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Abstract

This thesis deals with density-based topology optimisation applied in the scope of a conju-
gate heat transfer problem. After an explanation of the methods of topology optimisation,
the latter is specified to fluid based problems, and especially to conjugate heat transfer ap-
plications for which the density-based method is used.

The goal of the optimisation is to maximise the heat transferred to the coolant fluid while
limiting the pressure drops as much as possible. A single type of design variable stands for
the representation of the material distribution. Through this variable, the presence of solid
will be taken into account thanks to a Brinkmann type penalisation term that is included
in the flow equations. This term blocks the flow where there should be solid material. The
temperature is modelled through the convection-diffusion equation which describes both con-
duction in the solid and convection in the fluid. As the gradient-based approach is used to
perform the optimisation, the design variable can take intermediate values which leads to an
unclear topology. To cope with this, a processing of the design field known under the name
of the Three Field Scheme Topology Optimisation is used.

The analysis of the density-based topology optimisation is conducted on a simple conjugate
heat transfer problem using the adjointOptimisationFoam solver of OpenFOAM. The opti-
misation conducted topologically proves its efficiency by increasing up to almost 200% the
heat transferred to the coolant fluid, and a drastically reduced pressure drop compared to
the initial configuration of the domain.

The method is then applied on the optimisation of a 3D heat exchanger subjected to a highly
turbulent flow. Although the design generated by the optimisation is not converged, the
method gave interesting topologies for the first optimisation cycles.
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Chapter 1

Introduction

1.1 Context and motivations
Optimising mechanical systems has always been the point of interest of engineers desiring
better and better performances. The fast development of computer aided programming along
with the validation of new methods has permitted to introduce sophisticated tools in the scope
of optimisation. Researchers being driven by the wish of creating more and more optimal
designs, lots of scientific studies have been led in the area. The utilisation of optimisation
methods is in fact a good alternative to conducting experiments on predefined structures
that could be expensive to do.

There exist several methods of optimisation. These can be grouped in three main categories:
size, shape, and topology optimisations. These are illustrated in Fig. 1.1. Size optimisation
consists in only changing the dimensions of the components of a given structure such as the
cross sectional area. Shape optimisation differentiates itself by the fact the boundaries are
first defined and then the optimisation process leads to modifications in the boundary. In
contrast to that, topology optimisation can create new boundaries, new holes, and can also
modify the dimensions of the system.

Topology optimisation:

Shape optimisation:

Size optimisation:

Figure 1.1: Comparative illustration of size, shape, and topology optimisations [1].
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Given the bigger freedom in topologically optimised structures, topology optimisation (TO)
is the most revolutionary method. Topology optimisation saw a growing importance in the
past few decades in the design process of optimal structures. With the flexibility brought by
additive manufacturing (AM), the use of topology optimisation has been prompted in order
to create non-intuitive structures that meet challenging objectives. Together with the ease
of AM, complex shapes that fulfil burdensome criteria can be manufactured. The idea is to
find the optimal distribution of material given a certain objective function that has to be
minimised (or maximised) and some constraints that have to be verified. Thus, the question
is ”where to put the material ?” or similarly ”where the holes should be ?”. Today, topology
optimisation is a mature technique in the scope of solid mechanics where the method sees its
origins. Topology optimisation techniques are available in almost all finite element analysis
(FEA) packages and computer aided design (CAD) packages. The very first application of
topology optimisation dates back to 1904 with Michell’s truss theory invented by George
Michell [3]. The aim of the method was to decrease the volume of trusses under a single
load and a stress constraint. In the late 1980s, topology optimisation saw again the day with
the works of Bendsoe and Kikuchi on the homogenisation method [4]. With their article,
topology optimisation became a revolutionary technique. Soon after, the SIMP method has
been developed by Bendsoe [5] and Rozvany et al. [6]. In the beginning of the 2000’s, the
level set method was introduced successively by Wang et al. [7] and Allaire et al. [8].

All of these methods have been applied to structural mechanics problems. They can also be
applied to problems including various types of physics where the governing equations can be
expressed by partial differential equations. The method is in fact extendable to fluid flow,
acoustics, electromagnetism, biomedical designs, etc [9].

As topology optimisation can be coupled to any type of application, this efficient method is
now commonly used in thermal applications. The optimisation of thermal systems mainly
relied on trial and error methods which are very time consuming and expensive due to the
need of experimental data. With topology optimisation, much more sophisticated topologies
are created in an efficient way with a great enhancement of the features of the design.

1.2 Objectives
The goal of this thesis is to first figure out the methodology that is behind topology optimisa-
tion. A detailed explanation of the methods used in general topology optimisation problems
will be provided. Then, the specification to fluid-based problems, applied in this study to
conjugate heat transfer (CHT) problems, will be done.

Once the theory is understood, a practical CHT application will be considered in 2D. This
consists in the heat transfer between a solid body and a fluid flowing inside it. The objectives
of this study will be to maximise the heat transferred to the coolant fluid while minimizing
the pressure drops. This analysis will then permit to see the effects of the different parame-
ters involved in the optimisation.

3



After that, the method will be validated using a body-fitted mesh. The computed heat
transfer and pressure losses given by this body-fitted mesh will be compared to the results
of topology optimisation. This will allow to corroborate the approach used in fluid based
topology optimisation.

Then, the optimisation of a 3D heat exchanger subjected to a highly turbulent flow will be
tried. This will show how difficult is to treat such a problem.

The study will finally end with perspectives of what could be done in future works. These will
give an insight of the points that have to be handled in order to ameliorate the methodology
used in topology optimisation.

1.3 Thesis outline
Following this introductory chapter, a detailed theoretical study of topology optimisation
will be done in chapter 2. The theory will be first explained for general methods of topology
optimisation that have been already used in structural mechanics. Then, a specification
for the fluid based problems will be performed. A review of existing works of topology
optimisation in fluid problems will be done. Following this, the governing equations used for
the density-based method applied on CHT problems will be constructed. Together with this,
new developments related to the treatment of the material distribution will be presented.
After that, the continuous adjoint formulation will be provided. The latter being commonly
used in topology optimisation problems, it will be specified for the case of a CHT problem.
The chapter will finally end with the general procedure of topology optimisation in fluid
problems. Subsequently, a complete study of the parameters involved in CHT topology
optimisation will be done in chapter 3. To do this, the adjointOptimisationFoam [10] solver
of OpenFOAM will be used. Then, the optimisation of the 3D heat exchanger will be
handled in chapter 4. The work will end in chapter 5 with a brief conclusion and future
objectives.
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Chapter 2

Theoretical background

In this chapter, the principal different methods that exist in topology optimisation will be
briefly described. Then, a chronology of the method will be done with pioneering works in the
scope of fluid based problems. Subsequently, the technique will be mathematically specified
using the density-based method for fluid applications, and especially CHT problems, with a
detailed explanation of the adjoint formulation and all other particularities related to these
types of problems.

2.1 Methods in topology optimisation
The general methodology of a topology optimisation problem is to find the optimal distribu-
tion of material, given a design domain, constraints and an objective function that describes
the performance of the system that has to be minimised (or maximised). To do so, topology
optimisation seeks for the optimal value of a certain design variable value at each node (for
vertex-centered codes) or cell (cell-centered codes). The two significant values of this design
variable are one and zero to which correspond respectively solid and void entities.

There exist two main categories of topology optimisation techniques that can be found in the
literature. These are the gradient-based (GB) and non-gradient based (NGB) algorithms.
The GB algorithms are the most mature ones with various methods that will be described
later. NGB algorithms are quite new and keep appearing in the literature.

In the current thesis, the GB method will be used. As the gradient information is needed, the
design variable has to vary continuously between zero and one, corresponding respectively
to void and solid, in order to be able to compute the gradient. This leads to grey regions
which are difficult to interpret and blur the transition from solid to fluid regions. Never-
theless, there exist numerous techniques that permit to obtain a discrete 0-1 design. These
techniques are for example the penalisation, thresholding, or projection methods that will be
explained later. The computation of the gradient may seem to be very costly as the number
of design variable is very high in a practical topology optimisation problem. But this is not
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a big issue since there exists a very efficient way of computing the gradient with the adjoint
formulation that will be clarified later.

When using GB methods, the dependency of the obtained solution on the initial guess is
highly important. There are lots of design variables and the convergence to a global optimum
is less and less susceptible with increasing number of design variables. This is illustrated
in Fig. 2.1 for an arbitrary 2D function f(x1, x2). The optimisation path, and hence the
obtained solution greatly depend on the initial conditions. Note that the center of smallest
contour circles correspond to the minima of an arbitrary 2D function whose values are not
shown for sake of clarity. This aspect is very difficult to cope with when employing topology
optimisation problems. Nevertheless, GB methods are widely used in the scope of topology
optimisation, and there are many methods that are mature enough and have been widely
used. They are summarized in the following subsections.

Figure 2.1: Contour plots of an arbitrary 2D function f(x1, x2) with three different opti-
misation paths depending on the initial guess.

2.1.1 Homogenisation method
Introduced by Bendsoe and Kikuchi [4], the homogenisation method is considered to be the
pioneering work in computed-aided topology optimisation. In this technique, the computa-
tional domain is divided into finite elements. Each of them are treated as porous material
with controllable micro-structures. The micro-structures are constructed with a certain pe-
riodicity with some voids inside the element. By tuning the micro-structures of the unit
cells, the macro-scale properties can be adapted in order to give rise to a structure that is
well-suited for some stress level and minimise a given objective function.
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2.1.2 Hard kill methods
The hard kill methods can be seen as ’discrete’ methods in which each element is handled as
material or void. The idea of these methods is to remove and add gradually elements, that
are filled with material or that are void, into the structure.

The most well-know method is the evolutionary structural optimisation (ESO) [11] in which
the elements are removed gradually. Its recent version, called bi-directional evolutionary
structural optimisation (BESO) [12], permits also the addition of elements that are filled or
not with material. In these methods, ’grey’ elements, i.e. elements that are neither filled
totally with material nor void, are omitted thanks to the explicit addition or removal of
material.

2.1.3 Boundary variation methods
Boundary variation methods were firstly used in shape optimisation. Boundary movement
techniques in topology optimisation allow both changes in the structural boundaries as in
shape optimisation, but also topological changes, i.e. creation, disappearance, and combina-
tion of void zones.

One of the techniques commonly used is the level-set method. The boundaries are represented
implicitly through the contour line of a field that depends on the design variable. This field
is a scalar function ϕ called the level-set function. The boundaries are represented by closed
curves Γ defined as

Γ ” t(x, y)|ϕ(x, y) = 0u.

Thereupon, the boundaries are modified implicitly by controlling the level-set function taking
into consideration the considered physical problem and optimisation conditions [13].

This method was first introduced by Osher and Sethian [14] for moving interface problems
in physics. It has then been used in numerous research areas [15, 16], and then in topology
optimisation in the early 2000s by Sethian and Wiegmann [17] where the goal was to represent
the free boundary of a structure for linearly elastic problems.

2.1.4 Density methods
Density based methods are the most popular techniques used structural topology optimi-
sation. These are an extension of the homogenisation method. The advantages of using
such a process is its simplicity and ease of implementation. They have the ability to change
dramatically the design of a given structure. This is done thanks to the knowledge of the
design sensitivities over the optimised domain. This makes the power of the method. Its
SIMP (Solid Isotropic Material with penalisation) variation is the most common techniques
used to find optimal material distribution. This method was proposed by Bendsoe [5] and
Rozvany et al. [6].
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The idea is to divide the domain into finite elements that are filled or not with an isotropic
material. To reflect this, a density ρe is associated to each element:

ρe =

$

&

%

1 when the element is filled with material
0 when the element is empty

But the problem is binary. That is why a continuous relative distribution of density is
introduced. Each element can have a density between a certain minimum value and one.
This leads to porous elements, i.e. elements with intermediate values of the density. Due to
the continuous variation of the density, if the Young Modulus is for example characterized
inside a given problem, then this quantity varies also continuously. This is expressed by the
following equation:

E(ρe) = ρpeEo

where p is a penalty factor and Eo is the Young Modulus of the isotropic material. The
variation of the Young Modulus with the density is illustrated in Fig. 2.2. It can be pointed
out that the increase of the penalty factor makes drop the contribution of the porous elements.

Figure 2.2: Relative Young modulus variation with the density for increasing value of the
penalisation factor p.

The most common application of the density-based approach in solid mechanics is the max-
imisation of stiffness, i.e. minimisation of the compliance C:

$

&

%

min C(ρ) = uTF(ρ)
s.t. K(ρ)u = F

(2.1)
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where C is the compliance, u is the displacement vector, F is the vector of forces applied
on the structure, and K is the stiffness matrix. In order to find the optimal material distri-
bution, the optimiser needs the sensitivities of the objective function. These correspond to
the derivatives of the objective function C with respect to the design variables which are the
densities associated to the elements.

This method will be used in the scope of this thesis. The specification to a CHT problem
will be done later.

2.2 General procedure of a topology optimisation prob-
lem resolution

Now that the main GB methods of topology optimisation are known, the purpose is to know
how a general problem of topology optimisation is solved. First of all, the computation of
the gradient will be explained. Then, the succeeding goal will be the explanation of how the
sensitivities are used in order to update the design variables.

In the upcoming subsections, the efficient approach of using the adjoint approach for com-
puting the sensitivities will be explained. Then, the update of the design variables with
the method of moving asymptotes (MMA) combined with the optimality criteria will be
described.

2.2.1 Adjoint approach for computing the sensitivities
There exist several ways of computing the gradient information of an objective function.
This could be done thanks to the finite differentiation (FD) or the direct differentiation
(DD). The issue is that an optimisation problem is often constrained by partial differential
equations (PDE’s) that have to be satisfied. For example, in the FD method, each of the
design variables is perturbed by an infinitesimally small quantity, and then the variation of
the objective function divided by this small perturbation gives the sensitivity with respect to
the considered design variable. The complexity is the resolution of the PDE’s for each per-
turbed design variable, which is very costly in topology optimisation due to the high number
of design variables. A more cost-effective method is thus needed in order to compute the
gradient.

The adjoint method is an efficient approach that prevents the resolution of the PDE’s each
time a component of the gradient is computed. To prove the competence of the approach, a
classical optimisation problem of the following form is considered

$

&

%

min J(U, x)

s.t. R(U, x) = 0
(2.2)

with J(U, x) (RnU ˆ Rnx ÝÑ R) is an objective function to be minimised, x corresponds to
the design variables, U is the set of state variables, with the relationship R(U, x) = 0 for a
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function R (RnU ˆ Rnx ÝÑ RnU ) to be satisfied. The methodology employed to explain the
adjoint approach is the same as in [18].

The goal is to compute the total variation, or the sensitivity, of the objective function with
respect to the design variables. The relationship R(U, x) = 0 is generally complicated to
solve. For given given values of the design variables, the state variables U are obtained by
the resolution of R(U, x) = 0. When employing for FD or DD methods, then nx finite dif-
ferences must be computed, which means that R(U, x) = 0 must be solved nx times. For
a topology optimisation problem, this becomes rapidly expensive due to the presence of a
lot of design variables, i.e. because of the high value of nx. With the adjoint approach, the
computational cost is significantly decreased compared to the FD (or DD) approach since
the adjoint method introduces a set of equations to be solved only once together with the
relationship R(U, x) = 0 that is then solved also only one time in the scope of one optimisa-
tion cycle.

Considering the simple case of an objective function directly depending on the state variables,
then J ” J(U) where the state variables U depend on the design variables x. The aim is to
compute cost-effectively dJ/dx defined as

dJ

dx
=
dJ(U(x))

dx
=

BJ

BU

dU

dx
(2.3)

and
R(U, x) = 0 (2.4)

must be satisfied everywhere. Eq. 2.4 implies that dR/dx = 0 because R = 0 for each of the
design variables.

The adjoint approach makes use of the adjoint variables through the construction of the
Lagrangian given by the following equation

L(U, x, ξ) ” J(U) + ξTR(U, x) (2.5)

where ξ is the vector of Lagrange multipliers (or adjoint variables).

