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Introduction

Gravitational waves have long been a mere prediction of general relativity as an oscillation
of spacetime that propagates through it, until their indirect detection from a pulsar binary
by Hulse and Taylor [1] in 1974 that was thought to lose energy through gravitational
radiation [2]. One will have to wait until 2015 to see the first direct detection of a gravitational
wave: GW150914 [3]. Since then, 90 waves have been detected [4] using laser interferometers.
Nowadays, there are 5 such detectors: LIGO Livingston and Hanford [5, 6] (USA), Virgo [7,
8] (Italy), KAGRA [9] (Japan) and GEO 600 [10] (Germany).

Now that we are convinced of the existence of these waves and that we can detect them,
some of their predicted properties and behaviours can be verified. In particular, it is pre-
dicted that gravitational waves, just like light, can be deflected by a massive body. Such a
phenomenon was indeed observed with light in 1979 by Walsh, Carswell and Weymann [11].
This is called gravitational lensing, when one or several possibly deformed images of the same
source reach the observer because of the deflection by a massive object. Hence, according
to general relativity, such a phenomenon should also be possible with gravitational waves.
A question then arises: are some of the detected waves images of the same source? This
question has not found an answer yet and the search for such lensed waves is still going
on [12]. There are, in fact, many other questions. What would a lensed wave look like?
What would be the consequence of detecting or not lensed waves? What information could
we retrieve from such events? How can we identify them? Why should we care? These are
the questions that we will try to answer in this work, or at least that we will discuss.

The identification of gravitational lensing of gravitational waves is motivated by promising
scientific prospects, among which we find testing general relativity and measuring the Hubble
constant. The road that leads to it is however full of challenges. One of them is the noise,
which is the main limitation to the sensitivity of the detectors. Another one is the increasing
number of events, and thus of possible groups of images that may come from the same source.
If one only considers pairs of waves, the number of them to analyse goes as the square of the
number of events. Improvements in current detectors and the appearance of new generation
detectors, such as the Einstein Telescope [13] and Cosmic Explorer [14], will increase the
number of events significantly. The Einstein Telescope is indeed expected to have a rate
of about 105 − 106 binary black hole coalescence events per year [15], which corresponds to
about 109-1010 to 1011-1012 pairs! This highlights the need for fast algorithms that can, for
example, reduce the number of pairs and keep only the promising ones. Such algorithms do
not need to be optimal [13], given the purpose they are designed for.

Machine learning may be a solution to this problem. In particular, we shall investigate
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deep learning. Such methods were already considered in gravitational-wave data analysis in
different contexts and for different tasks [16]. It thus seems natural to evaluate its perform-
ance in the identification of lensed waves.

The purpose of this thesis is to give an overview and basic understanding of the phe-
nomenon of gravitational lensing applied to gravitational waves, and to propose a concrete
way to identify it in the detections. It must be noted that this suggestion is merely a proof of
concept and that further studies will be required to design a proper solution. This work thus
requires basic knowledge in both theoretical and practical aspects of very different fields,
which each reader may not be familiar with. Therefore, a non-negligible part is dedicated
to the explanation of basic concepts of these fields. Similarly, quite a few mathematical
details may be found all along the thesis. It is however not required to read each and every
line of them to understand the results and the underlying concepts. These details are yet
kept for those who would be interested in knowing where all the results come from. Some
developments can also be found in the appendices, because they are either too heavy and
cumbersome, or simply not necessary for the purpose of this work.

In the first chapter, we shall review a few theoretical concepts that are required to
understand the developments that are presented in the work, in particular general relativity
and cosmology. The conventions used in the work are also introduced in this chapter.

After that, in Chapter 2, the lensing effect applied to light will be reviewed, for its results
also apply to the lensing of gravitational waves. A basic understanding of this phenomenon
will thus be helpful when the case of gravitational waves will be explored. We will explain
lensing both conceptually and mathematically.

Then, Chapter 3 will be dedicated to the theory of lensing of gravitational waves. We
shall first introduce these waves and then explore if their lensing can be different from the
electromagnetic case. The wave equation accounting for the presence of a massive object
will be derived and solved. The result, describing the lensing phenomenon, will then be
discussed.

Once we have understood the bases of the theoretical concepts, we shall pursue our ana-
lysis of the lensing effect with its practical aspects in Chapter 4, i.e. how it can be identified
in the observations of gravitational waves. A preliminary introduction to some concepts of
machine and deep learning is required before diving into the core of the subject. We will
also review how gravitational waves are detected, with or without machine learning, in order
to understand better both the challenges of identifying lensed waves and the importance of
techniques such as deep learning. Finally, we shall have a brief overview of current techniques
to solve the initial task, and a neural network designed in the context of this work will be
presented and discussed, along with its results.

The last chapter will highlight the importance and interest of finding lensed waves. We
shall also discuss future prospects and how the proposed neural network can be improved.
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Chapter 1

A few preliminary concepts

In this chapter, I will review some basic concepts that will be useful to understand
the content of this work. I will only write about physical concepts that are not the main
subjects of the thesis. Other concepts, such as gravitational waves and machine learning will
be introduced properly in their dedicated sections.

1.1 Brief introduction to general relativity

General relativity is the currently accepted theory of gravitation that successfully and
accurately describes phenomena that were not (or not accurately) predicted by the Newto-
nian theory. We will not see in detail what this theory is, but we need a few key ideas to
understand and describe the gravitational lensing effect. A few conventions (e.g. the defini-
tion of the Minkowski metric, Riemann tensor, etc.) used in this work will also be presented.
A summary of the conventions is shown in Section 1.3. This section is based on [17], where
more information can be found, as well as in [18].

In this theory, it is postulated that space and time are dimensions of the same spacetime.
One can represent an event in this spacetime by a point denoted by the coordinates

xµ = (x0, x1, x2, x3) , (1.1)

where x0 = ct is the time coordinate, with c the speed of light, and xi the spatial coordinates
(greek indices range from 0 to N , while roman ones range from 1 to N , with N + 1 the
dimension of the spacetime). A common convention is to use natural units, i.e. c = 1, which
is what will be used in this work. We then write x0 = t. A spacetime is described by its
metric gµν , which defines distances in this spacetime. This tensor allows one to generalise
the scalar product as

x⃗ · y⃗ =
∑
i

∑
j

gijx
i yj ≡ gijx

i yj ≡ xi y
i . (1.2)

The norm induced by this product is then

||x⃗|| =
√
x⃗ · x⃗ =

√
gijxi xj . (1.3)
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CHAPTER 1. A FEW PRELIMINARY CONCEPTS

We can thus see that the metric indeed defines the distance. In the usual Euclidean space,
the metric is the identity matrix.

One can then generalise the notion of distance by taking into account the fact that the
metric can depend on the position. Thus, similarly to (1.3), we define the interval as

ds2 = dxν dxν = gµν(x) dx
µ dxν . (1.4)

This equation then tells us that the position does not, by itself, determine the distance
anymore, contrarily to Euclidean space! The metric is also partially what makes a spacetime
different from another, ‘partially’ because different coordinate systems may represent the
same spacetime or portion of it. A change of coordinates indeed changes the expression of
the metric. One must also introduce the inverse metric gµν , which is such that

gµα g
µβ = δβα , (1.5)

with δ the Kronecker delta.
As already mentioned, in Euclidean space, therefore in Newtonian theory, the metric

is represented by the identity matrix. One can show that this space is flat, i.e. it has no
curvature. The basic flat spacetime is the Minkowski spacetime, which has its metric denoted
by

ηµν = diag (−1, 1, 1, 1) . (1.6)

Though the flat spacetime may be easier to manipulate, general relativity predicts that
matter has an influence on the spacetime it lies in and curves it. The fact that it can be
curved induces some changes in the mathematical tools we use. At each point, we define
a tangent space, which contains all the vectors located at that point [17]. Two vectors can
be compared in a natural way if they belong to the same tangent space (see [17]). In flat
spacetime, all tangent spaces are equivalent, so that it is natural to compare vectors located
at different points. This is however not the case in a curved spacetime. In order to compare
vectors of different tangent spaces properly, we need to introduce a connection, described by
the connection coefficients Γα

µν . This connection indicates how one can transport a vector
from one tangent space to another. It is used to define the covariant derivative, which takes
into account the fact that two adjacent points may not have the same tangent space. This
covariant derivative is needed for the derivative operator to remain a tensor, since one can
show that the partial derivative is not one. It therefore replaces the partial derivative in a
curved spacetime. We define ∂α = ∂/∂xα, and we can then express the covariant derivative
as

∇αV
µ = ∂α V

µ + Γµ
αλ V

λ , (1.7)

∇αWµ = ∂αWµ − Γλ
αµWλ , (1.8)

∇α q = ∂α q (1.9)

where q is a scalar. This generalises to several indices by adding as many connections as
indices and using + or - according to whether the index is at the top or at the bottom.

The connection as it was introduced is not unique, it is simply represented by a set
of coefficients that satisfy a given transformation law (under change of coordinates) that
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1.1. BRIEF INTRODUCTION TO GENERAL RELATIVITY

is different from that of tensors and is such that the covariant derivative transforms as a
tensor. As a consequence, different connections define different covariant derivatives. We
can however get a unique metric-dependent connection if we demand that it have two specific
properties. The first is that it must be symmetric, also said torsion-free, and the second is
that it must be metric-compatible, i.e. the connection is such that the covariant derivative
of the metric is null. These properties respectively read

Γα
µν = Γα

νµ , (1.10)

∇α gµν = 0 , (1.11)

It can be shown that imposing these two properties allows one to obtain a unique expression
for the connection, which is

Γα
µν =

1

2
gαβ (∂µ gνβ + ∂ν gµβ − ∂β gµν) . (1.12)

The connection defined by this expression is called the Levi-Civita connection. In the follow-
ing, Γα

µν always refers to the Levi-Civita connection. There are several advantages of using
this connection, e.g. it appears naturally in the equations of motion, adds symmetries to the
Riemann tensor, introduced hereafter, and associates the curvature to the metric itself.

One can show that the curvature of spacetime is related to the Riemann tensor, which is
expressed as a function of our connection:

Rα
βµν = ∂µ Γ

α
νβ − ∂ν Γ

α
µβ + Γα

µλ Γ
λ
νβ − Γα

νλ Γ
λ
µβ . (1.13)

It is also possible to show that space is flat if the Riemann tensor is null. We can see that the
curvature of spacetime depends on the second (and first) derivative(s) of its metric, since we
use the Levi-Civita connection. This highlights the fact that the Minkowski metric is flat,
since it does not depend on the position, and therefore yields a Riemann tensor with only
null elements.

One can further define the Ricci tensor, which is symmetric, and the Ricci scalar respect-
ively as

Rµν = Rα
µαν , (1.14)

R = Rα
α = gµν Rµν (= Tr Rµν) . (1.15)

The influence of matter on spacetime is computed from Einstein’s equations, which read

Gµν ≡ Rµν −
1

2
Rgµν = 8π GTµν , (1.16)

for a zero cosmological constant, with Tµν the energy-momentum tensor, andGµν the Einstein
tensor. In vacuum, Tµν = 0. Solving these equations thus allows one to determine the metric
of the spacetime.

Finally, there exist three types of trajectories: time-like, null or light-like, and space-like.
For a null motion, we have ds2 = 0 and a velocity equal to the speed of light, while time-like
motions are characterised by a velocity lower than c and space-like ones larger than c. The
path taken by light is described by null curves.
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CHAPTER 1. A FEW PRELIMINARY CONCEPTS

1.2 Cosmological considerations

If one only observes the neighbourhood of the Milky Way, one does not need to take
cosmology into account. As the sensitivity of the detectors increases, for both the electro-
magnetic and gravitational radiations, we can observe further away. One then needs to take
into account the effect of the expansion and possible curvature of the Universe. We shall
only consider a flat space, but the expansion will be taken into account. I will thus present
some cosmological concepts, namely the standard model and the redshift, and discuss the
notion of distance. This section is based on [17], [19] and [20].

1.2.1 Cosmological models

The theory of general relativity can be applied to the Universe as a whole, not only to
some parts of it. Hence, we can obtain a cosmological model that describes how the Universe
evolves with time. The simplest assumption is that, on cosmological scales, the Universe is
both homogeneous and isotropic. A famous metric that shows the expansion of the Universe
is the Friedmann-Lemaître-Robertson-Walker metric, or FLRW. It is expressed through

ds2 = −dt2 + a2(t) (dr⃗ )2 , (1.17)

with a(t) the scale factor. It is defined such that a(t = t0) = 1, with t0 corresponding to the
present time (so a is taken relative to the value we would currently measure). This factor
a(t) represents the expansion (or contraction) of space, since the measure of spatial distances
is stretched by the factor a(t), which can change with time. It was found that the Universe
is in expansion. It is possible to write the metric (1.17) in a different form by factoring a(t),
which yields

ds2 = a2(η)
[
−dη2 + (dr⃗ )2

]
, (1.18)

with η the conformal time. It is defined such that

dη2 =
dt2

a2(t)
⇒ η =

∫
dt′

a(t′)
. (1.19)

To be more accurate, the metric includes, in fact, a term that takes into account a possible
curvature of space. The full metric in spherical coordinates is

ds2 = −dt2 + a2(t)

(
dr2

1− k r2
+ r2 dθ2 + r2 sin2 θ dϕ2

)
, (1.20)

with k a constant related to the curvature of space. If k = 0 then space is flat, corresponding
to a Euclidean space, and we retrieve the metric (1.17). If k < 0, space is open (negative
curvature), and if k > 0, space is closed (positive curvature). One can show that these
different values lead to very different predictions regarding the age of the Universe, its fate
and other characteristics. The current models and observations suggest that space is flat.
The standard cosmology also postulates the existence of dark matter and dark energy, the
latter emerging from the addition of the cosmological constant Λ in Einstein’s equations
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1.2. COSMOLOGICAL CONSIDERATIONS

(1.16). This dark energy causes the expansion to accelerate, and was also experimentally
shown through the observation of high-redshift supernovae [21].

Using the FLRW metric (1.17) and an appropriate energy-momentum tensor (typically for
a perfect fluid), we can express the Einstein’s equations and obtain the Friedmann-Lemaître
equations (here in flat space and without a cosmological constant):(

ȧ

a

)2

=
8π Gρ

3
, (1.21)

(
ä

a

)
= −4π G

3
(ρ+ 3p) , (1.22)

where the ˙ represents the time derivative, ρ the density and p the pressure. According to
the epoch and model studied, we use different relations between p and ρ. Nowadays, we are
in the matter era, i.e. matter dominates over radiation (i.e. relativistic particles), so that
p ≈ 0.

So, we can solve these equations and find the scale factor. What is more, a is related to
the Hubble constant H0. The Hubble parameter H(t) is defined as

H2(t) =

(
ȧ

a

)2

. (1.23)

The Hubble constant H0 corresponds to the value H(t = t0), with t0 being again the present
time. All the variables noted with an index 0 are taken at the present time. This constant
marked the experimental discovery that space is expanding, given the Hubble-Lemaître law

v(d) = H0 d , (1.24)

where v is the recession velocity of galaxies and d their distance. It was indeed found that
most galaxies were receding from us with a velocity described by this law. If H0 is known,
this relation will allow us to measure cosmological distances.

One distinguishes the peculiar velocity of an object, which is its velocity as it moves
through space, from the recession velocity, which is its velocity as it is carried away with
space. In other words, the recession velocity is only due to the expansion. Indeed, when
space expands, the coordinates of the object, say in the Earth frame of reference, remain
exactly the same. However, the way we measure distances changes through a(t), so that the
object is getting more and more distant. So, it moves with space because of the expansion,
and not through it, since its coordinates remain the same, contrarily to the peculiar motion.
This motion can still be interpreted as if the object was going away from us in a non-
expanding Universe, leading to the usual Doppler redshift. If we measure this redshift, we
can infer the recession velocity.

It may be interesting to note that we can express Eq. (1.21) at t0 as

ρ0 =
3H2

0

8π G
. (1.25)

It means that the measurement of H0, which we shall discuss later, can lead to the value of
the density of matter required to have a flat space (since this is used to write Eq. (1.21)). This
value can then be compared to observations to estimate, for example, the current density of
dark matter required for space to be flat.
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CHAPTER 1. A FEW PRELIMINARY CONCEPTS

1.2.2 Cosmological redshift

As we have seen, the Universe is expanding. Such an expansion causes the wavelength to
increase along with space, so that the wave is redshifted. This is the cosmological redshift
and we will see where it comes from.

It is, in fact, a consequence of cosmological time dilation. As space is expanding, the
distance between a source and an observer increases between the emission of successive
photons. As a result, if two photons are emitted at an interval ∆tS at the source, the
observer will measure a time interval ∆tO > ∆tS, since the second photon has a larger
distance to travel. To be more precise, one has

∆tO
a(tO)

=
∆tS
a(tS)

. (1.26)

Let us consider a wave emitted at a time ts. Given that ds2 = 0 for light, one can write,
from the FLRW metric,

dt

a(t)
= dr . (1.27)

In the reference frame of the source, the time required to travel a Euclidean distance ∆r is
thus ∆ts/a(ts), assuming a(t) is constant in that time interval. In the reference frame of
the observer, the time needed to travel the same Euclidean distance is ∆t0/a0. Since the
Euclidean distances are the same, one can equal the two expressions, which leads to the
result (1.26) (see [20] for a more rigorous proof).

As consequence, if the time between two crests of the wave at emission is ∆ts, it corres-
ponds to a wavelength λs = ∆ts (remember that we use c = 1). The observed time between
two crests is then ∆t0 = ∆ts/as, with as ≡ a(ts), corresponding to an observed wavelength
λ0 = ∆t0. As a consequence, one has

λs = as λ0 , (1.28)

where λs and λ0 are then the emitted and observed wavelengths, respectively. Hence, λ0 > λs
(since a increases with time and a0 = 1), which means that the wavelength increases because
of the expansion. This is called cosmological redshift.

The redshift is defined as
z =

λ0 − λs
λs

, (1.29)

We can then inject the result (1.28) into the definition of the redshift to get

z =
λ0 − λs
λs

=
a0 − as
as

. (1.30)

We know that a0 = 1, so that the relation becomes

z =
1− a

a
(1.31)

a =
1

1 + z
(1.32)
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1.2. COSMOLOGICAL CONSIDERATIONS

1.2.3 Distances in cosmology

Because of the expansion, the notion of distances may become somewhat complex. I will
introduce a few distances that are used in cosmology.

The first one is the proper distance, which corresponds to the distance between two
objects at a given fixed time. This seems obvious and corresponds to the usual distance we
use, but it cannot be used here in practice. Indeed, we do not have any ruler to measure
instantaneously the distance to an object at cosmological scales. It is not the distance we
measure using the light we receive, since the object will have moved during the photon travel
time. In a flat Universe and at present time, it corresponds to the comoving distance, i.e.
the Euclidean distance. We can write it at any time with

dp(t) = a(t) r0 =
r0

1 + z
, (1.33)

where r0 is the comoving distance. The equation thus represents the proper distance of an
object at a redshift z at the time it emitted the light we receive. Note that the comoving
distance cannot be measured either.

Then, there is the luminosity distance, which is the distance we deduce from the known
luminosity of an object and the received flux assuming it is only subjected to geometric
dilution. In other words, we have

d2L ≡ L

4π F
. (1.34)

To relate it to the proper distance, we need to take into account the cosmological redshift
that adds to the geometric dilution. First, the wavelength increases by a factor (1+z) due to
the expansion of space, so that the energy and hence the flux is reduced by the same amount.
Then, the cosmological time dilation causes another reduction of the flux by a factor (1+ z).
As a consequence, we can write

F =
L

4π r20 (1 + z)2
(1.35)

⇒ dL = r0 (1 + z) (1.36)

Finally, we can introduce the angular diameter distance, which is the one that we will use
in the gravitational lensing framework. This distance relates the diameter D of an object to
its angular size θ, i.e.

dA ≡ D

θ
. (1.37)

We can see that it is equivalent to a Euclidean distance for which we would write

tan θ =
D

d
⇒ θ ≈ D

d
, (1.38)

since the angles are very small, given the distance scale in cosmology. The angular diameter
distance can be related to the comoving and luminosity distances. It is possible to show that

dA =
dL

(1 + z)2
=

r0
1 + z

. (1.39)
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CHAPTER 1. A FEW PRELIMINARY CONCEPTS

1.3 Summary of conventions and important relations

A summary of the important relations and conventions used throughout the whole thesis
is presented in Tab. 1.1.

Curvature of space null, flat space
Units c = 1

Minkowski metric ηµν = diag(−1, 1, 1, 1)

Levi-Civita connection Γα
µν = 1

2
gαβ (∂µ gνβ + ∂ν gµβ − ∂β gµν)

Riemann tensor Rα
βµν = ∂µ Γ

α
νβ − ∂ν Γ

α
µβ + Γα

µλ Γ
λ
νβ − Γα

νλ Γ
λ
µβ

Ricci tensor, Ricci scalar Rµν = Rα
µαν , R = Rα

α

Einstein’s equation Gµν ≡ Rµν − 1
2
Rgµν = 8π GTµν

FLRW metric (flat space) ds2 = −dt2 + a2(t) (dr⃗ )2

Scale factor - redshift a = 1
1+z

Angular diameter distance dA = r0
1+z

Table 1.1: Summary of the conventions and important relations
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Chapter 2

Electromagnetic gravitational lensing

In this chapter, we will introduce the concept of gravitational lensing and how it is
described in the case of a luminous signal. As we shall see later, this description will be
useful in the case of gravitational waves. This whole chapter is largely based on [22], [23]
and [24]. I invite the interested reader to have a look at these references for more details.

2.1 Gravitational lensing effect

As we have seen in the previous section, matter deforms spacetime and objects that are
massive enough may produce a significant curvature. This has a very important consequence:
gravity also influences massless bodies, while this is not the case in the Newtonian theory.
Indeed, we must not think of gravity as a ‘force’ acting on massive bodies. Since the very
space on which any particle moves is curved, its trajectory will inevitably be influenced by
this curvature, whether it has a mass or not.

As a result, we find that massive bodies can deflect not only matter but also light. This
phenomenon is at the core of the gravitational lensing effect. To be more precise, we speak of
gravitational lensing when we observe one or several deformed and/or magnified image(s) of
the same object. The apparent position of the source is thus different from its true location.
This is possible because of this deflection of light by massive bodies. The deflecting body is
called the lens, or the deflector. The properties of the images strongly depend on the lens,
so we can retrieve information on the latter by observing this effect. Its characteristics and
interests will be developed later.

We distinguish two different types of gravitational lensing: strong and weak. Strong
lensing occurs when there are several images. We talk about macrolensing when the multiple
images are resolved, so that we can tell them apart, while we talk about microlensing when
they are unresolved. In the former case, the lens is typically a galaxy or galaxy cluster,
while it is typically a star in the second case. As for weak lensing, the lens does not allow
for multiple images, but still distorts the image. This type of lensing is more complicated to
detect since we cannot simply tell whether what we see is the true shape or a distorted view
of the source.

11



CHAPTER 2. ELECTROMAGNETIC GRAVITATIONAL LENSING

2.2 Lens equation

We will now describe the phenomenon mathematically in flat space. This section is largely
based on [22]. We make the thin lens approximation, i.e. we assume that the dimensions of
the lens are small compared to the considered distances. As a consequence, we can assume
that the lens lies on a plane called the lens plane, which is the plane on which the images
‘form’. Similarly, the source lies on the source plane. The phenomenon is thus described
using 2D vectors lying in these two planes. The situation we consider is represented in
Fig. 2.1.

