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Abstract

In this work, we study hypernetworks as meta-models, i.e. models producing
models. We first review the literature on hypernetworks by addressing its termi-
nology issues and exploring various applications. We also propose a typology of
hypernetworks. We then present a new approach for building complete hyper-
networks via sparse models that solves the scalability problem of hypernetworks.
We analyze different hyperparameter combinations for sparse hypernetworks to
show the effect of the connectivity types proposed. Their performances are
compared with the current solution, chunked hypernetworks, on multitasking
computer vision benchmarks and we show that they can match their perfor-
mance, even though chunked hypernetworks are slightly ahead on more complex
problems. Finally, we show that linear sparse hypernetwork generally outper-
forms non-linear sparse hypernetworks and chunked hypernetworks for inferring
a new target model for a new task with a pretrained multitasking hypernetwork,
especially for new tasks that are radically different from the pretraining tasks.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Context

There has been interest in building more dynamic deep learning models in re-
cent years. The attention mechanism, which computes parameters dynamically
based on the input, allows to reach state-of-the-art results in natural language
understanding (Vaswani et al. [2017b]) and computer vision (Dosovitskiy et al.
[2020]). Researchers are trying to build more multitasking capable models with
the aim of producing less narrow artificial intelligence.

In deep learning, hypernetworks represent neural networks that output the
parameters of another neural network. Classical deep learning generally aims
to learn a function from x to y with a differentiable model M s.t. ŷ =M(x; θ)
parameterized by θ. Similarly, the parameters θ of this target model can be
predicted conditioned on some input z with another neural network H st. θ =
H(z; ν) parameterized by ν, which is called a hypernetwork. They are naturally
fitted for building task- or context-dependent models. A symbolic illustration
of a hypernetwork is given in Figure 1.1.

1.1.2 Problem statement

Hypernetworks provide a convenient way to produce dynamic or conditional
neural network parameters. They are typically used at the level of a layer or for
neural networks that have a small number of parameters. For example, a hyper-
network H could be taught to output the parameters θl of the layer l of another
neural network M. The input of such hypernetwork could be the vector em-
bedding of a task, which would help to specializeM for the corresponding task,
or the previous feature maps of the layer preceding l, which would dynamically
adapt θl to help M make better predictions.

Instead of predicting only part of the model M parameters, one could di-
rectly predict all the parameters θ of the network M, which is the focus of this
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Target model

Hypernetwork

Figure 1.1: Symbolic representation of a hypernetwork producing the parame-
ters of a target model.

work. We call such a hypernetwork that produces all the parameters of a target
model, a complete hypernetwork. Modern deep neural networks, however,
typically have a large number of parameters, and predicting this amount of pa-
rameters cannot be done trivially. Indeed, a hypernetwork could have a very
large output space. Using a classical architecture, such as a fully connected
MLP with hidden layers proportional to the size of the output space, would not
be scalable in terms of number of parameters. This is the scalability issue of
hypernetworks.

Current solutions involve reusing the same model multiple times and predict-
ing the target parameters by parts. The first solution, chunked hypernetworks,
slices the target model θ into equally sized chunks. A single model HC is then
reused multiple times to predict each part of the target model. Chunking pro-
duces an arbitrary slice of parameters; a single chunk may contain parameters
that come from completely different layers. Therefore, it is possible that chunk-
ing may not be the most efficient solution for predicting entire models, although
it obtains good results in practice. The second solution, layer-wise hypernet-
works, divides the parameter vector θ into layer parameters. Layer-wise hyper-
network may seem more warranted. However, they are limited by the varying
sizes of each layer of the target model, which may introduce some inefficiency.
Indeed, layer-wise hypernetworks have to deal with layers of different sizes, con-
trary to chunking. There are 2 solutions. On the one hand, one could use a
hypernetwork that is able to produce enough parameters for the layer that has
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the largest number of parameters. Then, to predict the parameters of smaller
layers, one can just ignore part of the actual output of the hypernetwork and
keep only as many parameters as needed for the current layer. With this tech-
nique, some outputs are uselessly produced, which introduces some inefficiency.
On the other hand, if the target network has a limited number of different sizes
for its layers, then one can learn a hypernetwork for each size. The downside
of this technique is that it reduces the sharing of information between the size-
specific hypernets. In any case, they are still limited by the size of the largest
layer, which may be a problem if this size is already so large that it poses a
scalability issue. One cannot build layer-wise hypernetworks without knowing
the sizes of the different layers and in particular the size of the biggest layer
in terms of the number of parameters. They are also a very local version of
hypernetworks, as they can be applied locally to a single layer independently of
the rest of the target model.

1.2 Project statement and contributions

The current method of chunked hypernetworks allows one to build scalable
hypernetworks without being limited by the maximal size of a particular layer.
However, the arbitrary slicing of the parameters seems unsatisfactory. In this
work, we propose a new global sparse architecture for hypernetworks that avoids
sharing the same model for different parts of a target network and does not
need to slice it arbitrarily. This architecture is essentially an extremely sparse
expanding MLP. It has a scalable number of parameters and can predict very
large target models with very large layers. We define this sparse architecture
by specifying its sparse connectivity pattern, initialization, and training.

We evaluate different hyperparamter combinations for sparse hypernetwoks.
We compare sparse hypernetworks with the chunked one and separate experts
on multitasking computer vision benchmarks. We also compare its robustness
by predicting target networks with different levels of sparsity. We show that,
even though sparse hypernetworks can match chunked ones on some problems,
chunked hypernetworks perform slightly better on more complex problems.

In addition, we evaluated the ability of a trained multitasking hypernetwork
to infer new tasks and show that the linear sparse hypernetworks can outperform
chunked hypernetworks in this domain.

Finally, as a preamble to the work, we propose a review of hypernetworks in
the literature, as well as a typology of hypernetworks.

1.3 Organization of this document

Chapter 2 reviews the literature on hypernetworks. It tries to clarify its termi-
nology and gives a brief overview of its history. Some applications of hypernet-
works are reported.
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In Chapter 3, a formal definition of hypernetworks is given and a hypernet-
work typology is proposed.

Chapter 4 defines the sparse hypernetwork architecture. Some connectivity
patterns are proposed and analyzed in terms of the number of parameters of
the resulting hypernetworks. We describe the initialization and normalization
used, as well as the training of multitasking hypernetworks.

Chapter 5 discusses the experiments and their results. Different combina-
tions of hyperparameters of the proposed sparse hypernetwork are tested on a
benchmark. Then the sparse hypernetwork is compared to the chunked one and
individual experts over a few computer vision multitasking problems. There is
a study of the robustness of hypernetworks with respect to less overparameter-
ized target neural networks by predicting target models with varying levels of
sparsity. We also analyze the generalization properties of multitasking hyper-
networks. In this generalization study, the hypernetwork is first pretrained on
a set of tasks before trying to solve new tasks with this hypernetwork. The
inferred tasks are of different natures: they can be similar, completely different,
or a composition of the initial tasks.
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Chapter 2

Literature review

In this chapter, we review the literature on hypernetworks. We clarify hypernet-
works terminology and give a brief history of hypernetworks and their origins.
Then we review hypernetwork applications.

2.1 Hypernetworks

By Hypernetwork, we denote the concept of models producing models and its
variations in the field of machine learning. A parametric model H, the hy-
pernetwork, is used to produce the parameters of another model M, the main
or target model. Hypernetworks are typically implemented by neural network
models trained by gradient descent, because they are well suited for the task of
producing another model, which is generally unsupervised. A formal definition
is given in Chapter 3.

Hypernetworks are used in a wide variety of applications such as Bayesian
neural networks, ensemble methods, transfer learning, etc. Applications are
reviewed in 2.4. Although various applications have been tested, hypernetworks
remain vastly understudied.

Hypernetworks have reached state-of-the-art results [Knyazev et al., 2021;
von Oswald et al., 2020; Brock et al., 2018], yet big challenges remain. The scal-
ability of the hypernetworks is a big issue, considering the potentially gigantic
size of the output, i.e. the number of parameters of the target model.

2.2 Terminology

In 2016, Ha et al. introduced the concept of hypernetwork and defined it as a
“network generating the weights of another network”. In this work, we use this
term to refer to a model generating another model because it is currently the
unifying term in the literature used to denote this concept. It may be argued
that it is not the best name to designate this concept, metanetworks, hyper-
models, or naturally metamodels would have perhaps been more suitable. The
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concept is actually suffering from the fact that there is no unified terminology
to denote it. That is why we use the currently most widely used term in the
literature: hypernetworks (or hypernet in short).

In the subsequent literature [Ha et al., 2016], some works use hypernetworks
without directly referring to them. Other concepts have been used to refer
to some kind of hypernetwork, such as fast weights [von der Malsburg, 1994;
Srivastava et al., 2019; Hinton, 1987; Schmidhuber, 1992], dynamic networks [Jia
et al., 2016; Klein et al., 2015; Zhang et al., 2019], metanetworks [Munkhdalai
and Yu, 2017] and parameter prediction [Shakibi, 2014].

Dwaracherla et al. [2020] refer to hypernetworks as hypermodels and restricts
the use of hypernetworks to only neural network implementations, arguing that
single fully connected layers are not part of neural networks, but can be used
as hypermodel.

It has to be noted that weaker versions of hypernetworks are actually quite
common. Numerous modern deep learning architectures make use of auxiliary
models that act on a primary model [Perez et al., 2017; Karras et al., 2019]. In
general, modern architectures consist of high-level composition, which could be
interpreted as a way of dynamically computing some parameters of the model.
If many use hypernetwork-like architectures, few know about the concept.

2.3 History

Even though the term hypernetworks was coined in 2016 [Ha et al., 2016], it was
not the first time that the idea of generating dynamically parameters was used.
One of the first mentions of dynamically changing neural network connections
are known as fast weights. Mixture of expert models are also related to hyper-
networks as it dynamically selects models based on input. Some neuroevolution
methods can be seen as hypernets using evolutionary algorithms.

2.3.1 Fast weight

von der Malsburg [1994] and Feldman [1982] were among the first to discuss the
idea of dynamically changing connections in neural networks. von der Malsburg
[1994] indicates the possibility of modeling a dynamic connection wij from brain
cell i to cell j as a multiplication between a slow “classical” weight sij and a
dynamical connection aij that decays to zero over time: wij = sijaij . Hinton
[1987] studies an additive view: wij = sij + aij were sij and aij have different
learning rates and aij decays to zero by a factor h at each iteration. The idea is
that these dynamical models could improve performance by using a short-term
memory, the dynamical connection (fast weights), in addition to the long-term
memory modeled by classical connection (slow weights).

Schmidhuber [1992] introduced a method where a model computes the weight
changes of another main network in order to model a short term memory.
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2.3.2 Mixture of expert models

Jacobs et al. [1991] and Jordan and Jacobs [1994] were one of the first to study
mixture of expert models. In this type of architecture, expert models are dy-
namically selected based on input via a gating network. In the conventional
setting, considering the output oi of expert i, the final output of the network
is computed as

∑
i oipi with pi the weight of the contribution of expert i that

is dynamically computed based on input (pi are normalized s.t
∑
i pi = 1). To

some extent, mixture of expert models are linked to hypernetworks. First, when
a static network would only compute one contribution vector p, the Mixture of
Experts computes it dynamically based on input. Second, a simpler way of
dealing with the problem would be to train a large network to categorize the
data and predict the corresponding output. With Mixture of Expert, as with
hypernets, the work is factorized into smaller networks, one gating network for
categorizing data and other smaller expert models networks for predicting the
output. This is one of the key insights on why hypernets could be more efficient
thanks to hyperconditioning [Galanti and Wolf, 2020].

2.3.3 Hypernetworks

Before hypernetworks was coined, other works used parameter generator sub-
networks.

Ba et al. [2015] studied parameter prediction. They showed a correlation of
parameters in a typical neural network. They produced the weight matrix W
of a linear layer in MLP with a linear operation: W = UWα based on a lower
dimensional learnable matrix Wα. Bertinetto et al. [2016] propose to learn
feed-forward one shot learners and use a factorized representation of the weight
matrices in order to reduce the dimensionality of the output of the hypernet.

Jaderberg et al. [2015] proposed hypernetworks like architecture where the
input image is used to compute the parameters of a transformation of that
image. They called it spatial transformers.

Noh et al. [2015] introduced a hypernetwork without defining the concept
for visual question answering (VQA). The textual question is fed into a hyper-
network which predicts some weights of the primary network. They refer to to
this idea as “parameter prediction network” and used parameters hashing [Chen
et al., 2015] to reduce the size of the parameter matrix to output.