As R(U, x) = 0 for each x, L(U, x, ξ) ” J(U) and ξ can be chosen freely. With this new
variant of the objective function J(U), Eq. 2.3 becomes

dJ

dx
=
dL
dx

=
BJ(U)

BU

dU

dx
+
dξT

dx
R + ξT

(
BR

BU

dU

dx
+

BR

BU

)
=

BJ

BU

dU

dx
+ ξT

(
BR

BU

dU

dx
+

BR

BU

)
=

(
BJ

BU
+ ξT

BR

BU

)
dU

dx
+ ξT

BR

BU
.

(2.6)

If ξ is chosen such that
BR

BU

T

ξ = ´
BJ

BU

T

(2.7)
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then the expensive computation of dU
dx

is avoided, and the final expression of the sensitivity
of the objective function with respect to the design variables is then given by

dJ

dx
= ξT

BR

BU
. (2.8)

Eq. 2.7 represents the adjoint equation that has to be solved only once in order to derive the
final sensitivity of J . Note that once the adjoint variables are obtained thanks to Eq. 2.7,
then dJ/dx is obtained with the vector dot product between the adjoint variables ξ and
BR/BU at a negligible cost compared to solving the equation R(U, x) = 0 nx times.

Now that the approach used in order to compute the sensitivities is known, the following
step is to introduce how the design variables are updated. This is detailed in the upcoming
section.

2.2.2 Method of moving asymptotes (MMA) and optimality crite-
ria

Once the sensitivities are computed, the design variables are updated using the Method of
Moving Asymptotes (MMA) or its Globally Convergent version (GCMMA). (GC)MMA is a
method that can handle easily the bounds imposed on the design variables and other types
of constraints. These methods were introduced by Krister Svanberg [19]. The explanation of
the method is the same as in [19].

A standard topology optimisation problem has the following form
$

’

’

’

&

’

’

’

%

min f0(x)
s.t. fi(x) ď 0 i = 1, ...,m

xmin
j ď xj ď xmax

j j = 1, ..., n

(2.9)

where f0(x) is the objective function quantifying the performance of the system, x is the
vector of dimension j comprising the design variables, fi(x) (i = 1, ...,m) are the functions
of the constraints of the problem that have to be verified, and xmin

j (resp. xmax
j ) is the lower

(resp. upper) bound of the design variables.

The idea of MMA is to generate a convex approximation of a given problem. Having a convex
problem helps in fact to solve it more easily since a convex problem has a unique solution.
This convex approximation gives rise to a sub-problem. Once this convex sub-problem is
solved, its solution is a new iterated point around which a new convex approximation is
done, and thus gives a new sub-problem that is solved, and its solution is again a new
iterated point. The process continues until the optimal solution is reached. Its globally con-
vergent version (GCMMA) is also based on the same idea but is used as a kind of ”line search”.

So in order to update the design field, a convex approximation is done in each optimisation
cycle using MMA. Then, this sub-problem is solved using the Karush-Kuhn-Tucker (KKT)

11



conditions leading to a whole system of equations whose solution is obtained with the Newton
method. More details about these conditions will be given in the following subsection.

Whatever the considered optimisation problem, it will be based on the following form
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min f0(x) + a0z +
řm

i=1

(
ciyi +

1
2
diy

2
i

)
s.t. fi(x) ´ aiz ´ yi ď 0 i = 1, ...,m

xmin
j ď xj ď xmax

j j = 1, ..., n

y ě 0, z ě 0

(2.10)

where xj are the ”natural” design variables, n is their total number, yj (i = 1, ...,m) are
”artificial” optimisation variables, and the variable z P R. The functions f0, f1, ..., fm are
continuously differentiable real valued functions, xmin

j and xmax
j correspond respectively to

the lower and upper bounds of the design variables xj.
The coefficients must be such that:

• a0, ai, ci, and di are real numbers with a0 ą 0, ai ě 0, ci ě 0, di ě 0, and ci + di ą 0
for i = 1, ...,m;

• aici ą a0 for i = 1, ...,m with ai ą 0.

The reason why the problems will be based on problems of type (2.10) is that it has always
feasible solutions, and also at least one optimal solution. The proof is given in [19].

In order to make correspond problem (2.9) to (2.10), the parameters of (2.10) should be
chosen as follows:

• ai = 0 for each i, which leads to z = 0 in any optimal solution of (2.10);

• di = 0 for each i, and ci is a large number such that yi is enforced to be equal to zero
in any optimal solution of (2.10).

Proceeding this way, the optimal solution of (2.10) will then become the optimal solution of
(2.9).

Then it comes to the definition of the approximating sub-problem in each optimisation cycle.
At a given iterated point xk corresponding to the k ´ th optimisation cycle, the functions
fi(x) for i = 0, 1, ...,m are replaced by convex approximations gki (x). In order to construct
these approximating functions, the gradient information of the functions fi(x) at the current
iteration point xk is needed. There are also other parameters that intervene in the definition
of the convex problem. These are the upper and lower asymptotes ukj and lkj which can be
updated in each optimisation cycle. That is why we call them moving asymptotes. Based on
all of this information, the different functions are then approximated as

gki (x) =
n

ÿ

j=1

(
pkij

ukj ´ xj
+

qkij
xj ´ lkj

)
+ rki i = 0, 1, ...,m (2.11)
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where

pkij = (ukj ´ xkj )
2

(
Bfi
Bxj

(xk)

)+

, (2.12)

qkij = (xkj ´ lkj )
2

(
Bfi
Bxj

(xk)

)´

, (2.13)

rki = fi(xk) ´

n
ÿ

j=1

(
pkij

ukj ´ xj
+

qkij
xj ´ lkj

)
, (2.14)

(2.15)

with
(

Bfi
Bxj

(xk)
)+

= max
!

0, Bfi
Bxj

(xk)
)

, and
(

Bfi
Bxj

(xk)
)´

= max
!

0,´ Bfi
Bxj

(xk)
)

.

The MMA sub-problem is then defined as
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min gk0(x) + z +
řm

i=1

(
ciyi +

1
2
diy

2
i

)
s.t. gki (x) ´ aiz ´ yi ď 0 i = 1, ...,m

αk
j ď xj ď βk

j j = 1, ..., n

yi ě 0 i = 1, ...,m

z ě 0

(2.16)

where the bounds αk
j and βk

j are called moving limits and are updated in each optimisation
cycle as

αk
j = max

!

xmin
j ; xkj ´ 0.5(xmax

j ´ xmin
j )

)

, (2.17)

βk
j = min

!

xmax
j ; xkj + 0.5(xmax

j ´ xmin
j )

)

. (2.18)

Concerning the update of the moving asymptotes, this is done as follows
• k = 1 and k = 2:

lkj = xkj ´ 0.5(xmax
j ´ xmin

j );
ukj = xkj + 0.5(xmax

j ´ xmin
j ).

• k ě 3:

lkj = xkj ´ γkj (x
k´1
j ´ lk´1

j );
ukj = xkj + γkj (x

k´1
j ´ lk´1

j ).

where γkj takes by default the following values

γkj =

$

’

’

’

&

’

’

’

%

0.7 if (xkj ´ xk´1
j )(xk´1

j ´ xk´2
j ) ă 0

1.2 if (xkj ´ xk´1
j )(xk´1

j ´ xk´2
j ) ą 0

1 if (xkj ´ xk´1
j )(xk´1

j ´ xk´2
j ) = 0

(2.19)
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The value of the update parameter γkj is lower than unity when there is oscillation in the
optimisation process. This allows to stabilise the process.

An example of how MMA treats a problem is illustrated in Fig. 2.3 for the approximation of
the strain energy in a two-ply symmetric laminate subject to shear load and torsion. In this
case, at a given optimisation cycle k, the approximation being done at the black dotted point,
only the lower asymptote is activated due to the negative value of the first order derivative.
The role of the move limit is also noted. It prevents in fact the iterated point to not go far
away from the desired solution.

Figure 2.3: Approximation with MMA of the strain energy in a two-ply symmetric laminate
subject to shear load and torsion (only the lower asymptote and the upper moving limit are
activated in this case) [2].

2.2.2.1 Globally Convergent Method of Moving Asymptotes (GCMMA)

The Globally Convergent version of MMA exists also. This plays the role of some kind of ”line
search”. As a matter of fact, it may happen that the value of the approximating function gki
evaluated at the new iterated point xk+1 is lower than the value of the original function fi(x)
evaluated at xk+1. Therefore, if GCMMA is used, inner iterations are going to be generated.
The condition to have no need of inner iterations is thus

gki (xk+1) ě fi(xk+1) (2.20)

If the condition 2.20 is not satisfied, then inner iterations are created. These are denoted by
the symbol ν. The solution obtained by the outer iteration k becomes

xk+1 = xk,1
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with the number 1 corresponding to the first inner iteration. Then, from this point xk,1, a
new sub-problem is created and this new sub-problem is more conservative than the sub-
problem of the outer iteration. The problems generated in the inner iterations are similar
to the one of the outer iteration, but the inner sub-problems are much conservative thanks
to an introduction of a parameter ρk,νi associated to its corresponding function fi(x). The
approximating functions in GCMMA are given by

gki (x) =
n

ÿ

j=1

(
pkij

ukj ´ xj
+

qkij
xj ´ lkj

)
+ rki i = 0, 1, ...,m (2.21)

where

pkij = (ukj ´ xkj )
2

( Bfi
Bxj

(xk)

)+

+
ρk,νi

xmax
j ´ xmin

j

 , (2.22)

qkij = (xkj ´ lkj )
2

( Bfi
Bxj

(xk)

)´

+
ρk,νi

xmax
j ´ xmin

j

 , (2.23)

rki = fi(xk) ´

n
ÿ

j=1

(
pkij

ukj ´ xj
+

qkij
xj ´ lkj

)
. (2.24)

The parameter ρk,νi controls the conservative form of the approximating functions gki . It is
updated as follows

• if gk´1,ν
i (xk) ă fi(xk) then ρk,νi is increased in order to have a more conservative ap-

proximating sub-problem;

• if gk´1,ν
i (xk) ě fi(xk) then ρk,νi remains the same.

The strategy employed in GCMMA is showed in Fig. 2.4 where for increasing values of the
parameter ρk,ν , the approximations get more conservative.

The update rules for the moving limits and for the asymptotes are the same as for MMA. The
computation of the gradients of the functions fi(x) is done only one time and this happens
in the outer iteration k. In the inner iterations, this operation does not take place.
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Figure 2.4: Approximation with GCMMA of the strain energy in a two-ply symmetric
laminate subject to shear load and torsion; influence of the parameter ρk,ν (ρk,3 ą ρk,2 ą ρk,1

) [2].

2.2.3 Optimality conditions for the sub-problems
The sub-problems being convex, the KKT conditions are necessary and sufficient optimality
conditions. The methodology in order to derive these conditions is the same as in [19]. In
order to derive these conditions, the Lagrangian function corresponding to the problem (2.16)
is constructed

L(x, y, z) = gk0(x) + z +
m
ÿ

i=1

(
ciyi +

1

2
diy

2
i

)
+

m
ÿ

i=1

χi(g
k
i (x) ´ aiz ´ yy ´ rki )

+
n

ÿ

j=1

(ξj(αj ´ xj) + ηj(xj ´ βj)) ´

m
ÿ

i=1

µiyi ´ ζz (2.25)

where χ = (χ1, ..., χm)
T , ξ = (ξ1, ..., ξn)

T , η = (η1, ..., ηn)
T , µ = (µ1, ..., µm), and ζ are non-

negative Lagrange multipliers. These are also called the dual variables.

Taking into consideration the following equality

ψ(x, χ) = gk0(x) +
m
ÿ

i=1

χig
k
i (x) =

n
ÿ

j=1

(
pkj (χ)

ukj ´ xj
+

qkj (χ)

xj ´ lkj

)
(2.26)

where pkj (χ) = pk0j+
řm

i=1 χip
k
ij and qkj (χ) = qk0j+

řm
i=1 χiq

k
ij, the Lagrangian function becomes
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L(x, y, z) = ψ(x, χ) +
n

ÿ

j=1

(ξj(αj ´ xj) + ηj(xj ´ βj)) + (1 ´ ζ)z

+
m
ÿ

i=1

(
ciyi +

1

2
diy

2
i ´ χiaiz ´ χiyi ´ χir

k
i ´ µiyi

)
(2.27)

and the KKT conditions are written as

Bψ

Bxj
´ ξj + ηj = 0, j = 1, ..., n (2.28)

ci + diyi ´ χi ´ µi = 0, i = 1, ..,m (2.29)
1 ´ ζ ´ χTa = 0, (2.30)

gki (x) ´ aiz ´ yi ´ rki ď 0, i = 1, ...,m (2.31)
χi(g

k
i (x) ´ aiz ´ yi ´ rki ) = 0, i = 1, ..,m (2.32)

ξj(αj ´ xj) = 0, j = 1, ..., n (2.33)
ηj(xj ´ βj) = 0, j = 1, .., n (2.34)

´µiyi = 0, i = 1, ..,m (2.35)
´ζz = 0, (2.36)

αj ´ xj ď 0 and xj ´ βj ď 0, j = 1, ..., n (2.37)
´z ď 0 and ´ yi ď 0, i = 1, ...,m (2.38)

ξj ě 0 and ηj ě 0, j = 1, ...,m (2.39)
ζ ě 0 and µi ě 0, i = 1, ...,m (2.40)

χi ě 0, i = 1, ...,m (2.41)

where
Bψ

Bxj
=

pkj (χ)

(ukj ´ xj)2
´

qj(χ)

(xj ´ lkj )
2

and χTa =
m
ÿ

i=1

χiai.

Eq. 2.28 to Eq. 2.30 correspond the stationarity of the Lagrangian function, which constitute
the first requirement of the KKT conditions. Then, Eq. 2.31, Eq. 2.37, and Eq. 2.38 represent
the constraints of the problem which have to be verified. Eq. 2.32 to Eq. 2.36 represent the
complementary slackness equations, which stand for the third set of KKT conditions. And
finally, Eq. 2.39 to Eq. 2.41 denote the dual feasibility, which states that the Lagrangian
multipliers corresponding to inequality constraints must be non-negative.

In order to solve this system of equations, and thus to find the direction in which the op-
timisation path should go, the Newton method is used. Once the direction is found, a line
search is applied in order to find the optimal step length for the optimiser to move along the
direction. More details are given in [19].
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2.3 Topology optimisation in fluid flows
The goal is now to learn how of topology optimisation is used in fluid-based problems which
constitute the main application of topology optimisation in this thesis. For a given design
domain, the question is where the fluid should flow in order to minimise the objective func-
tion while satisfying the constraints imposed on the problem. When topology optimisation is
applied to fluid flow problems, the flow must be modeled by at least one governing equation.
These equations could be for instance based on the Darcy flow, modeling the flow of an
incompressible fluid in a porous medium, or the Stokes and Navier-Stokes equations.

For the general case of an incompressible Newtonian fluid, the Navier-Stokes equations are
written as

∇ ¨ V = 0

BV
Bt

+(V ¨ ∇)V ´ ν∇2V = ´
1

ρ
∇p+ g

where V [m/s] is the velocity vector, ρ [kg/m3] the density of the fluid, ν the kinematic
viscosity of the fluid [m2/s], p the fluid pressure [Pa], and g the body force per unit volume
[N/m3] (the gravity force for instance). The first equation represents the continuity equation
(or mass conservation) and the second equation corresponds to the momentum equation. The
Stokes equations are a linearisation of the Navier-Stokes equations. A Stoke’s flow consists
in a viscous fluid moving inside a narrow passage, leading to high viscous effects getting over
the advective inertial forces. This type of flow happens thus at very low Reynolds number.

Besides the equations governing the flow, additional equations modeling other physics can
be included. These could be for instance the equations governing the temperature, the struc-
tural mechanics, and so on. Thanks to this aspect, multi-physics topology optimisation can
be achieved. There are various domains in which fluid-flow topology optimisation is com-
bined with other physics. These are for instance problems including CHT, convection, fluid
structure interaction, micro-structure, and homegenisation.