O

L

S

Source plane

Lens plane

η⃗

ξ⃗

S’

βθ

α̂

DL

DLS

DS

(a)

O L

S
η

ξ

S’

β
θ

α̂

(b)

Figure 2.1: Sketches of the geometry of the problem (a) in 3D (b) in the plane containing
the light ray. Dimensions are not to scale, angles are exaggerated compared to distances.
Note that for any quantity x⃗, one defines x ≡ |x⃗|.

The observer is denoted by O, the lens by L and the source by S. In Fig. 2.1, we consider
that the plane containing the ray also contains O, L and S 1. The reference axis from which
one measures angles is chosen to be the one crossing O and L. The source is thus at an
angular position β⃗, while the apparent source (in the source plane) S ′ is at an angle θ⃗. If
there is no lens, β⃗ = θ⃗, since we see the source where it really is as there is no deflection.

1In a more general case, there may be two different planes, one containing the ray between L and S, and
a different one between O and L.
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2.2. LENS EQUATION

Note that we use 2D vectors to describe these angles. These are such that the norm of the
vector is the value of the angle in the plane of the ray, i.e. |θ⃗| = θ, and its direction is
parallel to the intersection of the plane of the ray and a plane perpendicular to it (e.g. the
lens plane). For example, as we shall see, θ⃗ is parallel to ξ⃗ and β⃗ to η⃗.

We also define the deflection angle ˆ⃗α as being the angle between the trajectory taken by
the deflected light ray and the trajectory it would have if it were not deflected. In this work,
we will only consider single-plane lensing, which means that we assume that there is only
one lens, and thus one lens plane. It can be generalised with several lenses, hence several
light deflections. We also consider small angles, given the distance scales.

The angular diameter distance from the observer to the lens plane is DL, to the source
DS and the one between the lens and the source is DLS. In general (at cosmological scales),
DS ̸= DL+DLS given the type of distance we use. Note that we approximate the trajectory
by neglecting the actual deviation near the lens plane, given the small-angle approximation.
In other words, we consider the trajectory as made of two asymptotes, i.e. straight lines,
while the actual trajectory is curved.

In the plane of the lens, we define the impact parameter of the deflected light ray ξ⃗, the
norm of which represents the minimal distance between the lens and the light ray. We can
express it using the definition of the angular diameter distance as ξ⃗ = DL θ⃗. Intuitively,
this comes from the projections of the ray and ξ⃗ onto planes defined by the reference axis
and another one perpendicular to OL. This is depicted in Fig. 2.2. Using angular diameter
distances, we can see that ξ1 = DLθ1 and ξ2 = DLθ2. This is summarised with vectors as
ξ⃗ = DL θ⃗, with ξ⃗ = (ξ1, ξ2) and θ⃗ = (θ1, θ2) (in the axes e⃗1 and e⃗2, see Fig. 2.2). The vectors
to describe angles are thus useful. They allow us to consider the very position at which the
ray crosses the lens plane and not only its distance to L (i.e. with only ξ = DL θ), which is
important if the problem is not axially symmetric.

O

L

DL

ξ⃗

e⃗1

e⃗2

θ

(a)

O LDL

ξ1
θ1

(b)

O LDL

ξ2θ2

(c)

Figure 2.2: Projections of the ray and ξ⃗ onto two different reference planes. (a) Definition
of the axes e⃗1 and e⃗2 on the lens plane. (b) Projection onto the plane defined by OL and e⃗1
(c) Projection onto the plane defined by OL and e⃗2.

Also, we represent the misalignment of the source with respect to the lens and the observer
by η⃗, the norm of which is the distance to the reference axis. Once again we can use the
angles to express it as η⃗ = DS β⃗. The angle θ⃗ thus indicates the angular position of the
source such that we see it because of the light deflection, so its apparent position, while β⃗
denotes the true position. Intuitively, we can say that the deflection angle depends on θ⃗,
i.e. ˆ⃗α = ˆ⃗α(θ⃗ ). Indeed, the effects of the mass of the lens get lower as we go away from the
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CHAPTER 2. ELECTROMAGNETIC GRAVITATIONAL LENSING

lens so that the deflection will be weaker as we go to larger impact parameters. The relation
between ˆ⃗α(θ⃗) and θ⃗ depends on the model that is used to describe the lens.

We can relate the three angles by a simple relation, provided they are small. We have
that the vector η⃗ ′ that connects the apparent source and the reference axis is

η⃗ ′ = DS θ⃗ . (2.1)

This vector can be divided into two contributions, namely

η⃗ ′ = η⃗ + η⃗SS′ , (2.2)

where η⃗SS′ is the vector between S and S ′ on the plane of the source. We can use once again
the definition of the angular distance, with η⃗ related to β⃗ and η⃗SS′ to ˆ⃗α, to write:

DS θ⃗ = DS β⃗ +DLS
ˆ⃗α . (2.3)

We can express it in a different manner by dividing by DS and introducing the reduced
deflected angle

α⃗(θ⃗ ) ≡ DLS

DS

ˆ⃗α(θ⃗ ) . (2.4)

Thus, Eq. (2.3) becomes
β⃗ = θ⃗ − α⃗(θ⃗ ) , (2.5)

which is called the lens equation. Note that the deflection angle α⃗ does not depend on β⃗,
since the initial direction of the light ray does not matter, it will be deflected by the same
amount at the same impact parameter. What changes with β⃗ is the deflection angle required
to reach the observer, and so the angle θ⃗. Note also that α cannot be large if both β and θ
are small

Therefore, this equation allows us to determine where the object will be observed (θ⃗ ),
according to its true position relative to the lens (β⃗ ), or determine its true position from
the images that are observed. We can see that the equation will strongly depend on the
expression of α⃗(θ⃗ ), so that a critical point is to model the deflection angle correctly.

The lens equation can be modified further by introducing dimensionless quantities and
expressing the angles using angular distances. Thus, we introduce

x⃗ ≡ ξ⃗

ξ0
=
DL θ⃗

ξ0
, (2.6)

y⃗ ≡ η⃗

η0
=
DS β⃗

η0
, (2.7)

η0 =
DS

DL

ξ0 ; (2.8)

where ξ0 and η0 are length scales in the lens and source planes, respectively. The expression
of η0 is given to make both length scales correspond to the same characteristic angle. Note
that if ξ0 = DL, then x⃗ = θ⃗ and y⃗ = β⃗.
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2.3. TIME DELAYS

If we use the last three relations in the lens equation, it becomes

DS

DL

ξ0
1

DS

y⃗ = ξ0
1

DL

x⃗− α⃗(ξ0x⃗)

⇒ y⃗ = x⃗− α⃗(x⃗) , (2.9)

where we have introduced a scaled deflection angle

α⃗(x⃗) =
DL

ξ0

DLS

DS

ˆ⃗α(ξ0x⃗) . (2.10)

Finally, it is important to keep in mind that all the assumptions that were made, namely
a thin lens, small angles and the approximation of the path by straight lines, will also hold
in the rest of Section 2, unless explicitly specified.

2.3 Time delays

Since the deflected rays do not follow the same path as unlensed ones, they need more
time to reach an observer. In other words, the lens introduces a delay in the arrival time. I
shall present the main results and you may find a more detailed development in Appendix A.1
or cited references.

One can compute the delay in a Minkoswki background metric perturbed by a weak lens.
It is expressed through [17, 22]

ds2 = − (1 + 2U) dt2 + (1− 2U) (dr⃗ )2 , (2.11)

where r⃗ is the spatial position vector and U ≡ U(r⃗) = −GM/r is the gravitational potential.
This metric assumes that U ≪ 1 (or U ≪ c2 in SI units), which is called the weak field limit.
Since we do not consider the expansion yet, the distances are Euclidean ones and I will refer
to them as d instead of D to avoid the confusion with angular diameter distances. As light
follows null geodesics, we can write, from the metric,

ds2 = − (1 + 2U) dt2 + (1− 2U) (dr⃗ )2 = 0 (2.12)

⇒ dt2 =
1− 2U

1 + 2U
(dr⃗ )2 (2.13)

⇒ dt =

√
1− 2U

1 + 2U
|dr⃗ | (2.14)

We introduce dl = |dr⃗ |, with dl the arc length in Euclidean space (since in that case in
Cartesian coordinates dl2 = dx2 + dy2 + dz2 = (dr⃗ )2 ). We can express the potential term
to first order, which leads to √

1− 2U

1 + 2U
= 1− 2U +O(U2) . (2.15)
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CHAPTER 2. ELECTROMAGNETIC GRAVITATIONAL LENSING

If we further consider the source to emit at a time t = 0, we get:

t ≃
∫

(1− 2U) dl = l − 2

∫
U dl , (2.16)

with l the Euclidean length of the path, and the potential is integrated over that path. This
equation thus expresses the time it takes for a light ray to reach the observer. We can
see that it has two contributions: a geometrical one, represented by the first term, and a
gravitational one, caused by the gravitational potential U . This term is called the Shapiro
time delay. It indeed increases t, since U is negative.

One can show (see Appendix A.1) that the time delay ∆t, which is the difference between
the arrival times of the lensed ray and the unlensed one, is

∆t(x⃗ ) =
dS ξ

2
0

dLdLS

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
, (2.17)

where we define the dimensionless lensing potential

ψ(x⃗ ) = 2
dLSdL
dS ξ20

∫
U(x⃗, Z) dZ . (2.18)

We have used r⃗ = x⃗+Ze⃗Z with e⃗Z the vector perpendicular to the lens plane and such that
U(r⃗) = U(x⃗, Z). Note that the integral is not done over dl anymore, contrarily to Eq. (2.16).
As the deflection angle is considered to be small, one can approximate the integral over the
true path by the integral over the path of an unlensed ray, with the third dimension Z taken
along this ray.

The lensing, or deflection, potential ψ(x⃗ ) is a projection of the potential onto the lens
plane, as U is integrated over the third dimension (outside the lens plane). The source of
this potential is the projected surface density

Σ(x⃗ ) =

∫
ρ(x⃗, Z) dZ . (2.19)

We can also consider ξ0 = dL, which yields

ψ(x⃗ ) = 2
dLS
dS dL

∫
U(x⃗, Z) dZ , (2.20)

∆t(x⃗ ) =
dS dL
dLS

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
. (2.21)

We have considered a spatial Euclidean space, but in practice, things are a bit more com-
plicated. We need to consider, in the most general case, a cosmological model that takes into
account all the large-scale effects such as the expansion of space. As a result, the background
metric can be taken to be the FLRW metric, as introduced in Eq. (1.17). However, the met-
ric is perturbed by the presence of a lens the same way it was for a Minkowski background
metric. We thus have [23, 24]

ds2 = −(1 + 2U) dt2 + a2(t) (1− 2U) (dr⃗ )2 . (2.22)
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2.4. DEFLECTION ANGLE

It can be shown (see Appendix A.1) that, in this metric, we have

ψ(x⃗ ) = 2
DLS

DS DL

∫
U(x⃗, Z) dZ , (2.23)

∆t(x⃗ ) = (1 + zL)
DS DL

DLS

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
. (2.24)

We see that the definition of ψ(x⃗ ) has not changed, except for the type of distance that
is used, while the total time delay is simply multiplied by a factor (1 + zL). We can also
introduce Fermat’s potential Ψ(x⃗), defined as

Ψ(x⃗ ) =
1

2
(x⃗− y⃗)2 − ψ(x⃗ ) , (2.25)

i.e. the time delay without the multiplicative constants.
We can also compute the relative time delay between two images, which is simply the

difference between the two respective time delays of these images, since these are computed
relative to the same unlensed ray. For a more rigorous and complete development, I recom-
mend having a look at [23] and [24].

2.4 Deflection angle

As already stated, the expression of the deflection angle is very important in the solution
of the lens equation. We will now show that it is possible to retrieve it from the time delay.
The computation of the latter also allows one to retrieve the lens equation through Fermat’s
principle. This principle states that a null curve going from a source S to a time-like observer
O is a light ray if this curve has a stationary value of the arrival time, as measured by the
observer [23]. In other words, if we consider all the null curves going from S to O, each
with its own arrival time t, the light ray is the one for which t is an extremum of all the t
considered [18].

We can naturally substitute the arrival time (x⃗ ) for the time delay, since ∆t(x⃗ ) =
t(x⃗ ) − tu, where tu is the arrival time of the unlensed ray and is constant (or such that
δtu = 0 by Fermat’s principle). It will therefore vanish upon differentiation. As we have
computed the time delay at the observer, we now demand that it be an extremal value of all
the possible time delays. The condition reads

δ [∆t(x⃗ )] = 0 , (2.26)

or equivalently
∇⃗x⃗ [∆t(x⃗ )] = 0 . (2.27)

We can use its expression from Eq. (2.24) to get

∇⃗x⃗ [∆t(x⃗ )] = (x⃗− y⃗)− ∇⃗x⃗ ψ(x⃗ ) = 0 . (2.28)

If we use the lens equation (2.9), we finally arrive at

α⃗(x⃗ ) = ∇⃗x⃗ ψ(x⃗ ) . (2.29)
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CHAPTER 2. ELECTROMAGNETIC GRAVITATIONAL LENSING

We can then see that the deflection angle can be expressed in terms of the lensing potential
and that the lens equation is in agreement with Fermat’s principle2. What is interesting,
then, is that the number of extrema (and saddle points) of the time delay gives the number
of images produced by the lensing effect.

If we further develop the expression of the scaled deflection angle using Eq. (2.23), we
get

α⃗(x⃗ ) = ∇⃗x⃗ ψ(x⃗ ) = ∇⃗x⃗

[
2
DLS

DSDL

∫
U(x⃗, Z) dZ

]

= 2
DLS

DSDL

∫
∇⃗x⃗ U(x⃗, Z) dZ (2.30)

If one uses the refraction index and Fermat’s principle on the spatial path of light rays
([22], [23], [24]), the deflection angle that is found is

α⃗(x⃗ ) = 2
DLS

DS

∫
∇⃗⊥ U(x⃗, Z) dZ , (2.31)

where ∇⃗⊥ refers to the gradient projected onto the plane perpendicular to the light ray. In
fact, given the small angles (in particular here ˆ⃗α ) and the thin lens assumption, we can
approximate the plane perpendicular to the light ray by the lens plane, i.e. approximate the
operator ∇⃗⊥ by the gradient in the lens plane. As a consequence, we can rewrite Eq. (2.30)
as

α⃗(x⃗ ) = 2
DLS

DSDL

∫
∇⃗x⃗ U(x⃗, Z) dZ = 2

DLS

DS

∫
∇⃗⊥ U(x⃗, Z) dZ , (2.32)

and we retrieve the expression (2.31). The cancellation of DL comes from the fact that ∇⃗⊥

is not dimensionless, contrarily to ∇⃗x⃗ (= ξ0∇⃗ξ⃗, with ξ0 = DL).

We can express the deflection for a point-mass lens (see Appendix A.2), which is

ˆ⃗α(ξ⃗ ) = 4GM
ξ⃗

| ξ⃗ |2
, (2.33)

| ˆ⃗α(ξ⃗ )| = 4GM

ξ
, (2.34)

with ξ = |ξ⃗ | the impact parameter. The most general lens can be considered as made of a
lot of point masses. The contribution of each point mass adds to the other, as the deflection
angle is linear in M . We can thus write

ˆ⃗α(ξ⃗ ) =
∑
i

ˆ⃗α(ξ⃗ − ξ⃗i) = 4G
∑
i

Mi

(
ξ⃗ − ξ⃗i

)
∣∣∣ξ⃗ − ξ⃗i

∣∣∣2 , (2.35)

2The development was found to be made the other way around, i.e. the relation (2.29) is derived using
the refraction index and Fermat’s principle. If we change ∇⃗x⃗ ψ(x⃗ ) into α⃗(x⃗ ) in Eq. (2.28), we retrieve the
lens equation, so we see that Fermat’s principle directly leads to the lens equation.
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where ξ⃗ is still the impact parameter vector and ξ⃗i denotes the position of the point mass i,
such that the impact parameter of a point mass i is

(
ξ⃗ − ξ⃗i

)
. In the continuous limit, one

would need to use the density instead of the mass and replace the sum by an integral on the
lens plane. However, given the thin lens approximation, the mass distribution of the lens is
only described by its surface density Σ(ξ⃗ ) given in equation (2.19). We thus have

Σ(ξ⃗ ) =

∫
ρ(ξ⃗, Z) dZ , (2.36)

ˆ⃗α(ξ⃗ ) = 4G

∫ Σ(ξ⃗ ′)
(
ξ⃗ − ξ⃗ ′

)
∣∣∣ξ⃗ − ξ⃗ ′

∣∣∣2 dξ⃗ ′ . (2.37)

We can see that the integration is performed on the lens plane and not on the third dimension
anymore.

We can use a similar development for the lensing potential to express it as an integral
over the lens plane. It then reads

ψ(ξ⃗ ) = 4G

∫
Σ(ξ⃗ ′) ln

∣∣∣ξ⃗ − ξ⃗ ′
∣∣∣ dξ⃗ ′ . (2.38)

2.5 Magnification and distortion

As already mentioned, gravitational lensing can magnify, reduce and/or distort images
because the deflection depends on the distance to the lens, i.e. the impact parameter. As a
consequence, two neighbouring rays will not be deflected in the same way. The developments
that will be presented are valid under the assumption that the angular size of the object is
small compared to the angular scale over which the properties of the lens change.

It appears that the surface brightness is conserved. Therefore, the flux, which is the
product of the surface brightness with the solid angle, is magnified or demagnified according
to the change in solid angle. The magnification µ of the image of a small extended source
can then be defined as [23, 24]

µ =
dΩL

dΩS

=
D2

S

D2
L

dAL

dAS

, (2.39)

with dΩL the infinitesimal solid angle subtended by the image, dΩS the one subtended by
the image of the source if there were no lensing effect, and dAL and dAS the corresponding
areas. It can be shown that one can express the magnification with the Jacobian matrix
A(x⃗ ), defined as

A(x⃗ ) =
∂ y⃗

∂ x⃗
or Aij =

∂ yi
∂ xj

. (2.40)

This matrix represents the mapping from x⃗ to y⃗ described by the lens equation. In fact, the
determinant of A corresponds to the ratio of the infinitesimal area on the source plane over
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its corresponding area on the lens plane through the mapping x⃗→ y⃗ [23]. Given Eq. (2.39),
the magnification can thus be expressed as

µ =
1

detA
. (2.41)

The lens equation (2.9) provides the mapping from x⃗ to y⃗ described by A, so that we can
write

Aij = δij −
∂2ψ(x⃗ )

∂xi ∂xj
, (2.42)

given that α⃗ = ∇⃗ψ. To simplify the notation, I shall refer to
∂2ψ(x⃗ )

∂xi ∂xj
as ψij.

We can introduce a couple of interesting quantities. The first one is the convergence κ,
defined in its dimensionless version as

κ(x⃗ ) =
Σ(x⃗ )

Σcr

(2.43)

with Σcr the critical surface density

Σcr =
1

4π G

DS

DLS DL

. (2.44)

This density is critical in the sense that it is a sufficient condition (but not necessary) to
have multiple images (see [24]).

Another interesting thing to notice is that the determinant of A can be null, which means
that the magnification can be infinite. The sets of points at a location x⃗ such that detA = 0
are called critical curves. The corresponding curves on the source plane are called caustics.
Thus, these are obtained through the mapping from x⃗ to y⃗ (again with the lens equation).
In other words, the caustics represent the positions of the source where the magnification
of its image through gravitational lensing is formally infinite. In practice, the magnification
will never be infinite, since this would require the source to be a point (given Eq. (2.39)),
which is never perfectly the case.

Finally, the total magnification of an object is defined as the sum of the absolute value
of the magnification of each image.

2.6 Types and number of images

As we have seen, the lens equation is equivalent to Fermat’s principle ∇⃗ [∆t(x⃗ )] = 0,
which means that images will form on extrema and saddle points of the time delay surface
∆t(x⃗ ). To know whether the image corresponds to a minimum, maximum or saddle point,
we need to compute the Hessian matrix of the time delay, namely

Tij =
∂2∆t(x⃗ )

∂ xi ∂ xj
, (2.45)
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or, if we use the expression of the gradient shown in Eq. (2.28),

T = ∇⃗x⃗

(
∇⃗x⃗∆t

)
= (1 + zL)

DS DL

DLS

∇⃗x⃗

[
(x⃗− y⃗)− ∇⃗x⃗ ψ(x⃗ )

]
= (1 + zL)

DS DL

DLS

(
12 − ∇⃗x⃗ ∇⃗x⃗ ψ(x⃗ )

)
, (2.46)

where 12 is the two-dimensional identity matrix. Note also that there is no scalar product
between the two ∇⃗ operators. This can be expressed as(

∇⃗x⃗ ∇⃗x⃗ ψ(x⃗ )
)
ij
=
∂2 ψ(x⃗ )

∂xi∂xj
= ψij . (2.47)

As a result, we can see that

Tij = (1 + zL)
DS DL

DLS

(δij − ψij) ∝ A , (2.48)

with A the Jacobian matrix defined in Eq. (2.42). As the multiplying constants are strictly
positive, the ‘sign’ of the Hessian matrix, determining the type of extremum, is the same as
that of the Jacobian matrix A.

From these results, we can define three types of images [22]:

• Type I images: these appear at a minimum of the time delay surface. Therefore, this
requires that the Hessian matrix (and hence A) be positive-definite, i.e. that all its
eigenvalues be positive (since it is a symmetric matrix). For that, we need detA > 0
and Tr A > 0. Given Eq. (2.41) and since detA > 0, the magnification is also positive
(the image is not reversed).

• Type II images: they appear at a saddle point of the time delay surface. In that
case, A must be indefinite and have eigenvalues of opposite signs, i.e. detA < 0. The
magnification is therefore negative, and the image is reversed.

• Type III images: they appear at a maximum of the time delay surface, which means
that A is negative-definite. This requires detA > 0 and Tr A < 0, so that the magni-
fication is positive.

To be more precise, I refer to a ‘reversed image’ by stating that its parity is negative, while
the parity of an image that is not ‘reversed’ is positive. A negative magnification therefore
means that the parity is flipped.

As we already mentioned, the time delay surface, through the number of its extrema and
saddle points, completely determines the number of images produced by the lensing effect.
For example, if there is no lens, the lensing potential is null and the time delay is simply
a parabola centred on x⃗ = y⃗. This means that there is a minimum at the position of the
source, and the image that we see obviously keeps its form and parity.
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As another example, in the case of a perfect alignment between O, L and S, and with
an axially symmetric lens, the image that is observed is a ring. If we consider a point-mass
lens, we have y⃗ = 0 and ψ(x⃗ ) ∝ ln |x⃗ | (since Σ(x⃗ ) = δ(x⃗ )), so that we have from Eq. (2.24)

∆t(x⃗ ) ∝ 1

2
(x⃗)2 − ψ(x⃗ ) , (2.49)

and thus
∆t(x⃗ ) = ∆t(−x⃗ ) = ∆t(|x⃗ |) . (2.50)

As a consequence, there is an axial symmetry of the time delay around the lens, it is the same
in each direction at a given impact parameter, so any extremum (in fact minimum here) will
appear in a ring called Einstein ring. When the misalignment increases, the symmetry of
the time delay surface is broken and the surface deforms. At some point, it changes so much
that a maximum and a saddle point merge, making two images disappear [22].

The number and types of images are described in detail in [24], and I will here summarise
the results. Under the assumption that the surface density is smooth and decreases faster
than |x⃗|2 for large |x⃗|, one can show that the number of images is always finite and that
there is always at least one image of type I (a single image of type I being the limit of no
lensing). Moreover, if we define ni the number of images of type i, we have

nI + nIII = 1 + nII (2.51)

⇒ n = nI + nII + nIII = 1 + 2nII . (2.52)

This tells us that the total number of images n is always odd3 and that, if there are multiple
images, there must always be at least an image of type III or one of type II. In fact, for an
isolated lens, there can be multiple images if and only if there is an image of type II. Indeed,
it requires that detA < 0. If detA > 0 for all x⃗, then we can invert the mapping described
by A (since it is never null) so that there is no x⃗ related to the same y⃗, i.e. there is only one
image. On the other hand, if detA < 0 at x⃗0, then the image is of type II and, according to
(2.52), there must be two other images.

