
https://lib.uliege.be https://matheo.uliege.be

Mémoire

Auteur : Testa, Coralie

Promoteur(s) : Massuir, Adeline

Faculté : Faculté des Sciences

Diplôme : Master en sciences mathématiques, à finalité approfondie

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/14656

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



Université de Liège
Faculté des Sciences

Département de Mathématique

La complexité en états d’opérations
régulières

Auteur :
Coralie Testa

Promotrice :
Adeline Massuir

Mémoire de fin d’études en vue de l’obtention du diplôme de Master en
Sciences Mathématiques, à finalité approfondie

Année académique 2021 – 2022





Remerciements

Je tiens avant tout à remercier ma promotrice madame Adeline Massuir. Merci pour
son aide précieuse, son encadrement, ses relectures et tous ses conseils avisés.

Un grand merci à Alan Heye pour son soutien et ses encouragements qui m’ont permis
de ne jamais abandonner.

Merci à ma famille qui a toujours été là pour moi et qui a cru en mes capacités.

Enfin, je tiens à remercier mesdames E. Charlier, M. Stipulanti, C. ESSER d’avoir
accepté de faire partie de mon jury.

3





Table des matières

1 Préliminaires 9
1.1 Mots et langages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Automates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Automate minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Opérations sur des langages et complexité en états . . . . . . . . . . . . . . 17
1.5 Morphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Transformations finies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Notation pratique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Opérations 1-uniformes et modificateurs 20
2.1 Opérations 1-uniformes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Opérations non uniformes . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Composition d’opérations 1-uniformes . . . . . . . . . . . . . . . . . 22

2.2 Modificateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Composition de modificateurs . . . . . . . . . . . . . . . . . . . . . 24

2.3 Modificateurs particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Opérations descriptibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Opérations non descriptibles . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Composition d’opérations descriptibles . . . . . . . . . . . . . . . . 36

2.5 Modificateurs 1-uniformes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Modificateurs non uniformes . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Composition de modificateurs 1-uniformes . . . . . . . . . . . . . . 39

3 Les monstres 40
3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Lien entre les opérations et les modificateurs 1-uniformes . . . . . . . . . . 42
3.3 Calcul de la complexité en états . . . . . . . . . . . . . . . . . . . . . . . . 44

5



Table des matières 6

4 Applications 46
4.1 L’étoile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Une borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Une borne inférieure . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 La concaténation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Une borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Une borne inférieure . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 L’étoile de l’intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Une borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Une borne inférieure . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 La racine carrée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Une borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Une borne inférieure . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Modificateurs amicaux 67
5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Modificateurs amicaux standards . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Suites caractéristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Opérations amicales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Complexité en états d’opérations amicales 80
6.1 Le cas unaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Le cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Annexe 87

A Exemples d’applications de modificateurs 88

Bibliographie 94



Introduction

L’étude de la complexité en états a débuté en 1970 avec l’article [12] dans lequel Maslov
a donné la valeur de la complexité en états de certaines opérations (la racine carrée, le dé-
placement cyclique et l’élimination proportionnelle) mais n’a pas fourni de preuves. Suite
à un renouvellement de l’intérêt pour les langages formels au début des années 1990, Yu,
Zhuang et Salomaa [15] ont poursuivi l’étude. Après ça, de nombreux autres documents
ont été rédigés à propos de la complexité en états. Plusieurs sous-domaines ont été créés
en fonction que les automates utilisés soient déterministes ou non, que les langages soient
finis ou infinis, etc. Nous allons nous intéresser au cas des automates déterministes pour
n’importe quel langage.

La complexité en états d’un langage régulier est la taille de son automate minimal et la
complexité en états d’une opération régulière est la plus grande complexité en états de lan-
gages obtenus en appliquant cette opération sur des langages de complexité en états fixée.
Ainsi, pour calculer la complexité en états, l’approche générale est de calculer une borne
supérieure à partir des caractéristiques de l’opération considérée et de fournir un témoin,
c’est-à-dire un exemple spécifique atteignant la borne qui devient alors la complexité en
états recherchée.

Ainsi, la complexité en états de beaucoup d’opérations unaires et binaires a été déter-
minée de cette façon, comme par exemple dans [10], [14] et [6]. Dernièrement, la complexité
en états de combinaisons d’opérations a été étudiée (et dans la plupart des cas ce n’est pas
simplement une composition des complexités individuelles) comme par exemple dans [11]
et [7].

Nous allons mettre en lumière les idées de deux articles récents [2] et [3] ; tous deux
écrits par Pascal Caron, Edwin Hamel-De le Court, Jean-Gabriel Luque et Bruno Patrou
(ce dernier n’a contribué qu’au premier article).

Ce document est organisé de la façon suivante. Le premier chapitre rappelle les notions
importantes de la théorie des langages formels et fournit les définitions de base ainsi que
les notations utilisées par la suite.

Dans le chapitre 2, les opérations 1-uniformes sont définies. Nous allons voir qu’on peut

7



Table des matières 8

calculer la complexité en états d’opérations régulières en faisant des calculs directement
sur des AFDs. Ainsi, il est pratique de lier ces opérations sur des langages avec des opé-
rations agissant directement sur des AFDs qui sont appelées modificateurs. Les opérations
qui peuvent être décrites par un modificateur sont dites descriptibles. Divers modificateurs
d’opérations classiques sont présentés et des exemples d’applications sont donnés. Nous
présenterons les modificateurs 1-uniformes qui sont des modificateurs qui peuvent être as-
sociés à une opération régulière. Ces modificateurs se comportent bien par rapport à la
composition.

Dans les deux chapitres suivants, nous allons définir des AFDs particuliers, les monstres.
On les appelle "les monstres" car ce sont des AFDs avec un très grand alphabet. Leur
alphabet est composé de toutes les fonctions de transitions possibles. Nous allons utili-
ser les monstres pour montrer la correspondance entre les opérations et les modificateurs
1-uniformes. Il se trouve qu’un modificateur 1-uniforme décrit toujours une opération 1-
uniforme, et chaque opération 1-uniforme est décrite par un modificateur 1-uniforme. Ainsi,
chaque opération 1-uniforme correspond à une construction sur des AFDs. Finalement, un
résultat majeur sera démontré qui permettra de concevoir une méthode pour calculer la
complexité en états des opérations descriptibles en utilisant les monstres. Pour calculer la
complexité en états d’une opération régulière, les monstres sont de bons candidats pour
être des témoins. Après ça, nous appliquerons cette méthode pour calculer la complexité
en états de l’étoile, la concaténation, l’étoile de l’intersection et la racine carrée.

La suite du document se penchera particulièrement sur l’article [3]. Dans le chapitre
5, les modificateurs amicaux vont être présentés. A tout modificateur 1-uniforme amical
est associé un modificateur standard qui est un autre modificateur décrivant la même opé-
ration. Afin de montrer une propriété de régularité sur les états finaux d’un modificateur
amical standard 1-uniforme, la suite caractéristique sera définie. En fait, une fonction ca-
ractéristique est associée à chaque état de l’automate de sortie. Un résultat important de ce
document est celui de la correspondance entre les modificateurs amicaux standards et les
opérations amicales obtenues en combinant des racines et des opérations booléennes. Pour
finir, nous calculerons la complexité en états maximale d’opérations amicales, en fonction
de leur arité dans le Chapitre 6.



Chapitre 1

Préliminaires

Dans ce chapitre, nous allons rappeler les notions importantes de la théorie des langages
formels, définir la complexité en états et fournir les notations utilisées dans la suite du do-
cument. Des explications plus complètes à propos des langages formels et des automates
se trouvent dans [13].

1.1 Mots et langages
Définition 1.1.1 (alphabet). Un alphabet est un ensemble fini.

Définition 1.1.2 (mot). Soit Σ un alphabet. Un mot sur Σ est une suite finie et ordonnée
de symboles. La longueur d’un mot w est le nombre de symboles constituant ce mot ; on
la note |w|. L’unique mot de longueur 0 est le mot correspondant à la suite vide. Ce mot
s’appelle le mot vide et on le note ε. L’ensemble des mots sur Σ est noté Σ∗.

Définition 1.1.3. Si σ est une lettre de l’alphabet Σ, pour tout mot w = w1 · · ·wl ∈ Σ∗,
on dénote par

|w|σ = #{i ∈ {1, . . . , l}|wi = σ}

le nombre de lettre σ apparaissant dans le mot w.

Définition 1.1.4 (préfixe). Soit w = w1 · · ·wl un mot sur Σ. Les mots

ε, w1, w1w2, . . . , w1 · · ·wl−1, w1 · · ·wl = w

sont les préfixes de w. L’ensemble des préfixes de w est noté Pref(w).

9



1.1 Mots et langages 10

Définition 1.1.5 (monoïde). Soient A un ensemble et ◦ : A×A→ A une opération binaire
interne et partout définie. L’ensemble A muni de l’opération ◦ possède une structure de
monoïde si les propriétés suivantes sont satisfaites :

— L’opération ◦ est associative :

∀x, y, z ∈ A : (x ◦ y) ◦ z = x ◦ (y ◦ z).

— Il existe un neutre unique e ∈ A tel que

∀x ∈ A : x ◦ e = e ◦ x = x.

Définition 1.1.6 (concaténation). Soit Σ un alphabet. On définit l’opération de concaté-
nation sur Σ∗ de la façon suivante. Pour tous mots u = u1 · · ·uk et v = v1 · · · vl, ui, vi ∈ Σ,
la concaténation de u et v, notée u · v ou simplement uv, est le mot

w = w1 · · ·wk+l où
{
wi = ui , 1 ≤ i ≤ k
wk+i = vi , 1 ≤ i ≤ l

Ainsi, Σ∗ muni de l’opération de concaténation est un monoïde de neutre ε. En particulier,
on définit la puissance n-ième d’un mot w comme la concaténation de n copies de w,

wn = w · · ·w︸ ︷︷ ︸
n fois

.

On pose w0 = ε.

Définition 1.1.7 (langage). Un langage sur Σ est simplement un ensemble (fini ou infini)
de mots sur Σ. En d’autres termes, un langage est une partie de Σ∗. On distingue en par-
ticulier le langage vide ∅.

Passons à présent en revue quelques opérations sur les langages. Tout d’abord, puis-
qu’un langage est un ensemble, on dispose des opérations ensemblistes usuelles comme le
complémentaire, l’union, l’intersection ou encore l’union disjointe.

Définition 1.1.8 (complémentaire). Soit L ⊆ Σ∗. Le complémentaire de L est donné par

LC = {w ∈ Σ∗|w 6∈ L}.



1.1 Mots et langages 11

Définition 1.1.9 (union). Soient L,M ⊆ Σ∗. L’union des langages L et M est donnée par

L ∪M = {w ∈ Σ∗|w ∈ L ∨ w ∈M}.

Définition 1.1.10 (intersection). Soient L,M ⊆ Σ∗. L’intersection des langages L et M
est donnée par

L ∩M = {w ∈ Σ∗|w ∈ L ∧ w ∈M}.

Définition 1.1.11 (union disjointe). Soient L,M ⊆ Σ∗. L’union disjointe des langages L
et M est donnée par

Xor(L,M) = {w ∈ Σ∗|(w ∈ L ∧ w 6∈ L′) ∨ (w 6∈ L ∧ w ∈ L′)}.

On dispose également des opérations préfine, concaténation, miroir, étoile de Kleene,
racine n-ème et quotient à droite.

Définition 1.1.12 (préfine). Soit L ⊆ Σ∗. Le préfine de L est donné par

Prefin(L) = {w = uv ∈ Σ∗|u ∈ L, v ∈ Σ∗}.

Définition 1.1.13 (concaténation). Soient L,M ⊆ Σ∗ deux langages. La concaténation
des langages L et M est le langage

L ·M = {uv|u ∈ L, v ∈M}.

En particulier, on peut définir la puissance n-ième d’un langage L, n > 0, par

Ln = {w1 · · ·wn|∀i ∈ {1, . . . , n}, wi ∈ L}

et on pose L0 = {ε}.

Notation 1.1.1. Soit n ≥ 0. L’ensemble des mots de longueur n sur Σ est Σn.



1.1 Mots et langages 12

Définition 1.1.14 (étoile de Kleene). Soit L ⊆ Σ∗. L’étoile de Kleene de L est donnée par

L∗ =
⋃
i≥0

Li.

Ainsi, les mots de Star(L) sont exactement les mots obtenus en concaténant un nombre
arbitraire de mots de L.

Définition 1.1.15 (opération miroir). L’opération miroir est définie par récurrence sur la
longueur de w de la façon suivante : si |w| = 0, alors w = ε et wR = ε, sinon |w| > 0 et
w = σu, σ ∈ Σ, u ∈ Σ∗ et wR = uRσ.

Définition 1.1.16 (miroir). Le miroir d’un langage L est

LR = {uR|u ∈ L}.

Définition 1.1.17 (racine). Pour tout n ∈ N, nous définissons la racine n-ème du langage
L par

n
√
L = {w ∈ Σ∗|wn ∈ L}.

Remarquons que 0
√
L = Σ∗ si ε ∈ L et ∅ sinon et 1

√
L = L. Par convention, on écrit √ pour

2
√.

Définition 1.1.18 (quotient à droite). Soient L,M ⊆ Σ∗. Le quotient à droite de L et M
est donné par

L ·M−1 = {u ∈ Σ∗|uv ∈ L pour un certain v ∈M}.

Définition 1.1.19 (expression régulière). Soit Σ un alphabet. Supposons que 0, e,+, ·, (, ), ∗
sont des symboles n’appartenant pas à Σ. L’ensemble RΣ des expressions régulières sur Σ
est défini récursivement par

— 0 et e appartiennent à RΣ,
— ∀σ ∈ Σ, σ appartient à RΣ,
— si φ et ψ appartiennent à RΣ, alors

— (φ+ ψ) appartient à RΣ,
— (φ · ψ) appartient à RΣ ;



1.2 Automates 13

— φ∗ appartient à RΣ.

Notation 1.1.2. Soit Q un ensemble. On note 2Q l’ensemble des parties de Q.

Remarque 1.1.1. Soit Σ un alphabet, 2Σ∗ est l’ensemble des langages sur Σ.

A une expression régulière, on associe un langage grâce à l’application

L : RΣ → 2Σ∗

par
— L(0) = ∅, L(e) = {ε},
— si σ ∈ Σ, alors L(σ) = {σ},
— si φ et ψ sont des expressions régulières,

— L(φ+ ψ) = L(φ) ∪ L(ψ),
— L(φ · ψ) = L(φ)L(ψ),
— L(φ∗) = (L(φ))∗.

Définition 1.1.20 (langage régulier). Un langage L sur Σ est régulier s’il existe une
expression régulière φ ∈ RΣ telle que

L = L(φ).

Si φ et ψ sont deux expressions régulières telles que L(φ) = L(ψ), alors on dit que φ et ψ
sont équivalentes.

1.2 Automates
Définition 1.2.1 (AFD). Un automate fini déterministe (ou AFD) est la donnée d’un
quintuple

A = (Q, q0, F,Σ, δ)

où
— Q est un ensemble fini dont les éléments sont les états de A,
— q0 ∈ Q est un état privilégié appelé état initial,
— F ⊆ Q désigne l’ensemble des états finals,
— Σ est l’alphabet de l’automate,



1.2 Automates 14

— δ : Q× Σ→ Q est la fonction de transition de A.

Notation 1.2.1. Pour tout AFD A = (Q, i, F,Σ, δ), tout état q ∈ Q et tout lettre a ∈ Σ,
δa(q) signifie δ(q, a).

Définition 1.2.2 (AFDC). Si A = (Q, q0, F,Σ, δ) est un AFD et si δ est une fonction
totale, i.e., δ est défini pour tout couple (q, σ) ∈ Q×Σ alors on dit que A est un automate
fini déterministe complet (AFDC).

Définition 1.2.3 (langage accepté). Soit A = (Q, q0, F,Σ, δ) un AFD. On étend naturel-
lement la fonction de transition δ à Q× Σ∗ de la manière suivante :

δ(q, ε) = q

et
δ(q, σw) = δ(δ(q, σ), w), σ ∈ Σ, w ∈ Σ∗.

Le langage accepté par A est alors

L(A) = {w ∈ Σ∗|δ(q0, w) ∈ F}.

Si w ∈ L(A), on dit encore que A accepte le mot w (ou que w est accepté par A).

Définition 1.2.4 (AFND). Un automate fini non déterministe (AFND) est la donnée d’un
quintuple

A = (Q, I, F,Σ,∆)

où
— Q est un ensemble fini dont les éléments sont les états de A,
— I ⊆ Q est l’ensemble des états initiaux,
— F ⊆ Q désigne l’ensemble des états finals,
— Σ est l’alphabet de l’automate,
— ∆ ⊂ Q× Σ∗ ×Q est une relation de transition.

Définition 1.2.5 (langage accepté). Un mot w = w1 · · ·wk est accepté par un AFND
A = (Q, I, F,Σ,∆) s’il existe q0 ∈ I, l ∈ N \{0}, v1, . . . , vl ∈ Σ∗, q1, . . . , ql ∈ Q tels que

(q0, v1, q1), (q1, v2, q2), . . . , (ql−1, vl, ql) ∈ ∆,

w = v1 · · · vl et ql ∈ F.
Le langage accepté par un AFND A est l’ensemble des mots acceptés par A et se note
encore L(A). Enfin, deux AFND A et B sont dits équivalents si L(A) = L(B).



1.3 Automate minimal 15

Théorème 1.2.1 (Kleene). Un langage est régulier si et seulement si il est accepté par un
automate fini déterministe.

1.3 Automate minimal
Un automate fini déterministe est minimal s’il n’existe pas d’AFD équivalent avec moins

d’états.

Définition 1.3.1. Soit L ⊆ Σ∗ un langage arbitraire. Si w est un mot sur Σ, on dénote
par w−1 · L l’ensemble des mots qui, concaténés avec w, appartiennent à L, i.e.,

w−1 · L = {u ∈ Σ∗|wu ∈ L}.

On définit une relation sur Σ∗, notée ∼L, de la manière suivante. Pour tous x, y ∈ Σ∗,

x ∼L y ⇔ x−1 · L = y−1 · L.

En d’autres termes, x ∼L y si et seulement si pour tout w ∈ Σ∗, xw ∈ L⇔ yw ∈ L.

Remarque 1.3.1. On parle souvent pour ∼L de la congruence de Nérode. On note [w]L
la classe d’équivalence du mot w pour la relation ∼L,

[w]L = {u ∈ Σ∗|u ∼L w}.

Définition 1.3.2. Dans le cas d’un automate déterministe A = (Q, q0, F,Σ, δ), par analo-
gie avec la notation w−1 ·L, on utilise la notation suivante. Si q ∈ Q est un état de A et si
G ⊆ Q est un sous-ensemble d’états, on note q−1 · G, l’ensemble des mots qui sont labels
des chemins débutant en q et aboutissant dans un état de G, i.e.,

q−1 ·G = {w ∈ Σ∗|δ(q, w) ∈ G}

On définit sur Q une relation d’équivalence comme suit : si p, q ∈ Q, alors

p ∼A q ⇔ p−1 · F = q−1 · F.



1.3 Automate minimal 16

Remarque 1.3.2. Avec la notation que nous venons d’introduire, le langage accepté par
l’automate déterministe A = (Q, q0, F,Σ, δ) est simplement

q−1
0 · F.

Définition 1.3.3 (automate minimal). On définit l’automate minimal

AL = (QL, q0,L, FL,Σ, δL)

d’un langage L ⊆ Σ∗ comme suit :
— QL = {w−1 · L|w ∈ Σ∗},
— q0,L = ε−1 · L = L,
— FL = {w−1 · L|w ∈ L} = {q ∈ QL|ε ∈ q},
— δL(q, σ) = σ−1 · q, pour tous q ∈ QL, σ ∈ Σ.

La fonction de transition de l’automate s’étend à QL × Σ∗ par

δL(q, w) = w−1 · q,∀q ∈ QL, w ∈ Σ∗.

Remarque 1.3.3. Au vu de la définition de ∼L, il est clair que l’ensemble des états de
A, {w−1 · L|w ∈ Σ∗}, est en bijection avec l’ensemble quotient {[w]L|w ∈ Σ∗}. En effet,
à chaque classe d’équivalence [w]L pour ∼L correspond un état de w−1 · L de l’automate
minimal AL et réciproquement. C’est pour cette raison que, dans la littérature, on trouve
également une définition de l’automate minimal en termes des classes d’équivalence de ∼L.
Ainsi, on aurait pu définir l’automate minimal comme suit :

— QL = {[w]L|w ∈ Σ∗}
— q0,L = [ε]L

— FL = {[w]L|w ∈ L}
— δL([w]L, σ) = [wσ]L.

Remarque 1.3.4. Pour tout AFD, il existe un unique automate minimal équivalent (à un
renommage des états près).

Définition 1.3.4 (accessible). Un automate déterministe A = (Q, q0, F,Σ, δ) est accessible
si pour tout état q ∈ Q, il existe un mot w ∈ Σ∗ tel que δ(q0, w) = q.



1.4 Opérations sur des langages et complexité en états 17

Définition 1.3.5 (réduit). Un automate déterministe A = (Q, q0, F,Σ, δ) est réduit si
pour tous p, q ∈ Q

p−1 · F = q−1 · F entraîne p = q.

En d’autres termes, un AFD est réduit, si les langages acceptés depuis deux états distincts
sont distincts ou encore si chaque classe d’équivalence pour la relation ∼A sur Q est un
singleton.

Définition 1.3.6 (distinguables, équivalents). Par définition de la relation ∼A sur Q,
l’automate est réduit si pour tout couple (p, q) d’états avec p 6= q,

p 6∼A q.

En particulier, p 6∼A q s’il existe un mot w ∈ Σ∗ tel que

δ(p, w) ∈ F et δ(q, w) 6∈ F

ou
δ(p, w) 6∈ F et δ(q, w) ∈ F.

On dit alors que les états p et q sont distinguables. Si deux états ne sont pas distinguables,
alors ils sont équivalents.

Proposition 1.3.1. Soit L ⊆ Σ∗ un langage. Un automate est minimal si et seulement si
il est accessible et réduit.