In the framework of purely fluid-based, the first work on steady-state topology-optimisation
problem was published by Borrvall and Petersson in 2003 [20]. They have introduced topology
optimisation of Stokes (or creeping) flow. They have based their work on the general form
of the Stokes equation [21] which includes the term λI ´ ν∆, with λ [s´1] being the inverse
permeability, and ν [m2/s] the viscosity. When λ = 0, one recovers Stokes flow with viscosity
ν, and when ν = 0, one recovers Darcy flow that dictates the flow in a porous medium
with permeability λ´1. The idea of Borrvall and Petersson was to modify this general form
of the Stokes equation in such a way that the viscosity was kept constant, and the inverse
permeability was tuned in order to give a very small permeability λ´1 at non-fluid places, and
very large when the Stokes flow takes place. The role of λ is to play the role of a penalty factor
that blocks the flow, i.e. makes the velocity tend to zero at non-fluid places. The objective
of Borrvall and Petersson in this first study was to generate fluid topologies that minimises
the dissipated energy using inhomogeneous porous materials with a spatially varying Darcy
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permeability tensor. Later, this was generalized to the limiting cases of a porous material,
i.e. pure solid and pure fluid parts in the domain, by Evgrafov [22]. The work of Borrvall and
Petersson was extended to Navier-Stokes flow by Gersborg-Hansen et al. [23]. They have
noticed some coincidence between their equations and the ones of a Brinkman-type Darcy’s
law modelling the flow inside a porous medium. This led to the construction of equations
that include a penalisation term composed of a term proportional to the inverse of the Darcy
number and the velocity. This permits to model arbitrarily complex solid obstacles in the flow
as porous media with porosity and permeability approaching zero. So, in order to take into
account the presence of material in the fluid problem, a penalisation term is added to the flow
equations. Topology optimisation in fluid flows indeed makes use of a porosity-dependent
term in the flow equations. Olesen et al [24] proposed topology optimisation for steady-state
Navier-Stokes flow using this fictitious porous media approach. In their work, the presence
of solid material inside the domain has been taken into account through a ”friction” force f
which is proportional to the flow velocity and is written as

f = ´λv.

Including this force into NSE, the governing equations for a steady state incompressible flow
take the following form

Bvj
Bxj

= 0

vj
Bvi
Bxj

´
τij
Bxj

+
Bp

Bxi
+ λvi = 0

where τij = ν
(

Bvi
Bxj

+
Bvj
Bxi

)
[m2/s2] is the shear stress tensor, vj [m/s] are the velocity compo-

nents, p [Pa/(kg/m3)] is the pressure divided by the density, and ν [m2/s] is the kinematic
viscosity. In order to control the local permeability of the design domain, they have used a
design variable γ [-] which varies between 0 and 1. γ = 0 corresponds to solid material, and γ
= 1 to the absence of material. Note that the design variable can vary continuously between
zero and one assuming a porous and permeable material distribution. This approach allows
to have a smooth problem that can be solved with efficient methods that require the sensi-
tivities with respect to the design variable using (GC)MMA. Ensuing the work of Borrvall
and Petersson, a relation between the local inverse permeability λ and the design varaible γ
using a convex interpolation is introduced

λ(γ) ” λmin + (λmax ´ λmin)
q(1 ´ γ)

q + γ

with q [-] being a positive parameter that controls the shape of λ(γ). In order to have ideal
impermeable solid walls, λmax must tend to infinity but for numerical reasons this cannot
happen. λmax is chosen based on the Darcy number. This will be explained later. Concerning
the minimum value of λ, following [20], this has been set to zero. In areas where γ is close to
zero, the inverse permeability λ is high, which means that the permeability λ´1 is very low,
and thus leading to a zone where no flow can take place. This can be easily understood by
considering the momentum equations here above. For large values of λ which happen for γ
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close to zero, in order to verify the equation of momentum, the flow velocity must tend to
zero. In contrast to that phenomenon, when γ is close to one, λ is close to zero, and thus
the permeability λ´1 is high. This allows the fluid to flow and the momentum equation gets
towards the classical momentum equation of Navier-Stokes.

Guest and Prévost [25] have then suggested a hybrid approach in which the solid regions
correspond to areas with Darcy flow of low permeability, and the fluid around them are
subjected to Stokes flow. To do so, they have used a Darcy-Stokes finite element interpola-
tion. Othmer derived a continous adjoint formulation for shape and topology optimisation of
Navier-Stokes flow [26]. This was done in the scope of the finite volume solver OpenFOAM.
The adjoint formulation is important in the framework of fluid-based TO for the computation
of the sensitivities with respect to the design variables. As the number of design variables can
be in fact very high, computing directly the sensitivities of the objective function with respect
to the design variables costs a lot. The adjoint method permits to compute the gradient of
the objective function at a cost that does not depend on the total number of design variables.

Topology optimisation for unsteady flow has also been done in the past. One of the first
applications was done by Kreiss et al. [27] who utilised density-based topology optimisation
in order to enhance the design of a diffuser and oscillating flow manifold using a discrete
transient adjoint formulation. After that, Deng et al. [28] applied density-based topology
optimisation for unsteady flow using continuous transient adjoint formulation.

Concerning fluid topology optimisation in which turbulence is taken into account, these are
limited to steady-state time-averaged turbulence although turbulence is a time dependent
phenomenon. The approximation is done thanks to the Reynolds-Averaged Navier-Stokes
(RANS) equations.
Othmer [26] included turbulence in his model, but the variation of the turbulent viscosity with
the design variable was not taken into account by making the ”frozen turbulence” assump-
tion. Kontoleontos et al. [29] performed for the first time topology optimisation including
the turbulence sensitivity using the Spalart-Allmaras turbulence model in their continuous
adjoint formulation. Other examples of turbulent flow topology optimisation can be found
in [30], [31], and [32].

Topology optimisation has also been used in CHT problems. This type of heat transfer is
about the coupled one between a solid and the surrounding fluid. Forced convection and
natural convection are the mechanisms of CHT including fluid motion. Forced convection
takes place when the flow is activated by a pump, a fan, or a pressure-gradient, while natural
convection is due to temperature differences giving density variations.
Many works have emerged in the field of forced convection. The first ones are the studies
presented by Dede [33, 34] and Yoon [35]. After that, several applications have then appeared
for forced convection. Dede has again used topology optimisation for electronics cooling [34],
Matsumori et al. [36] optimised topologically the heat sinks under forced convection with
a constant input power. Then, Mark et al. [37] considered a multi-objective function in-
cluding both thermal and fluid objectives in their optimisation problem. Zhang and Gao
[38] have also optimised with a density-based approach thermal devices with non-Newtonian
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fluid flows. Topology optimisation has also been used in order to enhance heat exchangers
with two separate fluids and solids, as Tawk et al. did [39]. Concerning natural convec-
tion, Alexandersen et al. [40] are the first ones to have presented a work about it with a
density-based approach in order to optimise heat sinks and buoyancy-driven micro-pumps.
Alexandersen et al. [41] have then applied their method to the optimisation of passive coolers
for light-emitting diode (LED) lamps. Lazarov et al. [42] validated then the designs of [41]
using additive manufacturing in aluminium. They have proven the agreement of the designs
with numerical results.

Topology optimisation can also be used in the framework of fluid-structure interaction (FSI)
problems. Three main types of FSI topology optimisation exist. These are called wet, dry,
and wet and dry design modifications. A wet modification corresponds to only the internal
change of the design without affecting the solid-fluid interface. The dry design modification
changes only the solid-fluid interface. Finally, the wet and dry optimisation includes both
wet and dry design modifications. The first work on FSI topology optimisation was proposed
by Yoon [43] who had used a density-based approach.

Now that a general review of the applications in which fluid based topology optimisation
has been used, the formulation of the method topology optimisation will be done for CHT
problems in the following section.

2.3.1 Problem formulation of conjugate heat transfer topology op-
timisation with one fluid

The aim is now to appropriate the concept of topology optimisation for the enhancement
of structures involving conjugate heat transfer (CHT). CHT consists in the combination of
conduction in a solid together with convection through a fluid that is in contact with this
solid. In the current work, CHT problems are handled with only one fluid.

The current technique used in order to approach topology optimisation with one fluid is
density (or porosity) based. When dealing with density-based topology optimisation in fluid
problems, the design variable is noted α [-] and corresponds to the amount or volume fraction
of material present in each control volume. Then, topology optimisation aims at finding the
optimal material distribution by tuning α in each control volume in order to minimise a
certain objective function while verifying given constraints. Parts of the domain which are
counterproductive with respect to an objective function J , which represents the performance
of a system, are solidified, while the other ones are the fluid zones in which the flow takes
place. If α is equal to one at a given cell, this corresponds to a solid cell, while α equal to zero
represents a void cell, i.e. where the fluid can flow. The goal is to have a discrete solution with
0/1 distribution of the design field α. However, the problem must be relaxed in order to be
able to use gradient based methods when solving the problem. Therefore, α is allowed to take
intermediate values between zero and one, which represent respectively the lower and upper
bounds of the design variables. Regions with intermediate values of density are called grey
regions which are complicated to interpret. In order to have a final discrete distribution with
well defined solid and fluid regions, some post-processing must be applied to the design field.
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New developments related to this treatment of the design field are also included. These are
namely called the regularisation and projection. All of these will be explained in details later.

The CHT topology optimisation problem can be formulated as follows
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min
α

J(α,U)

s.t. gi(α) ď 0 i = 1, ...,m

0 ď αj ď 1 j = 1, ..., N

R(α,U) = 0

(2.42)

where J is the objective function, gi(α) are the constraints, m is the total number of con-
straints, N is the total number of design variables which is equal to the number of cells
when using finite volume discretisation, R(α,U) represents the equations modelling the flow
that have to be verified, and U is the vector of the state variables. In a fluid-flow problem
combined with heat transfer, these are commonly the velocity, the pressure, the temperature,
and the turbulent variable which is the turbulent viscosity. The state equations are dictated
hereafter.

Navier-Stokes equations

The flow is modelled thanks to the the steady-state Navier-Stokes equations for an incom-
pressible fluid. Taking into account the presence of the material using the penalisation
term that acts as a resistance force that ”freezes” the flow in solid areas, i.e. including the
Brinkmann penalisation term, the equations are written as follow

Rp =
Bvj
Bxj

= 0 (2.43)

Rv
i = vj

Bvi
Bxj

´
B

Bxj

(ν + νt)

(
Bvi
Bxj

+
Bvj
Bxi

)+
Bp

Bxi
+ λ(β)vi = 0 (2.44)

where vj [m/s] are the velocity components, ν [m2/s] is the fluid kinematic viscosity, νt [m2/s]
is the turbulent viscosity, λ [s´1] corresponds to the inverse permeability and depends on β
taking values in [0;1]. The field β relies on the design variable α and represents the same
thing. β is obtained after the post-processing applied on α. This will be explained in details
later.

The Brinkmann penalisation term is written with an interpolation based on the porosity
filed. This interpolation makes then a relation between the local inverse permeability λ and
the design field:

λ(β) ” λmaxI(β) (2.45)
with I(β) being the interpolation function. There exists several interpolation functions that
will be studied deeply later in order to know which one is best suited for a common CHT

22



problem.

Turbulence model

Turbulence leads to an increased viscosity. The turbulent viscosity νt is modelled thanks to
the Spalart-Allmaras one equation turbulence model which defines νt as

νt = ν̃fv1 (2.46)

with the turbulent variable ν̃ obtained thanks to the resolution of the following equation

Rν̃ =
B(vj ν̃)

Bxj
´

B

Bxj

[(
ν +

ν̃

σ

)
Bν̃

Bxj

]
´
cb2
σ

(
Bν̃

Bxj

)2

´ ν̃P (ν̃) + ν̃D(ν̃) = 0. (2.47)

In Eq. 2.47, the production and dissipation terms are given by

P (ν̃) = cb1Ỹ ,

D(ν̃) = cw1fw(Ỹ )
ν̃

∆2

where
Ỹ = S +

ν̃

∆2κ2
fv2

with S = |eijk
Bvk
Bxj

ii| the vorticity magnitude, and ∆ the distance from the wall. Details about
model constants and functions can be found in [44].

Proceeding the same way as for the momentum equations, an additional source term is added
to Eq. 2.47 in order to take into account the presence of material:

Rν̃ =
B(vj ν̃)

Bxj
´

B

Bxj

[(
ν +

ν̃

σ

)
Bν̃

Bxj

]
´
cb2
σ

(
Bν̃

Bxj

)2

´ ν̃P (ν̃)+ ν̃D(ν̃)+λmaxI(β)ν̃ = 0. (2.48)

Eikonal equation

An additional state variable that appears when conducting the adjoint formulation, which
will be clarified later, in order to compute the sensitivities of a fluid-based problem is the
wall distance ∆. The differentiation of ∆ with respect to the design variable is thus taken
into account in the sensitivity analysis. The origin of the effect of the variation of ∆ with
α is detailed in [44]. In order to deal with B∆/Bα, the distance field ∆ is modeled with the
following equation called the Hamilton-Jacobi equation [44]

R∆ =
B(cj∆)

Bxj ∆

B2∆

Bx2j
´ 1 = 0 (2.49)

where cj = B∆/Bxj.
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Heat transfer equation

In a CHT problem, both convection in the fluid and conduction in the solid material take
place. The material distribution is not known a priori, so one cannot know which equation
should be adapted in each cell. Therefore, both convection and diffusion must be taken into
account.

The steady-state heat convection-diffusion equation without no sink nor source is written as

∇ ¨ (γth∇T ) ´ ∇ ¨ (vT ) = 0, (2.50)

In Newtonian notation, Eq. 2.50 becomes

B

Bxj

(
γth

BT

Bxj

)
looooooomooooooon

Diffusion

´
B

Bxj
(vjT )

loooomoooon

Convection

= 0. (2.51)

γth [m2/s] is the thermal diffusivity, and T [K] is the temperature.
The thermal diffusivity of a solid is defined as

γsth =
ks

ρscsp
(2.52)

where ks [W/(m¨K)] is the conductivity of the solid, ρs [kg/m3] is its density, and csp is the
specific heat capacity [J/(kg¨K)].
For a fluid, this is defined as

γfth =

(
ν

Pr
+

νt
Prt

)
(2.53)

where ν/Pr is the molecular thermal diffusivity of the fluid, and νt/Prt is the turbulent one.
Pr corresponds to the laminar Prandtl number quantifying the ratio between the momentum
diffusivity and the thermal diffusivity

Pr =
cfpµ

kf

where cfp [J/(kg¨K)] is the specific heat of the fluid, µ [Pa¨s] is the dynamic viscosity of the
fluid, and kf is the thermal conductivity of the fluid [W/(m¨K)]. The turbulent Prandtl num-
ber is denoted Prt and describes the ratio between the momentum eddy diffusivity εM [m2/s]
and the heat transfer eddy diffusivity εH [m2/s] [45].

As mentioned previously, the material distribution in the domain is not known beforehand.
In order to cope with this, the solution is to introduce the interpolation of the thermo-physical
properties between the solid and the fluid. This interpolation depends again on the field β.
The thermal diffusivity ratio becomes

γth =
k(Ik(β))

ρ(Iρ(β))cp(Icp(β))
+

νt(I
νt(β))

Prt(IPrt(β))
(2.54)
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where the interpolation functions I will be studied later.