Furthermore, one can establish that a convergence κ greater than 1, i.e. a surface density
Σ(x⃗ ) greater than the critical surface density Σcr (2.44), is a sufficient condition (but not
necessary) for having multiple images.

Finally, it is also possible to show that the number of images changes by two units when a
source crosses a caustic. In the lens plane, two couples of images each merge into one image
on the critical curves, leading to a loss of two images. Similarly, one image can be split into
two images.

2.7 Point-mass lens

As already mentioned, it is important to model correctly the deflection angle. To this
end, one needs a correct representation of the lens and its mass distribution. There thus

3One often only sees an even number of images, but there can be a highly demagnified image close to the
lens that can hardly be observed.
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exist several lens models and I will present the most simple one: the point-mass lens. This
section is largely based on [22].

The deflection angle has already been defined for a point mass in Eq. (2.33), so that we
can write the lens equation using β and θ. We can drop the vector notation given the axial
symmetry of the problem. It does indeed not matter whether the source is above or below
the reference axis, only its distance to it is important. We can thus write

β = θ − 4GM
DLS

DS

1

DL θ
= θ − θ2E

θ
, (2.53)

where we introduced the Einstein radius

θE =

√
4GM

DLS

DS DL

(2.54)

corresponding to the linear Einstein radius

RE = DL θE . (2.55)

We can then obtain a quadratic equation

θ2 − β θ − θ2E = 0 , (2.56)

which can be rewritten by introducing x = θ/θE and y = β/θE

x2 − y x− 1 = 0 . (2.57)

The solution is quite straightforward and reads

x± =
1

2

(
y ±

√
y2 + 4

)
. (2.58)

We can see that if y = 0, we get
x± = ±1 , (2.59)

which means that both images are on a ring of radius θE, as already mentioned earlier. One
can also note that x− < 0 and x+ > 0, so that they are always on opposite sides. Finally,
we can see that for y ≫ 1, x+ → y and x− → 0, i.e. there is no lensing.

It can be shown (see Appendix A.3) that the magnification is

µ± =
1

2
± y2 + 2

2y
√
y2 + 4

. (2.60)

As a result, the + image is always magnified, since µ+ ≥ 1 for all y, while the − image can
be magnified or demagnified, as µ− ≤ 0 for all y, so |µ−| can be smaller or greater than 1.
The total magnification of a point source can then be calculated with

µ = |µ+|+ |µ−| =
y2 + 2

y
√
y2 + 4

. (2.61)
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We can see that there is an infinite magnification at y = 0, which is not physical. On the
other hand, the total magnification tends to 1 when y → ∞ .

Such a model for a lens is not really realistic when considering lensing by galaxies or
clusters of galaxies. Other models try to represent these better. Naturally, they are more
complex, since they display a lower degree of symmetry and are more difficult to analyse
than the simple model I have introduced. I will not present such models, but several different
ones can be found in [22], [23] and [24].
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Chapter 3

Gravitational lensing of gravitational
waves: theoretical approach

In this chapter, we shall extend what we have seen with electromagnetic waves to grav-
itational waves. These will first be introduced and we will see what the differences with the
electromagnetic case are. In particular, we will take into account wave effects and express
an analytical solution to the problem of lensing of gravitational waves by a point-mass lens.
This solution will then be discussed.

3.1 Introduction to gravitational waves

Before diving into the lensing of gravitational waves, one first needs to understand what
they are. I will introduce these waves first conceptually, then mathematically. The wave
equation that will be derived will also be used later in the study of lensed waves.

3.1.1 Gravitational waves

As explained in Section 1.1, matter deforms spacetime. Although the concept itself may
be difficult to grasp, it would seem natural that, if it can be deformed, it can oscillate, and
that these oscillations propagate through spacetime itself. These oscillations are gravitational
waves. Their propagation is described by the wave equation, which we shall derive later. One
can see such a wave as an oscillation of the curvature, hence of the metric. This means that
the way to measure distances at a point changes because of the wave, but the coordinates of
the point would not change.

Similarly to electric charges emitting radiation when undergoing an acceleration, massive
objects emit gravitational radiations. However, contrarily to electromagnetic waves for which
electric-dipole radiation dominates, gravitational waves are mostly quadrupolar, so that an
acceleration is not sufficient, a change in the mass quadrupole moment (or a higher moment)
is required. There exist multiple types of possible sources, among which we find black hole
and neutron star mergers, pulsars and supernovae.

One characteristic of gravitational waves is that they tend to have a much lower frequency
than visible light. For example, the frequency of the waves that are detected by current
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interferometers is typically between 20 and 1000 Hz. This range is limited by the detectors
and other waves should exist at much lower frequencies. The greater wavelength is intuitively
natural, given the size of the systems that emit the wave. In the case of a binary black hole
merger, the frequency of the wave is twice the frequency of the orbit [17]. It should also be
noted that the amplitude of these waves is very small, typically 10−21 for a merger, and that,
contrarily to light, they do not interact much with matter [25].

3.1.2 Wave equation

Now that we have conceptually introduced the subject, we will mathematically derive
the expression of the gravitational wave, which is a solution to the wave equation. This
equation expresses how a perturbation in the metric behaves. It is obtained by starting from
Einstein’s equations (1.16). As we shall see, the solution to the equation depends on the
background metric. In other words, the presence of a lens that perturbs the background
metric will produce a gravitational wave that is different from one where there is no lens.
The complete derivation of the wave equation is quite cumbersome, so I will only present a
few steps. The interested reader may however find a detailed development in Appendix B.
The following developments are based on [26].

We consider a background metric g̃µν , which is the metric describing the spacetime in
which the wave propagates, and a perturbation in this metric hµν , such that

gµν = g̃µν + hµν . (3.1)

Of course, we assume that the background metric is a solution to Einstein’s equations (1.16).
It is important to note that hµν is a perturbation, i.e. the background metric is such that it
does not contain terms of the order of hµν . In particular, the wavelength of the perturbation
is much smaller than the characteristic scale at which the curvature of the background
metric changes [27]. The idea to get the wave equation is to derive the linearised Einstein’s
equations, i.e. Einstein’s equations for hµν to first order in hµν (meaning in the typical order
of magnitude of the amplitude of hµν). In general, typical amplitude values for hµν are
around 10−21. We will also consider that we solve the equation in vacuum.

So, to first order, we have
gµν ≃ g̃µν − hµν , (3.2)

since

δµ
ν = gµα g

να

= (g̃µα + hµα) (g̃
να − hνα)

= δµ
ν − hµ

ν + hµ
ν − hµα h

να

= δµ
ν +O(h2) ,

where O(h2) denotes second-order terms and h is used to ease the notation and represents
here typical values of the elements of the hµν tensor. We then see that the equality is correct
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to first order, so the inverse metric (3.2) is indeed the right one to first order. We can also
notice that the tensor g̃µν raises indices and g̃µν lowers the indices of hµν to first order. To
get the wave equation in a simple form, we make two main changes. The first is a change of
function, by setting

h̄µν = hµν −
h

2
g̃µν ⇒ h̄ = −h , (3.3)

where we define h = hα
α the trace of the tensor. Therefore, the change of function reverses

the trace. The second change is to use the De Donder gauge

∇̃αh̄
αβ = 0 , (3.4)

i.e. change the coordinate system such that the latter relation holds1. One can then show
that Einstein’s equations in vacuum to first order are

G̃µν + δGµν = 8πG
(
T̃µν + δTµν

)
(3.5)

=⇒ δGµν =
1

2

(
−∇̃α∇̃α h̄µν + 2 R̃λ

µνα h̄λ
α
)
= 8πG δTµν , (3.6)

where δTµν is related to the source of the gravitational wave, and δGµν is a linear perturbation
(in h) of Gµν . If we assume that we are outside the source, we can take δTµν = 0. We then
obtain linearised Einstein’s equations in vacuum and the full system, including the gauge
condition, reads −∇̃α∇̃α h̄µν + 2 R̃λ

µνα h̄λ
α = 0 ,

∇̃αh̄
αβ = 0 .

(3.7)

3.1.3 Solution for the Minkowski metric

We shall derive the solution of the wave equation in a Minkowski spacetime. This section
is based on [28]. We can see that, in Minkowski spacetime where the connections and the
Riemann tensor are null, the equations become a classical wave equation, with plane waves
as solutions. We have  ∂α ∂

αh̄µν = 0 ,

∂αh̄αβ = 0 .
(3.8)

As the tensor h̄µν is symmetric, it contains 10 independent elements, or functions (since
h̄µν = h̄µν(x)). The gauge condition allows us to impose four constraints so that there
remain 6 degrees of freedom. These can be reduced to 2 in several steps. First, we search
for a plane wave solution that, without loss of generality, propagates along the z direction.
As a result, h̄µν = h̄µν(t− z) (plane wave solution) and thus ∂x h̄µν = ∂y h̄µν = 0. The gauge
condition can now be written as

∂t h̄tβ = ∂z h̄zβ , (3.9)

1It is possible to show that such a gauge always exists [17]
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where h̄tβ ≡ h̄0β and h̄zβ ≡ h̄3β. On the other hand, since h̄µν = h̄µν(t− z), it satisfies

∂t h̄αβ − ∂z h̄αβ = 0 . (3.10)

When we put these two results together, we find

∂t h̄tβ = ∂z h̄zβ = 0 , (3.11)

so that
h̄tβ = h̄zβ = 0 . (3.12)

To be more precise, they are both equal to a constant that we set to 0. We can then represent
the tensor as

h̄µν =


0 0 0 0
0 h̄11 h̄12 0
0 h̄21 h̄22 0
0 0 0 0

 , (3.13)

with h̄12 = h̄21 since the tensor is symmetric. This leaves us with three degrees of freedom,
the three independent elements. As said, we can reach two degrees of freedom. It must be
noted that the trace is

h̄ = h̄11 + h̄22 , (3.14)

and we can choose a frame of reference where this trace is null and the De Donder gauge
is still valid. It is possible to show that such a reference frame exists. It is called the
transverse-traceless gauge, or TT gauge. It is indeed transverse, since the time and longit-
udinal components are null and do not vary. In that gauge, h̄ = h and h̄11 = −h̄22. As a
result, we can define

h̄+ = h̄11 = −h̄22 = h+ (3.15)

h̄× = h̄12 = h̄21 = h× . (3.16)

We can then finally express the solution in the TT gauge as

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (3.17)

where h+ is called the plus polarisation and h× the cross polarisation. This interpretation
becomes more obvious when we write the interval

ds2 = −dt2 + dz2 + dx2 (1 + h+ cos(ω t− ω z)) + dy2 (1− h+ cos(ω t− ω z))

+ 2 dx dy (h× cos(ω t− ω z)) . (3.18)

Indeed, we see that the plus polarisation represents an oscillation of x and y, while the cross
polarisation mixes the x and y components. These two polarisations are better understood
with Fig. 3.1, where we see the + wave oscillating in the shape of a ‘+’, and the × one as a
cross. It also highlights the (dominant) quadrupolar nature of the oscillations.
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Figure 3.1: Illustration of the + and × polarisations through the deformation of a ring of
particles. Taken from [25].

3.2 Differences with the electromagnetic case

All the developments that were presented in Chapter 2 are valid in the geometrical optics
approximation, i.e. we neglect all the wave effects such as diffraction. To be valid, it requires
that the wavelength be much smaller than the characteristic dimension of the system, which
is generally true in the context of lensing of electromagnetic waves (except maybe for radio
waves). More formally, we usually consider that geometrical optics is valid when λ≪ Rs [29],
with Rs = 2GM the Schwarzschild radius. Also, the geometrical optics description breaks
down near caustics, since the magnification becomes infinite.

As stated earlier, gravitational waves are characterised by larger wavelengths, so that
the condition λ ≪ Rs may not be fulfilled. For example, the frequency of 100 Hz roughly
corresponds to a wavelength of about 3 × 106 m, so 3000 km. This scale is of the order of
the characteristic size of some black holes and stars, more accurately of their Schwarzschild
radius. Thus, in the case of microlensing, the approximation of geometrical optics does not
hold anymore.

Nevertheless, in most cases, for example for strong lensing by a galaxy, the results of
Chapter 2 are a good approximation, since in that case λ≪ Rs. Also, most of the things we
shall discuss are also valid for electromagnetic radiation, since the wave equation with a lens
that we will analyse does not take into account the polarisation, but only a scalar field. The
same approximation can then be applied to electromagnetic radiation, and the equations for
gravitational waves and electromagnetic ones will be the same.
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3.3 Taking wave effects into account

As already stated, the developments of Chapter 2 were made in the geometrical optics
approximation, but the wave nature of light can also be taken into account. What follows is
also valid for gravitational waves. This section is largely based on [24].

When one solves the equation for an electromagnetic field propagating in a metric per-
turbed by a lens using the Fresnel-Kirchhoff diffraction integral, one finds, for a point source,

⃗̃
E(ω) = AV (ω) C⃗(ω) , (3.19)

where ⃗̃
E(ω) is the Fourier transform of the electric field, A is a constant, V (ω) is called

the transmission factor and contains all the influence of the lens on the wave, and C⃗(ω) is
related to the emission process. In principle, both V and C⃗ depend on η⃗, the position of the
source, but it is fixed in this case, so I will not write the dependence explicitly. If the source
is extended, one needs to perform an integral over the source plane.

As said, V accounts for the effect of the lens and is thus the main difference with the
unlensed case. Following [30], I will also refer to it as the amplification factor F (ω), which
is the ratio of the Fourier transform coefficients of the lensed over unlensed waves. The
transmission factor is defined as

V (ω) =

∫
R2

ei ω∆t(x⃗)dx⃗ = F̄ (ω) , (3.20)

where ∆t(x⃗) is the time delay as defined in Eq. (2.24), and F̄ is the unnormalised amplific-
ation factor. In other words, it takes into account the contributions of the waves that come
from the whole lens plane, due to wave effects. However, the main contributions will come
from the regions where the images are, i.e. where ∆t is stationary. In fact, the frequency
of the exponential is very large for large ω (i.e. in the geometrical optics approximation),
since the multiplicative constants of the time delay are very large. It appears that, at low
frequencies, the contributions from the whole lens plane matter, while at high frequencies
(where geometrical optics applies) the contributions from other parts than the stationary
points vanish because of destructive interference [29]. We can introduce

ω̃ = ω
DS

DLDLS

(1 + zL) ξ
2
0 = ω

DS DL

DLS

(1 + zL) , (3.21)

and the amplification factor becomes

F̄ (ω) =

∫
R2

ei ω̃Ψ(x⃗)dx⃗ , (3.22)

where Ψ(x⃗) is Fermat’s potential (2.25). The fact that ω̃ is very large allows us to use an
asymptotic expansion of the integral. This can be done using the method of stationary
phase, which is used to expand the integral around stationary points, i.e. the images. A
general expression of this method is given in 1D in [31]. It reads:

I =

∫ β

α

ei ν f(x)φ(x)dx =

(
π

ϵ 2 νf ′′(α)

)1/2

φ(α) eiν f(α)+ϵ i π/4 +O

(
1

ν

)
, ν → ∞ , (3.23)
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where f ′′(x) is the second derivative of f , ϵ = 1 if f ′′(α) > 0 and ϵ = −1 if f ′′(α) < 0.
In our case, ϕ(x) = 1, ν = ω̃ and f(x) = Ψ(x⃗). This method can be generalised to higher
dimensions, which is what we need. The form in two dimensions is given, for example, in [32].
If the stationary point of f is (α1, α2), the integral is expressed as

I =
2iπσ

ν
|detA∗|−1/2 φ(α1, α2) e

iν f(α1,α2) , (3.24)

where A∗ is the Hessian matrix evaluated at the stationary points, which intuitively arises
from the expansion around (α1, α2) and generalises the second derivative of the one-dimensional
case. The parameter σ is such that [32]

σ =


1 if detA∗ > 0 and A∗

00 > 0 ,

−1 if detA∗ > 0 and A∗
00 < 0 ,

−i if detA∗ < 0 .

(3.25)

In our case, one expands Fermat’s potential around the images, which are stationary points.
Similarly to A∗, I shall refer to the quantity evaluated at the stationary points with a star,
i.e. Ψ∗ is Fermat’s potential at the image position. The Hessian matrix A∗ corresponds to
the Jacobian matrix A defined in Eq. (2.42), with which the types of images are defined (see
Section 2.6). We can then apply the method of stationary phases to our problem to write,
for one image,

F̄ (ω) =
2iπσ

ω̃
| detA∗|−1/2ei ω̃Ψ∗

. (3.26)

We can also notice that the definition (3.25) exactly corresponds to the different types of
images, so that we can introduce

σ = e−n iπ/2 , (3.27)

with n the Morse index, being equal to 0, 1, 2 for type I, II and III images respectively.
It corresponds to the number of caustics crossed by the ray when travelling towards the
observer. We have seen that caustics are defined as curves where detA = 0. So, intuitively,
crossing a caustic would change the sign of the determinant. Also, all images near the source
are of type I (since there is no lensing). Therefore, type I images would not cross any caustic,
type II ones, for which detA < 0, would cross once a caustic, while type III ones (detA > 0,
Tr A < 0) would cross it twice to change twice the sign of the determinant. The phase
represented by the index n is referred to as the Morse phase [12]. We can also notice that
| detA∗|−1 is the absolute value of the magnification µ.

Finally, we need to account for all the images. The integral in the definition of F̄ can be
split into a sum of integrals, with one around each image on an arbitrarily small disc, and
the others on the rest of the plane. The latter integrals average out to zero because of the
large integration domain and high frequency of the exponential, while the integrals over the
images give each the expression (3.26). As a result, we get a sum over all the images, i.e.

F̄ (ω) =
2iπ

ω

DLS

DS DL

1

1 + zL

N∑
j

|µj|1/2 ei ω∆t∗j−nj iπ/2 , (3.28)
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where N is the number of images and µj the magnification of the jth image and nj the
Morse index of the jth image. Given the presence of the inverse of detA, this development
is not valid near caustics.

To end this section, we introduce the true amplification factor. We need to normalise
V = F̄ , so that |F | = 1 when there is no lensing. We therefore need to compute F̄ for
Ψ(x⃗) = 1

2
(x⃗− y⃗)2 (no lensing), with y⃗ = 0 (by choice of the reference axis), so we get

F̄ (ω) =

∫
R2

ei ω̃ (x2
1+x2

2)/2dx⃗ =
2iπ

ω̃
. (3.29)

We thus express the amplification factor as

F (ω) =
ω̃

2iπ
F̄ (ω) =

N∑
j

|µj|1/2 ei ω∆t∗j−nj iπ/2 . (3.30)

We can also compute its modulus in the case of a point-mass lens, which will be useful later.
with such a lens, we have two images, hence

|F (ω)| =
∣∣|µ+|1/2ei ω∆t∗+−i(π/2) n+ + |µ−|1/2ei ω∆t∗−−i(π/2) n−

∣∣
=

√
|µ+|+ |µ−|+ |µ+|1/2 |µ−|1/2 (eiω∆td−i∆nπ/2 + e−iω∆td+i∆nπ/2)

=
√
|µ+|+ |µ−|+ 2 |µ+|1/2 |µ−|1/2 cos (ω∆td −∆nπ/2) , (3.31)

where ∆td is the time delay between the two images, and ∆n the difference in the Morse
indices. Given the definition of the cosine, we can equivalently use ∆td = ∆t+ −∆t− with
∆n = n+ − n−, or ∆td = ∆t− −∆t+ with ∆n = n− − n+. We have seen in Section 2.7 that
µ+ is always greater than 1, so that the + image is of type I or III, so n+ is 0 or 2. On the
other hand, µ− ≤ 0, so the − image is of type II, hence n− = 1. As a result, ∆n = ±1,
but we can define it in such a way that it is always 1 by choosing the order of the indices
properly (i.e. n+ or n− first). The order of the indices in ∆td will be the same as the one
chosen for ∆n. We can then rewrite the cosine as cos (ω∆td − π/2) = sin (ω∆td), and the
modulus of the amplification factor becomes

|F (ω)| =
√

|µ+|+ |µ−|+ 2 |µ+|1/2 |µ−|1/2 sin (ω∆td) . (3.32)

The amplification factor expresses how the wave is modified in both amplitude and phase.
We also see that, contrarily to what was done in Chapter 2, we compute how the image is
modified according to its frequency. It is important to keep in mind that the result (3.30)
is valid where geometrical optics applies. To take into account wave effects fully, one would
need to solve the integral in the general case where ω is not so large. This is what will be
done in the following sections, where we will solve the wave equation with the presence of a
lens, and the solution will be the same as the one obtained by the calculation of Eq. (3.22).
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3.4 Wave equation with a point-mass lens

We will now investigate mathematically what happens to the wave in the presence of a
point-mass lens. To do so, we will use the wave equation that we have derived. To ease the
notation, I will drop all the bars and tildes, as they are not really important anymore in
what follows. We consider the background metric as being the metric perturbed by a mass,
the lens, such that its gravitational potential U(r⃗) is small, i.e. U(r⃗) ≪ 1. The potential is

U(r⃗ ) = −GM
|r⃗ |

, (3.33)

and
∇⃗U(r⃗ ) = GM r⃗

|r⃗ |3
⇒

∣∣∣∇⃗U(r⃗ )∣∣∣ = GM

|r⃗ |2
. (3.34)

We then see that
∣∣∣∇⃗U ∣∣∣ is smaller than U , since we consider that |r⃗ | ≫ GM (as U ≪ 1).