Others also introduced hypernetworks without defining the concept and giv-
ing it a name: Ba et al. [2015] predict MLP and convolutional networks for
image classification based on textual and image inputs. They use dimensional-
ity reduction techniques to reduce the number of parameters to predict.

Klein et al. [2015] and Jia et al. [2016] make use of dynamic filters computed
based on the input and applied later in the model. Riegler et al. [2015] also
predict the parameters of a submodule based on blur kernel input via an MLP
for image super-resolution.

Finally, in 2016, Ha et al. [2016] introduced the term hypernetworks. In
this paper, hypernetworks are presented as a versatile tool that can be used
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as a form of relaxed weight sharing for deep convolutional networks, as well
as a way of dynamically changing the parameters of recurrent neural networks.
In order to produce the parameters of a deep convolutional network with less
learnable parameters, they make use of weight sharing in the hypernet which
itself consists in a 2 layered linear network. For the RNN, they use an hypernet,
that is an RNN too and evolves in parallel.

2.4 Applications

2.4.1 Vision

Jia et al. [2016] showcase an architectural type of hypernetwork used for filtering
images. The input image is first fed into a hypernetwork predicting filters. These
filters are then used to produce the output image. The authors suggested that
their model could be used to pre-train networks for various other tasks, as it
learns some filters in an unsupervised way.

2.4.2 Functional representation

Klocek et al. [2019] propose to represent natural images as a function I : R2 →
[0, 1]3 which associates an RGB triplet (r, g, b) to each point coordinate (x, y).
Their method makes use of a hypernet H that takes as input an image and pro-
duces the parameters of the corresponding functions I implemented as an MLP.
One advantage of such a technique is that this representation is independent of
any number of pixels or sampling frequencies. This functional representation
can be sampled with any density of pixels or even nonuniformly, which could
be interesting if you only want to deal with some part of an image at a time.
They also successfully manage to make interpolation of images by simple linear
interpolation of the generated parameters of the corresponding images.

Littwin and Wolf [2019] approach 3D shape reconstruction by representing
3D objects as a function I : R3 → [0, 1] which associates an score of presence
in the object to each point coordinate (x, y, z). The hypernet takes as input a
2D image and generates the parameters of I that represent the corresponding
3D object. They also propose the interpolation of 3D objects via this method.
Their method can be compared to another parallel work, which does not use hy-
pernetworks [Mescheder et al., 2019], where all inputs (both image and position)
are concatenated and fed into a single network. Lior Wolf [2020] argues that
this method can be less efficient than hypernetworks, which may be due to the
fact that hypernetwork conditioning is more suited than classical conditioning
where the inputs and the condition are concatenated [Galanti and Wolf, 2020].

Spurek et al. [2020a,b, 2021]; Kostiuk et al. [2021] also study the functional
representation of 3D objects. HyperCloud [Spurek et al., 2020a] proposes 2
methods for representing 3D objects: 1) as a transformation of a uniform ball
to the actual object in order to generate point clouds, 2) as a transformation
of a 3D sphere to the surface of the object in order to generate surface mesh.
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In these methods, the hypernet takes as inputs a point cloud and produces
the parameters of the corresponding MLP representing the object. HyperFlow
[Spurek et al., 2020b] works in a similar way but uses CNF-based hypernet auto-
encoder to produce the parameters of CNF representation of images (instead of
MLP based), which yields better results. HyperPocket [Spurek et al., 2021] uses
a similar method in order to reconstruct the full point cloud of an object from
which we only have parts. Finally, HyperColor [Kostiuk et al., 2021] directly
outputs colored 3D objects for video game applications.

2.4.3 Distribution on models

Hypernetworks produce the parameters of other neural networks. Therefore,
they are naturally suited to represent implicit distribution over a model’s pa-
rameters. This advantage can, for example, be used in a Bayesian setting or for
building ensembles of models.

Bayesian neural networks

Krueger et al. [2018] use hypernetworks for bayesian inference. The main model
parameters are produced via an invertible generator network from a Gaussian
distribution. The hypernetwork is used as a generator of models and models a
distribution over models. It is trained in a variational inference scheme. The
main difficulty of these Bayesian techniques is to make the hypernetwork learn
a good distribution on models that produces diverse and performant models. It
should avoid collapsing into producing only the best model. In this work, the
hypernet is limited to producing only scaling factors of the parameters. They
experiment their method on regularization, active learning and anomaly/adver-
sarial example detection. Similarly, Karaletsos et al. [2018] study probabilistic
meta-representations of neural networks. Sheikh et al. [2018] use hypernet gen-
erators to sample competitive neural networks. Pawlowski et al. [2018] also im-
plement implicit Bayesian neural networks via hypernets. The main advantage
of hypernet for Bayesian neural networks is that they allow to represent a wide
range of distributions. They typically are more scalable than other Bayesian
methods for neural networks. Henning et al. [2018] and Ratzlaff and Fuxin
[2020] learn generators of neural networks via adversarial training. Bachman
et al. [2018]; Deutsch et al. [2019]; Karaletsos and Bui [2020]; Xu et al. [2021]
also analyse modeling distribution of neural networks.

Ensembles

Ukai et al. [2019] suggest the use of hypernets to generate ensemble models.
They study the difference between uniform and normal distribution on the la-
tent space generating weights of the target network. They observe that uniform
distribution yields better standalone models while normal yields more diverse
models suitable for ensembling. Kobayashi et al. [2021] also go into that direc-
tion by noting that deep ensembles do not necessarily perform better with the
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top-performing networks but rather with simpler, less accurate models. Hyper-
networks seems appropriate for ensemble methods as we can sample as many
networks as we want by training a single hypernet. Yet, Ukai et al. [2019]
do not make the strong conclusion that hypernetwork-based ensembling clearly
outperforms other ensembling methods or that hypernetworks generate mod-
els outperforming normal ones. They noted that hypernetwork-based methods
can simply match other methods in terms of accuracy. In addition to ensemble
methods, they also compare all-in-one and layer-wise hypernetworks as well as
varying latent input distributions.

Dwaracherla et al. [2020] show that linear hypernetworks ensembles can be
more computationally efficient than other ensembling methods.

Wenzel et al. [2021] investigate hyperparameters ensembles based on hyper-
networks where parameters are conditioned on hyperparameters themselves.

von Oswald et al. [2021] learn late-phase weights via hypernetworks and
apply model averaging to create ensembles.

2.4.4 Multitasking and Continual learning

Because they can produce other models, hypernetworks are naturally used in a
multitasking setting. A single hypernetwork can produce a model for each task.

Multitasking

Tay et al. [2020] tackle the problem of multitasking for natural language un-
derstanding tasks. They proposed a new HyperGrid transformer that handles
these tasks as a single model as opposed to multimodels which require a lot
more parameters. The hypernet, a single layer feed-forward network, outputs
scaling factors of the weights of the main net. The weight matrices of the main
net are produced via the outer product of 2 vectors, which would typically be
a global vector and an input-based vector. It can also be generated only on
input-based vectors or with a task-dependent vector. The matrix is then ex-
panded into a bigger matrix forming a grid. Their model performance matches
other state-of-the-art methods like T5 [Raffel et al., 2020]. Multiple hypernet
architectures are compared, notably weight gating vs output gating, for which
they conclude that weight gating performs better. In weight gating, the weights
of the linear transformations are directly gated, while in output gating, it is
simply the outputs of the linear transformations which are gated (after ReLU
activation). Mahabadi et al. [2021] also propose a parameter efficient technique
where hypernetworks are shared between layers of a transformer. Notably, these
hypernetworks are fed with layers id embeddings and position embeddings of
the adapter in the layer additionally to the task embeddings.

Navon et al. [2021] and Lin et al. [2021], two concurrent works, applied
hypernetworks to multi-objective optimization. For a fixed learning capacity,
the model typically has to find a tradeoff between multiple objectives. Here,
a hypernet is used to produce nets based on a preference vector for the objec-
tives. Once it has been trained, one can just find the optimal model for a given
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preference vector by using the hypernet.
Ruchte and Grabocka [2021], on the contrary, argue that a classical concate-

nation of input and preference vectors is more efficient.

Continual learning

Continual learning aims to reduce catastrophic forgetting, which occurs while
neural networks learn tasks sequentially and forget how to perform on previously
learned tasks.

von Oswald et al. [2020] propose task-conditioned hypernetwork for con-
tinual learning. A chunked hypernetwork architecture is used in order to re-
duce the number of parameters and output regularization is used to further
decrease forgetting. Ehret et al. [2021] study this method in the context of
sequential data with recurrent neural networks. They noted that this regu-
larization method can outperform weight-importance method. Huang et al.
[2021] applied task-conditioned hypernetworks in continual reinforcement learn-
ing. While their hypernetwork method matched the baselines, they noted that
improvements were needed regarding the huge size of the hypernetwork. Hen-
ning et al. [2021] improve on von Oswald et al. [2020] with a probabilistic ex-
tension of task-conditioned hypernetworks (termed “posterior meta-replay”) in
which task-specific posteriors over target models are learned.

Few-shot learning, pre-training and transfer learning

Mahabadi et al. [2021] implement a multitasking transformer via hypernetworks
instead of task-specific adapter modules, which typically do not share informa-
tion. They tested their model on NLP few-shot domain transfer and it surpassed
the adapter baseline in most cases.

Rusu et al. [2019] propose an interesting meta-learning scheme where datasets
corresponding to a task are encoded into a latent vector z and then decoded
into a model specific to the task. In this method, the meta-learning occurs in
the lower dimensional space z instead of the high dimensional space of the pa-
rameters as in Finn et al. [2017]. Lamb et al. [2020] also encode a dataset and
its metadata into a latent variable z that is decoded into a model corresponding
to the data. The aim is to adapt the model to new features in the dataset.
They show that they can produce good initialization parameters conditioned on
a context consisting of observations with the new features and the associated
metadata. Note that these methods, which encode a dataset, require an encoder
that can handle a variable-length input.

2.4.5 Pruning and compression

Hypernetworks can also be used to produce pruned models or compress them.
Liu et al. [2019b] propose a PruningNet to produce the weights of a pruned
network. The PruningNet is trained to output weights from randomly sampled
encoding vectors which correspond to different pruned target structures. Once
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it is trained, architectures can be sampled and evaluated. In particular, an
evolutionary algorithm is applied to find the encoding vectors of the best pruned
architecture.

Li et al. [2020] introduced DHP, a differentiable meta-pruning technique.
Each layer of the target architecture has an associated latent vector z represen-
tation from which an hypernet generates the corresponding weights. Thanks to
the hypernet architecture, sparse latent vectors generate a sparse weight ma-
trix. Therefore, they apply a L1 regularization on the latent vector to sparsify
the target architecture. They use SGD to optimize the hypernet but rely on
proximal gradient method to find the best latent vectors.

2.5 Conclusion

In this chapter, we reviewed hypernetworks. We began by discussing the prob-
lem of terminology, pointing out that “hypernetworks” is the term most often
used to refer to neural networks producing other neural networks.

We briefly introduced a history of hypernetworks and their predecessors
starting from the idea of fast weight that adapts model parameters, going
through related concepts like Mixture of experts which can dynamically select
models based on the input and finally the actual implementation of neural net-
works producing the parameters of other neural networks learned via gradient
descent.

We then reviewed a few applications of hypernetworks. They can be used
as a way a representing a 3d object or an image as functions in a functional
representation setting. They can also be used in a Bayesian framework to model
distribution over models and to make ensemble models. They are very useful for
multitasking applications, especially in a continual learning, few-shot learning,
or transfer learning setting. They can also be used to predict neural networks
with desired properties like sparsity.

Hypernetworks can be used in a variety of settings. Their can bring many in-
teresting properties that we need in deep learning, like dynamic models, context-
dependent models, and distribution over models. They are however not yet per-
fect meta-models. Research still needs to be done in that direction and there
are certainly other innovative ways of using them that remain to be explored.
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Chapter 3

Hypernetwork typology

The hypernetwork literature has developed rapidly in the previous years, leading
to a variety of models and methods. In this section, we start by giving a formal
definition of hypernetworks. Then, we propose a typology of hypernetwork
models. First, we differentiate them according to the nature of their input.
Then we analyze them with respect to their outputs: Do they produce the entire
target network or only a part of it, and how to design a high-level architecture
accordingly?

3.1 Formal Definition

In deep learning, hypernetworks denote neural networks that produce the pa-
rameters of another neural network. Let us first define a function M (a neural
network), differentiable with respect to its parameters θ ∈ Rn, with input x and
output y:

y =M(x; θ)

Then we can define a hypernetwork H, differentiable model with input z ∈
Rd, that produces the parameters θ of the model M:

θ = H(z; ν),

where ν are the parameters of the hypernetwork. We call M the target model
or the main model of H. An example is shown in Figure 3.1.