As a result, the diffusion term of Eq. 2.51 becomes

B

Bxj

(
γth

BT

Bxj

)
=

B

Bxj

( k(Ik(β))

ρ(Iρ(β))cp(Icp(β))
+

νt(I
νt(β))

Prt(IPrt(β))

)
BT

Bxj

 . (2.55)

Concerning the convection term, the latter is multiplied by (1 ´ β) in order to cancel its
contribution in solidified parts of the domain. Taking this into account together with Eq. 2.55,
the CHT equation is derived

RT = (1 ´ β)ρ(Iρ(β))cp(I
cp(β))

B(vjT )

Bxj

´
B

Bxj

[(
k(Ik(β)) + ρ(Iρ(β))cp(I

cp(β))
νt(I

νt(β))

Prt(IPrt(β))

)
BT

Bxj

]
= 0

(2.56)

The primal equations that govern the steady-state incompressible flow of a CHT topology
optimisation problem are finally summarized here below:

Rp =
Bvj
Bxj

= 0 (2.57)

Rv
i = vj

Bvi
Bxj

´
τij
Bxj

+
Bp

Bxi
+ λmaxI

v(β)vi = 0 (2.58)

Rν̃ = vj
Bν̃

Bxj
´

B

Bxj

(ν + ν̃

σ

Bν̃

Bxj

)´
cb2
σ

(
ν̃

Bxj

)2

+ (´P (ν̃) +D(ν̃))ν̃ + λmaxI
ν̃(β)ν̃ = 0

(2.59)

R∆ =
B

Bxj
(

B∆

Bxj
∆) ´ ∆

B2∆

Bx2j
´ 1 = 0 (2.60)

RT = (1 ´ β)ρ(Iρ(β))cp(I
cp(β))

B(vjT )

Bxj

´
B

Bxj

[(
k(Ik(β)) + ρ(Iρ(β))cp(I

cp(β))
νt(I

νt(β))

Prt(IPrt(β))

)
BT

Bxj

]
= 0

(2.61)

A particular attention must be accorded to the value of the maximum inverse permeability.
λmax controls in fact the values of vj, ν̃, and ∆ in the solidified domain. In order to have
almost impermeable solid walls, λmax must tend to infinity. However, a very high value of
λmax may lead to numerical instabilities. A practical rule for choosing the value of λmax is
based on the Darcy number Da which represents the ratio between the viscous forces and
the porous forces:

Da =
ν

λmaxl2
(2.62)
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where l [m] is the characteristic length of the considered problem. This number must be small
enough in order to have vj, ν̃, and ∆ very close to zero in solidified zones. According to [24],
almost impermeable solid zones are obtained for Da À 10´5. This will be studied in chapter 3.

Concerning the boundary conditions, these are typical of an ordinary fluid problem. They
are summarized in Tab. 2.1 for the velocity U , the pressure p, the temperature T , and the
turbulent variables. Note that for the temperature, different type of boundary conditions
may be imposed on the solid walls. If some of the solid walls are in fact adiabatic, then a
zero Neumann boundary condition is imposed.

Inlet Outlet Solid walls

U Dirichlet zero Neumann zero Diricihlet
p zero Neumann zero Neumann zero Dirichlet
T Dirichlet zero Neumann Dirichlet or zero Neumann
ν̃ Dirichlet Zero Neumann Dirichlet
νt Dirichlet Dirichlet Dirichlet
∆ zero Neumann zero Neumann Dirichlet

Table 2.1: General primal boundary conditions for a CHT problem.

2.3.2 Three field topology optimisation scheme
When using a density (or porosity) based approach in topology optimisation, some modifi-
cations should be applied to the design field α in order to have a clear material distribution.
The design variable α varying between zero and one, grey zones with intermediate values of
α appear, which blurs the transition from solid to fluid regions. On top of that, checkerboard
patterns may appear. In order to deal with these effects, and have a clear transition from
fluid to solid parts without generating alternating fluid and solid zones, the design field must
be regularised and projected. The successive adjustments made on the field α give rise to
the three field topology optimisation scheme. The regularisation gives the regularised field
α̃. The projection applied on α̃ produces then the regularised and projected field β. If the
regularisation and the projection are omitted, then β corresponds to α. Note that if they are
activated, the regularisation and the projection are applied at the end of each optimisation
cycle. The order of the three field scheme steps and their respective effects are shown in
Fig. 2.5. For the non-regularised design field α, the checkerboard patterns are observed for
the white zones inside the black regions. The additional blurring brought by the regularisa-
tion is also remarkable for the regularised field α̃, but in which the checkerboard is removed.
Finally, thanks to the regularisation and the projection, a clear transition from fluid to solid
region is obtained.
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(a) Design field α. (b) Regularised design field α̃. (c) Regularised and projected
field β.

Figure 2.5: Three field scheme TO steps and their respective effects.

The interpretation of these fields is the same. A white region corresponds to a non-solid
place where the respective value of the field is zero and a solid region correspond to the black
color with the field equal to one in the solid parts. The proceedings of each step of the three
field topology optimisation scheme are explained in the following sections.

2.3.2.1 Regularisation of the design field

When using a density-based approach in topology optimisation, the solution is highly mesh-
dependent. With the refinement of the mesh, the solution may get more and more different.
Also, the material distribution can have checkerboard patterns, i.e. alternating solid and
fluid regions, which do not represent a physically acceptable flow. In order to avoid these
phenomena and mitigate the effects of the mesh such that the solution is mesh independent
without alternating fluid and solid zones, some modifications must be applied to the design
field α.

In order to deal with those problems, the solution is to regularise the density field such that
the latter looks smoother. Several techniques of regularisation have been implemented in the
past. One of the developed techniques is the density-based filter which is directly applied on
the design field α [46]. The density in a given cell depends on the density of the neighbouring
cells by modifying α of a cell based on the density of the nearby cells. This is done through
a convolution product

α̃(x) = (F ˚ α)(x) =
ż

B

F (x ´ y)α(y) dy (2.63)

where F is the filter function, α is the initial design field, α̃ is the filtered one, F is a weighting
function, and B is the support domain of the filter function. B is a circle in 2D and a sphere
in 3D, both of radius R. Given this circle (sphere), the density in a cell is a weighted average
of the density in the neighbouring cells, with the neighborhood given by this circle (sphere)
of radius R. There exists different weighting functions, but the most common one is the hat
function [47] defined as

F (x) =

$

&

%

1
Fw

(
1 ´

|x|

R

)
if |x| ď R

0 if |x| ą R
(2.64)
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where Fw is a weighting parameter ensuring that the filter preserves the total volume. This
condition is obtained thanks to the following integral

ż

B

F (x) dx = 1. (2.65)

Thanks to this condition, the material volume will be the same for the filtered field and the
non-filtered one.

The problem with this mesh-dependent density-based filtering is that it needs the information
of the neighbouring cells. Taking information from other cells that are close to a given volume
cell may be cumbersome when the geometry is complicated. The complexity of the process
also increases when employing parallel running. In this case, the domain being partitioned
into sub-domains, the volume cells at the border of the sub-domains will need information
from the cells in the nearby sub-domain. The communication between the sub-domains is a
costly process when doing parallel running. For all of these reasons, a more robust way of
implementing regularisation is then needed.

The alternative solution to the convolution given by Eq. 2.63 is a Helmotz type PDE. This
was first used for sensitivity filtering [48], and was then also used for density filtering [46].
The filtered (or regularised) field is acquired thanks to the solution of the following PDE

´ r2
B2α̃

Bx2j
+ α̃ = α (2.66)

where r controls the effective width of the filter, and α̃ is the regularised field. For large
values of r, there will be large grey zones, while for small values of r the transition from solid
to fluid regions will be clear, and small-scale features will be captured. So r highly controls
the solution that will be obtained. This is illustrated in Fig. 2.6 and Fig. 2.7. The solution
for different radii are completely different. For small a radius, the difference between the
fields α and α̃ is almost negligible and the small details are captured. For a big radius, even
though the field α includes small features in its distribution of material, the big radius of the
regularisation makes somehow disappear them by bringing some blurring in the regularised
field. It must be remarked that these two solutions are obtained for the same optimisation
parameters that are not detailed here. Only the radius of the regularisation differs between
the two solutions. This proves how much impact the radius can have in the solution.

(a) Design field α. (b) Regularised field α̃.

Figure 2.6: Design field α and the regularised field α̃ of a solution with a small regularisation
radius.

28



(a) Design field α. (b) Regularised field α̃.

Figure 2.7: Design field α and the regularised field α̃ of a solution with a big regularisation
radius.

It is possible to obtain a relation between the length parameter r and the filter radius R [47].
These two parameters are correlated as follows

r =
R

2
?
3

(2.67)

and Eq. 2.66 becomes

´

(
R

2
?
3

)2
B2α̃

Bx2j
+ α̃ = α. (2.68)

As stated in [10], the filter radius R is generally obtained from the average cell volume V̄

R =
(
V̄
)1/d (2.69)

where d is equal to 2 in 2D, and 3 in 3D problems.

The modification of the design field does not end with the regularisation. As a matter of fact,
after the regularisation, the density field gets blurred, giving thus grey zones, with the design
variable taking intermediate values between zero and one, that are not acceptable. Although
these grey zones can be removed thanks to the penalisation parameter in the interpolation
functions that will be seen later, it is required to apply a supplementary adjustment. This is
done by the projection. This is explained in the following section.

2.3.2.2 Projection of the design field

The projection helps to give a precise transition from solid to fluid regions. There are two
reasons why the material distribution is blurred. First of all, the problem is a relaxed one in
the sense that the design variable α can take intermediate values between zero and one. The
second reason is the blurring brought by the regularisation. Because of these phenomena,
the design field has to be projected in order to remove grey zones. This is done thanks to
the parameterised projection suggested by Xu et al. [49]. This projection technique was then
adapted in [50], and the projected density field β is obtained by a smooth function controlled
by a threshold η and a steepness parameter b:

β =

$

’

&

’

%

η
[
e´b(1´α̃/η) ´ (1 ´ α̃/η)e´b

]
, 0 ď α̃ ď η

(1 ´ η)
[
1 ´ e´b(α̃´η)/(1´η) + (α̃ ´ η)/(1 ´ η)e´b

]
+ η, η ă α̃ ď 1

(2.70)
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The expression given by Eq. 2.70 can be replaced by a shorter one based on the tanh function:

β =
tanh(ηb) + tanh[b(α̃ ´ η)]

tanh(ηb) + tanh[b(1 ´ η)]
(2.71)

Concerning the choice of the threshold parameter η, Xu et al. [49] and Kawamoto et al. [51]
showed that the convergence for η close to 0.5 is smooth. This value is used in the following.

Figure 2.8: Projection function for different values of its steepness parameter b.

Regarding the sharpening parameter b, the latter plays a big role in the final distribution of
material in the domain. The allure of the projection function given by Eq. 2.71 is shown in
Fig. 2.8. For increasing values of b, the projection gets sharper. A priori, it can be deduced
that the value of b should be high enough in order to generate a clear material distribution
without grey zones. But in the upcoming examples of chapter 3, it will be shown that im-
posing a high value for b will lead to a topology with almost no material.

2.3.3 Continuous adjoint formulation
Given a certain objective function J , the goal is to have information about its sensitivity
with respect to the design field α in order to generate the optimal material distribution.
This objective function depends on the state variables. As it was explained in section 2.2.1,
the computation of the sensitivity using a direct or a finite difference approach is a very
costly operation whose price is proportional to the (very high) number of design variables
N . In order to prevent the resolution of the system of primal equations a number of times
proportional to the dimension N of the problem in each optimisation cycle, the solution is to
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perform the adjoint formulation which constitutes a robust way of computing δJ/δα. Thanks
to this approach, the flow equations have to be solved only once in each optimisation cycle,
and then another set of equations which are called the adjoint equations are solved also only
one time in the course of one cycle. Thanks to this technique, the sensitivity δJ/δα in each
optimisation cycle is obtained at a price that does not depend on N . This makes the power
of the adjoint formulation.

The starting point of the adjoint method is to define an augmented objective function in
which the primal equations are taken into account. These equations have to be satisfied, and
thus can be seen as constraints. The augmented objective function is defined as

Jaug = J +

ż

Ω

paR
P dΩ +

ż

Ω

uiR
v
i dΩ +

ż

Ω

ν̃aR
ν̃ dΩ +

ż

Ω

∆aR
∆ dΩ +

ż

Ω

TaR
T dΩ (2.72)

where pa, ui, ν̃a, ∆a, and Ta correspond respectively to the adjoint pressure, adjoint velocity
components, adjoint to turbulence variable ν̃, adjoint to the wall distance, and ajoint tem-
perature. As the primal equations have to be satisfied, it can be noted that Jaug ” J . In
the upcoming, if it is not clearly specified, the distinction between J and Jaug will not be done.

The goal is now to compute the total variation δJ
δα
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(2.73)
For a quantity ϕ, its total variation is defined as

δϕ

δα
=

Bϕ

Bα
+

Bϕ

Bxk

δxk
δα

. (2.74)

Since there is no modification in the mesh nor in the boundaries of the domain, Eq. 2.74
becomes

δϕ

δα
=

Bϕ

Bα
(2.75)

Using Eq. 2.75 and the Leibniz theorem, Eq. 2.73 becomes
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+
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(2.76)
In Eq. 2.76, the differentiation of the primal equations leads to the differentiation of the state
variables. But the objective of the adjoint method is to prevent the costly computation of
these state variables differentiation. Therefore, the solution brought by the adjoint method
is to further develop Eq. 2.76 into volume and surface integrals, and then to derive the
adjoint equations and the adjoint boundary conditions that are going to cancel the volume
and surface integrals that include the differentiation of the state variables with the design
field. The lengthy process in order to derive the adjoint equations and the adjoint boundary
conditions is done in [44, 52, 53]. Following the developments in these sources, the adjoint
equations are written as
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Rpa = ´
Buj
Bxj

= 0 (2.77)
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RTa = ´ρcp
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)
BTa
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]
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More information about the factors Cν̃ , CS, and C∆ can be found in [44, 52, 53].

The first equation represents the adjoint to the continuity equation. The second set of
equations corresponds to the adjoint momentum equations which include the convection,
diffusion, adjoint pressure gradient terms, and other terms related to the turbulence model
variables. The convection term is linear since the adjoint velocity is convected by the primal
velocity which is known a priori thanks to the primal equations solved before the resolution
of the adjoint equations. The ATC label in Eq. 2.79 corresponds to the adjoint transpose
convection. This term is numerically stiff and may cause in some cases convergence prob-
lems. To cope with this term, several model exists. These will be described further. The
other equations stand respectively for the adjoint turbulence model equation, the adjoint
wall distance equation, and the adjoint energy equation.

Regrading the adjoint boundary conditions, these are obtained thanks to the cancellation
of the boundary integrals involving the differentiation of the flow variables. Following the
same approach as in [54, 44], the adjoint conditions applied at the different boundaries are
summarised here below:
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Inlet

The following adjoint conditions should be verified at the inlet

uini = ´
BJ

Bp
, uiti = 0 (2.82)

where ti are the components of the unit tangent to the inlet surface.

Zero Dirichlet boundary conditions are imposed for the adjoint effective viscosity ν̃a and for
the adjoint temperature, and a zero Neumann boundary condition is applied on the adjoint
pressure pa. Concerning the latter, no boundary integral with flow variable differentiation
needs a specific adjoint boundary condition for pa. So the adjoint boundary condition of
the adjoint pressure pa is natural, in the sense that it has the same type of condition as the
primal pressure at the inlet.

Outlet

The adjoint boundary conditions for the adjoint pressure pa and the adjoint velocity com-
poenents ui are obtained with the resolution of the following equation
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Bui
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(2.83)

The adjoint boundary conditions for Ta and ν̃a are given by the following Robin type equations
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= 0 (2.84)
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(2.85)

Solid wall boundaries

Zero Dirichlet conditions are imposed to ui, Ta, and ν̃a, and a zero Neumann boudnary on-
dition is applied on pa.

Now that the adjoint equations and adjoint boundary conditions are developed, the final
expression of the sensitivity can be derived. This is done hereafter.

33



2.3.4 Final expression of the sensitivity
The adjoint equations and the adjoint boundary conditions satisfied, the final expression of
the sensitivity can now be obtained. Since the design field undergoes in each optimisation
cycle the regularisation and the projection ordered as illustrated in Fig. 2.9, δJ/δα is ob-
tained by a kind of chain rule.

α̃α β

Figure 2.9: Illustration of the order of the modifications applied on the design field: α is
the initial field, α̃ is the regularised one, and β is the regularised and projected field.

In order to go from the regularised field to the projected field, there exists an analytical
expression (Eq. 2.71). Therefore, the partial derivative Bβ

Bα̃
can be easily computed. Using

the chain rule, the differentiation of J with respect to α̃ is thus given by
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(2.86)

The challenge is to calculate the differentiation of α̃ with α. As a matter of fact, there
is no direct relation between α̃ and α. As stated in [10], the solution is to introduce the
adjoint regularisation equation which has the same form as the primal regularisation equation
(Eq. 2.66):

RΨα̃ = ´r2
B2Ψα̃

Bx2j
+Ψα̃ ´

δJ

δα̃
= 0 (2.87)

where Ψα̃ is equal to δJ
δα

. By combining Eq. 2.86 and Eq. 2.87, the total variation of J with
the design field α is found.