1.4 Opérations sur des langages et complexité en états
Une opération k-aire sur des langages est une application envoyant tout k-uplet de

langages définis sur le même alphabet sur un langage du même alphabet que sa préimage.
Une opération k-aire est régulière si elle envoie chaque k-uplet de langages réguliers sur un
langage régulier.

La complexité en états d’un langage régulier L, notée sc(L), est le nombre d’états de
son automate fini déterministe minimal. Cette notion s’étend aux opérations régulières. En
effet, la complexité en états d’une opération unaire régulière ⊗ est la fonction sc⊗ telle que
pour tout n ∈ N \{0}, sc⊗(n) est le maximum de toutes les complexités d’état de ⊗(L)
où L est de complexité en états n, c’est-à-dire sc⊗(n)=max{sc(⊗(L))|sc(L) = n}. Plus
généralement, la complexité en états d’une opération k-aire ⊗ est la fonction k-aire sc⊗
qui associe à tout (n1, . . . , nk)∈ (N \{0})k l’entier

sc⊗(n1, . . . , nk) = max{sc(⊗(L1, . . . , Lk))|∀i ∈ {1, . . . , k}, sc(Li) = ni}.



1.5 Morphismes 18

Il s’agit de la complexité d’états dans le pire cas.

Par exemple, la complexité en états de l’union de deux langages réguliers qui ont
des complexités en états égales respectivement à m et n vaut m · n. Autrement dit,
sc∪(m,n) = m · n. Cela signifie que pour toute paire de langages réguliers avec les com-
plexités en états m et n, leur union est acceptée par un AFD minimal possédant au plus
m · n états.

Remarque 1.4.1. Pour information, un tableau reprenant les complexités en états d’opé-
rations basiques sur des langages réguliers se trouve dans [6].

Un témoin pour ⊗ est une façon d’assigner à chaque (n1, . . . , nk), (supposé suffisam-
ment grand) un k-uplet de langages (L1, . . . , Lk) sur les mêmes alphabets avec sc(Li) =
ni∀i ∈ {1, . . . , k}, tel que sc⊗(n1, . . . , nk) = sc(⊗(L1, . . . , Lk)).

Par exemple, un témoin pour l’union de deux langages réguliers est une paire de lan-
gages réguliers avec les complexités en états m et n tel que leur union est acceptée par un
AFD minimal à exactement m · n états.

1.5 Morphismes
Définition 1.5.1. Soient Σ et Γ deux alphabets. Un morphisme est une fonction φ de Σ∗

dans Γ∗ telle que, pour tous w, v ∈ Σ∗, φ(wv) = φ(w)φ(v).

Remarquons que φ est complètement défini par sa valeur sur les lettres car φ(ε) = ε.

Un morphisme φ de Σ∗ dans Γ∗ est dit 1-uniforme si φ(a) ∈ Γ ∀a ∈ Σ. Ainsi, φ est
1-uniforme si l’image par φ de toute lettre est une lettre. En d’autres mots, un morphisme
1-uniforme est un renommage (pas nécessairement injectif) des lettres.

Proposition 1.5.1. Soit L un langage régulier sur l’alphabet Σ accepté par l’AFD
A = (Σ, Q, i, F, δ) et soit φ un morphisme 1-uniforme de Γ∗ dans Σ∗. Alors φ−1(L) est
le langage régulier accepté par l’AFD B = (Γ, Q, i, F, δ′) où, pour tous a ∈ Γ et q ∈ Q,
δ′(q, a) = δ(q, φ(a)).

Démonstration. Un mot w est accepté par B si et seulement si δ′w(i) ∈ F . On a
δ′w(q) = δ(q, φ(w)) par induction. Ainsi, un mot w est accepté par B si et seulement si
δφ(w)(i) ∈ F . Cependant, pour tout mot v, δv(i) ∈ F si et seulement si v est accepté par
A. On obtient que le mot w est accepté par B si et seulement si φ(w) est accepté par A.
Au final, L(B) = φ−1(L(A)).



1.6 Transformations finies 19

Ainsi, remarquons qu’on a

Proposition 1.5.2. Soit L un langage régulier et φ un morphisme 1-uniforme. On a

sc(φ−1(L)) ≤ sc(L).

1.6 Transformations finies
Notation 1.6.1. Pour tout entier n, nous écrivons JnK pour {0, . . . , n− 1}.

Définition 1.6.1 (transformation). Soit n un entier. Une transformation t est un élément
de JnKJnK. Nous écrivons it l’image de i sous t. Une transformation de JnK peut être repré-
sentée par t = [i0, i1, . . . , in−1] avec ik = kt pour chaque k ∈ JnK et ik ∈ JnK.

Définition 1.6.2 (permutation). Soit n un entier. Une permutation est une transforma-
tion bijective sur JnK. La permutation identité est notée Id.

Définition 1.6.3 (cycle). Soit n un entier. Un cycle de longueur l ≤ n, noté (i0, i1, . . . , il−1),
est une permutation c sur un sous-ensemble I = {i0, . . . , il−1} de JnK où ikc = ik+1 pour
0 ≤ k < l − 1 et il−1c = i0.

Définition 1.6.4 (transposition). Soit n un entier. Une transposition t = (i, j) est une
permutation sur JnK où it = j et jt = i et pour tous les éléments k ∈ JnK\{i, j}, kt = k.

Définition 1.6.5 (contraction). Soit n un entier. Une contraction t = (ij) est une trans-
formation où it = j et pour tous les éléments k ∈ JnK\{i}, kt = k.

1.7 Notation pratique
Pour tout caractère X et tout entier k donné par le contexte, nous écrivons X pour

(X1, . . . , Xk).



Chapitre 2

Opérations 1-uniformes et modificateurs

Nous allons décrire une classe d’opérations régulières, appelées 1-uniformes qui sont
intéressantes pour l’étude de la complexité en états. L’intérêt de ces opérations est que à
chacune d’entre elles correspond une construction sur des automates finis déterministes.
Ainsi, nous allons définir des algorithmes sur des AFDs appelés modificateurs, qui nous
permettront de calculer la complexité en états d’opérations 1-uniformes. Pour finir, nous
décrirons un sous-ensemble de ces modificateurs qui correspond à l’ensemble des opérations
régulières 1-uniformes.

2.1 Opérations 1-uniformes
Nous allons définir les opérations 1-uniformes et en donner des exemples. Nous présen-

terons aussi un exemple d’opération qui n’est pas 1-uniforme. Enfin, nous verrons que ces
opérations sont stables par composition. Le lecteur intéressé peut trouver les preuves de la
1-uniformité de beaucoup d’opérations telles que le miroir et la concaténation dans l’article
[5].

2.1.1 Définition

Définition 2.1.1 (1-uniforme). Une opération k-aire ⊗ est 1-uniforme si elle est régulière
et si elle commute avec l’inverse de chaque morphisme 1-uniforme, c’est-à-dire, pour tout
k-uplet de langages réguliers (L1, .., Lk) et tout morphisme 1-uniforme φ,

⊗(φ−1(L1), . . . , φ−1(Lk)) = φ−1(⊗(L1, . . . , Lk)).

Par exemple, l’étoile de Kleene et l’union sont des opérations 1-uniformes.

Proposition 2.1.1. L’étoile de Kleene est 1-uniforme.

20



2.1 Opérations 1-uniformes 21

Démonstration. Soient Σ et Γ deux alphabets. Soit L un langage régulier sur Σ, et soit φ
un morphisme 1-uniforme de Γ∗ dans Σ∗.

— Prouvons d’abord que (φ−1(L))∗ ⊆ φ−1(L∗). Soit v un mot dans (φ−1(L))∗. Il existe
alors un entier n et n mots de φ−1(L) u1, . . . , un tels que v = u1 · · ·un. De plus, il
existe n mots de L, t1, . . . , tn tels que φ(ui) = ti, pour tout i ∈ {1, . . . , n}. On obtient
φ(v) = w avec w = t1 · · · tn et donc v ∈ φ−1(L∗).

— Maintenant, montrons que φ−1(L∗) ⊆ (φ−1(L))∗. Soit v un mot de φ−1(L∗). Il existe
un entier n et n mots de L t1, . . . , tn tels que φ(v) = w, avec w = t1 · · · tn. Comme φ
est 1-uniforme, φ(v) = φ(v1) · · ·φ(v|v|), et chaque φ(vj) est une lettre de Σ. Ainsi, v
et w ont la même longueur, et φ(vj) = wj, pour tout j ∈ {1, . . . , |v|}. Par conséquent,
pour tout i ∈ {1, . . . , n}, si ui = v|t1|+|t2|···+|ti−1|+1 · · · v|t1|+|t2|···+|ti|, on a φ(ui) = ti et
v = u1 · · ·un. On a donc v ∈ (φ−1(L))∗.

Proposition 2.1.2. L’union est 1-uniforme.

Démonstration. Soient E et F deux ensembles. On sait que pour toute fonction φ de E
dans F ,

φ−1(X ∪ Y ) = φ−1(X) ∪ φ−1(Y ), pour tous X, Y ⊆ F

En effet, on a

x ∈ φ−1(X ∪ Y )

⇔φ(x) ∈ X ∪ Y
⇔φ(x) ∈ X ou φ(x) ∈ Y
⇔x ∈ φ−1(X) ou x ∈ φ−1(Y )

⇔x ∈ φ−1(X) ∪ φ−1(Y )

Ainsi, il suffit d’appliquer ce résultat au cas particulier : E = Γ∗ et F = Σ∗ où Σ et Γ sont
deux alphabets, et φ est un morphisme 1-uniforme de Γ∗ dans Σ∗.

2.1.2 Opérations non uniformes

Beaucoup d’autres opérations unaires régulières connues sont 1-uniformes. Par contre,
le quotient à droite est un exemple d’opération régulière qui n’est pas 1-uniforme.

Exemple 2.1.1. Soient L1, L2 deux langages réguliers. L’opération (L1, L2) = L1 ·L−1
2 est

régulière mais pas 1-uniforme.



2.1 Opérations 1-uniformes 22

Commençons par montrer qu’elle est régulière.
Soit A l’AFD acceptant L1. Nous allons construire un AFD B qui accepte L1.L

−1
2 . Cet

automate sera identique à A sauf qu’il aura des états finaux différents. Pour chaque état
qi de A, nous allons déterminer de la façon suivante s’il s’agit d’un état final de B :

— On construit Ci l’AFD égal à A sauf que l’état qi est l’état initial.
— On construit l’AFD Di qui accepte l’intersection de L2 et du langage accepté par Ci.
— Si Di reconnait un mot quelconque alors qi doit être marqué comme final dans B.
Il faut reproduire ce processus pour chaque état de A.

Finalement, comme on a construit un AFD qui accepte L1·L−1
2 , ce langage est donc régulier.

Maintenant, montrons que cette opération n’est pas 1-uniforme, soient
— Γ = Σ = {a, b} ;
— φ le morphisme 1-uniforme de Γ∗ dans Σ∗ tel que φ(a) = φ(b) = a ;
— L1 = {ab} ;
— L2 = {b}.

On obtient φ−1(L1) = φ−1(L2) = ∅ et donc φ−1(L1) · (φ−1(L2))−1 = ∅. Cependant, on a
L1 · L−1

2 = {a}, et φ−1(L1 · L−1
2 ) = φ−1({a}) = {a, b}. On a alors

φ−1(L1) · φ−1(L2)−1 6= φ−1(L1 · L−1
2 ), ainsi le quotient à droite n’est pas 1-uniforme.

2.1.3 Composition d’opérations 1-uniformes

Remarquons que la 1-uniformité est stable par composition.

Définition 2.1.2 (Composition d’opérations). Soient ⊗ et ⊕ deux opérations 1-uniformes,
respectivement j-aire et k-aire. Pour tout entier p tel que 1 ≤ p ≤ j, la composition de ces
opérations est définie par l’opérateur (j + k − 1)-aire

⊗ ◦p ⊕(L1, . . . , Lj+k−1) = ⊗(L1, . . . , Lp−1,⊕(Lp, . . . , Lp+k−1), Lp+k, . . . , Lj+k−1)

Exemple 2.1.2. Soient ⊗ et ⊕ deux opérations respectivement 3-aire et 2-aire, on a

⊗ ◦1 ⊕(L1, . . . , L4) = ⊗(⊕(L1, L2), L3, L4)

⊗ ◦2 ⊕(L1, . . . , L4) = ⊗(L1,⊕(L2, L3), L4)

⊗ ◦3 ⊕(L1, . . . , L4) = ⊗(L1, L2,⊕(L3, L4))



2.2 Modificateurs 23

Proposition 2.1.3. Soient ⊗ et ⊕ deux opérations 1-uniformes, respectivement j-aire et
k-aire. Pour tout entier p tel que 1 ≤ p ≤ j, l’opérateur (j + k − 1)-aire

⊗ ◦p ⊕(L1, . . . , Lj+k−1) = ⊗(L1, . . . , Lp−1,⊕(Lp, . . . , Lp+k−1), Lp+k, . . . , Lj+k−1)

est 1-uniforme.

Démonstration. Soient⊗ et⊕ deux opérations 1-uniformes, respectivement j-aire et k-aire,
p un entier tel que 1 ≤ p ≤ j, L1, . . . , Lj+k−1 des langages réguliers et φ un morphisme
1-uniforme. On a

⊗ ◦p ⊕ (φ−1(L1), . . . , φ−1(Lj+k−1))

=⊗ (φ−1(L1), . . . , φ−1(Lp−1),⊕(φ−1(Lp), . . . , φ
−1(Lp+k−1)), φ−1(Lp+k), . . . , φ

−1(Lj+k−1))

=⊗ (φ−1(L1), . . . , φ−1(Lp−1), φ−1(⊕(Lp, . . . , Lp+k−1)), φ−1(Lp+k), . . . , φ
−1(Lj+k−1))

car ⊕ est 1-uniforme
=φ−1(⊗(L1, . . . , Lp−1,⊕(Lp, . . . , Lp+k−1), Lp+k, . . . , Lj+k−1)) car ⊗ est 1-uniforme
=φ−1(⊗ ◦p ⊕(L1, . . . , Lj+k−1))

2.2 Modificateurs
La définition de la complexité en états d’opérations régulières découle directement de

celle de la complexité en états de langage. De plus, la définition de la complexité en états
de langage implique directement la notion d’automate fini déterministe minimal. Une façon
facile pour calculer l’AFD minimal associé à un langage est de d’abord donner un AFD
qui reconnait ce langage, et après minimiser cet automate. On peut donc calculer la com-
plexité en états d’opérations régulières en faisant des calculs directement sur des AFDs.
Ainsi, pour prouver des résultats sur la complexité en états pour les opérations 1-uniformes,
il est pratique de lier ces opérations sur des langages avec des opérations agissant directe-
ment sur des AFDs appelées modificateurs. En fait, un k-modificateur est un algorithme
prenant comme entrées k automates et en produisant un. Beaucoup d’opérations régulières
peuvent être décrites par ce mécanisme. On les appelle des opérations descriptibles.

2.2.1 Définition

Définition 2.2.1 (configuration d’état). La configuration d’état d’un AFDA = (Σ, Q, i, F, δ)
est le triplet (Q, i, F ).



2.2 Modificateurs 24

Définition 2.2.2 (modificateur). Un k-modificateur est une opération k-aire agissant sur
un k-uplet d’automates finis déterministes (A1, . . . , Ak) définis sur le même alphabet Σ et
produisant un automate fini déterministe m(A1, . . . , Ak) tel que

— son alphabet est Σ

— sa configuration d’état dépend seulement des configurations d’état de A1, . . . , Ak

— pour tout a ∈ Σ, la fonction de transition de a dans m(A1, . . . , Ak) dépend seulement
des configurations d’état de A1, . . . , Ak et des fonctions de transition de a dans cha-
cun des AFDs A1, . . . , Ak.

Plus formellement, tout k-modificateur m peut être vu comme un 4-uplet de relations
(Q, i, f, ρ) agissant sur k automates finis déterministes A avec Aj = (Σ, Qj, ij, Fj, δj)
afin de construire un automate fini déterministe mA=(Σ, Q, i, F, δ) où Q=QQ, i=i(Q,i,F),
F=f(Q,i,F), et ∀a ∈ Σ, δa = ρ(i, F , δa).

2.2.2 Composition de modificateurs

Nous allons définir la composition de modificateurs et nous allons montrer que la com-
position de deux modificateurs est encore un modificateur.

Définition 2.2.3 (Composition de modificateurs). Soient m1 un k1-modificateur, m2 un
k2-modificateur et 1 ≤ j ≤ k1. Leur composition est définie par

m1 ◦j m2(A1, . . . , Ak1+k2−1) = m1(A1, . . . , Aj−1,m2(Aj, . . . , Aj+k2−1), Aj+k2 , . . . , Ak1+k2−1).

Proposition 2.2.1. Soient m1 et m2 deux modificateurs. La composition m1 ◦j m2 est
aussi un modificateur.

Démonstration. Soientm1 = (Q(1), i(1), f(1), ρ(1)) un modificateur k1-aire etm2 = (Q(2), i(2), f(2), ρ(2))
un modificateur k2-aire. Posons
Q? = (Q1, . . . , Qj−1, Q(2)(Qj, . . . , Qj+k2−1), Qj+k2 , . . . , Qk1+k2−1)

i? = (i1, . . . , ij−1, i(2)((Qj, . . . , Qj+k2−1), (ij, . . . , jj+k2−1), (Fj, . . . , Fj+k2−1)), ij+k2 , . . . , ik1+k2−1)
F ? = (F1, . . . , Fj−1, f(2)((Qj, . . . , Qj+k2−1), (ij, . . . , jj+k2−1), (Fj, . . . , Fj+k2−1)), Fj+k2 , . . . , Fk1+k2−1)
δ? = (δa1 , . . . , δ

a
j−1, ρ

(2)((ij, . . . , ij+k2−1), (Fj, . . . , Fj+k2−1), (δaj , . . . , δ
a
j+k2−1)), δaj+k2 , . . . , δ

a
k1+k2−1)

On définit le modificateur (k1 + k2 − 1)-aire (Q, i, f, ρ) par
QQ = Q(1)Q?, i(Q, i, F ) = i(1)(Q?, i?, F ?), f(Q, i, F ) = f(1)(Q?, i?, F ?), ρ(i, F , δa) = ρ(1)(i?, F ?, δ?).

Il est clair que (Q, i, f, ρ) agit sur des automates comme m1 ◦j m2.



2.3 Modificateurs particuliers 25

2.3 Modificateurs particuliers
Michel Rigo présente la stabilité des langages acceptés par automate dans "Théorie des

automates et langages formels". Par exemple, il démontre que si L et M sont des langages
acceptés par deux automates finis, alors L ∪M est aussi accepté par un automate fini.
Ici, nous allons présenter de manière concrète comment construire l’automate qui accepte
L ∪ M en appliquant le modificateur union à L et M . Ainsi, nous allons présenter des
constructions classiques : le complémentaire, l’union, l’intersection, le xor, la concaténa-
tion, l’étoile de Kleene, le préfine, le miroir et la racine.

Des exemples supplémentaires d’application de ces modificateurs sont donnés dans l’an-
nexe A afin de mieux visualiser leur effet.

Définition 2.3.1 (Le modificateur complémentaire). Soit A1 = (Σ, Q1, i1, F1, δ1) un auto-
mate fini déterministe. Notons le modificateur complémentaire Comp=(Q,i,f,ρ) et définis-
sons le par :

— Q(Q1) = Q1

— i(Q1, i1, F1) = i1

— f(Q1, i1, F1) = Q1\F1

— ρ(i1, F1, δ
a
1) = δa1

Exemple 2.3.1 (modificateur complémentaire). Soit A1 = (Σ, Q1, i1, F1, δ1) un AFD re-
présenté à la Figure 2.1 qui est tel que Σ = {a, b}, Q1 = {0, 1}, i1 = 0, F1 = {0}. Remar-
quons que le langage accepté par A1 est ((a+ b)b∗a)∗.

0start 1

a,b
b

a

Figure 2.1 – Automate A1

En appliquant le modificateur complémentaire à cet automate, nous obtenons l’auto-
mate Comp(A1) représenté à la Figure 2.2. En effet, on a

— Q(Q1) = Q1 = {0, 1}
— i(Q1, i1, F1) = i1 = 0

— f(Q1, i1, F1) = Q1\F1 = {1}



2.3 Modificateurs particuliers 26

— ρ(i1, F1, δ
a
1) = δa1

Le langage accepté par Comp(A1) est (a+ b)b∗(a(a+ b)b∗)∗.

0start 1

a,b
b

a

Figure 2.2 – Automate Comp(A1)

Définition 2.3.2 (Le modificateur union). SoientA1 = (Σ, Q1, i1, F1, δ1) etA2 = (Σ, Q2, i2, F2, δ2)
deux automates finis déterministes. Notons le modificateur union Union=(Q,i,f,ρ) et dé-
finissons le par :

— Q(Q1, Q2) = Q1 ×Q2

— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2)

— f((Q1, Q2), (i1, i2), (F1, F2)) = (F1 ×Q2) ∪ (Q1 × F2)

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)

Exemple 2.3.2. Soit A1 = (Σ, Q1, i1, F1, δ1) et A2 = (Σ, Q2, i2, F2, δ2) deux AFDs re-
présentés aux Figures 2.3 et 2.4 qui sont tels que Σ = {a, b}, Q1 = {0, 1}, i1 = 0, F1 =
{1} et Q2 = {0, 1}, i2 = 0, F2 = {1}. Remarquons que le langage accepté par A1 est
(a+ b)b∗(a(a+ b)b∗)∗ et celui accepté par A2 est b∗aa∗(bb∗aa∗)∗.

0start 1

a,b
b

a

Figure 2.3 – AFD A1

0start 1

a
b a

b

Figure 2.4 – AFD A2

En appliquant le modificateur union à ces automates, nous obtenons l’automate Union(A1, A2)
représenté à la Figure 2.5. En effet, on a

— Q(Q1, Q2) = Q1 ×Q2 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}
— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2) = (0, 0)



2.3 Modificateurs particuliers 27

— f((Q1, Q2), (i1, i2), (F1, F2)) = (F1 ×Q2) ∪ (Q1 × F2)
= ({1} × {0, 1}) ∪ ({0, 1} × {1})
= {(1, 0), (1, 1)} ∪ {(0, 1), (1, 1)}
= {(0, 1), (1, 0), (1, 1)}

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)

Le langage accepté par Union(A1, A2) est (a+ b)(a∗b∗)∗.