The target model M is equipped with a loss function LM(θ). In order to
train the hypernetwork H to produce parameters for M, which is an unsuper-
vised task, we can rely on this loss function. We can optimize the loss function
LM(θ) by gradient descent on its parameters ν for a given z, which is possible
because bothM and H are differentiable models. One can also learn z together
with the hypernetwork, for example, in the case of a task-conditioned hyper-
network. This leads to the simplest loss function LH(z, ν) that can be used to
train a hypernetwork:
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z

Figure 3.1: A hypernetwork H parametrized by ν producing the parameters θ
of a target model M modeling y =M(x, θ)

LH(z, ν) = LM(θ = H(z, ν)). (3.1)

Note that when a hypernetwork is trained to produce the parameters θ of
a target network, these parameters θ are no longer trainable parameters, but
simple computed values.

3.2 Input wise

Hypernetworks can be differentiated by the nature of their input z. There
are many types of input for hypernetworks. Here, we focus on 3 categories:
input hypernetwork, task-based hypernetwork, and noise-based hypernetwork.
An overview is given in Figure 3.2. These types of input are presented sepa-
rately, but can be combined together by mixing them before feeding them to
the hypernetwork.

xt yt

zt

x y

P(Z)

x y

(a) input-based (b) task-based (c) noise-based

Figure 3.2: Different types of inputs for hypernetworks
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3.2.1 Input of interest

A hypernetwork can simply use the input x of the main network as its own
input. This input x may need to be encoded before using it as input for the
hypernetwork. Sometimes, the input of a neural network naturally decomposes
into a main part and a conditioning part. In this case, it might be useful to
use an input-based hypernet. At the level of a single layer, the input-based
hypernet corresponds to computing some of the layer parameters based on the
current incoming feature maps.

Input-based hypernets allow to dynamically compute parameters specific for
the current sample. This level of dynamism can greatly improve the performance
of the model. However, they come with a cost. Indeed, a set of parameters has to
be computed for every single example with a priori no hope of sharing or reusing
these parameters with other examples. This is particularly costly at training
time, where each element in a batch would need its corresponding parameters,
although the cost depends on the actual number of predicted parameters.

3.2.2 Task

Another natural input for the hypernetwork is a task or a context embedding z ∈
Rd. In this case, hypernetworks are trained on a set of tasks. The hypernetwork
parameters are shared for each task, which only differ by the input z. These
task-conditioned hypernetworks are less costly than the input-based one during
training, since one can only predict one set of target parameters per batch if the
batch contains only elements of the corresponding task. These tasks typically
correspond to predefined tasks that are given at test time.

A task-conditioned hypernetwork with a set of tasks {0, 1, 2, ..., T − 1}, a
distribution over tasks p(τ), and the corresponding loss functions LtM, can be
trained with the following loss function by taking the expected loss function
over the tasks.

LH(ν, z0,...,T−1) = Et∼p(τ)
{
LtM(θ = H(zt, ν))

}
(3.2)

3.2.3 Distribution

Instead of using an input with a predefined meaning, one could sample z from
a controlled distribution p(Z). This kind of input can be used to create an
ensemble model. Once the hypernet has been trained, an arbitrary number of
models can be sampled from it. This kind of model produces an implicit and
nontrivial distribution over the main model parameters. This can be used to
quantify the uncertainty of the main model.

A noise-based hypernetwork can be trained with the following loss function.

LH(ν) = Ez∼p(Z) {LM(θ = H(z, ν))} (3.3)
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3.3 Output wise

Hypernetworks produce parameters of deep neural networks, which may have
a large number of parameters. Hypernetworks may be complete, producing
the entire target model, or partial, producing only some parts of the target
model. The choice of producing all parameters or only a part of them is up
to the designer of the model. It may be inefficient or unwise to produce all
the parameters of a neural network, depending on the application and its goal.
Hypernetworks typically adds a computational overhead because they gener-
ally need to produce the parameters before applying them in the target neural
network.

3.3.1 Layer only hypernetwork

Many hypernetworks are very local and produce only dynamic parameters for
a single layer. In this type of hypernetwork, the hypernetwork itself generally
acts in a compressive regime, having fewer parameters or the same number of
parameters as the target layer. Examples of this are rescaling hypernetwork that
simply learns a scaling vector for a target matrix. This vector rescales every
column/row of the target matrix [Ha et al., 2016; Tay et al., 2020]. Widely
used attention layers [Vaswani et al., 2017a] can be seen as hypernetworks that
dynamically produce the present layer parameters based on the input. Dynamic
convolutional layers [Klein et al., 2015] are also an example in which some
filters of a given layer are produced based on the current feature maps with a
hyperconvolutional module.

3.3.2 Complete hypernetwork

Another way to use hypernetworks is to produce the entire target model. This
may be used if the target model needs to be entirely dependent on some variable
z or if there is no a priori shareable part in the target model. Producing the
entire model makes the z variable more interpretable as a model indexer and
the hypernetwork as a meta model. In this section, we review four strategies to
build complete hypernetworks: a global strategy, two shared model strategies,
and a local strategy, which are summarized in Figure 3.3. The global strategy
is based on a single latent vector z, while the shared model strategies generally
use some vector embedding of the place where a shared model should predict
parameters.

There are different methods that one could use to produce θ, which are
explained below. The simplest is to use a single model with a single forward
pass to predict θ from z, for example, with an MLP. This is the global strategy.
However, using a single neural network to produce all the parameters of another
neural network at once is not necessarily trivial because of the size of the output
space required. The next two strategies, chunking and shared layer-wise, involve
splitting the parameter space and reusing the same model multiple times. The
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Figure 3.3: High level architectures for complete hypernetworks

last, a layer-wise strategy, builds different small hypernets for each of the layers.
We describe below these four strategies in details.

Global

The first strategy uses a fully connected MLP as the core of a hypernet. This
kind of model would be limited to small targets, as the number of parameters
of such hypernet would typically not be scalable. Indeed, an MLP with hidden
size proportional to the size of the output layer n would scale quadratically
with n, which is not feasible in practice. We call this strategy of producing
all parameters with a single nonshared model a global complete hypernetwork.
This strategy produces the entire target based on a single vector z and, a priori,
every part of the target model depends on every part of the vector z (or most
of it). We call this property a high global connectivity between the z vector
and the output parameters. This kind of model typically produces one large
vector that contains all target parameters. This work focuses on complete global
hypernetworks and proposes a sparse MLP as a solution to the scalability issue.
Other sparse solutions, such as deep deconvolutional networks, have not been
studied in this work and have not really been studied so far in the literature.
A priori, a deconvolutional network only seems less appropriate if there are
no optimal target parameters with the required spatial structure. However,
this remains to be examined further, as deconvolutional layers have very few
parameters compared to the fully connected equivalent, which is a nice feature
for hypernetworks.
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Figure 3.4: Illustration of a chunked hypernetwork HC producing the parame-
ters θ of the target model M

.

Chunking

Because the size of the output space is too large, why not directly reduce this size
by splitting the target parameters into chunks ? This is the idea of chunking
[Pawlowski et al., 2018; von Oswald et al., 2020; Ehret et al., 2021]. A chunked
hypernetwork splits the target parameters vector into C chunks of at most nθ

C
parameters, where nθ is the number of parameters of the target network. Then
a shared hypernetwork model Hc, which could be implemented by an MLP, is
used to produce each of the chunks based on a chunk embedding ec:

θc = HC(z, ec) ∀c ∈ {1, 2, ..., C},
θ = 〈θ1, θ2, ..., θC〉,

where θc is the predicted chunk of parameters, z is a global embedding, and ec
are chunk embedding vectors. 〈θ1, θ2, ..., θC〉 denotes the concatenation of the
θc vectors into a single vector. An illustration is shown in Figure 3.4.

The great advantage of chunked hypernetwork is that the output size can be
reduced arbitrarily low by increasing the number of chunks C. This removes the
scalability issue of hypernetworks. It can also be used in a compressive regime
where the number of parameters of the hypernet |Hc|+C×|ec| is lower than the
number of predicted parameters nθ. This means that the chunked hypernet can
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be compared to other non-hypernetwork models while keeping the same number
of trainable parameters.

However, a possible downside of chunked hypernetwork is that the target
model is fragmented arbitrarily. Therefore, some chunks may produce only
part of a layer, while others produce parameters for different layers (in the same
chunk). Reusing the same model to produce such a variety of chunks may require
a powerful hypernetwork with expressive enough chunk embeddings. Therefore,
a more general and arbitrary target model architecture could make the work of
a chunked hypernetwork more difficult. In practice, however, chunked hyper-
networks have proven to be very effective.

Shared layer-wise.

Instead of predicting arbitrary chunks as in the previous case, a shared layer-
wise involves a shared hypernetwork HL that is reused to produce the param-
eters of layers θl ∈ Rnl (th nl parameters of layer l in a network of L layers):

θl = s(HL(z, el), nl) ∀l,
θ = 〈θ1, θ2, ..., θL〉

where el ∈ Rp is a trainable layer embedding, z is a global embedding vector and
s(v, n) is a function that selects the n first elements of the vector v (s(v, n) =
(vi)1≤i≤n).

Since each layer of the target model may have a different number of param-
eters, the hypernetwork should be able to produce enough parameters for the
largest target layer. If the hypernetwork produces too many parameters for a
layer, the predicted parameter vector is sliced accordingly.

The advantage of this type of hypernetwork is that it allows to reuse a
hypernetwork for different layers instead of arbitrary chunks. In the particular
case of a hypergraph neural network ([Zhang et al., 2018; Knyazev et al., 2021]),
a shared node network can be used to produce each of the layer parameters. In
addition, it can be applied to any architecture, even at test time. Note that in
this case, the positional embedding el of the parameters position in the target
model are not required, the hypergraph network has information about the
position through the structure of the graph itself. This leads to an interesting
search for neural architectures, in which the parameters of a new architecture
can be predicted.

However, this type of hypernet is still limited by the size of the largest layer,
which may even be infeasible for fully connected models. The varying size of the
layers may require to use a more complex architecture where multiple shared
hypernetworks are used, one for each layer size or layer type.

Layer-wise

Instead of reusing a model to predict multiple layers, the layer-wise strategy
actually learns a small hypernetwork for each layer. This kind of hypernetwork is
very local, as each layer is adapted independently if nothing is shared. Examples
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of this are rescaling hypernetworks, where the parameters of a target network
are learned with rescaling factors. Typically, the parameters of a neural network
are matrices or other tensors. One can learn rescaling vectors that rescale the
column/row of the target parameters. The rescaling vectors are much smaller
than the target parameters and therefore only add a small overhead in terms
of the number of parameters. Any other technique used for predicting a single
layer can typically be applied to all layers to produce a ’complete’ hypernetwork,
such as attention or dynamic convolution.

3.4 Size

Hypernetworks may have different sizes (number of parameters) for a given
target model. In particular, a hypernet can be in a compressive regime if
it has fewer parameters than the target model. However, it should be noted
that even though a hypernetwork has more parameters than its target model,
it may still compress several target models into a single hypernetwork and the
corresponding embeddings.

3.5 Summary and conclusion

In this chapter, we give a formal definition of hypernetworks. We explain three
types of input for hypernetworks for dynamism, task-conditioning, and ran-
domization. These inputs of hypernetworks can be combined depending on the
application.

We differentiate hypernetworks based on their output. Hypernetworks can
produce only some parts of the parameters of a neural network or all of them
for complete hypernetworks. Four high-level architectures were reviewed that
can deal with the potentially large output space of complete hypernetworks.
We reviewed them from the more global to the more local methods: the global
hypernetworks, the chunked and shared layer-wise methods which reuse a model
at different locations, and the non-shared layer-wise method which uses multiple
small hypernetworks for each layer of the target model.
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Chapter 4

Sparse hypernetwork

4.1 Introduction

Hypernetworks are models that produce the parameters of another target model.
Typical deep learning models may easily have millions of parameters or more.
Hypernetworks need to be scalable in terms of the number of parameters and
computing time, so that it is feasible to produce a huge amount of parameters
for a deep learning model. Indeed, naive solutions to this problem may not
be scalable at all. For a simple linear layer with input dimension d and output
dimension n, the number of parameters of the target network would require d×n
parameters. This may seem reasonable, but we often need d to be sufficiently
large, as it represents the maximum intrinsic dimension of the space where the
target networks vary with respect to the latent space for a given hypernetwork.

