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Abstract
Conventional steel-reinforced concrete deep beams are typically known for their high shear
strength and stiffness. To avoid corrosion-related deterioration problems, fiber-reinforced poly-
mers (FRPs) reinforcement bars have been used as non-corrosive substitute for steel. However,
tests on deep beams reinforced with internal FRP reinforcement have shown that such members
can exhibit different failure modes than the ones observed in conventional deep beams. Moreover,
these failure modes may limit the shear capacity making the technical solution less feasible. This
study proposes to develop a kinematics-based model capable of predicting the complete shear
behavior of FRP-reinforced deep beams without web reinforcement. The approach includes mod-
elling features for three different failure modes, accounting for the effects of FRP reinforcement
on the observed behavior of deep beams. The crack-based 2PKT for FRP-reinforced deep beams
is applied to tests from the literature resulting in an average experimental-to-predicted strength
ratio of 1.06 and a coefficient of variation of 8.5%. Furthermore, the developed kinematics-based
model is able to adequately predict the failure mode, as well as global and local deformations
along critical cracks.

I



Acknowledgement
This master’s thesis is carried out to obtain the degree of Master of Science in Civil Engineering
at the University of Liège. Prior to the study, I would like to thank everyone who helped me to
accomplish this work.

First, I would like to express my deepest gratitude to my supervisor, Professor Boyan Mi-
haylov, for his support, advice and guidance throughout this thesis. His great passion for
concrete structures easily convinced me to choose one of his master’s thesis subjects, but, it
was his undeniable capability of being an excellent professor and researcher which helped me to
successfully complete this work.

I am also thankful to Alexandru Trandafir who was always available to help me and to
provide feedback and helpful comments during the research and the writing phase. His wide-
ranging knowledge about concrete surprised me many times. I have learned a lot from his way
of thinking and tackling problems.

Many thanks to my teachers and colleagues who were there for me during the last two
years.

Last but not least, I am thankful to Stien, my parents, my brother and my friends for being
morally supportive and encouraging me throughout my studies.

II



Contents
Abstract I

Acknowledgement II

1 Introduction 1
1.1 Concrete deep beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature review 5
2.1 Deep beams reinforced with fiber-reinforced polymers (FRPs) bars . . . . . . . . 5
2.2 Fiber-reinforced polymers as reinforcement . . . . . . . . . . . . . . . . . . . . . 6
2.3 Existing tests on FRP-reinforced deep beams . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Tests by Andermatt and Lubell (2010) . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Tests by Farghaly and Benmokrane (2013) . . . . . . . . . . . . . . . . . . 10
2.3.3 Observed failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Summary tests database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Existing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Strut-and-tie model (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Two-parameter kinematic theory (2PKT) . . . . . . . . . . . . . . . . . . 16
2.4.3 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Crack-based 2PKT for FRP-reinforced deep beams 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Crack tracking and discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Kinematics of deep beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Mechanisms of shear resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Critical loading zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Aggregate interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Dowel action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Equilibrium and solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Modelling of shear-induced flexural crushing . . . . . . . . . . . . . . . . . . . . . 28
3.7 Modelling of cracking of critical loading zone . . . . . . . . . . . . . . . . . . . . 31
3.8 Implementation of the failure modes in the 2PKT framework . . . . . . . . . . . 35
3.9 Modelling of flexural deformations in pure bending regions . . . . . . . . . . . . . 35

4 Results and discussion 37
4.1 Tests by Andermatt and Lubell (2010) . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Predictions of global and local shear behavior . . . . . . . . . . . . . . . . 37
4.1.2 Effects of test variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Tests by Farghaly and Benmokrane (2013) . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Predictions of global and local shear behavior . . . . . . . . . . . . . . . . 79
4.2.2 Effects of test variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Summary of strength predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conclusions and outlook 92
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Nomenclature 94

References 99



List of Figures
1.1 Deep transfer girders used to create a column-free area (adapted from [1]) . . . . 1
1.2 FRP bars [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Similar deep beams which exhibit a different failure mode and different crack widths 3
2.1 Effect of member slenderness on the shear strength of beams [14] . . . . . . . . . 5
2.2 Load-deflection response of FRP-reinforced deep beams [15] . . . . . . . . . . . . 6
2.3 Stress-strain relationships for different types of FRP reinforcement and steel . . . 7
2.4 Bond stress development during a pull-out test on FRP and steel bars in normal-

strength concrete and high-strength concrete (based on tests [20]) . . . . . . . . . 8
2.5 Definition of geometrical parameters in deep beams . . . . . . . . . . . . . . . . . 8
2.6 Typical initial crack development in specimen B4N [8] . . . . . . . . . . . . . . . 9
2.7 Different crack propagation in FRP-reinforced deep beams (courtesy by Ander-

matt and Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Diagonal crack propagation in specimen G8N6 [15] . . . . . . . . . . . . . . . . . 11
2.9 Three observed failure modes in FRP-reinforced deep beams . . . . . . . . . . . . 11
2.10 Localization of B- and D-regions in concrete structures [21] . . . . . . . . . . . . 14
2.11 Strut-and-tie model for a deep beam in four-point bending (adapted from [8]) . . 15
2.12 Crushing of concrete in the top zone of a deep beam, specimen B1N (courtesy by

Andermatt and Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . 16
2.13 Degrees of freedom in the kinematic model [11] . . . . . . . . . . . . . . . . . . . 17
3.1 Influence of the size of the grid on the shear force [12] . . . . . . . . . . . . . . . 20
3.2 Kinematic model for FRP-reinforced deep beams (adapted from [11] and [27]) . 21
3.3 Shear mechanisms in FRP-reinforced deep beams without web reinforcement

(adapted from [11]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Idealized geometry of CLZ in deep beams [11] . . . . . . . . . . . . . . . . . . . . 22
3.5 Crack-based definition of CLZ geometry [12] . . . . . . . . . . . . . . . . . . . . 22
3.6 Aggregate interlock model with local displacements and stresses . . . . . . . . . . 23
3.7 Strains along anchorage of FRP reinforcement that contribute to critical crack

opening [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Solution procedure of crack-based 2PKT for FRP-reinforced deep beams (adapted

from [23]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Shear-induced flexural crushing in specimen B2N and corresponding model prop-

erties (courtesy by Andermatt and Lubell, University of Alberta) . . . . . . . . . 28
3.10 Linear correlation of the crushed-to-compressed depth ratio to a/d and fc,eff . . 31
3.11 Geometrical model for cracking of critical loading zone . . . . . . . . . . . . . . . 33
3.12 Three stress contributions developing in a section i . . . . . . . . . . . . . . . . . 34
3.13 Full response as a function of three possible failure modes determined with crack-

based 2PKT for FRP-reinforced deep beams, specimen B4N . . . . . . . . . . . 35
4.1 Experimental and predicted load-displacement response for specimen A1N . . . . 37
4.2 Shear-induced flexural crushing in specimen A1N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Experimental and predicted load-strain response for specimen A1N . . . . . . . . 38
4.4 Experimental and predicted load-crack displacement response for specimen A1N 39
4.5 Experimental and predicted load-displacement response for specimen A2N . . . . 40
4.6 Shear-induced flexural crushing in specimen A2N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Experimental and predicted load-strain response for specimen A2N . . . . . . . . 41
4.8 Experimental and predicted load-crack displacement response for specimen A2N 41



4.9 Experimental and predicted load-displacement response for specimen A3N . . . . 42
4.10 Shear-induced flexural crushing in specimen A3N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.11 Experimental and predicted load-strain response for specimen A3N . . . . . . . . 43
4.12 Experimental and predicted load-crack displacement response for specimen A3N 43
4.13 Experimental and predicted load-displacement response for specimen A4H . . . . 44
4.14 Shear-induced flexural crushing in specimen A4H (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Experimental and predicted load-crack displacement response for specimen A4H 45
4.16 Experimental and predicted load-strain response for specimen A4H . . . . . . . . 45
4.17 Experimental and predicted load-displacement response for specimen B1N . . . . 46
4.18 Shear-induced flexural crushing in specimen B1N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.19 Experimental and predicted load-strain response for specimen B1N . . . . . . . . 47
4.20 Experimental and predicted load-crack displacement response for specimen B1N 47
4.21 Experimental and predicted load-displacement response for specimen B2N . . . . 48
4.22 Shear-induced flexural crushing in specimen B2N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.23 Experimental and predicted load-strain response for specimen B2N . . . . . . . . 49
4.24 Experimental and predicted load-crack displacement response for specimen B2N 49
4.25 Experimental and predicted load-displacement response for specimen B3N . . . . 50
4.26 Shear-induced flexural crushing in specimen B3N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.27 Experimental and predicted load-strain response for specimen B3N . . . . . . . . 51
4.28 Experimental and predicted load-crack displacement response for specimen B3N 51
4.29 Experimental and predicted load-displacement response for specimen B4N . . . . 52
4.30 Shear-induced flexural crushing in specimen B4N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.31 Complete load-displacement response for specimen B4N . . . . . . . . . . . . . . 53
4.32 Experimental and predicted load-strain response for specimen B4N . . . . . . . . 54
4.33 Experimental and predicted load-crack displacement response for specimen B4N 54
4.34 Experimental and predicted load-displacement response for specimen B5H . . . . 55
4.35 Shear-induced flexural crushing in specimen B5H (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.36 Experimental and predicted load-strain response for specimen B5H . . . . . . . . 56
4.37 Experimental and predicted load-crack displacement response for specimen B5H 56
4.38 Experimental and predicted load-displacement response for specimen B6H . . . . 57
4.39 Shear-induced flexural crushing in specimen B6H (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.40 Results for specimen B6H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.41 Experimental and adapted load-displacement response for specimen B6H . . . . . 58
4.42 Experimental and adapted predicted load-strain response for specimen B6H . . . 59
4.43 Experimental and adapted predicted load-crack displacement response for speci-

men B6H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.44 Aggregate interlock stresses along the critical crack in specimen B6H . . . . . . . 60
4.45 Experimental and final predicted load-displacement response for specimen B6H . 61
4.46 Final results for specimen B6H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.47 Experimental and modified predicted load-displacement response for specimen B6H 62
4.48 Experimental and predicted load-displacement response for specimen C1N . . . . 63



4.49 Shear-induced flexural crushing in specimen C1N (courtesy by Andermatt and
Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.50 Experimental and predicted load-strain response for specimen C1N . . . . . . . . 64
4.51 Experimental and predicted load-crack displacement response for specimen C1N 64
4.52 Experimental and predicted load-displacement response for specimen C2N . . . . 65
4.53 Shear-induced flexural crushing in specimen C2N (courtesy by Andermatt and

Lubell, University of Alberta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.54 Experimental and predicted load-strain response for specimen C2N . . . . . . . . 66
4.55 Experimental and predicted load-crack displacement response for specimen C2N 66
4.56 Experimental and predicted load-displacement response for specimens A1N, A2N

and A3N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.57 Experimental and predicted load-strain responses for specimens A1N, A2N and

A3N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.58 load-crack displacement response for specimens A1N, A2N and A3N . . . . . . . 68
4.59 Experimental and predicted load-displacement response for specimens B1N, B2N

and B3N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.60 Experimental and predicted load-strain responses for specimens B1N, B2N and

B3N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.61 load-crack displacement response for specimens B1N, B2N and B3N . . . . . . . 70
4.62 Load-displacement response for specimens C1N and C2N . . . . . . . . . . . . . 71
4.63 Experimental and predicted load-strain responses for specimens C1N and C2N . 71
4.64 Experimental and predicted load-crack displacement for specimens C1N and C2N 72
4.65 Experimental and predicted load-displacement response for specimens B2N and

B4N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.66 Experimental and predicted load-strain responses for specimens B2N and B4N . 73
4.67 Experimental and predicted load-crack displacement for specimens B2N and B4N 73
4.68 Experimental and predicted load-displacement response for specimens A3N and

A4H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.69 Experimental and predicted load-strain responses for specimens A3N and A4H . 74
4.70 Experimental and predicted load-crack displacement for specimens A3N and A4H 75
4.71 Experimental and predicted load-displacement response for specimens B3N and

B6H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.72 Experimental and predicted load-strain responses for specimens B3N and B6H . 76
4.73 Experimental and predicted load-crack displacement for specimens B3N and B6H 76
4.74 Experimental and predicted load-displacement response for specimens B4N and

B5H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.75 Experimental and predicted load-strain responses for specimens B4N and B5H . 78
4.76 Experimental and predicted load-crack displacement for specimens B4N and B5H 78
4.77 Experimental and predicted load-displacement response for specimen G8N6 . . . 79
4.78 Experimental and predicted load-strain response for specimen G8N6 . . . . . . . 80
4.79 Experimental and predicted load-crack displacement response for specimen G8N6 80
4.80 Experimental and predicted load-displacement response for specimen G8N8 . . . 81
4.81 Experimental and predicted load-strain response for specimen G8N8 . . . . . . . 81
4.82 Experimental and predicted load-crack displacement response for specimen G8N8 82
4.83 Experimental and predicted load-displacement response for specimen C12N3 . . 82
4.84 Experimental and predicted load-strain response for specimen C12N3 . . . . . . . 83
4.85 Experimental and predicted load-crack displacement response for specimen C12N3 83
4.86 Experimental and predicted load-displacement response for specimen C12N4 . . 84
4.87 Experimental and predicted load-strain response for specimen C12N4 . . . . . . . 85



4.88 Experimental and predicted load-crack displacement response for specimen C12N4 85
4.89 Experimental and predicted load-displacement response for specimens G8N6 and

G8N8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.90 Experimental and predicted load-strain responses for specimens G8N6 and G8N8 87
4.91 Experimental and predicted load-crack displacement response for specimens G8N6

and G8N8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.92 Experimental and predicted load-displacement response for specimens G8N6,

G8N8 and G8N6-modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.93 Experimental and predicted load-displacement response for specimens C12N3 and

C12N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.94 Experimental and predicted load-strain responses for specimens C12N3 and C12N4 90
4.95 Experimental and predicted load-crack displacement responses for specimens C12N3

and C12N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Tables
1 Database of FRP-reinforced deep beam tests . . . . . . . . . . . . . . . . . . . . 13
2 Summary of strength comparisons of existing models [8, 15, 23, 25] . . . . . . . . 18
3 Summary of strength predictions for FRP-reinforced deep beam tests . . . . . . . 91



1 Introduction

1.1 Concrete deep beams

Concrete deep beams, typically recognized by their small shear span-to-depth ratio (a/d ≤ 2.5),
have a high stiffness and shear strength. Therefore, this type of concrete element is very useful
at places where high loads need to be resisted such as in transfer girders or foundation elements.
Transfer girders are used in many buildings, because they give the opportunity to create a large
free space without the need of columns as shown in Fig. 1.1. The advantage of deep beams
to carry heavy loads immediately implies a potential risk: a failure of one deep beam can have
local consequences, but, in worst case, it can even lead to a global collapse of the building. This
is why research on the behavior of these concrete elements is very important.

Figure 1.1: Deep transfer girders used to create a column-free area (adapted from [1])

In contrast with slender beams (a/d > 2.5), deep beams do not obey the hypothesis demon-
strated by Hooke in 1678 [2] which states that plane sections before loading remain plane during
loading due to linear distribution of the strains. This implies that deep beams do not longer
carry shear like slender beams and, therefore, can not be assessed based on the classical beam
theory. The behavior of deep beams can be described by arch action where compressive stresses
flow in the concrete from loading plates directly to the supports [3]. Due to the fact that con-
crete has a very high compression capacity, deep beams can resist much higher shear forces in
comparison to slender beams. This flow of compressive stresses can be compared with an arch
inside the deep beam. To obtain equilibrium, the legs of the arch are kept together by a tie with
a constant tensile force along the shear span. The role of the tie is fulfilled by the longitudinal
flexural reinforcement of the deep beam. Because of this particular behavior, the ACI [4] and
CSA [5] code recommend to use strut-and-tie models (STMs) for the design of deep beams.
Nevertheless that this model has proven to be very powerful to calculate all kinds of reinforced
concrete elements, it is not always capable to take into account the subtle influence of some
parameters which influence the shear capacity of deep beams. Research has shown that the
shear capacity of a deep beam can not only increase by decreasing the a/d ratio or by increasing
the concrete strength, but the capacity depends also on the randomness of the crack geometry
and, especially, the path of the diagonal shear crack. A difference in capacity, even up to 60%,
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has been observed for nominally identical deep beams where the only difference was the crack
geometry [1, 6, 7]. That is why the use of a model which uses the crack as an input, to predict
the shear strength and failure mode with less scatter, is desired.

Generally, reinforced concrete members, such as deep beams, are associated with conventional
steel reinforcement. During the last century, many reinforced concrete structures have been
built and a considerable amount of research programs have been dedicated to this subject to
understand the behavior of such structures. Both in practice as in research, there is observed
that one of the major problems of steel reinforcement is its susceptibility to corrosion and all kind
of damaging consequences that are related to it, especially in environments with a high risk of
corrosion. To solve this problem, different kind of solutions have been researched. One of them,
is to replace the conventional steel reinforcement by a non-corrosive reinforcement bar made out
of fiber-reinforced polymers (FRPs) as shown in Fig. 1.2. This new material is characterized
by its high tensile strength, but low stiffness in comparison to steel. However, the most critical
parameter of FRP is settled in its behavior: brittle-elastic. Unlike steel reinforcement, the FRP
bars can not yield and will not attribute plasticity to the reinforced concrete element, which
results in a very different behavior and so a different modelling approach. Despite the fact that
this type of reinforcement has already been used and is still used as a possible substitute for
steel in risky environments, there is a lack of rules which comes together with a lack of research,
especially for FRP-reinforced deep beams.