(0,0)start (1,0)

(1,1) (0,1)

b

a a

b

a

b

a

b

Figure 2.5 – Automate Union(A1, A2)

Définition 2.3.3 (Le modificateur intersection). Soient A1 = (Σ, Q1, i1, F1, δ1) et A2 =
(Σ, Q2, i2, F2, δ2) deux automates finis déterministes. Notons le modificateur intersection
Inter=(Q,i,f,ρ) et définissons le par :

— Q(Q1, Q2) = Q1 ×Q2

— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2)

— f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × F2

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)

Définition 2.3.4 (Le modificateur xor). SoientA1 = (Σ, Q1, i1, F1, δ1) etA2 = (Σ, Q2, i2, F2, δ2)
deux automates finis déterministes. Notons le modificateur xor Xor=(Q,i,f,ρ) et définis-
sons le par :

— Q(Q1, Q2) = Q1 ×Q2

— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2)

— f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × (Q2\F2) ∪ (Q1\F1)× F2

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)



2.3 Modificateurs particuliers 28

Définition 2.3.5 (Le modificateur concaténation). Soient A1 = (Σ, Q1, i1, F1, δ1) et A2 =
(Σ, Q2, i2, F2, δ2) deux automates finis déterministes. Notons le modificateur concaténation
Conc=(Q,i,f,ρ) et définissons le par :

— Q(Q1, Q2) = Q1 × 2Q2

— i((Q1, Q2), (i1, i2), (F1, F2)) =

{
(i1, ∅) si i1 6∈ F1

(i1, {i2}) si i1 ∈ F1

— f((Q1, Q2), (i1, i2), (F1, F2)) = {(q1, E) ∈ Q1 × 2Q2|E ∩ F2 6= ∅}
— pour tout (q1, E) ∈ Q1 × 2Q2 ,

ρ((i1, i2), (F1, F2), (δa1 , δ
a
2))(q1, E) =

{
(δa1(q1), δa2(E)) si δa1(q1) 6∈ F1

(δa1(q1), δa2(E) ∪ {i2}) si δa1(q1) ∈ F1

Définition 2.3.6 (Le modificateur étoile). Soit A1 = (Σ, Q1, i1, F1, δ1) un automate fini
déterministe. Notons le modificateur étoile Star=(Q,i,f,ρ) et définissons le par :

— Q(Q1) = 2Q1

— i(Q1, i1, F1) = ∅
— f(Q1, i1, F1) = {E|E ∩ F1 6= ∅} ∪ {∅}

— ρ(i1, F1, δ
a
1)(E) =


{δa1(i)} si E = ∅ et δa1(i) 6∈ F
{δa1(i), i} si E = ∅ et δa1(i) ∈ F
δa1(E) si E 6= ∅ et δa1(E) ∩ F = ∅
δa1(E) ∪ {i} si E 6= ∅ et δa1(E) ∩ F 6= ∅

Exemple 2.3.3. Soit A1 = (Σ, Q1, i1, F1, δ1) un AFD représenté à la Figure 2.6 qui est tel
que Σ = {a, b}, Q1 = {0, 1}, i1 = 0, F1 = {1}. Remarquons que le langage accepté par cet
automate est

b∗aa∗(bb∗aa∗)∗.

0start 1

a
b b

a

Figure 2.6 – Automate A1

En appliquant le modificateur étoile à cet automate, nous obtenons l’automate Star(A1)
représenté à la Figure 2.7. En effet, on a

— Q(Q1) = 2Q1 = 2{0,1} = {∅, {0}, {1}, {0, 1}}



2.3 Modificateurs particuliers 29

— i(Q1, i1, F1) = ∅
— f(Q1, i1, F1) = {E|E ∩ F1 6= ∅} ∪ ∅ = {{1}, {0, 1}} ∪ ∅ = {∅, {1}, {0, 1}}
— On a par exemple :

— ρ(i1, F1, δ
a
1)(∅) = {δa1(0), 0} = {0, 1} car δa1(0) ∈ F1

— ρ(i1, F1, δ
b
1)(∅) = {δb1(0)} = {0} car δb1(0) 6∈ F1

— ρ(i1, F1, δ
a
1)({1}) = δa1({1}) = {0} car δa1({1}) ∩ F1 = ∅

— · · ·

∅start {0}

{0, 1} {1}

b

a
a

b

b

a

a,b

Figure 2.7 – Automate Star(A1)

En retirant l’état inutile, Star(A1) se représente tel qu’à la Figure 2.8. Le langage
accepté par cet automate est

ε+ a(a+ b)∗ + bb∗a(a+ b)∗.

Définition 2.3.7 (Le modificateur préfine). Soit A1 = (Σ, Q1, i1, F1, δ1) un automate fini
déterministe. Notons le modificateur préfine Prefin=(Q,i,f,ρ) et définissons le par :

— Q(Q1) = Q1

— i(Q1, i1, F1) = i1

— f(Q1, i1, F1) = F1



2.3 Modificateurs particuliers 30

∅start {0}

{0, 1}

b

a
a

b

a,b

Figure 2.8 – Automate Star(A1) simplifié

— ρ(i1, F1, δ
a
1) = q →

{
δa1(q) si q 6∈ F1

q sinon.

Définition 2.3.8 (Le modificateur miroir). Soit A1 = (Σ, Q1, i1, F1, δ1) un automate fini
déterministe. Notons le modificateur miroir Rev=(Q,i,f,ρ) et définissons le par :

— Q(Q1) = 2Q1

— i(Q1, i1, F1) = F1

— f(Q1, i1, F1) = {E ⊂ Q1|i1 ∈ E}
— ρ(i1, F1, δ

a
1) = E →

⋃
q∈E{q′|δa1(q′) = q}

Exemple 2.3.4 (modificateur miroir). Soit A1 = (Σ, Q1, i1, F1, δ1) un AFD représenté à
la Figure 2.9 qui est tel que Σ = {a, b, c, d}, Q1 = {0, 1}, i1 = 0, F1 = {1}.

0start 1

a,c
b,d

a,b

c,d

Figure 2.9 – Automate A1

En appliquant le modificateur miroir à cet automate, nous obtenons l’automate Rev(A1)
représenté à la Figure 2.10.

En effet, on a



2.3 Modificateurs particuliers 31

{1}start

{0,1}

{0}

∅

a
b

d

c

a,b,c,d

a
c

b

d

a,b,c,d

Figure 2.10 – Automate Rev(A1)

— Q(Q1) = 2Q1 = {∅, {0}, {1}, {0, 1}}
— i(Q1, i1, F1) = F1 = {1}
— f(Q1, i1, F1) = {E ⊂ Q1|i1 ∈ E} = {E ⊂ Q1|0 ∈ E} = {{0}, {0, 1}}
— ρ(i1, F1, δ

a
1) = E →

⋃
q∈E{q′|δa1(q′) = q} et par exemple, on a bien

— ρ(i1, F1, δ
a
1)({1}) =

⋃
q∈{1}{q′|δa1(q′) = q} = {1} car δa1(1) = 1

— ρ(i1, F1, δ
b
1)({1}) =

⋃
q∈{1}{q′|δb1(q′) = q} = {0, 1} car δb1(0) = 1 et δb1(1) = 1

— ρ(i1, F1, δ
c
1)({1}) =

⋃
q∈{1}{q′|δc1(q′) = q} = ∅ car 6 ∃q′ : δc1(q′) = 1

— ρ(i1, F1, δ
d
1)({1}) =

⋃
q∈{1}{q′|δd1(q′) = q} = {0} car δd1(0) = 1

Définition 2.3.9 (Le modificateur racine). Soit A1 = (Σ, Q1, i1, F1, δ1) un automate fini
déterministe. Notons le modificateur racine SRoot=(Q,i,f,ρ) et définissons le par :

— Q(Q1) = QQ1

1

— i(Q1, i1, F1) = Id

— f(Q1, i1, F1) = {g|g2(i1) ∈ F1}
— ρ(i1, F1, δ

a
1) = g → (δa1 ◦ g)

Définition 2.3.10 (Le modificateur racine k-ème). Soit A1 = (Σ, Q1, i1, F1, δ1) un auto-
mate fini déterministe. Notons le modificateur racine k-ème SRootk=(Q,i,f,ρ) et définis-
sons le par :

— Q(Q1) = QQ1

1



2.4 Opérations descriptibles 32

— i(Q1, i1, F1) = Id

— f(Q1, i1, F1) = {g|gk(i1) ∈ F1}
— ρ(i1, F1, δ

a
1) = g → (δa1 ◦ g)

2.4 Opérations descriptibles
Dans cette section, nous allons définir les opérations descriptibles qui sont en fait des

opérations régulières décrites par un modificateur. Nous donnerons des exemples d’opéra-
tions descriptibles et de non descriptibles. Ensuite, on prouvera qu’il existe un modificateur
pour la composition d’opérations descriptibles.

2.4.1 Définition

Définition 2.4.1 (opération descriptible). Soit une opération ⊗ agissant sur des
k-uplets de langages définis sur le même alphabet. L’opération ⊗ est dite descriptible
(m-descriptible) s’il existe un k-modificateur m tel que pour tout k-uplet d’automates finis
déterministes complets A, on a ⊗(L(A1), . . . , L(Ak)) = L(mA).

Exemple 2.4.1. L’opération racine k-ème est descriptible. En effet, il suffit de montrer
que k

√
L(A) = L(SRootk(A)).

Soient A = (Σ, Q, i, F, δ) un AFD, SRootk(A) = (Σ, Q′, i′, F ′, δ′) et w un mot de Σ∗. Le
mot wk est accepté par A si et seulement si δwk

(i) ∈ F . Cependant, on a

δw
k

= δw ◦ · · · ◦ δw = (δw)k

Par conséquent, wk ∈ L(A) si et seulement si δw ∈ F ′. Mais, δ′w(i′) = δw ◦ Id = δw. On
obtient alors wk ∈ L(A) si et seulement si δ′w(i′) ∈ F ′. On a bien k

√
L(A) = L(SRootk(A)).

Exemple 2.4.2. L’opération intersection est descriptible. En effet, pour tous AFDs A1, A2,
on a L(A1) ∩ L(A2) = L(Inter(A1, A2)).

Soient A1, A2 deux AFDs avec A1 = (Σ, Q1, i1, F1, δ1) et A2 = (Σ, Q2, i2, F2, δ2), soit
w = a1 · · · an un mot dans Σ∗ et soit Inter(A1, A2)=(Σ, Q, i, F, δ). Le mot w est dans
L(A1) ∩ L(A2) si et seulement si δw1 (i1) ∈ F1 ∧ δw2 (i2) ∈ F2. Par induction, on a



2.4 Opérations descriptibles 33

δw(i1, i2) = (δw1 (i1), δw2 (i2)) vu la définition de Inter. Ainsi, w ∈ L(A1)∩L(A2) si et seule-
ment si δw(i1, i2) ∈ F . Comme (i1, i2) = i, w est dans L(A1) ∩ L(A2) si et seulement si w
est dans L(Inter(A1, A2)).

Remarque 2.4.1. Nous avons défini le modificateur de certaines opérations habituelles
sur les langages telles que Comp, Union, Star, etc. Ainsi, toutes ces opérations sont des-
criptibles.

2.4.2 Opérations non descriptibles

Nous allons montrer qu’il existe des opérations non descriptibles.

Considérons trois alphabets X,X ′ et Y tels que X ∩X ′ = ∅, une bijection ϕ : X → Y ,
étendue comme un isomorphisme de monoïdes de X∗ dans Y ∗, et

η : 2(X∪X′)∗ → 2Y
∗

: L 7→ η(L) = ϕ(L ∩X∗).

Proposition 2.4.1. Si A = (X ∪ X ′, Q, i, F, δ) est un automate fini déterministe qui
reconnait un langage L, alors η(L) est un langage régulier accepté par (Y,Q, i, F, δ1) où
δy1 = δϕ

−1(y) pour tout y ∈ Y .

Exemple 2.4.3. Supposons queX = {a, b}, X ′ = {c}, Y = {e, f} et ϕ est tel que ϕ(a) = e,
ϕ(b) = f . Soit A = ({a, b, c}, Q, i, F, δ) l’AFD représenté à la Figure 2.11 qui reconnait le
langage

L = a∗(b+ c){a, b, c}∗,

alors

η(L) = ϕ(L ∩X∗)
= ϕ(a∗(b+ c){a, b, c}∗ ∩ {a, b}∗)
= ϕ(a∗b{a, b}∗)
= e∗f{e, f}∗

est un langage régulier reconnu par B = ({e, f}, Q, i, F, δ1) représenté à la Figure 2.12. En
effet, on a

— δe1(0) = δϕ
−1(e)(0) = δa(0) = 0

— δf1 (0) = δϕ
−1(f)(0) = δb(0) = 1



2.4 Opérations descriptibles 34

0start 1

a

b,c

a,b,c

Figure 2.11 – Automate A

0start 1

e

f

e,f

Figure 2.12 – Automate B

— δe1(1) = δϕ
−1(e)(1) = δa(1) = 1

— δf1 (1) = δϕ
−1(f)(1) = δb(1) = 1

Proposition 2.4.2. Soit ⊗ une opération k-aire descriptible. Pour tout L ∈ (2(X∪X′)∗)k

où les Li sont réguliers, nous avons

⊗(η(L1), . . . , η(Lk)) = η(⊗L).

Démonstration. Soit A, un k-uplet d’automates finis déterministes complets avec
Aj = (X ∪X ′, Qj, ij, Fj, δj) tel que L(Aj)=Lj.

Vu que l’opération ⊗ est descriptible, il existe un modificateur m = (Q,i,f, ρ) tel que
L(mA) = ⊗L. On a mA = (X ∪X ′, QQ, i(Q, i, F ), f(Q, i, F ), δ) avec δa = ρ(i, F , δa). Par
la proposition 2.4.1, le langage η(⊗L) est reconnaissable par l’automate fini déterministe
complet Aa = (Y, QQ, i(Q, i, F ), f(Q, i, F ), δa) avec δaa = δϕ

−1(a) = ρ(i, F , δϕ
−1(a)).

Soit A� un k-uplet d’AFDCs tels que A�j=(Y,Qj,ij,Fj,δ�j) avec δa�j=δ
ϕ−1(a)
j . On obtient

queA�j reconnait η(Lj) par la proposition 2.4.1. Vu que⊗ est descriptible,mA�=(Y, QQ, i(Q, i, F ), f(Q, i, F ), δ�)

avec δa� = ρ(i, F , δa�) = ρ(i, F , δϕ
−1(a)) = δaa ce qui termine la preuve.

Corollaire 2.4.1. Soit ⊗ une opération k-aire descriptible et Y un alphabet. Soit L un
k-uplet de langages réguliers sur Y . Alors
— Si X ⊂ Y alors ⊗(L1 ∩X∗, . . . , Lk ∩X∗) = ⊗L∩X∗



2.4 Opérations descriptibles 35

— Pour toute bijection σ : Y →Y étendue comme un automorphisme de monoïdes, on
a ⊗(σ(L1), . . . , σ(Lk)) = σ(⊗L).

Grâce à ce résultat, nous pouvons construire des exemples d’opérations non descrip-
tibles.

Exemple 2.4.4. Considérons l’opération quotient à droite

⊗(L1, L2) = L1 · L−1
2 = {u|uv ∈ L1 pour un v ∈ L2}.

Nous obtenons que cette opération n’est pas descriptible car elle ne respecte pas la première
condition du Corollaire 2.4.1.
Par exemple, prenons Y = {a, b, c}, L1 = {abc} et L2 = {c}. Nous avons

⊗(L1 ∩ {a, b}∗, L2 ∩ {a, b}∗) = ⊗({abc} ∩ {a, b}∗, {c} ∩ {a, b}∗) = ⊗(∅, ∅) = ∅∅−1 = ∅

alors que

⊗(L1, L2) ∩ {a, b}∗ = ⊗({abc}, {c}) ∩ {a, b}∗ = {ab} ∩ {a, b}∗ = {ab}.

Exemple 2.4.5. Considérons l’opération unaire définie par

⊗(L) =

{
L\{a} si les mots a et a2 appartiennent à L
L sinon.

Cette opération satisfait la première condition du Corollaire 2.4.1 mais elle ne respecte pas
la seconde.
Par exemple, si Y = {a, b} et σ est tel que σ(a) = b alors

σ(⊗({a, a2})) = σ({a, a2}\{a})
= σ({a2})
= {b2}

car a et a2 appartiennent à {a, a2}. Par contre, on a

⊗({σ(a), σ(a2)}) = ⊗({b, b2})
= {b, b2}

car a et a2 n’appartiennent pas à {b, b2}. Donc elle n’est pas descriptible.



2.4 Opérations descriptibles 36

2.4.3 Composition d’opérations descriptibles

Nous avons montré dans la section 2.2.2 que la composition de deux modificateurs est
un modificateur et nous allons utiliser cette propriété pour montrer qu’il existe un modifi-
cateur pour la composition d’opérations descriptibles.

Proposition 2.4.3. Soit ⊗ une opération k1-aire m1-descriptible et ⊕ une opération k2-aire
m2-descriptible. Alors pour tout j ∈ {1, . . . , k1}, le modificateur m1 ◦jm2 décrit l’opération
⊗ ◦j ⊕ qui est (k1 + k2 − 1)-aire.

Démonstration. Soient L1, . . . , Lk1+k2−1 des langages réguliers acceptés respectivement par
les AFD A1, . . . , Ak1+k2−1. On a

⊗ ◦j ⊕(L1, . . . , Lk1+k2−1) =⊗ (L1, . . . , Lj−1,⊕(Lj, . . . , Lj+k2−1), Lj+k2 , . . . , Lk1+k2−1)

par définition de ◦j
=L(m1(A1, . . . , Aj−1,m2(Aj, . . . , Aj+k2−1), Aj+k2 , . . . , Ak1+k2−1))

car les opérations ⊗ et ⊕ sont descriptibles
=L(m1 ◦j m2(A1, . . . , Ak1+k2−1)) par définition de ◦j

Vu la Proposition 2.2.1, m1 ◦j m2 est un modificateur. Ainsi, ⊗ ◦j ⊕ est descriptible.

Exemple 2.4.6 (Modificateur étoile de l’intersection). Le 2-modificateur étoile de l’inter-
section est défini pour toute paire d’AFD A1 = (Σ, Q1, i1, f1, δ1), A2 = (Σ, Q2, i2, f2, δ2) par

Star ◦ Inter(A1, A2) = (Σ, 2Q1×Q2 , ∅, {E ∈ 2Q1×Q2|E ∩ (F1×F2) 6= ∅} ∪ {∅}, δ) tel que

pour tout a ∈ Σ

δa(∅) =

{
{(δa1(i1), δa2(i2)), (i1, i2)} si {(δa1(i1), δa2(i2))} ∈ F1 × F2

{(δa1(i1), δa2(i2))} sinon.

et pour tout E 6= ∅,

δa(E) =

{
(δa1 , δ

a
2)(E) ∪ {(i1, i2)} si (δa1 , δ

a
2)(E) ∩ F1 × F2 6= ∅

(δa1 , δ
a
2)(E) sinon.

Par le Corollaire 2.4.3, pour toute paire de langages réguliers (L1, L2) définis sur le
même alphabet, et toute paire d’automates déterministes complets A = (A1, A2) telle que
L1 = L(A1) et L2 = L(A2), on obtient (L1 ∩ L2)∗ = L((Star ◦ Inter)A).



2.5 Modificateurs 1-uniformes 37

2.5 Modificateurs 1-uniformes
Nous allons définir les modificateurs 1-uniformes qui sont des modificateurs qui peuvent

être associés de manière naturelle avec une opération régulière. De plus, nous verrons dans
le chapitre suivant un théorème qui permet de lier ce type de modificateurs avec les opé-
rations 1-uniformes.

2.5.1 Définition

Définition 2.5.1 (modificateur 1-uniforme). Un k-modificateur m est 1-uniforme si, pour
chaque paire de k-uplet d’automates finis déterministes (A1, . . . , Ak) et (B1, . . . , Bk) telle
que pour tout j ∈ {1, . . . , k} L(Aj) = L(Bj), on a L(m(A1, . . . , Ak)) = L(m(B1, . . . , Bk)).
Dans ce cas, il existe une opération régulière ⊗m telle que, pour tous les k-uplets d’auto-
mates finis déterministes (A1, . . . , Ak), ⊗m(L(A1), . . . , L(Ak)) = L(mA). Par conséquent,
l’opération ⊗m est descriptible et on dit que m décrit l’opération ⊗m.

2.5.2 Modificateurs non uniformes

Il existe des k-modificateurs qui ne sont pas uniformes et donc qui ne peuvent pas être
associés à des opérations.

Exemple 2.5.1. Considérons le modificateur Fto1=(Q,i,f, ρ) tel que
— QQ = Q,
— i(Q, i, F ) = i,
— f(Q, i, F ) = F ,

— ρ(i, F, δa1)(q) =


δa1(q) si q 6∈ F{

1 si 1 ∈ Q si q ∈ F
δa1(q) sinon

Si A1 et A′1 sont deux automates déterministes reconnaissant le même langage, alors
nous avons en général L(Fto1(A1)) 6= L(Fto1(A′1)) parce que le langage accepté dépend
des étiquettes des états de A1 et A′1.

Par exemple, considérons les automatesA1 = (Σ, Q1, i1, F1, δ1) = ({a}, {0, 1, 2}, 0, {2}, δ1)
et A2 = (Σ, Q2, i2, F2, δ2) = ({a}, {0, 1, 2}, 0, {1}, δ2) représentés aux Figures 2.13 et 2.14.
Ces automates reconnaissent le même langage a2a∗.

Cependant, si on applique Fto1 au premier, on obtient l’automate représenté à la Figure
2.15. En effet, on a

— QQ1 = {0, 1, 2},



2.5 Modificateurs 1-uniformes 38

0start 1 2
a a

a

Figure 2.13 – Automate A1

0start 2 1
a a

a

Figure 2.14 – Automate A2

— i(Q1, i1, F1) = 0,
— f(Q1, i1, F1) = {2},
— � ρ(Q1, F1, δ

a
1)(0) = 1 car 0 6∈ F1

� ρ(Q1, F1, δ
a
1)(1) = 2 car 1 6∈ F1

� ρ(Q1, F1, δ
a
1)(2) = 1 car 2 ∈ F1 et 1 ∈ Q1

L’automate Fto1(A1) reconnait le langage (aa)+.

