that I felt were relevant or even essential to address, whether
they were improvements or corrections to existing features or additions of features not initially
suggested by Foot 24-7. Among these development points, we can find:

• Complete redesign of the invitation system allowing to invite players to a game or a team.
Actually, the initial invitation system was quite unintuitive and presented inconsistencies
(see section 5.6).

• Addition of the possibility to create a game by specifying teams rather than players (see
section 5.4).

• Addition of a team rating system to reinforce the sense of responsibility of users (especially
team captains) thereby rendering the organisation of games through the application more
reliable (see section 5.3).

• Addition of a "Mes équipes" tab allowing users to quickly and easily access the teams to
which they belong or for which they have received an invitation (see section 5.5).

• Addition of the possibility to edit a created game (see section 5.7).

• Improvement of the player participation survey tool in a tournament game.

Once I had presented these different issues to Foot 24-7, we agreed to consider these matters
(and most of them as a priority) during this thesis.

In this continued effort to find the best improvements to bring to the Foot 24-7 mobile
application, I also decided to interview a few actual users of the application to try and
understand what they liked about the application, what they did not like and what they would
like to see on the application in the future. To do so, I created a little questionnaire containing
3 simple questions:

• What do you like about the Foot 24-7 mobile application ?

• What don’t you like about the Foot 24-7 mobile application ?

• What are your suggestions for improving the Foot 24-7 mobile application ? What new
features would you like to see in the app ?

Between February and April 2022, I submitted this questionnaire to a small group of users of
the application that I knew, which eventually allowed me to collect 9 answers4. Among the
collected answers, the most frequently mentioned remarks related to fixing the bugs of the appli-
cation, developing gamification as well as improving the user interface and more generally the user
experience on the mobile application. The details of the users’ feedback are given in Appendix A.

Following these considerations, I provide in the following Figure 18 a roadmap of the project.
The general framework of this roadmap was established at the beginning of this thesis but was
of course adjusted during the course of the project. This roadmap graphically and temporally
presents the different points discussed in sections 5 and 6.

4Conducting an extensive survey based on a larger sample of users was beyond the scope of this project, but
could certainly be of great interest in order to get a clear and complete picture of what users like and dislike
about the Foot 24-7 mobile application.

University of Liège -21- Academic year 2021-2022



4. Approach

Figure 18: Roadmap of the project

University of Liège -22- Academic year 2021-2022



5. Development of the solution

5 Development of the solution

In this section, we will describe the solution developed in the course of this thesis, discuss the
technical details related to the implementation of this solution as well as present the obtained
results.

5.1 Debugging the original application

As discussed in the previous section 4, the discovery phase of the initial mobile application re-
vealed the presence of many bugs, errors or inconsistencies in the original application.
Before considering the development of any new functionality, it was therefore essential to resolve
all these errors first. A summary table listing the main defects of the original application is
provided at the end of this section in Table 1. We will now go through these main defects to
describe their resolution:

1. A first error in the initial application concerns the addition of a player to a team. When a
user tries to add a player to one of his teams, he is redirected to a new page allowing him to
search for a player to invite among all the players registered in the application. However,
when redirected to this page, an error from the mobile_app/lib/team/screens/team_
invite.dart file is raised when building the list of candidate players. The details of this
error are as follows:

The following NoSuchMethodError was thrown building TeamInviteScreen(dirty,
dependencies: [_LocalizationsScope-[GlobalKey#63b2e]], state:
TeamInviteScreenState#cfa9c):
The getter ’itemList’ was called on null.
Receiver: null
Tried calling: itemList

The problem can be solved by transforming the _buildPlayerListContainer widget con-
tained in the build method of the TeamInviteScreenState into a function and by using
null-aware operators (i.e. using the ?. operator rather than the . operator). In fact,
when we define _buildPlayerListContainer as a widget inside the build method of the
TeamInviteScreenState, this widget will be built as soon as the build method is called.
However, at that time, the list of candidate players has not yet been fetched from the
backend, which explains why the _players variable is null and why the error arises. By
turning this widget into a function, it allows to build the Container only when the function
is called, i.e. once the list of candidate players has been retrieved.

2. Another error relates to the creation of a team: when a user creates a team, the application
does not save the availabilities and schedules specified by the user and instead saves the
availabilities and schedules values set by default when reaching the TeamCreationScreen.
The problem comes from the data serializers. Indeed, the TeamCreateSerializer defined
in the account.serializers.py file does not take into account the availability and
schedule fields of the Team model, which explains why the default values are always used.
By including these fields in the TeamCreateSerializer, the application does save the
availabilities and schedules specified by the user when creating the team.

University of Liège -23- Academic year 2021-2022



5. Development of the solution

3. When a user creates a new game, a RenderFlex overflow can occur on the game’s details
page if the organiser’s name is too long. RenderFlex overflow is one of the most frequently
encountered Flutter framework errors. To solve it, we can simply wrap the TextStyles
widget containing the organiser’s name with an Expanded widget and set the hasOverflow
property of the TextStyles widget to true. The exact same problem can also occur with
the address of the stadium where the game is taking place if this address is too long. In a
similar way, we can solve this problem by encapsulating the Container widget containing
the game address in an Expanded widget and by setting the hasOverflow property of the
TextStyles widget containing the address to true.

4. When a user creates a new game, the time of the created game is always shifted one or two
hours earlier (depending on whether daylight saving time (DST) is used or not) than the
time requested in the game creation form. This can be explained by the fact that the toMap
method of the GameCreate class used to convert the Dart object into a JSON object in order
to send it to the Django backend converts the date of the game into the UTC time zone
while the support for time zones is enabled in the Django project [34]. One can see that
time zone support is enabled by consulting the web/foot247/settings.py file to see that it
specifies USE_TZ = True. When support for time zones is enabled, Django stores datetime
information in UTC in the database, uses time-zone-aware datetime objects internally, and
translates them to the end user’s time zone when they are requested. This actually means
that, when a user creates a game on the mobile application, Django expects to receive a
date in local time and not in UTC. To solve this problem, we need to remove the toUtc
method used in the toMap method of the GameCreate class.

5. When a user creates a new game with the default duration of 90 minutes, the created
game appears to last 1 minute and 30 seconds in the "Parties" tab. This can be explained
by the fact that the frontend sends a String "90" to the backend which interprets it in
seconds rather than minutes, which explains why "90" is actually translated into 1 minute
30 seconds rather than 1h30. To solve this problem, one simply has to convert the String
containing the duration in minutes into a String containing the duration in seconds in the
toMap method of the GameCreate class.

6. When creating a game, the creator of the game does not appear in the list of players in the
GameDetailScreen, which seems inconsistent. Furthermore, if we follow the convention
adopted for the creator of a team, the creator of a game should appear in the list of
players with a star on his icon to indicate that he is the creator of the game. To solve this
problem, one should avoid using the get_players method of the Game model as a source
for the list of players in the GameDetailSerializer (see the web/game/serializers.py
file) and instead use the players field directly.

7. When trying to add a player to a game, the added player is not the one selected when
clicking on his icon in the list of players in the GameDetailScreen although the player
appearing in this list is the correct one. The problem only occurs when clicking on his
icon. Indeed, once the user clicks on his icon, he is redirected to a profile that does not
correspond to the actual added player or worse, an error arises. As for the previous error,
the problem comes from the fact that one should avoid using the get_players method of
the Game model as a source for the list of players in the GameDetailSerializer and instead
use the players field directly. As a matter of fact, the get_players method of the Game
model returns the gameplayer_set associated to the particular game which corresponds
to a QuerySet of GamePlayers and not to a QuerySet of Players. Since it is necessary to
provide the primary key of a Player and not of a GamePlayer to redirect to that Player’s
ProfileScreen, this explains why the redirection to a player’s profile fails when using a
GamePlayer instead of a Player.

University of Liège -24- Academic year 2021-2022



5. Development of the solution

8. Removing a player from a game does not work and throws an HTTP 500 error:

I/flutter (14708): 500
[ERROR:flutter/lib/ui/ui_dart_state.cc(209)] Unhandled Exception:
Exception: Echec de l’action
E/flutter (14708): #0 removePlayerGame
package:mobile_app/.../api/api.dart:207
E/flutter (14708): <asynchronous suspension>
E/flutter (14708): #1 _GameDetailScreenState._removePlayer
package:mobile_app/.../screens/game_detail.dart:114
E/flutter (14708): <asynchronous suspension>

Once again, the problem comes from the fact that one should avoid using the get_players
method of the Game model as a source for the list of players in the GameDetailSerializer
and instead use the players field directly.

9. When a user completes his profile, he receives a message stating that he received 100 pannas
because he filled in all the information in his profile. However, the user is actually awarded
200 pannas. To solve this inconsistency, one simply has to change the default value of
the pannasNumber variable in the profile_progress_dialog.dart file from 100 to 200
so that it matches with the number of pannas associated with the profile_completion
achievement.

10. When the creator of a team tries to modify the level, availabilities, schedules or description
of his team on the TeamDetailScreen, the changes are not saved in the database. It is
therefore impossible for a team creator to change this information. Although there exists
an _updateTeam method in the TeamDetailScreen, it is actually never used. To solve this
problem, the _updateTeam method should be called either when the user selects an option
in a select dialog (such as for the level, availabilities or schedules) or when the user presses
the "Done" button on the keyboard to edit a TextField (such as for the team description).
For this last case, it is required to modify the widgets/input_field.dart file in order to
authorize the possibility to customize the onEditingComplete property of a TextField.
In fact, this property is called when the user submits an editable content (e.g. when the
user presses the "Done" button on the keyboard). It is therefore necessary to call the
_updateTeam method in this property.

11. A member of a team has no possibility to leave the team he belongs to. To allow a team
member to leave the team, one has to test the value of the boolean _team.canLeave in the
_buildBottomWidget widget of the team_detail.dart file. If this value is true, then the
_buildBottomWidget widget needs to return a button allowing the user to leave the team.

12. When a user clicks on his own icon in the TeamDetailScreen associated with one of the
teams he belongs to, he is redirected to the visitor page of his profile when he should be
redirected to his own profile. To solve this problem, one needs to compare the primary key
of the player whose profile one wants to reach with the primary key of the current user. If
the two keys are identical, then the user should be redirected to his own profile page. If
not, the user should be redirected to the visitor page of the player’s profile.

University of Liège -25- Academic year 2021-2022



5. Development of the solution

13. When a user searches for a particular team, filtering teams by name does not work properly.
Actually, if the team contains spaces or capital letters in its name, then the search filtered
on the name will not provide the expected result. To solve this problem, we must check
that the name contains rather than starts with the String entered in the search form. In
practice, this means that one must use the icontains function rather than the istartswith
function when filtering the queryset on the name in the get_queryset method of the
TeamListView in the web/account/api_views.py file. Moreover, it is also necessary to
use the trim function on the name entered in the form to remove leading and trailing
whitespaces when trying to sort the teams on their name (see _fetchTeamList in the
team_filter.dart file).

14. When a team captain wants to add a player to one of his teams, he is redirected to the
TeamInviteScreen. However, on this page, the captain is unable to filter players by name,
which is very inconvenient. To solve this problem, we need to add an InputField to allow
filtering players by name in the _buildFilterContainer widget of the TeamInviteScreen.

15. When a user creates a game, some stadiums lead to an error in the last summary page
of the CreationScreen because the String containing the phone number associated with
the stadium is null. To solve this, one should only display the stadium phone number
information in the summary page when the String containing the phone number is not
null.

16. On a team’s detail page, the number of games played by that team is displayed. However,
this number includes all the games in which the team appears (including games that have
not yet been played) when this number should only include games that have already been
played (i.e. in the past). To solve this, one has to modify the get_game_count method of
the TeamDetailSerializer by filtering all the games according to their date in order to
keep only those with a date lower than the present time. Similarly, on a player’s profile
page, the number of games played by that player is displayed. However, this number also
includes games that have not yet been played. To solve this, one has to modify the get_
number_games method of the Player model by filtering the games according to their date
and keeping only those in the past.

17. When a chat contains more than 20 messages, a bug appears when a user belonging to
this chat tries to send a new message in this chat or when he tries to load old messages
by pressing the "Plus de messages" button. Indeed, beyond 20 messages in a conversation,
only the last 20 messages of this conversation are initially displayed when a user clicks
on this chat. This is because in this project the Django REST framework uses a system
called pagination [30]. This pagination system applies when the Flutter frontend tries
to retrieve a list of data from the Django backend and consists in using lazy loading. This
means that when a user of the application tries to retrieve a list of messages (or even a list
of players, teams, games, stadiums, etc.), only a small portion of the data in the database
is retrieved on each call. This allows to avoid long loading times during the initialization of
a page and thus a greater fluidity in the application. As an analogy, the pagination system
can be seen as a book (hence its name):

• The set of data (in this case, the messages of a chat) represents the book.

• Each piece of data represents a word or a sentence.

• And each call returns a page of this book. We will first call page 1, then if we want
to scroll further page 2 and so on until we have retrieved all the data and thus gone
through the whole book.

University of Liège -26- Academic year 2021-2022



5. Development of the solution

In this project, we can see that this pagination system is initialized in the backend via
the pagination.py and settings.py files in the web/foot247 folder. For this project,
we have set a page_size to 20, which means that 20 pieces of data are retrieved per call
before having to call the next page. This explains why the limit of messages displayed in
a chat by default when this chat is clicked on is equal to 20. However, when a user tries
to send a new message in a chat with more than 20 messages or when he tries to load old
messages by pressing the "Plus de messages" button, the chat is updated in such a way
that it no longer contains the last 20 messages sent. Nevertheless, if the user leaves this
chat and then returns, all the exchanged messages are there. In fact, the problem comes
from the loadMessage method defined in the ChatDetailScreen. This function is called
when a user tries to send a new message in a chat or when he tries to load old messages
by pressing the "Plus de messages" button. The problem is that when the first page of
messages has already been retrieved, this method simply fetches the next page and replaces
the list of messages with those of the next page, which is why the messages of the previous
page disappear. To solve this problem, it is therefore necessary, in the case of retrieving a
page which is not the first one, to add the messages of the retrieved page to the previous
list of messages (rather than replacing it).

18. Finally, we can also mention that there exist certain specific teams that cause an error
when a user tries to access their details page. After further investigation, it becomes clear
that the problem comes from the fact that these teams contain members who possess a
user account but have no corresponding player entity. To understand the problem, it is
important to realise that, in the original application, a user account is represented in the
database using the Account model (see the account/models.py file). However, this model
does not allow to represent a player. As it happens, the player entity is represented using
another separate model called Player. To link these two models together, the Player
model defines a OneToOneField called user referring to the Account model. When a user
decides to create an account on the Foot 24-7 mobile application, he thus creates two
related entities: an instance of the Account model and an instance of the Player model.
On the mobile application, only players are allowed to create or join a team. Therefore,
how is it possible that users with no Player instance associated with their account appear
in teams? After investigation and discussion with Foot 24-7, we realized that the problem
came from the fact that these user accounts were created manually via the admin site by
Foot 24-7 itself. However, these users were created without instantiating a corresponding
player entity and then wrongly added to teams, which thus explains the source of the
problem. After analysing the data of the initial database, I realised that there were 22 of
these user accounts that had no associated player entity, but yet appeared in teams. The
solution to this problem is very simple: these user accounts must be deleted as they do not
correspond to any actual user of the Foot 24-7 mobile application.

Besides all these errors, there also exist many minor inconsistencies in the application. To
name just one, when a user selects a tournament on the mobile application, he is redirected
to a page allowing him to select a tournament group. However, as we can actually see in the
presentation of the application in Figure 4b, the highlighted tab in the bottom navigation bar
on this page is the "Calendrier" tab when it should be the "Tournois" tab.

Finally, let us specify here that the list of errors and inconsistencies in the original application
presented throughout this section and summarized in the following Table 1 is not an exhaustive
list. However, in order to avoid making this report excessively long, we will stop here in our
description of the debugging of the original application.

University of Liège -27- Academic year 2021-2022



5. Development of the solution

Defect ID Defect description Impact on user
experience

Type

D_01 Null error when building the list of players
that a captain can invite to his team.

Low Minor

D_02 When creating a team, the application
does not save the availabilities and sched-
ules specified by the user and instead saves
the default values for these fields.

High Major

D_03 RenderFlex overflow on a game’s details
page if the organiser’s name or the address
is too long.

Mild Minor

D_04 Time of a created game always shifted by
one or two hours.

High Major

D_05 Duration of a created game interpreted in
seconds rather than in minutes.

Mild Minor

D_06 Game creator does not appear in list of
game players.

Mild Minor

D_07 Clicking on the icon of a game player does
not redirect to the right player profile.

High Major

D_08 Removing a player from a game does not
work.

High Major

D_09 Gain of 200 pannas when completing one’s
profile while the alert message specifies a
gain of 100 pannas.

Low Minor

D_10 Changes that a captain makes to his team
are not saved.

High Major

D_11 Impossible for a team member to leave the
team.

High Major

D_12 When clicking on his own icon in a team’s
details page, the user is redirected to the
visitor view of his profile instead of his ac-
tual profile page.

High Major

D_13 Filtering teams by name does not work. High Major
D_14 Impossible to filter players by name when

trying to add a player to a team.
High Major

D_15 Null error in game creation form if stadium
phone number is null.

Low Minor

D_16 Inclusion of future games when counting
the number of games played by a team or
a player.

Low Minor

D_17 Missing messages in a chat containing
more than 20 messages.

High Major

D_18 Users with no player accounts included in
teams.

High Major

Table 1: Main defects in the original application

University of Liège -28- Academic year 2021-2022



5. Development of the solution

5.2 Rating other players

5.2.1 Description

In order to enhance the user experience on their mobile application, Foot 24-7 wanted to offer
its users the possibility to rate other players on the application.
The player rating system should allow to rate a player according to 5 different criteria: technical
level, fair play, physicality, game vision and punctuality.
When consulting a player’s profile (either one’s own profile or another player’s profile), the
average grade obtained as well as the number of ratings received should be displayed below the
profile name.
It is also important to mention that a player should only be able to rate players he has
already met, either in unofficial games or in tournament games.
Furthermore, this task also includes the integration of gamification so that a player earns
pannas when rating another player.
Finally, it is also necessary to implement a notification system that would invite users to
rate the players they have met during a game. In this context, for each completed game, all
participants of this game should receive a notification suggesting to rate the other participants.