Figure 1.2: FRP bars [8]

In the structural design codes, the classic strut-and-tie model is still suggested to calculate
FRP-reinforced deep beams. As mentioned earlier, one of the weaknesses of this model is that
it does not include the crack geometry. Another important deficiency of the STM is that it does
not take into account the different behavior of FRP-reinforced deep beams. In test programs,
there has been observed that very large crack widths, up to 7 mm, had developed in deep
beams reinforced with FRP bars due to the low stiffness of this type of reinforcement. More
importantly, other failure modes had occurred in comparison to steel-reinforced deep beams [9]
as shown in Fig. 1.3. The consequence of exhibiting another failure mode was a decrease of
the shear capacity. Currently, these failure modes are not taken into account in any existing
model.
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(a) Failure in a steel-reinforced deep beam [1] (b) Failure in a FRP-reinforced deep beam (courtesy
by Andermatt and Lubell, University of Alberta)

Figure 1.3: Similar deep beams which exhibit a different failure mode and different crack widths

1.2 Research motivation

Deep beams are widely used in the construction domain. These steel-reinforced concrete elements
have already been researched extensively in multiple research programs throughout the past.
However, the predicted shear capacity of a steel-reinforced deep beam shows varying results
depending on the model that has been used [10]. In the last decade, a new kinematics-based
model, the two-parameter kinematic theory (2PKT) [11], has been developed by Mihaylov et al.
which showed accurate and consistent predictions. Afterwards, this model was even extended
by Trandafir et al. [12] by introducing the crack geometry as an input parameter to evaluate
the capacity of an existing deep beam. However, this model is only applicable for conventional
steel-reinforced deep beams.

In the past, there have been detected a lot of problems in reinforced concrete elements due to
corrosion of the steel bars. To solve this problem, the steel reinforcement was replaced by non-
corrosive FRP bars. Even up to this day, FRP bars are still used as a replacement for steel in
deep beams. However, the behavior of these bars is not perfectly similar to the behavior of steel
bars. Only a few research programs have been performed to test the behavior of FRP-reinforced
deep beams. There has been seen that a different behavior and different failure modes than in
steel-reinforced deep beams could occur.

It can be stated that the development of a model is necessary to have a better understanding
of the behavior and the exhibiting failure modes, and to obtain improved predictions of the shear
capacity of FRP-reinforced deep beams. This study proposes to develop such a model. The
model is founded on the crack-based 2PKT [12], but is modified and extended to be applicable
for FRP-reinforced deep beams. In other words, the approach includes modelling features for
three different failure modes, accounting for the effects of FRP reinforcement on the observed
behavior of deep beams.

1.3 Objectives and Scope

The objective of this master’s thesis is to develop a model, based on the crack-based 2PKT
[12], to assess the complete behavior and the failure mode of FRP-reinforced concrete deep
beams.

The main goal of this study is to extend and modify an existing model for conventional steel-

3



reinforced deep beams and make it applicable for FRP-reinforced deep beams. Such members
exhibit different failure modes compared to conventional deep beams, and therefore enhanced
modelling approaches are deemed necessary to account for different failure modes observed
in FRP-reinforced deep beams. These models need to be implemented within the existing
kinematics-based framework such that the extended model can be used not only to correctly
predict the failure mode and shear strength, but also to calculate the full load-displacement
response, including strains in the FRP reinforcement and local deformations along critical cracks.
The developed model is validated by comparing predictions with experimental results of sixteen
different tests on FRP-reinforced deep beams found in the literature. Furthermore, in-depth
investigations related to the effects of test variables on the shear behavior of FRP-reinforced
deep beams, as well as evaluation of different modelling assumptions, are conducted in this
thesis. Only deep beams with internal FRP reinforcement and without web reinforcement are
considered and used to develop the model.

The objectives of the study are summarized as follows:

• to analyse test data and transform them into useful knowledge about the behavior of
FRP-reinforced deep beams;

• to extend the existing crack-based 2PKT to account for the behavior of FRP reinforcement;

• to model observed failure modes that are not considered currently in the kinematic frame-
work;

• to validate the predicted shear behavior of FRP-reinforced deep beams in terms of both
strength and deformations, at local and global level;

• to investigate the effects of test variables on the shear behavior of FRP-reinforced deep
beams.

1.4 Thesis outline

This thesis presents five chapters with the introduction included.

Chapter 2 contains a literature study which introduces and further discusses the essential
topics of this study: deep beams, FRP reinforcement, existing test data and existing mod-
els.

Chapter 3 is divided into three main sections which corresponds to the three observed failure
modes. The first failure mode is based on the original crack-based 2PKT and presents the
following steps: the crack tracking methodology, the kinematics of the model, the mechanisms
of shear resistance and the solution procedure. The second and third section describe the
modelling of the two other failure modes.

Chapter 4 presents and discusses the results. In first instance, the predictions are compared
to the experimental results for each specimen. Next, a comparison is made between specimens
to analyse the effect of different test variables. This chapter finishes with a summary table of
the strength predictions for all specimens.

The final chapter formulates a conclusion and recommendations for future work.
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2 Literature review

2.1 Deep beams reinforced with fiber-reinforced polymers (FRPs) bars

In the past, numerous research programs have focused on the shear behavior of reinforced
concrete beams. There are two important parameters which will define how to approach the
analysis: the first important is the shear span-to-depth ratio a/d which will define if the concrete
element is treated like a slender beam (a/d > 2.5) or a deep beam (a/d ≤ 2.5) [13]. As can
be seen in Fig. 2.1, when the a/d ratio decreases below 2.5, the shear stress at failure will
increase rapidly which indicates that the shear behavior is changing. The second parameter to
distinguish is the presence or absence of web reinforcement.

Figure 2.1: Effect of member slenderness on the shear strength of beams [14]

Deep beams transfer shear forces to their supports through compressive stresses rather than
shear stresses. The cracking of a deep beam happens in three phases: firstly, an elastic behavior
of the deep beam is observed without any cracking. Then, almost vertical flexural cracks develop
at the bottom side of the beam from the center to the supports. Finally, diagonal cracks are
formed from the support to the loading plate. These diagonal cracks eliminate the principal
tensile stresses required for beam action and will lead to a redistribution of internal stresses so
that the beam starts to behave like a tied arch. The changing behavior during the loading of a
FRP-reinforced deep beam can be seen on a load-displacement response as shown in Fig. 2.2.
There can be seen that these three stages of cracking can be associated with different stiffness
levels of a deep beam. First they behave very stiff in the elastic region until the flexural cracks
are developed. The formation of these cracks leads to a loss of stiffness. In the following stage
the diagonal cracks are formed which comes together with a transition of beam action to arch
action behavior. This transition is associated with a slight increase of the stiffness, but can not
be easily distinguished.
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Figure 2.2: Load-deflection response of FRP-reinforced deep beams [15]

2.2 Fiber-reinforced polymers as reinforcement

Since the early days of conventional steel-reinforced concrete a lot of research has been performed
to obtain a very good understanding of its behavior. This research did not only discover the
many advantages of reinforced concrete, but also its limitations. One of the big issues of steel
reinforcement is that it is susceptible to corrosion which leads to undesired behavior of the
constructive elements. Particularly, in environments where the risk that corrosion occurs is very
high, there is a certain interest to use a non-corrosive substitute for the steel reinforcement. One
of these possible substitutes are fiber-reinforced polymers.

It is only since the 1980s that the first significant studies on FRP were performed in Europe
[16]. This composite material consists of longitudinal fibers embedded in a resin matrix and
has some interesting characteristics like being non-corrosive, lightweight (one-fourth the weight
of steel), non-magnetic and non-conductive [4]. It was firstly invented to repair and strengthen
existing structures, but during time, it was also used as structural reinforcement. This means
that the fibers can be used internally as a replacement for the steel bars, but they can also be
added externally to reinforce the member.

Generally, FRP reinforcement exhibits a high tensile strength in the direction of the fibers, up
to five to six times higher than conventional steel, but it behaves linear elastic. This implies that
there is a brittle failure without any yielding. Furthermore, FRP reinforcement has a stiffness
up to six times lower than steel, which has a direct effect on crack widths and deflections.

FRP reinforcement is in fact a collective name for different types of fibers such as: glass
(GFRP), carbon (CFRP), aramid (AFRP) and basalt (BFRP). The behavior of the two types
considered in this study, GFRP and CFRP, are compared with steel in Fig. 2.3. There can
be seen that CFRP reaches a higher tensile strength in comparison to GFRP and steel. The
common types of CFRP have a tensile strength of 1500 MPa in comparison to 800 MPa for
GFRP and around 450 MPa for steel. Furthermore, CFRP is stiffer than GFRP, but not as
stiff as steel. The modulus of elasticity for CFRP is usually around 150 GPa in comparison to
40 GPa for GFRP and 200 GPa for steel. Therefore, it may seem obvious to prefer the use of
CFRP instead of GFRP. However, according to literature, CFRP is three times more expensive
than GFRP [17]. Although, to obtain the same axial stiffness in a concrete element, the cost by
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using CFRP is more comparable to cost by using GFRP [17].

Figure 2.3: Stress-strain relationships for different types of FRP reinforcement and steel

Besides the brittle-elastic behavior, FRP reinforcement experiences another drawback: creep
rupture. This failure mode occurs due to increasing deformation under constant load. The
likeliness of this phenomenon to happen depends on the type of FRP reinforcement that is used.
While carbon fibers are the least susceptible, the more commonly used glass fibers are the most
susceptible due to their lower modulus of elasticity EGF RP [18]. Design codes prevent the risk of
creep rupture by limiting the allowable stress in the FRP reinforcement. The sustainable stress
for GFRP is limited to 0.2fF RP,u (ACI 440.1R-06) [4] or 0.3fF RP,u (CSA S806-02) [5].

Finally, bonding of the FRP reinforcement to concrete is achieved trough friction or mechan-
ical interlock. Friction is obtained by sand coating the bar, while mechanical interlock is gained
via wraps placed around the bars in different directions. Research suggests that the bonding of
FRP bars to concrete is less effective compared to conventional steel bars [19]. From the pull-out
tests performed by Baena et al. [20], the ratio between the average bond stress for similar sized
steel and FRP bars can be determined. The area under the curve in Fig. 2.4 is divided by the
maximal slip to obtain the average bond stress τavg. In normal strength concrete (NSC), the
ratio is equal to τF RP /τsteel = 0.92, while in high strength concrete (HSC), the ratio is equal to
τF RP /τsteel = 0.44. These results confirm that FRP bars have a smaller average bond strength
than steel bars.
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Figure 2.4: Bond stress development during a pull-out test on FRP and steel bars in normal-
strength concrete and high-strength concrete (based on tests [20])

2.3 Existing tests on FRP-reinforced deep beams

Due to the scope and the purpose of this thesis, the overview only consists out of large test
specimens without transverse reinforcement. Furthermore, the availability of test data and
pictures of the specimens, especially of the cracks, formed essential requirements to be considered
in this study. The definitions of the geometrical parameters are shown in Fig. 2.5.

Figure 2.5: Definition of geometrical parameters in deep beams

2.3.1 Tests by Andermatt and Lubell (2010)

Andermatt and Lubell presented the experimental results of twelve GFRP-reinforced concrete
deep beams without web reinforcement [9]. The main variables in the testing program were
the height h, the shear span-to-depth ratio a/d, the reinforcement ratio ρl and the concrete
strength f

′
c. The A-test series had a height of approximately 310 mm, the B-test series a height

of 610 mm and the C-series a height of 1000 mm. The a/d ratio varied from 1.07 to 2.06 and
the reinforcement ratio from 1.47 to 2.13. There were nine normal strength concrete specimens
with a concrete strength between 40 and 51 MPa. The remaining three high strength concrete
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specimens had a concrete strength ranging from 65 to 68 MPa. The GFRP bars, with diameters
of 19, 22 and 25 mm, were sand-coated and contained surface deformations produced from
wrapping groups of fibers diagonally in opposite directions, as a diamond shaped pattern. All
the deep beams were tested in four-point bending using displacement control.

Andermatt and Lubell [8] observed excessive maximum crack widths equal to 0.7 mm at the
equivalent service load. More than half of all specimens did not meet the ACI 440.1R-06 crack
width criterion for structures not subjected to aggressive environments. Those who did meet
the criterion had large a/d, large ρl or small h. The crack widths at the last loading stage prior
to failure ranged from 1.25 to 7.0 mm and increased even more after failure. According to the
authors, for some specimens, the cracks were wide enough to see through the beam [8].

The authors described the crack development as follows [8]: the first flexural cracks appeared
near mid-span at the bottom side of the specimens between 14 and 35% of the failure load. Then,
the flexural cracks developed closer to the bearing plates and started to incline which eventually
formed the diagonal critical crack. This formation was still at equivalent service-load condition
with an average load of around 45% of the failure load. Only specimen A4H exhibited this crack
formation in a later stage around 85% of the failure load. There must be said that this specimen
has the largest a/d ratio of 2.1, is made of high strength concrete, and featured the smallest
depth of the test series. If this specimen is excluded, the average load where the diagonal crack
appeared, decreases to almost 40% of the failure load. The crack development is presented in
Fig. 2.6.

Figure 2.6: Typical initial crack development in specimen B4N [8]

After this diagonal crack was formed, some differentiating behavior was observed. For most
of the specimens, the critical inclined crack extended from the inside of the bearing plate towards
the loading plate, but for some of these specimens the angle of the crack reduced suddenly near
the loading plate and became more and more horizontal as can be seen in Fig. 2.7a. In the zone
between the top of the beam and the horizontal crack, concrete crushing was observed. In other
specimens, the crack was curved in a S-shape and extended above the diagonal line between the
loading plate and the bearing plate, which eventually led to the formation of a tensile splitting
crack formed at the top of the shear span as can be seen in Fig. 2.7b.
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(a) Horizontal crack propagation under the
loading plate in specimen A1N

(b) Vertical crack development at top side of speci-
men B6H

Figure 2.7: Different crack propagation in FRP-reinforced deep beams (courtesy by Andermatt
and Lubell, University of Alberta)

2.3.2 Tests by Farghaly and Benmokrane (2013)

In the research of Farghaly and Benmokrane, a testing program of four large-scale FRP-reinforced
deep beams without web reinforcement was conducted [15]. The only variables were the type
of FRP reinforcement and the reinforcement ratio ρl. The first two specimens were reinforced
with sand-coated GFRP, where the first specimen had bars of diameter 19 mm and the sec-
ond specimen had bars of diameter 25 mm. The second pair of specimens were provided with
sand-coated CFRP. The first specimen had bars with diameter 9 mm and the second one bars
with diameter 12 mm. All specimens had the same geometry and were made of normal strength
concrete. Furthermore, a top reinforcement was foreseen, but no details were provided. All deep
beams were tested in four-point bending using load control.

Farghaly and Benmokrane [15] observed no excessive crack widths. The maximum crack
widths at failure were around 3.0 mm which are in the same order of magnitude as crack widths
in conventional steel-reinforced deep beams [1]. However, they concluded that the reinforcement
ratio had a clear effect on the crack widths. By increasing the reinforcement ratio by 80%,
the crack widths decreased by 43% for GFRP and 51% for CFRP at the same load level.
Nevertheless, at failure, all beams exhibited similar crack widths.

According to the authors, the crack development was as followed [15]: the few initial flexural
cracks developed at an early load stage of around 23 to 30% of the failure load. Then, in the
shear spans, the cracks started to incline towards the central part of the beam and the main
diagonal cracks were formed as can be seen in Fig. 2.8. This phenomenon happened at around
40 to 57% of the failure load. There was observed that the critical cracks propagated for all
specimens from the inside edge of the bearing plate to the loading plate until a brittle failure
occurred, induced by diagonal concrete crushing above the top zone of the crack.
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Figure 2.8: Diagonal crack propagation in specimen G8N6 [15]

2.3.3 Observed failure modes

The deep beams reinforced with FRP bars exhibited differentiating behavior. Three different
failure modes have been observed in a total of sixteen test specimens of Andermatt and Lubell
[8], and Farghaly and Benmokrane [15] as presented in Fig. 2.9.

Figure 2.9: Three observed failure modes in FRP-reinforced deep beams

1. Cracking of the critical loading zone
Failure mode 1 shown in Fig. 2.9 is only observed in specimen B6H of Andermatt and Lubell
[8]. Here, the diagonal crack extended above the diagonal causing an S-shaped crack, which
approached the top zone in a flatter way. This resulted in the formation of a vertical crack from
the top side of the beam towards beam axis. To address the modelling part, this failure mode
will be captured by means of cracking of the critical loading zone (CLZ). The critical loading
zone is located at the top side of the beam near the loading plate. The definition of this zone
will be further discussed in Chapter 3.

2. Crushing of the critical loading zone under diagonal stresses
All specimens of Farghaly and Benmokrane [15] exhibited failure mode 2 shown in Fig. 2.9. The
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crack propagated from the inner edge of the bearing plate to the outer edge of the loading plate.
The brittle failure mode was induced by opening of the diagonal crack with diagonal crushing
of concrete in the critical loading zone. This behavior is similar to deep beams reinforced with
conventional steel reinforcement.

3. Shear-induced flexural crushing
In the majority of specimens of Andermatt and Lubell [8], failure mode 3 shown in Fig. 2.9 has
been observed. The crack propagated from the inner edge of the bearing plate towards the inner
edge of the loading plate, but in the vicinity of the critical loading zone, the crack angle suddenly
reduced and in some cases it became horizontal beneath the loading plate. Concrete crushing
was observed in the region between the top side of the specimen and the (almost) horizontal
crack.