We thus have, in the reference frame of the lens,

ds2 = −(1 + 2U(r⃗)) dt2 + (1− 2U(r⃗)) dr⃗ 2 ,

which represents the metric (2.11), i.e. the one of a Minkowski spacetime perturbed by a
weak lens. In other words, the metric is

gµν = diag (−1− 2U, 1− 2U, 1− 2U, 1− 2U) , (3.35)

where U = U(r⃗) to ease the notation. We can then deduce that

gµν = diag
(

1

−1− 2U
,

1

1− 2U
,

1

1− 2U
,

1

1− 2U

)
. (3.36)

We can also write the determinant of the metric:

g = det(gµν) = −(1 + 2U)(1− 2U)3 , (3.37)

which is always negative since U is very small.
We will assume that the wavelength is much smaller than the typical radius of curvature

of the background metric, so that Eq. (3.7) reduces to [30]

∇α∇α hµν ≡ □hµν = 0 , (3.38)

with □ the d’Alembertian built on the background metric. We will further assume that the
polarisation of the wave remains unchanged after lensing [30], so that we may express the
equation only for Φ(r⃗, t), if hµν = Φ eµν with eµν the polarisation tensor. Again, I will write
Φ ≡ Φ(r⃗, t) to ease the notation. In this case, it can be shown (see Appendix C) that the
equation can be rewritten as

∂µ
(√

−g gµν ∂ν Φ
)
= 0 , (3.39)

which is more convenient to use, since it does not require to compute the connection coeffi-
cients. We then start from the wave equation for the amplitude:

∂µ
(√

−g gµν ∂ν Φ
)
= ∂µ

(
(1 + 2U)(1− 2U)3 gµν ∂ν Φ

)
= 0 . (3.40)

33



CHAPTER 3. GRAVITATIONAL LENSING OF GRAVITATIONAL WAVES: THEORETICAL APPROACH

There are quite a few terms, so we can consider them one by one. The potential does not
depend on time, which simplifies the temporal term to:

∂0

[√
(1 + 2U)(1− 2U)3 g0ν ∂ν Φ

]
=

√
(1 + 2U)(1− 2U)3 g00 ∂0 ∂0Φ

= −
√
1− 4U2

1− 2U

1 + 2U
∂0 ∂0Φ . (3.41)

Since the spatial terms of the metric are the same, we can write them together with

∂i

[√
(1 + 2U)(1− 2U)3 giν ∂ν Φ

]
= ∂i

[√
(1 + 2U)(1− 2U)3

1

1− 2U
∂iΦ

]
= ∂i

[√
1− 4U2 ∂i Φ

]
. (3.42)

The derivative of the potential term is

∂i

(√
1− 4U2

)
= − 4U√

1− 4U2
∂i U , (3.43)

so that the spatial terms can be written as

∂i

[√
(1 + 2U)(1− 2U)3 giν ∂ν Φ

]
= − 4U√

1− 4U2
∂i U ∂i Φ +

√
1− 4U2 ∂i ∂i Φ (3.44)

We then put together equations (3.40), (3.41) and (3.44) and divide by
√
1− 4U2 to get:

− 1− 2U

1 + 2U
∂0 ∂0Φ− 4U

1− 4U2
∂i U ∂iΦ + ∂i ∂iΦ = 0 , (3.45)

where the sum is implicit, or in more familiar notations

− 1− 2U

1 + 2U
∂20 Φ− 4U

1− 4U2
∇⃗U · ∇⃗Φ + ∇⃗2Φ = 0 , (3.46)

where all the operators now refer to Minkowski operators in Cartesian coordinates, i.e.
taking the identity matrix as spatial metric (so ∇⃗2 =

∑
i ∂

2
i and a⃗ · b⃗ =

∑
i ai bi). We have

that
4U

1− 4U2
= 4U +O(U2) , (3.47)

so, since ∂i U is O(U) (see (3.34)) and if we then assume that ∂i ϕ is O(1), the second term
of (3.45) is O(U2). One can also easily show that

1− 2U

1 + 2U
= 1− 4U +O(U2) . (3.48)

So, to first order in U , the wave equation becomes

∇⃗2Φ− (1− 4U) ∂20 Φ = 0 . (3.49)

This equation is thus the wave equation that we have to solve in our case.
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3.5 Analytical solution for a point-mass lens

In this section, we will solve the equation for a plane wave propagating in the metric
perturbed by the point-mass lens. The solution will be illustrated and commented as well.

3.5.1 Derivation of the solution

First, let us clarify the problem we are trying to solve. We consider a plane wave propagat-
ing towards a point-mass lens in a metric perturbed by the latter. We are interested in finding
how the lens will modify the initial wave from the point of view of the observer. To this end,
we will solve the wave equation (3.49), which is expressed in the reference frame of the lens
and describes how the metric influences the propagation of the wave.

We assume that the solution can be written in the form Φ(r⃗, t) = ϕ(r⃗) exp(−iωt). We
could also take into account the phase of the wave, i.e. Φ(r⃗, t) = ϕ(r⃗) exp(−iω(t− t0)). We
shall however not consider it in the following, without loss of generality. We can then write
Eq. (3.49) as

∇⃗2Φ + iω (1− 4U) ∂0Φ = 0 , (3.50)
given the properties of the exponential. We can further develop this equation to get

0 = ∇⃗2Φ + iω (1− 4U) ∂0Φ

= ∇⃗2Φ + iω ∂0Φ− 4U ω2Φ

⇔ i∂0Φ = − 1

ω
∇⃗2Φ + V Φ , (3.51)

with V = 4Uω. The last equation was formulated in such a way that it makes a famous
equation appear. Indeed, since we can consider here ω as a constant parameter, we retrieve a
Schrödinger-like equation! Fortunately, the analytical solution to such an equation is known,
at least for a few V . We will rewrite the gravitational potential as

U = −GM
r

= −Rs

2 r
, (3.52)

with Rs = 2GM the Schwarzschild radius. In this case, solving our ‘Schrödinger equation’
is actually similar to solving the Schrödinger equation in a Coulomb potential! To be more
accurate, it is similar to the elastic scattering in a Coulomb potential, and the solution to
that problem is known. I have taken the answer to the electromagnetic problem from [33]
and I will show it here adapted to our problem. Such a method to solve the equation was
already proposed by, among others, [34] and [35].

We can further develop Eq. (3.51):

i∂0Φ = − 1

ω
∇⃗2Φ + V Φ

=⇒ 0 = −∇⃗2ϕ− ω2ϕ+ 4Uω2ϕ (3.53)

=⇒ 0 = ∇⃗2ϕ+ ω2

(
1 +

2Rs

r

)
ϕ . (3.54)
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We will now use parabolic coordinates, given the axis symmetry of the system. We define
the z-axis as being parallel to the direction of the wave vector of the incoming wave. We
then perform the following change of variables:

ξ = r − z , (3.55)
η = r + z . (3.56)

To be more precise, it corresponds to the following change of variables:

x =
√
ξη cosφ , (3.57)

y =
√
ξη sinφ , (3.58)

z =
1

2
(η − ξ) , (3.59)

with then r =
√
x2 + y2 + z2 and tanφ = y/x. In these coordinates, the Laplace operator

becomes [33]

∇⃗2 =
4

ξ + η

[
∂

∂ ξ

(
ξ
∂

∂ ξ

)
+

∂

∂ η

(
η
∂

∂ η

)]
+

1

ξη

∂2

∂ φ2
. (3.60)

Given the symmetry of the problem, the last derivative is null, i.e. ϕ(r⃗) = ϕ(ξ, η).
If we apply the change of coordinates to Eq. (3.54), with 2r = ξ + η, we get

4

ξ + η

[
∂

∂ ξ

(
ξ
∂ ϕ

∂ ξ

)
+

∂

∂ η

(
η
∂ ϕ

∂ η

)]
+ ω2

(
1 +

4Rs

ξ + η

)
ϕ = 0 . (3.61)

We then set
ϕ(ξ, η) = exp

[
i

2
ω (η − ξ)

]
ψ(ξ) . (3.62)

We can see that the exponential corresponds to a wave propagating along z, while its amp-
litude depends on its position.

We then inject this expression into Eq. (3.61), but this yields a lot of terms. We will thus
express the Laplace operator in several steps to ease the notation. We can first notice that
the exponential will be present in each term in the end, since the derivatives do not modify
it, and can thus be cancelled out. We also have that

∂ ϕ

∂ ξ
=

(
∂ ψ

∂ ξ
− i

2
ω ψ

)
exp

[
i

2
ω (η − ξ)

]
,

∂ ϕ

∂ η
=
i

2
ω ψ exp

[
i

2
ω (η − ξ)

]
.

For the terms in the Laplace operator, we thus get

∂

∂ ξ

(
ξ
∂ ϕ

∂ ξ

)
=

{
∂ ψ

∂ ξ
− i

2
ω ψ + ξ

[
∂2 ψ

∂ ξ2
− iω

2

∂ ψ

∂ ξ
− i

2
ω

(
∂ ψ

∂ ξ
− i

2
ω ψ

)]}
e

i
2
ω(η−ξ) , (3.63)

∂

∂ η

(
η
∂ ϕ

∂ η

)
=

{
i

2
ωψ − 1

4
ω2 η ψ

}
e

i
2
ω(η−ξ) . (3.64)
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We can see that the second term of the first equality cancels the first term of the second
equality. Simplifying these expressions and cancelling out the exponential, Eq. (3.61) be-
comes

4

ξ + η

[
ξ
∂2 ψ

∂ ξ2
+ (1− iωξ)

∂ ψ

∂ ξ
− 1

4
ω2(ξ + η)ψ

]
+ ω2

(
1 +

4Rs

ξ + η

)
ψ = 0 . (3.65)

We can see that the third term cancels with the fourth one. We then finally end up with

ξ
d2 ψ

d ξ2
+ (1− iωξ)

dψ

d ξ
+ ω2Rs ψ = 0 , (3.66)

where the partial derivatives were replaced by total ones, since ψ only depends on ξ.
So, we have arrived at an equation for ψ. It appears that this equation has a well-known

form, which is Kummer’s equation [36]

ẑ
d2w

d ẑ2
+ (b− ẑ)

dw

d ẑ
− aw = 0 , (3.67)

with ẑ ∈ C. This equation has a solution

1F1(a, b, ẑ) =
∞∑
n=0

(a)n
(b)n n!

ẑn , (3.68)

with the (a)n the Pochhammer’s symbol that denotes the rising factorial2, i.e. [36]

(a)n =

{
(a)(a+ 1)(a+ 2)...(a+ n− 1) if n > 0 ,

1 if n = 0 ,
(3.69)

or in general [36]

(a)n =
Γ(a+ n)

Γ(a)
a ̸= 0, −1, −2, · , (3.70)

with Γ(ẑ) the gamma function. The function 1F1 is called the confluent hypergeometric
function, or also Kummer’s function (noted M(a, b, ẑ)).

From Kummer’s equation (3.67), we need to set ẑ = iω ξ to retrieve our equation (3.66).
We then indeed obtain

iωξ
1

(iω)2
d2w

d ξ2
+ (b− iωξ)

1

iω

dw

d ξ
− aw = 0

⇒ ξ
d2w

d ξ2
+ (b− iωξ)

dw

d ξ
− iωaw = 0 (3.71)

We can compare it to equation (3.66) and we find that b = 1 and a = iω Rs, so that the
solution is

ψ(ξ) = C 1F1(iωRs , 1, iωξ) , (3.72)
2In combinatorics, the rising factorial is noted an̄.
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with C a constant. The full solution to the problem in parabolic coordinates is

Φ(ξ, η, t) = C 1F1(iωRs , 1, iωξ) exp

[
i

2
ω (η − ξ)

]
exp (−iω t) . (3.73)

For convenience, we may re-express the solution in spherical coordinates. One way to do it
is to notice that ξ = 2r sin2(θ/2). Indeed,

ξ = r − z = r − r cos θ = r(1− cos θ) = 2r sin2

(
θ

2

)
. (3.74)

The other terms can easily be replaced, and we thus get

Φ(r⃗, t) = C 1F1

(
iωRs , 1, 2iωr sin

2

(
θ

2

))
exp (iωz) exp (−iω t) , (3.75)

or with z = r cos θ,

Φ(r⃗, t) = C 1F1

(
iωRs , 1, 2iωr sin

2

(
θ

2

))
exp (iωr cos θ) exp (−iω t) . (3.76)

Note that in SI units, we would have all the ω that are divided by c in 1F1 and in the first
exponential. This solution is the same as the one obtained by [34]. It is also expressed for a
monochromatic wave. In the general case, we write

Φ(r⃗, t) =

∫ +∞

−∞
ϕ(r⃗, ω) e−iωt dω

2π
. (3.77)

We then directly retrieve Eq. (3.54) for ϕ and its solution is exactly the same. The only
difference is that we must integrate Eq. (3.76) over ω. In the following, we shall consider the
general case with ϕ(r⃗, ω).

To extract what is really interesting, we can express the amplification factor F , which is
the ratio of ϕL (lensed wave) over ϕ (initial wave), as introduced in Section 3.3. In this case,
one would have

F (r⃗, ω) = C 1F1

(
iωRs , 1, 2iωr sin

2

(
θ

2

))
, (3.78)

since the exponential is the same for both waves.
So, we have found an analytical solution, but its complicated form, particularly with

the confluent hypergeometric function, does not allow for an easy interpretation. We shall
therefore investigate if we can express the solution differently and then interpret the results.

3.5.2 Re-expressing the solution

A first important remark is that we do not need to change the coordinate system, centred
on the lens, in order to describe what the observer would observe. In fact, it would only make
the solution less elegant by introducing new terms. We consider the same configuration as
in Chapter 2, but the way we tackle the problem is different. Indeed, as shown in Fig. 3.2a,
we do not consider a ray anymore, but really consider the wave and seek its deformation by
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the lens. The general geometry, shown in Fig. 3.2b, is still the same. We need to express
the solution at the coordinates of the observer, i.e. r = DL and θ = γ, where γ is the angle
between the initial wave vector, which defines the z−axis, and the reference axis. Note that
the distances are not angular diameter ones, since we do not take expansion into account.
It is however not important, as the distances will not appear in the final expression of the
solution. Since the position is fixed, we will see how F behaves as a function of ω only. The

L

γ

γ

e⃗z

r
P

θ

(a)

O L

S

η

β γ

DL DLS

DS

(b)

Figure 3.2: System of coordinates centred on the lens. P is a point at which we evaluate
the wave. The angles have been largely exaggerated. (a) Zoom in on the lens to define the
coordinate system with the incoming wave propagating at an angle γ with respect to the
reference axis. (b) View of the angle γ in the whole system (if the source is not at an infinite
distance).

amplification factor at O is thus

F (ω) = C 1F1

(
iωRs , 1, 2iωDL sin2

(γ
2

))
. (3.79)

From Fig. 3.2b, it is straightforward to get γ = DS β/DLS (given the small-angle ap-
proximation). However, to have a plane wave coming on the lens, one needs to consider the
source as being infinitely distant. Otherwise, the wave is spherical and the curvature of the
wavefronts must be taken into account. As a consequence, it does not really makes sense to
take into account the infinite distances DS and DLS. We can see that, in the limit DS → ∞,
γ ≃ β. Since we consider a point-mass lens, we use y = β/θE (see Section 2.7), with θE
the Einstein radius introduced in Eq. (2.54). Note that it induces the characteristic length
ξ0 = DL θE. Given the infinite distance to the source, we need to define a more appropriate
characteristic angle. We will then rather use [35]

θ∞E =

√
2Rs

DL

, (3.80)

where the ∞ symbol refers to the fact that the source is at an infinite distance. In that
context, we set y = β/θ∞E , which is then interpreted as the dimensionless angular position of
the source. Moreover, given the small-angle approximation, we have that sin2(x) ≃ x2. As a
result, we can replace γ and inject the definition of θ∞E into the expression of the amplification
factor to get

F (ω) = C 1F1

(
iωRs , 1, 2iωDL

y2 θ∞E
2

4

)
= C 1F1

(
iωRs , 1, iωRs y

2
)
. (3.81)
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To simplify the notation of this expression further, we introduce ω̃ = ωRs, which is equivalent
(within a factor 2) to the one defined in (3.21), but in a non-expanding Universe and with
ξ0 = DL θE. The amplification factor then becomes

F (ω) = C 1F1

(
iω̃ , 1, iω̃ y2

)
. (3.82)

We still have to determine the constant C to normalise the amplification factor properly.
What can be done is to normalise it so that its modulus is 1 at infinity [37]. To this end,
we can use the asymptotic expansion of the confluent hypergeometric function for a large
argument [36]:

1F1(a, b, ẑ) ∼
Γ(b)

Γ(a)
eẑ ẑa−b

∞∑
s=0

(1− a)s (b− a)s
s!

ẑ−s +
Γ(b) (−ẑ)−a

Γ(b− a)

∞∑
s=0

(a)s (a− b+ 1)s
s!

(−ẑ)−s.

(3.83)
when |ẑ| is large. In our case, we look for |ẑ| → ∞, with a = iω̃ and b = 1. There is only
one term that will then not vanish, since the first term is always O(ẑ−1) because of the ẑ−b

factor. We thus get

1F1(iω̃, 1, ẑ) ∼
1

Γ (1− iω̃)
(−ẑ)−iω̃ , ẑ → ∞ . (3.84)

As ẑ = 2 iωr sin2 (θ/2) = iωξ (to ease the notation), we have

(−ẑ)−iω̃ = (−iωξ)−iω̃ = exp
[
ln
(
(−iωξ)−iω̃

)]
= exp [−iω̃ ln (−i)− iω̃ ln (ωξ)] = e−ω̃π/2 e−iω̃ ln (ωξ)

(3.85)
We can inject this result into Eq. (3.84) to finally get

1F1(iω̃, 1, ẑ) ∼
e−ω̃π/2

Γ (1− iω̃)
e−iω̃ ln (ωξ) , ẑ → ∞ . (3.86)

For |F | = 1 at infinity, we thus set

C = Γ(1− iω̃)eω̃ π/2eiα , (3.87)

where α ∈ R. We can indeed add a phase term that will not change the modulus of the
amplification factor. The choice of α is not of great importance and one can set it to 0. It
can equivalently be absorbed in the phase of the wave. The final form of the solution is thus

F (ω) = Γ(1− iω̃) eω̃ π/2
1F1

(
iω̃ , 1, iω̃ y2

)
. (3.88)

It can also be found under different forms in different papers (among others [29], [35]
and [30]), where α may have been chosen differently. It can also be found with a ω̃ → ω̃/2
by considering ω̃ = ω 4GM = 2ωRs, while I have defined ω̃ = ωRs.

It is interesting to note that this solution can also be found from the Fresnel-Kirchhoff
diffraction integral method, which led to the definition of the transmission factor V (see
Eq. (3.20)). It is indeed possible to directly integrate the time delay (with ξ0 = RE) of a
point source (∝ (x⃗ 2 − y⃗ 2)/2− ln(|x⃗|)). For more details, see [24].
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3.5.3 Interpreting the solution

The asymptotic expansion (3.83) of the confluent hypergeometric function can be useful
for interpreting the solution. Limiting ourselves to the first order and using Γ(ẑ) = Γ(ẑ+1)/ẑ,
we have

ϕ(r, θ, ω) ≃ e−iω̃ ln (2ω r sin2(θ/2))

[
1− ω̃2

2ω r sin2(θ/2)

]
eiω r cos(θ)

+
Γ(1− iω̃)

Γ(1 + iω̃)

ω̃ eiω̃ ln (2ω r sin2(θ/2))

2ω sin2(θ/2)

eiω r

r
, (3.89)

so that the resulting wave is a superposition of a (distorted) plane wave and an outgoing
spherical wave. However, in the case of gravitational lensing, the angles are small so that
r sin2(θ/2) may not be that large and the asymptotic expansion would then not be appropri-
ate [35]. The best method to try and interpret the solution is then to compute it numerically
and visualise the result.

We will focus on the interpretation of the solution at the observer, i.e. Eq. (3.88). We
can look at how the amplification factor amplitude changes with both y and ω. This is
represented in Fig. 3.3. First, we can see in Fig. 3.3a that the global evolution of |F | with
y is the same at all frequencies, i.e. it oscillates around 1 and is maximum at y = 0, as
shown in Fig. 3.3b. This shows the limit of no lensing when the source and the lensed
misalignment is too large. The effect of the frequency is to increase the maximum value at
y = 0 and increase the frequency of the oscillation. We can also see that the amplification is
not infinite at y = 0, contrarily to what is observed in the geometrical optics approximation.
In Fig. 3.3a, we can also notice that lensing has an effect up to a certain wavelength. When
it is too large (so when ω → 0), we see that the amplification factor tends to unity.

(a) (b)

Figure 3.3: Evolution of the amplitude of the amplification factor F for M = 60M⊙ (a) as
a function of y and ω (a similar figure can be found in [29]). (b) as a function of y with a
fixed ω. Note that when ωRs/(2π) = 1, λ = Rs.

These figures, in particular Fig. 3.3b, show similar patterns as light diffraction and inter-
ference observed on a screen in slit experiments. We can observe spatial fringes as well, as
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indicated by the variation of |F | with y. It however oscillates around 1, because the initial
wave is allowed to pass through the lens plane. The oscillations are then due to the interfer-
ence between the two images at higher frequencies (geometrical optics approximation) and
to diffraction at lower frequencies [29, 30, 38]. Indeed, let us recall that the integral form of
F (ω) is (see Section 3.3)

F (ω) =
ω̃

2iπ
V (ω) =

ω̃

2iπ

∫
R2

ei ω∆t(x⃗)dx⃗ . (3.90)

At higher frequencies, we have seen in Section 3.3 that we can consider that there are
multiple images, two for a point-mass lens (see Section 2.7). These then interfere to produce
the observed fringes. At lower frequencies, the contributions from the whole lens plane
matter, not only near the stationary points of ∆t(x⃗). We can thus not say that ‘two images
interfere’, it rather corresponds to diffraction.

Figure 3.4: Evolution of the amplitude of the amplification factor F for M = 60 M⊙ as a
function of ω (a similar figure can be found in [29]).

In Fig. 3.4, the evolution of |F | is given as a function of ω for different values y. We see
that at lower y, the maximum amplification is greater, as also expected from geometrical
optics (see Section 2.7). The oscillations also have a larger amplitude and a lower frequency
for small y. On the other hand, the amplification tends to 1 for any y at very low ω, as already
mentioned. The oscillations also appear at lower frequencies for larger y. This suggests that
geometrical optics is valid at lower ω for larger y. Indeed, these oscillations appear when
the geometrical optics approximation of |F (ω)| becomes valid. This approximation with a
point-mass lens, given in Eq. (3.32), reads

|F (ω)| =
√

|µ+|+ |µ−|+ 2 |µ+|1/2 |µ−|1/2 sin (ω∆td) ,

with ∆td the time delay between the two images. The third term is thus the source of the
oscillations that, hence, appear in the geometrical optics limit. These oscillations would then

42



3.5. ANALYTICAL SOLUTION FOR A POINT-MASS LENS

be due to the interference between the two images, as already mentioned. The difference in
the frequency of these oscillations can be explained by ∆td. It is indeed lower for smaller val-
ues of y [38], hence the frequency of the oscillations of |F (ω)| is lower. At lower ω, diffraction
occurs and the approximation Eq. (3.32) cannot be used anymore, which explains why the
behaviour at low frequencies is different from that in the geometrical optics approximation.
More complete discussions (and applications) can be found in [29], [30] and [38].

3.5.4 Validity and comments

First, we can show that this solution, and the equation in general, is valid only for point
masses. The general gravitational potential reads

U(r⃗) = −
∫

Gρ(r⃗ ′)

|r⃗ ′ − r⃗|
dr⃗ ′ , (3.91)

so that in the approximation where r⃗ ′ ≪ r⃗, the potential reduces to

U(r) = −GM
r

. (3.92)

We thus retrieve the point-mass potential when considering the potential at a distance typ-
ically much greater than the size of the massive object, i.e. approximating the massive
object by a point. This is in general not valid for galaxies. Let us consider the Milky
Way, which has a mass of the order of 1012M⊙, with M⊙ the solar mass. We then compute
Rs ≈ 3 · 1015 m ≈ 0.3 light-years (ly). Let us assume that a similar galaxy acts as a lens on
a wave coming from an infinitely distant source and that it is at a distance of 100 Mpc. We
can then compute its linear Einstein radius R∞

e = θ∞E DL =
√
2RsDL ≈ 1.5 · 104 ly, which is

smaller than the radius of the galaxy. Since RE represents a typical impact parameter, we
cannot say that r′ ≪ r. This approximation is therefore more suitable for compact objects
such as black holes. As a consequence, the solution that was derived is more appropriate
to describe microlensing effects. For strong lensing by galaxies, Rs ≫ λ, so the geometrical
optics approximation should be appropriate to describe the phenomenon.

As mentioned earlier, the solution is valid for a plane wave, i.e. with a source at an
infinite distance. A very similar solution can be derived with a spherical wave, as shown
in [37]. In that case, we do consider DS and DLS in the expression of θE.

Another extension to the plane wave solution is to consider an expanding Universe. The
metric to consider was already shown in Eq. (2.22). We can do a similar development as in
Section 3.4 to derive the wave equation, with now

√
−g = a3

√
(1 + 2U) (1− 2U)3 , (3.93)

and thus
∂µ

(√
−g gµν ∂ν Φ

)
= ∂µ

(
a3

√
(1 + 2U)(1− 2U)3 gµν ∂ν Φ

)
= 0 . (3.94)

Since a does not depend on the spatial coordinates, the corresponding terms will simply be
multiplied by a. On the other hand, for µ = 0, we also have the same term as before, but
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multiplied by a3, and an additional term

3 a2 ∂0 a ∂0Φ
√
(1 + 2U)(1− 2U)3 = (1− 2U)

√
1− 4U2 3a2 ∂0 a ∂0Φ .