5.2.2 Implementation & Results

On the backend, the integration of this new feature requires first of all the definition of a new
UserNote model including as fields the player who rates, the rated player but also the 5 rating
criteria. In order to develop a star-based rating system ranging from 0 to 5 stars, the fields
corresponding to the 5 rating criteria should all be IntegerFields between 0 and 5.
In order to ensure that a player can only rate players he has already played against, one has
to implement a get_encountered_players method in the Player model defined in account/
models.py that would return the list of player ids the player has already met. However, since
this list of encountered players can potentially be very long, it is not ideal to include this infor-
mation directly in the JSON object sent from the backend to the frontend to determine whether
the current user can rate a player or not. Instead, one should rather define another method called
get_can_rate in the VisitProfileDetailSerializer that would use this get_encountered_
players method to determine if the profile the current user is visiting matches a player he has
met before. This would allow to summarize the information sent to the frontend in a single
boolean rather than in a potentially long list of integers and thus to optimise the performance
of the application.
Furthermore, it is also important to ensure that a player can only assess another player
once. To do so, one can implement a get_rated_players method in the Player model that
returns the list of player ids the player has already rated. For the same reasons as those
mentioned above, this method should then be used in a get_already_rated method of the
VisitProfileDetailSerializer in order to determine whether the profile consulted by the
current user corresponds to a player he has already rated or not.
Lastly, in order to display the average grade and the number of ratings received by a player in
the frontend, one must also define two additional methods get_average_note and get_number_
notes in the Player model.

On the frontend, one first has to define a new _widgetNotationInfo in the ProfileScreen
which would be in charge of building the rating bar related to a certain profile. To do this, one
can use the Flutter package called flutter_rating_bar [4]. Indeed, this package offers a simple
yet fully customizable way to build rating bars as well as rating bar indicators, supporting any
fraction of rating.
Once reaching a profile page, we need to test whether the playerPk variable in the ProfileScreen
is non-null in order to determine whether the user is currently visiting another player’s profile

University of Liège -29- Academic year 2021-2022



5. Development of the solution

or his own. If the user accesses his own profile, one should only build a rating bar indicator
instead of an editable rating bar. As mentioned earlier, this rating bar indicator should be
displayed below the profile name along with the number of ratings the current user has received,
as illustrated in the following Figure 19.

Figure 19: Profile page containing the rating of the current user

On the other hand, if the user visits another player’s profile and clicks on the rating bar
indicator, a rating dialog should appear on the screen. This dialog should either allow the user
to fill in a form if the user has already met this player but has not yet rated him (see Figures
20a and 20b), or notify the user that he can not rate this player because he has not yet met
him (see Figure 20c), or notify the user that he has already rated this player and therefore can
not do so again (see Figure 20d). To distinguish between these 3 different cases, one must use
the 2 booleans (can_rate and already_rated) provided by the backend via the two methods
discussed above. The 3 different player rating dialogs are illustrated in the following Figure 20.

University of Liège -30- Academic year 2021-2022



5. Development of the solution

(a) Player rating form (first part) (b) Player rating form (second part)

(c) Player not met (d) Player already rated

Figure 20: 3 different player rating dialogs

University of Liège -31- Academic year 2021-2022



5. Development of the solution

As regards gamification, one should first start by adding a new type of achievement player_
rating associated to 100 pannas via the admin site. In the _createUserNote method defined
in the profile/screens/profile.dart file, one should then call the achievementDone function
defined in the gamification/api/api.dart file in order to create a new Achievement in the
backend. In this process, the achievementDone function should also be updated so as to take
into account this new type of achievement. As a matter of fact, when a user completes a new
achievement, it is essential to generate and display an alert dialog to inform the user that he
has won pannas and why. Introducing this new type of achievement therefore involves defining
a new appropriate alertMessage in the achievementDone function.
Since an achievement also includes a meta_information field allowing to uniquely identify this
achievement, we can also define the meta_information for this type of achievement in the
following way: "notedPlayerPk_playerPk".
The alert dialog displayed to the user when assessing a player is illustrated in the following Figure
21.

Figure 21: Gamification alert dialog when rating a player

Regarding the notification system, one solution would be to implement a recurring task whose
job would be to send notifications every morning inviting the various players of the application to
rate the players they met in games played the day before. As mentioned in the section 2.4, imple-
menting recurring tasks can be achieved using cron. In the corresponding cron folder, one can
find in particular a 9am sub-folder which schedules to send a set of notifications to the users of the
mobile application every day at 9 am (see the cron/tasks/9am/send_notifications.sh file).
In order to send notifications, this file relies on the implementation provided in the web/main/
management/commands/send_notifications.py file. As it happens, this file defines a function
called send_notifications which was initially responsible for sending reminder notifications on
game days. This function can thus be used to add notifications about games played the day
before. Once these notifications are added to the send_notifications function, users will then
receive notifications inviting them to rate the participants of games they played the previous day
as shown in Figure 22.

University of Liège -32- Academic year 2021-2022



5. Development of the solution

Figure 22: Notification inviting a user to rate game participants

When clicking on such a notification, the user should then be redirected to a specific page
listing all the participants who took part in the particular game. At this point, it is important
to clearly understand what a game participant actually is. As we shall see later in this report,
adding the possibility to create a game by specifying teams rather than players (see section 5.4)
as well as adding the possibility to rate teams according to different criteria (see section 5.3)
were also part of this project. This thus means that a game participant can either be a team or
a player. Therefore, the screen listing the participants of the completed game could potentially
display a list of teams and a list of players.
Once reaching such a page, the user would then be able to click on any participant in order
to access their details page and be able to rate them. As this mechanism needs to be imple-
mented for both unofficial and tournament games, it is necessary to define two new screens
GameParticipantListScreen and TournamentGameParticipantListScreen in the frontend. In
order to redirect the user to the appropriate screen when he clicks on such a notification, one also
has to update the notificationRedirect function defined in the mobile_app/lib/firebase_
notification_handler.dart file.
For illustrative purposes, an example of a GameParticipantListScreen is shown in the following
Figure 23.

University of Liège -33- Academic year 2021-2022



5. Development of the solution

Figure 23: Page displaying the list of game participants

University of Liège -34- Academic year 2021-2022



5. Development of the solution

5.3 Rating other teams

5.3.1 Description

While I was working on this project, I once went to play soccer with some friends in a hall of
the Blanc Gravier. Before our game, a game between two teams using the Foot 24-7 mobile
application was to take place. However, one of the two teams never showed up for this game,
leaving the other team short-handed to play football properly. The missing team had given
absolutely no warning to the other team that they would not be coming after all. Therefore, all
the players of the other team had made the trip to come and play but ended up wasting their
time. This episode made me question the quality of the user experience when organizing football
games on the Foot 24-7 mobile application. Indeed, this kind of inconvenience greatly diminishes
the value and relevance of the application. To remedy this, I thought that adding a team rating
system based on several criteria would make players (and particularly team captains) more
accountable, encourage them to honour their commitments to other users of the application and
thus make the organisation of games via the application more reliable (hence improving
the user experience). I thus proposed to add this functionality to Foot 24-7 who, upon hearing
my motivations, immediately validated this task.
This task is actually very similar to the one described in section 5.2. As a matter of fact, the
team rating system should allow to rate a team according to various criteria, just as for the
player rating system except that, in the case of teams, team rating should be based on 3 criteria:
level of play, fair play and reliability.
When consulting a team’s details page, the average grade obtained as well as the number of
ratings received by this team should be displayed below the team’s name. In addition, the
details of the grades received by this team according to the 3 criteria must also be displayed in
a dedicated section at the bottom of the team’s details page.
Similarly to the player rating system, it is also important to mention that a player should
only be able to rate teams he has already played against, either in unofficial games or
in tournament games.
Furthermore, this task once again includes the integration of gamification so that a player
earns pannas when rating a team.
Finally, as already mentioned in the section 5.2, it is also necessary to integrate the teams that
took part in a game into the notification system that suggests to users to rate the participants
of a game.

5.3.2 Implementation & Results

On the backend, the integration of this new feature requires first of all the definition of a new
TeamNote model including as fields the player who rates, the rated team but also the 3 rating
criteria. Just as for the player rating system, the team rating system must based on a star rating
system ranging from 0 to 5 stars. Hence, the fields corresponding to the 3 rating criteria should
all be IntegerFields between 0 and 5.
In order to ensure that a player can only rate teams he has already played against, one has to
implement a get_encountered_teams method in the Player model that would return the list
of team ids the player has already met. Similarly to the player rating system, since this list of
encountered teams can potentially be very long, it is not ideal to include this information directly
in the JSON object sent from the backend to the frontend to determine whether the current user
can rate a team or not. Instead, one should rather define another method called get_can_rate in
the TeamDetailSerializer that would use this get_encountered_teams method to determine
if the team’s details page the current user is visiting corresponds to a team he has met before.
This would allow to summarize the information sent to the frontend in a single boolean rather
than in a potentially long list of integers and thus to optimise the performance of the application.
Furthermore, it is also important to ensure that a player can only assess a team once. To

University of Liège -35- Academic year 2021-2022



5. Development of the solution

do so, one can implement a get_rated_teams method in the Player model that returns the list
of team ids the player has already rated. For the same reasons as those mentioned above, this
method should then be used in a get_already_rated method of the TeamDetailSerializer in
order to determine whether the team’s details page consulted by the current user corresponds to
a team he has already rated or not.
Lastly, in order to display the average grades (global and according to the 3 criteria) as well as the
number of ratings received by a team in the frontend, one must also define four additional methods
get_average_level_of_play, get_average_fair_play, get_average_reliability and get_
number_notes in the Team model.

On the frontend, one first has to integrate into the _buildTitleNameTeamContainer widget
of the TeamDetailScreen a rating bar indicator along with the number of ratings received by the
team under consideration, as illustrated in the following Figure 24. Here again, in order to build
rating bars or rating bar indicators, one can use the Flutter package flutter_rating_bar [4].

Figure 24: Global rating bar indicator on a team’s details page

Besides, one has to add a section about rating at the very bottom of the TeamDetailScreen
where the 3 rating criteria are outlined, each with a rating bar indicator. As requested by Foot
24-7, this section should be included in an ExpansionTile. Furthermore, it is also important
to remember that a user can only rate a team he does not belong to. In this case, this section
should also include a button enabling him to rate the team if he is allowed to do so, as depicted
in the following Figure 25.

University of Liège -36- Academic year 2021-2022



5. Development of the solution

Figure 25: Rating section on a team’s details page

When clicking on the "Evaluer" button on a team’s details page, a rating dialog should ap-
pear on the screen. As for the player rating system, this dialog should either allow the user to
fill in a form if the user has already met this team but has not yet rated it (see Figure 26a), or
notify the user that he can not rate this team because he has not met it yet (see Figure 26b), or
notify the user that he has already rated this team and therefore can not do so again (see Figure
26c). Here again, to distinguish between these 3 different cases, one must use the 2 booleans
(can_rate and already_rated) provided by the backend via the two methods discussed above.
The 3 different team rating dialogs are illustrated in the following Figure 26.

University of Liège -37- Academic year 2021-2022



5. Development of the solution

(a) Team rating form (b) Team not met (c) Team already rated

Figure 26: 3 different team rating dialogs

As regards gamification, one should first start by adding a new type of achievement team_
rating associated to 100 pannas via the admin site. In the _createTeamNote method defined in
the team/screens/team_detail.dart file, one should then call the achievementDone function
in order to create a new Achievement in the backend. In this process, the achievementDone
function should also be updated so as to take into account this new type of achievement. In
fact, one has to update the alertMessage displayed to the user in the dialog generated by the
completion of the achievement.
Since an achievement also includes a meta_information field allowing to uniquely identify this
achievement, we can also define the meta_information for this type of achievement in the
following way: "notedTeamPk_playerPk".
The alert dialog displayed to the user when assessing a team is illustrated in the following Figure
27.

University of Liège -38- Academic year 2021-2022



5. Development of the solution

Figure 27: Gamification alert dialog when rating a team

Regarding the notification system, as mentioned in the section 5.2, adding the possibility to
rate a team as well as the task allowing to create a game by specifying teams rather than players
(see section 5.4) imply that a team can also potentially be part of the participants of an unofficial
game (and is necessarily part of the participants of tournament games which can only be organised
around teams). This must therefore be taken into account in the GameParticipantListScreen
and the TournamentGameParticipantListScreen. As a reminder, one can refer to Figure 23
showing the addition of teams to the list of game participants.

University of Liège -39- Academic year 2021-2022



5. Development of the solution

5.4 Create games with teams rather than players

5.4.1 Description

While discovering the Foot 24-7 mobile application, I noticed that it was not possible to create
an unofficial game by specifying teams as participants. Actually, in the original application, a
user can only create a game by adding players individually. I immediately found this to be quite
inefficient in the case where a user already has a predefined team and would simply like to play
against another one in an unofficial game. In the continued effort to improve the user experience,
I thus proposed to add this feature to Foot 24-7 who agreed with my suggestion.
In the context of this task, a user can only create a team game if he is himself the captain of at
least one team. When creating the game, he must specify that it is a team game by selecting
one of the teams he is captain of.
Besides, it should be possible for a user who is captain of a team to join a team game with one
of his teams if that game is public and the second team does not yet exist.

5.4.2 Implementation & Results

Because this task requires a change in the Game model, it will actually have many repercussions
on the whole application. As it happens, the first thing to do is to update the Game model
by adding 2 fields: first_team and second_team. Yet, until now, a team was not supposed
to appear in a classic Game instance. This change means that the get_encountered_players
and get_encountered_teams methods of the Player model discussed in the sections 5.2 and 5.3
respectively must be updated to take into account the players and teams encountered in team
games. In addition, this also requires updating the TeamDetailSerializer’s get_game_count
method to account for unofficial games in a team’s game count.

In the implementation of this task, it is crucial to clearly define how to distinguish a
simple game from a team game. To do this, we can rely on the first_team field of the
Game model. Indeed, if we modify the CreationScreen by including an additional tab offering
the user who is creating a game to play with one of the teams of which he is captain, then we
will be able to determine whether the game is a simple game or a team game before the game
is even created. This is extremely important since it is essential to avoid the possibility that
there may exist any ambiguity about the game type of a game already created. The creation of
a game should therefore allow to directly distinguish between these two types of games. Conse-
quently, if the user creating a game selects one of his teams, then the game will be a team game
(with his team as first_team). On the other hand, if the user does not select a team, then the
first_team field will be null and the game will be considered as a simple game. And, of course,
whether the first_team field is null or not will impact the GameDetailScreen.

In the CreationScreen, we therefore need to include an additional tab that allows the user
to select one of the teams he is captain of. This involves modifying the fetchTeamList function
in team/api/api.dart to take into account as an argument the type of list we want to fetch from
the backend. In the present case, this argument would correspond to the String "captain" and
would indicate to the TeamListView in the account/api_views.py file that the frontend wishes
to access the list of teams of which the current user is captain. This additional CreationScreen
tab is shown in Figure 28 below.

University of Liège -40- Academic year 2021-2022



5. Development of the solution

Figure 28: Additional tab in the CreationScreen for team games

Moreover, if the user selects one of his teams to create a game, the number of participants
shown on the next tab of the CreationScreen becomes irrelevant. In fact, in team games, the
number of participants is always equal to 2 which corresponds to two teams (no matter how
many players these teams contain). We can therefore delete this InputField in the case of team
games. Figure 29 below illustrates the difference in this tab of the CreationScreen between
simple games and team games.

University of Liège -41- Academic year 2021-2022



5. Development of the solution

(a) Information tab for a simple
game

(b) Information tab for a team
game

Figure 29: Difference in the CreationScreen’s information tab between simple and team games

Once a team game is created, the user is redirected to the corresponding GameDetailScreen.
On this page, some elements must be changed in the case of a team game. First, the number of
available places should no longer be displayed at the top of the screen for the same reason that
the number of participants should be removed from the CreationScreen. Second, the section at
the bottom of the page should no longer display players but rather teams. Figure 30 hereafter
illustrates these differences in the GameDetailScreen between simple games and team games.

(a) GameDetailScreen for a
simple game

(b) GameDetailScreen for a
team game

Figure 30: Differences in the GameDetailScreen between simple and team games

University of Liège -42- Academic year 2021-2022



5. Development of the solution

Besides, when the creator of a team game wants to add a team to his game by clicking on the
"Ajouter" button (see Figure 31a), he must be redirected to a new page allowing him to search
for a team to invite instead of a player. To do this, a new file named game_invite_team.dart
must be defined. This file should define a screen allowing the organizer of the team game to
filter the list of teams available on the application according to their name, their level, their
availabilities and their schedules as shown in the following Figure 31b.

(a) "Ajouter" button in the
GameDetailScreen (b) GameInviteTeamScreen

Figure 31: Invite a team to a team game

In addition, it is also important to mention that in the case of a team game, this game must
appear in the CalendarScreen of all players who are members of the participating teams. This
thus requires to modify the CalendarListView defined in the file game/api_views.py in order
to take into account team games. Besides, when a team game organizer adds a team to a team
game, the captain of the added team should receive an invitation to join this game in his chats
if the organizer has first created a chat for this game. However, we will not go into more details
about these matters here since we will have the opportunity to discuss them further in the section
5.6.

This task also involves significant modifications to the GameDetailSerializer defined in
the game/serializers.py file. As a matter of fact, most of the methods of this class must be
updated to take into account team games.
To begin with, we can mention the get_can_add method which allows to display the "Ajouter"
button to the creator of a game if there are still places left in this game (see Figure 31a). In the
case of team games, it is therefore necessary to check whether there already exists a second team
in the game and whether the current user is indeed the creator of the game.
Next, we can mention the get_can_leave method which allows to know if the current user can
leave the game in question or not, which has an impact on the button displayed at the top of
the screen. If he can, one should display a "Quitter" button on the screen (see Figure 32a). To
check this in the case of team games, it is necessary to determine whether the user is either the
creator of the game or the captain of the second team.
We can also mention the get_can_join method which allows to know if the current user can join

University of Liège -43- Academic year 2021-2022



5. Development of the solution

the considered game or not, which also has an impact on the button displayed at the top of the
screen. If he can, a "Rejoindre" button should be displayed on the screen (see Figure 32b). To
check this in the case of team games, it is necessary to verify that the user is captain of a team,
that the considered game is public and does not yet include a second team, and that the user is
not already present in the first team. The following Figure 32 illustrates the buttons displayed
at the top of a game’s details page that allow a user to join or leave that game.

(a) "Quitter" button of the
GameDetailScreen

(b) "Rejoindre" button of the
GameDetailScreen

Figure 32: "Quitter" and "Rejoindre" buttons of the GameDetailScreen

However, as far as joining a team game is concerned, there is in fact an additional case linked
to the game invitation mechanism which we will have the opportunity to discuss in more details
in the section 5.6. In any case, it should be noted here that allowing a team captain to join a
public team game requires more work than in the case of a simple game. Indeed, in the context
of a team game, if a team captain wishes to join this game by clicking on the "Rejoindre" button,
one can not simply display a dialog asking for his confirmation but must instead offer him the
possibility to choose among the teams of which he is captain. As long as the team captain has
not selected one of his teams, he should not be able to confirm his participation in the game.
This requires to modify the _buildTitleButtonWidget defined in the GameDetailScreen in case
_game.canJoin is true. In this case, it is important to know whether it is a team game or not
(by checking if _game.firstTeam is null or not as explained above). If it is a team game then a
dialog should be displayed asking the user to choose from one of the teams of which he is captain.
This team game joining dialog is defined by the _showChooseTeamDialog function defined in the
GameDetailScreen and is depicted in the Figure 33 below.