2.3.4 Summary tests database
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2.4 Existing models

There are several models available to predict the shear behavior of slender beams and only a
few are suitable for deep beams. These models were not all developed for the same purposes,
and, therefore, there are some major differences between them regarding the approach, the
assumptions and the complexity.

In the following sections, different models suitable for deep beams are presented. First, one
of the most used models to evaluate the strength of a deep beam is introduced: the strut-and-tie
model (STM). This section is followed by a rather new model: the two-parameter kinematic
theory (2PKT). This model predicts the complete load-deformation response, accounting for
kinematics. Finally, a finite elements analysis is presented which is used to enhance the under-
standing of the structural response of deep beams.

2.4.1 Strut-and-tie model (STM)

The strut-and-tie model is particularly used for regions where Hooke’s principle of plane-sections-
remain-plane is no longer applicable. In other words, regions where non-linear strain distribution
occurs. Many refer to such regions as D-regions which stands for disturbed or discontinuous
region. It is defined as a region and not as an element, because one single member or structure
can be constituted out of both B-regions and D-regions as demonstrated in Fig. 2.10. However,
this is not mandatory, because in deep beams only a D-region is observed. Nevertheless, there can
be concluded that in almost every reinforced concrete structure D-regions are present. Therefore,
the STM has a very large application field, because it can be used in any D-region.

Figure 2.10: Localization of B- and D-regions in concrete structures [21]

Strut-and-tie modelling is based on the lower bound theory of plasticity which implies that
the predicted capacity will be lower than the experimental capacity. Generally, it is a conser-
vative approach. As the name of the model suggest, the STM is mainly based on the usage of
compression and tension bars as illustrated in Fig. 2.11. The struts and ties come together in
the so called nodes. The struts are used to represent the compressive stress field in concrete
after cracking, while the ties are introduced to represent the tensile force in the reinforcement.
Furthermore, the forces are assumed to be constant in all bars.
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Figure 2.11: Strut-and-tie model for a deep beam in four-point bending (adapted from [8])

The design of the three types of elements, struts, ties and nodes, is performed separately.
This means that each element is designed to resist the applied forces. Although the design is
rather simple, straightforward and performed well in the past, STM has its limitations. One of
the limitations of strut-and-tie modelling, is that the model is based on ductility, whereas, deep
beams may exhibit brittle failures. Moreover, FRP reinforcement bars behave, by definition,
brittle-elastic. Another limitation of STM regards the following: as seen in research, the capacity
of a deep beam does not only depend on its geometrical and material properties. Also the
randomness of the crack geometry can influence the capacity [12]. This crack geometry can not
been taken into account in the STM.

STMs were used by Andermatt and Lubell [8] to predict the shear capacity of their FRP-
reinforced deep beam tests. They used the CSA A23.3-04 for general concrete structures [22] and
the ACI 318-08 to predict the shear capacity of the twelve specimens. Modifications needed to be
done to take into account the FRP reinforcement. In 2014, Farghaly and Benmokrane performed
a new test serie of FRP-reinforced deep beams [15]. They approached their experimental results
with the CSA S806-12 for FRP-reinforced concrete structures, which uses almost the same
equations as CSA A23.3-04 for general concrete structures, and the ACI 318-08. A summary of
the results is presented in Table 2.

In general, there can be concluded that the CSA model underestimated the capacities, while
the ACI 318-08 overpredicted them. Furthermore, the coefficients of variation (COVs) are for
both models almost 20% higher in the tests of Andermatt and Lubell with respect to the tests of
Farghaly and Benmokrane. This suggests that the predictions were not very consistent.

Besides the inconsistent results, these STMs do not always predict the right failure mode.
As discussed in Section 2.3.1, most of the specimens of Andermatt and Lubell [8] exhibited
failures in the top zone of the beams, in the region of the loading plate, as seen in Fig. 2.12. In
contrary, the authors reported that the STMs predict in the majority of cases problems along
the diagonal concrete strut [8]. This difference in behavior has not been taken into account by
the different strut-and-tie models. This can be partially explained by the fact that STM are
suited for plastic materials and not for brittle ones like FRP bars. Furthermore, some type of
FRP reinforcement can exhibit creep problems, which is a deformation problem as discussed in
Section 2.2, but STMs are strength-based models and not deformation-based.
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Figure 2.12: Crushing of concrete in the top zone of a deep beam, specimen B1N (courtesy by
Andermatt and Lubell, University of Alberta)

2.4.2 Two-parameter kinematic theory (2PKT)

The 2PKT, originally developed for deep beams reinforced with steel bars [11], is a kinematic
model with only two degrees of freedom (DOFs). Complex deformation patterns of diagonally-
cracked point-loaded deep beams subjected to single curvature can be reproduced by only using
first principles such as equilibrium equations, compatibility of deformations and constitutive re-
lationships for the different mechanisms of shear resistance. These deformation patterns include
deflections, crack widths and slips, and complete displacement fields.

The model assumes that the critical diagonal crack extends from the inner edge of the bearing
plate towards the loading plate. All concrete above this crack is considered as one rigid block,
while below the crack the concrete is represented by a fan of rigid radial struts. Both sides of
the crack are connected by the critical loading zone (positioned beneath the loading plate), by
the bottom longitudinal reinforcement and by the stirrups.

The two degrees of freedom of the kinematic model, represented in Fig. 2.13, are defined by
the motion of the rigid block with respect to the loading plate: a rotation around the tip of the
crack and a vertical translation. The first one is the average strain in the bottom longitudinal
reinforcement εt,avg and the latter is the vertical displacement ∆c in the critical loading zone
(CLZ). By introducing these two DOFs, there can be seen that vertical lines below the crack
will remain vertical, while vertical lines above the crack will rotate and, hence, this model also
takes into account that plane sections do not remain plane in deep beams.
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Figure 2.13: Degrees of freedom in the kinematic model [11]

The shear capacity prediction of the 2PKT is obtained by finding an equality between the
vertical sum of four shear mechanisms and the shear force resulting from a moment equilibrium
induced by the tensile force in the reinforcement. The solution is found by controlling and
varying one DOF, ∆c, and calculating the other DOF, εt,avg, until equilibrium is satisfied.

This theory was used in the past by Mihaylov to study the behavior of FRP-reinforced deep
beams [23]. According to the author, the initial predictions overestimated the experimental
capacities due to an overestimation of a shear mechanism related to the critical loading zone.
This was caused by effects of the usage of FRP reinforcement which was not explicitly accounted
for in the model. This resulted in the introduction of a factor k in the model which took into
account the difference in behavior and decreased the contribution of the critical loading zone,
and, thus, decreased the predicted shear capacity. However, this factor k was derived in a semi-
empirical manner based on the experimental shear capacity and, thus, did not have an explicit
physical meaning. The average experimental-to-predicted ratio for thirty-nine tests was equal
to 1.06 with a COV of 18% [23]. To compare the average ratio and COV for the STMs and
2PKT, only the predictions for similar test series are presented in Table 2.

In general, there can be concluded that the modified 2PKT shows good predictions on average
for the tests of Andermatt and Lubell [8], but in a inconsistent way. The tests of Farghaly and
Benmokrane are underestimated by 16% on average.

These results were obtained after the introduction of the factor k, which improved the results,
and, as discusses before, did not have a direct physical meaning. Another issue of the model is
that it uses a straight crack which means that it does not include the measured crack pattern as
an input parameter. Other research already suggested to do so, because a difference in capacity
was observed for similar beams with only a difference in the developed crack geometry.

From Table 2, there can be concluded that no matter which model is used, the specimens of
Andermatt and Lubell [8] are not predicted in a consistent way. This implies that the behavior
of some of their specimens is different from the model predictions. Further, the tests of Farghaly
and Benmokrane [15] are consistently underpredicted with the CSA model and the 2PKT. Also
the ACI-STM has an average prediction 28% higher for the tests of Farghaly and Benmokrane
[15] in comparison to the tests of Andermatt and Lubell [8].

From the results of the STM and the 2PKT, there can be concluded that some tests exhibit
very different failures which is not taken into account by the models. Other tests seems to be
behave like the model predictions, but the results are conservative. This difference in behavior
can be taken into account by using the crack geometry as an input parameter. This had not
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been done in the STMs and the original 2PKT.

This was done by Trandafir et al. [12], who extended the original 2PKT by introducing the
crack geometry as an input parameter in the model. Therefore, the model can be used to assess
the state of existing deep beams. Not only is the model capable of capturing the difference
in shear response for nominally identical members with different crack geometries, but it also
predicted the interlock stress distribution along the critical cracks. A full response is obtained
for the capacity and the displacements. Therefore, the crack-based 2PKT has proven to be a
useful model to approach deep beams. However, it still needs some adjustments to be applicable
to FRP-reinforced deep beams and to maintain a rational modelling basis.

2.4.3 Finite element analysis

Finite element analysis is a collective name for a wide range of different models. Every model
is based on different assumptions and uses different type of elements. However, finite element
analysis can be described in a general way. Enem et al. [24] stated that the finite element method
is a powerful and general analytical tool for studying the behavior or reinforced concrete deep
beams. It can offer solutions for linear and nonlinear behavior of deep beams.

Metwally [25] performed a finite element study on the specimens of Andermatt and Lubell
[8]. By using an existing software, he generated linear and nonlinear finite element models
(FEM) to simulate numerically the response of these deep beams. The model is based on two
components: solid elements to represent the concrete deep beams and the loading and bearing
plates, and, truss elements to represent the FRP longitudinal reinforcement. The results of his
analysis are shown in Table 2.

Table 2: Summary of strength comparisons of existing models [8, 15, 23, 25]

STM 2PKT FEM
CSA A23.3-04 ACI 318-08

Test program Ve/Vp COV Ve/Vp COV Ve/Vp COV Ve/Vp COV
Andermatt
and Lubell

1.03 20% 0.60 34% 1.00 13% 1.01 5%

Farghaly and
Benmokrane

1.07* 1%* 0.88 15% 1.16 6% /** /**

Ve/Vp = experimental to predicted shear ratio
*Instead of CSA A23.3-04, CSA S806-12 for FRP-reinforced members was used
**Tests were not modelled

The capacities are very well predicted with the finite element analysis, and, in a consistent
way. There must be noted that the mesh of the model seems big and therefore, may possibly
not take into account some internal mechanical interactions. Although, there is no doubt that,
by using finite element analysis, the response of deep beams with FRP reinforcement is well
simulated. However, it comes with a cost: the STM can be calculated very fast and even by
hand, and, the crack-based 2PKT only needs a measurement of a crack and limited knowledge
about the model. However, the finite element analysis is much more complex, needs a certain
expertise to understand and reproduce the model, and is more time consuming.
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3 Crack-based 2PKT for FRP-reinforced deep beams

3.1 Introduction

In research programs, it has been observed that deep beams reinforced with FRP reinforcement
do not always behave like conventional deep beams. Not only do they have very large crack
widths (up to 7.0 mm), but they also exhibit different failure modes. In total, three different
failure modes have been observed in tests: crushing of the critical loading zone under diagonal
stresses, cracking of the critical loading zone and shear induced flexural crushing. The goal
of the model is to predict the right failure mode and corresponding capacity by only using
first principles such as equilibrium equations, compatibility of deformations and constitutive
relationships. Moreover, not only the final capacity, but the full response is predicted which
means that all displacements are calculated as a function of the load. These displacements
are the strain in the FRP bar, the crack widths and the deflections at mid shear span. These
predicted results can be compared to experimental measurements.

The model is based on the crack-based 2PKT from Trandafir et al. [12]. This means that
the crack geometry is digitized and used as an input parameter in the 2PKT. The 2PKT is
based on only two DOFs: the average strain in the FRP bottom reinforcement εt,avg and the
vertical displacement of the critical loading zone ∆c. However, in the new model the horizontal
displacement of the critical loading zone ∆cx will be introduced as a third DOF. This new
DOF is by definition an independant deformation, but it is estimated as a function of DOF ∆c

which is further discussed in the following sections. Furthermore, the effects of the use of FRP
reinforcement is implemented in the new model, because FRP bars behave in a brittle-elastic
way and have a very low stiffness in comparison to steel which will lead to larger deformations
and, therefore, larger crack widths. There is also observed that the average bond stress of
FRP reinforcement in concrete is lower than the average bond stress of steel which leads to
a higher anchorage length and, therefore, a larger crack spacing. Out of the three observed
failure modes, the crack-based 2PKT only takes into account the failure mode due to crushing
of the critical loading zone (refer to failure mode 1 in Section 2.3.3). Therefore, the model
will be extended by introducing the two other observed failure modes: cracking of the critical
loading zone and shear-induced flexural crushing (refer to respectively failure mode 2 and failure
mode 3 in Section 2.3.3). These two failure modes will be implemented inside the crack-based
2PKT model. This means that the full response, regarding the capacity and the corresponding
displacements, is calculated by the crack-based 2PKT until the minimum capacity of the three
capacities, corresponding to the three failure modes, is reached.

An additional mini model was created to compare the experimental results with the predicted
results. The original crack-based 2PKT was developed for deep beams in three point bending,
and, therefore, the experimental deflections of the test specimens in four-point bending need to
be modified to equivalent deflections in three-point bending to be able to compare predicted and
experimental results. In practice, this means that the deflection due to the pure bending region
need to be subtracted from the total deflection measured at mid span during the test such that
the modified deflection can be compared with the predicted one.

Some parts of the original model will not be reused, because the scope of the study is on
FRP-reinforced deep beams without web reinforcement. This means that one of the four shear
mechanisms, the shear contribution of stirrups, will not be taken into account anymore because
there is no web reinforcement present in the tests.
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3.2 Crack tracking and discretization

The crack geometry can be directly measured on in-service deep beams or on test specimens.
Although deep beams did not fail, the critical cracks can already be determined, because the
cracks in deep beams propagate at relatively low load levels [9, 15]. The crack is discretized
into smaller crack segments by using a grid. As shown by Trandafir et al. [12], the grid size
should not be chosen smaller than the maximum size of coarse aggregates in the concrete ag.
Otherwise, some segments of the crack will have very steep angles which results in large shear
stresses and, by so, in a larger shear force as shown in Fig. 3.1. Furthermore, for very small grid
sizes, the crack segments will take into account the micro-roughness of a crack which is already
embedded in the constitutive model of the contact density model (CDM) [26]. This will be
further discussed in Section 3.4.2. Therefore, to obtain a general approach, the critical diagonal
crack is firstly discretized by line segments on a grid of 5x5 mm. Afterwards, these line segments
are redefined such that the length of a segment is approximately equal to ag. Finally, each crack
segment i is defined by its angle with respect to the horizontal axis αcr,i and its coordinates xi

and yi.

(a) Crack angle distribution for different grid sizes (b) Variation of aggregate interlock shear force as a
function of the orthogonal grid size

Figure 3.1: Influence of the size of the grid on the shear force [12]

3.3 Kinematics of deep beams

The new model is built on three degrees of freedom to model the complete deformed shape of
deep beams. The three degrees of freedom are the average strain in the bottom longitudinal
FRP reinforcement εt,avg, the vertical displacement ∆c in the critical loading zone (CLZ) and
the horizontal displacement ∆cx in the CLZ. The original 2PKT made use of only two degrees of
freedom, but Mihaylov introduced a third DOF [27], ∆cx, which had proven to be very effective
to capture the complete load-deflection response.

As seen in Fig. 3.2, the introduced crack geometry divides the deep beam into two. All
concrete above this crack is considered as one rigid block, while below the crack the concrete is
represented by a fan of rigid radial struts. Both sides of the crack are connected by a critical
loading zone (positioned beneath the loading plate) and the bottom longitudinal FRP reinforce-
ment. The three degrees of freedom of the kinematic model are defined by the motion of this
rigid block with respect to the loading plate: a rotation around the tip of the crack, a vertical
translation and a horizontal deformation engaging a rotation around point O as seen in Fig.
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3.2. This can be described more in detail as the elongation of the bottom reinforcement results
in a rotation of the radial struts around the loading point and so in increasing horizontal dis-
placements. So, DOF εt,avg leads to linearly increasing horizontal displacements. Next, DOF ∆c

results in a constant horizontal and vertical displacement along the crack. Finally, the horizontal
deformation of the CLZ expressed by DOF ∆cx leads to an increasing vertical displacement, but
a decreasing horizontal displacement.

It can be concluded that the horizontal and the vertical displacement of every crack segment
can be determined from the kinematics. Therefore, the deflection of the beam, which is measured
at the support, is also known, because it is related to the vertical displacement. While the vertical
displacement and deflection depend on all three DOFs, the horizontal displacement only depends
on εt,avg and ∆cx. These orthogonal displacements are easy to derive in function of the DOFs,
however, it is of more interest to know the local crack width w and the local crack slip s from
every segment to determine the tangential and normal stresses for every segment. Therefore,
these orthogonal displacements are projected based on the local angle of each crack segment to
obtain the local crack width wi and the local crack slip si. This is further explained in Section
3.4.2.

Figure 3.2: Kinematic model for FRP-reinforced deep beams (adapted from [11] and [27])

3.4 Mechanisms of shear resistance

The shear resistance of a deep beam without web reinforcement is composed of three mechanisms:
shear force resisted by the CLZ (VCLZ), aggregate interlock along the critical crack (Vci) and
dowel action of the longitudinal reinforcement (Vd). As shown in Fig. 3.3, the shear strength is
determined as the vertical sum of the three forces.