2.3.5 Global layout of the optimisation
Now that all the steps in order to solve the problem are known, the global procedure used
in the software in order to deal with a fluid based topology optimisation of a CHT problem
can be described. This is summarised in Fig. 2.10.
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Definition of the initial design variables α

Solve the flow equations ÝÑ U, p, νt, T

Compute J and the constraints value

Solve adjoint equations

Computation of δJ
δα

and the constraints sensitivities

Update of the design variables through (GC)MMA

regularisation and projection of the new design field ÝÑ β

Interpolation of the thermo-physical properties based on β

Figure 2.10: Global layout of the optimisation process in a fluid problem.

First of all, the initial design field α across the domain is defined. Then, the optimiser starts
to do its optimisation loops. In each one, the primal equations are resolved. This resolution
gives the state variables of the problem. Then, the objective function J and the constraints,
which also corresponds to certain functions, are computed. Subsequently, the adjoint equa-
tions are solved, which permits the computation of the sensitivity δJ/δα. The sensitivity
of the constraints are also computed. Thanks to these sensitivities, convex sub-problems
are successively created with (GC)MMA in order to find the new iterated solution, i.e. the
new design-field. The convex approximation of the optimisation problem done thanks to
(GC)MMA makes possible to use the KKT conditions which are necessary and sufficient op-
timality conditions in the case of a convex problem. Once this convex sub-problem is solved,
a new design field α is obtained. This field is regularised and projected. Afterwards, the
thermo-physical properties are interpolated. Subsequently, a new optimisation cycle begins
with the resolution of the primal equations and continues the ensuing steps explained here
above.
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2.3.6 OpenFOAM software
The software used in the scope of this thesis is OpenFOAM (Open-source Field Operation
And Manipulation) [55]. This is an open-source software written in C++ widely used for
Computational Fluid Dynamics (CFD). It relies on finite-volume method and can handle
a multitude of physics going from simple laminar flows to complex flow patterns including
various types of physics such as heat transfer, acoustics, electromagnetism and so on.

2.3.6.1 adjointOptimisationFoam executable

The adjointOptimisationFoam executable is used in the current work. The corresponding
software is OpenFOAM v1906 [56] which was developed by the Parallel CFD & Optimiza-
tion Unit of the National Technical University of Athens [57]. The software employs the
continuous adjoint method in order to compute the gradient and then conduct optimisation
loops.

As topology optimisation will be applied to CHT problems, both flow equations and energy
equation must be considered. In the software, the available solver that is used in order to
handle the primal equations for this type of problem is called simpleEnergy which is based
on the simpleFoam solver. The latter is used for steady-state, incompressible, turbulent flow
in which the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is
implemented. The word ”Energy” in simpleEnergy stands for the energy equation which is
solved by setting a single temperature field over the fluid and solid at the same time. As it
was explained in section 2.3.1, the thermal properties are interpolated between the fluid and
the solid, and the convection term is cancelled in solid parts thanks to the factor (1 ´ β) in
front of the latter. This makes possible the resolution of a single energy equation.

In order to treat the adjoint equations, the same methodology as for the primal equations is
used. The adjoint equations for a CHT problem are solved thanks to the adjointSimpleEnergy
solver which is the similar of simpleEnergy.
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Chapter 3

Parameter study

In this section, the different parameters involved in the optimisation process will be studied.
To do so, a practical example consisting of a two-dimensional CHT problem will be consid-
ered. The goal for this system will be to enhance the heat transfer to the fluid flowing inside
the domain and decrease as much as possible the pressure losses given a volume constraint
that has to be verified.

First of all, the impact of the spatial discretisation will be assessed. Then, the different
parameters playing in the three field topology optimisation scheme, namely the regularisation
length parameter and the projection steepness, will be analysed. The different interpolation
functions used for the Brinkman penalisation term and for the thermo-physical properties will
be studied. The effect of the Darcy number will be evaluated. Following this, the different
ways of updating the design variable α inside the domain will be explained. After that, the
impact of the initial conditions will be examined, which will highlight the presence of multiple
local optimal solutions in a practical TO problem. Then, the effect of the Reynolds number
will be assessed. Finally, in order to check out the validity of the ”porous” approach used in
fluid TO, the calculations will be verified in a domain with real solid walls.

3.1 Problem definition
In order to perform a parameter study, a simple two dimensional configuration has been
chosen. This consists of a CHT problem. The flow inside the domain is steady and laminar.
The geometry in the X⃗ ´ Y⃗ plane is shown in Fig. 3.1. It is composed of a square box and
inflow/outflow channels. A is equal to 10 cm, and the inlet and outlet heights are both equal
to A/5 = 2 cm. The walls in red are maintained at a constant temperature equal to Th = 425
K. The other walls in grey are adiabatic walls. The inlet channel is long enough in order to
establish a fully developed flow before entering into the square box, and the outflow channel
has also been set long enough in order to prevent that the boundary conditions imposed at
the outlet influence the optimisation taking place in the square box. Note that the geometry
is not drawn to scale regarding the length of the channels.
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The air enters into the domain at a constant temperature Tin= 375 K with an inlet velocity
equal to 0.115 m/s. The direction of the flow is from left to right as it is shown by the
blue arrows in Fig. 3.1. At 375 K, the kinematic viscosity of air is equal to 2.317 ˆ 10´5

m2/s. The Reynolds number, based on the inlet height given by A/5 has then a value
approximately equal to 100. A volume constraint is imposed on the fluid inside the square
box. The amount of fluid is restricted by a maximum fluid volume ration equal to ϕf

max
= 0.4 inside this square box. The considered solid material is aluminium. The thermal
properties of air and aluminium at their corresponding temperature are given in Tab. 3.1.
These properties are considered to be constant with temperature. The boundary conditions
are given in Tab. 3.2.

k [W/(mK)] cp [J/(kg K)]

Air 0.03186 1010.6
Aluminium 240 887

Table 3.1: Thermal properties of air and aluminium at respectively 375 K and 425 K.

A/5

AA

X⃗

Y⃗

Z⃗

Figure 3.1: 2D design for CHT topology optimisation.
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Inlet Outlet Adiabatic walls Heated walls

U Dirichlet Zero Neumann Zero Dirichlet Zero Dirichlet
p Zero Neumann Zero Dirichlet Zero Neumann Zero Neumann
T Dirichlet Zero Neumann Zero Neumann Dirichlet

Table 3.2: Boundary conditions for the 2D CHT topology optimisation.

As the domain is symmetric with respect to the dashed green line (Fig. 3.1), the simulations
will be performed in only the bottom half of the domain (see Fig. 3.2) in order to decrease
the computational cost. Throughout the optimisation process, the inlet and exit channels
(named Ωin and Ωout) remain fluid. Only the central square box (noted Ωopt) of the domain
is optimised, i.e can have a solid material distribution.

Ωin Ωout

Ωopt

X⃗

Y⃗

Z⃗

Figure 3.2: Half 2D domain for CHT topology optimisation in which the simulations will
run.

3.2 Objective functions and problem formulation
The objectives of a typical CHT optimisation problem is to maximise the heat transfer to
the coolant fluid flowing inside the domain while limiting the pressure losses.

Mathematically, these can be expressed in terms of the following objective functions

JPt = ´

ż

SI,O

(
p+

1

2
|U |2

)
vini dS, (3.1)

Jth =

ż

S

(ρcpT )vini dS. (3.2)

where |U | [m/s] is the velocity magnitude, and ni are the componnets of the normal to the
considered surfaces. Eq. 3.1 corresponds to the pressure losses computed between the inlet
and the outlet, and Eq. 3.2 quantifies the convective heat flux at a surface S which is the
outlet surface in this case. A particular remark has to be done regarding the computation
of these quantities in the used software. These are not exactly computed as in Eq. 3.1 and
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Eq. 3.2 but in the following form:

JPt = ´
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2
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out

´

⟨(
p+

1

2
|U |2

)
∆y ˆ ∆z

⟩
in

 (3.3)

Jth = ρcp ⟨Tvini⟩S ∆y ˆ ∆z (3.4)

where the symbol ă ... ą stands for the mean operator, ∆y stands for the length of the
surfaces along the y direction, and ∆z is the width of the geometry. As a matter of fact, even
if 2D simulations are done, OpenFOAM needs a 3D geometry, so the geometry has a length
along the z-direction. Then, in order to have a 2D case, the empty condition is applied on
the surfaces of normal parallel to the z-direction.

In order to take into account both of the objectives, there exist several solutions. The first
one is to construct a multi-objective function composed of both objective functions scaled
with a weighting factor ω

J = ωJPt ´ (1 ´ ω)Jth = ωPtJPt ´ ωthJth. (3.5)

ωPt = ω stands for the weight accorded to the pressure losses and ωth = (1´ω) is the weight
of the thermal flux to the fluid.

In Eq. 3.5, ω, ωPt, and ωth are all positive. A negative sign is put in front of Jth since the heat
flux at the outlet has to be maximized. The optimiser is in fact seeking for a minimum. That
is why in order to maximise a quantity, a negative sign must be accorded to its respective
term in the objective function J .

This first solution does not end with this weighting of the different objective functions. As a
matter of fact, JPt and Jth may have completely different orders of magnitude. As a conse-
quence, the objective functions have to be normalised in order to have a well scaled problem
and not to have one of the objectives receiving a greater importance than the other one. In
order to apply the appropriate normalisation factors, the optimiser does a first optimisation
cycle for both objective functions and then the results of this first optimisation cycle, noted
Jinit, Pt and Jinit, th, are used as normalisation factors. The weighted and normalised objective
function becomes then

pJ = ωPt
JPt

Jinit, Pt
´ ωth

Jth

Jinit, th
= ωPt xJPt ´ ωth xJth. (3.6)

Another solution is to put one of the objectives under a constraint. In that case, only one of
the objective functions will be taken into account in J . A practical case would be to consider
only Jth in J and impose an upper bound on the pressure losses. To do so, an appropriate
value should be chosen for this upper bound in order to avoid overestimating or underesti-
mating the constraint.
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An additional constraint that is also commonly taken into consideration in CHT problems is
the maximum allowable volume that can be occupied by the fluid. This is stated as follows

JVol =

ş

Ω
(1 ´ β) dΩ

ş

Ω
dΩ

ď Vtar (3.7)

where
ş

Ω
(1 ´ β) dΩ is the effective volume occupied by the fluid,

ş

Ω
dΩ is the total volume

of the domain, and Vtar is the target (or maximum) volume fraction the fluid can occupy in
the domain. A volume constraint is necessary in almost all TO problems in order to prevent
the formation of small fluid islands inside solid regions. For the practical example that will
be used, Vtar = ϕf

max = 0.4 in Ωopt.

Considering the above cited objective functions and constraint, the CHT TO problem that
will be used in this chapter is formulated as follows:
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min
α

pJ(α,U) = ωPt xJPt ´ ωth xJth

s.t. ϕf ´ ϕf
max ď 0

0 ď αj ď 1 j = 1, ..., N

R(α,U) = 0

(3.8)

where N the total number of cells which corresponds to the number of design variables, and
R(α,U) = 0 is the system of equations given by Eq. 2.57 to Eq. 2.61.

3.3 Influence of spatial discretisation
In this section, the influence of the spatial discretisation of the domain on the optimised
topology will be shown. To do so, two main categories of convergence studies will be intro-
duced. Note that for all of the cases until section 3.8, the initial condition concerning the
design field is α = 0 in each cell, i.e. the domain is totally filled with fluid initially.

First of all, a convergence study will be performed on a case with no regularisation nor pro-
jection. Then, the same type of analysis will be performed with regularisation and projection.
These studies will introduce a first insight in the understanding of the regularisation process
that will be explained in the following section. The other optimisation parameters are not
detailed here as only the effect of the discretisation is assessed in the current section. These
will be studied in the upcoming sections.

To perform the analysis, the solution is solved on four different meshes. Then in order to
choose the best one in terms of relative error and computational time, the results of these
four cases will be compared to a fifth test case made of a very fine mesh that is considered
to be valid. The latter is composed of 200 ˆ 100 cells in Ωopt and 200 ˆ 20 cells in each inlet
and exit channels. The four test cases are summarised in Tab. 3.3.
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Mesh1 Mesh2 Mesh3 Mesh4

Ncells in Ωopt 60 ˆ 30 75 ˆ 37 100 ˆ 50 150 ˆ 75
Ncells in Ωin/Ωout 60 ˆ 6 75 ˆ 7 100 ˆ 10 150 ˆ 15

Ntot 2520 3825 7000 15 750

Table 3.3: Test cases for the spatial discretisation.

In each of the test cases, ωPt is set to 1, and ωth is set to zero. The solutions and the relative
errors for regularised and not regularised nor projected design field are shown in Fig. 3.3.
In order to have a consistent comparison between the solutions for the regularised and non-
regularised results, the same optimisation parameters have been used. These are not detailed
here as the effect of these parameters are not studied in this section. A meticulous analysis
of these non cited parameters will be done further in the text. The purpose in this section is
to assess only the effect of the grid.

The computed heat flux and pressure losses are the same for the regularised and non-
regularised solutions. For the third mesh case, the relative error is equal to zero for the
heat flux and very low for the pressure losses. That is why it is safe to choose this third mesh
case while assuring a low computational cost.

(a) Relative error on the pressure losses. (b) Relative error on the heat flux.

Figure 3.3: Relative error of the regularised and non regularised solutions for the different
meshes with respect to the result of a very fine mesh on the heat flux and on the pressure
losses.

The topologies obtained for the different cases are shown in Tab. 3.4. An important remark
that can be made is that when refining the mesh using no regularisation, the solution captures
small features and does not converge. The solution obtained for a non-regularised field has
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small voids inside the solid. For the finer mesh 4, this behavior is much more accentuated. In
this case, the non-regularised field is not so different in the general topology. The differences
with the regularised solutions are not so noted. However, in much complex cases, the absence
of regularisation may lead to a more important aspect of the non-convergence of the mesh.

Mesh Regularised Non-regularised

1

2

3

4

Table 3.4: regularised and non-regularised solutions obatined for the different meshes, with
ωPt = 1 and ωth = 0.

The conclusion that can be drawn from these observations is that although the computed
objectives are converged for the regularised and non-regularised solutions, the obtained β
field does not converge when omitting regularisation. Without regularising the design field,
the obtained solution will tend toward a different one when refining the mesh, and the con-
vergence will not take place. That is why it is important to perform the regularisation such
that the solution is mesh-independent. That represents one of the reasons why regularisa-
tion is important in the scope of TO. More specificities related to the regularisation will be
provided in the upcoming section.

3.4 Regularisation and projection
In this section, the effect of the regularisation and the projection will be studied by varying
their respective parameters.
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First of all, the solutions obtained for a regularised nor projected field, and the solution for
a regularised but non-projected field are illustrated in Fig. 3.4. The non-regularised and
non-projected result (Fig. 3.4a) has a clear transition from fluid to solid regions. This is due
to the fact that the penalisation parameter of the blockage interpolation function is high.
The latter is a Borrvall and Petersson type interpolation with q = 10. These functions will
be studied in section 3.5. Moreover, the blurring brought by the regularisation does not take
place here, which helps to avoid an unclear transition from fluid to solid parts. However, a
small checkerboard effect is observed with fluid cells inside the solid domain. This is due to
the absence of regularisation. The regularised but not projected result is shown in Fig. 3.4b.
The transition from fluid to solid region is blurred because the regularisation is applied but
the projection is omitted.

(a) Not regularised and not projected poros-
ity field.

(b) regularised but not projected porosity
field.

0 1

β

Figure 3.4: Illustration of the impact of the absence of the regularisation and/or projection.

Then, the different parameters of regularisation and projection are studied. These are illus-
trated in Fig. 3.5, Fig. 3.6, Fig. 3.7, and Fig. 3.8.

In Fig. 3.5, it can be noted that for large radius R of the regularisation filter, the grey zones
are present. For these large radius, the sharpening parameter b of the projection is not high
enough in order to get rid of this blurry appearance of the solid boundary. Then, the more
the radius is decreased, the more precise the separation between the fluid and the solid is.
For low values of R, the optimiser is able to generate small features in the solution, leading
to the fluid cells in the solid which are not physical.