University of Liège -44- Academic year 2021-2022



5. Development of the solution

(a) Before selecting a team (b) After selecting a team

Figure 33: Team game joining dialog

Of course, all these changes in the GameDetailSerializer also require defining corresponding
functions in the game/api/api.dart file (joinTeamGame, leaveTeamGame, etc.) as well as defin-
ing the associated views and serializers in the game/api_views.py and game/serializers.py
files (GameJoinTeamView, GameLeaveTeamView, GameJoinTeamSerializer, etc.).
Finally, it is also important to recall the notification system discussed in the sections 5.2 and 5.3
which allows users to rate other participants of completed games. In the case of team games,
it is essential that the GameParticipantListScreen displays not only the teams that have par-
ticipated in the game but also the players that make up those teams as they can also be rated.
To do this, the GameDetailSerializer must be updated so that it can return the list of players
participating in the game even in the case of a team game (see the get_players method). In
addition, in the case of team games, the send_notifications function defined in the web/main/
management/commands/send_notifications.py file must also be updated so that all players of
both teams receive a notification once the team game is over.

As a final remark, we can also specify that in the case of a team game, only the team captains
can communicate via the chat associated with that game. Therefore, if a random member of
either team wishes to chat by pressing the "Discuter" button in the top right-hand corner of the
GameDetailScreen, then a special message should be displayed informing him that only team
captains can communicate, as shown in the following Figure 34. In order to differentiate a player
who is participating in a team game but is not a captain of one of the two teams from a player
who is simply not participating in the game, a get_is_team_player method can be defined in
the GameDetailSerializer. This will allow to display a different message to players who are
completely unrelated to the game, specifying that only participants of a game can access the
associated chat.

University of Liège -45- Academic year 2021-2022



5. Development of the solution

Figure 34: Chat restricted to team captains alert dialog

University of Liège -46- Academic year 2021-2022



5. Development of the solution

5.5 Access to personal teams

5.5.1 Description

As I was discovering the Foot 24-7 mobile application, I realised that there was no quick and easy
way for a user to access his personal teams in the original application, which is not user-friendly.
Indeed, it seems obvious that there should exist a simple way for a user to access the teams
to which he belongs. I therefore proposed to add this feature to Foot 24-7 who then approved
the idea.
In order to integrate this new feature in the best possible way into the existing application, the
screen listing the teams of the application that is accessible from the search screen (see Figure
8) should be split into two tabs: one tab containing all the teams available on the application
and one tab containing all the teams to which the current user belongs.

5.5.2 Implementation & Results

This functionality is relatively straightforward to integrate into the existing application. To do
this, one needs to modify the team_list.dart file so as to add a tab bar containing two tabs
named "Toutes les équipes" and "Mes équipes" respectively. The views associated with these
tabs must be populated using the fetchTeamList function defined in the team/api/api.dart
file. To achieve this, it is thus important to provide the type of list that we wish to retrieve from
the backend as an argument to this function. If we specify as type a String "all" then we will
retrieve all the teams registered on the application whereas if we use as type a String "me" then
we will retrieve all the teams to which the current user belongs. Of course, this also requires to
modify the TeamListView of the account/api_views.py file in order to take into account the
requested list type in the construction of the team list. The new team screen and the old one
are both depicted in the following Figure 37.

(a) Old team list screen
(b) First tab on the new team
list screen

(c) Second tab on the new team
list screen

Figure 35: Team list screen update

University of Liège -47- Academic year 2021-2022



5. Development of the solution

5.6 Redesigning the invitation mechanism

5.6.1 Description

One of the biggest issues I discovered when familiarising myself with the code and the Foot 24-7
mobile application relates to the invitation system used on the application to invite players to
join either games or teams. As it happens, the original invitation system was quite unin-
tuitive and presented some inconsistencies.
As far as joining a game is concerned, in the original application, when a game organizer adds
a player to his game (i.e. invites this player to join the game), this player seems to be directly
included without his agreement. Indeed, if this player consults the list of games (containing all
the games taking place in his city) accessible from the search screen (see Figure 8) and clicks on
the game in question, he notices that he is part of the list of players of this game and that he
can also leave this game by clicking on the "Quitter" button (see Figure 32a) even though he has
never heard of this game and simply stumbled upon it by chance. On the other hand, although
the player seems to be directly included in the game, this game does not appear in his calendar.
This means that when a game organizer invites a player to a game, that player seems
to be directly included in the game but has no way of knowing it. This kind of situation
is obviously not acceptable in an organizational application. The truth is that when a player is
added to a game, he is directly part of the players in that game but is not yet active. In fact, if
we look at the GamePlayer model in the game/models.py file, we can see that this model linking
the Game and Player models contains an is_active field which is set to false when the player
has not accepted the invitation to the game and to true when he has accepted it (or when he has
decided himself to join a public game without invitation). The reason why the added player can
only leave the game and not join it on the GameDetailScreen is that the get_can_join method
defined in the GameDetailSerializer only checks if the player is not part of the game’s players
without taking into account if he is active or not. Actually it is possible for the player to
join the game he was invited to (and thus become active in that game) but only if he receives
and accepts an invitation to that game via his chats. However, for this to happen it is required
that the creator of the game has created a chat for this game beforehand. This mechanism is
not at all intuitive, especially since there is no suggestion for the game creator to create a chat.
If he has no reason to create a chat, then he will not do so and all the players he adds will never
be able to understand that they are part of the game and thus to become active in it.
As far as joining a team is concerned, the problem is the same as for joining a game. When a
team creator adds a player to his team, this player is directly registered in the team and can only
leave this team from the TeamDetailScreen (and not join it). Once the player is added to the
team, this player is by default inactive (see the is_active field of the TeamPlayer model linking
the Team and Player models in the account/models.py file) but, to become active, this player
can only wait to receive an invitation from the team creator in his chats (if the team creator
creates a chat for his team) and accept this invitation. This mechanism is no more consistent in
the case of team joining than it was in the case of game joining.
Therefore, I suggested to Foot 24-7 to correct and redesign this invitation mechanism in or-
der to make it more user-friendly (and thus improve the user experience). Understanding the
inconsistencies in the original invitation system, Foot 24-7 encouraged me to solve this problem.

University of Liège -48- Academic year 2021-2022



5. Development of the solution

5.6.2 Implementation & Results

To clarify the game invitation system, a first thing to do would be: when a game creator adds a
player to his game, the icon of this player should appear transparently in the GameDetailScreen
in order to indicate that this player has been invited but has not yet accepted the invitation
(i.e. is still inactive). This would make it possible to clearly distinguish between active and
inactive players in a game. The icon of an inactive player would therefore appear trans-
parently until that player becomes active. To do this, the GameDetailSerializer of the back-
end would have to include the is_active information in its get_players method so that the
_buildPlayerWidget in the GameDetailScreen of the frontend could then use an Opacity wid-
get whose opacity property would vary according to whether the game player is active or not.
The following Figure 36 illustrates the difference between active and inactive game player icons.

Figure 36: Difference between active and inactive game player icons

Next, to allow an inactive player to become active, a new tab called "Mes invitations"
should be added to the calendar page where users would have access to all the games they have
been added to but for which they are not yet active. To do this, it is necessary to modify the
calendar/screens/calendar.dart file so that it contains a tab bar with two tabs named "Mes
matchs" and "Mes invitations" respectively. The view associated with the "Mes matchs" tab
would be identical to the one that existed previously, i.e. containing all the games in which the
user is participating and active. To populate the view associated with the other tab, we would
then have to define a new function fetchGameInvitationList in the calendar/api/api.dart
file which would correspond to a new view in the backend called CalendarInvitationListView
(see the game/api_views.py file). This view would only return games for which the current user
is participating but inactive. The new "Calendrier" tab is shown in comparison to the old one
in Figure 37 below.

University of Liège -49- Academic year 2021-2022



5. Development of the solution

(a) Old calendar page
(b) First tab of the new calen-
dar page

(c) Second tab of the new cal-
endar page

Figure 37: Comparison between the old and the new "Calendrier" tab

In addition, when clicking on a game in the "Mes invitations" tab, the button displayed in
the GameDetailScreen should specify "Accepter/refuser l’invitation" and when clicked on, would
display an invitation dialog on the screen allowing the user to choose to either accept or decline the
game invitation. To do this, the GameDetailSerializer’s get_can_join method would have to
be updated to also check if the current user is an inactive player in the game. As a matter of fact,
this would allow to check on the GameDetailScreen if the player can both join and leave the game.
In such a case, this would mean that the button should specify "Accepter/refuser l’invitation"
(see the _buildTitleButtonWidget). Furthermore, this improved game invitation mechanism
could perfectly coexist with the existing chat invitation mechanism. The new GameDetailScreen
invitation button and the associated invitation dialog are both illustrated in the following Figure
38.

University of Liège -50- Academic year 2021-2022



5. Development of the solution

(a) Invitation button on a
GameDetailScreen (b) Game invitation dialog

Figure 38: Invitation on a GameDetailScreen

The mechanism described above solves the problems related to the invitation system for
players to a game. However, as explained in section 5.4, it is also possible to create a game by
specifying teams rather than players, which was not the case in the original application. This
thus raises the question of how the game invitation system for teams should work. As
explained in the section 5.4, since a user can only create a team game by specifying one of the
teams he is captain of as first_team, and a team game can only contain two teams in total,
only the second team could be invited (and thus inactive) to a team game. This means that
we could therefore add an is_st_active field in the Game model which would be set to false by
default. Similarly to the invitation of a player to a game, when a creator of a team game adds
(i.e. invites) a team to his game, the added team should be specified in the second_team field
but should appear transparently in the GameDetailScreen until the is_st_active field is set to
true. To do this, the GameDetailSerializer of the backend should include the is_st_active
field so that the _buildTeamWidget in the GameDetailScreen of the frontend can then use an
Opacity widget whose opacity property would vary depending on whether the team is active or
not. The following Figure 39 illustrates the difference between active and inactive team icons.

University of Liège -51- Academic year 2021-2022



5. Development of the solution

Figure 39: Difference between active and inactive team icons

Invitations to team games would also appear in the "Mes invitations" tab of the calendar
page, but only in the calendar page of the invited team captain. In this tab, we should only
display team games for which the second team is one of the teams of which the user is the cap-
tain and for which is_st_active is false. To do so, these games must be taken into account in
the CalendarInvitationListView. In the "Mes matchs" tab of the calendar page, we should
display the team games to all members of the first team (which is always active since its cap-
tain created the game) and to all members of the second team if and only if is_st_active is true.

As with simple games, when clicking on a team game in the "Mes invitations" tab, the but-
ton displayed in the GameDetailScreen should specify "Accepter/refuser l’invitation" and when
clicked on, should display the same invitation dialog as the one shown in Figure 38b. To do this,
the GameDetailSerializer’s get_can_join method should be updated to check if the team
game contains an inactive second team and that the user is the captain of that team. As before,
this would allow to check on the GameDetailScreen if the team captain can both join and leave
the team game. In such a case, this would mean that the button should specify "Accepter/refuser
l’invitation" just as it was the case for simple games. It should be noted here that this means
the _showInviteDialog method of the GameDetailScreen in charge of displaying the invitation
dialog shown in Figure 38b must support invitations to both simple and team games.

For the sake of consistency, a team game invitation system should also be included via the
chats, as it already exists for simple games. This system should allow the captain of an inactive
team in a team game to receive an invitation in his chats if the creator of the game has first
created a chat for that game. To do this, the ChatListSerializer’s get_invit_id method in
the chat/serializers.py file would have to be updated to take team games into account and
return the primary key of a team game associated with a chat if that game contains an inactive
second team whose captain is the current user. This get_invit_id method allows to differentiate

University of Liège -52- Academic year 2021-2022



5. Development of the solution

chats associated with an invitation from regular chats. Furthermore, in order to allow joining a
team game via a chat invitation, a new chat type for team games must also be defined in the
get_type method of the ChatListSerializer so that chats associated with team games can be
distinguished from other types of chat. We also need to define a new get_invited_team method
in the ChatListSerializer in order to retrieve the primary key of the team invited via a chat.
All this information will then be used in the frontend to allow a team captain to join a team
game via a chat invitation (see the _showInviteDialog method of the ChatListScreen in the
chat/screens/chat_list.dart file). Joining a team game via a chat invitation is illustrated in
the following Figure 40.

(a) Team game chat invitation
(b) Team game chat invitation
dialog

Figure 40: Team game chat invitation system

Finally, the team invitation system still needs to be clarified. Since this system basically
works in the same way as the game invitation system, it should be modified in a similar way to
become more intuitive. To do this, as explained in section 5.5, the user should have access to all
the teams in which he appears in the "Mes équipes" tab (see Figure 35c). When clicking on one
of these teams, the user is redirected to the TeamDetailScreen (see the team/screens/team_
detail.dart file) and if the user is not yet active in this team, the button displayed at the bottom
of the page should specify "Accepter/refuser l’invitation" and not "Quitter" as it is the case in
the original application. However, joining a team slightly differs from joining a game. Actually,
since a team is not a public object, players can not try to join a team if they were not added
by the team creator. This is why there is no "Rejoindre" button on the TeamDetailScreen (the
button can only specify "Supprimer" for the team creator or "Quitter" for all the other team
players) and neither is there a get_can_join method in the TeamDetailSerializer (see the
account/serializers.py file). This means that one should add a get_can_join method in
the TeamDetailSerializer that would only check if the user is an inactive team player of this
team. If the user can join the team, then the button at the bottom of the TeamDetailScreen
should display "Accepter/refuser l’invitation" as shown in Figure 41a. The TeamDetailScreen
invitation button and the associated invitation dialog are both illustrated in the following Figure
41.

University of Liège -53- Academic year 2021-2022



5. Development of the solution

(a) Invitation button on a
TeamDetailScreen (b) Team invitation dialog

Figure 41: Invitation on a TeamDetailScreen

Moreover, as with game invitations, the icon of an inactive team player should appear
transparently in the TeamDetailScreen until that player becomes active. To do this, the
TeamDetailSerializer of the backend should include the is_active information in its get_
players method so that the _buildPlayerWidget in the TeamDetailScreen of the frontend
could then use an Opacity widget whose opacity property would vary depending on whether
the team player is active or not, much like what was explained earlier. The following Figure 42
illustrates the difference between active and inactive team player icons.

University of Liège -54- Academic year 2021-2022



5. Development of the solution

Figure 42: Difference between active and inactive team player icons

As a final remark, it is important to highlight the fact that the redesign of the invita-
tion system affects the whole application. Indeed, once the invitation system redesigned,
we still have to change the get_encountered_players and get_encountered_teams methods
of the Player model (see the account/models.py file) to consider only the encountered play-
ers and teams that were active in the games played by the user (and where this user was
himself active). This also implies modifying the GameParticipantListScreen (see the game/
screens/game_participant_list.dart file) by displaying only the active players and teams of
the completed game. Moreover, in the case of team games, the get_players method of the
GameDetailSerializer must also be modified to consider the players of the second team only
if this team is active. Finally, only active team players of active teams should be considered as
active players of the team game.

University of Liège -55- Academic year 2021-2022



5. Development of the solution

5.7 Game editing

5.7.1 Description

While I was exploring the Foot 24-7 mobile application, I noticed that it was not possible for a
user to modify a game that he had created. Consequently, if a game creator wished to modify his
game, the only way to do so was to delete the created game in order to recreate a new one with
the desired new information. This flaw greatly affects the user experience on the application and
should therefore be resolved. Upon exposing the problem to Foot 24-7, they gave me the green
light to address the situation.

5.7.2 Implementation & Results

To begin with, it is essential to determine the fields that could be edited in a game. In order
to provide the best user experience possible, a game creator should be able to modify as many
fields as possible in the game he has created. The retained editable fields are: date, time, price,
number of participants, game duration, public or private character of the game and the stadium.
Let us remind here that the modification of the teams (in the case of a team game: see section
5.4) or of the players participating in the game is performed directly via the GameDetailScreen,
GameInvitePlayerScreen and GameInviteTeamScreen of the game/screens folder. Editing the
players or teams participating in a game is therefore not part of this task.

In the original application, the button displayed at the top of the GameDetailScreen in
case the user is the creator of the considered game indicates "Supprimer" and thus only allows
to delete this game. To allow the game creator to edit the game, this button should instead
specify "Modifier" and when clicked on, redirect the user to a new page (see GameEditScreen
in the game/screens/game_edit.dart file) containing a form to fill in in order to edit the
game. This form would thus list all the editable attributes mentioned above. At the bottom
of the GameEditScreen, a "Supprimer" button allowing to delete the game as well as a "En-
registrer" button allowing to save the game’s changes would also be displayed. The following
Figure 43 shows the new button on the GameDetailScreen of the game creator and the new
GameEditScreen containing the game edit form.

University of Liège -56- Academic year 2021-2022



5. Development of the solution

(a) Game edit button on the
GameDetailScreen (b) Game edit page (first part)

(c) Game edit page (second
part)

Figure 43: Game editing page

When the game creator reaches the GameEditScreen, the form should be initialized and pre-
filled with the current attribute values of the game. For this purpose, one needs to retrieve the
game details from the backend. This is fairly straightforward except for the duration field. In
fact, the duration of the game is stored in the Game model (see the game/models.py file) of the
backend using a DurationField. In Django, a DurationField always corresponds to a String
formatted as "days HH:mm:ss". To display the game duration in minutes in the frontend, one
must thus rely on this format in order to correctly convert the game duration into minutes (see
the fromJson method of the GameDetail class in the game/api/serializer.dart file).

As regards the actual game edition, one must pay attention to a certain number of issues.
First of all, a critical attribute to edit is the price for participating in the game. As a matter of
fact, it should not be possible for a user to specify anything other than a positive real number for
the game price. This thus requires to check when the user tries to submit the form by pressing the
"Enregistrer" button that the specified price is indeed a real number and that this real number
is also positive (see the _isPriceValid method of the GameEditScreen). If this is not the case,
the edit form should not be submitted and an appropriate error message should be displayed
below the corresponding field.
Another critical attribute is the duration of the game. Indeed, as with the price, it should not
be possible for a user to specify anything other than a positive real number for the duration
of the game. Again, this requires checking that the duration is indeed a positive real number
when the user attempts to submit the edit form (see the _isDurationValid method of the
GameEditScreen). If it is not, the edit form should not be submitted and an appropriate error
message should be displayed below the offending field.
Furthermore, the number of participants in the game should only be displayed in the case of
a simple game and not a team game (see section 5.4) and is also a critical field to modify. As
it happens, the number of participants must first of all be an integer. In addition, it must
not be possible for a user to specify a number of participants lower than the actual number of
players already present (even inactive) in the game. This thus requires checking these conditions
before submitting the form (see the _isPlayerCountValid method of the GameEditScreen) and

University of Liège -57- Academic year 2021-2022



5. Development of the solution

displaying an adequate error message on the screen in case they are not satisfied.
Finally, the last critical field in the edit form relates to the stadium: when editing a game, one
must check that the user provided a valid stadium, which is particularly complex because of the
possibility of specifying either an official or a custom stadium. The Figure 44 below displays a
dynamic diagram detailing the management of a game’s stadium modification.