Figure 3.3: Shear mechanisms in FRP-reinforced deep beams without web reinforcement
(adapted from [11])
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3.4.1 Critical loading zone

The critical loading zone, a key-component of the 2PKT, is carrying a part of the shear force by
diagonal compressive stresses. The CLZ was originally determined with a model proposed by
Mihaylov et al. [11]. As shown in Fig. 3.4, the compressive strain ε is assumed to vary linearly
from zero at the edge of the loading plate to the ultimate strain at the bottom inclined force of
CLZ.

Figure 3.4: Idealized geometry of CLZ in deep beams [11]

As can be seen, the geometry of the CLZ is defined by an idealized triangular deformed
shape derived by Mihaylov et al. [11]. However, in the crack-based 2PKT of Trandafir et al.,
[12] the geometry of the CLZ is defined based on measurements of the crack. This approach is
shown in Fig. 3.5.

Figure 3.5: Crack-based definition of CLZ geometry [12]

In the crack-based 2PKT, the geometry of the CLZ is determined by two parameters: the
angle of the crack αCLZ in the CLZ region (dark grey shade in Fig. 3.5) and the depth of
the critical section dCLZ = lb1e sin αCLZ . Instead of predicting this depth, it can be measured
directly on the crack geometry, because dCLZ is defined as the shortest distance from the edge
of the loading plate to the crack. Next, a circle with radius 3dCLZ is drawn from the bottom
point of the critical section. This circle represents the size of the critical loading zone. Finally,
the radius of the circle that best approximates the critical crack is used to determine the angle
αCLZ . These geometrical based parameters are introduced in Eq. (1) according to [12]. The
crack shape factor k is not considered when the crack is measured.
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VCLZ = favgbdCLZ sin αCLZ (1)

The inclined force of CLZ is determined by the average stress favg in the CLZ. This stress is
directly related to the DOF ∆c. Both parameters are derived as a function of the strain. The
DOF ∆c is found by 3lb1ee/tan(α) and favg = Ω/e. The strain is varying from zero until failure
to obtain the whole envelope of VCLZ and, ultimately, the full response.

3.4.2 Aggregate interlock

Aggregate interlock is a complex mechanism occurring along cracks in concrete structures when
the crack surfaces are sliding against each other as shown in Fig. 3.6. The magnitude of
the phenomenon is impacted by a roughness acting on different scales. On a macro-scale, the
aggregate interlock is influenced by the crack geometry, and more specifically by the angle αcr,i of
every crack segment. Steeper crack segments will develop larger shear stresses [12]. However, on
a micro-scale, the aggregate interlock is influenced by friction between aggregates which depends
on the aggregate matrix arrangement.

The shear force resisted by aggregate interlock is derived from the complete contact density
model (CDM) by Li et al. [26]. It predicts the tangential stresses vci,i and the normal stresses
nci,i acting on each crack segment i in function of the crack width wi and the crack slip si as
shown in Fig. 3.6. Then the sum of the vertically projected shear contributions along the whole
length of the critical crack is taken to obtain the total shear force resisted by aggregate interlock.
The influences of the roughness on a macro- and micro-scale are hereby taken into account in
this model, because the macro-roughness is incorporated in the angle of the crack segment and
the micro-roughness is embedded in the CDM.

Figure 3.6: Aggregate interlock model with local displacements and stresses

To derive the local stresses, the kinematics of the measured crack, the crack width wi and
crack slip si, need to be known. These displacements depend on the coordinates xi and yi and
the local angle αcr,i of each crack segment i. Therefore, to express them in function of the three
DOFs of the model, it is useful to derive the relative horizontal and vertical displacement, wh,i

and wv,i of the crack segment which do not depend on local axes, but are a function of the
global orthogonal axes. As discussed in Section 3.3, the horizontal displacement wh,i depends
on DOF εt,avg and DOF ∆cx. On the other hand, the vertical displacement wv,i depends on all
three DOFs. For wv,i, a distinction is made between the crack segments in the CLZ and out
the CLZ. The orthogonal horizontal coordinate xi of a segment is compared to the length of the
CLZ lCLZ which is defined as the horizontal distance from the center of the loading plate to the
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end of the CLZ as showed in Fig. 3.5 and can be found by 3dCLZ sin αCLZ . The displacements
can be derived with Eq. (2).

wv,i =


(

εt,avglk
d xi + ∆c + ∆cx

d xi

)
xi

lCLZ
if xi ≤ lCLZ

εt,avglk
d xi + ∆c + ∆cx

d xi if xi > lCLZ

wh,i = εt,avglk
d

yi + ∆cx

d
(yi − d)

(2)

Next, the crack displacements normal and parallel to each crack segment can be expressed
with Eq. (3).

wi = wv,i cos αcr,i + wh,i sin αcr,i

si = wv,i sin αcr,i − wh,i cos αcr,i

(3)

It can be seen that the local angle αcr,i determines if the horizontal and vertical displacement
are locally translated into either relative widths or slips. For straight segments, the slip may be
small and the width large, whereas in steep parts of the crack, the width will be small and the
slip large.

These equations are similar to the model proposed in the crack-based 2PKT for steel-
reinforced deep beams by Trandafir et al. [12]. However, one modification is introduced due
to the effects of the use of FRP reinforcement in deep beams. It was observed by Andermatt
and Lubell [9] that FRP-reinforced deep beams exhibit very large crack widths in comparison
to conventional deep beams. This behavior may be induced by the decreased average bond
strength between FRP reinforcement and concrete as discussed in Section 2.2. According to the
test data of Baena et al. [20], the average bond strength did decrease. These results support
what researchers suggested in the past [19]. However, the available test data is limited, and,
therefore, it strongly depends on the material characteristics and the test setup. Baena et al.
made use of a pull-out test with a debonded area. This test setup causes a flow of forces around
the reinforcement bar which possibly leads to confinement of concrete. This may have possi-
bly influenced the results and caused the differentiating results from normal strength to high
strength concrete. Therefore, an assumption of a decrease of 50% of the average bond strength
is applied to the model, which can be seen in Eq. 5 by means of 0.5fct. This value can be
further improved in the future, when more test data is available. The hypothesis can be made
that the bond strength is only effecting the local displacements and not the strength of the deep
beam.

The average bond strength is directly proportional to the crack spacing scr. In practice
this means that the crack spacing is doubled when a reduction factor of 50% is applied on the
bond strength. Furthermore, the decreases average bond strength results in an increase of the
anchorage length ltr of the FRP reinforcement which results in an increased l′k. The quantity l′k
is the sum of the length of the bottom FRP reinforcement whose elongation contributes to the
width of the cracks and a supplementary length to take into account anchorage slip as suggested
by Trandafir et al. [12]. Proportionally, the crack widths increase too. So finally, the decreased
average bond strength will lead to bigger crack widths. The term l′k can be derived with the
following equations
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l0 = 1.5(h − d) cot α1 ≥ 2scr

lk = l0 + d(cot α − cot α1)

l′k = lk + 0.5ltr − 0.5[max(ltr − lan, 0)2]
ltr

ltr = EF RP εt,avgdb

8 · 0.5fct

(4)

where scr = (0.28db/ρl) ·2.5(h−d)/d is the spacing of the cracks at the bottom of the section
[28] which is multiplied by two as discussed before, db is the diameter of the bar, fct = 0.33

√
f ′

c

is the tensile strength of the concrete, α = arctan(h/a) is the angle between bearing plate and
CLZ and α1 = α ≤ 35◦ is the angle of the critical crack. The expression for the term l′k assumes
that the strains in the FRP bar decrease linearly to zero along ltr, but not beyond anchor heads,
hooks or loops as seen in Fig. 3.7.

Figure 3.7: Strains along anchorage of FRP reinforcement that contribute to critical crack
opening [12]

When the displacements w and s are known, the constitutive model of the contact density
model [26] can be used to predict the interlock stresses. The CDM represents the crack surface
as a series of contact units oriented with different angles ϕ. A nonlinear contact spring normal
to the contact unit is used to model the interaction between the two faces of each unit. These
springs behave elastic-perfectly plastic in compression (unit in contact) and have no resistance
in tension (no contact). The yield strength of the springs in compression is taken as fc,con

= 0.35 × 13.7 3
√

f ′
c, where 0.35 represents a reduction factor to the yield strength proposed by

Trandafir et al. (2022). This reduction factor is particularly relevant for tests on deep beams
were wide cracks and, therefore, lower aggregate interlock stresses have been observed, which is
the case for FRP-reinforced deep beams. The forces of these springs are projected on axes which
are positioned orthogonal to the crack segment orientation and thus obtaining the tangential
and normal stresses on these crack segments.
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vci,i = 0.635
ˆ π

2

− π
2

σconK sin ϕ cos ϕdϕ (MPa)

nci,i = 0.635
ˆ π

2

− π
2

σconK cos2 ϕdϕ (MPa)

σcon = fc,con
si sin ϕ − wi cos ϕ

0.04

{
≤ fc,con

≥ 0

K = 1 − exp
(

1 − 0.5ag

w

)
≥ 0

(5)

Finally, the shear resisted by aggregate interlock Vci is obtained with Eq. (6).

Vci = b

( n∑
i

vci,i sin αcr,ili −
n∑
i

nci,i cos αcr,ili

)
(6)

3.4.3 Dowel action

The shear force related to dowel action is derived by considering an elastic beam fixed at both
ends subjected to bending by the vertical displacement ∆c. The upper bound of this component
corresponds to the development of theoretical plastic hinges at both ends of the dowel. The
capacity of the dowel takes explicitly into account the tension force already developed in the
bar due to bending of the beam. The problem is that the dowel is considered to behave elastic-
perfectly plastic, which is not the case for FRP bars. Therefore only the elastic contribution
will be taken into account, up to rupture of the bar. The developed stress is determined with
the following equations

Md = Kd∆c
lk
2

Kd = nb
12EF RP πd4

b

64lk
N = EF RP AF RP ε

σ = N

AF RP
+ M

IF RP

db

2

(7)

Finally, the shear contribution due to dowel action Vd is found with Eq. 8.

Vd = Kd∆c if σ ≤ fF RP,u

Vd = 0 if σ > fF RP,u
(8)

In the model, Vd is taken into account. However some hypothesis can be considered: FRP
has a very low modulus of elasticity EF RP and an increased value of lk due to bond effects.
Both of them result in a decrease of the stiffness factor Kd. Therefore, the shear contribution
by dowel action will probably be very low in comparison to steel-reinforced deep beams and,
possibly, completely negligible. This will be analysed in the results section.
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3.5 Equilibrium and solution procedure

Now a solution is found by the following procedure: the first DOF ∆c is chosen and will therefore
be a control parameter. From this DOF, the second DOF ∆cx is directly calculated. Mihaylov
suggested a simplified approximation [27]: ∆cx = 0.5∆xcotα1. Finally, an initial strain of 0.05 is
assigned to the third DOF εt,avg, which will be recalculated at the end of the procedure. With
the three DOFs known, all three shear contributions, the inclined compression in the critical
loading zone VCLZ , the aggregate interlock across the rough crack Vci and dowel action Vd, are
calculated.

The sum of these three internal shear mechanisms must be in equilibrium with the shear
force induced by the tensile force in the bottom reinforcement T (εt,avg). The force in the
reinforcement takes into account tension stiffening which is provided by an effective concrete
area Ac,eff , defined according to EC2 [29]. The equations are shown in Eq. (9).

fct = fct

(1 + (200εt,avg)0.5 ≤ Ecεt,avg

Ac,eff = b · min
(
2.5(h − d); h/2

)
T = EF RP AF RP εt,avg + fctAc,eff

V = T0.9d

a
= VCLZ + Vci + Vd

(9)

If the equilibrium condition V = VCLZ + Vci + Vd is not satisfied, the DOF εt,avg is iterated
again by bisection method until equilibrium is reached as seen in Fig. 3.8. This procedure is
repeated for increasing values of DOF ∆c, ranging from zero until failure of the member, to
obtain the full load-displacement response.

Figure 3.8: Solution procedure of crack-based 2PKT for FRP-reinforced deep beams (adapted
from [23])
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3.6 Modelling of shear-induced flexural crushing

Typically, diagonal shear cracks in deep beams subjected to four-point bending are developing
diagonally from the inner side of the bearing plate to the loading plate. Such crack development
was also observed in the tests of Andermatt and Lubell [8] (refer to Section 2.3.1), and Farghaly
and Benmokrane [15] (refer to Section 2.3.2). However, in the former test series, most specimens
exhibited diagonal cracking towards the applied point-loads up to failure, when the crack angle
suddenly decreased. At this instance, the critical crack propagated almost horizontally in the
compression zone, causing a premature failure of the specimen as shown in Fig. 3.9.

Figure 3.9: Shear-induced flexural crushing in specimen B2N and corresponding model properties
(courtesy by Andermatt and Lubell, University of Alberta)

This type of crack propagation and failure mode is not typically observed in deep beams,
because they are expected to fail by crushing of the concrete in the CLZ. However, this failure
mode and crack pattern are observed in eleven out of twelve tests on FRP-reinforced deep beams
performed by [8]. This observed behavior has strong similarities with a theoretical failure mode
conceptualized by Kotsovos in 1984 [30]. The author derived this failure mode by stating that
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the zone under the loading plate is in a multiaxial compressive state that caused a local increase
of the concrete strength. Therefore, the diagonal crack is bypassing this high-strength region
and penetrating horizontally in the compression zone of the pure flexural region. However,
according to the local equilibrium condition, this is only possible by considering the presence
of a resultant tensile force at right angles to the compressive path near the tip of the critical
crack. Eventually, failure will occur within the pure flexural region under compression-stress
conditions. Later, Salamy et al. [31] used shear reinforcement in the pure flexural region of
a deep beam subjected to four-point bending to, successfully, prevent the occurrence of this
theoretical failure mode. The failure mode was described by Salamy et al. [31] based on
the eccentricity of the trust line that led to a flexural failure in the compression zone. They
further formulated that the failure mode results from the extension of the tensile crack in the
compressive zone. The reason for the sudden change of direction of the crack angle demands a
complex answer. However, in a first instance, the goal of this model is to predict the behavior of
FRP-reinforced deep beams by accounting explicitly for the observed failure mode. This failure
mode was not previously considered in other kinematics-based approaches. To address this,
additional modelling is proposed hereinafter.

When the upper region of a specimen is analysed in more detail, as showed in Fig. 3.9, several
remarks can be made. First, there can be seen that the horizontal crack is penetrating into the
pure bending region. In this region, flexural cracks have developed vertically from the bottom
side of the specimen. The uncracked zone above these cracks is known as the compression zone
with an estimated depth c. Further, there can be seen that the horizontal crack is penetrating
into the compression zone and decreasing the depth of this zone. In the remaining area above
the horizontal crack, the concrete is heavily crushed. This is most probably caused by high
horizontal concentrated stresses.

It can be concluded that the specimen has failed due to crushing in the pure flexural zone,
but due to a limitation of the compression zone induced by the horizontal propagation of the
shear crack rather than a traditional sectional flexural failure. This directly explains the name of
the failure mode: shear-induced flexural crushing. Accordingly, a possible approach to address
the problem and, more importantly, to model this behavior, is using a bending moment analysis
as in a conventional flexural analysis. The conventional flexural analysis uses the entire depth
of the compression zone c to develop an elastic stress distribution with a maximal compressive
stress σc in the top fiber of the section. This stress diagram can be transformed in a compres-
sion force working on the concrete section limited by the width of the beam and the depth of
the compression zone. The compression force engages a bending moment with respect to the
reinforcement. This moment is in equilibrium with the shear force engaged at the bearing plate
at a distance a, the length of the shear span. However, in contrast with conventional sectional
analysis, the area where the compression force can be developed is, for this failure mode, limited
by the horizontal crack. Therefore, only the depth from the top of the beam to the horizontal
crack can be used to carry compression. The depth of this zone corresponds to the depth of the
crushed section dcs as shown in Fig. 3.9. As a result, the same force needs to pass through a
smaller section. It can be assumed that the concrete is now in the plastic region and can be
represented by a plastic stress block governed by the concrete compressive strength as shown in
Fig. 3.9. Therefore, a simplified plasticity-based model is presented in Eq. (10).
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Fc = dcsfc,eff b

MSIF C = Fc(d − dcs

2 )

VSIF C = MSIF C

a

(10)

As can be seen in Eq. (10), the strength of the concrete is not defined as f
′
c. Instead, the

concrete strength is defined as an effective concrete compressive strength fc,eff . As suggested in
literature [32], the behavior of concrete in compression can not be directly assumed as perfectly
plastic. However, the exact behavior is a complex phenomenon which lead to the use of a
number of strength reduction factors in the past. Therefore, in order to be consistent in all limit
analyses, Moccia et al. [32] derived a strength reduction factor which takes into account the
brittle behavior of concrete in compression. However, the brittle behavior is dependant on the
concrete strength (high strength concrete behaves more brittle) which implies that the value of
fc,eff is not constant. Therefore, must fc,eff be determined by multiplying the concrete strength
f

′
c with a brittleness factor ηfc = (30/fc)1/3 ≤ 1 [32].

The final remark concerns the depth of the crushed section dcs. As discussed in Section
2.3.1 and Section 2.3.2, the development of the diagonal shear crack appears already at a low
loading stage. However, the penetration of the crack under the loading plate has been observed
to happen in a later stage, closer to failure. Therefore, a predictive equation, to estimate the
depth of the crushed concrete section dcs, is proposed. Further on, this equation is compared
with experimental observations for validation purposed.