In Fig. 3.6, a porous zone appear in the right corner of the solidified zone for R = 2 mm, and
for the last two small radius. This part is not well processed by the projection due to the
fact that the value of α̃ is close to 0.5 there and the projection with b = 10 keeps this value
for the β field. For R = 4 mm, the solution has a big difference in the general topology. So
the regularisation radius can play a big role in the obtained optimised solution.
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Concerning the effect of the projection steepness parameter b, it can be said that for small
and moderate values of b, the projection is not sharp, and the obtained β field is not neat and
clean in terms of material distribution as it is illustrated in Fig. 3.5 and Fig. 3.6, especially
when the regularisation filter radius R is big. From these observations, it can be deduced that
b must be high in order to have a sharp distinction between solid and void regions. However,
imposing directly a large value for b at the very first optimisation cycles will lead to a solution
with almost no solid for which the volume constraint is thus not satisfied. This is observed
in Fig. 3.7 where b is constant and set to 30. The explanation for this phenomenon is that at
as the problem is relaxed, the design variable α can take intermediate values between zero
and one. Therefore, the regularised field α̃ takes also intermediate values between zero and
one. Initially, the domain is filled with fluid, i.e. α = 0 in each cell. So in the beginning,
the value of α is rather close to zero. Also, the maximum allowable change of the design
variable α in the course of one optimisation cycle in each cell is set to 0.1 in the software. As
a consequence, the projected field β will be equal to zero if a high value is imposed on the
steepness parameter b of the projection directly for the first optimisation cycles.

(a) R = 4 mm (b) R = 2 mm (c) R = 1 mm

(d) R = 0.5 mm (e) R = 0.25 mm

0 1

β

Figure 3.5: β field for different values of the regularisation radius with the projection
steepness parameter b equal to 3; ωPt = 1, ωth = 0.
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(a) R = 4 mm (b) R = 2 mm (c) R = 1 mm

(d) R = 0.5 mm (e) R = 0.25 mm

0 1

β

Figure 3.6: β field for different values of the regularisation radius with the projection
steepness parameter b equal to 10; ωPt = 1, ωth = 0.

0 1

β

Figure 3.7: β field for different values of the regularisation radius with the projection
steepness parameter b equal to 30; ωPt = 1, ωth = 0.

From all these observations, the conclusion is to use an appropriate radius that is small
enough in order to prevent the formation of blurred zones but still big enough to avoid the
formation of small fluid cells in solid region. But it can be remarked that if the radius has
a high value, then the projection can be adapted in order to have a clear material distribution.

Regarding the projection, the conclusion that can be derived from the analysis done here
above is that at the very beginning of the optimisation process, the sharpening parameter
b should be low enough in order to be able to generate the first solid cells. This allows to
find the general topological structure. Then, once the optimiser had enough time to create
its blurry material distribution giving a first topology, the parameter b of the projection can
become bigger in order to have the final lucid material distribution. This approach is used
in the solutions of Fig. 3.8. For these cases, the sharpening parameter varies as a ramp
function (Fig. 3.9). In the beginning, b is equal to 3. Then, b is increased by three every two
optimisation cycles until it reaches a value of 75 with which the optimisation continues until
the end cycle. In the following, this allure of the projection sharpness will be used.
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(a) R = 4 mm (b) R = 2 mm (c) R = 1 mm

(d) R = 0.5 mm (e) R = 0.25 mm

0 1

β

Figure 3.8: β field for different values of the regularisation radius with the projection
steepness parameter b varying as a ramp function; ωPt = 1, ωth = 0.

Figure 3.9: Ramp variation of the projection steepness parameter b for the solutions in
Fig. 3.8.

3.5 Penalisation term in the flow equations and inter-
polation of the thermal porperties

As it was explained previously, in order to take into account the presence of solid material
immersed in the fluid, a Brinkman type penalisation term is added to the flow equations as
a ”porosity” source term. This term is composed of the inverse permeability λ proportional
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to its maximum value that is then scaled with an interpolation function. The maximum
value of λ determines the Darcy number. Proceeding this way, the variation of the inverse
permeability can thus be introduced with the value of the design field α. There exist several
interpolation functions for this source term. The same type of functions are also used in
order to interpolate the thermo-physical properties at each cell depending on the value of the
design variable α in the considered cell.

In this section, the influence of the interpolation functions, and the effect of the Darcy num-
ber will be assessed. This analysis will then permit to choose the best suited interpolation
functions in practical CHT TO problems, and also see how the Darcy number has to be set.

3.5.1 Interpolation of the penalisation term in the flow equations
The Brinkman type penalisation term in the primal equations (Eq. 2.58 to Eq. 2.61) is intro-
duced with the inverse permeability λ that depends on the design field α. This local inverse
permeability is related to the design variable though an interpolation function. Ensuing the
regularisation and the projection applied on α in each optimisation cycle, this α-dependent
source term is written as

λ(β) = λmaxI(β), (3.9)
where I(β) is the interpolation function, and λmax is the maximum value of the inverse per-
meability. The latter should be fixed based on the Darcy number. This will be explained in
details later.

There exist several interpolation functions implemented in the software. These are sum-
marised below and their respective graphical illustrations are given in Fig. 3.10.

• Borrvall and Petersson (BP)

IBP(β) =
β

1 + q(1 ´ β)
(3.10)

• exponential
Iexp(β) = e´q(1´β) ´ [1 ´ β]e´q (3.11)

• linear
I lin(β) = β (3.12)

• SIMP
ISIMP(β) = βq (3.13)

• sinh
Isinh = 1 ´

sinh[q(1 ´ β)]

sinh(q) (3.14)

• tanh
Itanh(β) =

tanh(ηq) + tanh[q(β ´ η)]

tanh(ηq) + tanh[q(1 ´ η)]
(3.15)
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(a) IBP (b) Iexp

(c) I lin (d) ISIMP

(e) Isinh (f) Itanh

Figure 3.10: Interpolation functions.

When β is equal to one, which corresponds to a solid, each of these functions are equal to
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one. Then, λ is equal to λmax, so the inverse permeability is at its maximum value, mean-
ing that the permeability tends to zero, and thus this blocks the flow. This can also be
understood by considering the impact of the value of λ in the moment equation (Eq. 2.44).
When λ(β) = λ(1) = λmax, the flow velocity must tend to zero in order to verify the equation.

The parameter q in the interpolation functions controls the steepness of the functions with
respect to β. This is illustrated in Fig. 3.10. q [-] can in fact be seen as a penalisation factor.
The greater is the value of q, the more penalised are the grey zones. Therefore, in order to
have a ”binary” material distribution, the value of q should be high enough.

The topologies obtained for the different interpolation functions, fixing the weight of the
pressure losses to one and the weight of the heat flux to zero, are shown in Fig. 3.11. For
each case, the regularisation radius has been set to 1 mm. This value is obtained based on the
average cell volume as it is expressed in Eq. 2.69. The solutions acquired with the SIMP, and
tanh interpolations are not regular as the other ones. The convergence history obtained for
the different interpolation functions are shown in Fig. A.1. Except the BP and exponential
interpolation functions, the convergence of the solutions given by the other functions is very
bad. Comparing the solutions of Fig. 3.11a and Fig. 3.11b and their respective values of JPt
(Tab. 3.5) which was the only objective function to minimise, it seems better to chose the BP
interpolation function for the porosity source term, which is commonly used in fluid-based
TO. In the following, the BP interpolation function is thus used for the Brinkmann penali-
sation with q = 10.

(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

0 1

β

Figure 3.11: Solution for different interpolation functions for the porosity dependent source
terms with q = 10; R = 1 mm; ωPt = 1, ωth = 0.
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I IBP Iexp

JPt [m5/s3] 2.487 ˆ 10´6 2.489 ˆ 10´6

Table 3.5: JPt for BP and exponential interpolation functions used in the porosity dependent
source term with q = 10; R = 1 mm; ωPt = 1, ωth = 0.

3.5.2 Interpolation of the thermo-physical properties between the
fluid and the solid regions

The analysis is now performed regarding the interpolation of the thermo-physical proper-
ties for the same weights accorded to both objective functions. The interpolation of the
conductivity k between the fluid and the solid is done as follows

k(β) = kf + (ks ´ kf )Ik(β). (3.16)

The same approach is used for the other thermo-physical properties. The type of interpo-
lation functions used for these properties are the same as for the porosity source term (see
section 3.5.1) except that the parameter q is replaced by qth [-] which has the same effect as q.

Considering the different interpolation functions, the obtained solutions for ωPt = 0.5 = ωth
= 0.5 with qth = 5 and R = 1 mm are shown in Fig. 3.12. The optimised material distri-
butions are of poor quality for each of the interpolation functions of the thermal properties.
On top of that, the convergence is also very bad (Fig. A.2). Analysing Fig. 3.12, it can be
noted that the optimiser is able to generate very small details in the topology, and especially
small checkerboard regions. From this observation, it can be deduced that the regularisation
radius is small in this case. The radius R must be increased in order to avoid this irregularity
in the solution. In light of these remarks, it can be concluded that when the weight of the
thermal objective function is non zero, the regularisation radius must be higher than the one
calculated based on the average cell volume (Eq. 2.69).
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(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

0 1

β

Figure 3.12: Solution for different interpolation functions of the thermo-physical properties
with qth = 5; R = 1 mm; ωPt = 0.5, ωth = 0.5.

(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

0 1

β

Figure 3.13: Solution for different interpolation functions of the thermo-physical properties
with qth = 5; R = 10 mm; ωPt = 0.5, ωth = 0.5.

This increased radius is used for the cases of Fig.3.13 with R = 10 mm. The optimised
topologies are very similar except for the linear interpolation of the thermo-physical prop-
erties. Regarding their respective convergence (Fig. A.3), there are remarked oscillations of
the solution for the BP, linear, and sinusoidal interpolations. These oscillations are drasti-
cally reduced but still present in the tangential and exponential interpolations. The SIMP
interpolation seems to be the best suited function. Therefore, the SIMP interpolation is used
for the interpolation of the thermal properties with qth = 5.
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In the following, the BP interpolation function with q = 10 will be used for the porosity
sourc eterm interpolation, and the thermo-physical properties will be interpolated with the
SIMP function with qth = 5.

3.5.3 Effect of the Darcy number
The Darcy number is an important quantity that intervenes through the maximum value of
the inverse permeability λ. The Darcy number is defined as

Da =
ν

λmaxL2
(3.17)

where L [m] is the characteristic length of the problem. Da describes the ratio between
viscous and porous friction forces. It must be small enough in order to generate almost solid
impermeable walls. This in ensured with the high value of λmax. The higher is λmax, the less
permeable are the walls. If λmax is low, then flow will diffuse through the porous media. In
contrast, if λmax is high, then solid walls with almost no flow through them will be induced.
However, a very high value of λmax will lead to slow convergence of the optimisation process
and sub-optimal solutions [58]. So there is a compromise to do in order to choose well the
value of λmax. This choice is based on Da.

The solution obtained for different values of Da is shown in Fig. 3.6 for ωPt = ωth = 0.5.
Note that only the porous medium of the domain is highlighted in each of the figures in
the third right column of Fig. 3.6. This was done thanks to the extraction of the cells with
a minimum value of β equal to 0.5. In Fig. 3.6, it can be noted that the higher Da is,
the more flow leakage happens in the material distribution. This phenomenon almost ends
for Da À 10´3. Also, the changes in the solution are remarkable when going only from
Da = 10´1 to Da = 10´2. In order to be sure to have no leakage and to avoid at the same
time convergence problems, Da is set to 10´4.
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Da [-] Material distribution Leakage in solidified zone

10´1

10´2

10´3

10´4

10´5

0 1

β

0 2

¨10´2|U | [m/s]

Table 3.6: Effect of the Darcy number on the permeability of the solidified part of the
domain; R = 10 mm; ωPt = ωth = 0.5.

3.6 ATC models
The ATC term is the first term of the adjoint momentum equation. For the component ui
of the adjoint velocity, it is written as

ATCu
i = uj

Bvj
Bxi

.

where the primal components of the velocity vj are known a priori thanks to the resolution
of the primal equations.

The ATC term is numerically stiff. It causes in fact a coupling between the different ad-
joint momentum equations. There exist several models for the ATC term. These are listed
hereafter:

• Standard
This option computes the adjoint transpose convection as it is without any modifici-
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ation. So the cross-coupling between the adjoint momentum equations is taken into
consideration.

• UaGradU
This model computes the ATC term as ´vj

Buj

Bxi
.

• Cancel
In this case, the ATC term is completely deleted from the equations.

The solutions obtained for the three models and their corresponding values of the objective
functions with ωPt = ωth = 0.5 are shown in Fig. 3.14 and Tab. 3.7. The number of iterations
needed to solve the adjoint equations in each optimisation cycle is represented in Fig. 3.15.

(a) Standard. (b) UaGradU. (c) Cancel.

0 1

β

Figure 3.14: Solutions obtained for the different ATC models; ωPt = ωth =0.5.

JPt [m5/s3] Jth [W]

Standard 2.495e-6 43.55
UaGradU 2.503e-6 43.682

Cancel 2.501e-6 43.703

Table 3.7: Pressure losses between the inlet and the outlet, and heat flux at the outlet
obtained for the three ATC models.

Regarding the material distribution in Fig. 3.14, it can be pointed out that the different
models give very close solutions. As a consequence, the computed heat flux and pressure
losses are then very close for the different options.

The difference between the models can be highlighted with the number of iterations needed
in each optimisation cycle to solve the adjoint moment equations. In Fig. 3.15, it can be
observed that the Cancel option needs much less iterations. Then, the number of iterations
increases for the two other models. In average, the Cancel model needs 110 iterations, the
UaGradU modle needs 118 iterations, and the Standard model needs 127 iterations. From
this, it can be concluded that the Cancel model could be a good option in order to have
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a faster simulation. However, the effect of the ATC on a given problem may be very case
dependent. That is why even if in this case the ATC model does not play a big role, in other
applications it may be safer if the ATC term is taken into consideration in its standard form.

Figure 3.15: Number of iterations to solve the adjoint equations in each optimisation cycle.

3.7 Comparison between topO and dynamicTopO
There exist two procedures of updating the design variable α in each cell. The first one
consists in a process in which all the cells see their design variable updated simultaneously
starting from the first optimisation cycle. This corresponds to the topO rule. In contrast to
this technique, the design variables can be updated dynamically. This is done with the dy-
namicTopO update rule. In this approach, the active cells and the marching step coefficient
(MSC) must be defined. The active cells are the first cells whose design variable is updated
in the first optimisation cycle. Then, in the next optimisation cycle, the zone of active cells
grows with the next neighbouring cells. If the MSC is set to one, the zone expands with the
direct neighbours. If it is set to two, then the active cells enlarge with the direct next cells
and their neighbours. From these aspects of the two methods, it can be presumed that in
TO problems that could be complex and lead to an unstable optimisation process, it could
be advantageous to use the second method in order to stabilise the optimisation.

The optimised topologies for the topO and dynamicTopO options for R = 10 mm, and
ωPt = ωth = 0.5 are presented in Fig. 3.16 together with the respective values of the objective
functions in Tab. 3.8. The optimised topologies are very similar. It follows from these
solutions values for the objective functions that are very close to each other.
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0 1

β
Figure 3.16: Solutions obtained with topO and dynamicTopO with a marching step coeffi-
cient of 1 for R = 10 mm; ωPt = ωth = 0.5.

Update technique JPt [m5/s3] Jth [W]

topO 2.488 ˆ 10´6 42.962
dynamicTopO 2.490 ˆ 10´6 43

Table 3.8: Values of the objective functions for topO and dynamicTopO update rules with
a marching step coefficient of 1 for R = 10 mm; ωPt = ωth = 0.5.

As it has been noted in section 3.5, when according a non zero weight to the thermal objective
function Jth, the regularisation radius must be set higher than the one predicted by Eq. 2.69
with the average cell volume. Nevertheless, using this small radius R = 1 mm with the
dynamicTopO update rule, it may be possible to generate an optimised topology that could
be interesting. This has been tried on three cases with different marching step coefficients
(Fig. 3.17). With MSC = 1, the material distribution is not so original, and on top of that
the fluid volume fraction does not verify the volume constraint (ϕf - ϕf

max = 0.5 > 0). The
topology with MSC = 5 is weird with a big void inside the solidified zone. The curious
solution obtained with MSC = 3 displays a motivation in order to use the dynamicTopO
update rule. This solution gives an enhanced heat transfer to the fluid compared to the topO
update (see Tab. 3.9 and Tab. 3.8 ), but at the expense of a little increase in the pressure
losses. With MSC = 3, the fluid tends to be closer to the heated wall compared to the cases in
Fig. 3.16 in which the solid material distribution takes over the fluid close to the heated wall.
So the heat is first mainly transferred by conduction through the solid material distribution,
and then to the fluid that is not close to the heated lower wall.