A current solution for building scalable hypernetworks that does not require
knowing the maximum number of parameters of the target layers is known as
chunking. Chunked hypernetworks divide the output space into chunks. The
predicted parameters are merged into an n dimensional vector that is split into
C chunks of the same size d nC e

1. The hypernetwork consists of a single model
H that produces the d nC e parameters for a given chunk. The model is applied C
times to C chunk embeddings of dimension dc to produce the n parameters of
the target model. Chunked hypernetworks have been proven to be sufficiently
expressive to learn any target network (von Oswald et al. [2020]).

In this chapter, we propose a new architecture for building scalable hyper-
networks. This architecture takes the form of a sparse neural network with
hidden layers of exponentially growing size that rapidly reach the possibly large
size of output space required by a hypernetwork.

1Note that the last chunk may be truncated, the last values being ignored
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4.2 Sparse hypernetworks

In this chapter, we first describe the general idea of sparse neural networks for
hypernetworks. We then describe different ways of choosing connections and
analyze them in terms of the resulting number of parameters to show that they
are scalable. We then describe how to initialize these hypernetworks and how
to normalize their inputs and rescale their output to stabilize training. Finally,
we explain how we train task-conditioned sparse hypernetworks.

4.2.1 General idea

As noted before, classical fully connected layers from latent dimension d to
parameter space of size n do not scale at all. Sparse hypernetworks try to make
these architectures scalable in terms of number of parameters by making them
extremely sparse.

The sparse hypernetwork is essentially a sparsely connected MLP. We use
exponentially increasing hidden layer size in order to go from latent dimension
d to dimension n. This strategy allows to reach the possibly huge dimension n
quickly enough from a far smaller dimension d, avoiding too deep hypernetworks.
An illustration of the considered architecture is shown in Figure 4.1.

We have the following hidden layer sizes (with h0 the input size and hL the
output size).

h0 = d

hl =
⌊ n

bL−l

⌋
∀l ∈ [1, 2, ..., L]

hL = n, with L = blogb(n/d)c

In what follows, we will consider an expansion factor b of 2. However, this
number can be adapted depending on the case. With b = 2, the number of
neurons in the sparse hypernetworks will be (excluding inputs and neglecting

round-off errors):
∑L
l=1 hl ≈

∑L
l=1

n
2L−l = n(2L+1−2)

2L
≈ 2n. For each intermedi-

ary vector hl, we can define a connectivity factor cl. The factor cl is such that
on average a neuron in hl is connected to cl neurons from the previous layer.

If cl is known, the total number of parameters in the hypernetwork can be
estimated as follows.

nhnet ≈
L∑
l=1

cl × hl (4.1)

If this architecture was fully connected, then the number of parameters would
be in the order of n2 (Equation 4.7), which is not scalable to large target net-
works in practice.
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Figure 4.1: Illustration of a sparse hypernetwork. Three sparse layers transform
the 4-dimensional input z (blue) into 32 parameters (green). The hidden sizes
increase exponentially by a factor 2.

27



nhnet ≈
L∑
l=1

cl × hl (4.2)

=

L∑
l=1

hl−1 × hl (4.3)

≤
L∑
l=1

n

2L−l+1
× n

2L−l
(4.4)

=
n2

2× 22L

L∑
l=1

4l (4.5)

=
2n2

2× 4L
1− 4L+1

1− 4
(4.6)

≤ 2n2

3
(4.7)

4.2.2 Connectivity

As seen in Equation 4.1, the number of parameters of the hypernetwork depends
on cl. Below, three connectivity patterns are proposed with an approximation
of the number of parameters. The first one is the simplest, with a constant
number of connections per output neuron. Then we propose two improvements
that reduce the connectivity in higher dimensional layers and increase it in
lower dimensional ones : linearly and exponentially decreasing connectivity. We
compute below the number of parameters of these three connectivity patterns.
How the connections are distributed will be discussed in Section 4.2.3. Visual
examples of the connectivity patterns are shown in Figures 4.2 and 4.3.

With or without bias term

Sparse hypernetwork can be used with or without bias terms. For a sparse
hypernetwork, the number of parameters added by using bias terms is non-
negligible. It will add

∑L
l=1 hl ≈ 2n parameters for a target network of n

parameters.

Constant

A constant cl = c is used. Equation 4.1 then becomes:
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Figure 4.2: Illustration of the hidden neurons that are connected to a particular
output neuron in the last layers of a sparse hypernetworks. In (a) linearly
decreasing: the output neurons is connected to 1 previous neuron, which itself
is connected to 2 previous neurons, which are themselves connected to 3 previous
neurons and so on. In (b) constant: each output neurons is connected to the
same number of input neurons: 2. (c) exponentially decreasing: Starting
from the output neuron, there are first 1 connection, then 2 connections, then
4 connections an so on.
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nhnet =

L∑
l=1

c× hl (4.8)

≤
L∑
l=1

c× n

2L−l
(4.9)

=
cn

2L

L∑
l=1

2l =
cn(2L+1 − 2)

2L
≤ 2cn (4.10)

Linearly decreasing

In order to increase the connectivity in the lower-dimensional space and lower
it in the high-dimensional space, we can use linearly decreasing connectivity.
Here, we choose cl = L− l + 1. Equation 4.1 then becomes:

nhnet =

L∑
l=1

(L− l + 1)× hl (4.11)

≤
L∑
l=1

(L− l + 1)× n

2L−l
(4.12)

=
n

2L

[
(L+ 1)

L∑
l=1

2l −
L∑
l=1

l2l

]
≤ 4n (4.13)

The proof of 4.13 is given in Appendix A.1.

Exponentially decreasing

An alternative to linearly decreasing connectivity is an exponentially decreasing
one. Here, we choose cl = min(2L−l, hl−1), and the equation 4.1 becomes:

nhnet =

L∑
l=1

min(2L−l, hl−1)× hl (4.14)

nhnet ≤
L∑
l=1

2L−l × hl (4.15)

≤
L∑
l=1

2L−l × n

2L−l
(4.16)

= Ln = blog2(n/d)cn ≤ n log2(n) (4.17)
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Connectivity cl #params w/o bias #params w/ bias

Fully connected hl−1
8n2

3
8n2

3 + 2n
Constant c 2cn 2(c+ 1)n
Linearly decreasing L− l + 1 4n 6n
Exponentially decreasing min(2L−l, hl−1) n log2(n) n(log2(n) + 2)

Table 4.1: Different types of connectivity and upperbounds on the number of
parameters. The upper bounds on the number of parameters do not depent on
d the size of z. For comparison a single linear layer hypernetwork would require
d × n parameters without bias and (d + 1) × n with bias, which prevent from
using large d.

Summary

A summary of the upper bounds on the number of parameters can be found in
Table 4.1 and a visual example of these sparse hypernetworks is given in Figure
4.3.

4.2.3 Distribution of connections

The extremely sparse networks presented above have only a few connections
per neuron. The question of how to connect them arises naturally. Many
sparsification methods (Blalock et al. [2020]) start from fully connected layers
and try to remove connections. However, it is not really possible to represent
an extremely sparse expanding network in a dense manner. Indeed, it would
require O(n2) parameters (Equation 4.7), which is often prohibitive. Here, we
focus on randomization in order to choose the connections. The connections
will be generated according to a random process.

An interesting property of extremely sparse expanding networks is its global
connectivity. By global connectivity, we mean how many input values are con-
nected to each output neuron on average. If the global connectivity is maxi-
mal, every output neuron will depend on every input value. In a low global
connectivity, each output neuron will depend on a few input values, but will
be independent of the others. Figure 4.4 shows how the mean connectivity
progressively increases within sparse hypernetworks with different connectivity
patterns.

We start by presenting the simplest distribution of connections, the uniform
one. Then we propose a variation with random permutation. Then we present
two more local connectivity distributions that allow to control the connectivity:
the Gaussian distribution and the mixed one.

Uniform

The simplest way of choosing connections is to choose them uniformly at ran-
dom. For each output neuron oil, we draw cl input neurons (with replacement)
to connect it to. Note that by sampling the connections in this way, there will
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Figure 4.3: Example of actual sparse hypernetworks with constant (2 connec-
tions), linearly decreasing and exponentially decreasing connectivity. The input
z has dimension 2 and the output has a dimension 16.
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(a) Constant (b) Linearly decreasing

(c) Exponentially decreasing (d) Constant and normal distribution

Figure 4.4: Mean connectivity of the input neurons for each hidden layer of the
sparse hypernetwork with different configurations. The hypernetwork goes from
a latent size of 27 to an output of size 220 (≈ 1M) in 13 sparse linear layers. The
graph shows the percentage of hidden neurons an input neurons is connected to
in a given layer. The mixed pattern is repeated in a, b and c for comparison.

be approximately 1
ebcl

hl−1 neurons that are not chosen (A.2), which is approxi-
mately 13% for a base factor b = 2 and cl = 1. This will reduce the effective size
of the hidden layer hl. Furthermore, it will reduce the number of parameters as
if there were only cl(1− e−bcl) connections per neuron oil.

This method intuitively provides high connectivity between the input and
outputs. However, it does not allow to control the global connectivity. The only
way to reduce it would be to have a shorter network (higher b or lower d).

Random permutations

The uniform distribution may leave a proportion of input neurons without any
connections. Although each output neuron has the same number of connec-
tions, each input neuron may have a varying number of connections. Random
permutations aim to avoid this behavior by being more deterministic. This con-
nectivity pattern is equivalent to the uniform one without replacement. Suppose
that, at the hypernetwork layer l, we have a random permutation σ of the in-
dices in {0, 1, ..., cl × hl−1}. Then each output neuron oil has cl connections to
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{σ(i+ k) mod hl|k ∈ {0, 1, ..., cl}}. With this type of connectivity, each input

neuron oil is connected to (almost) exactly cl
hl+1

hl
connections, which is slightly

higher than for the uniform one. Therefore, the connections are more evenly
distributed with respect to the inputs.

Gaussian

Contrary to the previous method, the Gaussian connection provides a paramet-
ric way to choose connections. Intuitively, this method draws connections by
choosing input neurons according to a discretized Gaussian distribution centered
on the considered output neuron. More formally, we proceed as follows.

For a given output neuron oil, expansion factor b and number of connections

cl, we draw a value ĵ according to a Gaussian distribution N ( ib , σ
2). Then we

add a connection between oil and ojl with j = max(min(round(ĵ), hl−1), 0). An
illustration of the difference with the uniform distribution is shown in Figure
4.5.

Note that there can be collisions as for the previous method. These collisions
will reduce the number of parameters as they only count for one connection from
i to j.

This method is parameterized by σ. We always assume that σ is smaller than
d = h0 (typically σ ≤ h0

4 ) and that it is therefore much smaller than other hl.
A higher σ would increase the connectivity, while a smaller one would increase
locality, decrease the connectivity, and reduce the number of parameters.

In most of our experiments, we chose σ = h0

4 for all layers except the last
one for which we use σ = 0 in case cL = 1 in order to avoid missing too many
input neurons.

Decreasing σ Depending on the connectivity cl chosen, there may be fewer
connections per neuron in the latest layers. This means that there is a higher
chance that neurons are left without connections and therefore that they are
wasted. Furthermore, as the activation passes through the network, reducing
the spread of the connections will transform the layers from being global to
being more local and specialized into their region. We also advise that the last
layer is more deterministic as there can be only one connection per neuron,
that is, setting the variance to 0. One strategy to reduce the spread of the
distribution for deeper layers would be to decay the standard deviation linearly
to 0 as follows in Equation 4.18.

σl =
d

4
− dl

4L
, l ∈ [1, 2, ..., L] (4.18)

Through most of our experiments, we kept σ as:

σl =

{
d
4 , if l < L

0, if l = L
(4.19)
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Figure 4.5: Illustration of Gaussian distribution vs uniform one in a sparse layer.

Mixed

A mixed distribution has a specific connectivity. In this case, we use cL = 1
and for the other layers cl = 4. With this pattern, the number of parameters is
upper bounded by 5n without bias term and 7n with. It has n parameters in the
last layer and 4n for the previous layers which can be derived from a constant
connectivity with a target of n

2 (4n = 2 × 4 × n
2 ), hence the 5n = n + 4n

upper-bound on the number of parameters.
The mixed distribution mixes a deterministic pattern and a random one.