From the discussion above, it is clear that the depth of the crushed concrete section dcs and
the depth of the compression zone c are related. Therefore, in a first instance, the depth of the
compression zone c is approximated with Eq. (11) which assumes an elastic behavior of the
materials.

c = (
√

n2ρ2
l + 2nρl − nρl)d (11)

Where n = EF RP /Ec represents the ratio of the stiffness of the reinforcement to the concrete
and ρl = AF RP /bd is equal to the reinforcement ratio.

To validate the proposed equation, a direct measurement is performed on high-resolution
pictures of the experiment which clearly showed the crushed zone in comparison to the compres-
sion zone. In Fig. 3.9, there can be seen that the depth of the compression zone c is around 110
mm (reference length: size of grid is 100x100mm). Eq. (11) predicts a depth of 105 mm which
is almost equal. The same validation was done for other specimens, and the results showed the
same good predictions. In other words, the results of the proposed equation are confirmed by
experimental observations.

By analysing the specimens that failed in SIFC, a correlation was found between the ratio
dcs/c as a function of a/d and fc,eff . To normalise the concrete strength, fc,eff was divided by
30, similarly to the brittleness factor. This resulted in the relationship shown in Eq. (12) and
illustrated in Fig. 3.10.

dcs

c
= 1 − 0.24a

d

fc,eff

30 (12)
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Figure 3.10: Linear correlation of the crushed-to-compressed depth ratio to a/d and fc,eff

It can be seen that all specimens which failed in shear-induced flexural failure are very close
to the linear correlation (solid dots). However, specimen B6H is not well correlated with the
proposed linear function because it exhibited a different failure mode. This failure mode will
be further discussed in the next section. Therefore, it is justified to develop the relationship
between the crushed-to-compressed depth, and the geometrical and material properties (aspect
ratio and concrete compressive strength) based only on specimens which exhibited shear-induced
flexural failure considering that the predicted and observed geometrical parameters of the model
are in very good agreement. This suggests that the assumptions behind the proposed model
and equations are physically-sound. For convenience, predictions of the crushed-to-compressed
depth for the specimens tested by Farghaly and Benmokrane [15] are shown (hollow squares). As
evident from the plot, the specimens featuring GFRP reinforcement are not well correlated with
the employed parameters, while the beams featuring CFRP reinforcement lay on the prediction
curve. Nevertheless, it is important to mention that none of the four specimens tested by [15]
exhibited SIFC. These aspects will be discussed later in the manuscript.

With the proposed relationship dcs = c
(
1 − 0.24(a/d)(fc,eff /30)

)
the depth of the crushed

section dcs can be predicted just with simple geometrical and material properties. The presented
approach provides a simple and rational basis to predict the capacity corresponding to this failure
mode.

3.7 Modelling of cracking of critical loading zone

The failure mode, cracking of the critical loading zone, occurred only in specimen B6H. After
the flexural cracks had formed, the shear crack did not develop from bearing plate to loading
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plate along a diagonal path as it was observed in other specimens. Instead the crack developed
first slightly under and then above the diagonal line such in the form of an S-shaped crack, see
Fig. 2.7b. The crack reached the CLZ under a relatively flat angle.

Once-more, this type of crack propagation is not typical for deep beams. Although, a failure
mode with some similar aspects has been conceptualized by Cavagnis et al. [33] and Fernandez
Ruiz et al. [34] and has been observed in tests a few times in the past [11].

The reason for the S-shaped crack to form is mostly related to the a/d ratio of 2.06, which is
in the transition region between slender beams and deep beams. These cracks are more typically
observed in slender beams. One of the interesting questions is to understand why it occurred
in this particular deep beam. However, the goal of the model is to predict the behavior of
FRP-reinforced deep beams.

When the beam is analysed more in detail, there can be seen that besides the huge opening
of the S-shaped crack, an almost vertical crack developed in the vicinity of the CLZ at the top
side of the beam. This crack seems to have been initiated due to excessive tensile stresses at the
top of this area, and, induces the failure of the CLZ cantilever due to excessive tension at the
top face. Therefore, this failure mode is defined as cracking of the critical loading zone.

The observed behavior can be approached with an elastic beam model applied on a variable-
depth elastic cantilever fixed at one end and loaded at the other, as previously proposed by
Mihaylov [11]. According to this model, plane sections perpendicular to the bottom face of the
cantilever remain plane and the tip section, defined as dCLZ , is subjected to uniform compressive
stresses. The following step is to determine which forces, responsible for these stresses, are acting
on the cantilever. This cantilever, subjected to a vertical force, is rotating around its fixed end.
There can be understood that due this rotation, the crack widths are varying. These crack widths
are directly proportional to the aggregate interlock shear force: when crack widths increase, the
aggregate interlock decreases. To simplify the model, the contribution of aggregate interlock is
neglected, which is conservative. Furthermore, as suggested before, the contribution of dowel
action is most probably small in comparison to other shear contributions and, therefore, this
shear mechanism is also neglected in the model. This means that the only force acting on this
cantilever section, is the shear force carried by the CLZ, which is applied at the center of the
dCLZ . From the applied force, the elastic stresses in inclined sections along the span of the
cantilever can be derived from basic mechanics. As suggested before, when the stress in this top
fiber exceeds the tensile strength of concrete, a vertical crack forms, and, the beam exhibits a
CLZ cracking failure. The geometrical parameters used to formulate this model are presented
in Fig. 3.11.
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Figure 3.11: Geometrical model for cracking of critical loading zone

The first assumption to address is how to define the geometry of the cantilever and, more
importantly, where to check the stresses. In this model, it is opted to check stresses on inclined
sections perpendicular to the axis x defined by the angle of the critical loading zone αCLZ . This
angle is determined with the crack-based geometry of the CLZ as discussed in Section 3.4.1. The
position of the section where the maximal stress develops is not as easy to derive due to the fact
that the sections are inclined which implies varying geometrical parameters such as the position
of the centroidal axis (C.A.), the eccentricity e, the depth h, the area A, and the moment of
inertia I. However, there can be assumed that the maximal stresses will not develop further than
half of the shear span. Therefore, the stress check is performed on every section starting from
dCLZ to mid shear span, which corresponds to the section with the maximal height hmax as
shown in Fig. 3.11.

Having defined the geometry, the next step is to transform the forces into stresses. The
objective is to project the vertical force VCLZ on the inclined sections, but this can not be done
directly. Due to the assumption that the aggregate interlock (and dowel action) is negligible,
there must be a resultant force passing through the intersection point of the center of the bearing
plate and the reinforcement due to equilibrium conditions. This resultant force R is inclined
under angle αcrit = atan(d/a). However, as said before, the forces orthogonal to the inclined
section, the shear force V and the normal force N, are needed, and, therefore the resultant force
R is projected on the inclined plain with an angle equal to αcrit − αCLZ as can be seen in Fig.
3.11. With the known orthogonal forces are known, the stresses acting on the inclined sections
are derived as shown in Fig. 3.12.
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Figure 3.12: Three stress contributions developing in a section i

It can be seen that there are three stress contributions: the first one is induced by the
compression force N, the second one is due to the shear force V and the third one comes from
the moment developed due to the eccentricity e of the compression force N. As said before,
the stress check is performed at the top fiber of the specimen. Therefore, the sum of the three
contributions is taken and compared to the tensile strength of concrete. This results in Eq.
(13).

σtop,i = − N

Ai
+ V xi

Wi
+ Nei

Wi

σbottom,i = − N

Ai
− V xi

Wi
− Nei

Ii

(13)

where Wi = hi
2 . As can be seen from the geometrical definition of this zone in Fig. 3.11,

the area A, the moment of inertia I, the height h and the eccentricity e are varying along the
sections. The definition of the area and moment of inertia are straightforward for a rectangular
section defined by the the width of the beam b and the height of the inclined section h. The
eccentricity e for a section i can be found by trigonometry: ei = hi

2 − dCLZ
2 .

Finally, the calculated stress at the top fiber can be compared to the tensile strength of
concrete. For normal-strength concrete, the tensile strength is estimated by fct = 0.3f

′2/3
c found

in EC 2 [29], while for high-strength concrete as fct = 0.3(50f
′1/3
c ) according to [33] and [35].

In literature, numerous ways to predict the tensile strength of concrete are presented. It is
of interest to analyse in the results section to which extent this parameter is influencing the
results.

The only parameter that is yet to be defined is the magnitude of the force VCLZ . This force
is already known in function of the kinematics obtained by the crack-based 2PKT. Therefore,
the stresses are checked for the full envelope of VCLZ . If the tension limit is reached for a certain
avlue of VCLZ , the total shear strength is derived by adding the corresponding Vci to VCLZ

obtained with the crack-based 2PKT. If the tension limit is not reached, the behavior of the
CLZ is not governed by cracking, and therefore the failure mode will not occur.
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3.8 Implementation of the failure modes in the 2PKT framework

The models for shear-induced flexural crushing and cracking of the CLZ are implemented within
the crack-based 2PKT code. More precisely, the crack-based 2PKT is used to calculate the
complete shear response up to failure. However, the predicted failure load of the specimen is
not necessarily determined by crushing of the CLZ, as the failure load is considered to be the
minimum peak resistance generated by the three failure modes.

Therefore, the outcome of the model is the complete predicted load-deformation response,
which accounts for the measured crack, as well as different failure modes. This procedure is
illustrated in Fig. 3.13 for specimen B4N.

Figure 3.13: Full response as a function of three possible failure modes determined with crack-
based 2PKT for FRP-reinforced deep beams, specimen B4N

3.9 Modelling of flexural deformations in pure bending regions

The crack-based 2PKT is designed to predict the deflections of the shear span. However, all test
specimens that are analysed in this work were subjected to symmetrical four-point bending which
has a pure bending region between the two applied forces. In four-point bending, an additional
deformation occurs in the pure bending region between the applied point loads. Therefore, the
experimental deflections are modified such that the results are comparable to the predictions.
The procedure is based on the method presented by Mihaylov [27].

First, Eq. (11) is used to predict the depth of the compression zone c. This equation is
already introduced in a previous section (refer to Section 3.6). It is used to calculate the depth
of the compression zone in the pure flexural region. With this depth, the cracked moment of
inertia Icr = bc3/3 + nAF RP (d − c)2 can be derived. Finally, the constant curvature ϕ in this
pure bending region is estimated by Eq. (14).

ϕ = Vexpa

EcIcr
(14)

The curvature ϕ, constant over the length lf between the loading plates, contributes to the
midspan deflection as shown in Eq. (15).

∆exp,mod = ∆exp − ϕ

( l2f
8 + lf a

2

)
(15)
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So, to obtain the shear span deflection, the deformation of the pure bending region is sub-
tracted from the experimental deflection measured at mid span.
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4 Results and discussion
In the following sections, the results will be presented in detail. For both testing series, each
specimen will be analysed separately, while different specimens will be compared against others
to determine the effects of variables on the capacity later in the paper.

The goal is to present and discuss results which are valuable and contribute to the under-
standing of the model and the specimens. Therefore, the following decisions are made:

• some displacement data measured during the tests by linear variable differential trans-
former (LVDT) were not available and therefore no comparison could be made between
experimental and predicted crack widths for some experiments;

• the shear by dowel action was taken into account in the model, but the results showed
that the shear contribution was less then 1% of the final shear capacity, even for CFRP
which has a stiffness more comparable to steel. This is in line with the hypothesis that
was stated in Section 3.4.3. Therefore, the contribution can be neglected and will not be
presented in the results;

• the tests performed by [15] featured sufficient top reinforcement to suppress the failure
due to cracking of the CLZ, and thus this failure mode is not considered for specimens
G8N6, G8N8, C12N3 and C12N4;

• in the test program of Farghaly and Benmokrane [15], the only available data concerning
the local displacements was the crack width measured under an angle of 45°. Therefore, the
predicted horizontal and vertical crack displacement were projected to obtain orthogonal
crack displacements under a 45◦ angle to allow for a direct comparison to the experimental
measurements.

4.1 Tests by Andermatt and Lubell (2010)

4.1.1 Predictions of global and local shear behavior

A1N

In Fig. 4.1, the predicted (bolt black) and the experimental (thin red) load-displacement
response of specimen A1N are presented.

Figure 4.1: Experimental and predicted load-displacement response for specimen A1N
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Firstly, the predicted failure mode for specimen A1N is shear-induced flexural crushing which
corresponds well with the experimental observations as can be seen in Fig. 4.2. The predicted
failure load is 355 kN, while the experimental strength was 407 kN. The ratio Vexp/Vpred = 1.15
shows a underestimation of 15% of the capacity. This is probably influenced by the small depth
of the specimen. There can also be seen that there shear is carried entirely by the contribution of
VCLZ which means that the aggregate interlock is non-existent. Therefore, an underestimation
of the aggregate interlock may be a possible explanation for the underestimated failure load.
Another interesting conclusion is that the predicted deflection of around 6.5 mm is similar to
the experimental deflection of 7.5 mm. Both responses exhibit the same slope which indicates
that the stiffness of the beam, after diagonal cracking, is correctly predicted.

Figure 4.2: Shear-induced flexural crushing in specimen A1N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain in the FRP reinforcement is compared to the average strain of
the reinforcement along the shear span during the experiment. The results are shown in Fig.
4.3.

Figure 4.3: Experimental and predicted load-strain response for specimen A1N

There can be seen that the strain development in the FRP bar during the test is predicted
almost perfectly. The difference in the beginning of the response is due to a assumption of the
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model: 2PKT assumes a cracked section from the start, while the specimen only exhibit flexural
cracks when a load of 100 kN has been reached. Although the underestimation of the capacity
also lead to an underpredicted strain at failure, both the experimental and predicted response
demonstrate the same thing: the strain at peak resistance is around 8×10−3 to 10×10−3, which
is a very high strain in comparison to conventional steel where the elastic strain limit is around
2 × 10−3.

Finally, the horizontal and vertical displacement at the position of the LVDT-rosette are
predicted as shown in Fig. 4.4.

Figure 4.4: Experimental and predicted load-crack displacement response for specimen A1N

There can be seen that the horizontal and vertical crack displacement reach almost 4 mm
which is very high for a specimen with a relatively small depth. They can not be compared with
the experimental ones, because the LVDTs stopped registering during the tests. Furthermore,
as can be seen in the results of the following specimens, the vertical crack displacement is
for most of the predictions larger than the horizontal one. However, for specimen A1N, both
displacements are almost equal. The reason why these values are very close, is possibly the
result of a combination of factors: firstly, the depth of a specimen is directly proportional to
the kinematics in the crack-based 2PKT. For a small specimen, the DOF ∆c has not increased
very much until failure occurs. This means that, in correspondence with Eq. (2), the vertical
and horizontal displacement will both be mainly determined by the DOFs εt,avg and ∆cx, where
∆cx is proportional to ∆c, thus will also be very small. The only remaining DOF to consider
is thus εt,avg, which is equal in both cases. Secondly the angle of the crack plays a role in
how the displacements are distributed in horizontal and vertical direction. However, specimen
A1N has shear span-to-depth ratio of almost 1, which means that the diagonal crack propagates
theoretically under an angle of 45° which results Once-more in a equal crack displacement in
the horizontal and vertical direction. The combination of these two effects, lead to an (almost)
similar load-crack displacement response in the horizontal and vertical direction.
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A2N

The experimental and predicted load-displacement response of specimen A2N are presented
in Fig. 4.5.

Figure 4.5: Experimental and predicted load-displacement response for specimen A2N

Specimen A2N is predicted to fail by shear-induced flexural crushing which corresponds well
with the experimental observations as can be seen in Fig. 4.6. Furthermore, the experimental
and predicted response in Fig. 4.5 are identical: the predicted failure load of 234 kN is practically
equal to the experimental load of 235.5 kN, the predicted deflection of around 7 mm is equal
to the experimental one and the stiffness of the responses are parallel. There can also be seen
that, similar to specimen A1N, there is only a shear contribution from VCLZ .

Figure 4.6: Shear-induced flexural crushing in specimen A2N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.7.
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Figure 4.7: Experimental and predicted load-strain response for specimen A2N

The predicted strain of almost 7 × 10−3 is very close to the experimental one of 8 × 10−3.
As can be seen in Fig. 4.7, the stiffness of the predicted response is almost parallel to the
experimental stiffness after flexural cracking.

Finally, the horizontal and vertical displacement at the position of the LVDTs are predicted
as shown in Fig. 4.8.

Figure 4.8: Experimental and predicted load-crack displacement response for specimen A2N

The predicted horizontal crack displacement (bold black) reaches 3 mm. This can not be
compared to the test results because the data measurement was interrupted. At failure, the
maximum vertical crack displacement (solid red) is equal to 4 mm, which is a little bit lower
than the experimental (thin red) value of almost 5 mm. The slope of the experimental vertical
displacement is underestimated by the predicted response.
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A3N

The predicted and experimental load-displacement response of specimen A3N are presented
in Fig. 4.9.

Figure 4.9: Experimental and predicted load-displacement response for specimen A3N

Shear-induced flexural crushing is predicted to happen in specimen A3N which corresponds
well with the experimental observations as can be seen in Fig. 4.10. The predicted failure load
(bold black), 114 kN, only just underestimates the experimental failure load (thin red) of 121.5
kN, by 7%. Further, there is a shear contribution by aggregate interlock Vci, but it is only
responsible for a small contribution of around 5% of the shear capacity. Finally, the deflection
at mid span, equal to 6.5 mm, is predicted almost perfectly.

Figure 4.10: Shear-induced flexural crushing in specimen A3N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in Fig. 4.11.
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Figure 4.11: Experimental and predicted load-strain response for specimen A3N

For this specimen, the maximum predicted strain is equal to 4×10−3 while the experimental
strain was slightly larger and equal to 5 × 10−3. However, this is directly correlated with the
underestimation of the capacity. The general form of both responses is very similar, although
the stiffness seems to be slightly overestimated.