0start 1 2
a

a

a

Figure 2.15 – Automate Fto1(A1)

Alors que Fto1 laisse le second automate inchangé. En effet, on a
— QQ2 = {0, 1, 2},
— i(Q2, i2, F2) = 0,
— f(Q2, i2, F2) = {1},
— � ρ(Q2, F2, δ

a
2)(0) = 2 car 0 6∈ F2,

� ρ(Q2, F2, δ
a
2)(2) = 1 car 2 6∈ F2,

� ρ(Q2, F2, δ
a
2)(2) = 1 car 1 ∈ F2 et 1 ∈ Q2.



2.5 Modificateurs 1-uniformes 39

2.5.3 Composition de modificateurs 1-uniformes

Nous avons d’abord vu que la composition d’opérations 1-uniformes est une opération
1-uniforme. Ensuite, nous avons défini la composition de modificateurs dans la Section
2.2.2 et on a vu que la composition de deux modificateurs est un modificateur. Après ça,
on a également vu que si deux opérations ⊗ et ⊕ sont m1- et m2- descriptibles alors ⊗◦j⊕
est m1 ◦j m2- descriptible. Maintenant, nous allons montrer que la 1-uniformité des modi-
ficateurs est stable par composition.

Proposition 2.5.1. Si deux modificateurs m1,m2 sont 1-uniformes, alors la composition
de m1 et m2, m1 ◦j m2, est aussi 1-uniforme.

Démonstration. Soient m1 un modificateur k1-aire 1-uniforme et m2 un modificateur k2-
aire 1-uniforme. Soient L1, . . . , Lk1+k2−1 des langages réguliers acceptés respectivement par
les AFDs A1, . . . , Ak1+k2−1.

On a

m1 ◦j m2(A1, . . . , Ak1+k2−1) = m1(A1, . . . , Aj−1,m2(Aj, . . . , Aj+k2−1), Aj+k2 , . . . , Ak1+k2−1).

Par conséquent, m1 ◦j m2 est bien 1-uniforme si m1 et m2 le sont.



Chapitre 3

Les monstres

Nous allons définir des AFDs particuliers avec de grands alphabets appelés monstres.
L’idée est de définir des k-uplets d’AFDs sur le même alphabet afin que cet alphabet soit
aussi vaste que possible. Chaque k-uplet possible de fonctions de transition d’un monstre
doit correspondre à une seule lettre de son alphabet. Ceci nous permettra d’avoir la plus
grande flexibilité possible pour prouver des résultats sur l’accessibilité et la distinguabilité
lorsqu’on minimisera l’AFD de sortie d’opérations 1-uniformes. Plus tard, nous verrons
qu’une opération 1-uniforme a toujours un témoin qui est un monstre. Dans l’article [5],
les monstres sont appelés témoins OLPA où OLPA signifie "one letter per action".

3.1 Définition
Dans le cas unaire, les monstres (1-monstres) de taille n sont des AFD minimaux ayant

nn lettres qui représentent chaque fonction de JnK dans JnK. Il y a 2n automates 1-monstre
différents qui dépendent de l’ensemble de leurs états finaux. Un k-monstre est un k-uplet
d’AFDs qui utilise l’ensemble des k-uplets de transformations comme alphabet. En effet,
l’alphabet d’un monstre k-aire doit encoder toutes les transformations agissant sur chaque
ensemble d’états indépendamment les uns des autres.

Définition 3.1.1 (Monstre). Un k-monstre est un k-uplet d’automates
Monn,F = (M1, . . . ,Mk) où chaque Mj = (Γn, JnjK, 0, Fj, δj) est défini par

— l’alphabet commun Γn = Jn1KJn1K × Jn2KJn2K × · · · × JnkKJnkK,
— l’ensemble d’états JnjK,
— l’état initial 0,
— l’ensemble des états finaux Fj,
— la fonction de transition δj définie ∀q ∈ JnjK,∀g = (g1, . . . , gk) ∈ Γn par

δj(q, g) = gj(q), c’est-à-dire δg = g.

40



3.1 Définition 41

Un k-uplet de langages (L1, . . . , Lk) est appelé k-langage monstre s’il existe un k-
monstre (M1, . . . ,Mk) tel que (L1, . . . , Lk) = (L(M1), . . . , L(Mk)).

Notation 3.1.1. Notons Monn le k-monstre Monn,F où Fj = {nj − 1}∀j.

Exemple 3.1.1. Le 1-monstre Mon2,{1} (ou Mon(2)) est l’automate suivant avec a=[01],

0start 1

a,c
b,d

a,b

c,d

Figure 3.1 – 1-monstre

b=[11], c=[00], d=[10] où, pour tous i,j ∈ {0, 1}, l’étiquette [ij] représente la transformation
qui envoie 0 sur i et 1 sur j.

Il s’agit bien du 1-monstre Mon2,{1} car on a :
— l’alphabet Γ2 = J2KJ2K,
— l’ensemble d’états J2K,
— l’état initial est 0,
— l’ensemble des états finaux {1},
— si δ est la fonction de transition alors on a :

— δ(0, a) = a(0) = [01](0) = 0 car [01] envoie 0 sur 0,
— δ(0, b) = b(0) = [11](0) = 1 car [11] envoie 0 sur 1,
— δ(0, c) = c(0) = [00](0) = 0 car [00] envoie 0 sur 0,
— δ(0, d) = d(0) = [10](0) = 1 car [10] envoie 0 sur 1.

Il en va de même pour les transitions qui démarrent de l’état 1.

Exemple 3.1.2. Le 2-monstre Mon(2,2),({1},{1}) (ou Mon(2,2)) est donné par la paire d’au-
tomates ci-dessous qui est définie sur un alphabet contenant 22× 22 = 16 symboles où ai,−
(respectivement a−,j) représente l’ensemble des transitions ai,x (respectivement ax,j) pour
x ∈ {1, 2, 3, 4}.



3.2 Lien entre les opérations et les modificateurs 1-uniformes 42

0start 1

a1,−, a3,−

a2,−, a4,−

a1,−, a2,−

a3,−, a4,−

0start 1

a−,1, a−,3
a−,2, a−,4

a−,1, a−,2

a−,3, a−,4

Chaque symbole code une paire de fonctions. On a

a1,1 = [01, 01] a1,2 = [01, 11] a1,3 = [01, 00] a1,4 = [01, 10]

a2,1 = [11, 01] a2,2 = [11, 11] a2,3 = [11, 00] a2,4 = [11, 10]

a3,1 = [00, 01] a3,2 = [00, 11] a3,3 = [00, 00] a3,4 = [00, 10]

a4,1 = [10, 01] a4,2 = [10, 11] a4,3 = [10, 00] a4,4 = [10, 10]

Ici, a1,2 = [01, 11] signifie que le symbole a1,2 étiquette une transition de 0 à 0 et une
transition de 1 à 1 dans le premier automate et une transition de 0 à 1 et une transition
de 1 à 1 dans le second automate. Il en va de même pour les autres symboles.

Remarquons que les monstres diffèrent les uns des autres seulement par leur taille et par
les états finaux de leurs AFDs. Ainsi, lorsqu’on les utilisera comme témoins, nous aurons
seulement besoin de discuter leurs états finaux.

3.2 Lien entre les opérations et les modificateurs 1-uniformes
Maintenant qu’on a défini les monstres, on va pouvoir les utiliser pour démontrer le théo-

rème suivant. Celui-ci met en lumière la correspondance entre les opérations 1-uniformes
et les modificateurs 1-uniformes. Un modificateur 1-uniforme décrit toujours une opération
1-uniforme, et chaque opération 1-uniforme est décrite par un modificateur 1-uniforme.

Lemme 3.2.1. Soit (L1, . . . , Lk) un k-uplet de langages réguliers sur le même alphabet,
et soit (A1, . . . , Ak) un k-uplet de AFDs sur le même alphabet, tel que Aj satisfait les
propriétés suivantes pour tout j ∈ {1, . . . , k} :
— Aj reconnait le langage Lj,



3.2 Lien entre les opérations et les modificateurs 1-uniformes 43

— l’ensemble des états de Aj est JnjK pour un certain entier nj,
— l’état initial de Aj est 0.

Supposons que (Σ, JnjK, 0, Fj, δj) dénote Aj et (M1, . . . ,Mk) dénote Monn,F . De plus, sup-
posons que φ dénote le morphisme 1-uniforme de Σ dans Γn tel que, pour tout a ∈ Σ, on a
φ(a) = (δa1 , δ

a
2 , . . . , δ

a
k). Pour tout j ∈ {1, . . . , k}, le langage Lj est la préimage de Mj par

le morphisme 1-uniforme φ, c’est-à-dire, on a

(L1, . . . , Lk) = (φ−1(L(M1)), . . . , φ−1(L(Mk))).

Démonstration. Soit j un entier de {1, . . . , k}. Par la Définition 3.1.1, la fonction de tran-
sition εj de Mj satisfait ε(δ

a
1 ,...,δ

a
k)

j = δaj . Ainsi, par définition de φ−1, un mot est dans
φ−1(L(Mj)) si et seulement si il est reconnu par l’AFD Bj = (Σ, JnjK, 0, Fj, ζj), avec, pour
tout l ∈ JnjK et tout a ∈ Σ, on a

ζaj = ε
φ(a)
j = ε

(δa1 ,...,δ
a
k)

j = δaj .

Pour conclure, Aj = Bj et Lj = φ−1(L(Mj)), pour tout j ∈ {1, . . . , k}.

Théorème 3.2.1. Une opération k-aire ⊗ est 1-uniforme si et seulement si il existe un
k-modificateur m tel que ⊗ = ⊗m.

Démonstration. Soit ⊗ une opération unaire 1-uniforme. On définit un 1-modificateur m
comme suit. Pour tout AFD A = (Σ, QA, iA, FA, δA) possédant n états, on peut renommer
son ensemble d’états pour que A devienne l’AFD D = (Σ, JnK, 0, F, δ).

Notons B = (JnKJnK, Q′, i′, F ′, δ′) l’AFD minimal de ⊗(L(Monn,F )). On pose
m(A) = (Σ, Q′, i′, F ′, δ′1), avec δ′1(q, a) = δ′(q, δa). Remarquons que m est bien un 1-
modificateur :

— (Q′, i′, F ′) dépend seulement de (QA, i1, FA),
— δ

′a
1 dépend seulement de δa et de δ′, qui à son tour dépend seulement de (QA, iA, FA)
et δa1 .

Par la Proposition 1.5.1, L(m(A)) = φ−1(L(B)), où φ est le morphisme 1-uniforme tel
que φ(a) = δaD pour tout a ∈ Σ. Ainsi, on a L(m(A)) = φ−1(⊗(L(Monn,F ))). Et vu que ⊗
est 1-uniforme, on obtient L(m(A)) = ⊗(φ−1(L(Monn,F )) = ⊗(L) vu le Lemme 3.2.1.

Le cas k-aire avec k > 1 se montre de manière analogue.



3.3 Calcul de la complexité en états 44

3.3 Calcul de la complexité en états
Le résultat suivant est majeur, il permettra de concevoir une méthode pour calculer la

complexité en états des opérations descriptibles en utilisant les monstres.

Si une opération est descriptible, il est suffisant d’étudier le comportement de son mo-
dificateur sur des monstres pour calculer sa complexité en états.

Théorème 3.3.1. Soit m un modificateur et ⊗ une opération m-descriptible. Nous avons
sc⊗(n) = max{#Min(mMonn,F )|F ⊂ Jn1K× · · · × JnkK}

Démonstration. Soit A un k-uplet d’automates ayant n états et pour tout ensemble d’états
finaux F reconnaissant un k-uplet de langages L sur un alphabet Σ. Nous pouvons suppo-
ser que Ai = (Σ, JniK, 0, Fi, δi) pour i ∈ {1, . . . , k} quitte à renommer les états.

Soit δA la fonction de transition de mA, et δM la fonction de transition de mMonn,F .
Par définition d’un modificateur, les états de mA et de mMonn,F sont les mêmes. Pour
toute lettre a et tout état q de mA, nous avons

δaA(q) = ρ((0, . . . , 0), F , δa)(q) = ρ((0, .., 0), F , δδ
a

M )(q) = δδ
a

M (q).

Et donc, pour tout mot w sur l’alphabet Σ :

δwA(q) = δδ
w

M (q).

Ainsi, tous les états accessibles dans mA sont aussi accessibles dans mMonn,F , et pour
tout mot w sur l’alphabet Σ, δwA(q) ∈ f((Jn1K, . . . , [nkK), (0, . . . , 0), F ) si et seulement si
δδ

w

M (q) ∈ f((Jn1K, . . . , [nkK), (0, . . . , 0), F ), ce qui implique que toutes les paires d’états dis-
tinguables dans mA sont aussi distinguables dans mMonn,F .

Par conséquent, #MinmA ≤ #MinmMonn,F .

Exemple 3.3.1 (Modificateur miroir d’un 1-monstre). Remarquons que dans l’Exemple
2.3.4, l’automate A1 était en fait le 1-monstre Mon2 et nous avons donc obtenu Rev(Mon2).

Montrons que l’automate Rev(Monn1) est minimal lorsque n1 > 1. En effet,
— Chaque état est accessible.

Soit gE le symbole qui envoie chaque élément d’un ensemble E ⊂ Jn1K sur n1 − 1
et les éléments de Jn1K\E sur 0. Alors, on a δgE(n1 − 1) = g−1

E (n1 − 1) = E (cela
fonctionne aussi pour E = ∅).



3.3 Calcul de la complexité en états 45

— Les états ne sont pas deux à deux équivalents.
Soient E et E ′ deux états distincts de Rev(Monn1) et supposons qu’il existe i ⊂ E\E ′.
Soit g le symbole qui envoie 0 vers i et les autres états vers j 6= i. L’état δg(E) est
final car {0} = g−1(i) ⊂ δg(E) alors que δg(E ′) n’est pas final car δg(E ′) ⊂ Jn1K\{0}.



Chapitre 4

Applications

Si une opération est descriptible, on peut obtenir sa complexité en états en étudiant le
comportement de son modificateur sur les monstres. En effet, l’algorithme à suivre est

1. Décrire l’opération en utilisant un modificateur dont les états sont représentés par
des objets combinatoires ;

2. Appliquer ce modificateur à des k-monstres bien choisis et discuter les états finaux ;
3. Minimiser l’automate obtenu et estimer sa taille.
Il ne faut pas voir cette méthode comme une règle compliquée et rapide mais plutôt

comme un point de départ de recherche. Nous allons appliquer notre algorithme pour
déterminer la complexité en états de quatre opérations : l’étoile, la concaténation, l’étoile
d’intersection et la racine carrée. Les deux premières applications sont issues de [9] et
les deux suivantes de [2]. Pour d’autres exemples, nous renvoyons le lecteur à l’article [1]
dans lequel le calcul de la complexité en états de l’étoile de l’union disjointe est réalisé en
utilisant également les modificateurs et les monstres. Pour des exemples n’utilisant pas ces
deux outils, le lecteur peut consulter [7], [11] et [8].

4.1 L’étoile
Soient un naturel n ≥ 2, G un sous-ensemble de JnK, et A=(Σ, Q, i, F, δ)=Star(Monn,G).

Par la Définition 2.3.6, on a Σ = Γn = JnKJnK, Q = 2JnK, i = ∅, F = {E ∈ Q|E∩G 6= ∅}
⋃
{∅}

et, pour tout E ∈ Q et tout φ ∈ Σ,

δφ(E) =


{φ(0)} si E = ∅ et φ(0) 6∈ G
{φ(0), 0} si E = ∅ et φ(0) ∈ G
φ(E) si E 6= ∅ et φ(E) ∩G = ∅
φ(E) ∪ {0} si E 6= ∅ et φ(E) ∩G 6= ∅

On peut représenter un sous-ensemble E de JnK comme une "ligne" de carrés, qui
peuvent être vides ou remplis par une croix. Un carré vide en position i signifie que i 6∈ E

46



4.1 L’étoile 47

alors qu’un carré rempli avec une croix en position i signifie que i ∈ E. Tous les carrés
représentant une position qui est dans G sont en rouge. Si n = 5, et G = {1, 2}, le sous-
ensemble {1, 3} de J5K est représenté avec la ligne suivante

Exemple 4.1.1. Si on utilise cette représentation sur les Figures 2.6 et 2.7, on obtient les
Figures 4.1 et 4.2. Dans la Figure 4.1, les états 0 et 1 sont identifiés avec les sous-ensembles
de {0, 1} : {0} et {1}.

Figure 4.1 – AFD A

Figure 4.2 – AFD
Star(A)

Cette représentation nous donne une interprétation de la fonction de transition de A.
En effet, dans A, pour aller de la représentation d’un sous-ensemble E (E 6= ∅) à la
représentation d’un sous-ensemble E ′ en lisant la lettre φ, il suffit de changer la position
des croix de E en leurs appliquant la fonction φ et d’ajouter une croix au début de la
ligne si et seulement si il y a une croix dans un carré rouge. Par exemple, si n = 4, G =
{1, 2}, φ(1) = 2, φ(2) = 3, on a δφ({1, 2}) = {0, 2, 3}, ce qui est représenté à la figure
ci-dessous.

4.1.1 Une borne supérieure

Nous allons commencer par établir une borne supérieure pour la complexité en états
de l’étoile de Kleene. Le raisonnement est basé sur la remarque suivante :



4.1 L’étoile 48

Figure 4.3 – Une transition Star(Mon4,{1,2})

Remarque 4.1.1. Si lire une lettre φ à partir de tout état de A mène à un état avec une
croix dans un carré rouge, alors cet état a aussi une croix dans le carré le plus à gauche.
Plus formellement, si E est un élément de Q et φ une lettre de Γn, si G ∩ φ(E) 6= ∅,
alors 0 ∈ δφ(E). Ainsi, tout état E de A tel que E ∩ G 6= ∅ et 0 6∈ E n’est pas accessible
dans A. Par exemple, l’état à gauche dans la Figure 4.3 n’est pas accessible dans l’AFD
Star(Mon4,{2,3}).

Lemme 4.1.1. Pour tout entier n ≥ 2, la complexité en états scStar de l’étoile de Kleene
satisfait scStar(n) ≤ 2n−1 + 2n−2.

Démonstration. On va distinguer plusieurs cas. En dessous de chaque cas se trouvera un
exemple de représentation pour n=4 afin de mieux visualiser.

Premièrement, supposons que G = ∅. Alors A n’a pas d’états finaux et la taille de
l’AFD minimal associé à A est 1.

Maintenant, montrons que dans chaque autre cas, le nombre d’états accessibles dans A
est plus petit ou égal à 2n−1 + 2n−2.

Deuxièmement, supposons que G = {0}. Soit E un état de A qui est un singleton {j}.
— Si φ(j) = 0, alors φ(E) ∩G 6= ∅, et δφ(E) = {0} ∪ {0} = {0}.
— Si φ(j) = l 6= 0, alors φ(E) ∩G = ∅ et δφ(E) = {φ(j)} = {l}.

Dans les deux cas, δφ(E) est un singleton. Ceci peut être remarqué en utilisant notre
représentation. En effet, dans ce cas, ajouter une croix à une ligne avec seulement une
croix via une transition est impossible. On obtient que chaque état accessible de A est un
singleton. Par conséquent, le nombre d’états accessibles de A est au plus n+1 ≤ 2n−1+2n−2.



4.1 L’étoile 49

Finalement, supposons que G 6∈ {∅, {0}}. On va utiliser la Remarque 4.1.1 pour déduire
une borne supérieure sur le nombre d’états accessibles de A. On distingue deux cas :

— Supposons que 0 6∈ G. Déterminons le nombre d’états qui ne sont pas accessibles
dans A. Autrement dit, déterminons le nombre d’états E de A tels que E ∩G 6= ∅ et
0 6∈ E. Étant donné que 0 ne peut appartenir ni à E, ni à G et que E doit contenir au
moins un élément de G, le nombre d’états E vaut le nombre de parties d’un ensemble
de n−1 éléments auquel on retire le nombre de parties d’un ensemble de n−1−#G
éléments, ainsi on obtient 2n−1 − 2n−1−#G états. Par conséquent, le nombre d’états
accessibles de A est au plus

2n − (2n−1 − 2n−1−#G) =(2n − 2n−1) + 2n−1−#G

=2n−1 + 2n−1−#G

≤2n−1 + 2n−2 car #G ≥ 1.

— Supposons que 0 ∈ G. Le nombre d’états non accessibles dans A est le nombre d’états
E de A tels que E ∩G 6= ∅ et 0 6∈ E. Il vaut 2n−1 − 2n−#G. Ainsi, le nombre d’états
accessibles de A est au plus

2n − (2n−1 − 2n−#G) = 2n−1 + 2n−#G

Cependant, comme G 6∈ {∅, {0}} et 0 ∈ G, on a #G ≥ 2. Par conséquent, le nombre
d’états accessibles de A est au plus

2n−1 + 2n−2.

Ainsi, on a prouvé dans chaque cas que la taille de l’AFD minimal associé à A est plus
petit ou égal à 2n−1 + 2n−2. Donc, par le Théorème 3.3.1, scStar(n) ≤ 2n−1 + 2n−2.

4.1.2 Une borne inférieure

Nous allons maintenant prouver que le langage accepté par Monn est un témoin pour
l’étoile de Kleene et que la borne supérieure est atteinte.

Lemme 4.1.2. Soit un naturel n ≥ 2. Si G = {n − 1}, alors la taille de l’AFD minimal
associé à A est 2n−1 + 2n−2.



4.1 L’étoile 50

Démonstration. Soit G = {n− 1}, on a A = Star(Monn). Supposons que S est l’ensemble
de tous les états E de A qui sont tels que si n− 1 ∈ E alors 0 ∈ E.

Montrons que chaque état E de S est accessible dans A par induction sur le nombre
d’éléments de E. On suit l’intuition donnée à la Figure 4.4.