This distribution is used with a specific number of connections cl. The idea
is to use a very local deterministic pattern and increase the global connectiv-
ity by adding a few random connections. For the last layer, each output oiL is

deterministically connected to o
bi/bc
L−1 . For the other layers l, oil are determin-

istically connected to o
bi/bc−1
l−1 , o

bi/bc
l−1 and o

bi/bc+1
l−1 . This connectivity is similar

to a convolution with a window of size 3 (except that there is no shared filter).
In addition, we add one connection for each oil that is drawn according to a
Gaussian distribution as previously described. This connection will increase the
global connectivity. In total, each of these oil has 4 connections.

4.2.4 Initialization and Normalization

Hypernetworks are different from other neural networks in the sense that their
output values are themselves parameters of other networks. It is well known
that the initialization of deep neural networks is crucial for proper convergence.
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It follows that hypernetworks should also be properly initialized so that they
produce proper parameters for the target network at initialization. Typical ini-
tialization of deep learning model parameters is done via a variance analysis.
Chang et al. [2019] explains how to initialize the hypernetwork parameters so
that the predicted parameters follow more closely the usual initialization pat-
tern.

The usual method for initializing hypernetworks is to change the initializa-
tion of the last linear layer in order to have proper output values based on the
variance analysis.

However, this makes the assumption that you already know which layer will
be predicted by your network, which is not always the case. Indeed in the
case of a chunked hypernetwork or a graph neural network, the same model
may be reused in order to produce different layers, which may require largely
different scales. This brings us to the second assumption that is made about the
input of the hypernetwork. These methods require that the variance of these
inputs is known and can be controlled. In the case of a chunked hypernetwork,
because the same model is reused for different layers, the scale of the output
layer could be controlled by changing the scale of the input vector. However,
while the chunk embedding vectors are different for each chunk, one cannot
change a task vector embedding for each embedding without making it a task-
chunk embedding vector. This would make the separation less clear between
what is specific to the task and what is specific to a chunk/layer.

Furthermore, in a more general case, the inputs of the hypernetwork are
not necessarily trainable parameters. They may be the results of more complex
computations, over which we have no control. In that case, these inputs may
have a too large or too small variance that would break the assumption made
by the initialization scheme.

To shield the core of the hypernetwork from any dependence on inputs and
outputs scale, we propose to 1) normalize the inputs and 2) add a rescaling layer
after the hypernetwork (similarly as the operation-dependent normalizations
from Knyazev et al. [2021]). An illustration is shown in Figure 4.6.

The core of the hypernetwork is set to simply preserve the forward variance.
With the normalization of the input and the variance preservation, we can as-
sume that the output of the hypernetwork will have a variance of approximately
1. Then we make each target layer predicted parameters go through a specific
rescaling. This rescaling layer simply multiplies all values by a constant factor in
order to transform the variance of 1 to the desired layer-specific variance (Table
4.2). The fully connected layers are rescaled according to a Xavier initialization
scheme (Glorot and Bengio [2010]) and the convolution according to a fan-in
scheme (He et al. [2015a]). The bias term are also scaled down even though
it is not required. There is no particular justification for the difference in the
initialization scheme for fully connected layers and convolutional layers.
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Target layer Rescaling factor

Fully connected
√

6
3cincout

Convolutional
√

1
3cink0k1

Bias
√

1
3bsize

Table 4.2: Rescaling factor used for each target layer parameter type, where cin
and cout are respectively the number of input and output channels, ko and k1
are the dimension of the kernels and bsize is the dimension of the bias term.

Figure 4.6: Illustration of input normalization and output rescaling for hyper-
networks. The input z is normalized. The ouputs are rescaled with different
scaling factor (S0, S1, S2, S3) adapted for each target layer (L0, L1, L2, L3).
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4.2.5 Training in multitasking setting

The hypernetworks are trained using the classical procedure: by gradient de-
scent on the target network loss function. More specifically, task-conditioned
hypernetworks can be trained according to the following loss function based on
3.2:

L(ν, z0,...,T−1) = Et∼P (τ)

{
Ex,y∼P (X,Y |t) {l(y,M(x, θ = H(zt; ν))}

}
(4.20)

The loss function is estimated by sampling some tasks and the corresponding
data from the training set. In most of our experiments, we sample only 3 tasks
corresponding to 3 batches. Each batch corresponds to a single task, allowing
one to produce only one task-specific model per batch. The gradients of these 3
batches are then accumulated. We also always use gradient clipping to prevent
the effects of unwanted big gradients.

38



Chapter 5

Experiments

In this chapter, we perform a set of experiments with sparse hypernetworks on
computer vision multitasking problems.

We start by giving a brief overview of the datasets and protocol used in the
experiments in Section 5.1.

In Section 5.2, we test different combinations of sparse hypernetwork hyper-
parameters to understand their effect.

Next, in Section 5.3 further compare the sparse hypernetwork with the
current alternative of chunked hypernetworks and with the individual experts
trained on each task.

Section 5.4 further continues this comparison but with sparse target net-
works. The aim is to see if the different types of hypernetworks behave differ-
ently as the target networks become sparser.

Finally, in Section 5.5, we test the capacity of hypernetworks to generalize
to new tasks. We continue to compare different types of hypernetworks. In
particular, we compare the generalization and transfer learning power of linear
and non-linear sparse hypernetworks as well as chunked hypernetworks. We try
to see how the different reprenstation capacities of these hypernetworks affect
their generalization to new tasks.

All the experiments presented concern multitasking classification problems.
Often, however, a single accuracy computed on a test set is presented; it is the
average accuracy for all tasks.

5.1 Datasets and protocol

All the experiments are performed on the following datasets. They are multi-
tasking computer vision problems. They are all based on classification problems
from which the classes are split into multiple classification tasks. These mul-
titasking problems are adapted from well-known computer vision benchmarks
and allow to easily test and compare different models.
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Split MNIST 10/5. This dataset is based on MNIST Deng [2012], which
contains 10 classes. In Split MNIST 10/5, this 10-ary classification problem
is split into five binary tasks. The first binary task consists in differentiating
zeros and ones, the second twos and threes, and so on. Therefore, all tasks have
disjoint domains. The 10 classes are separated as follows: each image with label
l ∈ {0, 1, 2, ..., 9} belongs to the task b l2c.

Split CIFAR 10/5. The split CIFAR 10/5 problem splits the CIFAR10
dataset (Krizhevsky [2009]) into five binary classification tasks. The 10 classes
are separated into 5 pairs of class and each task aims to predict the new binary
label of an image. The 10 classes are separated similarly as in split MNIST/5.

Split CIFAR 100/10. Similarly to split CIFAR10/5, split CIFAR100/10
separates the 100-ary classification task into 10 tasks of 10 classes. It is much
more difficult than split CIFAR10/5 as there are more tasks, more classes per
task, and fewer examples of each class. The 100 classes are separated as follows:
each image with label l ∈ {0, 1, 2, ..., 99} belongs to the task b l10c.

Protocol. The multitasking models are trained via gradient descent in a mul-
titasking setting. We sample batches containing only examples of a single task,
so that the hypernetworks only have to generate a single target model per batch.
Additionally, we average the gradients over 3 batches. Often, we average the
results over 5 trials (with the same train/validation split). More details about
training and model hyperparameters are given in Appendix B.

5.2 Analysis of sparse hypernetworks

The present experiment aims to analyze different combinations of hyperparam-
eters for sparse hypernetworks. More precisely, we compare different ways of
selecting connections in the sparse hypernet as described in Section 4.2, com-
paring linearly decreasing, exponentially decreasing, and constant connectivity.
We compare different distributions of connections: normal, uniform, rand-perm,
and mixed distributions. More generally, we compare purely linear hypernets
(without bias term) and MLP ones with PReLU activations (He et al. [2015b]).
For each combination, we averaged the results over 5 trials (with the same split
of dataset).

In this experiment, as in all other experiments, the task embeddings are
normalized for the sake of demonstration, this is however not required in this
case as these inputs are learned together with the hypernet parameters.

The target model is a ResNet-32 without batch normalization of 426K pa-
rameters from He et al. [2015c].

We tested two types of non-linearity, MLP with bias term and PReLU ac-
tivations (αinit = 0.25) and a purely linear hypernetwork without bias term,
which is the simplest model and has the lowest number of parameters. The
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Non linearity Accuracy
MLP 78.68±1.21
Linear 77.96±1.30

Table 5.1: Accuracy of sparse hypernetworks for different non linearity on split
CIFAR100/10

Distribution Accuracy
mixed 78.88±1.07
normal 78.74±1.50
randperm 78.08±1.12
uniform 77.58±1.09

Table 5.2: Accuracy of sparse hypernetworks for different sparsity distribution
on split CIFAR100/10

average and standard deviation of the results are shown in Table 5.1 (aver-
aged over distribution and connectivity types). The MLP version did obtain a
slightly higher accuracy; however, the linear version still achieves comparable
performance, only 0.72 percent below.

With respect to the distributions (Table 5.2), all distributions performed
comparably. However, the more local distributions (mixed and normal) per-
formed slightly better than the nonlocal ones (randomperm and uniform). This
may indicate that parameters that are closer to each other in the target network
may need to share more information between them than parameters that are
further away from each other. However, the gap between local and non-local
distributions is not that large. These results are averaged over non-linearity and
connectivity types.

For the different types of connectivity (Table 5.3), their performances are
close. However, the constant connectivity type seems to have slightly lower ac-
curacy. This indicates that the increase of connectivity at the lower-dimensional
layers of the sparse hypernetworks has a positive effect on performance.

All aggregated results are shown in Table 5.4 for each combination of hy-
perparameters. For linear models, the best model is the one with normally dis-
tributed connectivity and exponentially decreasing with an accuracy of 80.12%.

Connectivity type Accuracy
constant 77.67±0.92
exponential-decrease 78.59±1.39
linear-decrease 78.14±1.47
mixed 78.88±1.07

Table 5.3: Accuracy of sparse hypernetworks for different connectivity types on
split CIFAR100/10
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Linearity Distrib. Connectivity type Accuracy Params Con.
MLP mixed mixed 79.18±0.98 2.95M 68.97%

normal constant 77.69±0.62 2.53M 84.72%
exponential-decrease 79.07±1.11 2.69M 99.99%
linear-decrease 80.10±0.57 2.53M 100%

randperm constant 77.33±1.08 3.41M 100%
exponential-decrease 79.18±0.56 2.76M 100%
linear-decrease 78.48±1.77 2.56M 100%

uniform constant 77.95±0.98 3.41M 98.75%
exponential-decrease 78.61±1.41 2.76M 100%
linear-decrease 78.18±0.51 2.56M 100%

Linear mixed mixed 78.58±1.09 2.1M 68.97%
normal constant 77.41±1.48 1.68M 84.72%

exponential-decrease 80.12±0.71 1.83M 99.99%
linear-decrease 78.04±1.63 1.67M 100%

randperm constant 78.20±0.54 2.56M 100%
exponential-decrease 77.79±1.04 1.9M 100%
linear-decrease 77.50±0.39 1.7M 100%

uniform constant 77.43±0.65 2.56M 98.75%
exponential-decrease 76.77±0.58 1.9M 100%
linear-decrease 76.52±0.62 1.7M 100%

Table 5.4: Accuracy of sparse hypernetworks for different hyperparameters on
split CIFAR100/10

This model is well above all other sparse linear hypermodels. This model also
has a relatively low number of parameters of 1.87M compared to the lowest
number of parameters of 1.67M . For the non-linear models, the normally dis-
tributed ones with linearly decreasing connectivity obtain the best results. This
mean accuracy obtained of 80.10% is actually slightly smaller than the one of
the best linear hypernetwork, although very close. Interestingly, this model is
also the non-linear model with the least number of parameters (2.53M).

5.3 Comparison of hypernetworks architecture

5.3.1 Split MNIST

The split MNIST problem separates the 10 classes of MNIST into 5 binary
classification tasks (0vs1, 2vs3, ..., 8vs9). This is a multitasking problem, where
the tasks are similar (they are equivalent to the task: “Is that number even or
odd?”) but their domains are different (distinct here). The model is given an
image and has to answer the binary class of the image. Furthermore, the model
knows which task it is working on.

For this problem, the target network is a tiny neural network of only 190
parameters consisting of a few convolutions followed by a final linear layer with
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ConvMNIST(
( convs ) : Sequent i a l (

( conv0 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU
( conv1 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU
( conv2 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU
( conv3 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU
( conv4 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU
( conv5 ) : Conv2d ( k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) ) , PReLU

)
( out ) : L inear ( i n f e a t u r e s =16, o u t f e a t u r e s =2)

)

Figure 5.1: Target model used in the split MNIST experiment.