Figure 44: Edit game stadium dynamic diagram

As illustrated in the Figure 44 above, in the case where the user wishes to specify a custom
stadium, one must check that the game creator has at least provided an address for this stadium
(the "Nom" and "Description" fields are not mandatory). If this is not the case, one should
display an error message on the screen preventing the user from submitting the form. On the
other hand, in the case where the user wishes to specify an official stadium, if the user does not
select any of the stadiums in the list but the initial game was to take place in an official stadium,
this stadium should be retained when submitting the form. Indeed, it would be inconvenient for
the user to be forced to reselect the stadium of the game if the user had no intention of changing
it and simply wanted to change another field in the form. However, if the user wishes to specify
an official stadium but does not select one, even though the original game was to take place in
a custom stadium, then an error should be displayed on the screen and the form should not be
submitable since the game is not assigned to any stadium in such a scenario. To check for all of
these cases, an _isStadiumValid method can be defined in the GameEditScreen.
When it comes to the date and time fields of the game, it is important to realise that the user
can only change them through dialogs generated by the Flutter functions showDatePicker and
showTimePicker respectively. As these functions incorporate checking that the specified date
and time have a valid format, there is no need to check the format of these fields. However, there
is still a critical case to address. As a matter of fact, one must check that the specified date and
time correspond to a future moment and not to a moment already passed. To do so, we can
define an _isDateValid method in the GameEditScreen. If this is not the case, then an error
message should also be displayed in the form.
As we will have the opportunity to discuss and test these critical cases at length in section 6.6, we
will only illustrate here the case where a game creator attempts to modify his game by specifying
a custom stadium but fails to provide an address for that stadium (see the following Figure 45).

University of Liège -58- Academic year 2021-2022



5. Development of the solution

Figure 45: Missing custom stadium address error in game editing form

Once the user has properly filled in the game edit form, he should be able to click on the
"Enregistrer" button at the bottom of the GameEditScreen in order to save his modifications. To
do this, one needs to define a new API function called updateGame (see the game/api/api.dart
file) to send the new game information to a new view called GameUpdateView in the backend (see
the game/api_views.py file) in order to save the changes in the database.
However, for performance reasons, one should check that the game was indeed modified before
submitting the form. If this is not the case, it would be both inappropriate and inefficient to
update the game in the database when this game was actually not modified at all. In other
words, the updateGame function should not be called if the game creator did not change any-
thing in the form. To this end, one should define an _hasChanged method in the GameEditScreen
which would compare each of the fields in the edit form with their initial value. If at least one
of these fields is different from its initial value, this function would return true. Otherwise, it
would return false and clicking on the "Enregistrer" button would simply redirect the user to
the GameDetailScreen without calling the updateGame function.

Finally, if a game creator modifies one of his games, all participants in that game should
receive a notification stating that the game was modified and redirecting to the corresponding
GameDetailScreen. To do this, one must define a save method in the Game model. In the case
of a simple game, this method should send a notification to all players present (even inactive)
in the game. However, this method must also take into account team games (see section 5.4)
in order to send notifications to all active members of active teams in the game. This task is
therefore also related to the redesign of the invitation mechanism (see section 5.6).

University of Liège -59- Academic year 2021-2022



5. Development of the solution

5.8 Improving the bottom navigation bar with notifications

5.8.1 Description

Following discussions with Foot 24-7 and the results of the interviews I conducted (see Appendix
A), we realized that many users of the Foot 24-7 mobile application were criticizing it for not
notifying them when they had received a new message. When a user receives a new message in
his chats, the corresponding chat appears in bold in the "Chat" tab to inform the user that this
chat has not yet been read. However, this requires the user to click on his "Chat" tab by himself
otherwise he has no way of knowing that he received a new message. This flaw does indeed reduce
the quality of the user experience on the application and many users of the application claim
that they do not use the application’s chats because there is no alert when a new message
is received. To solve this problem, the bottom navigation bar should display the number of
unread chats on the "Chat" tab.
Considering the developments described in section 5.6, it would also be fitting to display the
number of pending game invitations on the "Calendrier" tab in order to improve the user expe-
rience.

5.8.2 Implementation & Results

The widget responsible for building the bottom navigation bar is the BottomNavigation widget
defined in the widgets/bottom_navigation.dart file. In the original application, this widget
was a simple stateless widget that simply built the bottom navigation bar by highlighting the
tab given as an argument to its constructor. In order to enrich the bottom navigation bar
with notifications while ensuring a good separation of responsibilities between widgets, this
widget should be independent and be able to fully support its own construction. To do so, this
widget should be transformed into a stateful widget that would itself take care of retrieving the
information required for its construction from the backend. As it happens, in order to include
alerts in the bottom navigation bar, we first need to retrieve the number of unread chats of the
user as well as the number of pending invitations. To this end, we have to define two new API
functions:

• A fetchNbUnreadChats function defined in the chat/api/api.dart file allowing to return
the number of chats containing one or more unread messages for the current user.

• A fetchNbInvitations function defined in the calendar/api/api.dart file allowing to
return the number of pending invitations for the current user.

These two API functions must fetch this information from the backend, which implies defining
two new views:

• The fetchNbUnreadChats function queries the ChatUnreadView defined in the chat/api_
views.py file, which is responsible for determining the number of chats containing one or
more unread messages by the current user.

• The fetchNbInvitations function queries the CalendarInvitationCountView defined in
the game/api_views.py file which is responsible for determining the number of pending
invitations received by the current user.

When building the bottom navigation bar, we then need to call these two API functions to
determine if an alert should be displayed on either the "Chat" or the "Calendar" tab.
The following Figure 46 illustrates the alerts displayed in the bottom navigation bar when a user
has received a new message in his chats and when a user has received a new game invitation.

University of Liège -60- Academic year 2021-2022



5. Development of the solution

(a) Unread chat notification (b) Game invitation notification

Figure 46: Notifications in the bottom navigation bar

In the context of this task, it is crucial to refresh the bottom navigation bar at the
appropriate time. In the case of a notification for an unread chat, this notification should dis-
appear (or the number displayed in the alert should decrease by one if other unread chats exist)
from the bottom navigation bar when the user clicks on the unread chat. In the case of a notifi-
cation for a game invitation, this notification should disappear (or the number displayed in the
alert should decrease by one if there are other pending invitations) from the bottom navigation
bar when the user responds (either accepts or declines) to this invitation. For this second case,
I chose to decrease the notification count only when the user answers the invitation (and not
when he first consults it) in order to stimulate users to quickly reply and therefore not to forget
their pending invitations. This allows to maximise the users’ reactivity when organising
games via the application and thus to improve the overall user experience. To allow refreshing
the bottom navigation bar, one must define an onRefresh method in the BottomNavigation
widget. This method would refetch the number of unread chats as well as the number of pending
invitations.
As stated above, when a user clicks on an unread chat, the bottom navigation bar should be
updated and decrease the number of unread chats displayed by one. To achieve this, we need to
define a GlobalKey named _bottomAppBarKey in the ChatDetailScreen (see the chat/screens/
chat_detail.dart file) to associate it with the BottomNavigation widget. Next, we need to
define an addPostFrameCallBack method in the ChatDetailScreen’s initState method to call
the BottomNavigationBar’s onRefresh method via the GlobalKey right after the widget is built.
As a matter of fact, the chat will only be marked as read once the widget has been completely
built, which thus requires to refresh the bottom navigation bar after the widget has been built.
In addition, it is also necessary to define a GlobalKey associated with the bottom navigation
bar in the ChatListScreen (see the chat/screens/chat_list.dart file) in order to refresh the

University of Liège -61- Academic year 2021-2022



5. Development of the solution

bottom navigation bar when the user pops back to the chat list just after reading an unread
chat.
Similarly, in order to update the bottom navigation bar once a user responds to a game in-
vitation, one must also define a GlobalKey associated with the bottom navigation bar in the
GameDetailScreen (see the game/screens/game_detail.dart file). Once the user answers the
invitation (either accepting or declining the invitation), one must call the onRefresh method of
the BottomNavigation widget via the GlobalKey.
Finally, as with the ChatListScreen, it is also necessary to define a GlobalKey associated with
the bottom navigation bar in the CalendarScreen (see the calendar/screens/calendar.dart
file) in order to refresh the bottom navigation bar when the user pops back to the calendar after
having consulted a game (and thus potentially answered a game invitation).
We will not illustrate these scenarios here as we will have the opportunity to test these use cases
extensively in the section 6.7.

University of Liège -62- Academic year 2021-2022



5. Development of the solution

5.9 Development of a new referee access

5.9.1 Description

Amongst the tasks suggested by Foot 24-7 (see section 3), Foot 24-7 and I agreed to consider as
part of this thesis the addition of a brand new referee access on the Foot 24-7 mobile application.
This task consists in developing a referee section on the application where users can offer their
services as referees in exchange for payment or free of charge. It is important to realise that
this new functionality involves a major change to the mobile application. Indeed, since
the application was originally designed to accommodate players only, allowing users to log in as
referees requires the creation and management of a new status on the application as well as to
develop a referee access well separated from the player access while integrating it as naturally
as possible in the original application.
Foot 24-7 wanted it to be possible for a user to have either a player or a referee account on the
application. However, Foot 24-7 also requested that a user could have both types of accounts
simultaneously and easily switch from one to the other via the application. Furthermore, in
order to improve the user experience on the application, Foot 24-7 also wished that a user having
both types of accounts could always be able to log in using the same credentials for both his
player and referee accounts.
Once logged in, depending on the user’s status, the user would have access to different user
interfaces. The user interface for player access would obviously not change. As for the new
user interface for referee access, this interface should be very similar to the one for player access.
As it happens, the same 5 tabs should be preserved in the bottom navigation bar. However, in
order to clearly distinguish referee profiles from player profiles, it is necessary to design a new,
more formal profile page for referees. This profile page should display the information related
to a referee, namely his name, avatar, city, gender, experience, price for refereeing a game, the
surface on which he referees and his availabilities. As far as the other tabs are concerned, the user
interface should not change much except for a few details such as the fact that the calendar page
should not display a "Créer un match" button in case of referee access since a referee should not
be allowed to create a game. In any case, even if the user interface does not change drastically, it
is still crucial to ensure separate accesses between a player account and a referee account. This
means, for example, that if a user has both types of accounts, the chats displayed in the "Chat"
tab must necessarily be different depending on whether the user is logged in as a player or as a
referee. A referee should be able to create a chat with any user (player or referee) but also to
create a chat related to a game he referees. In the case of a chat for a simple game, the referee
and all the participating players should be able to access the chat. In the case of a chat for a
team game (see section 5.4), only the referee and the team captains should be able to access this
chat.
It goes without saying that a game creator should be able to invite a referee to join his game.
This thus implies the addition of a section in a game’s details page displaying the game’s
referee, whether it is a simple game or a team game. In addition, an invitation mechanism similar
to the one described in section 5.6 should also be implemented for referees. The calendar page
should therefore retain its two tabs (i.e. "Mes matchs" and "Mes invitations") in the case of
referee access in order to display both the refereed games and the invitations to referee a game.
In the context of this task, an "Arbitres" button should also be added to the search screen (see
Figure 8) to allow a player or a referee to browse and filter the list of available referees on the
application.
Finally, similarly to the work carried out in sections 5.2 and 5.3, it is also important to add the
possibility for a player to rate the referees he has met. This referee rating system should
include 3 criteria: punctuality, rigour and impartiality.

University of Liège -63- Academic year 2021-2022



5. Development of the solution

5.9.2 Solution design process

As mentioned in the previous section, adding a referee section required a major change to the
overall functioning of the application. Therefore, before embarking on any developments, it was
essential to take the time to assess all the modifications that this new functionality demanded
in order to design the best solution to the problem.

To begin with, the application should now not only support the creation of a player account
but also the creation of a referee account. Therefore, the account creation page (see Figures 1b
and 1c) now has to offer two options to the user: creation of a player account or creation of a
referee account. To understand how to create these different types of accounts, we first need to
recall the original backend structure. As previously said, in the original application, a user ac-
count is represented in the database using the Account model (see the account/models.py file).
However, this model does not allow to represent a player. As it happens, the player entity is rep-
resented using another separate model called Player. In order to link these two models together,
the Player model defines a OneToOneField called user referring to the Account model. In the
initial application, the creation of an account thus results in the creation of an Account instance
but also of a Player instance as we can see in the create method of the AccountSerializer
defined in the account/serializers.py file. In order to integrate a referee entity in the ap-
plication, it is therefore necessary to create a new Referee model in the account/models.py
file which would also be linked to the Account model using a OneToOneField called user. In
addition, the type of account specified by the user on the account creation page must also be
included in the CredentialsCreate class (see the user/api/serializer.dart file) which con-
tains all the information to be sent to the backend in order to create a new account. Once
all the authentication information is sent, the AccountSerializer must be updated. In fact,
depending on the type of account requested, the AccountSerializer should associate either a
Player instance or a Referee instance to the newly created Account instance.

Now that we have addressed the account creation, we need to consider the login. As men-
tioned in the previous section, Foot 24-7 wanted it to be possible for a user to hold both types
of accounts simultaneously and to switch from one to the other via the application using the
same credentials. To solve this problem, there are several solutions but I will only describe here
the solution I finally chose. My approach consists in keeping the same login page (see Figure
1a) where the user simply has to provide his email and password to log in without including
any information about his status (player or referee). In the initial application, once the email
and password have been verified, the user is then redirected to the named route / which is also
the initial route used when the application is launched (see the initialRoute property of the
MaterialApp widget in the routes.dart file). Originally, this route automatically redirects (if
the user is logged in) to the profile page of a player. However, in the context of adding a referee
access, this default behaviour needs to be redesigned. As a matter of fact, at this stage, it is
essential to determine the status of the user in order to know if he is connected as a player or as
a referee to redirect him to the proper profile page.
The issue is to decide where to store the information about the current status of the user
and how to retrieve it when logging in or when launching the application. Again, at this
point, there are several different possible solutions but I will only describe here the chosen so-
lution. My solution is to store the current status of the user in the Account model itself via a
last_login_status variable that would be initialized at the account creation time according
to the account type chosen by the user. In order to make this approach scalable, this variable
should be of type String so that it could be extended to any type of entity. Indeed, there already
exist other types of entities in the backend (e.g. championship manager, delegate referee). If one
day one wishes to add a separate access for these entities on the mobile application, storing the
status of the user in a String would then allow to easily generalize this approach.

University of Liège -64- Academic year 2021-2022



5. Development of the solution

When logging in or launching the application, we then need to retrieve the user’s status informa-
tion to determine to which profile page the user should be redirected. To achieve this, I decided
to implement a new widget called StatusChecker which would be responsible for fetching the
status of the currently logged in user from the backend and redirecting him to the right screen
according to his status. To do so, the constructor of this widget would require two arguments:
a widget related to the player status and another widget related to the referee status (and we
could add more in the future if other types of accesses were needed). Depending on the status
retrieved, the StatusChecker would then return one of these two widgets. This solution allows
to elegantly solve the routing problem. As a matter of fact, by using the StatusChecker widget,
we can associate as many different screens as we want to the named route /.

Now that we are able to determine the status of a user when logging in or launching the appli-
cation, we now need to decide how to differentiate the various screens of the application
between player and referee access. As regards the profile screen, since a player’s profile and a
referee’s profile should vary significantly from each other, the current profile.dart file (see the
profile/screens folder) should be replaced by two separate files: profile_player.dart and
profile_referee.dart. In this way, we could avoid ending up with a too heavy profile.dart
file. When it comes to the other existing screens, there would be no need to define separate
files since the user interface for these screens would basically be the same (apart from a few
details), only the information fetched from the backend would change depending on the current
user status. Separating these screens into two distinct files (one for each type of access) would
result in a massive code duplication and should therefore be ruled out.

Moreover, let us recall here that a user should be able to possess both types of accounts
simultaneously and switch from one to the other via the application. To allow this, the settings
page (see Figure 2b) should include additional buttons allowing a user to either create an account
of the kind he does not yet have or, if he has both, to switch to the other type of account. In
any case, these buttons should trigger a change in the user’s status saved in the backend.

Finally, when it comes to chats between users, there is still a critical issue to address.
As it happens, in the original application, the Chat model (see the chat/models.py file) is as-
sociated to users via the ManyToManyField users. However, this model does not contain any
information about the status of the users involved in the chat. Therefore, even if we are able to
determine the current status of the user, when we will try to retrieve the chats of a user in a
given status, we will not be able to discriminate his chats according to his specific status targeted
when the chat was created. Consequently, the chats of a user would be common to both player
and referee access, which is not acceptable. To remedy this, it is imperative to include in a chat
between users the status of the involved users. In Django, when we need to associate data to the
relationship between two models linked via a ManyToManyField, we use an intermediate model.
This intermediate model is associated to the ManyToManyField using the through argument to
point to the model that will act as an intermediary, as explained in Django’s documentation
[16]. In the case of chats between users, we will thus have to define an intermediate model called
ChatUser containing two ForeignKey fields (one to the Account model and the other to the Chat
model) and a CharField about the user’s status. In this way, we will be able to discriminate
the chats of a user according to his status.

Of course, the integration of this new feature also implies many other changes in the ap-
plication, but since the major problems have already been identified and a solution to each of
these problems has been designed here above, we will not go into more details here and leave the
development of these other issues to the next section.

University of Liège -65- Academic year 2021-2022



5. Development of the solution

5.9.3 Implementation & Results

In the context of this task, the first thing to do would be to add the CharField last_login_
status in the Account model (see the account/models.py file). To avoid any problems with
already existing user accounts, this field should have as default value ’player’ as all already
existing users necessarily correspond to players.
Then, still in the account/models.py file, we have to define the Referee model. This model
should contain, in addition to a OneToOneField with the Account model, the name, avatar,
city, gender, experience, price (to referee a game), surface (on which to referee), pannas and
availabilities of the referee.

Creation of a referee account and profile

As regards account creation, as explained in the previous section, the account creation page
should now offer two options to the user: the creation of a player account or the creation of a
referee account. To do this, we need to add a String containing the desired account type in the
user/screens/register/user_register.dart file. This information should then be included in
a new accountType field of the CredentialsCreate class (see the user/api/serializer.dart
file). Next, the authentication information is sent to the backend using the newAccountRegister
API function (see the user/api/api.dart file). It is at this point that the AccountSerializer
defined in the account/serializers.py file must distinguish the creation of a player account
from a referee account in its create method. Actually, as said before, depending on the type of
account requested by the user, the AccountSerializer should associate either a Player instance
or a Referee instance to the newly created Account instance. Finally, once the account creation
is complete, the newAccountRegister API function should redirect the user to the appropriate
profile screen depending on the type of account the user just created. The following Figure 47
illustrates the new account creation page.