L’ensemble vide est initial dans A. Chaque singleton d’éléments de JnK est dans S, à
part le singleton {n − 1}. De plus, si j ∈ Jn − 1K, alors {j} est accessible à partir de
l’ensemble vide en lisant toute lettre φ telle que φ(0) = j. Ainsi, tout élément E de S tel
que #E ≤ 1 est accessible dans A.

Maintenant, soit j ∈ {1, . . . , n − 1}, et supposons que tout élément E de S tel que
#E ≤ j est accessible dans A. Soit E ′ un élément de S tel que #E ′ = j+1. Si E ′ = {0, n−1}
alors il est accessible à partir de {0} en lisant la lettre (0, n − 1). Sinon, soient l et l′
deux éléments distincts de E ′ tels que l 6= n − 1, et soit E = (0, l) ◦ (l′, n − 1)(E ′). On
a 0 ∈ E, n − 1 ∈ E et #E = #E ′. De plus, E est accessible à partir de l’ensemble
E ′′ = E\{n − 1} en lisant la lettre (0, n − 1). Par conséquent, E ′ est accessible à par-
tir de E ′′ en lisant la lettre (0, n − 1) suivie de la lettre (0, l) et puis la lettre (l′, n − 1).
De plus, #E ′′ = j et n−1 6∈ E ′′, ce qui implique que E ′′ ∈ S. Ainsi, E ′ est accessible dans A.

Donc, on a montré que chaque élément de S est accessible dans A.

Figure 4.4 – Une exécution dans Star(Mon4,{3}) à partir de l’état initial ∅ jusqu’à l’état
{0, 1, 2}

Vu la Remarque 4.1.1 , les états accessibles de A sont exactement les états dans S.
Nous allons montrer que les états de S sont deux à deux distinguables dans A. On suit
l’intuition de la Figure 4.5.

Soient E et E ′ deux éléments non vides différents de S. Il existe un entier j tel que, soit



4.2 La concaténation 51

j ∈ E et j 6∈ E ′, soit j 6∈ E et j ∈ E ′. Vu que les deux cas sont symétriques, on suppose
que j est un entier tel que j ∈ E et j 6∈ E ′. Soit φ la lettre de Γn telle que φ(j) = n − 1
et telle que, pour tout l ∈ JnK qui n’est pas égal à j, φ(l) = 0. Lire la lettre φ à partir de
l’état E mène à l’état {0, n− 1}. De plus, lire la lettre φ à partir de l’état E ′ mène à l’état
{0}. Cependant, {0, n− 1} est final dans A, alors que {0} n’est pas final dans A. Ainsi, E
et E ′ sont distinguables dans A.

De plus, lire le mot vide à partir de l’état ∅ dans A mène à ∅, qui est final, mais lire
le mot vide à partir de l’état {0} dans A mène à {0}, qui n’est pas final. Par conséquent,
∅ et {0} sont distinguables dans A. Ainsi, toute paire d’états distincts de A est distinguable.

Figure 4.5 – Comment distinguer deux états de Star(Mon4,{3}), avec la lettre φ telle que
φ(1) = 3, et φ(0) = φ(2) = φ(3) = 0 (le "j" de la preuve vaut 1 dans cet exemple).

Ainsi, la taille de l’AFD minimal associé à A est de la même taille que S, qui est
2n−1 + 2n−2.

Par le Lemme 4.1.1 et le Lemme 4.1.2, Monn est un témoin pour l’étoile de Kleene, et
la borne supérieure du Lemme 4.1.1 est atteinte.

Proposition 4.1.1. Pour tout naturel n ≥ 2, la complexité en états scStar de l’étoile de
Kleene satisfait scStar = 2n−1 + 2n−2.

4.2 La concaténation
Soit (n1, n2) une paire de naturels plus grands ou égaux à 2, soit (F1, F2) une paire

d’ensembles finis tels que F1 ⊆ Jn1K et F2 ⊆ Jn2K, soit Mon(n1,n2),(F1,F2) = (M1,M2) et soit
A = (Σ, Q, i, F, δ) = Conc(M1,M2). Par la Définition 2.3.5, on a

— Σ = Γn1,n2 = Jn1KJn1K × Jn2KJn2K,



4.2 La concaténation 52

— Q = Jn1K× 2Jn2K,

— i =

{
(0, ∅) si 0 6∈ F1

(0, {0}) si 0 ∈ F1

— F = {(q1, E) ∈ Jn1K× 2Jn2K|E ∩ F2 6= ∅},
— pour tout (q1, E) ∈ Jn1K× 2Jn2K et tout (φ1, φ2) ∈ Γn1,n2 ,

δ(φ1,φ2)(q1, E) =

{
(φ1(q1), φ2(E)) si φ1(q1) 6∈ F1

(φ1(q1), φ2(E) ∪ {0}) si φ1(q1) ∈ F1.

Pour représenter les états de A, on va utiliser une représentation similaire au cas de
l’étoile de Kleene. Cependant, cette fois-ci, un état (q, E) de A est représenté par deux
"lignes" de carrés. La première représente q, et donc a exactement une croix. La seconde
représente E, et donc a autant de croix que la taille de E. Par exemple, si n1 = 4, n2 =
5, F1 = 1 et F2 = {2, 3}, l’état {2, {1, 3}) de A est représenté par la paire de lignes ci-
dessous :

Cette représentation nous donne une interprétation de la fonction de transition de A.
En effet, dans A, pour aller de l’état (q, E) à l’état (q′, E ′) en lisant une lettre (φ1, φ2) (dans
le cas où E 6= ∅), on peut changer les positions des croix des deux lignes représentant (q, E)
en appliquant φ1 à la croix de la première ligne et φ2 aux croix de la seconde ligne et après
ça il ne reste plus qu’à ajouter une croix au début de la seconde ligne si et seulement si
la croix de la première ligne est dans un carré rouge. Par exemple, si n1 = 3, n2 = 4, F1 =
{2}, F2 = {1}, φ1(1) = 2, φ2(1) = 2, φ2(2) = 3, on a δφ((1, {1, 2})) = (2, {0, 2, 3}), ce qui
est représenté à la figure ci-dessous.

4.2.1 Une borne supérieure

On commence par établir une borne supérieure pour la complexité en états de la conca-
ténation. Notre raisonnement sera basé sur la remarque suivante :

Remarque 4.2.1. Si lire une lettre à partir d’un état de A mène à un état dont la croix
de la première ligne se trouve dans un carré rouge, alors la seconde ligne de cet état a une
croix dans le carré le plus à gauche. Plus formellement, si (q, E) est un élément de Q, si



4.2 La concaténation 53

Figure 4.6 – Une transition dans Conc(Mon(3,4),({2},{1}))

(φ1, φ2) est une lettre de Γn1,n2 , et si φ1(q) ∈ F1, alors en notant (q′, E ′) l’état δ(φ1,φ2)(q, E),
on a 0 ∈ E ′. Ainsi, tout état (q, E) de A tel que q ∈ F1 et 0 6∈ E n’est pas accessible dans
A.

Lemme 4.2.1. La complexité en états scConc de la concaténation satisfait

scConc(n1, n2) ≤ (n1 − 1)2n2 + 2n2−1.

Démonstration. Si F1 = ∅, tout état (q, E) de A tel que E 6= ∅ n’est pas accessible. Ainsi,
le nombre d’états accessibles de A est plus petit ou égal à n1.

Supposons que F1 6= ∅. Le nombre d’états accessibles dans A est le nombre des états
(q, E) de A tels que, si q ∈ F1 alors 0 ∈ E. Ce nombre vaut

(n1 −#F1)2n2 + #F1 · 2n2−1 = n1 · 2n2 −#F1(2n2 − 2n2−2)

= n1 · 2n2 −#F1 · 2n2−1

= (n1 − 1)2n2 + 2n2 −#F1 · 2n2−1

= (n1 − 1)2n2 + 2n2−1(2−#F1)

≤ (n1 − 1)2n2 + 2n2−1 car (2−#F1) ≤ 1

Dans tous les cas, le nombre d’états accessibles de A est plus petit ou égal à

(n1 − 1)2n2 + 2n2−1.

Ainsi, par le Théorème 3.3.1, on a scConc(n1, n2) ≤ (n1 − 1)2n2 + 2n2−1.

4.2.2 Une borne inférieure

On va maintenant prouver que Mon(n1,n2),({n1−1},{n2−1}) est un témoin pour la concaté-
nation, et que la borne supérieure ci-dessus est atteinte.



4.2 La concaténation 54

Lemme 4.2.2. Si F1 = {n1−1} et F2 = {n2−1}, alors la taille de l’AFD minimal associé
à A est (n1 − 1)2n2 + 2n2−1.

Démonstration. Rappelons que n1 et n2 sont tous les deux plus grands ou égaux à 2. Soient
F1 = {n1 − 1} et F2 = {n2 − 1}, et donc A = Conc(Mon(n1,n2),({n1−1},{n2−1)}). Soit S l’en-
semble de tous les états (j, E) de A tels que, si j = n1 − 1, alors 0 ∈ E. Montrons que
chaque état (j, E) de S est accessible dans A par induction sur le nombre d’éléments de
E. On va suivre l’intuition donnée à la Figure 4.7.

L’état (0, ∅) est initial dans A. Un état (j, ∅) est dans S si et seulement si j ∈ Jn1− 1K.
Cependant, si j ∈ Jn1−1K, (j, ∅) est accessible à partir de (0, ∅) en lisant la lettre ((0, j), Id).
Ainsi, tout élément (j, ∅) de S est accessible dans A.

L’état (n1 − 1, {0}) est accessible dans A à partir de (0, ∅) en lisant la lettre ((0, n1 −
1), Id). De plus, tout état (j, {m}) de S, où j ∈ Jn1− 1K et m ∈ Jn2K est atteint à partir de
l’état (n1 − 1, {0}) en lisant la lettre ((n1 − 1, j), (0,m)). Donc, tout état (j, E) de S avec
#E ≤ 1 est accessible dans A.

Maintenant, soit l ∈ {1, . . . , n2−1}, et supposons que chaque élément (j, E) de S tel que
#E ≤ l est accessible dans A. Soit (j′, E ′) un éléments de S tel que #E ′ = l+ 1. Soit r un
élément de E ′, soit r′ un élément non nul de (0, r)(E ′), et soit E = (0, r)(E ′)\{r′}. L’état
(j′, E ′) est atteint dans A à partir de l’état (n1 − 1, E) en lisant la lettre (IdJn1−1K, (0, r

′))
et après la lettre ((n1 − 1, j′), (0, r)). De plus, 0 ∈ E, ce qui implique que (n1 − 1, E) est
dans S, et #E = l. Par conséquent, (j′, E ′) est accessible dans A. Ainsi, on a montré par
induction que chaque élément de S est accessible dans A.

Figure 4.7 – Une exécution dans Conc(Mon(4,4),({3},{3})) à partir de l’état initial (0, ∅)
jusqu’à l’état (2, {1, 2})

Vu la Remarque 4.3.1, les états accessibles de A sont exactement les états de S.



4.2 La concaténation 55

Maintenant, montrons que les états sont deux à deux distincts dans A.
Soient (j, E) et (j′, E ′) deux éléments différents de S. On distingue deux cas et on suit
l’intuition donnée aux Figures 4.8 et 4.9.

— Premièrement, supposons que j 6= j′. Soit φ1 une fonction de Jn1KJn1K telle que
φ1(j) = 0 et φ1(j′) = n1− 1 et soit φ2 la fonction de Jn2KJn2K telle que φ2(l) = n2− 1,
pour tout l ∈ Jn2K. Lire la lettre (φ1, φ2) à partir de l’état (j, E) mène à l’état
(0, {n2 − 1}). De plus, lire la lettre (φ1, φ2) à partir de l’état (j′, E ′) mène à l’état
(n1 − 1, {0, n2 − 1}). Ainsi, si φ3 = IdJn1K et φ4 = (0, n2 − 1), on a
δ(φ1,φ2)(φ3,φ4)(j, E) = (0, {0}) et δ(φ1,φ2)(φ3,φ4)(j′, E ′) = (n1 − 1, {0, n2 − 1}).
Cependant, (n1−1, {0, n2−1}) est final dans A alors que (0, {0}) ne l’est pas vu que
n2 ≥ 2. Ainsi, (j, E) et (j′, E ′) sont distinguables dans A.

Figure 4.8 – Comment distinguer les deux états (1, {1, 3}) et (2, {1, 3}) de
Conc(Mon(4,4),({3},{3})) où j 6= j′, avec φ1(2) = 3, φ1(1) = 0 et φ2(1) = φ2(3) = 3.

— Supposons que E 6= E ′. Il existe un entier j tel que, soit j ∈ E et j 6∈ E ′, soit j 6∈ E
et j ∈ E ′. Comme les deux cas sont symétriques, on suppose que j est un entier tel
que j ∈ E et j 6∈ E ′. Soit φ1 la fonction de Jn1KJn1K telle que φ1(l) = 0 pour tout
l ∈ Jn1K. Soit φ2 la fonction de Jn2KJn2K telle que φ2(j) = n2 − 1, et telle que pour
tout l ∈ Jn2K qui n’est pas égal à j, φ2(l) = 0. Lire la lettre (φ1, φ2) depuis l’état
(j, E) mène à l’état (0, {n2 − 1}) ou à l’état (0, {0, n2 − 1}). De plus, lire la lettre
(φ1, φ2) à partir de l’état (j′, E ′) mène à l’état (0, {0}). Cependant, (0, {n2 − 1}) et
(0, {0, n2 − 1}) sont finaux dans A, alors que (0, {0}) n’est pas final dans A. Ainsi,
(j, E) et (j′, E ′) sont distinguables dans A.

On a montré que les états de S sont distinguables deux à deux dans A. Ainsi, la taille
de l’AFD minimal associé à A est la taille de S, qui est (n1 − 1)2n2 + 2n2−1.

Par conséquent, par le Lemme 4.2.1 et le Lemme 4.2.2, Mon
{n1−1},{n2−1}
n1,n2 est un témoin



4.2 La concaténation 56

Figure 4.9 – Comment distinguer deux états (j, E) et (j′, E ′) de Conc(Mon
{3},{3}
4,4 ) quand

E 6= E ′, avec φ1(1) = φ1(2) = 0, φ2(1) = φ2(0) = 0 et φ2(2) = 3.

pour la concaténation et la borne supérieure du Lemme 4.2.1 est atteinte.

Proposition 4.2.1. Pour toute paire d’entiers positifs (n1, n2) avec n2 ≥ 2, la complexité
en états de la concaténation scConc satisfait scConc(n1, n2) = (n1 − 1)2n2 + 2n2−1.



4.3 L’étoile de l’intersection 57

4.3 L’étoile de l’intersection
Nous allons appliquer notre méthode à l’opération étoile de l’intersection.

Les éléments de 2Jn1K×Jn2K vont être vus comme des matrices booléennes de taille n1×n2.
Une matrice de ce type est appelée tableau. On écrit Tx,y pour la valeur du tableau T à la
ligne x et à la colonne y. Et #T représente le nombre de 1 dans le tableau.

Soient (n1, n2) une paire de naturels, soit (F1, F2) un sous-ensemble de Jn1K × Jn2K ,
soit Mon(n1,n2),(F1,F2) = (M1,M2) et soit A = (Σ, Q, i, F, δ) = (Star ◦ Inter)(M1,M2). En
utilisant les Définitions 2.3.3, 2.3.6, on a

— Σ = Γn1,n2 = Jn1KJn1K × Jn1KJn1K,
— Q = 2Jn1K×Jn2K

— i = ∅
— F = {E ∈ 2Jn1K×Jn2K|E ∩ (F1 × F2) 6= ∅} ∪ {∅}
— pour tout a ∈ Σ

δa(∅) =

{
{(δa1(0), δa2(0)), (0, 0)} si {(δa1(0), δa2(0))} ∈ F1 × F2

{(δa1(0), δa2(0))} sinon.

et pour tout E 6= ∅,

δa(E) =

{
(δa1 , δ

a
2)(E) ∪ {(0, 0)} si (δa1 , δ

a
2)(E) ∩ F1 × F2 6= ∅

(δa1 , δ
a
2)(E) sinon.

Nous allons représenter un sous-ensemble E de Jn1K × Jn2K par un tableau où chaque
carré est soit vide, soit rempli d’une croix. Un carré vide en position (i, j) signifie que
(i, j) 6∈ E (i.e. Ti,j = 0), si par contre ce carré est rempli alors (i, j) ∈ E (i.e. Ti,j = 1).
Tous les carrés qui représentent une position qui est dans F1 × F2 sont en rouge. Par
exemple, si n1 = 3, n2 = 2, F1 × F2 = {(2, 0), (2, 1)}, le sous ensemble {(0, 0), (2, 1)} est
représenté par le tableau ci-dessous :

On obtient une interprétation de la fonction de transition de A. Dans A, pour aller de
l’état E à l’état E ′ en lisant (φ1, φ2), on peut changer les positions des croix représentant



4.3 L’étoile de l’intersection 58

E en appliquant φ1 sur les lignes de E et φ2 sur ses colonnes et après ça il suffit d’ajouter
une croix dans la case le plus en haut à gauche du tableau (la case T0,0) si et seulement si il
y a une croix dans un carré rouge. Par exemple, si n1 = 3, n2 = 2, F1×F2 = {(2, 0), (2, 1)},
φ1(0) = 2, φ1(1) = 1, φ2(1) = 1, on a δφ({(0, 1), (1, 1)}) = {(2, 1), (1, 1), (0, 0)}, ce qui est
représenté à la figure ci-dessous.

Figure 4.10 – Une transition dans Star ◦ Inter(Mon(3,2),{(2,0),(2,1)})

4.3.1 Une borne supérieure

On commence par établir une borne supérieure pour la complexité en états de l’étoile
de l’intersection. Notre raisonnement sera basé sur la remarque suivante :

Remarque 4.3.1. Si lire une lettre à partir d’un état de A mène à un état dont au moins
une croix se trouve dans un carré rouge, il y a une croix dans le carré le plus en haut à
gauche (T0,0 = 1). Plus formellement, si E est un élément de Q, si (φ1, φ2) est une lettre de
Γn1,n2 , et si (φ1, φ2)(E)∩(F1×F2) 6= ∅, alors en notant E ′ l’état δ(φ1,φ2)(E), on a (0, 0) ∈ E ′.
Ainsi, tout état E de A tel que E ∩ (F1×F2) 6= ∅ et (0, 0) 6∈ E n’est pas accessible dans A.

Notation 4.3.1. Notons BF1,F2 l’automate déduit de (Star ◦ Inter)Monn,(F1,F2) en reti-
rant les tableaux avec une croix dans (x,y)∈ F1 × F2 mais pas de croix dans (0,0).

Ainsi, nous allons obtenir une borne supérieure pour la complexité en états de la com-
position des opérations Star et Inter en maximisant le nombre d’états de BF1,F2 .

Remarque 4.3.2. L’état initial de InterMonn,(0,0) est le seul état final. Ainsi, L((Star ◦
Inter)Monn,(0,0)) = L(InterMonn,(0,0))

∗ = L(InterMonn,(0,0)) et ceci implique que
#Min(B0,0) ≤ #Min(InterMonn,(0,0)) ≤ n1n2.

Lemme 4.3.1. Le nombre maximal d’états de BF1,F2 avec F1×F2 6∈ {{(0, 0)}, ∅} est atteint
lorsque #(F1 × F2) = 1.



4.3 L’étoile de l’intersection 59

Démonstration. Le nombre d’états de BF1,F2 est égal au nombre d’états de A auquel on
retire le nombre de tableaux avec une croix dans (x, y) ∈ F1×F2 et dont la case (0, 0) n’est
pas remplie. Ainsi, on a

#B =#2Jn1K×Jn2K −#{T ∈ 2Jn1K×Jn2K|(∃(x, y) ∈ F1 × F2 tel que Tx,y = 1 ∧ T0,0 = 0}
=2n1n2 − (#{T ∈ 2Jn1K×Jn2K|T0,0 = 0} −#{T ∈ 2Jn1K×Jn2K|∀(x, y) ∈ F1 × F2,

Tx,y = 0 ∧ T0,0 = 0})
=2n1n2 − (2n1n2−1 −#{T ∈ 2Jn1K×Jn2K|∀(x, y) ∈ F1 × F2, Tx,y = 0 ∧ T0,0 = 0})

=

{
2n1n2 − (2n1n2−1 − 2n1n2−#F1#F2−1) si (0, 0) 6∈ F1 × F2

2n1n2 − (2n1n2−1 − 2n1n2−#F1#F2) sinon

Vu que qu’on est dans le cas où (0, 0) 6∈ F1 × F2, on obtient

#B = 2n1n2 − (2n1n2−1 − 2n1n2−#F1#F2−1).

De plus, vu que F1 × F2 6= ∅, pour maximiser le nombre d’états de BF1,F2 il faut que
#F1#F2 soit égal à 1, c’est-à-dire F1 × F2 = 1.

Corollaire 4.3.1. #Min((Star ◦ Inter)Mn,(F1,F2)) ≤ 3
4
2n1n2

Démonstration. En utilisant le Lemme 4.3.1, on maximise le nombre de tableaux lorsque
#F1 ×#F2 = 1. Dans ce cas, on a

#B =2n1n2 − (2n1n2−1 − 2n1n2−1−1)

=2n1n2 − (2n1n2−1 − 2n1n2−2)

=2n1n2 − 2n1n2−2

=2n1n2 − 1

4
2n1n2

=
3

4
2n1n2

Ainsi, la borne supérieure est 3
4
2n1n2 .

4.3.2 Une borne inférieure

Lemme 4.3.2. Tous les états de B sont accessibles.

Démonstration. Soit T un état de B.
Définissons un ordre < sur des tableaux comme T<T’ si et seulement si

1. #(T ) < #(T ′) ou



4.3 L’étoile de l’intersection 60

2. (#(T ) = #(T ′)) et Tn1−1,n2−1 = 1 et T ′n1−1,n2−1 = 0) ou
3. (#(T ) = #(T ′) et Tn1−1,n2−1 = T ′n1−1,n2−1 et T0,0 = 1 et T ′0,0 = 0)

Prouvons l’assertion par induction sur des tableaux non vides de B pour l’ordre partiel <.