Model Accuracy Parameters Iterations
Chunked 99.02 ± 0.19 1003 28±6k
Experts 99.32 ± 0.12 950 17±4k
Sparse linear 94.07 ± 7.00 1019.5 25±7k
Sparse nonlinear 99.10 ± 0.15 1024.6 27±5k

Table 5.5: Average accuracy (n=10) for the split MNIST experiment comparing
chunked and sparse hypernetworks to experts.

PReLU activations. The convolution operates on a single channel without bias
term. The target model architecture is shown in Figure 5.1.

In this experiment, the task-conditioned sparse hypernetwork is compared
with the task-conditioned chunked hypernetwork and task-specific experts. The
models are trained with a batch size of 50 (iterations accumulate 3 batches),
learning rate of 1e-3, RAdam optimizer (Liu et al. [2019a]), early stopping after
10 non-improving epochs. The latent size of z is 8. The chunked hypernets
have 10 chunks of size 19. Note that the sparse linear hypernetwork uses an
expansion factor of 1.6 instead of 2, which makes it deeper, so that it has a
number of parameters comparable to the other models.

Table 5.5 displays the results of this experiment. The chunked hypernet, the
non-linear sparse one, and the experts obtain similar accuracy on this simple
task. The linear hypernet did not reach the same level of accuracy during this
experiment.

Looking at the results per task in Table 5.6, the linear hypernet actually
obtains similar results as the others for tasks 1 and 3, but not for tasks 0, 2,
and 4.

Although the average accuracy of the linear hypernet is lower for certain
tasks on average, this does not mean that each model has such an average
accuracy. On the contrary, these models generally achieve similarly good per-
formance in certain tasks, while being completely wrong in other tasks. Figure
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Model Task 0 Task 1 Task 2 Task 3 Task 4
Chunked 99.90 ± 0.11 98.22 ± 0.28 99.48 ± 0.27 99.43 ± 0.32 98.07 ± 0.64
Experts 99.93 ± 0.08 98.79 ± 0.34 99.81 ± 0.18 99.61 ± 0.16 98.44 ± 0.52
Sparse linear 89.95 ± 21.06 98.26 ± 0.30 94.62 ± 15.68 99.49 ± 0.34 88.03 ± 20.05
Sparse nonlinear 99.91 ± 0.09 98.65 ± 0.32 99.51 ± 0.25 99.47 ± 0.26 97.97 ± 0.52

Table 5.6: Average test accuracies (n=10) in percentage for each task on split
MNIST. The linear hypernet obtained lower results on task 0, 2 and 4.
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Figure 5.2: Validation accuracy for each task of split MNIST during training of
a linear sparse hypernetwork

5.2 shows the different validation accuracies of each task for a sparse linear
model. The model struggled to learn all the tasks in parallel and learned them
sequentially. It first learned tasks 1 and 3, then 0, 2 later and never managed
to learn binary task 4 on which it kept a 50% accuracy. We hypothesize that
these poor performances are due to either a too small latent size for the linear
hypernetwork (the latent vector is normalized), a too small learning rate, or
simply due to the linearity of the model. The non-linear sparse hypernetwork
also similarly learned tasks in a sequential fashion, as can be seen in Figure
5.3. The chunked hypernetworks did not show that kind of sequential learning
(Figure 5.4).

5.3.2 Split CIFAR 10

We tested the models on split CIFAR10/5 with a Resnet-32 target network. The
results are shown in Table 5.7. We can see that the non-linear sparse hyper-
network obtains the best mean accuracy of all models, closely followed by the
chunked hypernetwork however. Additionally, all multitasking hypetnetworks
exceeded experts on this problem.
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Figure 5.3: Validation accuracy for each task of split MNIST during training of
a non linear sparse hypernetwork
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Figure 5.4: Validation accuracy for each task of split MNIST during training of
a chunked hypernetwork

Model Accuracy
Chunked 95.99±0.46
Experts 95.48±0.07
Sparse linear 95.70±0.27
Sparse MLPbias 96.05±0.19

Table 5.7: Mean accuracy of the multitasking hypernetworks and experts on
split CIFAR10/5.
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Model Accuracy Parameters Iterations
Chunked 81.47±0.68 2.54M 13±1k
Experts 78.82±0.65 4.26M 13±1k
Sparse linear 79.64±1.69 1.67M 19±3k
Sparse nonlinear 78.49±0.78 2.53M 18±3k

Table 5.8: Split CIFAR100 results with ResNet-32 target model. The multi-
tasking hypernetworks obtain similar performances lower than the experts.

Model Accuracy Parameters
Chunked 86.18 67.3M
Experts 85.53 118M
Sparse linear 82.38 44.6M
Sparse nonlinear 85.37 66.9M

Table 5.9: Split CIFAR100 results with ResNet18 target model. The multitask-
ing hypernetworks obtain similar performances lower than the experts.

5.3.3 Split CIFAR 100

Resnet32 target model

For this experiment, we compared a chunked hypernet, a sparse one with a task-
specific experts model. A batch size of 50 was used (gradients accumulated on 3
batches) with Adam optimizer, a starting learning rate of 1e-3, a learning rate
reduction after 5 non improving epochs, early stopping after 10 non improving
epochs. The latent size is 64 and there were 22 chunks for the chunk hypernet
(chunk size of 19383). The target model is a ResNet32 (n=5) as described in
He et al. [2015c] Section 4 without batch normalizations of 426426 parameters.

The chunked one has the best accuracy while converging in fewer (Table 5.8).
The sparse linear hypernetwork supersedes the non-linear one while having fewer
parameters. The non-linear sparse hypernetwork was the only model below the
expert models in terms of accuracy.

Resnet18 target model

It is the same experiment as the previous one, except that we use a ResNet18
as target network, which is much larger than the previous one with 11M para-
maters. In this experiment, a larger latent size of 512 is used to deal with the
larger target model and chunked hypernetworks have 176 chunks.

The results are shown in Table 5.9. The chunked hypernetwork outperforms
all other models in this multitasking problem. It is also slightly better than
the independent experts. The non-linear sparse model performs equivalently as
the experts. The linear model, however, falls behind all other models, contrary
to the previous experiment where it outperformed the non-linear one and the
experts.
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5.4 Sparse target network

In the experiments in Section 5.3, we used hypernetworks to produce the pa-
rameters of ResNet models, which are typically large overparameterized models.
The fact that the target network is overparameterized may make the task easier
for hypernet. Some parameters may be redundant or useless.

In this section, we try to evaluate the performance of the hypernetwork in the
case when the target network is not overparameterized. We aim to see whether
hypernetworks have similar performance or if they degrade more quickly.

To do so, we produce the parameters of a sparse ResNet for increasing levels
of sparsity. The sparsity distribution is a uniform distribution. A random binary
mask defined before training with the desired sparsity probability is multiplied
with the vector of parameters produced by the hypernetworks. Note that the
size of the output of the hypernetwork is fixed and does not diminish with the
increased target sparsity, which introduces some parameter inefficiency for the
sparse hypernetworks.

Different levels of sparsity were tested, from no sparsity to 95% target net-
work sparsity. The target is a ResNet-32. A latent size of 64 was used for z.
The chunked hypernetworks have 23 chunks.

The results are shown in Figure 5.5. The chunked hypernetwork performed
better than every other method except for the 95% sparsity level for which the
non-linear sparse hypernetwork performed slightly better. The experts models
generally had the lowest across the different sparsities. Both sparse hypernet-
works performed in between experts and chunked hypernetworks. The non-
linear one performed better than the linear one for the no sparsity setting and
for the highest level of sparsity. It was the contrary for mid-level of sparsity.
One of the key insights of this experiment is that the chunked hypernetwork did
not suffer more from a higher level of target parameter sparsity than the sparse
hypernetworks.

5.5 Experiments in the z space

Complete task-dependent hypernetworks can be interpreted as meta-models.
For a given hypernetwork, z represents a model index. When a hypernetwork
is trained on a set of tasks, the corresponding set of z-vectors (or distributions)
is learned together. In this section, we will explore the z space and go outside
of those learned vectors z.

We will try to answer a few questions. Can we infer a new z for a completely
new task? for tasks similar to the ones on which the hypernetwork has been
trained? What is the performance of the models obtained by linear interpolation
of the z values? Can we compose z-values to get a composition of tasks?
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Figure 5.5: Accuracy for increasing level of sparsity of target networks (from
0% to 95% sparsity)

5.5.1 Models and training used

These experiments are done with tasks of split CIFAR100/10 or split CIFAR10/5.
The target network is a ResNet-32. The training is similar to the previous ex-
periments (see Appendix B for default settings).

5.5.2 Task inference

In this section, we try to use hypernetwork in a transfer learning fashion. We
first pretrain the hypernetwork over a set of tasks. Then we freeze the hyper-
network weights and try to infer a z for a new task. By doing so, we hope that a
pretrained hypernetwork over certain tasks can generalize to other tasks. With
this experiment, we also want to test the performance of the hypernetwork as a
meta-model, which has the capacity to produce new models.

The first experiment involves inferring a new z for completely different tasks
than the ones on which the multitasking hypernetwork has been trained on. The
second set of experiments concerns inferring new tasks that are similar to the
pretraining task. In this case, we expect the inferred models to have relatively
good performance.
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Model 0 1 2 3 4 5 6 7 8 9
chunked 81.72 77.04 80.42 78.18 80.90 81.16 81.16 77.76 82.58 13.18 ± 3.22
sparse MLPbias 80.94 76.12 80.14 78.40 80.74 79.50 79.86 77.62 81.36 9.30 ± 2.63
sparse linear 80.24 73.14 79.26 77.00 79.00 79.26 79.64 76.94 80.38 28.90 ± 3.85

Table 5.10: Hypernetwork accuracy over the first 9 tasks and the accuracy on
the last task with an inferred z on the pretained hypernetwork.

Completely different tasks

In the first experiment, we pretrain the hypernetwork on the first 9 tasks of split
CIFAR100/10, then we freeze the hypernet and train a new z on the last task
by gradient descent. This new task does not share any images with the previous
9 tasks and is therefore completely new and different. The new z is initialized
at z9 = 1

9

∑
t∈0,..,8 zt.

The results are shown in Table 5.10. The sparse linear hypermodel actually
largely outperforms the other models by reaching 29% accuracy on the new
task despite being less good on the training tasks. The chunked hypernetwork
remains at 13%, which is slightly above 10% (for a task of 10 classes). The
non-linear hypernet remains clueless with 9.3% accuracy. The results obtained
by the linear hypernetwork are promising. They show that there might be some
meta-generalization property of hypernetworks even though the best results ob-
tained are far below the ones obtained on the 9 first tasks and the average
accuracy over split CIFAR100/10 (Table 5.8). The better results obtained by
the linear hypernetwork could be due to the fact that it has limited represen-
tation capabilities compared to the non-linear alternatives. This could help
the hypermodels avoid meta-overfitting on the pretraining tasks and improve
generalization to new tasks.

Similar tasks

In the previous experiment, we tested the performance of the hypernetworks
for learning completely new tasks. In this experiment, we evaluate the transfer
learning performance of the hypernetwork to learn similar tasks to the ones on
which it has been pretrained.

If a model has been pretrained on two tasks of split MNIST for differentiating
0vs1 and 2vs3. We may expect that the learned hypernetwork can represent
models for the similar tasks 0vs2 and 1vs3. We would like to see whether or not
the hypernetwork can learn some reusable knowledge.

For this experiment, we used the split CIFAR10/5 problem (5 binary tasks).
We first trained a hypernetwork (producing ResNet32 model) on the 2 first
tasks 0:“airplane vs automobile” and 1:“bird vs cat”. Then, after freezing the
hypernetwork, we try to learn 4 new z for 4 similar tasks: 2:“airplane vs bird”,
3:“automobile vs cat”, 4:“airplane vs cat” and 5:“bird vs automobile”. The
tested tasks are summarized in Table 5.11.

The 3 models obtain very similar performances when trained on the first
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Id Binary Task class id vs class id
0 airplane vs automobile 0vs1
1 bird vs cat 2vs3
2 airplane vs bird 0vs2
3 automobile vs cat 1vs3
4 airplane vs cat 0vs3
5 bird vs automobile 2vs1

Table 5.11: Tasks id and corresponding tasks for task inference experiment with
similar tasks

Model 0vs1 2vs3 0vs2 1vs3 0vs3 2vs1
Chunked 98.34 89.99 77.07 80.89 88.74 97.09
Sparse MLPbias 98.42 89.13 63.66 74.95 88.37 96.49
Sparse linear 98.51 89.74 79.99 84.80 86.88 90.59

Table 5.12: Accuracy of hypernetwork over 2 pretrained task 0 and 1. Accuracy
for infered z on 4 new tasks (2, 3, 4, 5).