Figure 47: New account creation page

University of Liège -66- Academic year 2021-2022



5. Development of the solution

Once a user created a referee account, he should be redirected to a new profile page specif-
ically designed for referees. As mentioned earlier, this involves replacing the profile.dart
file by two new files: profile_player.dart and profile_referee.dart which thus also im-
plies a significant renaming phase in both the frontend and the backend. As it happens, the
ProfileScreen should now be called PlayerProfileScreen, routes to a player profile should add
a ’/player’ part, API functions like fetchProfile should be renamed fetchPlayerProfile,
views like ProfileDetailView to PlayerProfileDetailView, etc.
Next, we need to define a new RefereeProfile class in the profile/api/serializer.dart
file and create a new API function fetchRefereeProfile in the profile/api/api.dart file.
This API function should be linked to the backend using new urls (defined in the account/
api_urls.py file) which must be associated to new views in the account/api_views.py file:
RefereeProfileDetailView and VisitRefereeProfileDetailView. Moreover, the correspond-
ing serializers RefereeProfileDetailSerializer and VisitRefereeProfileDetailSerializer
must also be defined in the account/serializers.py file.
Once all of this is done, we still have to implement the new profile_referee.dart file which
will be responsible for building the profile page of a referee. The new profile page for a referee is
depicted in the following Figure 48.

Figure 48: New profile page for a referee

Handling user login and switching between the two types of account

Managing the user login according to his status as well as the switching between the two types
of account is illustrated as a dynamic diagram in the following Figure 49.

University of Liège -67- Academic year 2021-2022



5. Development of the solution

Figure 49: User login and switching between accounts dynamic diagram

As explained in the previous section, we need to implement a StatusChecker widget which
will allow to retrieve the current status of the logged in user and thus to redirect him to the
proper screen according to his status (see the widgets/status_checker.dart file). To this end,
we have to implement a new API function fetchCurrentUserStatus in the user/api/api.dart
file. This API function should query the backend at a new endpoint defined in the account/
api_urls.py file. This thus also involves defining a new view UserCurrentStatusView in the
account/api_views.py file. Next, we have to use this StatusChecker in the routes.dart file
in order to match the appropriate screen to the initial route / according to the current status of
the logged in user.

Now that a user is able to create a referee account and is redirected to the proper profile page
depending on his status, we need to offer the user the possibility to either create an account of
the kind he does not yet have or, if he already has both types of accounts, to switch to the other
type of account. As explained in the previous section, to do this, we need to modify the settings
page so that it includes new buttons for either creating an account or accessing an account.
In order to determine whether we should display a button to create an account or a button to
access another account, we need to know what types of accounts the current user already has.
To this end, we have to define a new API function fetchUserStatusDetail in the user/api/
api.dart file and a new UserStatusDetail class in the user/api/serializer.dart file. This
class should include three fields: a String containing the current status of the user, a boolean
isPlayer (true if the user possesses a player account, otherwise false) and a boolean isReferee
(true if the user possesses a referee account, otherwise false). As usual, this new API function
should query the backend at a new address defined in the account/api_urls.py file which also
implies defining a new view UserStatusDetailView in the account/api_views.py file and a
new serializer UserStatusDetailSerializer in the account/serializers.py file.
Besides, one should also pay attention to the fact that, when a user is in referee status, he should
not have access to the buttons "Créer une équipe" and "Voir le tutoriel de la page de profil" in
the settings page. Indeed, a referee should not be allowed to create a team and a referee’s profile
page does not require a tutorial.

University of Liège -68- Academic year 2021-2022



5. Development of the solution

The following Figure 50 illustrates the new settings page along with the various buttons offered
to the user in the different possible scenarios.

(a) Create a referee account (b) Create a player account

(c) Access to the referee account (d) Access to the player account

Figure 50: New settings page

University of Liège -69- Academic year 2021-2022



5. Development of the solution

To allow a user to create an account of the kind he does not yet have, a new API function
createAccount must be defined in the profile/api/api.dart file. This function should take as
argument a String accountType specifying the type of account the user wishes to create. Before
calling this function in the profile/screens/profile_settings.dart file, the user should first
be presented with a confirmation dialog (see the _showCreateAccountDialog function), as shown
in the following Figure 51.

(a) Referee account (b) Player account

Figure 51: Create account confirmation dialog

To create a new type of account for the user, the createAccount API function must be linked
to two new views CreatePlayerProfileView and CreateRefereeProfileView in the account/
api_views.py file depending on the type of account requested by the user. This also means
defining two new urls in the account/api_urls.py file. These views should then create a new
instance of the appropriate model (Player or Referee) linked to the current user account as
well as update the last_login_status variable in the Account model. Once the new account
has been created, the user should be redirected to the profile page of his new account. To allow
this, the accountType specified by the user must be taken into account and we must use the
Navigator.pushNamedAndRemoveUntil function to ensure that the user can no longer access the
pages of the previously used account.

As regards switching between two types of accounts, one must define a _changeAccount
method in the profile/screens/profile_settings.dart file. This method should call a new
API function updateCurrentUserStatus defined in the user/api/api.dart file, whose purpose
simply consists in updating the last_login_status variable of the Account model. To achieve
this, this API function must be linked to the UserCurrentStatusView in the account/api_
views.py file. Therefore, we need to define a new put method in this class that will take
care of updating the last login status of the user. Once the login status has been updated,
the user must be redirected to the profile page of the requested account using once again the
Navigator.pushNamedAndRemoveUntil function.

University of Liège -70- Academic year 2021-2022



5. Development of the solution

Editing a referee profile and impact of referee access on gamification

We also must allow a referee to edit his profile. The page allowing a referee to edit his profile
should enable him to modify all of his personal information, as depicted in the Figure 52.

Figure 52: Referee edit profile page

To update a referee’s profile, a new API function updateRefereeProfile must be defined
in the profile/api/api.dart file. In the edit referee profile page, the only critical field is
the price. Therefore, we must also define an _isPriceValid method in the profile/screens/
profile_referee.dart file and display an error message if the specified price is not valid. The
other fields are not critical since the user can only change them through a _showSelectDialog
method defined in the same file. We will not illustrate here the management of critical cases in
the referee profile editing form as we will have the opportunity to discuss it in section 6.8 (see
Figure 72).
In the context of editing a referee profile, it is also necessary to define a custom save method
for the Referee model (see the account/models.py file). This custom method will allow to
check if the user filled in all the information related to his referee account, in which case he
should receive pannas (as it is the case when a user completes his player profile). To do this,
we need to use the create_user_achievement method defined in the Achievement model of the
gamification/models.py file. However, the addition of referee access means that this method
now needs to take the user’s status as an argument in order to determine which entity (Player
or Referee) should gain additional pannas. Moreover, since a same user can possess both types
of accounts simultaneously, we must make sure that there are no interferences between a user’s
player and a user’s referee. This means that we also have to take into account the user’s status
in the AchievementHistory model (see the gamification/models.py file). Indeed, an instance
of the AchievementHistory model corresponds to a specific gain of pannas realized by a certain
user for a certain type of achievement. Therefore, this model is notably used to determine if we
should grant pannas (or not) to a certain user for a certain type of achievement. If an identical
AchievementHistory instance (for the same user, the same type of achievement and the same
meta information) already exists in the database then the user should not receive additional

University of Liège -71- Academic year 2021-2022



5. Development of the solution

pannas. However, the addition of a referee access increases the complexity of this process. To
maintain the proper functioning of this feature, we thus have to integrate the user’s status in
the AchievementHistory model. Otherwise, a referee would for instance not earn pannas if he
shares a game he has already shared as a player, which does not make sense.
Finally, when a referee completes and saves his profile, we must also display a dialog notifying
him of the pannas he just earned, as shown in the Figure 53. To this end, we need to define a
_showUpdateNotification method in the profile/screens/profile_referee.dart file.

Figure 53: Referee profile completion alert dialog

Differentiate a user’s chats according to his status

As explained in section 5.9.2, in order to differentiate the chats of a user according to his status in
these chats, we need to associate data (i.e. the status of the user) to the relationship between the
Chat model (see the chat/models.py file) and the Account model (see the account/models.py
file). This requires to define an intermediate model ChatUser in the chat/models.py file and
to modify the ManyToManyField users of the Chat model to associate it with this intermediate
model using the through argument. This new ChatUser model must contain two ForeignKey
fields (one to the Account model and the other to the Chat model) and most importantly a
CharField about the user’s status. This last field should have as default value ’player’ so as
to avoid any problem with already existing chats in the database. As a matter of fact, before
the addition of the referee access, all users present in existing chats were necessarily included as
players.
However, adding a through argument to a ManyToManyField is not allowed in Django. To get
around this problem, we have to trick our minds into elaborating a more complex migration
process, such as the one described in [1]. The idea consists in following these steps:

• Create the intermediate model ChatUser without associating it to the ManyToManyField
users via the through argument and create a first migration.

• Create an empty migration and edit the created migration file in order to fill the ChatUser

University of Liège -72- Academic year 2021-2022



5. Development of the solution

model "manually" with the already existing data via a create_through_relations func-
tion (see the 0015_auto_20220427_1556.py migration file in the chat/migrations/ folder).

• Remove the ManyToManyField users from the Chat model and create a new migration.

• Add a ManyToManyField users in the Chat model but now containing the through argu-
ment pointing to the ChatUser model and create a new migration.

In this way, we are able to associate the ManyToManyField users of the Chat model with the
ChatUser model while avoiding errors during the migration and above all avoiding any data loss
during the process.

Still on the subject of chats between users, the addition of a referee access also implies to
modify the ChatGetOrCreateView (see the chat/api_views.py file). As it happens, to check if
a chat already exists, we must now take into account the status of the users involved in this chat.
If it does not yet exist, when creating the chat, we must then register the users by specifying
their status in this chat via the ChatUser model.
Next, as previously stated, it is essential that chats linked to a user’s player differ from those of
the user’s referee. To achieve this, we need to modify the get_user_chats method of the Chat
model. In fact, as far as chats between users are concerned, we need to filter these chats by
retaining only those where the current user appears with his current status. For other types of
chats (game-related, team-related, etc.), the fetching of these chats should be conditioned by the
current status of the user. If the user is currently logged in as a player, then we can keep things
as they are. If he is currently logged in as a referee, then we need to retrieve game chats of games
he referees as well as tournament game chats of tournament games he referees. Indeed, the whole
point of adding a referee access to the Foot 24-7 mobile application is to allow users to offer their
services to referee games (whether they are simple games or tournament games). Therefore,
we must modify the Game and TournamentGame models defined in the game/models.py file by
adding a ForeignKey field called referee pointing to the Referee model. In addition, since
simple games can be created directly via the application (which is not the case for tournament
games), we also have to develop a game invitation system for referees, such as the one described
in section 5.6. This is why we also need to add a BooleanField is_referee_active (with a
default value set to false) in the Game model.

In the context of chats, we must also pay attention to the get_avatar method of the
ChatListSerializer (see the chat/serializers.py file) and to the get_name method of the
Chat model. As it happens, regarding the get_avatar method, in the case of a chat between
users, we must check the status of the other user in order to get the right avatar. As for the
get_name method, the same applies: in the case of a chat between users, one should check the
status of the other user in order to retrieve the correct name.
Moreover, adding a referee access on the application also requires integrating the user status
in the Message model (see the chat/models.py file). In fact, without this information, we are
unable to determine which name and avatar to display in a chat details page. Again, to avoid
any problem with already existing messages in the database, we need to set a default value to
’player’ for this field since all messages sent before adding this feature were necessarily sent by
players. This also means that we must now make sure to include the current status of the user
when creating a Message instance via the send_message method of the Chat model.
Finally, we must also modify the MessageListSerializer defined in the chat/serializers.py
file. As it happens, in order to take into account the correct name and avatar of the user who
sent the message, we have to stop using the MessageListUserSerializer (defined in the same
file) and instead define a new method get_user_serialize in the MessageListSerializer.
This will then allow us to consider the status of the user in the message in order to retrieve his
appropriate name and avatar.

University of Liège -73- Academic year 2021-2022



5. Development of the solution

Invitation mechanism for referees

As previously stated, a game invitation mechanism for referees similar to the one described in
section 5.6 must be implemented. This means that the "Calendrier" tab should keep its two tabs
"Mes matchs" and "Mes invitations" in case the user is logged in as a referee. Therefore, we have
to update the CalendarListView and CalendarInvitationListView of the game/api_views.py
file to take into account the referee access. If the user is logged in as a player, we can keep things
as they are for these two views. As regards the CalendarListView, if the user is logged in as a
referee, we have to fetch all the games in which he appears and in which he is active as well as
all the tournament games in which he appears. For the CalendarInvitationListView, if the
user is logged in as a referee, then we have to retrieve all the games in which he appears but in
which he is not yet active.
Moreover, we must also pay attention to the fact that if the user is logged in as a referee, the
calendar page should not include a "Créer un match" button as it does for a player (see Figure
5) since a referee is not allowed to create a game. To ensure this, we need to query the backend
using the API function fetchCurrentUserStatus to retrieve the current status of the user and
then check its value to determine whether to display the button or not.
Furthermore, we also need to update the CalendarInvitationCountView in the game/api_
views.py file by taking into account the current user status. This will allow us to maintain the
notifications displayed in the bottom navigation bar (as described in section 5.8) for referees as
well. The new calendar page for referees is shown in the following Figure 54.

Figure 54: Calendar page for referees

We can also note that the GameCalendarListView of the game/api_views.py file which is
responsible for generating the list of games displayed after clicking on the "Parties" button of
the search screen (see Figure 8) must also be updated in case the user is logged in as a referee.
Actually, in this case, the list of games taking place in the referee’s city as well as the tournament
games he referees must be displayed.

University of Liège -74- Academic year 2021-2022



5. Development of the solution

Differentiate a user’s pannas according to his status

As regards the "Pannas" tab, the addition of a referee access also requires some adjustments.
First of all, we must update the ProductListScreen defined in the gamification/screens/
product_list.dart file and illustrated in Figure 7a. In order to display the correct number of
pannas on the screen, we have to determine the current status of the user via the API function
fetchCurrentUserStatus. Depending on the user’s status, we can then retrieve the correct
profile (player or referee) with the associated number of pannas.
Next, as regards the ProductDetailScreen defined in the gamification/screens/product_
detail.dart file and depicted in Figure 7b, we have to update the get_can_exchange method
of the ProductDetailSerializer (see the gamification/serializers.py file). In order to
determine if a user is entitled to request a product exchange, we need to know his current status
in order to find out the amount of pannas he owns and thus determine if he has enough to
purchase the product requested. In addition, we also have to modify the ProductExchangeView
(see the gamification/api_views.py file). As a matter of fact, we must take into account
the current status of the user in order to determine which entity (player or referee) should lose
pannas following the purchase of the product. As a bonus, in order to improve the clarity of
product exchanges, we can also add a field about the user’s status in the ProductExchange
model (see the gamification/models.py file). This allows us to know which entity is actually
requesting to exchange a product. Similarly to what was done earlier, we should provide a default
value of ’player’ for this field to avoid any problems with existing exchange requests in the
database. This change then involves specifying the current status of the user when creating a
ProductExchange instance in the update method of the ProductExchangeView.

Updating the tournaments tab to support referees

When it comes to the "Tournois" tab, adding a referee access also requires some modifications.
Firstly, we must pay attention to the "Mes matchs" tab of the TournamentGroupDetailScreen
(see the tournament/screens/tournament_group_detail.dart file) which is illustrated in Fig-
ure 4d. If the user is logged in as a referee, this tab should display the list of tournament games
refereed by that user. To do so, we must take into account the current status of the user in the
TournamentGameListView (see the game/api_views.py file). Next, we must also check the cur-
rent status of the user in the TournamentGameDetailSerializer (see the game/serializers.py
file). As it happens, if the user is logged in as a referee, the get_is_captain method must re-
turn false since a team captain can only be a player. Moreover, the get_players method of
the TournamentGameDetailSerializer must also be updated. Indeed, this method specifies an
is_editable field for each player of a tournament game. This field allows the user corresponding
to the considered player or his team captain to indicate the participation of the player in the
tournament game. Therefore, if the current user is logged in as a referee, the is_editable field
should necessarily be false as a referee can neither be a player nor a team captain.

Still in the context of tournament games, it is important to note that the original application
offers the possibility for users to make predictions about the outcome of upcoming tournament
games, as can be seen in the Figure 55 below. In case of a correct prognosis, the user will be
awarded pannas.

University of Liège -75- Academic year 2021-2022



5. Development of the solution

(a) Predict the outcome button (b) Predict the outcome page

Figure 55: Predict the outcome of a tournament game

However, for obvious reasons, a referee should not be allowed to make prognoses on tourna-
ment games. Therefore, we need to remove the "Prévoir le score" button (see Figure 55a) from the
TournamentGameDetailScreen (see the tournament/screens/tournament_game_detail.dart
file) if the user is logged in as a referee. To achieve this, we once again need to retrieve the
current status of the user using the API function fetchCurrentUserStatus. Furthermore, in
order to make the frontend and backend as robust as possible independently of each other, we can
also check the current status of the user when creating a prognosis in the backend, namely in the
update method of the TournamentGamePrognosticSerializer (see the game/serializers.py
file). In case the user is connected as a referee, then we should simply not create an instance of
the TournamentGamePrognostic model (see the game/models.py file).

A final change to consider in the context of tournaments relates to the voting for the best
player of a tournament game. In fact, in the original application, once a tournament game is
over, users can vote for the best player of the tournament game, as illustrated in Figure 56. Once
again, voting for the best player of a tournament game allows users to earn pannas.

University of Liège -76- Academic year 2021-2022



5. Development of the solution

(a) Vote for the best player but-
ton

(b) Vote for the best player
page (c) Vote for the best player page

Figure 56: Vote for the best player of a tournament game

However, as requested by Foot 24-7, a referee should not be allowed to vote for the best
player of a tournament game. Therefore, we also need to remove the "Voter pour l’homme du
match" button (see Figure 56a) from the TournamentGameDetailScreen if the user is logged
in as a referee. Similarly to what was done for prognoses, we can also check the current sta-
tus of the user when creating a vote for a best player in the backend, namely in the update
method of the TournamentGameBestPlayerSerializer (see the game/serializers.py file).
If the user is connected as a referee, then we just have to avoid creating an instance of the
TournamentGameBestPlayer model (see the game/models.py file).

University of Liège -77- Academic year 2021-2022



5. Development of the solution

Adding a referee section in the game’s details page

Now that all the main tabs of the application have been updated to support referees, we must
allow a game creator to invite a referee to join his game and thus add a referee section in the
game details page. The referee section should display the referee of a game and allow a game
creator to modify the game referee, which therefore requires modifying the game/screens/game_
detail.dart file. The new referee section is illustrated in the following Figure 57.