(a) MSC = 1. (b) MSC = 3. (c) MSC = 5.

0

1

β

Figure 3.17: Solutions obtained with dynamicTopO updating for R = 1 mm, and different
marching step coefficients; ωPt = ωth = 0.5.
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MSC JPt [m5/s3] Jth [W]

1 2.628 ˆ 10´6 42.99
3 2.603 ˆ 10´6 43.188
5 8.234 ˆ 10´6 45.407

Table 3.9: Values of the objective functions for the dynamicTopO update rules with different
marching step coefficients for R = 1 mm; ωPt = ωth = 0.5

From all of these analysis, it can be concluded that the use of the two different update rules
results in the same topologies when using a high radius of regularisation. Reducing this
radius on cases with different marching step coefficients when employing the dynamicTopO
rule gives very dissimilar solutions. This behaviour shows again the high sensitivity of the
optimiser to its imposed parameters. In the following, the topO update rule will be used.

3.8 Influence of the initial conditions and the weighting
parameters

In this section, the effect of the initial conditions (IC) together with the weight accorded to
the different functions will be analysed. Two different settings will be studied. The first one
(IC1) considers the domain initially filled with fluid, i.e. α = 0 in each cell. For the second
case (IC2), the domain is fluid everywhere except in a box centered in the middle of the
square box where α is initially set to one. The two types of initial conditions are illustrated
in Fig. 3.18. In Fig. 3.18b, the solid region corresponds to the black rectangle where α = 1,
whereas fluid regions are represented in white with α = 0.

The solutions and the average outlet temperature T out for IC1 and IC2 for different value
of the weighting parameter ω are given in Tab. 3.11. These solutions are all obtained with
the topO update rule with a regularisation radius equal to 10 mm, a projection steepness
parameter evolving as shown in Fig. 3.9. The interpolation functions are a BP function for
the porosity source term with q = 10, and a SIMP interpolation for the thermo-physical
properties with qth = 5.
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α = 0

(a) IC1.

A ˆ 4/5

A/5 α = 1

α = 0

(b) IC2.

Figure 3.18: Setting of the initial conditions for the two cases (IC1 and IC2).

Weighting factors [-]
IC1 IC2

Jth [W] T out [K] JPt [m5/s3] Jth [W] T out [K] JPt [m5/s3]

ωPt = 0.9, ωth = 0.1 42.908 392.223 3.65e-6 42.954 392.647 2.489e-6
ωPt = 0.8, ωth = 0.2 42.919 392.326 3.65e-6 42.992 392.989 2.489e-6
ωPt = 0.7, ωth = 0.3 42.945 392.566 3.65e-6 43.945 401.698 3.393e-6
ωPt = 0.5, ωth = 0.5 42.962 387.72 3.65e-6 44.122 403.324 3.653e-6
ωPt = 0.4, ωth = 0.6 42.973 393.818 3.65e-6 44.23 404.311 3.88e-6
ωPt = 0.3, ωth = 0.7 43.123 394.192 3.66e-6 44.5836 407.539 4.541e-6
ωPt = 0.1, ωth = 0.9 43.301 395.815 3.68e-6 45.038 411.698 7.404e-6
ωPt = 0.01, ωth = 0.99 46.4235 424.364 1.52e-5 46.47 424.787 1.25e-4

Table 3.10: Values of the objective functions for different initial conditions (IC1 and IC2)
and different weighting factors.
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Weighting factors [-] Optimised topology of IC1 Optimised topology of IC2

ωPt = 0.9, ωth = (1 ´ ωPt) = 0.1

ωPt = 0.8, ωth = (1 ´ ωPt) = 0.2

ωPt = 0.7, ωth = (1 ´ ωPt) = 0.3

ωPt = 0.5, ωth = (1 ´ ωPt) = 0.5

ωPt = 0.4, ωth = (1 ´ ωPt) = 0.6

ωPt = 0.3, ωth = (1 ´ ωPt) = 0.7

ωPt = 0.1, ωth = (1 ´ ωPt) = 0.9

ωPt = 0.01, ωth = (1 ´ ωPt) = 0.99

0 1

β

0 0.2

|U | [m/s]
375 425

T [K]

Table 3.11: Optimised topologies obtained for different initial conditions (IC1 and IC2)
and different weighting factors.
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In order to see well how the topology has been optimised, the Pareto front corresponding to
both IC1 and IC2 has been constructed based on the initial values of JPt and Jth. The latter
are noted JPt,init and Jth,init. As a reminder, these are used in order to normalise the objective
functions which gives pJ . The values of JPt,init and Jth,init for IC1 and IC2 are provided in
Tab. 3.12 and the Pareto fronts are given in Fig. 3.19 and Fig. 3.20. The couple (JPt/JPt,init,
Jth/Jth,init) has been omitted for ωth = 0.99 = (1 ´ ωPt). The latter for these weights corre-
sponding to IC1 and IC2 is respectively equal to (5.555, 1.113) and (11.69, 1.096). Analysing
the Pareto fronts, it can be noted that the heat flux to the coolant fluid is well increased, and
the pressure losses are decreased. For both IC1 and IC2 solutions, the heat flux is almost
tripled at the outlet, and the pressure losses are drastically decreased.

JPt,init [m5/s3] Jth,init [W]

IC1 1.279 ˆ 10´4 15.351
IC2 1.4216 ˆ 10´4 15.416

Table 3.12: Initial values of the objective functions for IC1 and IC2.

Figure 3.19: Pareto front of IC1.
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Figure 3.20: Pareto front of IC2.

It is not specified in Tab. 3.11, but the volume constraint is satisfied for all of the solu-
tions of IC1 and IC2. Both IC1 and IC2 do not initially satisfy the volume constraint. But
thanks to the dual approach used for the optimality conditions (see section 2.2.3), the gener-
ated optimised topologies verify the volume constraint. This figures the power of the method.

Upon increasing the weight accorded to Jth, and thus decreasing ωPt, the solution gets more
and more different.
For IC1, the solution is mostly driven by conduction in the sense that more solid material is
generated up to ωth = 0.9. Then, for ωth = 0.99, the optimiser generates a curved guidance
for the fluid. At the end of this curved channel, a bit of material distribution takes place at
the beginning of the outflow channel, which leaves a very tiny passage for the flow, and thus
accelerates the latter, which increases the heat flux.
Regarding IC2, the narrow aspect is even more noted with increasing ωth compared to the
solutions of IC1. Also, some ”roughness” is induced. For instance, the solution of IC2 with
ωth = 0.9 = 1 ´ ωPt has a ”wavy” surface. This irregular aspect of the surface is created
in order to improve the heat transferred to the coolant fluid. For ωth = 0.99, the flow is
blocked at the entrance of the outflow channel. After that, the flow still takes place as it can
be seen in the velocity distribution. This has no physical sense since with a real solid wall
positioned like this material distribution at the entrance of Ωout, then no flow can take place
in the outflow channel.

Finally, a very important remark that has to be done is the difference between the solutions
of IC1 and IC2. The solutions obtained for IC1 are essentially driven by conduction while
the topologies of IC2 get towards solutions that are controlled by convection through the
generation of the narrow flow passages. For IC2, the solution consists in the fluid being closer
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to the heated lower wall. This behaviour shows the presence of a multitude of (sub-)optimal
solutions that can verify the constraints and attain the objectives settled in the problem.
This aspect is due to the presence of a lot of design variables. It can be said that given an
optimised solution that is generated by the optimiser, it is quasi impossible to predict if it is
a global optimum. If the aim is to produce the best suited topology for the system, for now
it is only possible if multiple initial conditions are tried and then compare their respective
solutions between each other. This attitude of TO constitutes a major disadvantage. Future
works can be devoted in order to cope with this allure of the methodology.

3.9 Influence of the Reynolds number
In this section, the effect of the Reynolds number on the obtained topologies will be studied.
Then, the effect of the frozen turbulence assumption will be evaluated regarding the differ-
ences that it can generate in the optimised solutions.

In order to asses the effect of Re, the considered case will be the one of IC2 for ωPt = 0.4
and ωth = 0.6. The topologies obtained for an increasing Reynolds number and the corre-
sponding values of the objective functions are shown in Fig. 3.21. For increasing Re, the heat
flux at the outlet is improved thanks to the higher values of the velocity. The increase in
the velocities comes at the expense of an amplified pressure drop. It can be noted that even
though the difference obtained in the objective functions is remarkable, the impact of the
Reynolds number on the optimised topology has not so much effect in this range of Reynolds
number except when Re goes from 100 to 300.

(a) Re = 100. (b) Re = 300. (c) Re = 500.

0

1

β

(d) Re = 1000

JPt [m5/s3] Jth [W]

Re = 100 3.88 ˆ 10´6 44.23
Re = 300 5.41 ˆ 10´5 130.955
Re = 500 1.867 ˆ 10´4 217.078
Re = 1000 1.168 ˆ 10´3 432.618

Figure 3.21: Solution of IC2 with ωPt = 0.4 and ωth = 0.6 for different Reynolds number.
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The optimisation has also been applied in a case for which the Reynolds number is equal to
2000. At this value of Re, the flow can be considered to become turbulent, and it can be said
beforehand that due to the non-ordered aspect of the flow when it is turbulent, the resulting
topology is expected to be also irregular. Three approaches are used in order to deal with the
turbulence. The first trial (named APP1) consists in performing a fully laminar optimisation,
i.e. the turbulence is not taken into account at all, which means that the spalart-Allmaras
one equation turbulence equation is not solved. Then, the second test (noted APP2) will
consists in what is called ”frozen turbulence assumption”. In the latter, the primal turbu-
lence equation is solved, but the effect of the variation of the turbulence variable is not taken
into consideration in the sensitivities. This means that the adjoint turbulence equation is
not solved, leaving ν̃a equal to zero. The last and third approach noted APP3 considers
both primal and adjoint turbulnce. This means that the primal turbulence model equation
is solved, and the adjoint turbulent equation is also solved. So the effect of the turbulence is
taken into consideration in the sensitivities.

The results of the three approaches are given in Tab. 3.13 and Tab. 3.14. The effect of
how the turbulence is treated is significant. Comparing the solution of APP1, for which the
turbulence is not taken into consideration at all, to the solution of APP2, the great difference
between them can be noted. The resolution of the primal turbulence equation gives a totally
different optimised solution. The solution of APP3 is rather similar to APP2. For all cases,
the topology is quite irregular as it was expected.

Optimised topology Velocity distribution Temperature distribution

APP1

APP2

APP3

0 1

β

0 2.9

|U | [m/s]
375 425

T [K]

Table 3.13: Optimised topologies of APP1, APP2, and APP3.
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JPt [m5/s3] Jth [W]

APP1 870.345 0.002
APP2 837.97 0.0047
APP3 832.006 0.0046

Table 3.14: Results of APP1, APP2, and APP3.

From all these observations, it can be concluded that in a moderate rage of Reynolds number,
the solution for a fixed weighting parameter ω does not change a lot. But when approaching
the turbulent regime, the optimised material distribution is driven towards a totally different
topology with a significant effect of the treatment of turbulence. Omitting totally the tur-
bulence (APP1) leads to a completely different solution compared to the cases of APP2 and
APP3. Then, comparing APP2 and APP3 results, the effect of the turbulence sensitivity
is noted. The solution including the turbulence sensitivities inside the analysis is in fact
better in terms of the pressure drop. Therefore, it can be inferred that the exclusion of the
turbulence variable differentiation can give very inaccurate sensitivities, and thus conduct
the optimisation through a completely different path, resulting in unalike solutions.

3.10 Validation of the method with a body-fitted mesh
In order to validate the results given by topology optimisation, the solutions have to be
verified in a domain with real solid walls. So the ”porous” aspect of the material distribution
must be replaced by real solid material. Then, the objective functions will be computed on
this real solidified domain. To do so, a practical case that has been generated tanhks to
topology optimisation in section 3.8 is used. This is the topology obtained for IC2 with ωPt
= 0.4 and ωth = 0.6 with Re = 100. In the following, the latter will be called ”TOSol”, and
the solution provided by the body-fitted mesh will be called ”BFSol”. The topology of this
case is shown in Fig. 3.22 where the black regions are real solid zones.

Figure 3.22: Topology of the domain in which the body-fitted validation will be done; solid
material in black with real solid boundaries.

This structure is composed of three parts: two solid regions and one fluid region. In order
to take into account the conduction in the solids, and the convection in the fluid flowing
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between the two solid zones, a multi region CHT solver is needed. To come to that end, the
chtMultiRegionSimpleFoam solver of OpenFOAM is used. This is a steady state solver for
a buoyant turbulent fluid flowing inside a domain that undergoes conjugate heat transfer.
This is an compressible solver. Therefore, the density variation is taken into account which
was not the case in the approach used in topology optimisation where the density of the fluid
was considered to be constant.

Concerning the boundary conditions, these are the same as the primal boundary conditions
given in Tab. 3.2. In addition to these boundary conditions, the ones related to the new
solid walls generated by the optimiser must be included. At these boundaries, the no slip
boundary condition is imposed on the velocity, and a zero Neumann boundary condition is
set for the pressure. Concerning the temperature at these new boundaries, there must be
thermal equilibrium between the solid walls and the fluid by considering the heat transfer.
This phenomenon is considered thanks to the turbulentTemperatureCoupledBaffleMixed of
OpenFOAM.

In the upcoming sections, a mesh convergence study will be performed. This will be followed
by the computation of the values of the objective functions that will be compared then to the
ones of the ”porous” result provided by the optimisation. This will permit to validate the
consistency of the results given by topology optimisation and thus see if the density-based
method is worth using in the scope of CHT problems.

3.10.1 Grid convergence study
In order to study the grid convergence, five mesh cases have been tried (Tab. 3.15). To choose
the best suited one, the values of the thermal flux at the outlet and the pressure loss are
compared to a very fine mesh noted Mesh0 which has 173504 cells that is considered to be
valid. Considering these five cases, the evolution of the relative error with the different grids
computed with the values of Jth and JPt with respect to the results of Mesh0 is displayed in
Fig. 3.23.

Mesh1 Mesh2 Mesh3 Mesh4 Mesh5

Ncells [-] 8723 12 400 21 882 33 075 58 477

Table 3.15: Test cases for the spatial discretisation of the body-fitted case.
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(a) Relative error on JPt. (b) Relative error on the heat flux Jth.

Figure 3.23: Relative error on JPt and Jth with the different body fitted meshes.

The lowest relative errors for both objective functions takes place for the fifth test case.
That is why Mesh5 will be used in the following analysis. This grid is shown in Fig. 3.24. A
refinement is done at the boundaries between the fluid and the solid.

Figure 3.24: Body fitted grid (Mesh5).

3.10.2 Validation of the results
The results of the corresponding topology given by the optimisation must now be compared
to the results of the body fitted mesh. The simulation of the body fitted mesh run enough
time to achieve the permanent regime and thus have a consistent result to compare with
TOSol. The proof of achievement of this permanent regime is illustrated in Fig. 3.25 show-
ing the evolution of the average outlet temperature with the iterations.
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Figure 3.25: Evolution of the average outlet temperature with the iterations for BFSol.

The velocity and temperature profiles of TOSol and BFSol are provided in Fig. 3.26 and
Fig. 3.27. The values of JPt, Jth and Tout of TOSol and BFSol are given in Tab. 3.16. Re-
garding the velocity and temperature distributions, a very close similarity for the results
provided by TOSol and BFSol can be noted.

(a) TOSol. (b) BFSol.

0 0.2

|U | [m/s]

Figure 3.26: Velocity distribution of TOSol and BFSol.
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(a) TOSol. (b) BFSol.

375 425

T [K]

Figure 3.27: Temperature distribution of TOSol and BFSol.