2 tasks (Table 5.12). However, the results differ for the inference of z for new
tasks. The sparse linear model obtains the best accuracy on the 2 following tasks
(0vs2 and 1vs3) while the chunked hypernetwork obtains the best accuracy on
the 2 last ones (0vs3 and 2vs1). The last two accuracies are quite good, 88.7%
on the 0vs3 task and 97% on 2vs1.

The two last inferred tasks 0vs3 and 2vs1 have their classes in the same
order as in the pretraining tasks. For task 0vs3, 0 is in the first position as in
pretraining task 0vs1 and 3 is in the second position as in task pretraining 2vs3.
For the task 2vs1, 2 is in the first position as in 2vs3 and 1 is in the second
position as in 0vs1. It is not the case for the first two inferred tasks 0vs2 and 1vs3
which only have 1 class that is in the same order as in one of the pretraining
tasks. Looking at the results Table 5.12, the linear model actually performs
better than the others on tasks that have only one class that is in the same
order and performs worse than the other when the task has all its classes in the
same order as in the pretraining tasks. The nonlinear models seem thus to be
more sensitive to a permutation of the class ID of their pretraining tasks. This
may be a hint that linear hypernetworks better meta-generalize to new tasks
compared to nonlinear ones that would meta-overfit their pretraining tasks.

Model 0vs1 2vs3 0vs2 1vs3 0vs3 2vs1
Chunked 98.56 91.09 95.13 98.91 97.20 99.18
Sparse MLPbias 98.43 90.30 94.50 98.79 96.81 99.20
Sparse linear 98.50 90.51 94.24 98.67 96.66 99.14

Table 5.13: Accuracy of hypernetwork over when trained directly on all 6 tasks.
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Model
Accuracy

(split CIFAR10/5)
Accuracy

(altered split CIFAR10/5)
chunked 95.99±0.46 96.38±0.28
sparse MLPbias 96.05±0.19 96.30±0.11
sparse linear 95.70±0.27 96.06±0.35

Table 5.14: Mean accuracy of the multitasking hypernetwork on split CI-
FAR10/5 and altered split CIFAR10/5 with normal training.

Model Accuracy
chunked 89.67±1.29
sparse MLPbias 87.92±0.82
sparse linear 88.38±0.93

Table 5.15: Mean accuracy of the multitasking hypernetwork on altered split
CIFAR10/5 with normal training on classical split CIFAR10/5.

Altered tasks

In this experiment, we try to evaluate the transfer learning capabilities of a pre-
trained hypernetwork on altered tasks. To do so, we used the split CIFAR10/5
dataset and and altered version of this dataset. The altered version of split
CIFAR10/5 contains the same tasks except that the images have been altered.
The images are altered by changing the hue value with a random scaling factor
drawn uniformly between 1.2 and 1.3. This basically corresponds to a change
of color, which can make the sky pink instead of blue, the grass blue instead of
green, etc.

First, we train the multitasking hypernetworks normally on both split CI-
FAR10/5 and the altered version. The results are shown in Table 5.14. The
chunked and non-linear sparse hypernetworks achieve the best results. Interest-
ingly, slightly better results are obtained on the altered version.

Before retraining the z values on the altered tasks, we first report the accu-
racy on the altered dataset of the models trained on the normal dataset. The
results are shown in Table 5.15. As expected, they are lower than the results on
the unaltered dataset but only by a few percents. The chunked hypernetwork
maintains the best accuracy on this altered version.

Here, we retrain the z values on the altered dataset after pretraining the
hypernetwork on the unaltered version. The accuracy obtained is shown in
Table 5.16. As expected, the accuracy improves compared to the initial model
(Table 5.15). However, the models do not achieve the best accuracy that can be
obtained by training the entire hypernetwork on the altered data (Table 5.14).
In this case, the linear hypernetwork had the best improvement to the point the
it is the best model with 91.41% accuracy, although it had the worst accuracy
on the initial unaltered split CIFAR10/5.
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Model Accuracy
chunked 91.20±1.38
sparse MLPbias 88.97±0.65
sparse linear 91.41±0.30

Table 5.16: Mean accuracy of the multitasking hypernetwork on altered split
CIFAR10/5 with normal pretraining on classical split CIFAR10/5 followed by
learning only new z values on the altered split CIFAR10/5. It can be compared
with the accuracy obtained without retraining z values in Table 5.15

.

5.5.3 Model interpolation

In order to further assess the quality of the latent space, we interpolate mod-
els in the z space. We first train the hypernetwork on a set of tasks {tk|k ∈
{0, 1, ..., T − 1}} and the corresponding embeddings {zk|k ∈ {0, 1, ..., T − 1}}.
Then we evaluate the performance of the models generated by linear interpola-
tion of 2 z, in particular z0 and z1 corresponding to the first and second tasks.

In a first experiment, we train the hypernetwork on only 2 tasks (the 2 first
tasks of split CIFAR10/5) with their corresponding z0 and z1 task embeddings.
The target network is a ResNet-32. The accuracy of linearly interpolated models
between z0 and z1 is shown in Figure 5.6 and in Figure 5.7 for the accuracy on
the second task.

In Figure 5.6, the best accuracy for the first task is obtained by the model
produced by z0, as expected. The models produced at z1, however, obtain an
accuracy better than 50% on the first task. This means that both tasks share
some information as the models trained at z1 are optimized for the second task,
not the first. Generally, the interpolated models from the non-linear models
performed way better than when it came from the linear hypermodels. Inter-
estingly, even though the accuracy of the models produced by the midpoint
between z0 and z1 is close to 50% for the linear hypermodel, the accuracy is
over 50% near z1, which means that there is also a share of knoledge between
tasks for the linear models as for the non-linear ones.

The results are similar in the other direction (Figure 5.7) for the accuracy
on the second task.

The two non-linear hypernetworks obtain good accuracy for linearly inter-
polated models. It is interesting to note that the model interpolated at the
midpoint between z0 and z1 ( z0+z12 ), provides a good trade-off between the
model from z0 and z1. It has a relatively good accuracy on both tasks.

In the previous experiment, we only trained the multitasking hypernetwork
on 2 tasks. What would happen if we increased the number of tasks? In
this experiment, we train the model on 5 tasks with the 5 corresponding task
embeddings (the 5 tasks of split CIFAR10/5). As in the previous experiment,
we report the accuracy of the interpolated models between the task embeddings
of the first and second tasks z0 and z1.

The results are shown in Figures 5.8 and 5.9. The results for the models
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Figure 5.6: Accuracy of linearly interpolated model between z0 and z1 on the
first task

Figure 5.7: Accuracy of linearly interpolated model between z0 and z1 on the
second task
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Figure 5.8: Accuracy of linearly interpolated model between z0 and z1 on the
first task when trained on 5 tasks.

trained on 2 tasks in the previous case are shown in red shade for comparison.
The results of the new models trained on five tasks are shown in green shade.

When closely looking at Figures 5.8 and 5.9, one can see that the interpolated
models in green shade (which come from models trained on 5 tasks) generally
outperform the corresponding counterparts (trained on 2 tasks) except for the
chunked hypernetwork on the second task (Figure 5.9). This may indicate that
multitasking hypermodels trained on more tasks can share more information
between all these tasks and thus interpolated models perform better on all
tasks. However, this multitasking model was trained on only five tasks and the
results could be different with many more tasks.

5.5.4 Tasks composition

In the previous Sections 5.5.2 and 5.5.3, we learned that:

1. Pretrained multitasking hypernetwork can infer new target models for
new tasks, especially if the new tasks share similarity with the pretraining
tasks.

2. Linear interpolation of task embeddings can produce models that are good
on all tasks. More specifically, the midpoint between 2 z values can lead to
a target model that is good for both tasks on which the 2 z were trained.

These 2 observations motivate the present experiment. We define an average
task which is a composition of all tasks. All classification tasks have disjoint
domains. The average task is defined as follows: for a given image that may
come from any of the tasks, the model should predict its corresponding label in
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Figure 5.9: Accuracy of linearly interpolated model between z0 and z1 on the
second task when trained on 5 binary tasks.

the corresponding task. We have seen in Section 5.5.3 that linear interpolation
of models can perform well on all tasks, which means that the model can predict
the correct label of images for each task and thus that this interpolated model
could perform well on the average task. Consequently, we define the average
model as the model produced by the average value of all trained z values and
we hope that this average model can perform well on the average task.

In this experiment, we would like to evaluate the performance of the average
model for the average task. There are actually several ways one could define the
average model. In the first case, we simply choose the first previously proposed
definition of average model (normal training). In the second case, we train a
specific z for the average task (infer z for the average task).

Normal training

A hypernetwork H is trained on a set of T tasks together with a set of T
task embeddings {zt|t ∈ 0, 1, 2, ..., T − 1}. In this case, it is trained on Split
CIFAR100/10 (10 tasks of 10 classes).

We define the average model Mavg := H(z̄) = H( 1
T

∑
t zt). It is the model

obtained by giving the average of the z values to the trained hypernetwork.
Once the model has been trained on T tasks, we evaluate the accuracy of the

average model H(z̄) (Table 5.17). We also report the evolution of the accuracy
of the average model during training over a validation set (Figure 5.10).

The chunked hypernetwork and the sparse non-linear one, though not very
good, reached up to 20% accuracy on the average task, which is significantly
higher than the expected 10% accuracy of a random model for this classification
task of 10 classes. The sparse linear, however, reached a 10% accuracy. This
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Model Mean z Accuracy Mean Accuracy
Chunked 18.73±1.39 81.80±0.65
Sparse MLPbias 19.70±0.82 79.95±1.02
Sparse linear 9.67±0.89 78.42±1.11

Table 5.17: Accuracy of the average model H(z̄) on the average task and the
base average accuracy over the different tasks. The chunked model and the
sparse non linear one obtained accuracy much higher than the expected 10%
accuracy of a random model for a classification task with 10 classes.

Figure 5.10: Evolution of the validation accuracy of the average model over the
average task
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Model \Task 0 1 2 3 4 5 6 7 8 9
Chunked 25.56 15.08 16.04 17.20 26.62 23.42 14.20 21.82 15.96 11.38
Sparse MLPbias 20.32 17.78 20.40 19.58 20.16 20.82 16.26 20.58 23.58 17.54
Sparse linear 10.78 11.64 7.88 9.60 8.88 9.86 8.90 11.08 10.44 7.66

Table 5.18: Accuracies of the average model on each task

agrees with the previous results from Section 5.5.3 where interpolated models
from non-linear hypernetworks performed better than those from linear hyper-
networks. This means that for the first 2 models, the average model is indeed
(slightly) linked to the average task, while this is not the case for the last one.
For the sparse non-linear model, the increase was relatively monotonic and cor-
related with the increase of the accuracy over each task. For the chunked one,
the mean model peaked after ∼ 15000 iterations and then slightly decreased, its
accuracy is therefore less correlated with the other accuracies than the sparse
non-linear one. We can also see that there is a little more variation for the
chunked hypernetwork than for the sparse hypernetwork in the accuracy of the
average model between every task (Table 5.18).

Infer z for average task

In the previous experiment, we tested the model defined by the average z on
the average task. This choice was slightly arbitrary and there could be a better
z for the average task for a given hypernetwork.

For this experiment, we still train the hypernetwork on T tasks as usual.
Once it is trained, however, we freeze the hypernetwork parameters and train a
new z on the average task. We experimented with two ways to train this new
z. The first option is to simply learn a new vector z by gradient descent. The
second option that we tried is to constrain the new z to be a convex combination
of all the other zt, i.e. zavg =

∑
t ωtzt s.t.

∑
t ωt = 1. In order to train this z,

we learn the corresponding weights ωt. Instead, we chose to learn a vector of
logit weights α with zavg = Zsoftmax(α) where Z is the matrix where all zt are
stacked (column-wise). All components of α are initialized with 1

T , which yields
the previous average model.

The results obtained are quite disappointing (Table 5.19). Learning a free
z over the average task yielded an accuracy slightly higher than that of the
previous average model. The best improvement was obtained with the sparse
linear model. For the constrained z, the results are actually even worse than
the average model. We hypothesize that this poor performance is due to the
fact that the model was trained with accumulated batches of only 3 tasks and
not all tasks, which could make the gradient descent too stochastic, especially
when training z as a convex combination of the other z values.

In order to know how difficult this average task is, we train a hypernetwork
together with a single z value on this task to see how it performs.