Figure 57: Referee section on the GameDetailScreen

To build this referee section, there are several changes and additions to bring to the existing
code. First, we must modify the GameDetail class (defined in the game/api/serializer.dart
file) to include information about the referee of the game, namely a referee field of type
GameDetailReferee and a boolean field isRefereeActive. This thus also requires to define
a new GameDetailReferee class in this file. On the backend side, the GameDetailSerializer
defined in the game/serializers.py file must also be modified to provide this information. To
this end, we also have to define a new GameDetailRefereeSerializer class in the same file.

Next, the "Ajouter" button on the game details page (see Figure 57) allowing a game creator
to invite a referee to join his game should redirect the game creator to a new screen which is
depicted in Figure 58 below.

University of Liège -78- Academic year 2021-2022



5. Development of the solution

Figure 58: Game invite referee page

This new screen is defined in a new game_invite_referee.dart file in the game/screens/
folder. To generate this screen, we must create a new API function allowing to retrieve the
list of referees available on the application as well as new classes allowing to represent refer-
ees in the frontend. Therefore, we have to define a new referee folder (containing the two
classical subfolders api and screens) in the mobile_app/lib/ folder. In the api subfolder,
we have to create a new api.dart file. This file must then define a new API function called
fetchRefereeList allowing to fetch the list of available referees on the application according to
the filters requested by the user. This API function shall query the backend at a new endpoint
defined in the account/api_urls.py file which must correspond to a new RefereeListView (see
the account/api_views.py file). This view should use the filters provided by the API function
to filter the referee QuerySet. At this stage, it is important to note that the API function
fetchRefereeList should also add a url parameter game_invite containing the primary key of
the considered game. This allows to remove from the returned referee list the referees whose
users are already involved in this very game as players. As a matter of fact, it is obvious that a
user should not be involved in the same game twice but with different roles (player and
referee). The RefereeListView also requires to define a new RefereeListSerializer in the
account/serializers.py file. Furthermore, in order to build a referee list in the frontend, we
also need to add a serializer.dart file in the referee/api/ folder. This file should contain
the definition of two classes: RefereeList and RefereeListItem.
Then, we must also allow a game creator to actually invite a referee to a game but also to
remove a referee from a game. To do this, we have to define two additional API functions
inviteRefereeGame and removeRefereeGame in the game/api/api.dart file. As usual, these
two API functions require to define new urls in the game/api_urls.py file, to define two new
views GameInviteRefereeView and GameRemoveRefereeView in the game/api_views.py file as
well as a new serializer GameInviteRefereeSerializer in the game/serializers.py file.
Let us recall here that, since we want to implement an invitation system for referees similar to the
one described in section 5.6, once a referee is invited to a game, he should appear transparently
in the referee section so as to indicate that he has not yet accepted the invitation and is therefore
not yet active in the game, as illustrated in the following Figure 59.

University of Liège -79- Academic year 2021-2022



5. Development of the solution

Figure 59: Referee invited to a game

Now that it is possible for a game creator to invite a referee to join his game and that this in-
vitation can then be found in the "Mes invitations" tab of the referee’s calendar page (see Figure
54), we must allow a referee to accept or decline a game invitation and, more generally, to join
or leave a game. To achieve this, we have to define two new API functions joinRefereeGame
and leaveRefereeGame in the game/api/api.dart file. Once again, these API functions in-
volve new urls in the game/api_urls.py file as well as new views GameJoinRefereeView and
GameLeaveRefereeView in the game/api_views.py file.
Next, we need to make sure that we display the appropriate button to a referee on a game’s de-
tails page. Depending on the circumstances, the referee should either see a "Rejoindre" button, a
"Quitter" button, an "Accepter/refuser l’invitation" button or no button at all. To this end, we
have to update the get_can_join and get_can_leave methods of the GameDetailSerializer
to support referees. These two methods should now take into account the current status of
the user and distinguish between a user logged in as a player and as a referee. As regards the
get_can_join method, in the case where the user is logged in as a referee, this method should
return true if the user is the referee of the game but is not yet active in the game, or if the game
is public, has no referee yet, and the user is neither a player of the game (in case of a simple
game) nor a member of a team participating in the game (in case of a team game). Otherwise,
this method should return false. In case the user is connected as a player, this method must now
also check if this user is already involved in the game as a referee in which case it should return
false. When it comes to the get_can_leave method, in case the user is logged in as a referee,
this method should return true only if the user is the current referee of the game (whether active
or not). Otherwise, it should return false. In case the user is connected as a player, nothing
should change in this method.
While we are discussing the GameDetailSerializer, we can also mention that one also needs to
modify the get_can_edit, get_can_add, get_can_remove and get_is_team_player methods
of this serializer. As it happens, these methods should also take into account the current status
of the user and return false in case the user is connected as a referee.

University of Liège -80- Academic year 2021-2022



5. Development of the solution

Beyond the changes to bring to the GameDetailSerializer, adding a referee access also
requires updating the way we can add players, teams or referees to a game. Indeed, as said
before, a user should not be involved in the same game twice but with different roles (player or
referee). Therefore, when adding players to a game, we have to prevent a game creator from
inviting a player if the corresponding user is already the referee of this game. To do this, we
need to modify the PlayerListView (see the account/api_views.py file) which is responsible
for generating the list of players available on the application according to the filters specified by
the user. In the case where the user tries to get the list of players he can add to his game, we
have to remove from the returned list the player whose user already corresponds to the referee of
the considered game (if he exists). Similarly, when adding a referee to a game, we must prevent a
game creator from inviting a referee if the corresponding user is already a player of the game (as
said before) or a team player of the game. To this end, we need to modify the RefereeListView
responsible for generating the list of available referees on the application according to the filters
requested by the user in order to remove from the returned referee list the referees whose user
matches a player or a team player of the game. Finally, we must also follow a similar reasoning
regarding the addition of teams to a game. As a matter of fact, we must prevent a game creator
from adding a team containing a player whose user already matches the referee of the game of
interest. To do so, we have to modify the TeamListView (see the account/api_views.py file)
responsible for generating the list of teams available on the application according to the filters
requested by the user in order to remove from the returned list the teams containing the user
corresponding to the game referee.

Allowing users to browse all the available referees

Now that we have included a referee section in a game’s details page, we must allow users of the
application (whether they are players or referees) to browse the list of referees available on the
application. To do so, we have to add an "Arbitres" button to the search screen, as can be seen
in Figure 60 below.

Figure 60: New search screen

University of Liège -81- Academic year 2021-2022



5. Development of the solution

This button should redirect to a new page displaying the list of referees registered on the
application (as shown in Figure 61a) which thus involves defining a new referee_list.dart
file in the referee/screens/ folder. In addition, we should also allow users to filter the list of
referees on the application. This requires defining a new referee_filter.dart file (in the same
referee/screens/ folder) corresponding to a new page allowing users to filter the list according
to different fields (see Figure 61b). To generate the referee list, these two files would obviously
rely on the fetchRefereeList API function, which we have already discussed at length.

(a) Referee list page (b) Referee filter page

Figure 61: New referee list and filter pages

University of Liège -82- Academic year 2021-2022



5. Development of the solution

Updating the team list page to support referees

When it comes to the page listing all the teams registered on the application (as can be seen in
Figure 37), we have to pay attention to the fact that a referee can not create nor join a team.
Consequently, this page should not display the two tabs "Toutes les équipes" and "Mes équipes"
nor the "Créer une équipe" button if the user is logged in as a referee. The new page listing the
teams on the application for a referee is shown in the following Figure 62.

Figure 62: New team list screen for referees

Furthermore, since a referee can not create nor join a team, we have to make sure that the
TeamDetailSerializer (see the account/serializers.py file) takes into account the user’s
current status. In fact, the get_is_captain, get_can_join and get_can_leave methods of the
TeamDetailSerializer must all return false if the user is currently logged in as a referee.

University of Liège -83- Academic year 2021-2022



5. Development of the solution

Rating referees

Finally, we have to allow players of the application to rate the referees they have met during
games. To do so, we must first create a new RefereeNote model in the account/models.py
file containing the 3 evaluation criteria: punctuality, rigor and impartiality. Then, in order to
display on a referee’s profile page the average grade of the referee as well as the number of ratings
he has received, we need to define two new methods get_average_note and get_number_notes
in the Referee model. Besides, similarly to the work described in sections 5.2 and 5.3, we have
to add methods get_encountered_referees and get_rated_referees in the Player model. In
this way, we will be able to identify the referees that a player has already met as well as those
that he has already rated. To transfer all this new information to the frontend, we need to up-
date the RefereeProfileDetailSerializer and the VisitRefereeProfileDetailSerializer
to include the get_average_note and get_number_notes methods. In addition, as in sections
5.2 and 5.3, the VisitRefereeProfileDetailSerializer should also define a get_can_rate
method and a get_already_rated method that will determine, respectively, whether a user can
rate a referee and whether a user has already rated a referee. These methods should of course
take into account the current status of the user. As a matter of fact, since a referee can not rate
another referee, these methods must always return false if the user is logged in as a referee.
In the frontend, we have to modify the profile_referee.dart file so that a referee’s profile page
includes a rating bar (below the referee’s name) displaying the referee’s average grade as well as
the number of ratings the referee has received (as shown in Figure 48). Moreover, when a player
clicks on such a rating bar, a rating dialog should appear on the screen allowing the player to
either rate the referee or explaining him why he is not allowed to. The different possible rating
dialogs are depicted in Figure 63 below.

(a) Referee rating form (b) Referee not met (c) Referee already rated

Figure 63: Referee rating dialog

University of Liège -84- Academic year 2021-2022



5. Development of the solution

In order to display the rating bar of a referee and to allow the creation of a RefereeNote in-
stance, we have to modify the profile/api/serializer.dart file. Indeed, the RefereeProfile
class should now include the new information provided by the backend, namely the referee’s av-
erage grade, the number of grades received, as well as the canRate and alreadyRated variables.
Additionally, a new class called RefereeNote should also be created in this file to represent a
referee’s evaluation by a player. In order to create a new referee assessment, we must also modify
the profile/api/api.dart file by adding a new API function createRefereeNote. As usual,
this new API function must be linked to the backend by defining a new url in the account/api_
urls.py file and also requires to define a new RefereeNoteCreateView in the account/api_
views.py file as well as a new RefereeNoteCreateSerializer in the account/serializers.py
file.

As was done in sections 5.2 and 5.3, rating a referee should allow a player to earn pannas.
When a player rates a referee, an alert dialog notifying him that he just won pannas should
therefore appear on the screen, as shown in Figure 64.

Figure 64: Gamification alert dialog when rating a referee

As requested by Foot 24-7, it is essential to make sure that a referee can not rate a
player nor a team. In the frontend, we must retrieve the current status of the user in the
profile_player.dart and team_detail.dart files. This way, if the user is logged in as a ref-
eree, in the case of a player, clicking on the rating bar will not generate a rating dialog and,
in the case of a team, the "Evaluer" button will not be displayed. In the backend, we need
to check the current status of the user in the get_can_rate and get_already_rated methods
of the VisitPlayerProfileDetailSerializer and TeamDetailSerializer (see the account/
serializers.py file) and return false if the user is logged in as a referee.

University of Liège -85- Academic year 2021-2022



5. Development of the solution

Finally, we also have to include a game’s referee in the notification inviting players to rate the
participants of a game (see sections 5.2 and 5.3). As this mechanism exists for both classic and
tournament games, we need to modify both the game/screens/game_participant_list.dart
and the tournament/screens/tournament_game_participant_list.dart files to include the
game referee if he exists. For illustrative purposes, an example of a GameParticipantListScreen
containing a referee is shown in the following Figure 65.

Figure 65: Referee in list of game participants

University of Liège -86- Academic year 2021-2022



5. Development of the solution

5.10 Summary

To conclude this section presenting the development of the solution, we can summarise the set of
added features as well as those initially offered to the user on the Foot 24-7 mobile application in
the following high-level diagram 66. This diagram should be compared to the diagram provided
in the presentation of the initial application (see Figure 9) in order to better appreciate the work
carried out during this thesis.

Figure 66: High-level diagram of final features

University of Liège -87- Academic year 2021-2022



6. Testing

6 Testing

In this section, we will present the various kinds of tests performed during the course of this thesis.
To do so, we will use the testing taxonomy described in B. Donnet’s lecture [2]. In this project,
functional testing was of paramount importance. As a matter of fact, as this project
was highly user oriented and focused on the addition of new features to the Foot 24-7 mobile
application, the main concern was to make sure that the added features were fully functional.
Most of the testing carried out during this thesis is therefore based on testing application use
cases.
Of course, in cases where it was justified, I also performed unit tests testing the smallest parts
of the software (typically, methods/functions).
Moreover, we can also explicit the fact that the approach adopted for the development of this
project fits into the philosophy of incremental integration using a mix of feature-oriented
integration and sandwich integration. Indeed, during the course of this project, each feature
was added one after the other and the proper functioning of the application was re-evaluated
after each new feature was added. Besides, when adding a new feature, I naturally decided to
separate the frontend from the backend and then connect the top-level user interface to the core
bottom-level functionalities. This made it easier to detect exactly where the errors were as well
as to keep the system in a functional state at all times. I also stuck to the "Daily build"
principle: at the end of each day, the project compiled without errors and the application
worked as intended.
In the context of this project, I also often performed non-regression tests to check that the
addition of the new features did not interfere with existing ones.
Finally, I also performed acceptance testing to make sure that the added features met Foot
24-7’s expectations which resulted in a formal acceptance sheet, as can be seen in the Appendix
C.

6.1 Debugging the original application

In this project, the first testing phase was related to the debugging of the initial application.
Indeed, as discussed in section 4, the discovery phase of the initial application revealed the
existence of many bugs in the original application. This led to a substantial testing phase
consisting in testing all the existing features of the mobile application in order to verify that
they worked as intended and if not, to solve them. We will not come back on the details of this
testing phase nor on the resolution of the initial errors since all that is detailed in section 5.1.

University of Liège -88- Academic year 2021-2022



6. Testing

6.2 Rating other players

As regards rating other players, there were some critical use cases to be tested in order to
verify the proper functioning of this feature. The following list of use cases presents important
and representative critical use cases that had to be tested:

• A user should not be able to rate a player he has not yet met.

• A user should not be able to rate a player he has already rated.

• A user should not be able to rate himself.

When it comes to the first two use cases, the management of these critical cases has already
been explained and illustrated in section 5.2. Indeed, Figures 20c and 20d of this section do
illustrate the proper handling of these critical cases. However, we have not yet mentioned one
particular case that had to be addressed at this stage: when a user rates a player he has already
met from this player’s profile and then decides to stay on this profile page, his rating should be
taken into account in order to prevent him from directly rating that player again. To do this,
one must query the backend again in order to update the information in the frontend. This is
achieved by using the _refreshProfile method defined in the ProfileScreen and used in the
_createUserNote method.

Regarding the fact that a user should not be able to rate himself, one must understand that
the ProfileScreen contains a playerPk variable which is null if the profile matches the current
user’s profile and, otherwise, is equal to the primary key of the player whose profile the current
user is consulting. Therefore, a very simple way to prevent the user from rating himself is to
only display a rating dialog if this playerPk variable is not null. The value of this variable is
thus tested in the _widgetNotationInfo widget of the ProfileScreen which will only use a
GestureDetector widget allowing to display a rating dialog if the playerPk variable is not null.
In this way, it is impossible for a user to rate himself on the mobile application.

Up to now, we only discussed the management of these critical cases in the frontend which,
through the interface, limits the user’s possibilities of sending bad requests to the server. How-
ever, it is important to note that I tried to make the backend and frontend as robust as
possible independently of each other. Therefore, some use cases are actually double-checked
since the backend double-checks what the frontend already checked. In other words, for these
cases, anyone trying to interact directly with the server would see their malicious requests rejected
by the server, without causing the server to issue an error that would force it to shut down. For
instance, the verification that a user can not rate himself is in fact double-checked in the back-
end. As it happens, the UserNoteCreateSerializer defined in the account/serializers.py
file includes a validate method whose goal is to check that the user and noted_user fields are
indeed different. If this is not the case, the backend returns an error specifying that a user can
not rate himself and refuses the creation of the UserNote instance. To illustrate this case, we
will use the Postman tool [31] which allows to interact directly with the backend [8]. The query
illustrated in Figure 67 below attempts to create a UserNote instance where the rating user and
the rated user are the same and shows the appropriate server response to this bad request.

University of Liège -89- Academic year 2021-2022



6. Testing

Figure 67: Backend check to a user trying to rate himself

Finally, we can also mention that additional requirements are checked in the backend it-
self. In fact, one can see in the UserNote model of the account/models.py file that the fields
corresponding to the 5 player rating criteria each contain validators to ensure that the values
associated with these fields are indeed integers between 0 and 5. Therefore, if a user tries to
interact directly with the backend by specifying unaccepted grades, the backend will return an
error and prevent the creation of the UserNote instance as illustrated in the following Figure 68.

Figure 68: Backend check to player unaccepted grades

University of Liège -90- Academic year 2021-2022



6. Testing

6.3 Rating other teams

As regards rating other teams, the list of critical use cases that had to be tested is very similar
to the one presented in section 6.2:

• A user should not be able to rate a team he has not yet met.

• A user should not be able to rate a team he has already rated.

• A user should not be able to rate a team to which he belongs.

When it comes to the first two use cases, the management of these critical cases has already
been explained and illustrated in section 5.3. Indeed, Figures 26b and 26c of this section do
illustrate the proper handling of these critical cases. But, similarly to what was explained in
section 6.2, there is also one particular use case to be tested at this stage: when a user rates
a team he has already met from the team details page and then decides to stay on that page,
his rating should be taken into account in order to prevent him from directly rating that team
again. To do this, one must refresh the information in the frontend by querying the backend.
This is achieved by using the _refreshTeam method defined in the TeamDetailScreen and used
in the _createTeamNote method.

Regarding the fact that a user can not rate a team to which he belongs, the checking is
also carried out in the frontend using the information returned by the backend. Actually, the
TeamDetailSerializer defines 3 methods get_is_captain, get_can_join and get_can_leave
whose return value is transmitted to the frontend and stored in 3 boolean variables canDelete,
canJoin and canLeave of the TeamDetail class. These 3 variables are then used to test in the
TeamDetailScreen whether the current user belongs to the team under consideration, in which
case the "Evaluer" button (see Figure 25) will not be displayed on the screen. In this way, it is
impossible for a user to rate a team to which he belongs.

Finally, just like in section 6.2, we can also mention that additional requirements are checked
in the backend itself. As a matter of fact, one can see in the TeamNote model of the account/
models.py file that the fields corresponding to the 3 team rating criteria each contain validators
to ensure that the values associated with these fields are indeed integers between 0 and 5.
Therefore, if a user tries to interact directly with the backend by specifying unaccepted grades,
the backend will return an error and prevent the creation of the TeamNote instance as illustrated
in the following Figure 69.