JPt [m5/s3] Jth [W] T out [K]

TOSol 3.88 ˆ 10´6 44.23 404.311
BFSol 4.9437 ˆ 10´6 42.9183 395.6654

Table 3.16: Values of the objective functions of TOSol and BFSol.

As it can be observed in Tab. 3.16, there is some difference in the pressure losses and the heat
flux at the outlet provided by the two approaches. These differences are very small. A more
objective assessment is achieved by comparing the difference brought by the optimisation
(noted ∆opt) in the objective functions, and the difference in the computed values between
BFSol and TOSol (noted ∆Sol). This is done in Tab. 3.17.

JPt [m5/s3] Jth [W]

∆opt ´1.383 ˆ 10´4 28.8136
∆Sol ´1.064 ˆ 10´6 1.3117

Table 3.17: Comparison of the difference in the objective functions brought by the optimi-
sation with the difference between the values provided by TOSol and BFSol.

The absolute value of ∆opt for each of the objective functions being way bigger than the
correspondent difference ∆Sol in absolute value, it can be noted that the result given by the
”porous” approach used in topology optimisation was consistent.

An additional remark that can be done regarding the differences between TOSol and BFSol
is that the pressure losses are higher for the BFSol since real solid wall leads to a more
important obstacle for the fluid compared to a porous medium. Moreover, the fact that the
buoyant solver used for BFSol takes into account the density variation impacts the compu-
tations. This may explain why the heat flux is lower since the density of the fluid flowing
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inside the domain decreases with increasing temperature of the fluid.

In conclusion, it can be said that the density-based approach used in topology optimisation
is well consistent concerning the results it provides.
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Chapter 4

3D CHT Topology Optimisation

In this chapter, a more interesting structure will be optimised topologically. The domain be-
ing this time in three dimensions, this will increase the complexity of the optimisation process.

First of all, the spatial discretisation will be presented. Then, TO will be applied on this
complex case. The conducted analysis will show how difficult it is to optimise a 3D CHT
problem subjected to turbulent flows.

4.1 Problem definition
The problem consists of a 3D heat exchanger. The heat exchanger has two fluid phases: the
air and the oil. The oil having a good conductance, there is no need of optimising the flow
path of the oil. Therefore, a Dirichlet boundary condition is imposed on the oil side.

The domain in which the optimisation takes place is illustrated in Fig. 4.1 where the pres-
ence of the oil is taken as a boundary condition applied for the temperature at the lower red
surface called ”oil side”. The green surfaces are adiabatic walls, and the blue surface are the
inlet and the outlet. The domain is symmetric from either side of the grey surfaces whose
normal are parallel to the vector Z⃗. The flow takes place in the X⃗ direction entering into
the domain from the inlet face (blue front surface).

The flow enters into the domain with a velocity equal to 17 m/s at a temperature of 375K.
The temperature of the oil is equal to 425 K. The solid material that will constitute the
topology of the domain is Aluminium. The properties of air and Aluminium at their respec-
tive temperatures are given in Tab. 3.1. Based on the length of the domain along X⃗, the
Reynolds number is approximately equal to 165 084. As the latter is very big, the flow is
turbulent. The boundary conditions applied on each surface of the domain are summarised
in Tab. 4.1.
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X⃗

Y⃗

Z⃗

125 mm

50 mm

50 mm

100 mm

25 mm

Figure 4.1: 3D heat exchanger geometry.

Inlet Outlet Adiabatic walls Oil Side Symmetric walls

U Dirichlet Zero Neumann Zero Dirichlet Zero Dirichlet Symmetric

p Zero Neumann Zero Dirichlet Zero Neumann Zero Neumann Symmetric

T Dirichlet Zero Neumann Zero Neumann Dirichlet Symmetric

νt Calculated Calculated Wall function Wall function Symmetric

ν̃ Calculated Zero Neumann Zero Dirichlet Zero Dirichlet Symmetric

Table 4.1: Boundary conditions of 3D heat exchanger.

The eddy viscosity νt is computed as follows

νt =

c

3

2
UinItlT (4.1)

where Uin in the inlet velocity, It is the turbulence intensity set to 0.01, and lT is the turbulent
length scale equal to 0.07 ˆ hmax, with hmax equal to 100 mm in this case. The wall function
used at the walls is the one provided in OpenFOAM which models the inner sub-layer and
the logarithmic region of the boundary layer using a single formula. More details about this
wall function are given in [44].

The effective viscosity ν̃ is computed based on the fluid viscosity as it is suggested by [59]
with the following formula

ν̃ = 5ν. (4.2)
The boundary conditions being specified, the next step is to introduce the spatial discretisa-
tion.
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4.2 Spatial discretisation

As the domain is simple, the grid is made of square cells of 1ˆ10´3 mm2 in the X⃗´ Y⃗ plane.
In the Z⃗ direction, the size of the cells has been divide in three. As a matter of fact, when
conducting an optimisation of a heat exchanger, the first idea is to put fins that are aligned
in the direction of the flow. This will be done as a first inital guess for the optimisation in
the following section. If the width of each fin is considered to be equal to 1 mm and if three
cells are desired along the width of the fins, the size of the cells must be divided by three.
That is why grids of 0.33 ˆ 10´3 mm of length are putted along the Z⃗ direction. This is
illustrated in Fig. 4.2 obtained by making a zoom on the geometry in the Y⃗ ´ Z⃗ plane. The
yellow zones show the distribution of the cells in the fins.

Figure 4.2: 3D heat exchanger grid in the Y⃗ ´ Z⃗ plane.

4.3 Optimisation of the heat exchanger
The flow taking place inside the domain has a great Reynolds number, leading to a highly
turbulent flow. On top of that, the geometry is in 3D. Handling such a problem is very diffi-
cult. The initial condition consists in a domain filled with fluid except the presence of solid
fins in contact from their bottom with the oil side. The fins are distributed symmetrically
and their temperature is initially equal to 425 K. The positioning of the fins is shown in
Fig. 4.3 with a perspective view.

The goal is to see if starting from these fins, the optimiser can generate a better topology en-
hancing greatly the thermal flux while limiting the pressure drops. The normalisation factors
JPt, norm and Jth, norm are respectively equal to 15 m5/s3 and 15422.8 W. The normalisation
factor of Jth is calculated by the optimiser as always, so Jth, norm is equal to Jth, init. But
the one of the pressure drop is set manually in order to prevent the great importance of the
pressure losses in the weighted and normalised objective function Ĵ . If JPt, norm is set by the
optimiser, then the contribution of JPt in Ĵ is important, and the optimiser tends to remove
the fins in order to decrease the pressure losses rather than improving the topologies of the
fins. The weighting factors are equal to ωPt = 0.01 and ωth = 0.99, the Darcy number is
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set 10´6, and the regularisation radius based on the average cell volume is equal to 7ˆ10´4 m.

Figure 4.3: Distributions of the fins in the initial setting.

The primal turbulence equation is solved, but the adjoint turbulence is not taken into con-
sideration, i.e. the equation for ν̃a is not solved. So the variation of νt is not taken into
account in the sensitivities but νt manifests its effects through the primal state of equations
by being included in the primal momentum equations and in the primal energy equation.
The optimisation gave consistent results up to the 22-th optimisation cycle for which the
optimised topology looks like in Fig. 4.4. The latter looks better. For this distribution of
material, the heat flux at the outlet is equal to 15545.5 W and the pressure losses are equal
to 23.355 m5/s3. The velocity streamlines and the temperature distributions are given in
Fig. 4.5. Concerning the permeability of the domain where there is material, it can be noted
that there is a small leakage of flow because of the velocity being larger than zero there. This
means that the value of λmax is not high enough. λmax must be increased but at the expense
of having a risk of unstable optimisation. In order to have a clearer view of the velocity and
the temperature inside the domain, a slice in the middle of the domain of normal Z⃗ is dis-
played in Fig. A.4. For the next optimisation cycle, the iterated solution diverges and leads
to the topology given in Fig. 4.6 which is not symmetrical at all. Although the optimised
solution for the 22-th cycle seems to be a relatively good design, the solution diverges at the
next cycle and the convergence does not take place in this case.

From this example, the complexity of optimising a 3D domain with a highly turbulent flow
inside it has been experienced. Although the convergence to an optimal design is not achieved,
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the method of topology optimisation has proven its ability to generate optimised designs in
the first cycles. The part of the optimisation process that causes a great difficulty is the
resolution of the adjoint equations for which the convergence is very complicated. The
resolution of these equations must be stabilised in possible future works. Also, the adjoint
turbulence equation has not been solved. In possible future works, the resolution of this
equation must be tried to see if there is a great effect of the adjoint turbulence in the allure
of the optimised topology for this cumbersome case.

(a) View in perspective.

(b) View in the X⃗ ´ Y⃗ plane.

(c) Solid material
viewed from the
inlet.

(d) Solid material
viewed from the
outlet.

(e) Solid material viewed from the top
on the X⃗ ´ Z⃗ plane (inlet on the left
side, outlet on the right side).

Figure 4.4: Topology of the 3D heat exchanger at the 22-th optimisation cycle with the
primal turbulence solved and adjoint turbulence not taken into account; overall domain in
clear grey, and solid material in dark grey.
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(a) Streamlines of the velocity.
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(b) Temperature distribution.

Figure 4.5: Streamlines of the velocity, and temperature distribution of the 3D heat ex-
changer at the 22-th optimisation cycle with the primal turbulence solved and adjoint tur-
bulence not taken into account.

Figure 4.6: Topology of the 3D heat exchanger at the 23-th cycle with the primal turbulence
solved and adjoint turbulence not taken into account; overall domain in clear grey, and solid
material in dark grey.
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Chapter 5

Conclusion and perspectives

5.1 Conclusion
In this thesis, the main goal was to first understand the general approach of topology optimi-
sation and then appropriate the technique to a fluid problem, and especially to a conjugate
heat transfer (CHT) problem. After a detailed exposition of the gradient based methods
used in the scope of existing structural problems, a review of the application of topology
optimisation for fluid flows has been done. The density (or porosity) based topology opti-
misation has then been specified for a CHT problem. Along with the different equations
intervening in the latter, new development related to the regularisation and the projection
of the design field have been explained. Following this, the continuous adjoint formulation
has been clarified. Then, the global layout of a topology optimisation process for a CHT
problem has been summarised.

In order to assess the effect of the numerous parameters intervening in the optimisation pro-
cedure, a parameter study has been conducted on a practical two dimensional CHT system.
First of all, the influence of the spatial discretisation has been analysed. This has figured out
the dependency of the optimised solution on the grid when omitting the regularisation. This
dependency was not so marked in the simple case that was considered but in much compli-
cated systems, this could be much more noted. The study of the spatial discretisation gave a
first insight in the understanding of the regularisation, showing that the regularisation gives
mesh-independent solutions. Successively, the effect of the regularisation has been evaluated
along with the projection. As the density based approach uses intermediate values of the de-
sign variable allowing thus for grey transitions from fluid to solid regions, a projection of the
design field was thus needed in order to have a binary material distribution. Following this,
the porosity source term included in the flow equations has been studied. There is in fact dif-
ferent types of functions of interpolation that give this term which is scaled with the inverse
permeability depending on the design field. The analysis showed a great sensitivity of the
optimisation to these interpolation functions, and it was concluded that a Borrvall-Petersson
type interpolation function was best suited for the current type of problem. Successively,
the way the thermo-physical properties are treated with the distribution of material has also
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been treated by considering the various types of interpolation of these properties between the
fluid and the solid. This showed that the SIMP interpolation, as it was commonly used in
structural mechanics problem, was also preferable for fluid based problems. Then, the effect
of the Darcy number on the porosity of the solidified zones has been assessed. As it was
expected, with the decrease of this number, the obtained material distribution got towards
a real solid with almost no flow leakage inside it. Subsequently, the influence of the initial
conditions has shown an important sensitivity of the method to the initial settings of the
design field. For a different initial material distribution, the optimiser gave distinguished
results. This phenomenon manifested the presence of many optimal solutions, and when a
solution is achieved, it cannot be ensured that the latter is a global one. Then, the effect
of the Reynolds number has been evaluated. The important remark is the influence of how
turbulence is treated. Omitting turbulence in the sensitivity has led to completely dissimi-
lar results. This aspect seems to confirm the inaccuracy of the computed sensitivities when
neglecting turbulence for a high Reynolds number. All of these parametric analysis showed
a high dependence of the optimisation on these input data. This makes the difficulty of the
usage of the method. Finally, the results of one of the optimised solutions has been validated
using a body fitted mesh. This was done in order to ensure that the solutions given by the
optimisation concerning the different quantities of interest were close to the ones provided
with real solid walls. This comparison showed a close proximity between the results of the
”porous” approach used in topology optimisation and the ones of the body fitted case. It
can be said that this was due to a good tuning of the projection parameter that gave a neat
transition from solidified regions to the fluid zones, and the Darcy number that was low
enough.

Finally, the method of topology optimisation has been tried on a 3D heat exchanger subjected
to a highly turbulent flow. The convergence to an optimal solution was not achieved but the
optimisation could generate interesting designs for the first optimisation cycles.

5.2 Further works
There are many things to do in the future in order to improve the method of topology opti-
misation.

First of all, the fact that there are lots of (sub-)optimal solutions due to the high number
of design variables is a major issue. It is already very complicated to tune the different
parameters in order to end with a solution that is physically meaningful. On top of that,
achieving a global optimum and then being aware that this optimum is a global one seem
for now impossible facts. Future studies can be devoted in order to cope with this allure of
topology optimisation.

In the scope of this thesis, topology optimisation has been applied to a problem with only
one fluid. But it is possible to use the same approach for problems including multiple fluids.
This could be for instance the case of heat exchangers with two fluids where the objectives are
to increase the heat transferred from one fluid to the other and limiting the pressure drops
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in each fluid. In this work, the pressure losses were comprised inside the objective function,
but it could be interesting to test cases where the pressure drop is constrained instead of a
function to minimise.

In this study, the optimisation was done on a problem with a well defined regime, i.e. for a
unique Reynolds (except when the effect of the Reynolds number was studied) with a unique
value of the different temperatures that were imposed at the entrance and at the heated wall
of the CHT system. In possible further works, it may be attractive to consider different cases
to which corresponds different Reynolds numbers and temperatures. Then, considering these
different cases, topology optimisation can be used to generate a unique optimised solution
that could meet the objectives of these distinguished cases. This approach can be for instance
useful when designing the heat exchanger of an airplane. As the airplane undergoes different
flight regimes, it could be motivating to generate an optimised heat exchanger that is well
suited for these different regimes. The author of this thesis has tried to optimise a 3D heat
exchanger but for one regime, i.e. with a fixed Reynolds number and fixed temperatures.
The case being in three dimensions, the optimisation was way more complicated and very
difficult to stabilise, and especially because of the very high Reynolds number. Eventual
subsequent works could be devoted to optimise such a cumbersome application.

Considering the turbulent cases, the body-fitted mesh has not been applied to the latter.
In order to be sure that the results of topology optimisation given for problems including
turbulent flows are consistent, a body-fitted validation must be done. One more analysis that
can be done is to consider different types of turbulent models used in the scope of topology
optimisation. In this thesis, the Spalart-Allmaras one equation model was used.

Within the current thesis, the flow was considered to be incompressible. Further works can
cope with fluid-based problems subjected to compressible flows. This could be for instance
useful for turbomachinery, and other aerospace or aeronautical applications.
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Appendix A

Additional figures

(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

Figure A.1: Convergence history for the different interpolation functions for the porosity
dependent source terms with q = 10; R = 1 mm; ωPt = 1, ωth = 0.
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(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

Figure A.2: Convergence history for the different interpolation functions of the thermo-
physical properties with qth = 5; R = 1 mm; ωPt = ωth = 0.5.

(a) I = IBP (b) I = Iexp (c) I = I lin

(d) I = ISIMP (e) I = Isinh (f) I = Itanh

Figure A.3: Convergence history for the different interpolation functions of the thermo-
physical properties with qth = 5; R = 10 mm; ωPt = ωth = 0.5.
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(a) Velocity distribution.
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(b) Temperature distribution.

Figure A.4: Velocity and temperature distributions in the X⃗ ´ Y⃗ plane of the 3D heat
exchanger at the 22-th optimisation cycle with the primal turbulence solved and adjoint
turbulence not taken into account.
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