Cas de base
Remarquons d’abord que le tableau vide est l’état initial de B et donc il est bien accessible.
Pour les tableaux non vides de B et l’ordre <, le seul tableau minimal est le tableau avec
seulement un 1 dans (0,0). Il est accessible à partir de l’état initial ∅ en lisant la lettre
(Id, Id). Remarquons que chaque lettre est une paire de fonctions de Jn1KJn1K × Jn2KJn2K.

Induction Prenons un tableau T ′ et trouvons un tableau T tel que T < T ′ et T ′ est
accessible depuis T . Nous distinguons les cas ci-dessous selon certaines propriétés de T ′.
Pour chaque cas, on va définir un tableau T et une lettre (f, g). De plus, pour tous les cas
sauf le dernier, on vérifie facilement que

? T0,0 = 1 (ce qui implique que T est un état de B),
? δ(f,g)(T ) = (f, g)(T ) = T ′ (où (f, g)(T ) = {(f(i), g(j))|(i, j) ∈ T}) et
? T < T ′

Cas 1 : T ′n1−1,n2−1 = 0

? T ′0,0 = 0. Soit (i, j) l’indexe d’un 1 dans T ′. Définissons (f, g) par ((0, i), (0, j)) où
(0, i) et (0, j) sont des transpositions, et T = (f, g)(T ′). De plus, on a bien T < T ′

par le point 3 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :

? T ′0,0 = 1



4.3 L’étoile de l’intersection 61

— Il existe (i, j) ∈ {1, 2, . . . , n1−1}×{1, 2, . . . , n2−1} tels que T ′i,j = 1. Définissons
(f, g) comme ((n1 − 1, i), (n2 − 1, j)), alors T = (f, g)(T ′). De plus, on a bien
T < T ′ par le point 2 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :

— Pour tout (i, j) ∈ {1, 2, . . . , n1 − 1} × {1, 2, . . . , n2 − 1}, T ′i,j = 0, T ′0,n2−1 = 1 et
T ′n1−1,0 = 1. Dans ce cas, définissons (f, g) comme (Id, (n2 − 1, 0)), et T comme
(f, g)(T ′). De plus, on a bien T < T ′ par le point 2 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :

— Pour tout (i, j) ∈ {1, 2, . . . , n1 − 1} × {1, 2, . . . , n2 − 1}, T ′i,j = 0, T ′0,n2−1 = 1 et



4.3 L’étoile de l’intersection 62

T ′n1−1,0 = 0. Définissons (f, g) comme ((n1− 1, 0), Id). Alors T est défini comme
T0,n2−1 = 0
Tn1−1,n2−1 = 1
Ti,j = T ′i,j si (i, j) 6∈ {(0, n2 − 1), (n1 − 1, n2 − 1)}

De plus, on a bien T < T ′ par le point 2 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :

— Pour tout (i, j) ∈ {1, 2, . . . , n1 − 1} × {1, 2, . . . , n2 − 1}, T ′i,j = 0, T ′0,n2−1 = 0 et
T ′n1−1,0 = 1. Définissons (f, g) comme (Id, (n2−1, 0)). De plus, on a bien T < T ′

par le point 2 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :



4.3 L’étoile de l’intersection 63

— Pour tout (i, j) ∈ {1, 2, . . . , n1 − 1} × {1, 2, . . . , n2 − 1}, T ′i,j = 0, T ′0,n2−1 = 0 et
T ′n1−1,0 = 0. Soit (i, j) 6= (0, 0) un 1 dans T ′. Définissons

(f, g) = ((n1 − 1, i), (n2 − 1, j))

et définissons T comme suit
Ti,j = 0
Tn1−1,n2−1 = 1
Ti′,j′ = T ′i′,j′ si (i′, j′) 6∈ {(i, j), (n1 − 1, n2 − 1)}

De plus, on a bien T < T ′ par le point 2 de la définition de cet ordre.
Par exemple, si T ′ est représenté par le tableau ci-dessous :

alors T sera représenté par :

Cas 2 : T ′0,0 = 1 et T ′n1−1,n2−1 = 1
Soit (f, g) = ((n1 − 1, 0), (n2 − 1, 0)). Soit T ′′ la matrice obtenue depuis T ′ en remplaçant
1 par 0 dans (0, 0). Soit T = (f, g)(T ′′). Comme (f, g) est une bijection sur Jn1K × Jn2K,
nous avons T0,0 = ((f, g)(T ′′))0,0 = T ′′n1−1,n2−1 = 1, ce qui signifie que T est un état de B et
(f, g)(T ) = (f, g)(f, g)(T ′′) = T ′′. Comme T ′′n1−1,n2−1 = 1, nous avons δ(f,g)(T ) = T ′ dans
B. De plus, #T < #T ′ implique que T < T ′.

Lemme 4.3.3. Tous les états de B sont distinguables.

Démonstration. Soient T et T ′ deux états différents de B. Il existe (i, j) ∈ Jn1K× Jn2K tels
que Ti,j 6= T ′i,j. Supposons par exemple que Ti,j = 1 et T ′i,j = 0.
Soit (f, g) ∈ Jn1KJn1K × Jn2KJn2K tel que

f(x) =

{
n1 − 1 si x = i
0 sinon



4.4 La racine carrée 64

g(x) =

{
n2 − 1 si x = j
0 sinon

Nous avons δ(f,g)(T )n1−1,n2−1 = Ti,j = 1 et δ(f,g)(T ′)n1−1,n2−1 = T ′i,j = 0. Ainsi T et T ′ sont
distinguables dans B.

Théorème 4.3.1. La complexité en états de l’étoile de l’intersection est 3
4
2n1n2 .

4.4 La racine carrée
Nous allons nous intéresser à la racine carrée du langage L qui est définie par√
L = {x|xx ∈ L}. Nous verrons dans le Chapitre 4 une construction grâce à laquelle on

obtiendra une borne supérieure de la complexité en états de la racine carrée égale à nn.
Pour l’instant admettons le et calculons la valeur exacte de sa complexité en états.

4.4.1 Une borne supérieure

Considérons l’automate SRoot(Monn,F ). On peut remarquer que tous les états dans
SRoot(Monn,F ) sont accessibles. En effet, l’état étiqueté par la fonction g est atteint de-
puis Id en lisant la lettre g.

Pour la distinguabilité, on considère un état ga,b défini par : Soit a 6= b ∈ JnK
— ga,b(x) = a si x ∈ F
— ga,b(x) = b sinon

Lemme 4.4.1. Pour chaque pair a, b ∈ JnK telle que a 6= b, les deux états ga,b et gb,a ne
sont pas distinguables dans SRoot(Monn,F ).

Démonstration. Prouvons que pour tout h, les fonctions h ◦ ga,b et h ◦ gb,a sont soit toutes
les deux finales soit toutes les deux non finales. En fait, nous avons seulement deux valeurs
de h à analyser : h(a) et h(b). Si h(a), h(b) ∈ F ou h(a), h(b) 6∈ F alors les deux fonctions
h ◦ ga,b et h ◦ gb,a sont évidemment toutes les deux finales ou toutes les deux non finales.
Sans perte de généralité, on peut supposer que h(a) ∈ F ( et donc h(b) 6∈ F ).

On doit examiner deux cas :



4.4 La racine carrée 65

1. Si 0 ∈ F :
On a alors h(ga,b(0)) = h(a) ∈ F . Donc, ga,b(h(ga,b(0))) = a et
h(ga,b(h(ga,b(0)))) = h(a) ∈ F . Mais h(gb,a(0)) = h(b) 6∈ F . D’où, gb,a(h(gb,a(0))) = a
et donc h(gb,a(h(gb,a(0)))) ∈ F . Ce qui implique que les deux états sont finaux.

2. Si 0 6∈ F :
On a alors h(ga,b(0)) = h(b) 6∈ F . Alors ga,b(h(ga,b(0))) = b et
h(ga,b(h(ga,b(0)))) = h(b) 6∈ F . Mais on a aussi h(gb,a(0)) = h(a) ∈ F . D’où,
gb,a(h(gb,a(0))) = b et donc h(gb,a(h(gb,a(0)))) 6∈ F . Ce qui implique que les deux
états ne sont pas finaux

On en déduit que les deux états ne sont pas distinguables.

Remarque 4.4.1. Le nombre de transformation ga,b est égal à 2
(
n
2

)
.

Corollaire 4.4.1. On a
sc√(n) ≤ nn −

(
n
2

)

4.4.2 Une borne inférieure

Lemme 4.4.2. Soient F={n-1}, P={(g, g′)|g 6= g′ et ∀a, b ∈ JnK, (g, g′) 6= (ga,b, gb,a)}. Pour
toute paire d’états distincts (g, g′) ∈ P , g et g′ sont distinguables dans SRoot(Monn,F ).

Démonstration. Nous allons considérer trois cas
— Supposons que g(0) = g′(0).

Alors il existe x ∈ JnK\{0} tel que g(x) 6= g′(x). Posons h(g(0)) = x. D’où, h(g(h(g(0)))) =
h(g(x)) et h(g′(h(g′(0)))) = h(g′(x)). Mais vu que g(x) 6= g′(x), il est toujours pos-
sible de choisir h tel que h(g(x)) = n− 1 alors que h(g′(x)) 6= n− 1. Donc, h ◦ g est
un état final alors que h ◦ g′ ne l’est pas.

— Supposons que g(0) 6= g′(0) et que #(Im(g)
⋃
Im(g′)) > 2.

Sans perte de généralité, supposons qu’il existe x ∈ Im(g) tel que x 6∈ {g(0), g′(0)}.
Donc les valeurs h(g(0)), h(g′(0)) et h(x) peuvent être choisies indépendamment les
unes des autres. Posons h(g(0)) = y avec g(y) = x, h(g′(0)) = 0 et h(x) = n− 1. On
obtient que h ◦ g est un état final alors que h ◦ g′ ne l’est pas.

— Supposons que g(0) 6= g′(0) et que #(Im(g)
⋃
Im(g′)) = 2.

Supposons que pour tout état non final x, nous avons g(x) 6= g(n− 1) et
g′(x) 6= g′(n− 1). Étant donné que x n’est pas final et que #(Im(g)

⋃
Im(g′)) = 2,



4.4 La racine carrée 66

on a g(x) = g(0) et g′(x) = g′(0) (rappelons que 0 n’est pas final). Ainsi, comme
g(0) 6= g′(0) ça implique g(n−1) 6= g′(n−1). Autrement dit, g = ga,b et g′ = gb,a pour
certains a, b. Par contraposition, si (g, g′) 6= (ga,b, gb,a)∀a, b alors il existe x 6= n − 1
tel que g(x) = g(n − 1) ou g′(x) = g′(n − 1). Notons m l’élément minimal de JnK
ayant cette propriété et sans perte de généralité, supposons que g(m) = g(n− 1) (en
particulier, ça signifie que pour tout p < m, g′(p) 6= g′(n − 1)). On doit considérer
deux cas :
— Si m = 0 alors on fixe h(g(0)) = n− 1 et h(g′(0)) = 0. On a alors

h(g′(h(g′(0)))) = 0. D’autre part, h(g(h(g(0)))) = h(g(n−1)) = h(g(0)) = n−1.
D’où, h ◦ g est final alors que h ◦ g′ ne l’est pas.

— Si m > 0 alors on a g(m) = g′(0) car il y a exactement deux valeurs dans l’image
de g et g′. De plus, g′(n−1) 6= g′(0) et donc g′(n−1) = g(0). Posons h(g(0)) = m
et h(g′(0)) = n− 1. On a h(g(h(g(0)))) = h(g(m)) = h(g′(0)) = n− 1. D’autre
part, h(g′(h(g′(0)))) = h(g′(n − 1)) = h(g(0)) = m 6= n − 1. Il en découle que
h ◦ g est final alors que h ◦ g′ n’est pas final.

Le théorème qui suit est une consuite directe du Corollaire 4.4.1 et du Lemme 4.4.2.

Théorème 4.4.1. On a
sc√(n) = nn −

(
n
2

)
.



Chapitre 5

Modificateurs amicaux

Dans cette section, nous allons présenter les modificateurs amicaux. Nous montrerons
qu’on peut changer chaque modificateur amical en une forme standard tout en conser-
vant l’opération qu’il décrit. Nous définirons les opérations amicales comme la composition
d’opérations booléennes et de racines. Nous verrons que chaque opération amicale est dé-
crite par un modificateur amical standard unique et que l’inverse est également vrai. Dans
le chapitre suivant, la complexité en états maximale d’opérations amicales sera détermi-
née en fonction de leur arité. Nous invitons le lecteur désireux d’en savoir plus à propos
des modificateurs amicaux à lire la thèse [9]. A titre informatif, il existe une autre classe
particulière de modificateurs, appelés modificateurs produits. Le lecteur intéressé pourra
consulter [4] et [9].

5.1 Définition
Définition 5.1.1 (modificateur amical). Un k-modificateur m=(Q,i,f,ρ) est amical si,
pour tout k-uplet d’ensembles finis Q, tout F tel que Fj ⊆ Qj∀j,∀i ∈ Q1×· · ·×Qk,∀φ, ψ ∈
QQ1

1 × · · · ×Q
Qk

k ,

ρ(i, F , (φ1 ◦ ψ1, . . . , φk ◦ ψk)) = ρ(i, F , φ) ◦ ρ(i, F , ψ)

L’idée de cette définition est que ρ est un morphisme de monoïdes par rapport à sa
troisième coordonnée.

Exemple 5.1.1. Le modificateur Comp est amical. En effet, soient Q un ensemble fini,
F⊆Q, i∈Q, φ, ψ ∈ QQ. On a

ρ(i, F, (φ ◦ ψ)) = φ ◦ ψ = ρ(i, F, φ) ◦ ρ(i, F, ψ)

67



5.2 Modificateurs amicaux standards 68

Exemple 5.1.2. Le modificateur Xor est amical. En effet, soient Q=(Q1, Q2) un 2-uple
d’ensembles finis, F tel que Fj ⊆ Qj∀j, i ∈Q, φ, ψ ∈ QQ1

1 ×Q
Q2

2 . On a

ρ(i, F , (φ1 ◦ ψ1, φ2 ◦ ψ2)) = (φ1 ◦ ψ1, φ2 ◦ ψ2)

et
ρ(i, F , φ) ◦ ρ(i, F , ψ) = φ ◦ ψ = (φ1 ◦ ψ1, φ2 ◦ ψ2)

par définition de ◦. Ainsi, on a bien

ρ(i, F , (φ1 ◦ ψ1, φ2 ◦ ψ2)) = ρ(i, F , φ) ◦ ρ(i, F , ψ)

Exemple 5.1.3. Nous allons montrer que le modificateur SRoot est amical. Soient Q un
ensemble fini, F⊆Q, i∈Q, φ, ψ ∈ QQ. On a

ρ(i, F, (φ ◦ ψ)) = g → (φ ◦ ψ) ◦ g

et on a

ρ(i, F, φ) ◦ ρ(i, F, ψ) = (g → φ ◦ g) ◦ (g → ψ ◦ g) = g → (φ ◦ ψ) ◦ g.

Ce qui permet de conclure.

Proposition 5.1.1. Les modificateurs amicaux sont stables par composition.

5.2 Modificateurs amicaux standards
A tout modificateur 1-uniforme amical est associé un modificateur amical standard qui

est un autre modificateur 1-uniforme décrivant la même opération. Nous allons voir que
toute opération décrite par un modificateur amical est également décrite par un unique
modificateur amical standard. Ainsi, un modificateur amical standard est un modificateur
de forme canonique associé à un modificateur amical 1-uniforme et décrivant la même
opération.

Définition 5.2.1 (modificateur amical standard). Un k-modificateur m=(Q,i,f,ρ) est
amical standard si

— Q(Q) =QQ1

1 × · · · ×Q
Qk

k

— i(Q, i, F) =(IdQ1 , . . . , IdQk
)

— ρ(i,F,φ)(ψ)= (φ1 ◦ ψ1, . . . , φk ◦ ψk).



5.2 Modificateurs amicaux standards 69

Il suit de cette définition qu’un modificateur amical standard est bien amical. Re-
marquons qu’un k-modificateur amical standard est entièrement défini par sa troisième
coordonnée f. On peut aisément associer un modificateur standard à tout modificateur
amical.

Notation 5.2.1. Soit m = (Q,i,f, ρ) un k-modificateur amical. Nous dénotons par msf

le k-modificateur amical standard tel que

fsf (Q, i, F ) = {φ|ρ(i, F , φ)(i(Q, i, F )) ∈ f(Q, i, F )}.

Exemple 5.2.1. Voici un rappel de l’effet du modificateur complémentaire Comp sur un
automate fini déterministe A ainsi que l’effet du modificateur complémentaire standard
Compsf sur A. Dans la troisième image, [ij] représente la fonction φ telle que φ(0) = i et
φ(1) = j.

La Figure 5.3 représente bien un modificateur amical standard car on a
— Q({0, 1})={0, 1}{0,1},
— i({0, 1}, 0, {1})=Id{0,1}=[01],
— si δ est la fonction de transition de A alors

— ρ((0, {1}, δa)([01]) = δa ◦ [01] = [10] car δa(0) = 1 et δa(1) = 0,
— ρ((0, {1}, δa)([10]) = δa ◦ [10] = [01],
— ρ((0, {1}, δa)([11]) = δa ◦ [11] = [00],
— ρ((0, {1}, δa)([00]) = δa ◦ [00] = [11].

Il en va de même pour b.

0start 1

a,b
b

a

Figure 5.1 – Automate A



5.2 Modificateurs amicaux standards 70

0start 1

a,b
b

a

Figure 5.2 – Automate Comp(A)

[01]start

[11]

[10]

[00]

ab

a

b

a

b

a,b

Figure 5.3 – Automate Compsf (A)

Lemme 5.2.1. Pour tout modificateur amical 1-uniforme m, le modificateur amical stan-
dard msf décrit la même opération que m.

Démonstration. Soit m = (Q,i,f, ρ) un modificateur amical 1-uniforme et soit A un k-
uplet d’AFDs tel que Aj=(Σ, Qj, ij, Fj, δj).

Un mot a1a2 · · · al est dans L(mA)
⇔ ρ(i, F , δa1a2···al)(i(Q, i, F )) ∈ f(Q, i, F )
⇔ (ρ(i, F , δal) ◦ ρ(i, F , δal−1) ◦ · · · ◦ ρ(i, F , δa1))(i(Q, i, F )) ∈ f(Q, i, F )

De façon équivalente,
(ρsf (i, F , δ

al) ◦ ρsf (i, F , δal−1) ◦ · · · ◦ ρsf (i, F , δa1))(IdQ1 , . . . , IdQk
) ∈ fsf (Q, i, F )

⇔ δa1a2···al ∈ fsf (Q, i, F )

Ce dernier énoncé est équivalent à a1a2 · · · al ∈ L(msfA). Donc, L(msfA) = L(mA).



5.3 Suites caractéristiques 71

Notation 5.2.2. Nous notons Mk l’ensemble des k-modificateurs amicaux standards 1-
uniformes.

5.3 Suites caractéristiques
Un modificateur amical standard (Q,i,f, ρ) est entièrement caractérisé par la relation

f. Nous allons montrer une propriété de régularité sur les états finaux d’un modificateur
amical standard 1-uniforme. Dans ce but, nous associons à chaque état de l’automate de
sortie une fonction caractéristique qui est telle que si deux états sont associés à la même
fonction caractéristique alors ils ont la même finalité. Ces fonctions caractéristiques sont
représentées par des k-uplets de suites ultimement périodiques ayant des valeurs dans {0,1}.

Définition 5.3.1 (ultimement périodique). Une suite (uj)j∈N qui a ses valeurs dans un
ensemble E est ultimement périodique si et seulement si il existe deux nombres naturels p
et N tels que pour tout n ≥ N , on a un+p = un.

Notation 5.3.1. Soit Uk l’ensemble de tous les k-uplets u où chaque uj est une suite
ultimement périodique à valeurs dans {0,1}. De plus, notons U l’ensemble

⋃
k∈N

Uk. Pour

simplifier les notations, pour tout (j,p)∈ {1, . . . , k} × N, nous identifions (uj)p à uj,p.

Définition 5.3.2 (suite caractéristique). Soit φ ∈ QQ1

1 × · · · × Q
Qk

k . Nous notons χφi,F le
k-uplet de suites u ∈ Uk où pour tout p∈ N et tout j ∈ {1, . . . , k},

uj,p =

{
1 si φpj(ij) ∈ Fj
0 sinon

avec la notation φpj = φj ◦ · · · ◦ φj (p fois).
On appelle χφi,F la suite caractéristique de φ dans la configuration d’état (Q,i,F).

Dans cette définition, φkj (ij) est ultimement périodique car φj est une fonction entre
deux ensembles finis et donc on a bien u ∈ Uk.

Exemple 5.3.1. Comme illustré dans les deux figures ci-dessous, posons
(Q1, Q2) = ({0, 1}, {0, 1}), (i1, i2) = (0, 0), (F1, F2) = ({1}, {0}), φ1(0) = 1, φ1(1) = 0,
φ1 = φ2 et u = χφ1,φ2(i1,i2),(F1,F2).



5.3 Suites caractéristiques 72

Nous avons, pour tout (j, p) ∈ {1, 2} × N, uj,p = 1 si φpj(ij) ∈ Fj c’est-à-dire si φp1(0) ∈
{1} et φp2(0) ∈ {0}. Ainsi, uj,p = 1 si et seulement si p + j est pair. En effet, on a bien
u1,2k+1 = 1∀k ∈ N car φ2k+1

1 (i1) ∈ F1. De même, on a u2,2k = 1∀k ∈ N car φ2k+2
2 (i2) ∈ F2.

0start 1

Figure 5.4 – Représentation de (Q1, i1, F1) associé à la fonction φ1

0start 1

Figure 5.5 – Représentation de (Q2, i2, F2) associé à la fonction φ2

La proposition suivante exprime le fait que les états avec la même suite caractéristique
ont la même finalité.

Proposition 5.3.1. Soit m = (Q,i,f,ρ) un k-modificateur amical standard 1-uniforme.
Soient (Q, i, F ) et (Q′, i′, F ′) deux configurations d’état, φ∈ QQ1

1 × · · · ×Q
Qk

k et

φ’ ∈ Q′Q
′
1

1 ×· · ·×Q′
Q′k
k . Si χφi,F = χ

φ′

i′,F ′ alors φ∈ f(Q, i, F ) si et seulement si φ′∈ f(Q′, i′, F ′).