Then, similarly to (3.45) and dividing by a3, we get

− 1− 2U

1 + 2U
∂0 ∂0Φ− 3(1− 2U)

∂0 a

a
∂0Φ− 1

a2
4U

1− 4U2
∂i U ∂i Φ +

1

a2
∂i ∂i Φ = 0 , (3.95)

where we recognise the Hubble parameter H = ȧ/a from (1.23). The term containing the
Hubble parameter can be neglected by noticing that the variation of a, of characteristic time
1/H0, is much lower than that of the wave. The other terms of order O(U2) can be neglected
just as in the case of the non-expanding Universe. The equation then reads

∇⃗2Φ− a2(1− 4U) ∂20 Φ = 0 . (3.96)

We use the approximation that the derivative of a is negligible, so that we can set Φ(r⃗, t) =
ϕ(r⃗) exp (−i ωt/a). We then retrieve the same equation as the one we solved, but with
ω → ω/a = ω (1 + zL) (since the equation is solved in the reference frame of the lens). The
solution is thus formally the same as the one that was derived (Eq. (3.88)) except that ω̃ is
now defined as

ω̃ = Rs ω (1 + zL) . (3.97)

In this case, one also interprets the distances as the angular diameter ones.

Finally, it is interesting to discuss how a given waveform is modified by lensing. If we
define ϕ(ω) as the frequency representation of the unlensed wave as seen by the observer
(considered at a fixed position) and ϕL(ω) for the lensed wave, we have, by definition of the
amplification factor, ϕL(ω) = F (ω)ϕ(ω) [30]. The multiplication by F (ω) then produces
particular patterns (such as oscillations) in the frequency representation of the lensed wave
(see [29]). We can have a better representation of the modification of a waveform through
lensing if we use the geometrical optics approximation of F (Eq. (3.30)). Indeed, in that
context, we have

ϕL(ω) = ϕ(ω)
N∑
j

|µj|1/2 ei ω∆t∗j−nj iπ/2 , (3.98)

with ∆t∗j , nj and µj respectively the time delay, the Morse index and the magnification of
the jth image, and N the number of images. When we transform it back to the time domain,
we find [30]

ΦL(t) =
N∑
j

|µj|1/2 Φ(t−∆t∗j) e
−nj iπ/2 . (3.99)

This shows that, in the geometrical optics approximation and in the time domain, the amp-
litude of the wave, its phase and its arrival time are modified, but not necessarily the wave-
form. Indeed, if the differences in time delays are larger than the typical duration of a signal,
then the images do not overlap and the lensed waveform is simply a succession of images of
the initial waveform with different amplitudes (and phases). On the other hand, the super-
position of the images (if the ∆t∗j are very close to each other) may significantly change the
observed waveform.
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Chapter 4

Gravitational lensing of gravitational
waves: practical approach

Now that we have a good idea of the effect of the lens on the waveform, we can use our
knowledge to explore how one may observe and identify two waves as being lensed. This is
what will be done in this chapter. To be more precise, we shall focus on strong lensing, i.e.
when multiple images of the same source are observed, with only a change in amplitude. I will
first introduce the concepts required to understand the application, namely deep learning and
gravitational-wave observation, detection and analysis. We will also discuss the advantages
of deep learning applied to our problem, as well as a concrete example of a neural network
that identifies lensed waves. Note that the notation for the vectors is changed in order to be
more consistent with the usual notations used in machine learning and in the references.

4.1 Introduction to deep learning

Deep learning is one of the investigated techniques for identifying lensed events. It is an
important concept in this thesis, which is why I will now introduce the basic concepts of
supervised learning and deep learning. This section is largely based on [39], [40] and [41].

4.1.1 Supervised learning

Supervised learning is a statistical tool used to make inference. The idea is to use some
data, called training data, that are representative of an unknown relation between some in-
puts and some outputs. These are used to estimate this relation, or learn it, and then apply
this learned relation to make predictions on new inputs, as represented in Fig. 4.1. The goal
is, of course, that the learned relation be as close as possible to the true relation. We shall
see later how one measures the ‘closeness’ of the learned relation to the true one. Note that
supervised learning differs from unsupervised learning, for which the true outputs are not
known and are thus not part of the training data. The idea of supervision is that a ‘teacher’
provides the answer.

There are two main classes of problems that supervised learning can deal with: regression
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Figure 4.1: General idea of supervised learning, taken from [41].

and classification. The former consists in predicting what a real output will be according to
the inputs, i.e. output a quantitative prediction, e.g. fitting a function to a set of points. The
second is concerned with attributing a class or label to the inputs, i.e. output a qualitative
prediction. A typical example of this is to learn to recognise cats from dogs.

To be more formal, one can say that we consider that the training data (inputs X and
outputs Y) are random variables distributed according to an unknown joint distribution
pX ,Y . In the case of regression, one tries to find the expected value E [Y |X = x], which is
the best estimation for the output given the inputs [40]. As for classification, the attributed
label is the one that maximises the probability of a label given the inputs. These expected
values and probabilities are taken with respect to P (Y|X ). The goal is thus to estimate
this conditional distribution, learn it, so that when x ∈ X is given, we may estimate the
probability of the output y ∈ Y .

So, we want to find a relation f mapping X to Y , which is approximated by the function
f̂(x) through the learning algorithm, where x is a vector containing features, i.e. the inputs.
All existing functions cannot be reproduced by a given algorithm. The set of functions that
a learning algorithm is able to represent is called the hypothesis space F . We consider that
this algorithm has the ability to learn, i.e. to modify its approximation f̂ according to the
discrepancy between the true output yi, given in the training data, and its own prediction
f̂(xi). We measure this difference using a loss function L(y, f̂(x)), which must always be
positive (not strictly). It represents a penalisation on the error, so the algorithm will try to
minimise it. We thus look for a function f̂ such that L is minimum, or to be more accurate,
such that the expected loss is minimum. This expected value is called the expected risk R(f̂),
or generalisation error, which is minimised on the hypothesis space by the optimal function
f̂∗ ∈ F . We can thus write [39]

R(f̂) = E(x,y)∼pX ,Y

[
L
(
y, f̂(x)

) ]
, (4.1)

f̂∗ = argmin
f̂∈F

R(f̂) , (4.2)

where E(x,y)∼pX ,Y denotes the expected value with respect to the distribution pX ,Y . However,
as stated, this distribution is unknown. We can estimate its value using an average over the
whole training data set, since they are drawn from this distribution. This unbiased estimator
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is called the empirical risk R̂, or training error, and reads [39]

R̂
(
f̂ ,d

)
=

1

N

∑
(xi,yi)∈d

L
(
yi, f̂(xi)

)
, (4.3)

where d is the training data set containing all the input-output pairs (xi, yi). These are
assumed to be independent and identically distributed. The optimal function over the data
set may however not be same as the true optimal one, e.g. if the amount of data is not
sufficient to allow an efficient training. The optimal function over the training set f̂ d

∗ is such
that [39]

f̂ d
∗ = argmin

f̂∈F
R̂
(
f̂ ,d

)
, (4.4)

It can be shown that f̂ d
∗ converges towards the true optimal function f̂∗ as the number

of data in the training set tends to infinity. Equation (4.4) represents the empirical risk
minimisation principle.

There are a couple of interesting remarks to be made. First, we can see that the training
data play a very important role, since the algorithm learns from them. The pre-processing
as well as the very choice of the data is therefore critical and needs to be dealt with carefully.
Then, we can notice that the set of functions that can be represented by a given algorithm
is limited to its hypothesis space. It may therefore be that the optimal function f̂∗, which
minimises the risk among the functions of the hypothesis space, is not the optimal one
when considering the set of all possible functions. As a consequence, it might be preferable
to increase the number of functions that the algorithm can find to increase the likelihood
of representing a ‘good’ function. This is done, for example, by increasing the number of
parameters in the model.

However, increasing the capacity of the hypothesis space (roughly speaking, its size, or
‘ability to find a good model’ [39]) too much might not be a good idea. Indeed, when its
capacity is too large, there can be functions that fit arbitrarily well the training data and one
can thus face over-fitting. In that case, the model f̂ is so much adjusted to the training data
that it is not able to correctly predict the output from the inputs that were not considered
in the training procedure. It is important to keep in mind that we can only compute the
empirical risk R̂, but the true optimal functions are those that minimise R. In that case, the
empirical risk is no longer a good estimator for the expected risk since it is biased towards
the training data, so one cannot consider that the optimal function for R̂ is optimal for R.
This is similar to fitting a noisy curve and having the solution pass through each and every
point. This indeed minimises the error on the points, but not on the true unknown curve.

On the other hand, if the capacity of F is too small, the algorithm can hardly represent
a ‘good’ function, and the optimal ones in the hypothesis space lead to a relatively large
expected risk. One talks about under-fitting. One looks for a balance between these two
cases, such that the algorithm generalises well to data it was not trained on.

To see when a model is over-fitted or under-fitted, we need a test set, i.e. a data set
containing data that are not in the training set. By doing so, we can evaluate how the
algorithm performs with data it has never seen by estimating the expected risk on the data
in the test set. Contrarily to the empirical risk in the over-fitting regime, this estimation is
not biased, since f̂ was not adjusted to these data. It thus represents a better approximation
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of the expected risk. It decreases in the under-fitting region, as better and better f̂ can be
represented. It however increases in the over-fitting region since, as explained, f̂ does not
generalise well. Therefore, the minimum of the generalisation error corresponds to an optimal
capacity. Note that, in this process, the algorithm does not learn, i.e. it does not modify f̂ ,
since one evaluates its current approximation.

It has nevertheless been found recently that the generalisation error starts to drop again
after a certain value of the capacity (in the over-fitting zone) and can even reach a minimum
that is lower than the first one [42].

To end this introduction, it is important to talk about model selection and model as-
sessment. As explained in [40], model selection is about testing the performance of different
models in order to choose the best one, while model assessment is about estimating the gen-
eralisation error of the chosen model. We have already seen a criterion for choosing the best
model, namely the one that minimises the generalisation error on a separate data set. This
set on which one selects the optimal model is called the validation set. However, one cannot
report the performance of the model on this set as its true performance, since it is biased, it
was chosen according to its results on these very data. In a sense, it is then included in the
training process, as it is used to make a choice on the model (e.g. on the architecture of the
neural network). As a consequence, just as we need a validation set for training, we need a
third data set, a kind of validation set for model assessment, called test set, in order to test
the performance of the final model on data that have not been used in the former processes.

4.1.2 Deep learning

Deep learning is a class of methods of machine learning. As explained, machine learning
allows one to learn transformation from inputs to an output. The raw data may not be suit-
able for learning such transformations, it may be better to use particular representations of
the data for the algorithm to learn [41]. The idea of deep learning is to use several non-linear
modules or layers that each after the other transform the representation of the data [43].
The representations themselves are learned by the algorithm, so that they finally amplify
the relevant features and discard the variations that are unimportant to solve the task [43].
Neural networks implement such techniques and I shall only refer to them in the following.
The rest of the section is mostly based on [41]. I thus recommend the interested reader to
have a look at this reference to have more details and dive deeper into the subject.

Neural networks are then ‘mere’ non-linear statistical models. To start the explanation,
it is easier to go for a linear regression problem. Let us consider a function f : Rn 7→ R, and
y = f(x). We have measurements of N points with noise, such that the measured points are
y(i) = f(x(i)) + ϵ. To approximate the function f , we searche for a linear relation

ŷ = wTx+ b = f̂(x) , (4.5)

where ŷ is thus the prediction. In other words, we seek the weight vector w and parameter
b such that, in the framework of the least-square method, the sum of squared differences
between f̂(x(i)) and f(x(i)) is minimum, where the i index refers to the measured data. Note

48



4.1. INTRODUCTION TO DEEP LEARNING

that in this case, the sum of the squared differences is the loss function. The relation can in
fact be represented by a single-layer neural network, as shown in Fig. 4.2a, where each line
between xi and ŷ is weighted. We thus interpret this graph as ŷ = w1 x1 + w2 x2 + · · · +
wn xn + b, where b is implicit in the diagram and added to the output. The first layer is the
input layer, since x1, x2 . . . , xn are the inputs (components of x), while the second one is
the ouput layer. The input layer is not considered as being a layer of the network. This can
easily be generalised to higher-dimension relations f : Rn 7→ Rm, with

ŷ = f̂(x) = Wx+ b (4.6)

ŷi = Wij xj + bi , (4.7)

where W ∈ Rm×n is the weight matrix and b ∈ Rm is called the bias. The case where m = 2
is represented in Fig. 4.2b, but we can see that it can quickly become quite messy. As each
input is linked to each output, it is called a fully-connected or dense layer. The goal of the
network is to learn the value of the weights and the bias in order to minimise the loss (so
the empirical risk).

x1

x2

xn

...
ŷ

w1

w2

wn

(a)

x1

x2

xn

...

ŷ1

ŷ2

W11

W12

W1n

W21

W22

W2n

(b)

Figure 4.2: Single-layer neural networks that represent the linear regression (a) with 1D
output (b) with 2D output.

The next step is to show how we can get non-linear models. We can add to the networks of
Fig. 4.2 a hidden layer, as shown in Fig. 4.3, i.e. a layer between the input and output layers.
For obvious reasons, the weights are not represented on the diagram, but are still considered.
One can even add several hidden layers, with pi units each. This network architecture is
called multilayer perceptron (MLP) and is the basic architecture.

Similarly to the single-layer network, we can easily interpret the diagram presented in
Fig. 4.3. We can indeed first consider the hidden layer as the output of the input layer, and
then as the input of the output layer. We still consider x ∈ Rn and ŷ ∈ Rm and introduce
h ∈ Rp. We also need two different weight matrices, since there is one for going from x to h,
and one from h to ŷ. We therefore introduce W(1) ∈ Rp×n and W(2) ∈ Rm×p, and b(1) ∈ Rp

and b(2) ∈ Rm, and we have

h = W(1)x+ b(1) (4.8)

ŷ = W(2)h+ b(2) . (4.9)
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x1

x2

xn

...

h1

h2

...

hp

ŷ1

ŷ2

Figure 4.3: Two-layer neural network, i.e. with one hidden layer.

If we replace h by its expression in the second equation, we can directly see that the relation
between ŷ and x is still linear. However, the presence of a hidden layer leads to the intro-
duction of non-linearities through an activation function σ, which is a non-linear function.
Among them, we find the sigmoid, atanh or ReLU (= max(0, x)) functions. The last one is
generally preferred, since the two others are more prone to the vanishing gradient problem
(see [41]). We define σ as the element-wise activation function, so that

h = σ
(
W(1)x+ b(1)

)
. (4.10)

We can inject this result in Eq. (4.9) to obtain a non-linear relation between ŷ and x, which
justifies the fact that neural networks are non-linear models. As already stated, we can still
add several hidden layers, each with its own activation function, so that for q hidden layers,
we have

ŷ = W(q) σq−1

(
W(q−1) σq−2

(
. . . σ1(W

(1)x+ b(1)) . . .
)
+ b(q−1)

)
+ b(q) . (4.11)

We can thus see that it gets very complex and highly non-linear. Neural networks therefore
enable to represent complicated functions, but also simple ones. The price to pay is that
they might require a lot of parameters (sometimes millions or billions nowadays), so that it
is quite costly and requires specific hardware.

Finally, the last important point is the way that the network learns the different weights.
As explained in the previous section, the network, through supervised learning, should be
able to adapt its weights according to the loss, and the goal is to minimise the latter and,
thus, the training error. Ultimately, though, it must also minimise the generalisation error.
It is an optimisation problem, which is a bit more complex than usual ones, since it applies
to a high-dimensional parameter space. It hardly admits an analytical solution and thus
requires numerical methods. The first idea is to use gradient descent, i.e. we move in the
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parameter space in the opposite direction of the gradient by steps proportional to its norm.
We write this the following way [39]:

θt+1 = θt − γ∇θ L(θt) , (4.12)

L(θt) =
1

N

∑
(xi,yi)∈d

L(yi, f̂i(xi; θt)) (4.13)

where γ is the learning rate, θt is the value of the parameters at the step t and f̂i(xi; θt)
stresses the fact the f̂ is defined by the parameters θt. In our case, θ contains the value of
all the weights. However, given the large number of parameters, it is in practice impossible,
or much too costly, to compute the gradient with respect to all parameters. Other optimisa-
tion algorithms that approximate this method and are faster to apply are used in practice.
The idea remains nevertheless the same, and automatic differentiation is used to efficiently
compute the gradient (or its approximation). I will not detail this technique here, but more
information may be found in [44]. Once the gradient is computed, one may move in the
parameter space according to (4.12), which means that the weights are updated. This is
how the network can learn and change its approximation f̂ .

The value of the learning rate is also critical to ensure convergence. If it is too small, one
may end up in a local minimum without being able to escape it, while if it is too large, one
may never find a minimum or oscillate around it without ever reaching it.

4.1.3 Convolutional Neural Networks (CNN)

The MLP is one architecture among many different ones. Convolutional Neural Networks
(CNN) are another popular architecture for networks. These are typically used on images,
or time series, to extract features, or structures in the data. This is thus the usual network
used on image classification problems, since we expect each class (e.g. cats and dogs) to have
proper features that may allow one to distinguish them. Similarly, we know that gravitational
waves signal display a specific pattern of increasing amplitude and frequency, so CNNs may
well be useful to detect them. It can also be noted that CNNs must be (and are) invariant
under translations, i.e. it must respond the same way to the same feature of the input
regardless of where it is within it. In other words and for example, it must be able to detect
a gravitational wave whether the merger be at the beginning of the time series or at the end.
The idea is therefore to look at the input only locally. This way, if a local pattern is moved
within the input, it does not matter where it is located, since the network will only treat
the local pattern itself and not the pattern and its environment. The discrete convolution
implements this idea of locality.

In fact, CNNs use cross-correlation and not convolution. Let us consider the 1D case.
Even though it can easily be generalised to higher dimensions, we will not need it later. Let
us introduce x ∈ RW and u ∈ Rw, with w ≤ W . The discrete cross-correlation of x with u
is written as [39]

(x ⋆ u) [i] =
w−1∑
j=0

xi+j uj . (4.14)
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Therefore, the resulting vector has a size W −w+1. This operation can be viewed as sliding
the vector u across x by step of 1, and at each step computing the element-wise product of
u with the corresponding w components of x it overlaps. For example,

x
(
1 0 3 −1 1 2

)
(4.15)

u
(
1 2 1 0

)
(4.16)

⇒ (x ⋆ u) =
(
1 · 1 + 2 · 0 + 1 · 3 + 0 · (−1) 1 · 0 + 2 · 3 + 1 · (−1) + 0 · 1 . . .

)
(4.17)

⇒ (x ⋆ u) =
(
4 5 2

)
. (4.18)

We thus see that u provides weights to perform an operation, or linear transformation, on a
part of the components of x. These coefficients do however not change, so the transformation
is the same everywhere! We can see how this relates to the idea of locality, it does not matter
where a feature is in x, it will be found whatever its location, since the same transformation
will be applied to it regardless of its where it is.

In general, x is called the input feature map, u the kernel and their cross-correlation is
the output feature map. Also, w is the receptive field. It can be shown that this architecture
is in fact a special case of a fully-connected layer. Intuitively, the weights will always be
the same, corresponding to the value in the kernel, and will be zeros outside the kernel size.
This is illustrated in Fig. 4.4, where ŷ = x ⋆ u and ui is the value of the ith component of
kernel, so a weight. The idea of locality is even more obvious in that diagram.
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Figure 4.4: Illustration of a CNN as a fully-connected layer. The weights are null when there
is no link.

One can also take into account the channels, e.g. the RGB ones for images. In that
case, we have x ∈ RC×W and u ∈ RC×w, where C is the number of channels. contrarily to a
multidimensional convolution, we usually do not consider that the kernel ‘slides’ along the

52



4.2. GRAVITATIONAL-WAVE OBSERVATIONS

channel dimension. As a result, we simply sum over the values of the channels, so that the
output will have 1 channel (so it is a vector). Mathematically, it reads [39]

(x ⋆ u) [i] =
w−1∑
j=0

C−1∑
c=0

xc, i+j uc, j . (4.19)

We can however still obtain multiple channels as output by performing the ‘convolution’
several times with different kernels.

When implementing the CNNs, one can specify the padding. The latter adds 0 elements
at both ends of the vector (so a padding of n adds 2n null elements). This allows, among
other things, to conserve the size of the input throughout the convolutions.

The last point to discuss is pooling. This reduces the size of the input of the convolution
by averaging over or taking the maximum among p elements. The number of elements is
thus, roughly, divided by p. Though we might lose a bit of information, the input keeps its
global structure. The advantages are, of course, that the number of parameters decreases
and the computation cost can be greatly reduced, but also the size of the effective receptive
field increases. The effective receptive field of a layer is all the elements of previous layers
that are involved in the computation of its output [41]. For example, if we apply a pooling
of size 3 on a signal, then a convolution with a kernel size 3, the receptive field on the
convolution input is 3, but 9 on the initial input, since elements were gathered by groups of
three. Therefore, the first layers will search for features at small scales, while the last ones
will rather identify features in a broader area. It is nonetheless worth mentioning that CNNs
do not always see features as we do, or would want them to. It may not be easy to interpret
what the features identified by the CNNs are.

A CNN is generally defined as a composition of convolution, activation function, pooling
and fully-connected layers. Typically, convolution is applied, followed by an activation func-
tion. The result is then pooled, and this can be repeated several times before the output of
this part is fed to one or several fully-connected layers.

4.2 Gravitational-wave observations

Before diving into the application of neural networks to gravitational-wave data analysis,
one must first introduce how these waves are observed, what a typical wave signal looks like,
and what the main challenges in detecting a gravitational wave are.

First, it must be noted that the only type of gravitational wave that we have been able
to detect so far are those coming from compact binary coalescence (CBC), i.e. mergers of
binary black holes, neutron stars, or a neutron star with a black hole. The signal is char-
acterised by an increase in frequency with time. Intuitively, the radiation is emitted as the
bodies circle around each other. This emission results in a loss of energy, transported by
the wave. As a consequence, the two objects get closer to each other, which increases the
frequency of the orbit and hence of the emitted wave, until they merge. An example is shown
in Fig. 4.5. The strain is what is measured by the detectors, which are laser Michelson-like
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Figure 4.5: Example of a gravitational wave from a merger of two black holes of equal mass
M = 50 M⊙ at a distance of 100 Mpc. Computed with PyCBC [45] with the SEOBNRv4_opt
model [46, 47].

interferometers. The current ones, LIGO, Virgo, KAGRA and GEO 600, are L-shaped with
arms of a length of 3 to 4 km [5–9] (600m for GEO 600 [10]). When the gravitational wave
passes through the detectors, the mirrors move, which introduces a change in the interference
pattern. The strain corresponds to the ratio of the change in the length of the arms (due to
the motion of the mirror) over the total arm length. In the example of Fig. 4.5, the strain
of 10−20 is relatively large, the typical order of magnitude is 10−21. In fact, if we look at the
problem in the TT gauge (see Section 3.1.3), the mirrors do not move, i.e. they keep the
same coordinates, but the distance travelled by light is still different from that without the
gravitational wave, since the metric changes according to Eq. (3.18) [27]. The results are
the same, only the interpretation changes. It is also important to note that the sensitivity
of the detectors is not the same in all directions.