Finally, the horizontal and vertical displacement at the position of the LVDT-rosette are
predicted as shown in Fig. 4.12.

Figure 4.12: Experimental and predicted load-crack displacement response for specimen A3N

The data measurement of the horizontal crack displacement was interrupted. The predicted
maximal horizontal crack displacement is equal to 1.5 mm. Further, the maximum vertical crack
displacement is equal to the experimental one which was slightly larger than 3 mm. Although
the first part of the experimental horizontal displacement seems non-physical, in the last part,
the experimental vertical crack displacement seems to be almost parallel with the predicted
one.
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A4H

The experimental and predicted load-displacement response of specimen A4H are presented
in Fig. 4.13.

Figure 4.13: Experimental and predicted load-displacement response for specimen A4H

The predicted failure load is equal to 78 kN, while the experimental one is 96 kN, this results
in a ratio Vexp/Vpred = 1.23. In other words, the experimental value is underestimated by 23%.
This ratio needs to be analysed with care due to several factors. As discussed before, specimen
A4N featured the smallest depth of the test serie, is made out of high strength concrete and
has the largest a/d ratio, equal to 2.1, of all specimens. All three are inconvenient for obtaining
consistent and reliable results, especially, when they are combined together. Furthermore, 23%
is relative to the failure load which was only 96 kN. The precision of tracking the crack geometry,
the accuracy of predicting material properties and conservative choices in the model can all lead
to a difference of several kilo newtons. These effects are always present in absolute values, but
on a relative scale, they make the largest difference for specimens with a low failure load.

Next, the predicted failure mode is shear-induced flexural crushing which corresponds well
with the experimental observations as can be seen in Fig. 4.14. For this specimen almost two-
thirds of the total shear capacity is induced by aggregate interlock Vci. This can be explained
by the fact that the crack widths are still small when the specimen failed as can be seen in Fig.
4.15. From the other hand, the shear contribution of the CLZ is gradually increasing, but did
not had the time to develop completely due to early failure. This early failure also played a role
in the deflection which was underestimated by 4 mm.
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Figure 4.14: Shear-induced flexural crushing in specimen A4H (courtesy by Andermatt and
Lubell, University of Alberta)

Figure 4.15: Experimental and predicted load-crack displacement response for specimen A4H

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.16.

Figure 4.16: Experimental and predicted load-strain response for specimen A4H

The predicted strain (thin red) differs from the experimental strain (bolt black), but it is
rather hard to take a conclusion due to early failure of the specimen.
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B1N

The experimental and predicted load-displacement response of specimen B1N are presented
in Fig. 4.17.

Figure 4.17: Experimental and predicted load-displacement response for specimen B1N

Specimen B1N is predicted to fail by shear-induced flexural crushing which corresponds well
with the experimental observations as can be seen in Fig. 4.18. The experimental response (thin
red) in Fig. 4.17 shows that the specimen exhibited creep behavior during the test. After the
maximal load is reached, the deformation keeps increasing for an almost constant load. In terms
of modelling precision, this behavior is not relevant to define the capacity and corresponding
deflection of the beam. Values at peak capacity need to be compared. The predicted failure
load of 677 kN is close to the experimental load of 636.5 kN. This means an overprediction of
6%. At failure, there is only a shear contribution from VCLZ which is probably related to the
big crack displacements (see Fig. 4.20). Furthermore, the predicted deflection is equal to 9 mm
which slightly overestimates the experimental deflection of 6 mm. In general, the slopes of both
responses are very close, although the stiffness is slightly underpredicted.

Figure 4.18: Shear-induced flexural crushing in specimen B1N (courtesy by Andermatt and
Lubell, University of Alberta)
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Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.19.

Figure 4.19: Experimental and predicted load-strain response for specimen B1N

The predicted strain is very close to the experimental one with a maximum strain of around
8 × 10−3. Both responses are almost identical.

Finally, the horizontal and vertical crack displacement at the position of the LVDTs are
predicted as shown in Fig. 4.20.

Figure 4.20: Experimental and predicted load-crack displacement response for specimen B1N

The maximal horizontal crack displacement reaches 3 mm and the maximum vertical crack
displacement is equal to 4 mm. Both predictions are three to four times higher than the exper-
imental ones. However, the predicted vertical response seems to be parallel to the experimental
vertical displacement while the slope of the predicted horizontal crack displacement is lower
than the corresponding experimental one.
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B2N

The experimental and predicted load-displacement response of specimen B2N are presented
in Fig. 4.21.

Figure 4.21: Experimental and predicted load-displacement response for specimen B2N

The predicted failure mode is shear-induced flexural crushing which corresponds well with
the experimental observations as can be seen in Fig. 4.22. The predicted response in Fig. 4.21 is
almost similar to the experimental response, they both exhibit the same stiffness. The predicted
failure load of 414 kN slightly underestimates the experimental load of 399.5 kN by 4% and
the experimental deflection of 10 mm is predicted very accurately. At failure, it can be stated
that only the critical loading zone is contributing to the shear capacity, which means that the
increased crack widths prohibited the aggregate interlock to carry shear.

Figure 4.22: Shear-induced flexural crushing in specimen B2N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.23.
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Figure 4.23: Experimental and predicted load-strain response for specimen B2N

The predicted strain response is developing similarly as the experimental one. The only
minor difference is close to failure where the strains increased a little bit more in the tests than
is predicted. It can be stated that the stiffness was accurately predicted.

Finally, the horizontal and vertical crack displacement at the position of the LVDT-rosette
are predicted as shown in Fig. 4.24.

Figure 4.24: Experimental and predicted load-crack displacement response for specimen B2N

The general form of both predicted responses is very similar to the experimental ones. In
terms of maximal deformations, the predicted horizontal crack displacement reaches 2 mm com-
pared to 1.5 mm during the test and the vertical crack displacement reaches to 3.5 mm which
is almost equal to the experimental one.

49



B3N

The experimental and predicted load-displacement response of specimen B3N are presented
in Fig. 4.25.

Figure 4.25: Experimental and predicted load-displacement response for specimen B3N

The predicted failure mode is shear-induced flexural crushing which corresponds well with
the experimental observations as can be seen in Fig. 4.26. The predicted failure load is equal
to 208 kN which is almost equal to the experimental load of 215.5 kN. The predicted deflection
of 9 mm slightly underestimates the experimental deflection of 11 mm. At failure, one-fourth
of the shear contribution is given by aggregate interlock and the other three-quarters due to
VCLZ .

Figure 4.26: Shear-induced flexural crushing in specimen B3N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the reinforcement in
Fig. 4.27.
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Figure 4.27: Experimental and predicted load-strain response for specimen B3N

The predicted strain of 4 × 10−3 is close to the experimental strain of 3 × 10−3. The stiffness
of the response is accurately predicted.

Finally, the horizontal and vertical displacement at the position of the LVDT-rosette are
predicted as shown in Fig. 4.28.

Figure 4.28: Experimental and predicted load-crack displacement response for specimen B3N

The predicted horizontal crack displacement at failure is equal to the experimental one of 1
mm and the maximal vertical crack displacement of 3 mm underestimates the experimental one
of 5 mm. In terms of slope of the response, it can be concluded that the predicted horizontal
response is very close to the experimental horizontal crack displacement, but the vertical response
seems to be double as steep as the experimental vertical displacement.
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B4N

The experimental and predicted load-displacement response of specimen B4N are presented
in Fig. 4.29.

Figure 4.29: Experimental and predicted load-displacement response for specimen B4N

For specimen B4N, failure mode 1 is predicted (refer to Fig. 2.9 in Section 2.3.3): cracking
of the CLZ . This does, in first instance, not correspond with the actual experimental failure
mode which was shear-induced flexural crushing as presented in Fig. 4.30.

Figure 4.30: Shear-induced flexural crushing in specimen B4N (courtesy by Andermatt and
Lubell, University of Alberta)

However, in Fig. 4.31 the complete response is shown. The horizontal dashed line repre-
sents the capacity due to the failure mode by cracking of the CLZ, the horizontal solid line is
the capacity by shear-induced flexural crushing and the third failure mode, CLZ crushing, is
represented by the maximal value of the 2PKT response in bolt.
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Figure 4.31: Complete load-displacement response for specimen B4N

Here can be seen that failure due CLZ cracking has a predicted capacity of 395 kN, shear-
induced flexural crushing gives a capacity of 455 kN and finally, crushing of the CLZ corresponds
to capacity of 460 kN. The experimental capacity is in between these values and equal to 415
kN. In other words, all three capacities are very close to each other with only a difference
of 60 kN between them. The lowest one underestimates the capacity by 5% and the highest
failure mode overestimates the capacity by 9%. This means that, however failure mode 1 is
predicted, it seems possible that all three failure modes could have occurred. If Once-more, the
experimental failure is analysed (see Fig. 4.30), it seems possible that a combination of failure
modes have occurred: flexural crushing and diagonal crushing. Therefore, it can be concluded
that predictions must always be treated with care and experimental failure modes can sometimes
be hard to distinguish. To be consistent, the predicted failure mode, cracking of CLZ, is used
to present the other results as well.

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.32.
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Figure 4.32: Experimental and predicted load-strain response for specimen B4N

The predicted and experimental strain are almost identical. Due to the small underestimation
of the capacity, the maximal strain is also slightly underestimated by only 0.5 × 10−3.

Finally, the horizontal and vertical crack displacement at the position of the LVDT-rosette
are predicted as shown in Fig. 4.33.

Figure 4.33: Experimental and predicted load-crack displacement response for specimen B4N

The predicted horizontal crack displacement of 1 mm is accurately predicting the experimen-
tal one. The predicted vertical crack displacement of 2.5 is underestimating the experimental
one of 5.5. The slope of the predicted horizontal displacement response is almost equal to the
experimental one, while the slope of the predicted horizontal displacement response is double as
stiff as the experimental one.
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B5H

The experimental and predicted load-displacement response of specimen B5H are presented
in Fig. 4.25.

Figure 4.34: Experimental and predicted load-displacement response for specimen B5H

The predicted failure mode is shear-induced flexural crushing which corresponds well with
the experimental observations as can be seen in Fig. 4.35. It can be seen that the predicted
failure load of 456 kN underestimates the experimental load of 531 kN by 16% and the predicted
deflection of 6 mm also underestimates the experimental deflection of 11 mm. Furthermore,
the predicted response overestimates the experimental stiffness of the beam. At failure, one-
fourth of the shear contribution is given by aggregate interlock and the other three-quarters by
VCLZ .

Figure 4.35: Shear-induced flexural crushing in specimen B5H (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the FRP-reinforcement
in Fig. 4.36.
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Figure 4.36: Experimental and predicted load-strain response for specimen B5H

The form of the response is very well predicted, however due to the underestimated capacity
the maximal strain is also underestimated.

Finally, the horizontal and vertical crack displacement at the position of the LVDT-rosette
are predicted as shown in Fig. 4.37.

Figure 4.37: Experimental and predicted load-crack displacement response for specimen B5H

The predicted horizontal crack displacement develops similarly as the experimental response,
while the slope of the predicted vertical crack displacement is twice as big as the experimen-
tal one. Furthermore, the predicted vertical displacement of almost 3 mm underestimates the
experimental one of 5.5 mm, while the horizontal crack displacement is predicted almost per-
fectly.
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B6H

The experimental and predicted load-displacement response of specimen B6H are presented
in Fig. 4.38.

Figure 4.38: Experimental and predicted load-displacement response for specimen B6H

For specimen B6H, the predicted failure mode is failure mode 3 (refer to Fig. 2.9 in Section
2.3.3): shear-induced flexural crushing. However, the experimental failure mode was cracking
of the CLZ as can be seen in Fig. 4.39. While the experimental failure load was 188 kN, the
predicted capacity is 111 kN, an underprediction of 69%. In correspondence, the deflections are
heavily underestimated.

Figure 4.39: Shear-induced flexural crushing in specimen B6H (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain and the displacements are presented in Fig. 4.40.
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(a) Experimental and predicted load-strain response
for specimen B6H

(b) Experimental and predicted load-crack displace-
ment response for specimen B6H

Figure 4.40: Results for specimen B6H

There can be concluded that the predictions are not that good.

However, a discussion can be made if the failure mode by shear-induced flexural crushing
can possibly occur. The load-displacement response is presented again in Fig. 4.41, but this
time the cracking of the CLZ is assumed to govern the shear capacity.

Figure 4.41: Experimental and adapted load-displacement response for specimen B6H

The predicted failure mode by shear-induced flexural crushing is represented by the horizontal
grey line. At the moment that the SIFC should occur according to the prediction, there is still a
lot of aggregate interlock and also a small contribution of the VCLZ . If the sum of the maximum
of aggregate interlock Vci,max and the corresponding VCLZ is taken, then the shear capacity
equals 185 kN. Until this point shear can still be carried, and, moreover, shear is carried for
more than 70% by aggregate interlock. Therefore, it seems not possible that the specimen will
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fail at a value of 111 kN. Now an interesting remark to make is that in all the previous specimens,
there was almost no aggregate interlock contribution or it was negligible in comparison to VCLZ .
This time however, aggregate interlock represents the main contribution to shear and, exactly for
this reason, it is the big aggregate interlock which prohibits the shear-induced flexural crushing
to happen. The following assumption can be made: VSIF C ≥ Vci,max + VCLZ if it is smaller, it
will not happen.

If this assumption is implemented in the model, then the predicted failure mode is cracking
of the CLZ. The predicted capacity is 225 kN in comparison to the experimental failure load
of 188 kN. The prediction still overestimated the capacity by 16%, but the accuracy of the
prediction has largely improved.

The results, obtained after the implementation of the condition VSIF C ≥ Vci,max +VCLZ , are
accounted for in the further discussion and are referred to as ’adapted predictions’.

First, the adapted predicted strain in the FRP reinforcement is presented in Fig. 4.42.

Figure 4.42: Experimental and adapted predicted load-strain response for specimen B6H

The strains are overestimated, but the stiffness of the prediction is comparable to the stiffness
of the experiment.

Finally, the adapted predicted crack displacements are shown in Fig. 4.43.
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Figure 4.43: Experimental and adapted predicted load-crack displacement response for specimen
B6H

The predicted horizontal displacement goes up to 1 mm and the vertical displacement is
equal to 4.5 mm. Both displacement responses overestimate the experimental ones.

It may be assumed that the condition VSIF C ≥ Vci,max + VCLZ is justified and therefore
permanently implemented in the model. Now, a second discussion to make is about the fact
that the model, which now predicts cracking of the critical loading zone to occur, assumed that
there was no aggregate interlock such that the resultant force is constrained to pass through
the center of the bearing plate. This resulted in the use of αcrit to determine the angle of
the resultant force. However, Fig. 4.44 presents the stress distribution along the crack due to
aggregate interlock.

Figure 4.44: Aggregate interlock stresses along the critical crack in specimen B6H

This figure shows the detailed distribution of interlock stresses of every crack segment along
the crack. The total shear contribution equals 136 kN which corresponds to the value shown
in Fig. 4.41. This implies that the aggregate interlock is not negligible. If this is taken into
account, then, the earlier-discussed assumption is not valid anymore. Resulting from this, the
shear force by CLZ, VCLZ , can directly be projected on the inclined plane with the angle αCLZ

(refer to Fig. 3.11 in Section 3.7). The new results are shown in Fig. 4.45.
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Figure 4.45: Experimental and final predicted load-displacement response for specimen B6H

Now the predicted shear capacity is equal to 193 kN compared to an experimental value of
188 kN. This is almost a perfect prediction. Furthermore, the condition VSIF C ≥ Vci,max +VCLZ

can also be applied on the capacity by CLZ cracking, but it is not governing the results as shown
in Fig. 4.45.

The condition VSIF C ≥ Vci,max + VCLZ and the discussion on the angle of the resultant force
are both justified by the results. Therefore, the model was modified to take them into account.
The final predicted capacity of specimen B6H is thus equal to 193 kN. For convenience, the
final load-strain and the final load-crack displacement responses are recalculated with the model
and shown in Fig. 4.46. The responses are, for obvious reasons, similar to Fig. 4.42 and Fig.
4.43.

(a) Experimental and final predicted load-strain re-
sponse for specimen B6H

(b) Experimental and final predicted load-crack dis-
placement response for specimen B6H

Figure 4.46: Final results for specimen B6H
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In correspondence with the improved prediction of the shear capacity, the predictions of the
strain at failure and the crack displacements have improved.

A final discussion can be held on the effect of the concrete tension strength limit fct (refer
to Section 3.7) on the results. It is clear that a higher tension limit will lead to a higher possible
shear capacity and vice versa. Therefore, it seems important to accurately predict this value.
There exist several equations to predict the tension limit fct. One very conservative approach
is to take fct = 0.5fr. This rupture strength fr is derived by a three point bending test on
a unreinforced beam and, from this, the tension limit can be directly derived. The rupture
strength is known from tests [8] and is equal to 6.3 MPa, this results in fct = 0.5fr = 3.15 MPa.
The modified load-displacement response is shown in Fig. 4.47.

Figure 4.47: Experimental and modified predicted load-displacement response for specimen B6H

The predicted capacity is equal to 175 kN. As expected, this is lower than the previous
prediction, and, therefore, using fct = 0.5fr will result in conservative predictions. The difference
in shear capacity by using the equation from the model and this new equation is 18 kN. The
ratio for the original equation was Vexp/Vpred = 0.97 and for the new equation Vexp/Vpred = 1.07.
The experimental capacity value will be somewhere between the two shear capacities induced
by the two concrete tension strength limits.