The results are shown in Table 5.20. The best results obtained, 47.40%, are
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Model Free z Contrained z
Chunked 21.18±0.76 11.71±1.37
Sparse MLPbias 20.52±0.58 15.03±2.30
Sparse linear 15.67±1.17 10.02±0.28

Table 5.19: Accuracy over the average task for trained z

Model Accuracy
Chunked 45.31±0.13
Sparse MLPbias 45.33±0.14
Sparse linear 47.40±0.99

Table 5.20: Accuracy over the average task for a single z trained together with
the hypernetwork on the average task.

significantly above the one obtained by only retraining the z on a pretrained
hypernetwork.

5.6 Discussion

The experiments presented in this chapter aimed to analyze different aspects of
sparse hypernetworks. Here, we draw a conclusion on these results.

Hyperparameters. The sparse hypernetwork hyperparameter experiment (Sec-
tion 5.2) tested different combinations of sparse hypernetwork hyperparameters
proposed in Chapter 4.

This experiment, as well as the following, showed that linear hypernwetworks
reached a good accuracy very close to that of non-linear hypernet, sometimes
even better. Additionally, purely linear sparse hypernetworks have up to 33%
less parameters than nonlinear sparse hypernets with bias term (Table 4.1).

It was also shown that the proposed method to increase connectivity at
lower-dimensional layers of the sparse hypernets with linearly and exponentially
decreasing connectivity patterns improves the accuracy while reducing the total
number of parameters compared to the naive constant connectivity pattern.

Additionally, the proposed connectivity distribution that increases locality
in sparse hypernetworks compared to the naive uniform distribution also showed
improved performance. The mixed and normal distributions had better results
than the randperm and uniform distributions. This may indicate that in the
tested target networks, parameters that are close together may benefit from
more information sharing than parameters that are further away. However, the
gap between local and non-local distribution was not that large.

Comparison. The following experiments compared the sparse hypernetwork
with the current solution of chunked hypernetworks and expert models. We
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showed that sparse hypernetwork can match the accuracy of chunked hypernet-
work and sometimes surpass it. However, the chunking method had a better
accuracy on the much more complex task of split CIFAR100/10. The expert
models were often surpassed by the multitasking hypernetworks which indicates
some sharing between the different tasks.

Sparse targets. The target network sparsification experiment (Section 5.4)
compared the behavior of sparse hypernetworks with sparse target networks.
One could have expected the chunked hypernetwork to suffer more from the
sparsification of the target network because of its architecture, which reuses the
same model at different places. However, it was not observed, and all models
seem to suffer similarly from the sparsification of the target network. However,
in this experiment, the sparse hypernetwork was not adapted to deal with the
sparse target network architecture. This means that the sparse hypernets still
produce all parameters, even those that are set to zero, which leads to some
inefficiency. It would be interesting to try to adapt the sparse hypernetworks
architecture in order to have efficient sparse-to-sparse hypernetworks.

Generalization. Finally, the last set of experiments compared the general-
ization property of linear, non-linear sparse hypernets and chunked hypernets.
During these experiments, it was shown that the nonlinear hypernets can match
the chunked hypernetwork in terms of the performance of the models resulting
from the interpolation of the z values. This means that their latent space can
produce other target networks that are also good at the tasks on which they
were trained.

The inference of new tasks with pretrained hypernets showed interesting
results. Drawing an analogy with classical machine learning, where reducing
the hypothesis space of the model can help avoid overfitting the data, reducing
the multitasking hypernetwork representation power to a linear function seems
to improve its generalization capability to new tasks. On all task inference
problems tested, the linear hypernetwork was one of the best models, even
though it had the lowest accuracy on the pretraining problem.

Conclusion. The results obtained by the sparse hypernetworks are promising.
While they seem to slightly underperform compared to the chunked hypernet-
work on multitasking problems, it showed interesting results in generalizing their
knowledge to new tasks. The linear sparse hypernetwork manages to outper-
form the non-linear one and the chunked hypernetwork, especially for learning
new tasks that are radically different from the pretraining task.
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Chapter 6

Conclusion and future work

Conclusions. In this work, we started by reviewing the hypernetwork litera-
ture and we presented a typology of hypernetworks which clarifies the different
methods and architecture of hypernetworks.

Then, we proposed a new architecture for building complete hypernetworks
that are scalable to large target networks. This architecture takes the form of
a sparse expanding MLP. Different improvements were proposed with different
connectivity types and connectivity distributions. In particular, the normally
distributed connections allow to change the locality of the connections. The lin-
early decreasing and exponentially decreasing connectivity patterns efficiently
reduce the number of connections compared to the constant connectivity pat-
tern.

We tested different types of sparse hypernetworks and showed that the im-
provements defined in Section 4.2 were effective in improving the accuracy ob-
tained while keeping a lower number of parameters compared to the constant
and uniformly distributed connectivity pattern. The mixed and normal dis-
tribution patterns, which increase the locality of connections compared to the
rand-perm and uniform distribution, helped the model perform better. The
linearly decreasing and exponentially decreasing connectivity types improve the
performance by increasing the connectivity in the first layers of the sparse hy-
pernetwork.

The experiments show that the sparse hypernetworks can match the average
accuracy obtained by the current method of chunking on multitasking classifi-
cation problems. However, chunked hypernetworks were slightly better on more
complex problems like split CIFAR100/10. The experiments also interestingly
showed that linear sparse hypernetworks reached performance close to the non-
linear ones.

Finally, the final experiments on task inference provide interesting results.
They showed that the sparse linear hypernetworks, which are much simpler
models than the non-linear ones and the chunked ones, obtained lower accuracy
when pretrained on a set of tasks but a higher accuracy than the other models
when inferring new target models for new tasks, especially in the case of new
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tasks that are completely different from the pretraining tasks.

Future work. The sparse hypernetwork model shows promising results. How-
ever, they could be improved in many ways.

Experiment 5.4, on sparse target networks, does not adapt sparse hypernet-
work to deal with the sparsity of the target network, which means that some
parameters are uselessly predicted and set to zero afterward. It would be inter-
esting to change the structure of the sparse hypernetworks to take into account
the sparsity of the target network, which would yield sparse-to-sparse hyper-
networks (sparse hypernetworks producing sparse target networks). This would
result in a better parameter efficiency of the sparse hypernetwork and could
potentially increase the performance.

We provide different ways of connecting the neurons of the sparse hyper-
networks. However, these choices are done before training. Sparse evolutionary
training (Mocanu et al. [2017]) could be applied to further improve the results of
these models. This method changes the connections of a sparse neural network
during training.

Our study analyzes sparse hypernetworks on multitasking problems. It
would be interesting to test these methods on input-based and noise-based hy-
pernetworks and compare them with chunked hypernetworks. Sparse hypernet-
works could provide more diversity of parameters than the chunked ones with
noise-based hypernetworks.

We could also dive deeper into multitasking problems to try to build inter-
pretable multitasking models. The last experiment in 5.5.4, tries to look at the
performance of an average model on an average task. We could extend this
concept and try to build hypernetworks that can compose the values of their la-
tent space z in order to perform on the composition of the corresponding tasks.
There are still some questions to answer, such as what kind of task compositions
are possible with hypernetwork and how to actually compose tasks and models
?

The sparse linear hypernetwork showed promising results for task inference,
but is still far from perfectly solving new tasks. Future studies could aim to im-
prove hypernetworks capabilities, maybe by trying to regularize hypernetworks
in order to avoid meta-overfitting on the task on which it is trained.

Finally, the proposed architecture, sparse expanding networks, has been ap-
plied to hypernetworks because they require a large output space. However,
other problems require a large output space without having a particular struc-
ture unlike images. Extreme multi-label learning (XML) is a problem which re-
quires a potentially large output space. The sparse expanding networks, which
obtained good results with hypernetwork, could be applied in this setting in
future research.
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Appendix A

Proofs

A.1 Proof of 4.13

.
Proof of

n

2L

[
(L+ 1)

L∑
l=1

2l −
L∑
l=1

l2l

]
≤ 4n

From geometric series theory, we have

L∑
l=1

2l = 2L+1 − 2

.
For s =

∑L
l=1 l2

l, we proceed as follows.
s = 2 +2× 22 + 3× 23 + ... +L× 2L

2s = +1× 22 + 2× 23 + ... +(L− 1)× 2L +L× 2L+1

s-2s = 2 +22 +23 + ... +2L −L× 2L+1

Therefore:

−s =

L∑
l=1

2l − L× 2L+1

−s = 2L+1 − 2− L× 2L+1

s = −2L+1 + 2 + L× 2L+1

s = (L− 1)× 2L+1 + 2
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Finally:

n

2L

[
(L+ 1)

L∑
l=1

2l −
L∑
l=1

l2l

]
=

n

2L
[
(L+ 1)(2L+1 − 2)− ((L− 1)2L+1 + 2)

]
=

n

2L
[
(L+ 1)2L+1 − 2L− 2− (L− 1)2L+1 − 2

]
=

n

2L
[
(2)2L+1 − 2L− 4

]
≤ 4n

A.2 Explaination on uniform connectivity

With a uniform distribution of connection as described in Section 4.2.3, there
will be approximatly 1

ebcl
hl1 input neurons that are not connected to any output

neurons for large hidden layers. For a single draw of input neuron, there is a
chance of 1− 1

hl−1
that an input neuron is not chosen. For n independent draws,

there is a (1 − 1
hl−1

)n chance that an input neurons is not chosen. In the case

of a sparse hypernetwork, we have hl−1 = hl
b (with b the expansion factor) and

we make clhl draws. The chance that an input is not chosen after these clhl
draws is (1 − b

hl
)clhl . However, we have limn→∞(1 + x

n )n = ex. Therefore we

have limhl→∞(1 − b
hl

)clhl = e−bcl , which is the asymptotic probability that an
input neuron is not chosen for large hidden layers.
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Appendix B

Experimental settings and
further details

The main training hyperparameters are presented here. The experiments con-
cern multitasking problems. In order to train multitasking hypernetworks con-
ditioned on a task, we use batches composed of a single task but we averaged
the gradients of 3 consecutive batches to estimate the gradient over multiple
tasks. The tasks are sampled in a random order.

During training, we monitor the performance of the model on a validation
set. We apply an early stopping strategy on the validation accuracy of the
model, with a patience of 20 epochs by default. We also progressively reduce the
learning rate by monitoring the validation accuracy. The learning rate is reduced
by a factor of 2 after a series of non-improving epochs. We use a patience that
is half of the early stopping patience. The training hyperparameters are shown
in Table B.1, while the default hyperparameters for the sparse hypernetworks
are shown in Table B.2.

Parameter Value
learning rate 1e-3

batch size 25
number of batch accumulated 3

optimizer Adam
gradient clipping value 1.0

learning rate reducing factor 0.5
validation accuracy monitor patience 20

learning rate reducing patience validation accuracy monitor patience / 2
validation split size 10% of the initial traning set

number of trials (for averaging) 5

Table B.1: Default hyperparameters used during the experiments
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Parameter Value
expansion factor 2

non linearity PReLU
constant connectivity 3

connectivity distribution Gaussian
latent size (d) 64

σ latent size / 4
connectivity type linearly decreasing

input normalization yes

Table B.2: Default hyperparameters for sparse hypernetwork used during the
experiments

Models The chunked hypernetwork is implemented as an MLP with hidden
layers 2d − 2d − d nC e, where d is the latent size of z, n is the number of pa-
rameters of the target network and C is the number of chunks. The input is
the concatenation of the d-dimensional vector z with a d-dimensional chunk
embedding vector (there are C of them), hence the 2d input size.

The expert models for a multitasking problem with t tasks simply consists
in t identical models that are trained on each task. For comparison with hyper-
networks, the model chosen for an expert is the target network of the hypernet-
works.

Inference time of sparse hypernetworks Another measure of the perfor-
mance of hypernetworks is the time required to forward them. Sparse hyper-
networks use sparse representation of matrix parameters instead of the typical
dense implementation, which may have an impact on performance. Here, we
report the time to predict a target network on CPU (Intel core i5-1035G1) in
Table B.3.

Model Nbr. parameters Output size Time
Sparse Hypernetwork 4.13M 1048576≈1M 24 ± 3.12ms

Chunked Hypernetwork 4.13M 1048576≈1M 7.34 ± 0.4ms
Sparse Hypernetwork 66.2M 16777216≈16.8M 400 ± 6ms

Chunked Hypernetwork 65.6M 16777216≈16.8M 115 ± 0.4ms

Table B.3: Time to predict a target network of different sizes (mean±std of 5
runs of 10 loops). The chunked hypernetwork has 33 chunks and the dimension
of the input z is 64. The chunked hypernetwok is more than 3 time faster than
the sparse one.
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