An important characteristic of the observation data is the noise. The measured quant-
ities are indeed so small that any small perturbation may cause a significant noise level,
even quantum effects. There are several sources of noise: the temperature of the mirror,
the irregular arrival of photons on the mirror (shot noise), radiation pressure that slightly
moves the mirror, the power fluctuation of the laser, the seismic activity of the Earth (and
human activity), and a few others [6, 48]. The noise does not have the same amplitude at all
frequencies, it is not white. The typical power spectral density (PSD) is shown in Fig. 4.6.
This reduces the possibility of detection in the range 20-1000 Hz, otherwise the noise amp-
litude is too large compared to the signal. In data processing, it is common to apply a
band-pass filter to discard the parts of the strain that are largely dominated by the noise,
and to whiten the noise. This is done by dividing the Fourier spectrum of the data by the
square root of the PSD. The resulting signal is then characterised by a white noise and the
wave signal should have a larger amplitude relative to the noise. It remains nonetheless that
the noise is generally much larger than the signal. This is the main challenge in detecting
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Figure 4.6: PSD of aLIGO detector for the O3 run. Computed with PyCBC.

gravitational waves. The increase in the sensitivity of the detector, hence the reduction of
the noise, allows one to detect more events, and weaker ones.

It is important to note that the noise is neither Gaussian nor stationary. It is however
often assumed to be both when starting to try some networks to analyse the data. In
true noise, there are what one calls glitches, short bursts of noise that can have different
characteristics.

4.3 Importance of artificial intelligence in gravitational
wave detection

I will now expose some reasons why deep learning may be an important tool in gravitational-
wave data analysis. To this end, one first needs to introduce the current main method along
with its advantages and flaws. Then, we will see how deep learning may help and I will
briefly present what is currently done in that field.

4.3.1 Detection of gravitational waves: matched filtering

The most common technique used to detect gravitational waves is matched filtering.
Recently, artificial intelligence has also been investigated for this task. Matched filtering
requires to use templates of signal to search for a similar waveform within the observation
data. It can thus only be used to detect modelled waves and takes some time to give results,
since one needs to try many different templates on long signals. I will not develop much the
theory of matched filtering, but more information can be found in [48–50].

The idea of matched filtering is to compare the data with a template using cross-
correlation. The computed cross-correlation would peak where the data and the template
match. Let us consider the output of a detector, i.e. strain data, s(t) = n(t)+h(t), with n(t)
the noise (assumed to be Gaussian and stationary) and h(t) the gravitational-wave signal.
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We also consider a template u(t). One computes the SNR, defined as [50]

S

N
≡ ρ ≡ ⟨s, u⟩

rms ⟨n, u⟩
, (4.20)

where rms is the root mean square error and the inner product is the noise-weighted cross-
correlation

⟨s, u⟩ = 4Re
[∫ ∞

0

S∗(f)U(f)

Sn(f)
df

]
, (4.21)

with S and U the Fourier transforms of s and u, respectively, and Sn the one-sided power
spectral density of the noise. It can be shown that the denominator is equal to

√
⟨u, u⟩ [49,

50]. This SNR is maximum when the template matches the strain data, which suggests
that a wave is detected. It is indeed unlikely to have a very large SNR if s(t) = n(t). One
can then define the optimal SNR (SNRoptor ρopt), which is obtained for h(t) = Au(t), such
that [51]

E [ρopt] = E [⟨n+ Au|u⟩] = A , (4.22)

with A the amplitude and E the expected value (over an infinite number of noise realisations).
This is true provided the noise has a null expected value, unit variance and that u(t) is
normalised such that ⟨u|u⟩ = 1. If the latter condition is not fulfilled, one can still define [52]

σ2 = ⟨u|u⟩ = 4

∫ ∞

0

|U(f)|2

Sn(f)
df , (4.23)

and divide u by this quantity to normalise it.
A significant SNR is however not always sufficient, since the noise amplitude is in general

of the order or greater than the wave amplitude. In practice, the strain data of all the
available detectors are used to make the detection more significant. If there is indeed a wave,
one can estimate the parameters of the source according to the waveform. The parameters
influencing the waveform with CBC waves are the masses of the compact bodies, their spin
vector and orbital angular momentum, the luminosity distance (1.34), the position in the
sky (right ascension, declination), as well as the time and phase of merger [48]. To be
more accurate, these are the parameters for a binary black hole merger with a quasi-circular
orbit. There are additional parameters when one considers eccentric orbits and neutron
stars. These parameters can be entered as arguments of template generation functions such
as those provided by the python software PyCBC [45], which uses generators/approximants
implemented by the LALSuite software [46] .

The generation of such theoretical waveforms demands (sometimes heavy) numerical
computations from the equations of general relativity. Besides the cost of building the
templates, the matched filtering requires a certain number of them in order to span (part of)
the parameter space and, thus, make sure that if a wave is present in the observation data,
it will produce a significant SNR and will be detected. The true parameters of the wave
are indeed unknown, so we have to try many different templates to find the most suitable
one. It is however not necessary to have one for each and every possible combination of
the parameters (which would be infeasible), since some lead to very similar waveforms.
Intuitively, we can say that the number of templates needed not to miss a wave is large,
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given the number of parameters. The number of operations to test N templates on a data
segment is proportional to N (and also depends on the length of both the templates and
the data) [50]. This, added to the time to generate templates, gives an idea on the possibly
large cost of this technique. Less accurate templates can nonetheless be used for a faster
‘pre-identification’, before a confirmation [53]. It seems then natural to say that this method
is costly and, therefore, time-consuming. This is even more apparent when we know that we
have more and more data to analyse. As this happens and the sensitivity of the detectors
increases, the matched filtering method may become too slow to detect and analyse each
and every possible wave hidden in the data. It remains nevertheless that matched filtering
is the optimal method in stationary, Gaussian noise [48, 50, 53].

4.3.2 Deep learning: filtering and early warning

Given the cost of matched filtering and the increasing number of detectable events, the
need for faster algorithms becomes a serious issue. In fact, one does not especially need more
accurate algorithms, as long as they are less costly. There are two main reasons for searching
for faster methods.

The first one is to find, with such methods, potential events in the observation data.
These candidates can then be confirmed or discarded by more accurate and time-consuming
methods. This prevents wasting time trying to identify signals where there are probably
none. The second reason is to make early-warning detections [54]. It consists in detecting a
coalescence signal fast enough to warn observatories that there might be an electromagnetic
counterpart of the gravitational wave to observe. This is of interest for mergers which involve
a neutron star. The interest in observing an electromagnetic counterpart has already been
demonstrated. One of the neutron star mergers that was detected, GW170817, was found to
be almost coincident with a gamma-ray burst, which arrived some 1.7s after the gravitational-
wave signal [55]. The joint observations were used to set constraints on the speed of gravity,
very close to c, which rules out some alternative theories of gravity. It was also used to
test general relativity and study the gamma-ray burst. Finally, it allowed one to estimate
the Hubble constant, from the redshift measurement of the host galaxy and the estimated
distance from the gravitational-wave signal [56]. The value is however not accurate and one
would need more such joint observations to obtain a more accurate estimation of H0. To
sum up, such multimessenger detections have a real scientific interest, which stresses why
early warning is important.

In the case of lensing, one would mainly benefit from the filtering advantage, which is, in
fact, even more important in this case. Indeed, the number of pairs to test increases roughly
as the square of the number of detected events. Since the latter and the rate of detection
will increase (because of new generation and/or improved detectors), it will probably be
infeasible to keep up and analyse all the pairs with the current costly methods, which will be
presented in the next section. This becomes even more critical if one wants to find triplets or
four images of the same source, since the number of groups of events to analyse is even larger.

Deep learning may provide us with such faster algorithms. Indeed, even if the training
takes some time, the predictions of the network are in general very fast. Also, it was shown
that matched filtering is equivalent to a specific neural network [57]. This may be no proof
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that it is the best solution, but it is still, in my opinion, a clue that machine learning is an
interesting and promising lead to follow.

Among the works that apply machine learning to the detection of gravitational waves,
some analyse directly the time series with a 1D CNN, achieving similar performance to
matched filtering in Gaussian noise [58], but also in true LIGO noise [59]. Some networks
also estimate the value of the parameters on top of detecting the wave [59] and, in addition
to this, some also classify the event as binary black hole or neutron star coalescence [53].
Another way to look for gravitational waves is to analyse the spectrogram of the signal [60].

These results are encouraging. Some are indeed obtained under idealised conditions,
but some also under realistic ones such as true noise with glitches. There are also other
investigated applications of machine learning in gravitational-wave data analysis. We can
mention the extension of the detection to unmodelled waves [61], the identification and
classification of glitches, subtraction of noise, and waveform modelling [16]. These are not
really relevant to discuss in this thesis, but the interested reader may find a review in [16].

4.4 Identification of lensed gravitational waves

Bayesian inference has been used to detect lensed events [12], and artificial intelligence
also starts being investigated [62, 63]. We shall briefly see what are the basic principles of
these techniques and present the current status of the search for lensed signals.

We shall first consider strong lensing by galaxies or galaxy clusters. Bayesian methods
are based on a posterior overlap of the parameters [64]. The idea is that, under the lensing
hypothesis, the overlap between the parameter posteriors of both waves should be large,
since strong lensing only modifies the amplitude and the phase. This method can be used
to keep only the most promising pairs, as was done in the search for lensing events in [12].
The verification of these pairs is then made with a joint parameter estimation analysis. This
allows one to compute three statistics to evaluate the likelihood of the lensing hypothesis.
The first one takes into account the proximity of the parameters of the two waves. The second
one is the same as the first, except that it takes into account the population of sources and
lenses, in order to account for the fact that two sources with similar characteristics and close
in the sky may emit a similar wave that can then look like a pair of lensed waves, though it is
not. A third quantity takes into account the fact that some waves are preferentially detected
in some mass ranges and sky localisation because of the sensitivity of the detectors [12].
More details can be found in [12] and references therein.

As for deep learning methods, [62] uses a DenseNet, which is a CNN initially designed
for image recognition [65]. This network is used on the Q-transform (frequency vs time) of
the waves. The idea is thus to compare the frequency evolution of both waves to see if they
are identical or not. The sky localisation is also used in the process and the detectors are
treated separately, each corresponding to one network. The data are generated according to
a given population of sources and a given lens model. The noise that is used is Gaussian and
stationary. This model is more complex than what will be considered in the next section.
Also, the representation of the data will not be the same.
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Similarly to strong lensing by galaxies, we can search for microlensing signatures includ-
ing wave effects as discussed in Chapter 3. In this case, we generally do not have multiple
images but a deformation of the waveform due to wave effects or superposition of multiple
images with a time delay smaller than the duration of the wave signal (see [12] and references
therein). Deep learning was also tried to identify such events. For example, [63] uses a CNN
on the spectrogram of waves to identify lensing signatures, such as beating patterns.

The LIGO Scientific Collaboration and the Virgo Collaboration have searched for lensed
events among the detected ones in [12]. This paper only reports on the analysis for the O3a
run, and one still has to wait for the results of O3b. They conclude that no event can be
considered to be lensed or multiply-imaged with enough confidence. As a result, no positive
detection of lensing has been made yet.

4.5 A neural network to find them

In this section, I shall propose a neural network model to identify lensed waves. The
considered problem will first be properly described, and then the data generation and network
architecture will be presented. Finally, the results will be discussed. Potential improvements
to the model will be envisaged in the last chapter.

4.5.1 Formulation of the problem

The model aims at distinguishing pairs of events that are lensed from those that are
not. We thus consider strong lensing, i.e. with multiple images of the source. The sources
are exclusively binary black holes. As already mentioned, geometrical optics is sufficient to
describe strong lensing by galaxies or clusters of galaxies, so that one can consider that the
only difference between two images is their amplitude and phase. We shall however consider
that the phase remains the same. We shall also use a Gaussian stationary noise and use
only a single detector. Contrarily to previous works, the network analyses directly the time
series. These are nevertheless modified by different processes described in the next section.
To my knowledge, no other work using the time series for this problem has been published.
This model is a mere proof of concept, to show that using such a representation of the
data can accomplish the task. More work will be needed to test the performance of such
networks further using more complex data. We shall focus on a rather simple case where no
model is used for the lens and where we do not take into account any time delays, accurate
magnifications, lensing probabilities or parameter distribution of the source population. We
shall consider that one wave is magnified and the other demagnified.

The goal is, of course, to identify as many lensed events as possible. There is an additional
constraint that the false positive probability (FPP, ratio of wrongly classified unlensed events
to the total number of unlensed events) be as low as possible. Indeed, if the network is to
be used to identify candidates that will be checked by time-consuming methods, one would
like to have a minimum of false positives not to lose a lot of time with the other methods.
This aspect is important to keep in mind for testing the network. Of course, a lower FPP
also increases the confidence in the predictions.
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Figure 4.7: Example of lensed and unlensed (processed) waves superimposed. Data generated
and processed with PyCBC, using the SEOBNRv4_opt model for templates.

It may be interesting to have a look at what the neural network must distinguish. This
is depicted in Fig. 4.7. One can see that, as stated, only the amplitude changes between the
two images in the lensed case, while the two images differ in both amplitude and frequency
evolution in the unlensed case. This may look rather simple to distinguish, but once the
waves are injected into the noise, the task can quickly become difficult, in particular for low
SNRs. Also, the two waves in the unlensed case can be very different one from the other or
have very similar parameters, hence waveforms, which makes it difficult to tell them apart.
Note that these waves are not fed to the network as such, since they still need to be added
to noise with a given SNR.

4.5.2 Data generation

Data were generated using dedicated methods in PyCBC [45], using the SEOBNRv4_opt [46,
47] approximant. The spin and inclination of the black holes are neglected. The only relev-
ant parameters to enter are the masses of the two merging black holes, the location of the
source in the sky and the polarisation angle. The distance to the source is not important,
since the wave will be re-scaled. I considered a range of chirp masses (see Eq. (5.1)) between
15 and 40 M⊙ and a mass ratio m1/m2 between 1 and 4. These parameters correspond to
a total mass of the system between around 30 and 120 M⊙. Both are drawn uniformly in
their respective interval. The range of chirp masses is not based on an accurate population
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estimate, but roughly estimated from detections of the O3 observing run [4, 66], for it is more
likely to find a pair of events in that run than in previous ones (given the larger number
of detections). The minimum is however larger in order to have a limited duration of the
generated event. The mass ratio range was chosen arbitrarily. As for the position of the
source and the polarisation, they were set to a constant which is the same for all generated
waveforms. These were chosen, along with the projection time onto the detector, such that
the projected wave does not have a null amplitude. It is important to note that unlensed
events are generated one at a time, while lensed events are generated in pairs. Each event of
the pair is however treated separately, each is associated with a different noise realisation.

Inputs

Colored Gaussian
PSD (O3 runs)

1 fixed position
(RA, DEC)

1 fixed
polarisation

n, nL

Data generation
×n

Data generation
×nL

n noise signals and waveforms for
unlensed events (that form n pairs)

nL noise-signal and wave-
form pairs for lensed events

Figure 4.8: Diagram representing how the data set is generated.

As for the noise, it was generated according to the PSD of the noise for the O3 run, more
precisely with a BNS range of 140 Mpc [46, 67] (range at which the merger of two neutron
stars of mass 1.4M⊙ can be detected with an SNR ≥ 8 [5]). The obtained noise is Gaussian
and stationary, contrarily to the true noise. This is however sufficient for the purpose of this
work.

Once the waveform and the noise are generated, they both need to be processed. This
processing is summarised in Fig. 4.8 and Fig. 4.9. The position of the source, polarisation
of the wave and PSD of the noise are the same for all the events that are generated. They
are used to produce n pairs of unlensed events and nL pairs of lensed events, as shown in
Fig. 4.8.

In Fig. 4.9, the data generation process is summarised. First, the wave is projected onto
a detector (arbitrarily LIGO Hanford) at a fixed detection time t0 corresponding to the
beginning of O3. Afterwards, the merger time, associated with the peak amplitude of the
wave, is placed at a time t = 1.6 s, so that enough of the pre-merger and post-merger phases
can be represented. Aligning at merger time is important for the network not to rely on
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Waveform generation
with random masses

Projection onto detector
at tdet = t0

Merger placed at t = 1.6 s

Lensing
magnification factor

1 if unlensed event; in [1.05, 1.5]

for the 1st lensed event, in
[0.66, 0.95] for the second

Normalisation
of the waveform⊗
Scaled waveformNoise (random from PSD)

Whitening + band-pass filter

Processed noise (2s) Processed waveform (2s)

Data generation

Figure 4.9: Diagram representing how the noise signals and waveforms are generated and
processed.

features arising from a misalignment, which are irrelevant as they are independent of the
wave itself. After that, the waveform u(t) is normalised such that ⟨u|u⟩ = 1. This is done
by dividing the waveform by σ as defined in Eq. (4.23). This allows us to get the optimal
SNR, since the waveform is also the template and will be injected into the noise, so the
gravitational-wave signal and the template are the same (see Section 4.3.1 and Eq. (4.22)).
This quantity will be used to measure the importance of the noise with respect to the wave.
In the following, the SNR refers to the optimal one. Then, the wave amplitude is further
scaled by a lensing magnification factor. If one produces an unlensed event, there is no
magnification, so the factor is 1. In the case of lensing, events are generated in pairs, one of
the events being magnified with a factor randomly drawn in [1.05, 1.5] and the other being
demagnified with a factor randomly chosen in [0.66, 0.95]. Note that this scaling modifies
the optimal SNR, which is then multiplied by the lensing magnification factor. This allows
one to have different SNRs for both images, which is more realistic. However, if one takes
into account the rotation of the Earth and the time delays, the difference in SNR can be
lower or larger than that induced by a difference in magnification because the orientation
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of the detector will have changed between the two detections. The ranges of factors were
chosen such that the difference in SNR is not too large and for the greatly demagnified wave
to still have a reasonable SNR.

After all these steps, both the noise and the waveform are whitened by dividing their
Fourier transform by the square root of the PSD. A band-pass filter is also applied to keep
the frequencies in [20, 2000] Hz. They are then cropped to a duration of 2s, at a sampling
rate of 4096 Hz.

Figure 4.10: Example of a whitened waveform in orange and the corresponding signal (noise
+ wave) in blue seen at different optimal SNRs.

An example of data is shown in Fig. 4.10 where the waveform (already processed) is
superimposed to the corresponding signal (noise + wave) at different SNRs. We can see that
the wave can hardly be seen in the signal below an SNR of 20, even though we can guess its
presence at an SNR of 10 because we know where the wave is and what it looks like.

The noise and waveforms are added together when loading the data set. The advantage
of doing so is that we can multiply the amplitude of the wave by a given factor in order
to obtain the desired optimal SNR without having to generate a data set for each of these
SNRs. Indeed, given Eq. (4.22), we get the optimal SNR A if we multiply the waveform
amplitude by A and inject it into the noise, since the waveforms we use are normalised.

4.5.3 Model and training

The architecture is presented in Tab. 4.1. I used a CNN with an increasing number of
output channels, a kernel size of 3 and a maximum pooling with a size of 4. The relative
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simplicity of the models proposed by [58] and [59] for gravitational wave detection oriented
the choice towards simpler models. Preliminary tests suggest that deeper and more complex
networks do not yield especially better results. This should however be verified in a more
formal manner.

Layers Kernel size Input size Output size
0 1D convolution 3 (padding 1) 2× 8192 64× 8192
1 ReLU / 64× 8192 64× 8192
2 Max pooling 4 64× 8192 64× 2048
3 1D convolution 3 (padding 1) 64× 2048 128× 2048
4 ReLU / 128× 2048 128× 2048
5 Max pooling 4 128× 2048 128× 512
6 1D convolution 3 (padding 1) 128× 512 256× 512
7 ReLU / 256× 512 256× 512
8 Max pooling 4 256× 512 256× 128
9 1D convolution 3 (padding 1) 256× 128 512× 128
10 ReLU / 512× 128 512× 128
11 Max pooling 4 512× 128 512× 32
12 1D convolution 3 (padding 1) 512× 32 1024× 32
13 ReLU / 1024× 32 1024× 32
14 Max pooling 4 1024× 32 1024× 8
15 Flatten / 1024× 8 8192
16 Linear / 8192 50
17 ReLU / 50 50
18 Linear / 50 25
19 ReLU / 25 25
20 Linear / 25 1
21 Sigmoid / 1 1

Table 4.1: Architecture of the neural network with the kernel size and output channels for
the convolution part, and the input and output units for the MLP .

The training was done on 105 pairs, with an equal number of lensed and unlensed ones.
The loss was chosen to be the binary cross-entropy and the optimiser is Adam [68] with
its default parameters. Both training and testing were performed on an NVIDIA GeForce
RTX 2070 SUPER GPU. At each epoch, the network is tested on a validation set containing
5× 104 pairs in the same proportion as in the training set. The best one is kept for testing
on the test set containing the same amount of data as the validation set. The latter was
also used to choose the best model among the ones that were tested. Splitting the data into
those 3 sets should be sufficient, for the amount of data is large enough to span uniformly the
whole parameter space in the considered ranges and in each of the sets. Also, the learning
rate starts at 6 × 10−5 and is divided by 2 when the validation loss decreases by less than
5% or increases. It stops decreasing once it is smaller than 6× 10−6. The batch size is 500.

Also, the true number of data on which the network is trained is twice as large as the size
of the training set. The reason is that each pair is used twice, once with the magnified event
first and then the demagnified one, then the same pair but reversing the order of the events.
The purpose is to ensure that both channels are trained the same way. Since they have
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no physical nor relevant meaning in the context of this work, there should be no difference
between the two, i.e. the results should be the same whether an event is placed in one
channel or in the other. This might not be the case when considering time delays, provided
that the order in which the images are detected is important. This could be the case if one
uses specific lens models (e.g. the first one to be detected would always be magnified and
the other could be magnified or demagnified). The reversing is also used for testing and
validation in order to take into account in the performance the possibly different predictions
of the network for a pair and its reversed version.

The strategy for training is to use data with various SNRs in the training set. The SNR
of each pair was drawn uniformly in [5, 20] to have low wave amplitudes, but also larger ones
that may help the network recognise what it has to learn.

4.5.4 Results

The training was repeated independently n = 19 times to take into account the ran-
dom initialisation of the network. The mean values and error bars that will be shown in
the following refer to this difference in training. They are computed as the errors (at 1σ)
and averages over the results of the n networks. Note that the error bars always refer to
uncertainty with respect to the y-axis quantity.

Figure 4.11: ROC curves for the classifier with different SNR ranges.

The performance of the network will be analysed through different quantities. First,
we evaluate the performance using the Receiver Operating Characteristics (ROC) curves.
These show the sensitivity, i.e. the number of detected lensed events over the total number
of lensed events (hence the fraction of lensed events that are detected), as a function of the
FPP. In other words, they indicate which proportion of lensed events we can hope to identify
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for a given FPP. The ROC plots are shown in Fig. 4.11, where a curve is shown for different
SNR ranges. The blue curve represents the range of SNRs on which the network was trained.
This curve is the one we need to pay attention to if we try to evaluate the global average
performance of the network. The two other curves represent sub-threshold events for the
red one, and super-threshold ones for the green curve. This limit distinguishes events that
are considered to be detected with enough confidence from those that are not and is set to
an SNR of about 8 [67]. Note however that this threshold changes to a combined SNR of 12
when considering several detectors [67]. For events above the detection threshold, we can see
that one can reach an FPP of 10−2 while preserving a sensitivity above 0.9. Predictions on
sub-threshold events can hardly be trusted, or one could set a low FPP knowing that very few
lensed events will be identified. On the other hand, the performance on the super-threshold
events is better, which is expected given the larger SNRs.