Démonstration. Supposons que χφi,F = χ
φ′

i′,F ′ . Vu la symétrie entre φ et φ′, il suffit de mon-
trer que si φ ∈ f(Q, i, F ) alors φ′ ∈ f(Q′, i′, F ′). Ainsi, supposons que φ ∈ f(Q, i, F ).

Soient A et A′ deux k-uplets d’automates finis déterministes avec ∀l ∈ {1, . . . , k}
Al = ({a}, Ql, il, Fl, αl) et A′l = ({a}, Q′l, i′l, F ′l, α′l) tels que αal = φl et α′al = φ′l. Vu
que χφi,F = χ

φ′

i′,F ′ , pour tout l ∈ {1, . . . , k} φpl (il) ∈ Fl si et seulement si φ′pl (i
′
l) ∈ F ′l. De

plus, αapl = φpl et α
′ap
l = φ′pl .

Par conséquent, pour tout l ∈ {1, . . . , k}, L(Al) = L(A′l). Vu que
ρ(i, F , αa)(IdQ1 , . . . , IdQk

) = φ et φ ∈ f(Q, i, F ), on a a ∈ L(mA). De plus, m est 1-
uniforme, et donc on obtient a ∈ L(mA′). Ceci implique que
φ′ = ρ(i′, F ′, α′a)(IdQ1 , . . . , IdQk

) ∈ f(Q′, i′, F ′), ce qui permet de conclure.

Grâce à ce résultat, la troisième coordonnée d’un modificateur amical standard f peut
être représentée par un ensemble de fonctions caractéristiques. Commençons par définir une
application mod qui nous permet de calculer un k-modificateur amical standard à partir de



5.4 Opérations amicales 73

tout sous-ensemble de Uk. Nous allons voir qu’il y a en fait une correspondance entre les
modificateurs amicaux standards et les sous-ensembles de Uk.

Définition 5.3.3 (mod). Pour tout naturel k, pour tout E⊆Uk, nous désignons par mod(E)
le modificateur amical standard (Q,i,f,ρ) tel que pour toutes les configurations d’état
(Q,i,F), f(Q,i,F)={φ∈ QQ1

1 × · · · ×Q
Qk

k |χ
φ

i,F ∈ E}.

Le corollaire suivant nous dit que tout k-modificateur amical standard 1-uniforme peut
être construit de cette façon à partir d’un sous-ensemble de Uk.

Corollaire 5.3.1. L’ensemble des k-modificateurs amicaux standards 1-uniformes Mk est
un sous-ensemble de l’image de mod.

Démonstration. Soit m=(Q,i,f,ρ) un k-modificateur amical standard 1-uniforme. Soit E
l’ensemble de toutes les suites u∈Uk telles qu’il existe une configuration d’état (Q,i,F) et
φ∈ f(Q,i,F) avec χφi,F = u. Pour toute configuration d’état (Q,i,F), si φ∈ QQ1

1 × · · · ×Q
Qk

k

et χφi,F ∈ E, alors par la Proposition 5.3.1, φ ∈f(Q,i,F)={φ∈ QQ1

1 × · · · × Q
Qk

k |χ
φ

i,F ∈ E}.
Ainsi, m=mod(E).

5.4 Opérations amicales
Les exemples 5.1.2 et 5.1.3 montrent que la différence symétrique et la racine carrée

peuvent être décrits par des modificateurs amicaux et donc par des modificateurs amicaux
standards. Ces constructions s’étendent à toute opération de racine k-ème et toute opé-
ration booléenne k-aire. Ainsi, par la Proposition 5.1.1, on obtient que toute composition
d’une opération booléenne k-aire avec des racines de langages est décrite par un modifi-
cateur amical standard. Nous allons étendre la notion d’opération booléenne à une arité
infinie afin de décrire par un modificateur amical d’autres opérations telle que l’opération
Racine infinie qui est définie par Racine∞=

⋃+∞
p=1

p
√
L.

Définition 5.4.1 (opération booléenne). Une fonction booléenne est une fonction de
{0, 1}N dans {0, 1}. Chaque fonction booléenne b définit une opération booléenne �b pro-
duisant un langage lorsqu’il agit sur des suites de langages de la façon suivante : pour toute
suite de langages (Lp)p∈N, un mot w est dans �b((Lp)p∈N) si et seulement si il existe une
suite v dans {0, 1}N avec b(v) = 1 telle que, pour tout p ∈ N, w ∈ Lp si et seulement si
vp = 1.

Exemple 5.4.1. Soit la fonction booléenne b définie par : pour toute suite v dans {0,1}N,
b(v) = 1 si et seulement si soit pour tout p ∈ N vp = 1, soit pour tout p ∈ N vp = 0. Nous



5.4 Opérations amicales 74

avons pour toute suite de langages réguliers (Lp)p∈N, w ∈ �((Lp)p∈N) si et seulement si
soit pour tout p ∈ N, w ∈ Lp, soit pour tout p ∈ N, w 6∈ Lp. Cette assertion se traduit en
l’équation suivante :

�((Lp)p∈N) =
+ inf⋂
p=0

Lp ∪
+ inf⋂
p=0

LCp

Maintenant, nous pouvons définir les opérations amicales comme la composition d’une
opération booléenne avec certaines racines de langages.

Définition 5.4.2 (opération amicale). Une opération k-aire sur des langages réguliers ⊗
est amicale s’il existe une opération booléenne � telle que, pour tout k-uplet de langages
réguliers L = (L1, . . . , Lk) définis sur le même alphabet,

⊗(L) = �( 0
√
L1,

0
√
L2, . . . ,

0
√
Lk,

1
√
L1,

1
√
L2, . . . ,

1
√
Lk, . . . ,

p
√
L1,

p
√
L2, . . . ,

p
√
Lk, . . .).

Nous allons montrer qu’il y a une correspondance entre les opérations amicales, les
modificateurs amicaux standards 1-uniformes et les sous-ensembles de Uk.

Définition 5.4.3. Soit u un k-uplet de suites avec des valeurs dans {0,1}. Pour tout k-
uplet de langages réguliers L, soit < u,L > le langage

⋂
(j,p)∈{1,...,k}×N

Ej,p, où

Ej,p =

{
p
√
Lj si uj,p = 1

p
√
Lj

C si uj,p = 0.

De plus, posons < u, . > l’opération k-aire sur des langages réguliers telle que, pour tout
k-uplet de langages réguliers L, on a

< u, . > (L) =< u,L >

Exemple 5.4.2. Soit (u1, u2) ∈ U2 tel que uj,p = 1 si et seulement si p+ j est pair. Alors,
pour tous langages L1 et L2, < (u1, u2), (L1, L2) > est égal à

( 0
√
L1

C
∩ 1
√
L1∩ 2

√
L1

C
∩ 3
√
L1∩ 4

√
L1

C
∩· · · )

⋂
( 0
√
L2∩ 1

√
L2

C
∩ 2
√
L2∩ 3

√
L2

C
∩ 4
√
L2∩· · · )



5.4 Opérations amicales 75

Notation 5.4.1. Pour tout ensemble E et tout élément g d’un ensemble quelconque, on
note

[g ∈ E] =

{
1 si g ∈ E
0 sinon.

Remarque 5.4.1. On peut reformuler la Définition 5.4.3 par : pour tout naturel k, pour
tout k-uplet de langages L, et pour tout k-uplet de suites u avec des valeurs dans {0,1},
un mot w est dans < u,L > si et seulement si , pour tout (j, p) ∈ {1, . . . , k} × N,
[wp ∈ Lj] = uj,p.

Le lemme suivant prouve que, < (u1, . . . , uk), . > est l’opération constante ayant l’en-
semble vide comme sortie si (u1, . . . , uk) n’est pas dans Uk.

Lemme 5.4.1. Pour tout naturel k, si L est un k-uplet de langages réguliers, et si u est
un k-uplet de suites avec des valeurs dans {0,1} tel que < u,L >6= ∅, alors on a u ∈ Uk.

Démonstration. Soit A un k-uplet d’AFD avec Aj = (Σ, Qj, ij, δj) tel que, pour tout
j ∈ {1, . . . , k}, L(Aj) = Lj. On a wp ∈ Lj si et seulement si (δwj )p(ij) ∈ Fj. Ainsi, s’il
existe un mot w et un k-uplet de suites v avec des valeurs dans {0,1} tel que, pour tout
(j, p) ∈ {1, . . . , k} × N, on a [wp ∈ Lj] = vj,p, alors [(δwj )p ∈ Fj] = vj,p ce qui implique que
(vj,p)p∈N est ultimement périodique.

Pour résumer, si

{w ∈ Σ∗|∀(j, p) ∈ {1, . . . , k} × N, [wp ∈ Lj] = vj,p} 6= ∅,

alors v ∈ Uk. On conclut par la Remarque 5.4.1

Notation 5.4.2. Nous désignons par Ok l’ensemble des opérations amicales k-aires.

Définition 5.4.4 (op). Soit op l’application de 2Uk dans Ok telle que, pour tout E ⊆ Uk,
op(E) représente l’opération amicale k-aire

⋃
u∈E

< u, . >.

Proposition 5.4.1. Toute composition finie de racines, unions, intersections et complé-
ments agit sur les langages réguliers comme un opérateur op(E) pour un E ∈ 2Uk .



5.4 Opérations amicales 76

Démonstration. Soit L un langage régulier. Nous définissons pour tout mot w, la suite
u(w) = (ui(w))i∈N telle que ui(w) = 1 si wi ∈ L et 0 sinon. Vu que l’ensemble des quotients
(wi)−1L est fini, la suite ((wi)−1L)i∈N est ultimement périodique et donc la suite u(w) est
aussi ultimement périodique.

Par conséquent, op({u ∈ U1|uj = 1})(L) = j
√
L pour tout langage régulier L. En effet,

si w ∈ j
√
L alors u(w) est ultimement périodique et uj(w) = 1. De plus, vu la construction,

w ∈< u(w), L >.

De la même façon,

op({u ∈ U1|u1 = 0})(L) = LC , op({(u, v) ∈ U2|u1 = 1 et v1 = 1})(L1, L2) = L1 ∩ L2

et
op({(u, v) ∈ U2|u1 = 1 ou v1 = 1})(L1, L2) = L1 ∪ L2.

En itérant ces constructions, tout opérateur k-aire qui est une combinaison de j
√, com-

pléments, union, intersections peut être simulé sur des langages réguliers par l’action d’un
opérateur op(E) pour E ∈ 2Uk .

Exemple 5.4.3. Si L1, L2 et L3 sont des langages réguliers alors

( i
√
L1 ∪ L2) ∩ L3

C = op((u, v, w) ∈ U3|(ui = 1 ou v1 = 1 et w1 = 0})(L1, L2, L3).

Remarque 5.4.2. Lorsque l’opérateur op({u ∈ U1|uj = 1}) agit sur 2Σ∗ , il est distinct de
j
√
L. Par contre, les deux opérateurs coïncident lorsqu’ils agissent sur des langages réguliers.

Le lemme qui suit prouve qu’il y a une correspondance entre les sous-ensembles de Uk
et les opérations amicales k-aires.

Lemme 5.4.2. L’application op est bijective

Démonstration. Commençons par montrer que l’application op est surjective.
Soit Vk = ({0, 1}N)k l’ensemble de tous les k-uplets de suites avec des valeurs dans {0, 1}.
Soit ⊗ une opération k-aire amicale et �b une opération booléenne telle que, pour tout
k-uplet de langages réguliers L,

⊗ = �b(
0
√
L1, . . . ,

0
√
Lk,

1
√
L1, . . . ,

1
√
L1, . . . ,

p
√
L1, . . . ,

p
√
Lk, . . .).



5.4 Opérations amicales 77

Soient E = {u ∈ Uk|b(u1,0, . . . , uk,0, u1,1, . . . , uk,1, . . . , u1,p, . . . , uk,p, . . .) = 1} et
E ′ = {v ∈ Vk|b(v1,0, . . . , vk,0, v1,1, . . . , vk,1, . . . , v1,p, . . . , vk,p, . . .) = 1}.

Vérifions que ⊗(L) = (op(E))(L). Pour tout k-uplet de langages réguliers L, nous avons

⊗(L) =
⋃
v∈E′
{w ∈ Σ∗|∀(j, p) ∈ {1, . . . , k} × N, w ∈ p

√
Lj ⇔ vj,p = 1}

Montrons que l’union ci-dessus ne fait intervenir que des suites ultimement périodiques.
Si A est un k-uplet d’AFD avec Aj = (Σ, Qj, ij, Fj, δj) tel que, pour tout j ∈ {1, . . . , k},
L(Aj) = Lj, alors w ∈ p

√
Lj si et seulement si (δwj )p(ij) ∈ Fj. Ainsi, s’il existe un mot w

et un k-uplet de suites v ∈ Vk tels que, pour tout (j, p) ∈ {1, . . . , k} × N, w ∈ p
√
Lj si et

seulement si vj,p = 1, alors (δwj )p(ij) ∈ Fj si et seulement si vj,p = 1, ce qui implique que
(vj,p)p∈N est ultimement périodique.

Pour résumer, si {w ∈ Σ∗|∀(j, p) ∈ {1, . . . , k} × N, w ∈ p
√
Lj ⇔ vj,p = 1} 6= ∅, alors

v ∈ Uk.
Nous avons donc

⊗(L) =
⋃
u∈E

{w ∈ Σ∗|∀(j, p) ∈ {1, . . . , k} × N, w ∈ p
√
Lj ⇔ uj,p = 1}

=
⋃
u∈E

< u,L >

=(op(E))(L)

Maintenant, montrons que op est injectif.
SoientE,E ′ ⊆ Uk et u ∈ Uk tel que u ∈ E et u 6∈ E ′. Vu que, pour tout j ∈ {1, . . . , k}(uj,l)l∈N
est ultimement périodique, les langages Lj = {ap|p ∈ N∧uj,p = 1} sont réguliers.

Nous avons a ∈ p
√
Lj si et seulement si uj,p = 1. Ainsi, par la Définition 5.4.3, pour tout

u′ ∈ Uk, a ∈< u′, L > si et seulement si u′ = u. Il suit que si ⊗ = op(E) et ⊗′ = op(E ′),
alors a ∈ ⊗L parce que u ∈ E\E ′. Par conséquent, ⊗ 6= ⊗′ et op est injectif.

Exemple 5.4.4. Pour tout langage régulier L, nous avons

Root(L) = op({u ∈ U1|∃i > 0 tel que ui = 1})(L) =
⋃
i≥1

i
√
L.

Le lemme suivant montre que toute opération qui est décrite par un modificateur amical
est amicale.



5.4 Opérations amicales 78

Lemme 5.4.3. Soit E ⊆ Uk, mod(E) décrit op(E).

Démonstration. Soit m = mod(E) avec m = (Q,i,f, ρ) et soit ⊗ l’opération décrite par m.
Soit A un k-uplet d’AFD avec Aj = (Σ, Q, i, F , δ). Un mot a1 · · · an est dans L(mA) si et
seulement si

δa1···an = (ρ(i, F , δan) ◦ ρ(i, F , δan−1) ◦ · · · ◦ ρ(i, F , δa1)(IdQ1 , . . . , IdQK
) ∈ f(Q, i, F ).

De façon équivalente, par la Définition 5.3.3, χδ
a1···an

i,F ∈ E.

Cependant, par la Définition 5.3.2, χδ
a1···an

i,F est la seule fonction u dans E telle que, pour
tout (p, j) ∈ N×{1, . . . , k}, (δa1···anj )p(ij) ∈ Fj si et seulement si u(p,j) = 1. Ainsi, par la
Définition 5.4.3, a1 · · · an ∈ L(m(A1, . . . , Ak)) si et seulement si il existe u dans E tel que
a1 · · · an ∈< u,L >. Nous avons donc

⊗(L(A1), . . . , L(Ak)) =
⋃
u∈E

< u, (L(A1), . . . , L(Ak)) > et ⊗ = op(E).

Notation 5.4.3. Pour tout modificateur m 1-uniforme k-aire, notons desc l’application
de Mk dans Ok telle que desc(m) est l’opération 1-uniforme régulière décrite par m.

Dans la prochaine proposition, nous allons obtenir le résultat important suivant : Toutes
les applications représentées sur la figure ci-dessous sont des bijections et ce diagramme
est commutatif.

Mk

2Uk

Ok
desc

opmod

Figure 5.6 – Diagramme commutatif pour op, mod et desc

Proposition 5.4.2. L’application mod est une bijection de 2Uk dans Mk, et op et desc sont
bijectifs. De plus, desc ◦ mod = op.

Démonstration. Nous savons déjà que l’opération op est une bijection par le Lemme 5.4.2.
De plus, le Lemme 5.4.3 montre qu’un k-modificateur amical standard dans l’image de
2Uk par mod est 1-uniforme. Ainsi, par le Corollaire 5.3.1, mod est une surjection de 2Uk



5.4 Opérations amicales 79

dans l’ensemble des k-modificateurs amicaux standards 1-uniformes. Par le Lemme 5.4.3,
l’image de Mk par desc est un sous-ensemble de Ok. Le Lemme 5.4.3 prouve aussi que
desc ◦ mod = op. Par conséquent, desc ◦ mod est une bijection, et le fait que mod est une
surjection implique que desc et mod sont des bijections.

Théorème 5.4.1. Chaque opération k-aire amicale est décrite par un k-modificateur ami-
cal standard 1-uniforme unique. Inversément, tout k-modificateur amical 1-uniforme décrit
une opération k-aire amicale.



Chapitre 6

Complexité en états d’opérations
amicales

Notre construction de modificateurs amicaux standards (Définition 5.2.1) nous donne
une borne supérieure qui est telle que sc⊗(n) ≤ nn, pour toute opération amicale unaire
⊗. On a utilisé cette information dans la Section 4.4 et on a vu que la complexité en états

de l’opération racine carrée est sc√(n) = nn −
(
n
2

)
, et qu’elle est égale à la complexité en

états de l’opération Racine. Ceci nous amène à nous demander si la complexité en états
d’une opération amicale unaire atteint la borne nn et sinon, si on peut donner une borne
serrée explicite. Des questions similaires découlent pour le cas général d’opérations amicales
k-aires avec la borne supérieure sc⊗(n1, . . . , nk) ≤

∏k
j=1 n

nj

j déduite de la Définition 5.2.1.
Les preuves de ce chapitre proviennent de [9].

6.1 Le cas unaire
Nous allons montrer que la borne nn n’est pas serrée pour la complexité en états d’opé-

rations amicales unaires et nous donnerons une borne serrée explicite. Commençons par
montrer que cette complexité en états est au plus nn − n+ 1.

Proposition 6.1.1. Pour tout naturel n et toute opération amicale unaire ⊗, on a sc⊗(n)≤
nn − n+ 1.

Démonstration. Considérons un sous-ensemble E ⊆ U1. Soient ⊗=op(E) et m=mod(E).
Soit A=(Σ, Q, i, F, α) un AFD de taille n ∈ N \{0}. Pour tous s, t ∈ Q, posons gs,t la
fonction de QQ telle que

gs,t(j) =

{
s si j ∈ F
t sinon.

et par G l’ensemble de toutes les fonctions gs,t, pour s, t ∈ Q. De plus, soient
— 0 la suite (0, 0, . . .) de U1

80



6.1 Le cas unaire 81

— 01 la suite (0, 1, 1, . . . , 1, . . .)

— impair la suite (0, 1, 0, 1, . . . ,n mod 2, . . .)

— pair la suite (1, 0, 1, 0, . . . ,(n+1) mod 2, . . .).

Il suit de la définition de gs,t, que pour tout ζ ∈ QQ et pour tout gs,t ∈ G, on a
ζ ◦ gs,t = gζ(s),ζ(t) et ainsi nous disons que G est stable par composition externe.

Nous allons montrer que sc(L(m(A))) est au plus nn − n + 1 en étudiant la relation
d’équivalence de Nérode induite par A. On va distinguer deux cas principaux, i ∈ F et
i 6∈ F .

Supposons que i 6∈ F . On a
— Si t, s ∈ F , alors on a

— g0
s,t(i) = i 6∈ F

— gs,t(i) = t ∈ F
— g2

s,t(i) = gs,t(t) = s ∈ F
— · · ·

D’où, χgs,ti,F = 01.

— Si t ∈ F, s 6∈ F , alors on a
— g0

s,t(i) = i 6∈ F
— gs,t(i) = t ∈ F
— g2

s,t(i) = gs,t(t) = s 6∈ F
— · · ·

D’où, χgs,ti,F = impair.

— Si t, s 6∈ F , alors on a
— g0

s,t(i) = i 6∈ F
— gs,t(i) = t 6∈ F
— g2

s,t(i) = gs,t(t) = t 6∈ F
— · · ·

D’où, χgs,ti,F = 0.

En résumé, on a
— si t ∈ F

— si s ∈ F , alors on a χgs,ti,F = 01



6.1 Le cas unaire 82

— sinon on a χgs,ti,F =impair

— sinon χgs,ti,F = 0

Soit E1 = {0, 01, impair} ∩ E et E2 = {0, 01, impair}\E1.

On distingue les cas suivants :

— Si #E1 = 0, alors pour tous s, t ∈ Q, vu que χgs,ti,F 6∈ E, l’état gs,t n’est pas final dans
m(A). Vu que G est stable par composition externe, tous les états dans G sont dans
la même classe d’équivalence de Nérode. Par conséquent,

sc(L(m(A))) ≤ nn − n2 + 1 ≤ nn − n+ 1.

— Si #E1 = 3, alors pour tous s, t ∈ Q,vu que χgs,ti,F ∈ E, l’état gs,t est final dans m(A).
Vu que G est stable par composition externe, tous les états dans G sont dans la même
classe d’équivalence de Nérode. Par conséquent,

sc(L(m(A))) ≤ nn − n2 + 1 ≤ nn − n+ 1.

— Sinon si #E1 = 1 (respectivement #E1 = 2), alors nous notons u l’unique élément
de #E1 (respectivement un élément de #E2).
— Supposons que u = impair. Pour tout entier positif p et tous états s, q ∈ Q,

gps,s(q) = gs,s(q). Donc, pour tout s ∈ Q, on a χgs,si,F ∈ {0, 01}. Ainsi, la stabilité
de G par composition externe implique que deux états gs,s et gs′,s′ avec s, s′ ∈ Q,
ne sont pas distinguables dans m(A), pour tous s, s′ ∈ Q. Par conséquent,

sc(L(m(A))) ≤ nn − n+ 1.