University of Liège -91- Academic year 2021-2022



6. Testing

Figure 69: Backend check to team unaccepted grades

University of Liège -92- Academic year 2021-2022



6. Testing

6.4 Create games with teams rather than players

As this task significantly modified the use of the Game model defined in the game/models.py file,
many critical cases related to the entire application appeared. Among others, we can mention:

• A team captain should not be able to join a public team game if he already belongs to the
first team of this game.

• A player encountered only through a team game must be assessable.

• A user should not be able to create/join a team game with a team to which he belongs but
of which he is not captain.

The first use case emphasizes that it is important to avoid a situation where a player who is
present in the first team of a team game but also has other teams of which he is captain would be
offered the possibility to join a team game when he is already present in the first team. Indeed,
it would be difficult for the user to understand why he is offered to join a team game when one
of his teams is already active in that game. Furthermore, it would also be desirable to avoid
as much as possible situations where a player appears in two different teams of a team game.
Therefore, in the case of a team game, it is important to check in the get_can_join method
of the GameDetailSerializer (see the game/serializers.py file) that the current user is not
already present in the first team, beyond the fact that the user must also be captain of a team,
that the team game must be public and not already include a second team.

As for the second point, the addition of the possibility to create a game by specifying teams
rather than players implies that it is now possible to meet players through team games. It was
therefore essential to modify the get_encountered_players method of the Player model (see
the account/models.py file) in order to also take into account the players of teams participating
in team games. In particular, in order to verify the proper functioning of this new feature, it was
crucial to check that a player encountered only through a team game was still a player that the
user could rate.

The last particular case mentioned above insists on the fact that only team captains should
be able to create (or even join) team games. To ensure this, it is first important to define a
fetchTeamList function in the team/api/api.dart file that takes into account the type of list
to be fetched from the backend. By specifying the String "captain", the TeamListView associ-
ated with this function (see the account/api_views.py file) should allow to fetch only the teams
for which the current user is the captain. This would allow to make sure that a user can only
choose a team he is captain of when he tries to create a team game (see Figure 28) or when he
tries to join a team game (see Figure 33). In the case of joining a team game, it is also important
that the get_can_join method of the GameDetailSerializer checks among other things that
the user is captain of at least one team as mentioned above.

Finally, we can also mention that in addition to these various tests carried out on the different
critical use cases, non-regression testing was also very important in the context of this task.
As a matter of fact, since the way the Game model is used and created was modified, I took the
time to check that the creation and handling of simple games were still working properly.

University of Liège -93- Academic year 2021-2022



6. Testing

6.5 Redesigning the invitation mechanism

When it comes to the redesign of the invitation mechanism, this task had an impact on the whole
application. It was therefore essential to check that the integration of this functionality worked
with all features already present. Several critical use cases had to be tested. Some of these
are listed below:

• An invitation to a team game must only appear in the team captain’s calendar.

• An inactive player in a game should not be considered as a player encountered by other
active players in that game.

• An active team player whose team is inactive in a team game should not be considered as
a player encountered by the active players of the first team of that game.

• An inactive team player whose team is active in a team game should not be considered as
a player encountered by the active players of the teams in that game.

• An inactive team in a team game should not be considered as a team met by the active
players of the other team in that game.

• Only active players of a game should appear on the page inviting to rate the participants
of a game.

The first critical case is related to the feature allowing to create team games (see section 5.4).
When a creator of a team game decides to invite another team to this game, it is important to
make sure that this invitation only appears on the calendar page of the captain of this team since
he is the only member of this team who is able to answer this invitation. In the "Mes invitations"
tab of the calendar page, one should thus display the team games for which the second team is
one of the teams for which the current user is captain and is inactive. To do this, we need to
take into account these games in the CalendarInvitationListView of the game/api_views.py
file.

All the other critical cases mentioned above are related to the functionalities allowing to
rate players or teams (see sections 5.2 and 5.3). In order to ensure the proper integration
of the new invitation system with the rating features, all these cases must be handled in the
get_encountered_players and get_encountered_teams methods of the Player model (see the
account/models.py file). These methods must take into account whether players or teams en-
countered in various games are active or not and at all levels (e.g. to be able to rate a player
encountered through a team game, this player must be active in his team and his team must
be active in this game). Furthermore, in these methods, one should also pay attention to only
consider games (simple games or team games) where the current player is himself active (and at
all levels).
For the last case, it is indeed important to only display active players (at all levels) in the
GameParticipantListScreen (see the game/screens/game_participant_list.dart file). To
do this, the information about whether a player is active or not in the game must be included
in the get_players method of the GameDetailSerializer (see the game/serializers.py file)
so that it can be used in the frontend.

Finally, we can also mention that besides all these use cases, non-regression testing was
also very important in the context of this task. As it happens, since the invitation system was
completely redesigned, I had to take the time to check that the original invitation system via
chats was still working properly.

University of Liège -94- Academic year 2021-2022



6. Testing

6.6 Game editing

As explained in section 5.7, the form allowing to edit a game was implemented in such a way
that the user can not enter invalid inputs. In order to make sure that I had considered all the
critical cases, I carried out functional testing, using test cases with boundary value analysis.
To do so, I constructed equivalent classes (ECs) for each variable in the form, as detailed in
the Table 2 below.

Valid EC Invalid EC
Date 1) ≥ current date 2) < current date
Time 3) ≥ current time 4) < current time

Price 5) Number AND ≥ 0 6) Not a number
7) < 0

Participants 8) Integer
AND ≥ current number of players

9) Not an integer
10) < current number of players

Duration 11) Number AND ≥ 0 12) Not a number
13) < 0

Official stadium
14) Not empty
IF _officialStadium is true
AND initial stadium is not official

15) Empty
IF _officialStadium is true
AND initial stadium is not official

Custom stadium 16) Address not empty
IF _officialStadium is false

17) Empty address
IF _officialStadium is false

Table 2: EC construction for edit game functionality

From this table, I then created different test cases. The first test case gathers all valid ECs.
For the others, I tested each invalid EC separately. For the sake of clarity, the tables containing
all those test cases are reported in Appendix B. Following the testing of these 11 cases, I did not
detect any bug or unwanted behavior regarding the use case "edit a game".

University of Liège -95- Academic year 2021-2022



6. Testing

6.7 Improving the bottom navigation bar with notifications

As explained in section 5.8, the critical cases in the context of this task were related to the
refreshing of the bottom navigation bar at the appropriate times. It was indeed important to
check that the bottom navigation bar was refreshed properly when:

• The user clicks on an unread chat.

• The user responds to a game invitation.

• The user pops back from a chat to the chat list page.

• The user pops back from a game to his calendar.

As already mentioned in section 5.8, to manage these different critical cases, it was necessary
to define an onRefresh method in the BottomNavigationWidget (see the widgets/bottom_
navigation.dart file) allowing to update the number of unread chats and the number of pending
invitations, as well as to use GlobalKeys to call this method in the different related files.
Following the tests carried out on these 4 critical cases, I did not detect any bug related to the
refreshing of the bottom navigation bar. We will only illustrate here the refreshing of the bottom
navigation bar during the critical case "reading an unread chat" in the following Figure 70 but
the same could be applied to the critical case "responding to a game invitation".

(a) Unread chat in the chat list (b) Clicking on an unread chat
(c) Popping back to the chat list
page

Figure 70: Testing reading an unread chat

University of Liège -96- Academic year 2021-2022



6. Testing

6.8 Development of a new referee access

The addition of a brand new referee access represented a major change to the functioning of
the original application. Therefore, the integration of this functionality required the testing and
management of a multitude of critical cases.
For instance, as regards adding players, teams or referees to a game, since a user can now hold
both a player and a referee account simultaneously, we have to make sure that a user can not be
involved in a same game twice but with different roles. Consequently, this required testing the
following critical use cases to verify that the application reacted properly in these situations:

• A game creator who invites a user to referee his game should not be able to invite the same
user as a player in this very same game.

• A game creator who invites a user to join his game as a player should not be able to invite
the same user as a referee in the same game.

• A game creator who invites a user to referee a team game should not be able to invite a
team containing the same user but as a player in the same game.

• A game creator who invites a team to join a team game should not be able to invite as a
referee a user who is already part of the invited team as a player in the same game.

• A user logged in as a player should not be able to join a game (or a team game) if he is
already the referee of that game.

• A user logged in as a referee should not be able to join a game (or a team game) if he is
already a player (or team player) of that game.

• A user logged in as a player should not be able to join a team game with a team containing
a user corresponding to the referee of that game.

As explained in section 5.9, the management of these different use cases had to be performed in
the get_can_join method of the GameDetailSerializer (see the game/serializers.py file)
but also in the PlayerListView, RefereeListView and TeamListView of the account/api_
views.py file. After testing all these critical cases, I did not detect any bug or unwanted be-
haviour regarding the addition of players, referees or teams to a game.

Furthermore, now that a user can hold two different types of account simultaneously, it is
important to ensure that a user visiting his own profile page but the one corresponding to his
other type of account (i.e. a user visiting his referee profile page as a player or vice versa) is unable
to create a chat with himself. To achieve this, we need to modify the profile_referee.dart
and profile_player.dart files of the profile/screens/ folder so that the icon allowing to chat
with the user is only displayed if that user differs from the current user. The following Figure 71
highlights the fact that a user viewing his own profile page with his other type of account does
not have the opportunity to create a chat.

University of Liège -97- Academic year 2021-2022



6. Testing

(a) Viewing another’s player profile
(b) Viewing his own player profile as
a referee

(c) Viewing another’s referee profile
(d) Viewing his own referee profile as
a player

Figure 71: Consulting one’s own profile page with one’s other account type

University of Liège -98- Academic year 2021-2022



6. Testing

In the backend, we can also mention that the creation of a chat between a user and himself was
also prevented. In fact, one can see in the ChatGetOrCreateView (see the chat/api_views.py
file) that the creation of a chat between two users is only possible if these two users differ from
each other.

As explained in section 5.9, a referee can also edit his profile. However, in the referee profile
edit form, there is one critical field whose validity must be checked: the price specified by the
referee for refereeing a game. As a matter of fact, we have to make sure that the user fills
in a positive number for this field. If not, the referee should not be able to save the specified
information and we should also display an error message on the screen, as can be seen in Figure
72 below.

(a) Price is not a number (b) Price is negative

Figure 72: Checking validity of referee profile edit form

For the other fields of the form, no verification is required as the user can only modify them by
choosing from a predefined set of possibilities. The validity of these fields is therefore guaranteed.

Here, I only highlighted some representative critical use cases, but obviously there are others.
For example, we can mention that a testing similar to those described in sections 6.2 and 6.3
was also applied to check that the rating of referees by players worked as it should. However, to
prevent this report from getting excessively long, we will not go into further details here.

Finally, it is also important to mention that besides all these use cases, non-regression
testing was also of great importance in the context of this task. As it happens, since a brand
new referee access was added to the application, I had to take the time to check that the original
player access was still working properly.

University of Liège -99- Academic year 2021-2022



7. Conclusion

7 Conclusion

This last section marks the conclusion of this enriching thesis. Using well-known application de-
velopment technologies such as the Flutter framework, the Django framework and the Django
REST framework, this thesis addressed several development tasks and allowed to integrate many
new features on the Foot 24-7 mobile application: debugging of the original application, develop-
ment of player and team rating systems, addition of the possibility to create team games, access
to a user’s personal teams, redesign of the whole invitation system, addition of the possibility
to edit a created game, improvement of the bottom navigation bar with notifications as well as
the development of a brand new access dedicated to referees. In this section, we will start by
reviewing the status of the project following the work carried out in the context of this Master
thesis. First, as every project has its own flaws, we will focus on the current limitations of
the solution developed. Then, we will consider future perspectives for the further develop-
ment of the project. Lastly, we will conclude this thesis with a few final words on the gratifying
experience that is the completion of a Master thesis.

7.1 Limitations

As regards the current limitations of the developed solution, we can mention that the testing of
the newly developed features sometimes simply consisted in preventing a user from performing
a faulty action via the frontend only. I sometimes included additional checks in the backend (as
illustrated in sections 6.2 and 6.3) but I did not have enough time to apply this rigorously to all
the added features. For instance, regarding game editing, checking the validity of the fields of
the game editing form as described in section 6.6 is only performed in the frontend. However,
for the sake of completeness, it would be convenient to perform similar checks in the backend
in order to double check the validity of the submitted form. In this way, we could make the
frontend and the backend robust completely independently of each other.

7.2 Future works

To begin with, all the tasks initially suggested by Foot 24-7 (see section 3) that we did not have
the opportunity to consider in the context of this thesis are obvious and natural perspectives for
the future development of the application. Along with these tasks, we can also include the task
related to the improvement of the player participation survey tool for a tournament game which
I had identified when discovering the original application, code and features (see section 4) but
unfortunately did not have enough time to consider either.

As mentioned in section 4, UX design is a key area of development for Foot 24-7. In fact,
user experience is Foot 24-7’s main priority but, in my opinion, the user interface could be im-
proved: the user interface is not always the cleanest and most attractive (e.g. the "Pannas"
tab, the profile page tutorial, the presentation of the ads, etc.), it is not always uniform and
consistent (e.g. the dialogs allowing to select a date and time when creating a game do not
respect the colour code of the application, etc.) and the access to certain features or information
is not always very intuitive (e.g. the "Créer une équipe" button should not be located in the
settings of the profile page). All these things reduce the quality of the user experience on the
application. Although UX design was not part of the scope of this Master thesis, I do think it
would be beneficial for the future of Foot 24-7 to reorganise, harmonise and improve the design
of its application in order to provide the cleanest and smoothest user experience.

Another prospect for the further development of the application relates to the state man-
agement in the Flutter frontend. Actually, in the frontend, state management solely relies
on the use of StatefulWidget and setState. The advantage of this approach is that it is very

University of Liège -100- Academic year 2021-2022



7. Conclusion

easy and straightforward to understand. Furthermore, this method is a great way (and is even
recommended by Flutter) to handle ephemeral state5, which is the majority of state manage-
ment we must perform in the case of the Foot 24-7 mobile application. However, this approach
does come with some drawbacks. First of all, it is not a good way to manage app state6. In the
case of Foot 24-7, app state mainly refers to the currently logged-in user. Indeed, information
about the currently logged-in user is requested in several different pages of the application: the
"Profil" tab, the "Pannas" tab, etc. Moreover, the addition of a brand new access dedicated
to referees (see section 5.9) implies that the current status of the user must now be known in
many different pages of the application which thus increases the amount of information shared
by different pages in the application. On the other hand, using setState all over an application
may not be the best approach to ensure the proper maintenance of the application as the state
is scattered all over the place. Besides, setState is used within the same class as the UI code,
mixing UI and business logic, which breaks clean code principles. In the case of Foot 24-7, as
the structure of the code is relatively clear and straightforward to approach, this is not too much
of a problem. However, in a long term perspective, this could become a potential issue at some
point. One solution would be to use another state management option such as the provider
package [3] (which is a recommended approach by Flutter). In short, provider can be described
as a mix between state management and dependency injection. Therefore, provider allows the
sharing of data between different widgets of the Flutter widget tree and would thus allow to
share the app state across all the pages of the application. In this way, we would only have to
fetch the user information once rather than refetch the information we need on the currently
logged-in user in each page of the application, thereby optimizing the state management in the
application. Another solution would be to use a design pattern such as BLoC [10]. BLoC stands for
Business Logic Component and is a Flutter library for state management. This design pattern
allows to structure a Flutter project by separating the business logic from the UI. This option
would therefore improve the quality of the code, facilitate its maintenance and testability and,
from this standpoint, would be more suitable for the long-term development of the Foot 24-7
mobile application. However, it is true that adopting the BLoC design pattern in the case of
the Foot 24-7 mobile application would require a significant effort to restructure the applica-
tion’s code and would also result in a more boilerplate code. Consequently, the most appropriate
option in the case of Foot 24-7 is perhaps to use the provider package, at least as a starting point.

Another future development area which is worth considering concerns the integration of null
safety into the Flutter frontend. As explained in the Dart documentation [12], when opting
for null safety, Dart assumes that types are non-nullable by default, which means that vari-
ables can not contain null unless we explicitly indicate that they can. With null safety, runtime
null-dereference errors become edit-time analysis errors. Null safety thus makes code safer and
provides a better development environment with fewer runtime errors. Furthermore, thanks
to sound null safety7, the Dart compiler can optimise our code, which leads to faster programs.
Since the Foot 24-7 project was created before the introduction of null safety in 2020, this project
does not support it. However, given its many advantages, it would be worth considering migrat-
ing the application to null safety. Although it is true that migrating to null safety can turn
out to be a tedious process for large projects, one can always find resources [11] [6] explaining
how to apply such a migration while keeping a project growable, maintainable and easy to release.

5As explained in the Flutter documentation [23], ephemeral state is the state you can neatly contain in a
single widget.

6As explained in the Flutter documentation [23], app state is the state that you want to share across many
parts of your app.

7Sound null safety means that if Dart determines that a variable is non-nullable, then this variable is always
non-nullable.

University of Liège -101- Academic year 2021-2022



7. Conclusion

Upgrading the dependencies used in both the frontend and the backend would also be
a task to consider in the near future. Indeed, as the project starts to become quite old, many
of these dependencies are relatively outdated. For example, in the backend, the project uses
Django version 1.11.17, whereas the latest official version is 4.0.4. Using the latest stable version
of Django would be of great interest from a security, optimization and maintenance standpoint.
As a matter of fact, several versions of the dependencies used in the project may soon no longer
be maintained, which is already the case for the Django framework [17]. On the other hand, as
regards the frontend, updating the dependencies should be considered in conjunction with the
integration of null safety in the project, as previously discussed.

As stated in section 4, the documentation of the code, although reasonable, remains relatively
poor. Even if this level of documentation is sufficient to easily tackle the project, documenting
the entire application code in a more extensive and rigorous way could nevertheless prove to be
valuable in order to facilitate the sharing and maintenance of the code and thus invest in the
long-term development of the application.

Another suggestion to improve the code quality in the frontend would be to use linting.
Linting is the process of automatically checking source code for programmatic and stylistic er-
rors. This process is performed by a lint tool also known as linter. It allows to identify certain
errors made during coding such as unused variables or imports, omission of required parameters,
empty if-else statements, etc. Through the definition of linting rules [13] (i.e. coding rules),
linting allows to check the quality of the code and therefore provides a clean code base. In the
case of Foot 24-7, using linting could be of great value to ensure consistency in the code. In-
deed, as the project passes through the hands of several different people over time, linting would
allow to impose the same coding conventions to all developers working on the project thereby
easing the long term maintenance of the Foot 24-7 mobile application. There exist different
packages allowing to set up linting rules in a Flutter project but the most popular is probably
the flutter_lints package [7].