Figure 4.12: ROC plots for the classifier at different SNRs

It can also be interesting to see how the classifier performs using data with a single SNR.
This is shown in Fig. 4.12 One can see that at low SNRs, 5 here, the classifier performs
poorly, while it gets better and better as the SNR increases. In other words, one can identify
more lensed events (greater sensitivity), while having a relatively low probability of wrongly
classifying unlensed waves. The difference with an SNR of 8 is significant. All the higher
SNR curves converge to a sensitivity of 1 a bit before an FPP of 0.1. This value is very
large and is definitely not satisfactory in our case, since we need to minimise the FPP. We
can also see that the network performs almost perfectly for an SNR of 30. For these higher
SNRs, the sensitivity remains acceptable for a satisfactory FPP.

As mentioned, it may be interesting to see how the classifier performs on individual
SNRs. To this end, we can look at other quantities than the sensitivity, such as the accuracy
(proportion of correctly classified pairs). It is shown in Fig. 4.13. We can see that the
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accuracy keeps on increasing with the SNR, even on SNRs that were not included in the
training (25 here). At an SNR of 1, the noise is too large to hope for a good classifier. We can
notice that the accuracy crosses the 90% at an SNR of about 7, and at 10, it already reaches
an accuracy of 97%. We can then see that the classifier is able to perform relatively well
at relatively low optimal SNRs. We can also see that there is little variation with training,
given the relatively small error bars.

Figure 4.13: Accuracy as a function of the optimal SNR.

It was mentioned that some waves with close parameters can look alike and might then
be wrongly classified as lensed. In fact, it is predicted that the number of these pairs will
dominate the number of lensed pairs for a sufficiently large number of detected events [69].
To test the ability of the network to discriminate such events, the FPP was computed on
unlensed waves with close chirp masses. The tests were done on 2×104 pairs for each relative
difference ∆Mc/Mc , which are taken between 1 and 40%. The events generated with the
chirp masses Mc and Mc ±∆Mc were given the same mass ratio. The FPP as a function of
this relative difference is shown in Fig. 4.14. The FPP vanishes quickly for higher SNRs, at
a difference of 5 to 10%. The blue curve represents the average performance over different
SNRs and its lower quality is explained by a much poorer performance for lower SNRs (such
as 5). It might thus be pessimistic. If we rather trust the SNRs between 10 to 20, the
network seems to be able to discriminate waves with large confidence for a relative difference
in chirp mass of about 10 to 20%. Note that for this test, the reversed versions of the pairs
were not used, as they are irrelevant to the comparison.

Another point to analyse is the usefulness of using a pair and the same one but reversing
the order of the event for training. To see how it changes the performance of the network, the
same architecture was trained without using the second pair, i.e. always with the magnified
wave first and the demagnified one second. To account for the uncertainty on weight ini-
tialisation, 10 networks were trained and the error bars still refer to this uncertainty. These
networks were tested on a test set for which a pair and its reversed version are used. The
results are shown in Fig. 4.15. The quantity that is reported is the number of predictions
that are different for a pair and the reversed one over the total number of such ‘pairs of
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Figure 4.14: FPP for pairs of unlensed events that have a close chirp mass and at different
SNRs.

pairs’. We can see that about 50% of the predictions are different if the network is not
trained on reversed pairs, while this proportion is much smaller in the other case, at least
for reasonable SNRs. At very low SNRs, one still reaches 20%, which is not negligible.

Figure 4.15: Comparison of two training strategies with respect to the order of the events in
the pair (magnified or demagnified wave first). For the blue curves, the pair and its reversed
version are both used for training. For the red curve, the reversed pair is not used.

Finally, the performance of the classifier on the range of SNRs on which it was trained is
shown in Tab. 4.2. The value of the FPP seems reasonable for a first analysis (even within
the error bars), and the sensitivity is relatively large as well, which suggests that the classifier
is able to correctly recognise lensed waves.
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Accuracy 0.963± 0.0031

Sensitivity 0.9709± 0.0044

FPP 0.045± 0.0047

Table 4.2: Performance of the classifier on data taken with a uniform distribution of SNRs
in [5, 20].

4.5.5 Discussion

There are several points to discuss in the results. First, regarding the ROC curves,
one can choose a threshold to obtain a given FPP. Given Fig. 4.12, we see that we can
decrease the value of this parameter with respect to the one shown in Tab. 4.2 at the cost
of decreasing the sensitivity. This thus depends on the tolerance we have for the sensitivity.
In this case, the curves decrease quite fast with decreasing FPP, so that an FPP of 0.01
leads to a sensitivity a bit larger than 0.8, meaning that about 80% of the lensed events
will be detected. If we focus on super-threshold events, we can reach a sensitivity of about
95% for the FPP of 0.01. This seems quite reasonable, in fact, for a first analysis of the
data, if it allows one to reduce the number of false positives that would be passed to another
algorithm that would confirm the detections. If one rather thinks that one should detect
all lensed events at any cost, i.e. have a sensitivity of about 1, one can then estimate the
corresponding FPP with the ROC curves. From Fig. 4.11, one gets an FPP of about 0.1 for
a sensitivity of ∼ 1 on average, while for super-threshold events, the FPP is roughly 0.03.
In other words, one could divide the number of candidates by a factor of 33 while keeping
all the truly lensed events. The conclusion remains the same, the performance also seems
encouraging for a first analysis.

It is very interesting to see that the accuracy and sensitivity both increase and that the
FPP decreases with the SNR, as seen in the ROC plots and in Fig. 4.13. Given what we see
in Fig. 4.10, this seems natural, since the waves are much more visible. But during training,
the network was not exposed to data with such significant wave amplitude as obtained with
an SNR of 30. This suggests that the network has indeed learned to recognise lensed waves,
since it does classify them very well when the waves are more visible.

When comparing the curve with SNRs in [5, 20] in the ROC plots to the ones obtained
in [62], the performance seems to be comparable to the model presented in that work.
However, I would remain extremely cautious in this comparison, since the data that are used
are very different. Moreover, the FPP is less accurate in this work, because in [62], they
use a much higher number of unlensed events (with respect to the number of lensed ones),
which allows one to better constrain the FPP. They also use 3 detectors, whereas only one
is used here. We can nevertheless say that the results are encouraging and that it is worth
pursuing the study of the analysis of the time series. If one takes the Morse phase into
account, though, it may be that the network does not perform as well, since the waveforms
could look different from one another, although being the same but shifted. This phase has
however no effect on Q-transforms. One could try to train 3 networks, one on each possible
Morse phase.

Another limitation is due to the resemblance of waves that are not lensed, though it

69



CHAPTER 4. GRAVITATIONAL LENSING OF GRAVITATIONAL WAVES: PRACTICAL APPROACH

is not clear which proportion of these are found in the data sets. These conditions are
however quite realistic, since, as mentioned, many of such pairs are expected to be detected.
Therefore, one may be concerned about the limited performance of this network as shown
in Fig. 4.14. It is however limited only for SNRs below 15, for which the network correctly
identifies most of the unlensed pairs from a relative difference in chirp mass of about 10%,
which seems reasonable compared to the accuracy of its measurement. It should be possible
to improve the performance by including such pairs in the training data and increasing the
sample rate might help as well, since one then increases the number of points on which both
waves are compared. In any case, the best performance for this particular task would still
be limited by the accuracy of the detectors.

Then, we see in Fig. 4.15 that the chosen training strategy allows one to improve the
performance when the order of the events (magnified or demagnified first) does not matter, as
expected. On the other hand, there is still a significant difference in predictions at low SNRs.
Training without the reversed pairs would have been a limitation to the performance of the
network, since it was tested on pairs and reversed pairs. It was however found that testing
with the reversed pairs does not change much the reported performance of the network
trained with such pairs. Another possible strategy for training is to reverse the order of
events in pairs randomly, without using twice the same pair contrarily to what was done
here. This could also be applied to the test set.

As there has not been any positive detection so far, one cannot test the performance of
the network on real data. It would however be interesting to compare the predictions of this
model on the observations to the ones of other techniques.

Figure 4.16: Comparison between the accuracy when the amplitudes of the waves of the
unlensed pairs are not scaled (blue curve) with the one when they are scaled differently (red
dots).

We may wonder which features the CNN recognises in order to classify a pair as lensed
or unlensed. Since all lensed events it sees have quite different amplitudes because of the
magnification factor, while all unlensed events have a more or less equal amplitude, it might
be that the network relies on this difference to classify the pairs. This feature is however
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totally irrelevant since, in practice, unlensed waves may have very different amplitudes and
SNRs. To see whether this criterion is used by the network, another test was made where
the amplitude of each wave of an unlensed pair is multiplied by a different factor. In fact,
the multiplicative factors are drawn uniformly from the same ranges as for the magnification
factors of the lensed events. The results are shown in Fig. 4.16, where the curve is the
same as in Fig. 4.13, while the red dots represents the performance on the test set when the
amplitudes of the waves of the unlensed pairs are scaled differently. We can see that the
performance of the network is slightly better when the amplitudes of the unlensed events
are not changed. If the network relied on the criterion that lensed events display different
amplitudes while unlensed ones do not, then the performance would decrease much more
than that. One can then safely conclude that this irrelevant criterion is not used by the
network, at least not as the main one. This again supports the idea that the network has
learned what it must recognise and probably identifies unlensed events through a difference
in their waveforms.
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Chapter 5

Interests and future prospects

We shall now review what are the interests in detecting lensed gravitational waves, justi-
fying all the work done in the last section. We shall also mention a few points for continuing
the work and improving the network that was designed.

5.1 Advantages of the identification of lensed waves

There are several interests in identifying lensed gravitational waves. The first one is
that the amplification of the wave allows one to observe more distant sources that would
not be visible otherwise. Then, it will allow one to locate the sources better. For example,
if the gravitational wave is lensed, its host galaxy is lensed as well in the electromagnetic
spectrum. As a result, it may be easier to locate the source of the wave and find the host
galaxy [70]. Also, each image can be seen as a new set of detectors for the same source,
since the interferometers will not be at the same position and with the same orientation
for each image because of the motion of the Earth and the time delay between images.
This also allows one to constrain the position of the source better [70]. Contrarily to the
multimessenger observation of GW170817 (see Section 4.3.2), one would not observe light
from the merger itself, but only from the galaxy. One could still measure the Hubble constant
from the redshift of the host galaxy and the distance estimated from the lensed event. It was
also proposed that the speed of gravitational waves can be computed from a lensed wave and
its electromagnetic counterpart [71] (though already measured from GW170817), and that
the Hubble constant can be better constrained with these than with only electromagnetic
signals [72]. Also, lensing could be used to test general relativity, but also theories beyond
it [73]. Finally, similarly to electromagnetic lensing, it can be used to probe lenses and study
their distribution and properties. For example, [74] explores the use of strong lensing to this
end. It is also noticed that, contrarily to light, gravitational waves are not submitted to dust
extinction. Other features that can be searched for in the lens are small-scale objects, such
as dark matter clumps in the halo of a galaxy [75].

It thus appears that lensed waves have a great scientific value. The measurement of the
Hubble constant may be particularly interesting, given the current tension in cosmology,
with the two values of the Hubble constant that seem incompatible, though relatively close
to each other. Also, it is important to test general relativity in different ways to see if it
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is still accurate and, if not, find where it might be wrong. Testing other theories may also
allow one to discard them.

5.2 Problems with the misidentification of lensed waves

Another important point is that the parameters of the source estimated from the lensed
waveform are modified with respect to the true ones because of lensing. In particular, the
masses and luminosity distance are affected by this phenomenon [76]. This distance can be
estimated from the strain, given that the amplitude decreases linearly with distance [77].
Since the lensing increases or decreases the amplitude, one would then respectively under-
and over-estimate the luminosity distance. In the geometrical optics approximation, the
luminosity distance is divided by

√
|µ|, with µ the magnification [12]. There is another

quantity that is indirectly influenced by lensing. This is a mass quantity called the chirp
mass, which is defined as [77]

Mc =
(m1m2)

3/5

(m1 +m2)1/5
, (5.1)

where m1 and m2 are the masses of the two compact objects. This parameter appears at the
first order of the post-Newtonian expansion of the waveform (corrections of the order v/c to
the Newtonian theory). In this context, it can be expressed as [77]

Mc ∝
(
f−11 ḟ 3

)1/5

, (5.2)

where f is the frequency of the gravitational wave and ḟ is its time derivative. As a result,
the chirp mass that we observe is different from the one at the source, given that the wave
is redshifted. At a given redshift, we have [76]

Mc(z) = (1 + z)Mc,0 , (5.3)

where Mc,0 is the chirp mass at the source as presented in Eq. (5.2). Therefore, the mass
we observe on Earth is Mc(zs), with zs the redshift of the source. In fact, when the wave is
lensed without us knowing, we may find a chirp mass M̃c = M̃c,0(1 + z̃), while if it is not
lensed we find Mc = Mc,0(1 + z). Since the frequency of the wave (and its evolution) is not
modified by strong lensing, the observed redshifted chirp mass is the same, i.e. M̃c = Mc,
so that [78]

M̃c,0(1 + z̃) =Mc,0(1 + z) . (5.4)

This is the mass-redshift degeneracy, i.e. the redshifted chirp mass can correspond to dif-
ferent values of the chirp mass and the redshift. Therefore, because of lensing, the inferred
chirp mass M̃c,0 is different from the true one Mc,0. The redshift z̃ is the one inferred from
the luminosity distance in the case where we do not know the wave is lensed [76]. For the
luminosity distance, we have seen that it is divided by √

µ, so that in this case we write [76,
78]

dL(z̃) =
dL(z)√

|µ|
, (5.5)
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where dL is the luminosity distance (which depends on the redshift). As a result, the observed
distance can be greater or lower (according to µ) than the true distance, and the redshift
estimation based on this distance is then also affected by lensing. Lensed events at high
redshifts and with a low chirp mass may thus be interpreted as unlensed events at lower
redshifts and with a high chirp mass [12, 78].

As a consequence, if some of the events that have been detected so far are lensed without
us being able to tell, the population of black holes estimated from all the events may well be
biased. What is more, if we cannot tell that two or more images represent the same source
in the case of strong lensing, then we consider nonexistent sources in the population. This
problem is of great importance, since studying the distribution of different parameters in the
population may help consider different formation scenarios of binary black hole systems [76].
For example, several higher-mass black holes were discovered through gravitational waves,
heavier than those discovered in the electromagnetic bands [66]. Among the possible explan-
ations, there is the hierarchical merger scenario, i.e. successive mergers leading to heavier
and heavier black holes [79]. Another possibility is that some events are lensed, leading to
larger observed masses than the real ones. If some suggest that a significant proportion of
higher redshift lensed events should be detected and that some of the first observing run
are lensed [80], others find that the probability of detected events to be strongly lensed, or
multiply-imaged, is very small at the detector sensitivity during the first run [81]. Some
studies estimated the lensing rate to be of the order of 0.06 lensed event per year or about
5 at LIGO design sensitivity [82], and around 1 per year for aLIGO at design sensitivity
for [83]. The latter also predicted that the rate should increase to about 40 to 80 lensed
events per year for the Einstein telescope. Given those estimations, the probability that a
lensed event has already been detected is very low, though not null. It can be stressed that
if a source is multiply-imaged and one of the images is detected, it might be possible that
the other image is demagnified and not detectable at the detector sensitivity. Contrarily to
longer continuous signals, gravitational waves from mergers are transients, so if an image
is not detected, it is lost forever. So, in that case, it would be complicated to identify the
detected image as being a lensed wave.

To sum up, lensing affects the observed redshift and chirp mass of the source, which
can affect the mass distribution if a lensed wave is not identified as such, and add fictitious
sources if there are unidentified multiply-imaged sources. This effect makes it more difficult
to identify the origin and nature of the binary system and test formation scenarios. It could
explain the large observed masses compared to those of electromagnetic binaries, but it is
not the only possible explanation. It also seems unlikely that most of the waves originating
from high-mass systems are lensed given the predicted lensing rate and the number of events
that have currently been detected.

5.3 Designing a better network

There are several possible improvements that can be made to the model that was pro-
posed. First, one can use all three detectors together instead of projecting the wave on
only one of them. This should improve the performance, since the combined SNR would
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be greater given the addition of the information on the wave from each detector. Another
improvement would be to consider the sky localisation of the events. Two lensed images
come from the same position (with the accuracy of the detectors), so that skymaps may help
discriminate easily lensed pairs. As already mentioned, there could still be unlensed events
that come from very close positions in the sky, so that skymaps alone are not sufficient.

Then, the model can be improved by using more realistic data. A first step could be to
vary the sky localisation and the detection time, which takes into account the rotation of
the Earth and thus leads to a different projection of the wave. One could also use a given
lens model and generate time delays and magnification factors according to this model. The
former can be inferred from the time of the detection and then be used as an input to
the network. One could also consider a population of lenses and wave sources, although,
for the latter at least, I believe we do not have detected enough events yet to have a very
accurate representation of the population. Finally, one could use the true noise rather than
an idealised one.

Another interesting lead to follow is to leverage the results of deep learning applied to the
detection of gravitational waves. One could use two parallel CNNs, each being one designed
and pretrained for detection, and pass the outputs of these networks through fully-connected
layers. It is however not guaranteed that this will lead to better performance, as the network
might not need to have a very accurate representation of the waveform to find differences
or similarities between the two images. Indeed, there might be patterns resulting from the
combination of the images that are different from those obtained by analysing the waves
separately.

Also, it could be interesting to try different learning methods, such as curriculum learning,
i.e. progressively increase the amplitude of the noise during training. Given the importance
of noise in this problem, it might lead to better results. One could again use the results
of gravitational-wave detection, for which several training strategies have been studied [84].
There is no guarantee that the best training strategies are the same in our case, but it could
be a good starting point given the similarities between the two problems.

Finally, the last improvement could be to change the architecture of the network. Deep
learning is a fast-evolving field and new architectures emerge and outperform or, at least, ap-
proach the performance of previously state-of-the-art models. For example, transformers [85]
were initially designed for translation and were shown to perform very well on image recog-
nition [86]. Therefore, I believe that different models may perform better.
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Conclusion

In this work, we have thoroughly explored the phenomenon of gravitational lensing in
both the electromagnetic and gravitational wave cases. In particular, we have seen that only
the amplitude of the gravitational wave is changed in the geometrical optics approximation
and that a phase change is induced as well. This approximation is valid when the wavelength
of the wave is much smaller than the Schwarzschild radius of the lens, i.e. typically when
the lens is a galaxy or a cluster of galaxies. We have also investigated the wave effects that
are negligible in the previous approximation. This was done by solving the wave equation
in the metric that describes a Minkowski spacetime perturbed by a point-mass lens.

Though these effects of microlensing can be probed using deep learning, we have rather
investigated the case of strong macrolensing. The main contribution of this work is the
proposition of a neural network architecture to identify pairs of images in the coalescence
events that are detected with the interferometers. A different approach than existing works
was used, consisting in using the time series representation rather than the spectrogram of
the waves. The goal of the model was to show that such a representation allows one to
get good results in the identification of lensed waves in a simple case, or at least allows
one to discard unlensed events. It is considered that the model achieves performance good
enough to consider this objective as fulfilled. In particular, the network shows promising
performance on average, in particular at larger SNRs, and seems to understand what it must
identify. Several limitations were nevertheless pointed out. The network is not very good at
distinguishing unlensed waves that have close parameters. The performance at low SNRs is
not good either, but this should not be too much of a concern, for waves are considered to
be detected if they have a given minimum SNR.

Although there is no guarantee that this model will outperform existing techniques in
more general conditions, we can conclude that the use of deep learning on the time series is
an interesting lead to follow. It can be further studied to confirm these results and improve
them. Among other things, it can be generalised to multiple detectors and more realistic
data. It can also be adapted to the cases where one looks for triplets or quadruplets.
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Appendix A

Derivation of relations in
electromagnetic lensing

In this section, we shall derive the expression of several quantities presented in Chapter 2.
Just as that chapter, it is largely based on [22], [23] and [24].

A.1 Time delay and lensing potential

To set the context again, we consider the fact that the ray takes more time to reach the
observer because of its deflection and different metric with respect to an unlensed case. The
geometry of the system is represented in Fig. A.1

O
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Source plane

Lens plane

η⃗

ξ⃗

S’

βθ

α̂

DL

DLS

DS

Figure A.1: Sketch of the geometry of the problem. Dimensions are not to scale, angles are
exaggerated compared to distances.

To find the delay that is introduced, we start from the metric (2.11) that reads

ds2 = − (1 + 2U) dt2 + (1− 2U) (dr⃗ )2 . (A.1)
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Since ds2 = 0 for a light ray, we get

dt =

√
1− 2U

1 + 2U
|dr⃗ | =

√
1− 2U

1 + 2U
dl , (A.2)

where dl is the arc length in Euclidean space. We can then approximate the square root by
1− 2U +O(U2) and assume that light is emitted at t = 0, so that we get, by integration,

t ≃
∫

(1− 2U) dl = l − 2

∫
U dl , (A.3)

which represents the time required to reach the observer. We can see two contributions to
this time: a geometrical one and a gravitational one, each representing the geometrical and
gravitational time delays, respectively.

For the geometrical time delay, we can easily compute the length of the path using
Fig. A.1, assuming first that the distances are Euclidean ones. To distinguish them from
angular diameter distances, I shall refer to them with d instead of D. We then use twice
Pythagoras’s theorem to express the length of the path from S to the lens plane, lSL, and
from the lens plane to O, lLO , we obtain

l = lSL + lLO =

√(
ξ⃗ − η⃗

)2

+ d2LS +

√(
ξ⃗
)2

+ d2L (A.4)

= dLS

√√√√
1 +

(
ξ⃗ − η⃗

)2

d2LS
+ dL

√√√√
1 +

(
ξ⃗
)2

d2L
. (A.5)

The small-angle approximation and large distances allow us to consider that
(
ξ⃗ − η⃗

)2

≪ d2LS

and
(
ξ⃗
)2

≪ d2L. We can therefore approximate the length by

l ≃ dLS +
1

2 dLS

(
ξ⃗ − η⃗

)2

+ dL +
1

2 dL

(
ξ⃗
)2

(A.6)

The time delay ∆t is defined as the difference in arrival time between the lensed ray and the
unlensed one, the latter being defined purely geometrically (as there is no lens), i.e.

tu = lu =
√
d2S + (η⃗ )2 ≃ dS +

1

2 dS
(η⃗ )2 (A.7)

In our approximation of Euclidean distances, we have dS = dL + dLS. As a consequence, we
can write the time delay as

∆t = t− tu =
1

2 dLS

(
ξ⃗ − η⃗

)2

+
1

2 dL

(
ξ⃗
)2

− 1

2 dS
(η⃗ )2 − 2

∫
U dl . (A.8)
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We can further develop this expression into

∆t =
1

2

(
ξ⃗
)2

(
1

dLS
+

1

dL

)
+

1

2
(η⃗ )2

(
1

dLS
− 1

dS

)
− 1

dLS
ξ⃗ · η⃗ − 2

∫
U dl

=
1

2

dL + dLS
dLSdL

(
ξ⃗
)2

+
1

2

dS − dLS
dLSdS

(η⃗ )2 − 1

dLS
ξ⃗ · η⃗ − 2

∫
U dl

=
1

2

dS
dLSdL

(
ξ⃗
)2

+
1

2

dL
dLSdS

(η⃗ )2 − 1

dLS
ξ⃗ · η⃗ − 2

∫
U dl

=
1

2

dS
dLSdL

[(
ξ⃗
)2

+
d2L
d2S

(η⃗ )2 − 2
dL
dS

ξ⃗ · η⃗
]
− 2

∫
U dl

=
dS

dLdLS

[
1

2

(
ξ⃗ − dL

dS
η⃗

)2

− 2
dLSdL
dS

∫
U dl

]
(A.9)

If we inject the dimensionless variables as introduced in Eq. (2.6), (2.7) and (2.8), we get:

∆t =
dS

dLdLS

[
1

2

(
ξ0 x⃗−

dL
dS

ξ0
dS
dL

y⃗

)2

− 2
dLSdL
dS

∫
U dl

]

=
dSξ

2
0

dLdLS

[
1

2
(x⃗− y⃗)2 − 2

dLSdL
dS ξ20

∫
U dl

]

⇒ ∆t(x⃗ ) =
dS ξ

2
0

dLdLS

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
, (A.10)

where we have defined the dimensionless lensing potential

ψ(x⃗ ) = 2
dLSdL
dS ξ20

∫
U(x⃗, l) dl . (A.11)

As the deflection angle is small, we can approximate the integral over the true path by the
integral over the path of an unlensed ray, with the third dimension Z taken along this ray.
We can thus write

ψ(x⃗ ) = 2
dLSdL
dS ξ20

∫
U(x⃗, Z) dZ . (A.12)

If we now introduce cosmological considerations, we need to use the FLRW metric per-
turbed by a lens. It reads [23, 24]

ds2 = −(1 + 2U) dt2 + a2(t) (1− 2U) (dr⃗ )2 . (A.13)

If we perform the same manipulations as in the previous case, we get

dt =

√
1− 2U

1 + 2U
a(t) |dr⃗ | . (A.14)
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We will look at the time delay at the observer, so that we consider a(t) ≃ a0. Indeed, the
typical time for a light ray to reach us is much shorter than the relative variation of a(t)
nowadays (the Hubble time H−1

0 , of the order of the age of the Universe), so we can make the
approximation that a(t) is constant in that time interval. Recalling that a0 = 1, we retrieve
the exact same relation as before. There is nevertheless a difference hiding in the distances
that are used. Since at the beginning we used the angular diameter distance, we can use the
relation (1.39) to express the comoving distance in terms of the angular diameter distance.
We will therefore make the following substitutions:

dL → DL (1 + zL) dS → DS (1 + zS) dLS → DLS (1 + zS) (A.15)

Note that it is not as straightforward as this, but it is equivalent, in the end, to what
is obtained in flat space in a more rigorous development (for such developments, see [23]
and [24]). Note also that one needs to consider the redshift of the object that is observed,
irrespective of where the distance is measured (e.g. from the lens or from the observer). For
dS and dLS, one measures distances to the source, so one needs to consider a at the time the
photon leaves the source, i.e. aS. For dL one measures the distance to the lens, so one uses
aL.