— Supposons que u = 01 et soient s, t deux éléments de Q. Si χgs,ti,F = 01, alors
t, s ∈ F , ce qui implique que χgt,si,F = 01. De même, si χgt,si,F = 01, alors χgs,ti,F = 01.
Ainsi, χgs,ti,F = 01 si et seulement si χgt,si,F = 01. Donc, la stabilité de G par com-
position externe implique que les deux états gs,t et gt,s ne sont pas distinguables
pour tous s, t ∈ Q. Par conséquent, on a

sc(L(m(A))) ≤ nn − 1

2
n(n− 1) ≤ nn − n+ 1.



6.1 Le cas unaire 83

— Finalement, supposons que u = 0, et soient s, s′, t trois éléments de Q. Si
χ
gs,t
i,F = 0, alors t 6∈ F , ce qui implique que χ

gs′,t
i,F = 0. De même, χ

gs′,t
i,F = 0

implique que χgs,ti,F = 0. Ainsi, χgs,ti,F = 0 si et seulement si χ
gs′,t
i,F = 0. Donc, la

stabilité de G par composition externe implique que les deux états gs,t et gs′,t
ne sont pas distinguables dans m(A), pour tous s, s′ ∈ Q. Par conséquent, on a

sc(L(m(A))) ≤ nn − n(n− 1) ≤ nn − n+ 1.

Le cas i ∈ F est symétrique au cas i 6∈ F de la façon suivante : on remplace dans la
preuve toutes les occurrences de

— s ∈ F par t 6∈ F ,
— de s 6∈ F par t ∈ F ,
— de t ∈ F par s 6∈ F ,
— de t 6∈ F par s ∈ F ,
— de 0 par (1, 1, . . .),

— de 01 par (1, 0, 0, . . . , 0, . . .),

— de impair par (1, 0, 1, 0, . . . , (n+ 1) mod 2, . . .).

De plus, dans le cas de u = (1, 1, . . .), c’est la finalité de gs,t et gs,t′ qui est la même.

Pour résumer, dans tous les cas, on a sc(L(m(A))) ≤ nn−n+1. Ainsi, sc⊗(n) ≤ nn−n+1
pour toute opération amicale unaire ⊗.

Nous allons montrer que cette borne est serrée pour ~1 = op({0, 01}), où 0 = (0, 0, . . .)
et 01 = (0, 1, 1, . . . , 1, . . .). Remarquons que pour tout langage régulier L sur un alphabet
Σ, si ε 6∈ L, alors on a

~1(L) = {w ∈ Σ∗|w 6∈ k
√
L pour tout k > 0} ∪ {w ∈ Σ∗|w ∈ k

√
L, pour tout k > 0}.

En effet, on a

op({0, 01})(L) = < 0, L > ∪ < 01, L >

=(
⋂
p>0

(
p
√
L)C) ∪ (

⋂
p>0

p
√
L)

={w ∈ Σ∗|w 6∈ k
√
L pour tout k > 0} ∪ {w ∈ Σ∗|w ∈ k

√
L, pour tout k > 0}.

Par contre, si ε ∈ L, alors on a
~1(L) = ∅.



6.1 Le cas unaire 84

En effet, on a

op({0, 01})(L) = < 0, L > ∪ < 01, L >

=(
⋂
p∈N

(
p
√
L)C) ∪ ((

0
√
L)C ∩ (

⋂
p≥1

p
√
L))

=((
0
√
L)C ∩ (

⋂
p≥1

p
√
L)C) ∪ ((

0
√
L)C ∩ (

⋂
p≥1

p
√
L))

=(∅ ∩ (
⋂
p≥1

p
√
L)C) ∪ (∅ ∩ (

⋂
p≥1

p
√
L))

=∅.

Notation 6.1.1. Soient w1=mod({0,01}) et An l’AFD w1(Monn), pour tout entier n.

On détermine une borne inférieure pour la complexité en états de ~1 en calculant l’AFD
minimal équivalent à An. Rappelons, par les Définition 3.1.1, Définition 5.2.1 et Définition
5.3.3, que l’alphabet de An est Γn=JnKJnK, que son ensemble d’états est aussi JnKJnK, et que
chaque état φ de An est accessible à partir de son état initiale IdJnK en lisant la lettre φ.

Notation 6.1.2. Pour toute fonction φ ∈ JnKJnK, posons κ(φ) la suite caractéristique
χφ0,{n−1}.

Afin de calculer l’équivalence de Nérode induite par An, nous montrons le résultat sui-
vant.

Lemme 6.1.1. Pour tout naturel n, et pour toutes fonctions distinctes φ, ψ ∈ JnKJnK telles
que ψ n’est pas constante, il existe ζ ∈ JnKJnK tel que κ(ζ ◦ φ) ∈ {0, 01} si et seulement si
κ(ζ ◦ ψ) 6∈ {0, 01}.

Démonstration. On va considérer deux cas principaux : φ(0) 6= ψ(0) et φ(0) = ψ(0).
— Supposons que φ(0) 6= ψ(0). Si ψ(0) 6= ψ(n− 1), alors on fixe

ζ(φ(0)) = ζ(ψ(n− 1)) = 0 et ζ(ψ(0)) = n− 1,

et ceci implique κ(ζ ◦φ) = 0 et κ(ζ ◦ψ) = (0, 1, 0, . . .) 6∈ {0, 01}. De façon symétrique,
si φ(0) 6= φ(n− 1) alors on obtient le même résultat en permutant le rôle de ψ et φ
dans le cas précédent. Maintenant, supposons que φ(0) = φ(n−1) et ψ(0) = ψ(n−1).
Vu que ψ n’est pas constant, il existe i ≥ 1 tel que ψ(n − 1) 6= ψ(i). Nous fixons
ζ(φ(0)) = ζ(φ(i)) = n − 1 et ζ(ψ(0)) = i, ce qui implique que κ(ζ ◦ φ) = 01 et
κ(ζ ◦ ψ) = (0, 0, 1, . . .) 6∈ {0, 01}.



6.2 Le cas général 85

— Supposons que φ(0) = ψ(0). Alors il existe j > 0 tel que φ(j) 6= ψ(j). On a
φ(j) 6= φ(0) ou ψ(j) 6= ψ(0). Supposons que φ(j) 6= φ(0) (l’autre cas peut être traité
de la même manière). Si j < n− 1, alors on fixe

ζ(φ(0)) = ζ(ψ(j)) = j et ζ(φ(j)) = n− 1.

Dans ce cas, on a κ(ζ ◦φ) = (0, 0, 1, . . .) 6∈ {0, 01} et κ(ζ ◦ψ) = 0. Sinon si j = n− 1,
alors nous posons ζ(φ(0)) = ζ(ψ(n− 1)) = n− 1 et ζ(φ(n− 1)) = 0, ce qui implique
que κ(ζ ◦ φ) = (0, 1, 0, . . .) 6∈ {0, 01} et κ(ζ ◦ φ) = 01. Ce qui permet de conclure la
preuve.

Par la Définition 5.3.3, le lemme ci-dessus, implique que deux états distincts de An, tels
qu’au moins un d’eux est non constant, sont distinguables. Ainsi, tout état non constant
est distinguable de tout autre état et la taille de l’ADF minimal équivalent à An est au
moins égale à la cardinalité de l’ensemble de toutes les fonctions sur JnK qui ne sont pas
constantes. Donc, pour tout n ∈ N0, la taille du AFD minimal équivalent à An est au
moins nn − n+ 1. Ainsi, on a sc~1(n) ≥ nn − n+ 1, pour tout naturel n. Par conséquent,
vu la Proposition 6.1.1, on a sc~1(n) = nn − n+ 1 pour tout naturel n. On a donc prouvé
le théorème suivant.

Théorème 6.1.1. Pour tout naturel n et pour toute opération amicale ⊗,
sc⊗(n) ≤ nn − n+ 1, et la borne est serrée pour ~1, c’est-à-dire sc~1(n) = nn − n+ 1. De
plus, L(Monn) est un témoin de ~1.

6.2 Le cas général
Contrairement au cas unaire, il y a des opérations amicales dont la complexité en états

atteint la borne supérieure
∏k

j=1 n
nj

j . On suppose que k ≥ 2, et soit ~k l’opération k-aire
op(Ek), où Ek={0, 01}\{(0, . . . , 0)}. Pour tout k-uplet de naturels n, posons An l’AFD
~k(Monn,{n1−1},...,{nk−1}). De plus, pour tout k-uplet de fonctions φ, avec φj ∈ JnjKJnjK

pour tout j ∈ {1, . . . , k}, on pose κ(φ) la suite caractéristique

χ
(φ1,...,φk)
(0,...,0),({n1−1},...,{nk−1}).

Théorème 6.2.1. Pour tout naturel k ≥ 2 et pour tout k-uplet de naturels n, on a
sc~k

(n) =
∏k

j=1 n
nj

j . De plus, sc~k
(L(An)) =

∏k
j=1 n

nj

j , c’est-à-dire (L(M1), . . . , L(Mk)) est
un témoin pour ~k, où (M1, . . . ,Mk) = Monn,({n1−1},...,{nk−1}).



6.2 Le cas général 86

Démonstration. Cette preuve est inspirée du cas unaire. Soit k un naturel tel que k ≥ 2,
et soit n un k-uplet de naturels. De plus, soit φ et ψ deux k-uplets de fonctions, avec
φj, ψj ∈ JnjKJnjK pour tout j ∈ {1, . . . , k}, tels que φ 6= ψ. Nous allons montrer qu’il existe
(ζ1, . . . , ζk), avec ζj ∈ JnjKJnjK pour tout j ∈ {1, . . . , k}, tel que κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) 6∈ Ek.

Soit l tel que φl 6= ψl. On considère deux cas.
— Si φl et ψl sont des fonctions constantes, alors posons ζl toute fonction sur JnlK telle

que ζl(φ(0)) = 0 et ζl(ψ(0)) = nl − 1. De plus, pour tous j 6= l, nous posons ζj la
fonction constante envoyant tout élément sur 0. On a

κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) = (0, . . . , 0) 6∈ Ek,

et
κ(ζ1 ◦ ψ1, . . . , ζk ◦ ψk) = (u1, . . . , uk) ∈ Ek, où uj =

{
0 si j 6= l
01 sij = l

— Si une des fonctions φl et ψl n’est pas constante, alors on peut supposer que ψl n’est
pas constante (l’autre cas étant symétrique). Ainsi, par le Lemme 6.1.1, il existe une
fonction ζl sur JnlK telle que κ(ζl ◦φl) ∈ {0, 01} si et seulement si κ(ζl ◦ψl) 6∈ {0, 01}.
On suppose que κ(ζl ◦φl) ∈ {0, 01} (l’autre cas étant symétrique). De plus, pour tout
j ∈ {1, . . . , k} avec j 6= l, nous posons ζj la fonction constante envoyant tout élément
sur nj − 1. On a

κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) = (01, . . . , 01, κ(ζl ◦ ψl), 01, . . . , 01) 6∈ Ek,

vu que κ(ζl ◦ ψl) 6∈ {0, 01}. De plus, on a

κ(ζ1 ◦ φ1, . . . , ζk ◦ φk) = (01, . . . , 01, κ(ζl ◦ φl), 01, . . . , 01) ∈ Ek,

vu que κ(ζl ◦ φl) ∈ {0, 01}.
Par conséquent, dans les deux cas, il existe (ζ1, . . . , ζk), avec ζj ∈ JnjKJnjK pour tout j ∈
{1, . . . , k}, tel que κ(ζ1 ◦φ1, . . . , ζk ◦φk) ∈ Ek si et seulement si κ(ζ1 ◦ψ1, . . . , ζk ◦ψk) 6∈ Ek.
On conclut grâce aux définitions 3.1.1, 5.2.1 et 5.3.3.



Annexe



Annexe A

Exemples d’applications de
modificateurs

Exemple A.0.1 (modificateur intersection). SoitA1 = (Σ, Q1, i1, F1, δ1) etA2 = (Σ, Q2, i2, F2, δ2)
deux AFDs représentés aux Figures A.1 et A.2 qui sont tels que Σ = {a, b}, Q1 = {0, 1}, i1 =
0, F1 = {1} et Q2 = {0, 1}, i2 = 0, F2 = {1}. Remarquons que le langage accepté par A1

est (a+ b)b∗(a(a+ b)b∗)∗ et celui accepté par A2 est b∗aa∗(bb∗aa∗)∗.

0start 1

a,b
b

a

Figure A.1 – AFD A1

0start 1

a
b a

b

Figure A.2 – AFD A2

En appliquant le modificateur intersection à ces automates, nous obtenons l’automate
Inter(A1, A2) représenté à la Figure A.3. En effet, on a

— Q(Q1, Q2) = Q1 ×Q2 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}
— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2) = (0, 0)

— f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × F2 = {1} × {1} = (1, 1)

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)

Le langage accepté par Inter(A1, A2) est (a+ bb∗a(ba)∗a)((bb∗a(ba)∗a)∗(aa)∗)∗.

Exemple A.0.2 (modificateur xor). Soit A1 = (Σ, Q1, i1, F1, δ1) et A2 = (Σ, Q2, i2, F2, δ2)
les deux automates définis précédemment et représentés aux Figures A.1 et A.2.

88



ANNEXE A. EXEMPLES D’APPLICATIONS DE MODIFICATEURS 89

(0,0)start (1,0)

(1,1) (0,1)

b

a a

b

a

b

a

b

Figure A.3 – Automate Inter(A1, A2)

En appliquant le modificateur xor à ces automates, nous obtenons l’automate Xor(A1, A2)
représenté à la Figure A.4. En effet, on a

— Q(Q1, Q2) = Q1 ×Q2 = {0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}
— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, i2) = (0, 0)

— f((Q1, Q2), (i1, i2), (F1, F2)) = F1 × (Q2\F2) ∪ (Q1\F1)× F2

= {1} × ({0, 1}\{1}) ∪ ({0, 1}\{1})× {1}
= {1} × {0} ∪ {0} × {1}
= {(1, 0), (0, 1)}

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2)) = (δa1 , δ

a
2)

(0,0)start (1,0)

(1,1) (0,1)

b

a a

b

a

b

a

b

Figure A.4 – Automate Xor(A1, A2)



ANNEXE A. EXEMPLES D’APPLICATIONS DE MODIFICATEURS 90

Exemple A.0.3 (modificateur concaténation). SoitA1 = (Σ, Q1, i1, F1, δ1) etA2 = (Σ, Q2, i2, F2, δ2)
les deux automates définis précédemment et représentés aux Figures A.1 et A.2.

En appliquant le modificateur concaténation à ces automates, nous obtenons l’automate
Conc(A1, A2) représenté à la Figure A.5. En effet, on a

— Q(Q1, Q2) = Q1 × 2Q2

= {0, 1} × 2{0,1}

= {0, 1} × {∅, {0}, {1}, {0, 1}}
= {(0, ∅), (1, ∅), (0, {0}), (1, {0}), (0, {1}), (1, {1}), (0, {0, 1}), (1, {0, 1})}

— i((Q1, Q2), (i1, i2), (F1, F2)) = (i1, ∅) = (0, ∅) car i1 6∈ F1

— f((Q1, Q2), (i1, i2), (F1, F2)) = {(q1, E) ∈ Q1 × 2Q2|E ∩ F2 6= ∅}
= {(q1, E) ∈ {0, 1} × 2{0,1}|E ∩ {1} 6= ∅}
= {(0, {1}), (1, {1}), (0, {0, 1}), (1, {0, 1})}

— On a par example :
— ρ((i1, i2), (F1, F2), (δa1 , δ

a
2))(0, ∅) = (1, {∅, 0}) = (1, {0}) car δ1(0) ∈ F1

— ρ((i1, i2), (F1, F2), (δa1 , δ
a
2))(1, {1}) = (0, {1}) car δ1(1) 6∈ F1

— · · ·

(0,∅)start

(1,∅)

(1,{0})

(1,{1})

(0,{1})

(0,{0, 1}) (0,{0})

(1,{0, 1})

a
b ab

a

b

a

b

a
b

a

b

a

b

a,b

Figure A.5 – Automate Conc(A1, A2)



ANNEXE A. EXEMPLES D’APPLICATIONS DE MODIFICATEURS 91

Si on retire les états inutiles, l’automate Conc(A1, A2) se représente tel qu’à la Figure
A.6. On peut vérifier que le langage accepté par cet automate est bien

(a+ b)b∗(a(a+ b)b∗)∗b∗aa∗(bb∗aa∗)∗.

(0,∅)start (1,{0}) (0,{1})

(1,{0, 1})

a

b

a

b

ab

a,b

Figure A.6 – Automate Conc(A1, A2) simplifié

Exemple A.0.4 (modificateur préfine). Soit A1 = (Σ, Q1, i1, F1, δ1) un AFD représenté à
la Figure A.7 qui est tel que Σ = {a, b}, Q1 = {0, 1, 2}, i1 = 0, F1 = {1, 2}. Remarquons
que le langage accepté par cet automate est

b∗aa∗((b(a+ b)b∗a)∗ + (b(a+ b)b∗a)∗b).

En appliquant le modificateur préfine à cet automate, nous obtenons l’automate Prefin(A1)
représenté à la Figure A.8. En effet, on a

— Q(Q1) = Q1 = {0, 1, 2}
— i(Q1, i1, F1) = i1 = 0

— f(Q1, i1, F1) = F1 = {1, 2}
— On a par exemple :

— ρa(0) = δa1(0) = 1 car 0 6∈ F1

— ρa(1) = 1 car 1 ∈ F1



ANNEXE A. EXEMPLES D’APPLICATIONS DE MODIFICATEURS 92

0start 1

2

b

a

b

a

a,b

Figure A.7 – Automate A1

0start 1 2

b

a

a,b a,b

Figure A.8 – Automate Prefin(A1)

— · · ·

En retirant l’état inutile, Prefin(A1) est tel que représenté par la Figure A.9. Le langage
accepté par cet automate est

b∗a(a+ b)∗.

0start 1

b

a

a,b

Figure A.9 – Automate Prefin(A1) simplifié

Exemple A.0.5 (modificateur racine). Soit A1 = (Σ, Q1, i1, F1, δ1) un AFD représenté à
la Figure A.10 qui est tel que Σ = {a, b}, Q1 = {0, 1}, i1 = 0, F1 = {1}.

En appliquant le modificateur racine à cet automate, nous obtenons l’automate Root(A1)
représenté à la Figure A.11. Supposons que [ij] représente la fonction φ telle que φ(0) = i
et φ(1) = j. On a



ANNEXE A. EXEMPLES D’APPLICATIONS DE MODIFICATEURS 93

0start 1

a,b
b

a

Figure A.10 – Automate A1

— Q(Q1) = QQ1

1 = {0, 1}{0,1}

— i(Q1, i1, F1) = Id = [01]

— f(Q1, i1, F1) = {g|g2(i1) ∈ F1} = [11]

— ρ(i1, F1, δ
a
1) = g → (δa1 ◦ g)

étant donné que [10] représente φ(0) = 1 et φ(1) = 0 et que
— δa1(φ(0)) = δa1(1) = 0

— δa1(φ(1)) = δa1(0) = 1

alors on a ρa([10]) = [01].
On a aussi
— δb1(φ(0)) = δb1(1) = 1

— δb1(φ(1)) = δb1(0) = 1

d’où, ρb([10]) = [11].
Il en va de même pour les autres transitions.

[01]start

[11]

[10]

[00]

ab

a

b

a

b

a,b

Figure A.11 – Automate Root(A1)



Bibliographie

[1] Pascal Caron, Edwin Hamel-de le Court et Jean-Gabriel Luque : Algebraic and
combinatorial tools for state complexity : Application to the star-xor problem. Electro-
nic proceedings in theoretical computer science, 305(Proc. GandALF 2019):154–168,
2019.

[2] Pascal Caron, Edwin Hamel-De le court, Jean-Gabriel Luque et Bruno Patrou :
New tools for state complexity. 2018.

[3] Pascal Caron, Edwin Hamel-de-le court et Jean-Gabriel Luque : The state com-
plexity of a class of operations involving roots and boolean operations. 2020.

[4] Pascal Caron, Edwin Hamel-de-le court et Jean-Gabriel Luque : A study of a
simple class of modifiers : Product modifiers. In Developments in Language Theory,
Lecture Notes in Computer Science, pages 110–121. Springer International Publishing,
Cham, 2020.

[5] Sylvie Davies : A general approach to state complexity of operations : Formalization
and limitations. In Developments in Language Theory, Lecture Notes in Computer
Science, pages 256–268. Springer International Publishing, Cham, 2018.

[6] Yuan Gao, Nelma Moreira, Rogerio Reis et Sheng Yu : A survey on operational
state complexity. 2015.

[7] Yuan Gao et Sheng Yu : State complexity of four combined operations composed of
union, intersection, star and reversal. In Descriptional Complexity of Formal Systems,
Lecture Notes in Computer Science, pages 158–171. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[8] Yuan Gao et Sheng Yu : State complexity of union and intersection combined with
star and reversal. 2010.

[9] Edwin Hamel-De le court : An algebraic theory for state complexity. Thèse de
doctorat, Normandie Université, 2020.

[10] Jozef Jirasek, Galina Jiraskova et Alexander Szabari : State complexity of conca-
tenation and complementation of regular languages. In Implementation and Applica-
tion of Automata, Lecture Notes in Computer Science, pages 178–189. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[11] Galina Jiraskova et Alexander Okhotin : On the state complexity of star of union
and star of intersection. Fundamenta informaticae, 109(2):161–178, 2011.

94



BIBLIOGRAPHIE 95

[12] A. N. Maslov : Estimates of the number of states of finite automata. Sov. Math.,
Dokl., 11:1373–1375, 1970.

[13] Michel Rigo : Théorie des automates et langages formels. Université de Liège, n
édition, 2009-2010.

[14] Sheng Yu : State complexity of regular languages. 2000.
[15] Sheng Yu, Qingyu Zhuang et Kai Salomaa : The state complexities of some basic

operations on regular languages. Theoretical computer science, 125(2):315–328, 1994.