Finally, a last prospect for further development relates to internationalization. In fact, as
explained in section 2.4, the code of the mobile application was structured in a way to support
3 different languages, namely French, English and Dutch. However, since many translations
into English and Dutch are yet to be defined, the application currently only supports French.
Therefore, translating all the texts used in the mobile application into English and Dutch would
be an interesting task to consider in order to integrate the support of several languages in the
mobile application and thus foster its potential international development.

7.3 Final words

This Master thesis allowed me to learn many new things on software development and more
precisely on mobile or web application development, a subject that is of great interest to me.
The technologies used in this project (namely the Flutter, Django and Django REST frameworks)
were technologies I knew either very little or not at all at the beginning of this thesis and I am
happy to say that they are now technologies I master much better.
Beyond the acquired hard skills, this thesis also allowed me to acquire new soft skills. As it
happens, as this thesis was carried out in collaboration with the company Foot 24-7, this project
allowed me to dive into the corporate world. I was able to learn how to manage and understand
a client’s requests, to communicate and explain my work to people who do not necessarily have
an IT background and to discover the professional relationships that exist between different
companies.
Finally, I am proud of the work I have done in the context of this Master thesis and I am delighted
to have pleased the Foot 24-7 company.

University of Liège -102- Academic year 2021-2022



List of Figures

List of Figures

1 User login and account creation pages . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Profile and settings pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Chat page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Tournament pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Calendar page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Game creation pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Product list and detail pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Search page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 High-level diagram of original features . . . . . . . . . . . . . . . . . . . . . . . . 9
10 5 main folders of the code structure . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11 mobile_app folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
12 lib folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
13 api and screens sub-folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
14 web folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
15 Django application structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
16 cron folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
17 High-level diagram of application and code structure . . . . . . . . . . . . . . . . 17
18 Roadmap of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
19 Profile page containing the rating of the current user . . . . . . . . . . . . . . . . 30
20 3 different player rating dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
21 Gamification alert dialog when rating a player . . . . . . . . . . . . . . . . . . . . 32
22 Notification inviting a user to rate game participants . . . . . . . . . . . . . . . . 33
23 Page displaying the list of game participants . . . . . . . . . . . . . . . . . . . . . 34
24 Global rating bar indicator on a team’s details page . . . . . . . . . . . . . . . . . 36
25 Rating section on a team’s details page . . . . . . . . . . . . . . . . . . . . . . . . 37
26 3 different team rating dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
27 Gamification alert dialog when rating a team . . . . . . . . . . . . . . . . . . . . 39
28 Additional tab in the CreationScreen for team games . . . . . . . . . . . . . . . 41
29 Difference in the CreationScreen’s information tab between simple and team games 42
30 Differences in the GameDetailScreen between simple and team games . . . . . . 42
31 Invite a team to a team game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
32 "Quitter" and "Rejoindre" buttons of the GameDetailScreen . . . . . . . . . . . 44
33 Team game joining dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
34 Chat restricted to team captains alert dialog . . . . . . . . . . . . . . . . . . . . . 46
35 Team list screen update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
36 Difference between active and inactive game player icons . . . . . . . . . . . . . . 49
37 Comparison between the old and the new "Calendrier" tab . . . . . . . . . . . . . 50
38 Invitation on a GameDetailScreen . . . . . . . . . . . . . . . . . . . . . . . . . . 51
39 Difference between active and inactive team icons . . . . . . . . . . . . . . . . . . 52
40 Team game chat invitation system . . . . . . . . . . . . . . . . . . . . . . . . . . 53
41 Invitation on a TeamDetailScreen . . . . . . . . . . . . . . . . . . . . . . . . . . 54
42 Difference between active and inactive team player icons . . . . . . . . . . . . . . 55
43 Game editing page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
44 Edit game stadium dynamic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 58
45 Missing custom stadium address error in game editing form . . . . . . . . . . . . 59
46 Notifications in the bottom navigation bar . . . . . . . . . . . . . . . . . . . . . . 61
47 New account creation page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
48 New profile page for a referee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
49 User login and switching between accounts dynamic diagram . . . . . . . . . . . 68
50 New settings page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

University of Liège -103- Academic year 2021-2022



List of Tables

51 Create account confirmation dialog . . . . . . . . . . . . . . . . . . . . . . . . . . 70
52 Referee edit profile page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
53 Referee profile completion alert dialog . . . . . . . . . . . . . . . . . . . . . . . . 72
54 Calendar page for referees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
55 Predict the outcome of a tournament game . . . . . . . . . . . . . . . . . . . . . 76
56 Vote for the best player of a tournament game . . . . . . . . . . . . . . . . . . . . 77
57 Referee section on the GameDetailScreen . . . . . . . . . . . . . . . . . . . . . . 78
58 Game invite referee page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
59 Referee invited to a game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
60 New search screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
61 New referee list and filter pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
62 New team list screen for referees . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
63 Referee rating dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
64 Gamification alert dialog when rating a referee . . . . . . . . . . . . . . . . . . . 85
65 Referee in list of game participants . . . . . . . . . . . . . . . . . . . . . . . . . . 86
66 High-level diagram of final features . . . . . . . . . . . . . . . . . . . . . . . . . . 87
67 Backend check to a user trying to rate himself . . . . . . . . . . . . . . . . . . . . 90
68 Backend check to player unaccepted grades . . . . . . . . . . . . . . . . . . . . . 90
69 Backend check to team unaccepted grades . . . . . . . . . . . . . . . . . . . . . . 92
70 Testing reading an unread chat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
71 Consulting one’s own profile page with one’s other account type . . . . . . . . . . 98
72 Checking validity of referee profile edit form . . . . . . . . . . . . . . . . . . . . . 99

List of Tables

1 Main defects in the original application . . . . . . . . . . . . . . . . . . . . . . . . 28
2 EC construction for edit game functionality . . . . . . . . . . . . . . . . . . . . . 95

University of Liège -104- Academic year 2021-2022



Bibliography

Bibliography

[1] edvard_munch. Django migration error: you cannot alter to or from M2M fields, or add or
remove through= on M2M fields. Stack Overflow. Oct. 2019. url: https://stackoverflow.
com/questions/26927705/django-migration-error-you-cannot-alter-to-or-from-
m2m-fields-or-add-or-remove.

[2] B. Donnet. Lecture: PROJ0010-1: Software project engineering and management: Software
engineering: Testing. Université de Liège. 2020.

[3] dash-overflow. provider. Flutter. Dec. 2021. url: https://pub.dev/packages/provider.

[4] Sarbagya Dhaubanjar. flutter_rating_bar. Flutter. Feb. 2021. url: https://pub.dev/
packages/flutter_rating_bar.

[5] Flutter. shared_preferences. Flutter. Mar. 2021. url: https : / / pub . dev / packages /
shared_preferences.

[6] Polina C. Gradual null safety migration for large Dart projects. Medium. Mar. 2022. url:
https://medium.com/dartlang/gradual-null-safety-migration-for-large-dart-
projects-85acb10b64a9.

[7] Flutter. flutter_lints. Flutter. Apr. 2022. url: https://pub.dev/packages/flutter_
lints.

[8] Postman. Authorizing requests. Tech. rep. May 2022. url: https://learning.postman.
com/docs/sending-requests/authorization/#api-key.

[9] Adeps’ web page. Adeps. url: https://www.sport-adeps.be/.

[10] BLoC design pattern. Bloc Community. url: https://bloclibrary.dev/#/.

[11] Dart. Migrating to null safety. Tech. rep. url: https : / / dart . dev / null - safety /
migration-guide.

[12] Dart. Sound null safety. Tech. rep. url: https://dart.dev/null-safety.

[13] Dart. Supported lint rules. url: https://dart-lang.github.io/linter/lints/.

[14] Dart programming language. Dart. url: https://dart.dev/.

[15] Decathlon’s web page. Decathlon. url: https://www.decathlon.be/fr/.

[16] Django. Models. Tech. rep. url: https://docs.djangoproject.com/en/4.0/topics/db/
models/.

[17] Django. Unsupported previous releases. Tech. rep. url: https://www.djangoproject.
com/download/.

[18] Django REST framework’s web page. Django REST framework. url: https : / / www .
django-rest-framework.org/.

[19] Django’s web page. Django. url: https://www.djangoproject.com/.

[20] Docker. Docker overview. Tech. rep. url: https://docs.docker.com/get- started/
overview/.

[21] Docker. Use containers to Build, Share and Run your applications. url: https://www.
docker.com/resources/what-container/.

[22] Docker’ web page. Docker. url: https://www.docker.com/.

[23] Flutter. Differentiate between ephemeral state and app state. Tech. rep. url: https://
docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app.

[24] Flutter. Internationalizing Flutter apps. Tech. rep. url: https://docs.flutter.dev/
development/accessibility-and-localization/internationalization.

University of Liège -105- Academic year 2021-2022

https://stackoverflow.com/questions/26927705/django-migration-error-you-cannot-alter-to-or-from-m2m-fields-or-add-or-remove
https://stackoverflow.com/questions/26927705/django-migration-error-you-cannot-alter-to-or-from-m2m-fields-or-add-or-remove
https://stackoverflow.com/questions/26927705/django-migration-error-you-cannot-alter-to-or-from-m2m-fields-or-add-or-remove
https://pub.dev/packages/provider
https://pub.dev/packages/flutter_rating_bar
https://pub.dev/packages/flutter_rating_bar
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://medium.com/dartlang/gradual-null-safety-migration-for-large-dart-projects-85acb10b64a9
https://medium.com/dartlang/gradual-null-safety-migration-for-large-dart-projects-85acb10b64a9
https://pub.dev/packages/flutter_lints
https://pub.dev/packages/flutter_lints
https://learning.postman.com/docs/sending-requests/authorization/#api-key
https://learning.postman.com/docs/sending-requests/authorization/#api-key
https://www.sport-adeps.be/
https://bloclibrary.dev/#/
https://dart.dev/null-safety/migration-guide
https://dart.dev/null-safety/migration-guide
https://dart.dev/null-safety
https://dart-lang.github.io/linter/lints/
https://dart.dev/
https://www.decathlon.be/fr/
https://docs.djangoproject.com/en/4.0/topics/db/models/
https://docs.djangoproject.com/en/4.0/topics/db/models/
https://www.djangoproject.com/download/
https://www.djangoproject.com/download/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://www.djangoproject.com/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.docker.com/
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://docs.flutter.dev/development/accessibility-and-localization/internationalization
https://docs.flutter.dev/development/accessibility-and-localization/internationalization


Bibliography

[25] Flutter. Navigate with named routes. Tech. rep. url: https : / / docs . flutter . dev /
cookbook/navigation/named-routes.

[26] Flutter. Pass arguments to a named route. Tech. rep. url: https://docs.flutter.dev/
cookbook/navigation/navigate-with-arguments.

[27] Flutter’s web page. Flutter. url: https://flutter.dev/.

[28] Foot 24-7’s web page. Foot 24-7. url: https://foot24-7.com/.

[29] NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy. F5 NGINX. url: https:
//www.nginx.com/.

[30] Pagination. Django REST framework. url: https://www.django-rest-framework.org/
api-guide/pagination/.

[31] Postman API Platform. Postman. url: https://www.postman.com/.

[32] Python’s web page. Python. url: https://www.python.org/.

[33] Redis’ web page. Redis. url: https://redis.io/.

[34] Time zone support. Django. url: https://docs.djangoproject.com/en/4.0/topics/
i18n/timezones/.

University of Liège -106- Academic year 2021-2022

https://docs.flutter.dev/cookbook/navigation/named-routes
https://docs.flutter.dev/cookbook/navigation/named-routes
https://docs.flutter.dev/cookbook/navigation/navigate-with-arguments
https://docs.flutter.dev/cookbook/navigation/navigate-with-arguments
https://flutter.dev/
https://foot24-7.com/
https://www.nginx.com/
https://www.nginx.com/
https://www.django-rest-framework.org/api-guide/pagination/
https://www.django-rest-framework.org/api-guide/pagination/
https://www.postman.com/
https://www.python.org/
https://redis.io/
https://docs.djangoproject.com/en/4.0/topics/i18n/timezones/
https://docs.djangoproject.com/en/4.0/topics/i18n/timezones/


A. User feedback on the Foot 24-7 mobile application

Appendix

A User feedback on the Foot 24-7 mobile application

Here are the details of the answers provided by the users of the Foot 24-7 mobile application to
the questionnaire described in section 4:

• What do you like about the Foot 24-7 mobile application ?

1. I like the gamification of the app as well as the user interface. The app is easy to use
thanks to its intuitiveness.

2. L’accessibilité aux infos de match.

3. The concept of bringing together people that want to play football. The idea of
creating a team "profile" in which you can add player. The fact that it is an easy way
to check the schedule and the place of a game.

4. There is all the news needed about the competition we play in.

5. Pouvoir trouver et se faire de nouveaux partenaires de football grâce à l’application.

6. Je trouve le concept de l’application assez innovant et créatif. J’aime aussi le fait que
l’on puisse gagner des cadeaux via l’application.

7. Bon concept utile et pratique.

8. I like the fact that you can vote for the best player of the game or predict the score
of a game in order to earn pannas and buy products.

9. The centralisation of information for university tournaments.

• What don’t you like about the Foot 24-7 mobile application ?

1. According to me, there would not be any con to the application, if all the features
implemented worked fine. However, this is not case. . . So, I don’t like the navigation
between pages and inner navigation in the different pages (scrolling, etc). In practice,
the chat system is not useful as the notification mechanism does not alert the user
when a message is received.

2. Les bugs.

3. The way you have to connect to it. The interface which is not always intuitive. The
organisation of the the teams and the fact that it is not really easy to contact a team.

4. We have to go in the app to send a message. It could have an interface via the "volet
de navigation" of our smartphone for an easier use.

5. Le fait qu’il n’y ait pas de notification pour un nouveau message. L’interface n’est
pas toujours très intuitive.

6. L’application contient certains bugs et l’organisation en équipes via l’application n’est
pas toujours évidente.

7. L’application n’est pas toujours simple à comprendre et présente quelques bugs.

8. It is not really easy to reliably organize of football game via the application.

9. Bugs in the application, lack of intuitiveness.

University of Liège -107- Academic year 2021-2022



A. User feedback on the Foot 24-7 mobile application

• What are your suggestions for improving the Foot 24-7 mobile application ? What new
features would you like to see in the app ?

1. I don’t have any brand new idea to add to the concept. However, I suggest to solve
all the minor and greater bugs (stated above or others that are present in the app) to
drastically improve the user experience of the application.

2. Résoudre les bugs/défauts, rendre l’interface un poil plus simple a utiliser.

3. Improving the interface and make something more intuitive, close to some app that
we use everyday. Give the ability to spot game pitch near to your location when you
want to organise a game. Give the ability to organise polls in private conversation
with the members of your team to organise a game (choose the date, the time...) for
example.

4. As said in the previous question. It could have also a GPS that shows the way to
the field from where we are. Sometimes the game is in a place we do not know and
we have to use google maps to find the place. It could be easier if it was already
implemented in the app.

5. Ajouter des notifications de nouveaux messages et rendre l’interface plus intuitive.

6. Il faudrait résoudre les bugs de l’application. Une bonne idée serait aussi d’offrir
encore plus de possibilités de cadeaux selon les demandes des utilisateurs.

7. Il faudrait rendre l’application plus propre et résoudre les petits problèmes existant
pour améliorer l’expérience a l’utilisateur.

8. Clarify and improve the UI of the application. Develop the possibility of earning
pannas to buy products.

9. Solve the existing bugs.

University of Liège -108- Academic year 2021-2022



B. Edit game use case - Test cases

B Edit game use case - Test cases

To understand the invalidity of the dates and times in the following tests, it is important to note
that these tests were carried out on 20/04/2022 at 15:00. Likewise, to understand the invalidity
of the number of participants, it is important to realise that the edited game considered in the
following tests already contains 9 participants.

Test case 1 2 3

EC used 1), 3), 5), 8), 11),
14), 16)

2), 3), 5), 8), 11),
14), 16)

1), 4), 5), 8), 11),
14), 16)

Date 20/04/2022 19/04/2022 20/04/2022
Time 20:00 20:00 14:00
Price 0 0 0
Participants 10 10 10
Duration (min) 60 60 60
Public True True True
_officialStadium True True True
Initial stadium Official Official Official
Official stadium Empty Empty Empty
Custom stadium Empty Empty Empty

Test case 4 5 6

EC used 1), 3), 6), 8), 11),
14), 16)

1), 3), 7), 8), 11),
14), 16)

1), 3), 5), 9), 11),
14), 16)

Date 20/04/2022 20/04/2022 20/04/2022
Time 20:00 20:00 20:00
Price .- -2 0
Participants 10 10 10.5
Duration (min) 60 60 60
Public True True True
_officialStadium True True True
Initial stadium Official Official Official
Official stadium Empty Empty Empty
Custom stadium Empty Empty Empty

Test case 7 8 9

EC used 1), 3), 5), 10), 11),
14), 16)

1), 3), 5), 8), 12),
14), 16)

1), 3), 5), 8), 13),
14), 16)

Date 20/04/2022 20/04/2022 20/04/2022
Time 20:00 20:00 20:00
Price 0 0 0
Participants 8 10 10
Duration (min) 60 .- -10
Public True True True
_officialStadium True True True
Initial stadium Official Official Official
Official stadium Empty Empty Empty
Custom stadium Empty Empty Empty

University of Liège -109- Academic year 2021-2022



B. Edit game use case - Test cases

Test case 10 11
EC used 1), 3), 5), 8), 11), 15), 16) 1), 3), 5), 8), 11), 14), 17)
Date 20/04/2022 20/04/2022
Time 20:00 20:00
Price 0 0
Participants 10 10
Duration (min) 60 60
Public True True
_officialStadium True False
Initial stadium Custom Official
Official stadium Empty Empty
Custom stadium Empty No address

University of Liège -110- Academic year 2021-2022



C. Acceptance sheet

C Acceptance sheet

13th May 2022

Project Client Acceptance Sheet

To the best of my knowledge, information, and belief, and on the basis of my

observations and inspections, the work carried out by the intern Mr Cédric Meyers as

part of his Master's thesis at the University of Liège concerning the development of

the Foot 24-7 mobile application meets my expectations.

Here is the list of completed items:

● Debugging of the original application.

● Addition of a player rating system.

● Addition of a team rating system.

● Addition of the possibility to create a game by specifying teams rather than

players.

● Addition of an access to a user's personal teams.

● Redesign of the whole invitation system.

● Addition of the possibility to edit a created game.

● Addition of notifications in the bottom navigation bar of the application.

● Addition of a brand new access dedicated to referees on the application.

By signing this document, I acknowledge that all project deliverables listed above

comply with the project specifications and requirements.

Signature of the industrial supervisor (Mr Rayan Kassir)

University of Liège -111- Academic year 2021-2022