The question raises to which extend the prediction of the concrete tension strength needs to
be optimized to increase the accuracy of the predictions. It is clear that this one parameter not
only governs the results, but clearly affects them. From the other hand, as mentioned before,
there are numerous approaches to predict this tension strength, but in the end, this value remains
strongly ’specimen-dependant’. Therefore, the need to optimize the prediction of the concrete
tension strength and, thus, the correspondent equations seems not necessary in terms of not
complicating a rather simplified modelling approach as the cracking of the CLZ.
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C1N

The experimental and predicted load-displacement response of specimen C1N are presented
in Fig. 4.48.

Figure 4.48: Experimental and predicted load-displacement response for specimen C1N

The predicted failure mode is shear-induced flexural crushing which corresponds well with the
experimental observations as can be seen in Fig. 4.49. The predicted failure load is equal to 1225
kN, compared to an experimental load of 1134.5 kN. The ratio between them is Vexp/Vpred = 0.93.
The predicted deflection of almost 20 mm overestimates the experimental deflection of 13 mm.
At failure, the shear capacity is fully carried by VCLZ which is due to the large crack widths
which prohibit aggregate interlock to carry shear (see Fig. 4.51).

Figure 4.49: Shear-induced flexural crushing in specimen C1N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.50.
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Figure 4.50: Experimental and predicted load-strain response for specimen C1N

The predicted strain follows almost perfectly the experimental response. Due to the small
overprediction of strength, the strain is also slightly overpredicted.

Finally, the horizontal and vertical crack displacement at the position of the LVDT-rosette
are predicted as shown in Fig. 4.51.

Figure 4.51: Experimental and predicted load-crack displacement response for specimen C1N

The predicted maximal horizontal displacement is equal to 6 mm and the predicted vertical
displacement is equal to 3 mm. These values are not very accurately predicted in comparison
to the experimental ones. The measurements showed that the horizontal and vertical crack
displacement almost developed exactly the same. This may be possible because the a/d ra-
tio is almost equal to 1 for this specimen, but, from the other hand, it can be possible that
measurement equipment was not correctly employed.
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C2N

The load-displacement response of specimen C2N is presented in Fig. 4.52.

Figure 4.52: Experimental and predicted load-displacement response for specimen C2N

The predicted failure mode is shear-induced flexural crushing which corresponds well with
the experimental observations as can be seen in Fig. 4.53. The predicted failure load of 736 kN
overestimates the experimental load of 662 kN by 10%. The predicted deflection of 17 mm is
almost equal to the experimental deflection of 15 mm. At failure, the shear capacity is carried
for 70% by VCLZ and the rest by aggregate interlock. The fact that there is a contribution of
aggregate interlock, can be explained by the small crack widths developing in the specimen (see
Fig. 4.55). Further, it can be stated that, once-again, the experimental response is accurately
predicted in terms of stiffness.

Figure 4.53: Shear-induced flexural crushing in specimen C2N (courtesy by Andermatt and
Lubell, University of Alberta)

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
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in Fig. 4.54.

Figure 4.54: Experimental and predicted load-strain response for specimen C2N

The predicted strain has the same stiffness as the experimental response. Due to the small
overprediction of strength, the strain is also slightly overpredicted.

Finally, the horizontal and vertical crack displacement at the position of the LVDTs are
predicted as shown in Fig. 4.55.

Figure 4.55: Experimental and predicted load-crack displacement response for specimen C2N

The horizontal crack displacement was not measured during the test, but the predicted max-
imal horizontal crack displacement is equal to 2 mm. The predicted vertical crack displacement
is equal to 4.5 mm which is very close to the experimental one of 4 mm.
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4.1.2 Effects of test variables

Variables can have an effect on the strength and the stiffness of specimens. This effect is
analysed by comparing similar specimens with only one different variable. Therefore, based
on the variables defined in Table 1, the effects of the following variables are analysed: shear
span-to-depth ratio a/d, reinforcement ratio ρl and the concrete strength f

′
c.

Shear span-to-depth ratio in specimens A1N, A2N and A3N

The shear span-to-depth ratio of specimens A1N, A2N and A3N are respectively equal to
1.07, 1.44 and 2.02. First, the experimental and predicted load-displacement responses of all
three specimens are compared in Fig. 4.56.

Figure 4.56: Experimental and predicted load-displacement response for specimens A1N, A2N
and A3N

There can be seen that both in experiments as in the predictions a gradual decrease of the
shear capacity is observed for increasing a/d ratio’s which is in correspondence with the trend
shown in 2.1. Going from specimen A3N to specimen A2N, a/d decreases from almost 2 to 1.44,
which resulted in a doubling of the capacity. Then, when the a/d is further decreased from 1.44
for specimen A2N to almost 1 for specimen A1N, the capacity doubled again. All specimens
are carrying shear completely by VCLZ , and, therefore, the increasing capacity is due to the
increasing shear contribution of CLZ. The difference between the experimental and predicted
capacity seems to increase by a decreasing a/d. This may be due to an underestimation of the
CLZ, which is possibly caused by the small dimensions of these specimens. The underestimation
of the CLZ is proportional to the importance of the shear by CLZ, which is more and more
important for a decreasing a/d. Therefore the underestimation of the failure load is larger in
specimen A1N than A2N and A3N Furthermore, the stiffness is also increasing by decreasing
the a/d ratio. The final deflection of all three specimens are inbetween 6 to 7 mm.

It can be seen that specimen A3N is the only specimen with a shear contribution by ag-
gregate interlock, but it is only responsible for a small contribution of around 5% of the shear
capacity. However, the fact that there is a contribution may be explained by the smaller crack
displacements in this specimen (see Fig. 4.12) than the crack displacements of the other two
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specimens (see Fig. 4.8 and 4.4 ) .

Next, the strains in the FRP reinforcements are shown in Fig. 4.57.

Figure 4.57: Experimental and predicted load-strain responses for specimens A1N, A2N and
A3N

The effect of the shear span-to-depth ratio on the strain is related to the capacity of the
specimens. By decreasing the a/d ratio, the failure loads are increasing and, thus, the strains
are increasing.

Finally, the effect on the crack displacements is analysed in Fig. 4.58.

(a) Predicted horizontal crack displacement for spec-
imens A1N, A2N and A3N

(b) Predicted vertical crack displacement for speci-
mens A1N, A2N and A3N

Figure 4.58: load-crack displacement response for specimens A1N, A2N and A3N

Here can be seen that the predicted horizontal crack displacements are increasing when a/d in
decreasing. From the other hand, the predicted vertical displacement stays almost equal.
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Shear span-to-depth ratio in specimens B1N, B2N and B3N

The shear span-to-depth ratios of specimens B1N, B2N and B3N are respectively equal to
1.08, 1.48 and 2.07 which are comparable to the previous comparison. First, the predicted and
experimental load-displacement responses are presented in Fig. 4.59.

Figure 4.59: Experimental and predicted load-displacement response for specimens B1N, B2N
and B3N

Once-more, an increase of the shear capacity is observed by decreasing the shear span-to-
depth ratio. By decreasing a/d from 2.07 to almost 1.5, the capacity has almost doubled and
when the a/d is further decreased from almost 1.5 to 1.08 the capacity increases by a bit more
than 50%. Corresponding to the increase of the strength, the importance of VCLZ increases.
Furthermore, in the experiments and in the predictions, it can be seen that an increased a/d ratio
leads to an increase stiffness. Together with an increased stiffness, the maximal experimental
deflections decrease from 12 mm in B3N to 9 mm in B2N to 6 mm in B1N (the post-peak
deformation of B1N shown on the graph, is not taken into account). However, the predictions
show an almost similar deflection.

Next, the strains in the FRP reinforcements are shown in Fig. 4.60.
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Figure 4.60: Experimental and predicted load-strain responses for specimens B1N, B2N and
B3N

Once-more, the strains are increasing by decreasing the a/d ratio. While in specimen B3N
the strains were twice as big as the elastic strain limit in conventional steel, the strains grow to
8 × 10−3 which is four times bigger than the elastic limit of steel.

Finally, the effect on the crack displacements is analysed in Fig. 4.61.

(a) Predicted horizontal crack displacement for spec-
imens B1N, B2N and B3N

(b) Predicted vertical crack displacement for speci-
mens B1N, B2N and B3N

Figure 4.61: load-crack displacement response for specimens B1N, B2N and B3N

Again, the horizontal crack displacement increases for a decreasing a/d and the maximal
vertical displacements are almost equal.
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Shear span-to-depth ratio in specimens C1N and C2N

The shear span-to-depth ratios of specimen C1N is 1.1 and of specimen C2N is 1.49. The
experimental and predicted load-displacement responses of both specimens are presented in Fig.
4.62.

Figure 4.62: Load-displacement response for specimens C1N and C2N

For a third time, decreasing the shear span-to-depth ratio leads to a higher shear capacity
and, Once-more, the importance of VCLZ increases. However, while specimen C2N had still a
contribution of aggregate interlock, specimen C1N is completely depending on the shear contri-
bution of the CLZ. This may be caused by the smaller crack displacements which allowed the
aggregate interlock to occur. There can be observed that the stiffness increases for lower a/d
ratios, but the stiffness is still a bit underpredicted which lead to an overpredicted maximum
deflection.

Next, the strains in the FRP reinforcement are shown in Fig. 4.63.

Figure 4.63: Experimental and predicted load-strain responses for specimens C1N and C2N

Once-more, the maximal strain increased for a decreased a/d ratio.
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Finally, the effect on the crack displacements is analysed with Fig. 4.64.

Figure 4.64: Experimental and predicted load-crack displacement for specimens C1N and C2N

For these two specimens, both the horizontal and vertical displacement increased when the
a/d ratio decreased. This behavior differs from the previous two comparisons.

Reinforcement ratio in specimens B2N and B4N

The reinforcement ratio of specimen B2N is 1.71% and of specimen B4N is 2.13%. The
experimental and predicted load-displacement responses of both specimens are presented in Fig.
4.65.

Figure 4.65: Experimental and predicted load-displacement response for specimens B2N and
B4N

In the predicted results the increase of the reinforcement ratio lead to an increase of the
stiffness. However, in the experimental results the stiffness stayed almost constant. The same
difference between experimental and predicted behavior is seen by the maximal deflection. The
increased reinforcement ratio lead to a smaller prediction of the deflection, while the experimental
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maximal deflections were almost equal. Furthermore, the reinforcement ratio did not had an
effect on the shear capacity of the specimen. However, the shear capacity developed in a different
manner. For specimen B4N, one-third of the shear capacity was due to aggregate interlock, while
for specimen B2N with the lower reinforcement ratio the aggregate interlock contribution was
negligible at failure. This can be explained by the fact that the higher reinforcement ratio, keeps
the crack displacements lower, which enables aggregate interlock to occur.

Next, the strains in the FRP reinforcement are shown in Fig. 4.66.

Figure 4.66: Experimental and predicted load-strain responses for specimens B2N and B4N

There can be seen that both predictions were very accurate. The increase of the reinforcement
ratio lead, logically (higher area of reinforcement for same force results in lower stresses, and
thus in lower strains), to a lower average strain in the reinforcement.

Finally, the effect on the crack displacements is analysed in Fig. 4.67.

Figure 4.67: Experimental and predicted load-crack displacement for specimens B2N and B4N

The horizontal and vertical displacement are observed to decrease when the reinforcement
ratio is increased. As mentioned before, this makes sens, because reinforcement is placed in con-
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crete to control the cracking and, therefore, also the crack widths. Thus a higher reinforcement
ratio should lead to smaller crack displacements.

Concrete strength in specimens A3N and A4H

The concrete strength of specimen A3N is 41.3 MPa and of specimen A4H is 64.6 MPa. The
load-displacement responses are presented in Fig. 4.68.

Figure 4.68: Experimental and predicted load-displacement response for specimens A3N and
A4H

In both the experimental and predicted results, the increase of the concrete strength lead
to an minor decrease of the shear capacity. In the experimental results, the stiffness seems to
decrease when the concrete strength was increased. For the predicted results, nothing can be
concluded for certain. It is difficult to take a consistent conclusion of this plot due to the early
failure of both specimens, but especially specimen A4H.

Next, the strains in the FRP reinforcement are shown in Fig. 4.69.

Figure 4.69: Experimental and predicted load-strain responses for specimens A3N and A4H
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The strain is slightly decreasing for an increasing concrete strength. Once-more, it is hard
to take a conclusion for small specimens.

Finally, the effect on the crack displacements is analysed with Fig. 4.70.

Figure 4.70: Experimental and predicted load-crack displacement for specimens A3N and A4H

The horizontal and vertical crack displacement are observed to decrease when the concrete
strength is increased.

Concrete strength in specimens B3N and B6H

The concrete strength of specimen B3N is 41.2 MPa and of specimen B6H is 68.5 MPa. The
load-displacement responses are presented in Fig. 4.71.

Figure 4.71: Experimental and predicted load-displacement response for specimens B3N and
B6H
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Once-more, the increase of the concrete strength lead to an minor decrease of the shear
capacity in both the experimental and predicted results. Furthermore, the stiffness also tends
to decrease slightly when the concrete strength is increased in both the experiment as the
prediction. The only clear differences between both specimens are the way they carry shear and
their failure mode. Specimen B3N is carrying shear mainly by the CLZ and fails by SIFC, but
specimen B6H is carrying shear by mainly aggregate interlock and is failing by cracking of the
CLZ. Although both specimens exhibit a different experimental failure mode, the model rightly
predicted both of them and predicted accurately the failure load.

Next, the strains in the FRP reinforcement are shown in Fig. 4.72.

Figure 4.72: Experimental and predicted load-strain responses for specimens B3N and B6H

The experimental maximal strain did not change by increasing the concrete strength. The
predicted is slightly decreasing for an increased concrete strength, but this is almost negligi-
ble.

Finally, the effect on the crack displacements is analysed in Fig. 4.73.

Figure 4.73: Experimental and predicted load-crack displacement for specimens B3N and B6H
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There can be seen that the horizontal and vertical displacement is almost not affected by
increasing the concrete strength.

Concrete strength in specimens B4N and B5H

The concrete strength of specimen B4N is 40.7 MPa and of specimen B5H is 66.4 MPa. The
load-displacement responses are presented in Fig. 4.74.

Figure 4.74: Experimental and predicted load-displacement response for specimens B4N and
B5H

The predicted behavior of both specimens is in accordance with the experimental one. Both
specimens seem to behave in a similar way in terms of strength and stiffness. Although, by
increasing the concrete strength both the strength and the stiffness increased slightly.

Next, the strains in the FRP reinforcement are shown in Fig. 4.75.
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Figure 4.75: Experimental and predicted load-strain responses for specimens B4N and B5H

In both the experimental as the predicted results there can be seen that the strain is in-
creasing for an increased concrete strength. The effect is more explicit in the experimental
measurements.

Finally, the effect on the crack displacements is analysed with Fig. 4.76.

Figure 4.76: Experimental and predicted load-crack displacement for specimens B4N and B5H

Once-more, there can be seen that the horizontal and vertical displacement is not affected
by increasing the concrete strength.
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4.2 Tests by Farghaly and Benmokrane (2013)

4.2.1 Predictions of global and local shear behavior

G8N6

The experimental and vertical load-displacement response of specimen G8N6 is presented in
Fig. 4.77.

Figure 4.77: Experimental and predicted load-displacement response for specimen G8N6

The predicted failure mode is crushing of the CLZ which corresponds well with the exper-
imental observations. The predicted failure load is equal to 575 kN and the experimental load
is equal to 723.5 kN, which means that the capacity is underpredicted by 26%. This may be
induced by an underestimation of the CLZ. The predicted deflection of 10 mm is almost equal
to the experimental deflection. At failure, two-thirds of the shear capacity is carried by VCLZ

and the rest by aggregate interlock.

A first discussion on these results can be reported: specimen G8N6 is the first specimen
(compared to what has been discussed here above) where crushing of the CLZ occurred during
the test, and, moreover, was predicted by the model. This failure mode, crushing of the CLZ, did
not happen in the specimens of Andermatt and Lubell [8], neither was it predicted to happen.
This may lead to the question why crushing of the CLZ was not predicted to happen, which can
be explained by the following: the a/d ratio of specimen G8N6 is equal to 1.14, which leads to,
based on Eq. (12), an predicted crushed-to-compressive depth of almost 90 mm, and, by using
Eq. (10), this resulted in a capacity of 944 kN. It is clear that this capacity is much higher
than the capacity of 575 kN related to crushing in the CLZ. It may thus be stated that the
predicted failure mode is rightly predicted with a lot of margin. The following specimens need
to be analysed to be able to conclude if these accurate predictions are obtained in a consistent
way or not.

Next, the predicted strain is compared with the experimental strain in the FRP reinforcement
in Fig. 4.78.
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Figure 4.78: Experimental and predicted load-strain response for specimen G8N6

The predicted strain has the same stiffness as the experimental response. Due to the under-
prediction of the strength, the strain is slightly underpredicted.

Finally, the crack displacement is predicted as shown in Fig. 4.79.

Figure 4.79: Experimental and predicted load-crack displacement response for specimen G8N6

The experimental crack displacement is developing similarly, but at a later loading stage
then was predicted. However, the final predicted crack width of 3.5 mm is almost equal to the
experimental one.
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G8N8

The load-displacement response of specimen G8N8 is presented in Fig. 4.80.

Figure 4.80: Experimental and predicted load-displacement response for specimen G8N8

Once-more, crushing of the CLZ is predicted to happen in specimen G8N8, which corresponds
well with the experimental observations. This is in line with the correct prediction for the
previous specimen. The predicted failure load for specimen G8N8 is 904 kN, which is close
to the experimental load of 953 kN. The deflection is very accurately predicted. At failure,
three-fourths of the shear capacity is carried by VCLZ and the rest by aggregate interlock. The
presence of the aggregate interlock is possible due to lower crack displacements.

Next, the predicted strain is compared with the experimental strain in Fig. 4.81.

Figure 4.81: Experimental and predicted load-strain response for specimen G8N8
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The predicted strain of 5 × 10−3 is almost equal to the experimental strain of 4.5 × 10−3.
Both responses experience the same stiffness.

Finally, the opening of the crack is predicted as shown in Fig. 4.82.

Figure 4.82: Experimental and predicted load-crack displacement response for specimen G8N8

The maximal predicted crack width of 3.5 mm is equal to the experimental one.

C12N3

The load-displacement response of specimen C12N3 is presented in Fig. 4.83.

Figure 4.83: Experimental and predicted load-displacement response for specimen C12N3

Although the failure mode, crushing of the CLZ, is well predicted, the corresponding failure
load of 445 kN is largely underestimating the experimental capacity of 595.5 kN by 34%. In
contrast with the capacity the deflections are overestimated. the specimen behaved stronger and
stiffer than predicted. At failure, VCLZ and aggregate interlock are contributing almost equally
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to the shear capacity. Therefore, it may be possible that the underestimated part of the failure
load is due to an underestimation of the CLZ.

Next, the predicted strain is compared with the experimental strain in Fig. 4.84.

Figure 4.84: Experimental and predicted load-strain response for specimen C12N3

The predicted strain of 5 × 10−3 is smaller than the experimental one of 6 × 10−3. Both
responses experience the same stiffness.

Finally, the opening of the crack is predicted as shown in Fig. 4.85.

Figure 4.85: Experimental and predicted load-crack displacement response for specimen C12N3

The responses have the same trend, but due to the underestimated failure load, the re-
sponses are parallel but shifted. Next, the predicted crack width is higher than the experimental
one.
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C12N4

The load-displacement response of specimen C12N4 is presented in Fig. 4.86.

Figure 4.86: Experimental and predicted load-displacement response for specimen C12N4

The predicted failure mode is crushing of the CLZ which corresponds well with the exper-
imental failure mode. The predicted failure load of 834 kN is very close to the experimental
failure load of 800.5 kN. The predicted deflection of 12 mm overestimates the experimental one
of 8 mm. At failure, one-fifth of the shear capacity was carried by aggregate interlock while the
rest was contributed by VCLZ .

It can now be concluded that all specimens of Farghaly and Benmokrane [15] were correctly
predicted to fail by crushing of the CLZ. This means that the suggested models to predict the
two new observed failure modes in FRP-reinforced deep beams, cooperate adequately together
inside the crack-based 2PKT.

Next, the predicted strain is compared with the experimental strain in Fig. 4.87.
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Figure 4.87: Experimental and predicted load-strain response for specimen C12N4

The predicted strain of 4.5 × 10−3 is slightly larger than the experimental one of 3.5 × 10−3.
Both responses experience the same stiffness.

Finally, the opening of the crack is predicted as shown in Fig. 4.88.

Figure 4.88: Experimental and predicted load-crack displacement response for specimen C12N4

The responses have the same trend, but the predicted crack width is higher than the exper-
imental one.
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4.2.2 Effects of test variables

The tests of Farghaly and Benmokrane can be used to analyse the effect of reinforcement ratio.
The comparisons are presented in the following sections.

Reinforcement ratio in specimens G8N6 and G8N8

The reinforcement ratio of specimen G8N6 is 0.69% and of specimen G8N8 is 1.24%. The
load-displacement responses are presented in Fig. 4.89.

Figure 4.89: Experimental and predicted load-displacement response for specimens G8N6 and
G8N8

There can be seen that in the experimental and the predicted results, the increase of the
reinforcement ratio lead to an increased shear capacity. Moreover, the stiffness has also in-
creased by increasing the reinforcement ratio. Next, the way shear is carried, is similar in both
specimens. The only difference is that in specimen G8N8 the contribution of the CLZ is stiffer
and stronger.

Next, the strains in both specimens are compared in Fig. 4.90.
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Figure 4.90: Experimental and predicted load-strain responses for specimens G8N6 and G8N8

There can be concluded that the strain in the reinforcement is decreasing when the rein-
forcement ratio increases. This is in accordance with previously covered discussions. However,
this effect is more significantly present in the experimental results than in the predictions.

Finally, the opening of the cracks are compared in Fig. 4.91.

Figure 4.91: Experimental and predicted load-crack displacement response for specimens G8N6
and G8N8

It can be seen that the reinforcement ratio did not affect the final crack width, although the
crack widths developed at a later loading stage for the higher reinforced specimen.
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Now, another variable to analyse is the effect of the crack geometry. As discussed earlier
in this thesis, literature suggested that the crack geometry is affecting the shear capacity of
deep beams and, according to the results of Trandafir et al. [12], this effect is accurately taken
into account by the crack-based 2PKT. Unfortunately, there are no nominally identical FRP-
reinforced deep beams available in our data set.

However, related to this, an interesting hypothetical analysis can be performed on the speci-
mens G8N6 and G8N8, because they have the exact same geometrical properties, but they only
differ in terms of reinforcement ratio. There can be investigated how much the shear capacity
of a specimen is affected by changing the reinforcement ratio, but for the exact same crack
geometry. Although in experimental specimens, the crack geometry is partly influenced by the
reinforcement ratio, it is also partly affected by natural randomness of the material properties.
Therefore, if the assumption is made that the development of the crack geometry is not influ-
enced by the reinforcement ratio, then it will only be affected by the natural randomness.

If now specimen G8N6 is provided with the reinforcement ratio of specimen G8N8, and, the
crack geometry of this modified G8N6 specimen is unchanged, then the model will calculate the
difference in capacity due to a change in the reinforcement ratio for this modified specimen.
Moreover, a second analysis can be made by comparing the capacity of this modified-G8N6
specimen with the capacity of specimen G8N8. This is justified, because both specimens, the
modified specimen and specimen G8N8, have the same reinforcement ratio, but only differ by
their developed crack geometry. It must be stated again that this hypothetical analysis is
only possible because the assumption is made that the development of the crack geometry is
not effected by the reinforcement ratio. The predicted load-displacement response of specimen
G8N6, G8N8 and the modified G8N6 are shown in Fig. 4.92.

Figure 4.92: Experimental and predicted load-displacement response for specimens G8N6, G8N8
and G8N6-modified

In Fig. 4.92, three different graphs are plotted for each specimens: the shear contribution
due to aggregate interlock Vci (dashed line), the shear contribution due to CLZ VCLZ (solid line)
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and the load-displacement response (bold line) which is the sum of the two contributions. There
can be seen that the original specimen G8N6 has a capacity of 575 kN. Specimen G8N6-modified,
which had the same crack geometry as G8N6 but the reinforcement ratio of G8N8, has a capacity
of 674 kN. If the behavior of this specimen is further investigated there can be seen that the added
shear strength, in comparison to G8N6, is gained completely by Vci. This seems logic, because
the increase of reinforcement, leads to smaller crack widths, and, therefore, to larger interlock
stresses which results in a larger aggregate interlock shear contribution. Secondly, specimen
G8N6-modified can be compared to specimen G8N8. As mentioned earlier, both specimens
contain the same reinforcement ratio, but have a different crack geometry. As can be seen in
Fig. 4.92, specimen G8N8 has a capacity of 904 kN, compared to 674 kN for G8N6-modified.
This difference of 230 kN is, taken into account the assumptions of this hypothetical analysis,
due to difference in crack geometry. Moreover, there can be seen that G8N8 has a different
contribution of Vci than in G8N6-modified. This shows that the crack geometry is influencing
the way the specimen is carrying shear and, thus, influencing the final capacity.

Reinforcement ratio in specimens C12N3 and C12N4

The reinforcement ratio of specimen C12N3 is 0.26% and of specimen C12N4 is 0.46%. The
load-displacement responses are presented in Fig. 4.93.

Figure 4.93: Experimental and predicted load-displacement response for specimens C12N3 and
C12N4

Both the experimental and the predicted results show an increase of the shear capacity
by increasing the reinforcement ratio. Furthermore, the stiffness has also slightly increased by
increasing the reinforcement ratio. Once-more, both specimens carry shear in the same way with
the only difference that the higher reinforced specimen develops a higher shear contribution by
the CLZ. This behavior is similar is previously observed and discussed for specimens G8N6 and
G8N8.

Next, the strains in both specimens are compared in Fig. 4.94.
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Figure 4.94: Experimental and predicted load-strain responses for specimens C12N3 and C12N4

There can be concluded that due to the increase in reinforcement the strain has decreased,
although the difference is bigger in the experiments than was predicted.

Finally, the opening of the cracks are compared in Fig. 4.95.

Figure 4.95: Experimental and predicted load-crack displacement responses for specimens C12N3
and C12N4

Both the predicted results and the experimental results show that by changing the reinforce-
ment ratio, the final crack widths did not vary, although the development was delayed.

4.3 Summary of strength predictions
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5 Conclusions and outlook

5.1 Conclusions

The aim of this study was to develop a kinematics-based model capable of predicting the com-
plete shear behavior of FRP-reinforced deep beams without web reinforcement. The proposed
model, extended from the crack-based 2PKT for steel-reinforced deep beams [12], included mod-
elling features for three different failure modes observed in FRP-reinforced deep beams [8, 15].
The first failure mode was similar to the one typically observed in steel-reinforced deep beams:
crushing of the critical loading zone (CLZ) due to diagonal compressive stresses. The second
failure mode, the shear-induced flexural crushing, is governed by the propagation of the critical
shear crack into the pure flexural region, leading to crushing of the concrete under longitudinal
compressive stresses. The third failure mode, cracking of the CLZ, is caused by excessive tensile
stresses reached at the top face of the beam, near the critical loading zone, which results in
cracking from the top side of the beam towards the axis of the beam.

Several remarks could be drawn from this study based on the detailed comparisons done
between model predictions and test measurements.

1. For the 16 deep beams considered, the average experimental-to-predicted strength ratio
was 1.06 with a coefficient of variation of 8.5%.

2. The crack-based model for FRP-reinforced deep beams predicted for 15 out of 16 specimens
the observed failure mode. Only in the case of one specimen, namely B4N, the failure mode
was not correctly predicted. However, for specimen B4N the predicted strength of each of
the three failure modes was roughly the same. Although the beam was predicted to fail by
cracking of the CLZ at 395 kN, the experimental observation suggested a shear-induced
flexural failure that corresponds to 415 kN. For the observed failure mode, the crack-based
model predicted a shear resistance of 455 kN, which results in a 8% difference from the
measured failure load.

3. Only one out of 16 considered tests exhibited a failure due to cracking of the CLZ. Initially,
the model predicted a shear-induced flexural failure. However, after an in-depth analysis of
the results, it was shown that if the interlocking capacity of the rough crack is not reached,
then the member resistance is not governed by shear-induced flexural crushing. Consid-
ering the mechanics-based explanation, the initially predicted failure mode is suppressed,
and thus the correct failure mode is predicted together with an experimental-to-predicted
strength ratio of 0.97.

4. The study highlighted that in FRP-reinforced deep beams without web reinforcement, the
shear force is carried mostly by the CLZ. It is worth mentioning that the tests by [8]
featured crack widths up to 7 mm that resulted in, most cases, in a reduced contributions
of the predicted aggregate interlock to the peak shear resistance. In contrast, the tests by
[15] featured crack widths up to 3.5 mm that resulted in interlocking contribution of up
to 33% at failure.

5. The crack-based model accurately predicted the average strain in the FRP reinforcement,
as well as the shear span deflections and the stiffness after diagonal cracking. The strain
in FRP reinforcement increased in some cases up to 1% which is roughly 5 times larger
than the yield strain of conventional steel. The relative horizontal crack displacements
are accurately predicted, while the relative vertical crack displacements are most slightly
underestimated. On average, the predicted horizontal-to-vertical crack displacement ratio
is between 2 and 4.
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6. Regarding the effects of variables on FRP-reinforced deep beams, a increase of the shear
capacity was observed consistently when the a/d ratio was decreased. This behavior,
observed in experiments and in predictions, is in accordance with the trend shown in Fig.
2.1.

7. The tests of Farghaly and Benmokrane [15] demonstrated that the type of reinforcement
has no consequence on the capacity of a deep beam, as long as the axial stiffness is kept
the same. Although this condition was fulfilled in the tests by [15], a difference in capacity
was observed, but this may be a consequence of the varying concrete compressive strength.

5.2 Recommendations for future work

This study started from a model developed for steel-reinforced for deep beams and extended
this to be useful for the prediction of the behavior of FRP-reinforced deep beams without web
reinforcement. Several interesting topics, worthy of further research, came along during this
study:

• The bond properties of FRP reinforcement were evaluated based on limited data available
in the literature. More research is needed to gain a better understanding on the behavior
of FRP reinforcement in deep beams and to assess potential modifications required to the
proposed kinematic framework.

• The model is currently developed for FRP-reinforced deep beams without web reinforce-
ment. However, the crack-based 2PKT for steel-reinforced deep beams already contained
a shear mechanism for stirrups. Therefore, the current model can be extended to be able
to predict the behavior of FRP-reinforced deep beams with web reinforcement.

• The shear contribution by aggregate interlock in the studied beams varied in magnitude
from zero to almost half of the total shear capacity. A more in-depth study on aggregate
interlock in FRP-reinforced deep beams is proposed.

• This work made use of a data set of sixteen specimens. The developed model may be
validated on a larger database.
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Nomenclature
Capital Latin letters

Ac,eff Concrete area around the reinforcing bars responsible for tension stiffening effect
AF RP Area of longitudinal FRP bars on the flexural tension side
CDM Contact density model
CLZ Critical loading zone
COV Coefficient of variation
Ec Modulus of elasticity of concrete
EF RP Modulus of elasticity of FRP
Fc Compression force in concrete in SIFC
I Moment of inertia
Icr Moment of inertia of cracked section
IF RP Moment of inertia of longitudinal FRP bars on the flexural tension side
Kd Stiffness of dowel
Md Moment induced by dowel action
MSIF C Resisting moment due to shear-induced flexural crushing
R Resultant force
SIFC Shear-induced flexural crushing
T Tensile force in bottom longitudinal FRP reinforcement
V Shear force and lateral load
V/P Reaction force to load ratio
Vci Shear resisted by aggregate interlock
VCLZ Shear resisted by critical loading zone
Vd Shear resisted by dowel action
Vexp Experimental shear strength
Vpred Predicted shear strength
VSIF C Shear strength due to shear-induced flexural crushing

Small Latin letters

a Shear span from center of load to center of support
a/d Shear span-to-depth ratio
ag Maximum size of coarse aggregates
b Width of cross section
c Depth of concrete compression zone
d Effective depth of section
db Diameter of bottom longitudinal bars
dCLZ Depth of the critical loading zone
dcs Depth of crushed section
e Eccentricity of applied force
favg Average diagonal compressive stress
f

′
c Concrete cylinder strength

fc,con Compressive yield strength of CDM springs
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fc,eff Concrete effective compressive strength
fct Concrete tensile strength
fF RP,u Ultimate strength of FRP longitudinal reinforcement
h Total depth of section
k Crack shape factor
l0 Length of heavily cracked zone at the bottom of the critical diagonal crack
lan Anchorage length of the bottom reinforcement
lb1 Width of loading plate parallel to longitudinal axis of member
lb1e Effective width of loading plate parallel to longitudinal axis of member
lb2 Width off bearing plate parallel to longitudinal axis of member
lCLZ Horizontal length of CLZ
lf Length between center of loading plates
lk Length of bottom FRP reinforcement whose elongation contributes to the width

of the cracks
ltr Transfer length
nb Number of longitudinal bars
nci Aggregate interlock normal stress
scr Distance between radial cracks along the bottom edge of the member
si Crack slip of crack segment i
vci Aggregate interlock shear stress
wh Horizontal displacement in crack (relative)
wi Crack width of crack segment i
wv Vertical displacement in crack (relative)
xi Orthogonal horizontal coordinate of crack segment i
yi Orthogonal vertical coordinate of crack segment i

Capital Greek letters

∆ Mid span deflection of beam
∆c Transverse displacement of CLZ
∆cx Horizontal displacement of CLZ
∆exp,mod Deflection at shear span
∆exp Deflection at midspan
Ω0 Area under stress-strain diagram of concrete

Small Greek letters

α Angle of the diagonal of the shear span
α1 Angle of critical diagonal crack
αCLZ Angle of the crack in the CLZ
αcr,i Angle of a crack segment i
εt,avg Average strain along bottom longitudinal reinforcement
ηfc Brittleness factor for concrete
ρl Ratio of bottom longitudinal reinforcement
σcon Contact stress in CDM
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σtop Stress in top fiber of CLZ
σbottom Stress in bottom fiber of CLZ
τF RP Bond stress of FRP reinforcement
τsteel Bond stress of steel reinforcement
ϕ Curvature of pure flexural region

Abbreviations

2PKT Two-parameter kinematic theory
ACI American Concrete Institute
CFRP Carbon fiber-reinforced polymers
CLZ Critical loading zone
CSA Canadian Standards Association
DOF Degree of freedom
FEM Finite elements model
FRP Fiber-reinforced polymers
GFRP Glass fiber-reinforced polymers
HSC High strength concrete
NSC Normal strength concrete
STM Strut-and-tie model
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