The case of the integral in ψ(x⃗ ) might be a bit more tricky to transform. One argument
(in [24]) is to say that the delay due to the potential is localised around the lens, as it is
fairly negligible at greater distances. This means that the whole integral is significant only
near the lens, so that the time delay due to the potential can be roughly estimated at the
lens. As a consequence, one can consider the time delay at the lens and ‘propagate’ it in
an appropriate manner to the observer. The way to do this was introduced through the
cosmological time dilation and its expression is given in Eq. (1.26). In this case, writing zL
the redshift of the lens, ∆tL the time delay at the lens, and with a0 = 1, we have

∆t = ∆tL (1 + zL) , (A.16)

since we can consider that the photons come from the lens and are emitted with a time
difference ∆tL; we treat it as if it were a source. As a consequence and given that the
potential time delay is caused by ψ(x⃗ ), we write the transformation

ψ(x⃗ ) → (1 + zL)ψ(x⃗ ) . (A.17)

We can also note that ξ0 then transforms as ξ0 (1 + zL), since θ0 = ξ0 dL → ξ0(1 + zL)DL.
We then apply the transformations (A.15) and (A.17) on the equations (A.10) and (A.12),
and we get

ψ(x⃗ ) = 2(1 + zL)
DLS (1 + zS)DL (1 + zL)

DS (1 + zS) ξ20 (1 + zL)2

∫
U(x⃗, Z) dZ ,

∆t(x⃗ ) =
DS (1 + zS) ξ

2
0 (1 + zL)

2

DLS (1 + zS)DL (1 + zL)

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
.
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After simplification, we get

ψ(x⃗ ) = 2
DLS DL

DS ξ20

∫
U(x⃗, Z) dZ , (A.18)

∆t(x⃗ ) = (1 + zL)
DS ξ

2
0

DLS DL

[
1

2
(x⃗− y⃗)2 − ψ(x⃗ )

]
. (A.19)

We can retrieve the relations of Section 2.3 if we choose ξ0 = DL.

A.2 Deflection angle for a point-mass lens

After a few developments, we found the expression of the deflection angle, which is

α⃗(x⃗ ) = 2
DLS

DSDL

∫
∇⃗x⃗ U(x⃗, Z) dZ = 2

DLS

DS

∫
∇⃗⊥ U(x⃗, Z) dZ , (A.20)

Now that we have an expression for the deflection angle, we can compute it for a point-
mass lens. It is more convenient to work with ˆ⃗α = α⃗ DS/DLS and ξ⃗ rather than x⃗. The
relation (A.20) can then be written as

ˆ⃗α(ξ⃗ ) = 2

∫
∇⃗⊥ U(ξ⃗, Z) dZ , (A.21)

with the approximation ∇⃗⊥ = ∇⃗ξ⃗ . We consider a point-mass lens characterised by the
potential U(ξ⃗, Z) = −GM

|r⃗ | , with r⃗ = (ξ1, ξ2, Z) = ξ⃗ + Z e⃗Z and ξ⃗ = (ξ1, ξ2). We then have

∇⃗ξ⃗ U(ξ⃗, Z) =
GM

2

∇⃗ξ⃗

(
(ξ⃗)2 + Z2

)
|r⃗ |3

= GM
ξ⃗

|r⃗ |3
. (A.22)

Thus, we need to compute

ˆ⃗α(ξ⃗ ) = 2

∫
GM

ξ⃗

| r⃗ |3
dZ = 2GM ξ⃗

∫
1

(ξ21 + ξ22 + Z2)3/2
dZ . (A.23)

We can use a change of variables Z/
√
ξ21 + ξ22 = tanα, which leads to∫

1

(ξ21 + ξ22 + Z2)3/2
dZ =

2

ξ21 + ξ22
=

2

| ξ⃗ |2
. (A.24)

Injecting this result in the definition of the deflection angle, we obtain

ˆ⃗α(ξ⃗ ) = 4GM
ξ⃗

| ξ⃗ |2
, (A.25)

| ˆ⃗α(ξ⃗ )| = 4GM

ξ
, (A.26)

with ξ = |ξ⃗ | the impact parameter. This result can also be obtained from general relativity
in the Schwarzschild metric.
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A.3 Magnification for a point-mass lens

In this section, we shall briefly derive the expression for the magnification resulting from
lensing by a point-mass lens. This is based on [22].

First, let us recall that the solutions of the lens equation y = x− 1/x are

x± =
1

2

(
y ±

√
y2 + 4

)
. (A.27)

In the case of an axially-symmetric lens, so also for a point-mass lens, the determinant of
the Jacobian is expressed as

detA =
y

x

∂ y

∂ x
. (A.28)

We thus have, using the lens equation y = x− 1/x,

detA =

(
1− 1

x2

) (
1 +

1

x2

)
= 1− 1

x4
, (A.29)

and the magnification, which is the inverse of this determinant, reads

µ =
1

1− 1
x4

=
x4

x4 − 1
. (A.30)

In particular, we can compute the magnification for the images that are solution to the lens
equation. To that end, we need first to notice that, after a bit of algebra, we have the
following relations:

x± +
1

x±
= ±

√
y2 + 4 (A.31)

x2± =
1

2

(
y2 + 2± y

√
y2 + 4

)
(A.32)

So, the magnifications for the observed images are

µ± =
1

1− 1
x4
±

=
1(

1− 1
x2
±

)(
1 + 1

x2
±

)
=

x2±(
x± − 1

x±

)(
x± + 1

x±

)
=

1

2

y2 + 2± y
√
y2 + 4

±y
√
y2 + 4

, (A.33)

where the two relations given above are used in the last step, along with the lens equation
y = x− 1/x. We can still simplify a bit the expression and we obtain

µ± =
1

2
± y2 + 2

2y
√
y2 + 4

. (A.34)
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Appendix B

Derivation of the wave equation

In this section, we shall derive the wave equation with detailed calculations. The devel-
opments are based on [26]. As stated in Section 3.1.2, we start from Einstein’s equations
(1.16). To express these equations, we consider a background metric g̃µν with a perturbation
hµν , such that

gµν = g̃µν + hµν , (B.1)

and
gµν ≃ g̃µν − hµν . (B.2)

To first order, g̃µν raises the indices of hµν . The background metric is such that it varies
on much larger scales than the wavelength of the perturbation hµν and it solves Einstein’s
equation in vacuum (see Section 3.1.2).

The next step is to derive the Ricci tensor and scalar to express Einstein’s equations.
To this end, we must first express the Levi-Civita connection, with its expression shown in
equation (1.12). This expression can be linearised, so that we can express the connection in
our metric (B.1) as

Γα
µν ≃ Γ̃α

µν + δ Γα
µν , (B.3)

where the first term on the right-hand side is the connection defined by the background
metric and the second one is due to the presence of the perturbation hµν . Indeed, we get,
from (1.12),

Γα
µν ≃ 1

2

(
g̃αβ − hαβ

)
(∂µ g̃νβ + ∂ν g̃µβ − ∂β g̃µν + ∂µ hνβ + ∂ν hµβ − ∂β hµν)

= Γ̃α
µν +

1

2
g̃αβ (∂µ hνβ + ∂ν hµβ − ∂β hµν)−

1

2
hαβ (∂µ g̃νβ + ∂ν g̃µβ − ∂β g̃µν) +O(h2) ,

= Γ̃α
µν + δ Γα

µν +O(h2) , (B.4)

since the terms hαβ(∂µ hνβ + ...) are second order terms. We have thus identified the term
"δ Γ":

δ Γα
µν =

1

2
g̃αβ (∂µ hνβ + ∂ν hµβ − ∂β hµν)−

1

2
hαβ (∂µ g̃νβ + ∂ν g̃µβ − ∂β g̃µν) . (B.5)
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To develop this expression further, we need to recall the property (1.11) of the Levi-Civita
connection, which implies that (using equation (1.8))

∇α g̃µν = ∂α g̃µν − Γ̃λ
αµ g̃νλ − Γ̃λ

αν g̃µλ = 0

=⇒ ∂α g̃µν = Γ̃λ
αµ g̃νλ + Γ̃λ

αν g̃µλ , (B.6)

=⇒ ∂α g̃
µν = −Γ̃µ

αλ g̃
νλ − Γ̃ν

αλ g̃
µλ . (B.7)

We can use this to simplify the second term on the right-hand side of Eq. (B.5). Taking into
account the symmetry property (1.10) of the Levi-Civita connection (and the symmetry of
the metric), we obtain

∂µ g̃νβ + ∂ν g̃µβ − ∂β g̃µν = Γ̃λ
µν g̃βλ + Γ̃λ

µβ g̃νλ + Γ̃λ
νµ g̃βλ + Γ̃λ

νβ g̃µλ − Γ̃λ
βµ g̃νλ − Γ̃λ

βν g̃µλ

= g̃βλ

(
Γ̃λ

µν + Γ̃λ
νµ

)
+ g̃νλ

(
Γ̃λ

µβ − Γ̃λ
βµ

)
+ g̃µλ

(
Γ̃λ

νβ − Γ̃λ
βν

)
= 2 g̃βλ Γ̃

λ
µν . (B.8)

The full term thus reads

1

2
hαβ (∂µ g̃νβ + ∂ν g̃µβ − ∂β g̃µν) = hαβ g̃βλ Γ̃

λ
µν ≃ hλ

α Γ̃λ
µν . (B.9)

We can then use the fact that g̃µν raises indices to first order and the relation (B.7) to get

g̃αβ (∂µ hνβ + ∂ν hµβ − ∂β hµν) ≃
(
∂µ hν

α − hνβ ∂µ g̃
αβ + ∂ν hµ

α − hµβ ∂ν g̃
αβ − g̃αβ∂β hµν

)
= ∂µ hν

α + hνβ Γ̃α
µλ g̃

βλ + hνβ Γ̃β
µλ g̃

αλ + ∂ν hµ
α + hµβ Γ̃α

νλ g̃
βλ + hµβ Γ̃β

νλ g̃
αλ − g̃αβ∂β hµν

= ∂µ hν
α + hν

λ Γ̃α
µλ + hνβ Γ̃β

µλ g̃
αλ + ∂ν hµ

α + hµ
λ Γ̃α

νλ + hµβ Γ̃β
νλ g̃

αλ − g̃αβ∂β hµν
(B.10)

We then put everything together in equation (B.5) and arrange a bit the terms to get

δ Γα
µν =

1

2

[(
∂µ hν

α − hλ
α Γ̃λ

µν + hν
λ Γ̃α

µλ

)
+
(
∂ν hµ

α − hλ
α Γ̃λ

νµ + hµ
λ Γ̃α

νλ

)
− gαλ

(
∂λ hµν − hµβΓ̃

β
νλ − hνβΓ̃

β
µλ

)]
=

1

2

(
∇̃µ hν

α + ∇̃ν hµ
α − ∇̃α hµν

)
, (B.11)

where we used the definition of the covariant derivative (Eq. (1.7) and (1.8)) and ∇̃α =

g̃αλ ∇̃λ.
Similarly to the connection, we can linearise the expression of the Riemann tensor to

write
Rα

βµν ≃ R̃α
βµν + δRα

βµν (B.12)
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If we the expression (1.13) of the Riemann tensor, noting that δ Γα
µν is O(h), and develop

Γα
µν as in Eq. (B.3), we have:

Rα
βµν = ∂µ Γ

α
νβ − ∂ν Γ

α
µβ + Γα

µλ Γ
λ
νβ − Γα

νλ Γ
λ
µβ

= R̃α
βµν + ∂µ δ Γ

α
νβ − ∂ν δ Γ

α
µβ + Γ̃α

µλ δ Γ
λ
νβ + Γ̃λ

νβ δ Γ
α
µλ

− Γ̃α
νλ δ Γ

λ
µβ − Γ̃λ

µβ δ Γ
α
νλ +O(h2) , (B.13)

since again the terms "δΓ δΓ" are second order terms. We can then identify the δRα
βµν part.

The presence of a derivative of δ Γα
µν with its multiplication with the background connection

allows one to introduce the covariant derivative in the expression. A term is however missing
to get the full covariant derivative so that we get

δRα
βµν = ∂µ δ Γ

α
νβ − ∂ν δ Γ

α
µβ + Γ̃α

µλ δ Γ
λ
νβ + Γ̃λ

νβ δ Γ
α
µλ − Γ̃α

νλ δ Γ
λ
µβ − Γ̃λ

µβ δ Γ
α
νλ

=
(
∂µ δ Γ

α
νβ + Γ̃α

µλ δ Γ
λ
νβ − Γ̃λ

µβ δ Γ
α
νλ

)
−

(
∂ν δ Γ

α
µβ + Γ̃α

νλ δ Γ
λ
µβ − Γ̃λ

νβ δ Γ
α
µλ

)
=

(
∇̃µ (δ Γ

α
νβ)− Γ̃λ

µν δ Γ
α
λβ

)
−
(
∇̃ν (δ Γ

α
µβ)− Γ̃λ

νµ δ Γ
α
λβ

)
= ∇̃µ (δ Γ

α
νβ)− ∇̃ν (δ Γ

α
µβ) , (B.14)

where we used the symmetry property of the connection in the last step. We can now inject
the expression of the δΓ terms found in Eq. (B.11) and we finally end up with

δRα
βµν =

1

2

(
∇̃µ∇̃ν hβ

α − ∇̃ν∇̃µ hβ
α + ∇̃µ∇̃β hν

α − ∇̃ν∇̃β hµ
α − ∇̃µ∇̃α hνβ + ∇̃ν∇̃α hµβ

)
.

(B.15)
We can then easily compute the Ricci tensor and scalar from Eq. (1.14) and (1.15). For

the Ricci tensor, we can write

Rµν = Rα
µαν = R̃µν + δRα

µαν = R̃µν + δRµν . (B.16)

We can also notice that ∇̃α hµα
=∇̃α hµ

α, given the properties of the Levi-Civita connection,
especially Eq. (1.11). We can then calculate

2 δRµν = ∇̃α∇̃ν hµ
α − ∇̃ν∇̃α hµ

α + ∇̃α∇̃µ hν
α − ∇̃ν∇̃µ hα

α − ∇̃α∇̃α hνµ + ∇̃ν∇̃α hαµ

= ∇̃α∇̃ν hµ
α + ∇̃α∇̃µ hν

α − ∇̃α∇̃α hνµ − ∇̃ν∇̃µ h , (B.17)

where we define hαα = h = Tr [hαβ].
Finally, the last step before expressing the Einstein tensor is to write the Ricci scalar.

We have
δR = gµν δRµν = g̃µν δRµν +O(h2) , (B.18)
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since δRµν is O(h). The g̃µν can enter inside the covariant derivatives (given the property
(1.11)) and can raise the indices of h. So, developing the δR term yields

δR = g̃µν δRµν

=
1

2

(
∇̃α∇̃ν h

να + ∇̃α∇̃µ h
µα − ∇̃α∇̃α hν

ν − ∇̃ν∇̃ν h
)

= ∇̃α∇̃β h
βα − ∇̃α∇̃α h , (B.19)

changing the names of the dummy indices µ and ν.

Now that we have computed all the different components of Einstein’s equations, we can
express the Einstein tensor as defined in Eq. (1.16). As δR is O(h), we have

Gµν = Rµν −
1

2
Rgµν

= R̃µν + δRµν −
1

2

(
R̃ + δR

)
(g̃µν + hµν)

= R̃µν −
1

2
R̃ g̃µν + δRµν −

1

2
R̃ hµν −

1

2
δR g̃µν +O(h2)

≃ G̃µν + δGµν . (B.20)

We can then inject the expression derived earlier to write (to first order)

2 δGµν = 2 δRµν − δR g̃µν − R̃ hµν

=
(
∇̃α∇̃ν hµ

α + ∇̃α∇̃µ hν
α − ∇̃α∇̃α hµν − ∇̃ν∇̃µ h

)
−

(
∇̃α∇̃β h

βα − ∇̃α∇̃α h
)
− R̃ hµν . (B.21)

To simplify this expression, we will need to perform a few changes and hypotheses. First,
it will be useful later to commute the derivatives of the first two terms. The commutation is
however not zero, contrarily to usual derivatives. With the Levi-Civita connection, we have
that [17, 87]

[∇̃µ, ∇̃ν ]X
α = R̃α

βµν X
β , (B.22)

[∇̃µ, ∇̃ν ]Xα = −R̃β
αµν Xβ , (B.23)

with [X, Y ] the commutator, i.e. [X, Y ] = XY − Y X. Just as for the connection, we can
extend it trivially to several indices, such that

[∇̃µ, ∇̃ν ]hβ
α = R̃α

λµν hβ
λ − R̃λ

βµν hλ
α . (B.24)

In the special case of a repeated index, we get

[∇̃α, ∇̃ν ]hµ
α = R̃α

λαν hµ
λ − R̃λ

µαν hλ
α = R̃λν hµ

λ − R̃λ
µαν hλ

α . (B.25)
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If we apply this to the first two terms of Eq. (B.21), we obtain

∇̃α∇̃ν hµ
α + ∇̃α∇̃µ hν

α = ∇̃ν∇̃α hµ
α + R̃λν hµ

λ − R̃λ
µαν hλ

α

+ ∇̃µ∇̃α hν
α + R̃λµ hν

λ − R̃λ
ναµ hλ

α . (B.26)

We can use two properties of the Riemann tensor to simplify this. These properties are the
anti-symmetry over the last two indices and the Bianchi identity. We thus have respectively

R̃λ
µαν = −R̃λ

µνα , (B.27)

R̃λ
µαν + R̃λ

ανµ + R̃λ
νµα = 0 . (B.28)

We can thus simplify the above expression using both properties, which yields

R̃λ
ναµ + R̃λ

µαν = R̃λ
ναµ − R̃λ

µνα = −2 R̃λ
µνα − R̃λ

αµν , (B.29)

where we have injected R̃λ
ναµ from the Bianchi identity (Eq. (B.28)). As a result, we can

rewrite a couple of terms in Eq. (B.26):

−
(
R̃λ

ναµ + R̃λ
µαν

)
hλ

α = 2 R̃λ
µνα hλ

α + R̃λ
αµν hλ

α = 2 R̃λ
µνα hλ

α , (B.30)

where the second term vanishes because we multiply a symmetric tensor (h) with the anti-
symmetric part of another, namely R̃ for which R̃λαµν = −R̃αλµν .

As mentioned, we can also assume that the background metric g̃µν is a solution Einstein’s
equations in the vacuum, so that R̃ = 0 and R̃µν = 0 (solution to G̃µν = 0). This means
that T̃µν = 0. This is true as long as we are far from any massive body. Thus, Eq. (B.21)
becomes

2 δGµν = ∇̃ν∇̃α hµ
α + ∇̃µ∇̃α hν

α + 2 R̃λ
µνα hλ

α − ∇̃α∇̃α hµν − ∇̃ν∇̃µ h

− g̃µν∇̃α∇̃β h
βα + g̃µν∇̃α∇̃α h . (B.31)

To simplify this expression further, we will reverse the trace of hµν by making a change
of function. This change of function reads

h̄µν = hµν −
h

2
g̃µν h̄µ

ν = hµ
ν − h

2
δνµ h̄ = g̃µν h̄µν = −h (B.32)

=⇒ hµν = h̄µν −
h̄

2
g̃µν hµ

ν = h̄µ
ν − h̄

2
δνµ (B.33)

If we perform this change of function, we get

2 δGµν = ∇̃ν∇̃α h̄µ
α − ∇̃ν∇̃µ

h̄

2
+ ∇̃µ∇̃α h̄ν

α − ∇̃µ∇̃ν
h̄

2
+ 2 R̃λ

µνα h̄λ
α − 2 R̃λ

µνλ
h̄

2

− ∇̃α∇̃α h̄µν + g̃µν∇̃α∇̃α h̄

2
+ ∇̃ν∇̃µ h̄− g̃µν∇̃α∇̃β h̄

βα

+ g̃µν∇̃α∇̃α h̄

2
− g̃µν∇̃α∇̃α h̄ . (B.34)
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We can see that a few terms cancel. We can also note that R̃λ
µνλ = −R̃λ

µλν = R̃µν = 0 by
assumption, and that ∇̃ν∇̃µ h̄ = ∇̃µ∇̃ν h̄, since h̄ is a scalar and the connection is symmetric.
To be more precise, we have

∇̃µ∇̃ν h̄ = ∇̃µ ∂ν h̄ = ∂µ ∂ν h̄− Γλ
µν ∂λ h̄ = ∂ν ∂µ h̄− Γλ

νµ ∂λ h̄ = ∇̃ν∇̃µ h̄ (B.35)

The tensor thus simplifies to

2 δGµν = ∇̃ν∇̃α h̄µ
α + ∇̃µ∇̃α h̄ν

α + 2 R̃λ
µνα h̄λ

α − ∇̃α∇̃α h̄µν − g̃µν∇̃α∇̃β h̄
βα . (B.36)

We will do the last simplification that will cancel most of the remaining terms. We choose
to use the De Donder gauge

∇̃αh̄
αβ = 0 , (B.37)

such that the tensor finally becomes

2 δGµν = −∇̃α∇̃α h̄µν + 2 R̃λ
µνα h̄λ

α . (B.38)

We can see that this expression is much simpler than Eq. (B.34).

Hence, under the assumption that second or higher-order terms are negligible, with g̃µν
that is a solution to the vacuum Einstein’s equations (i.e. with T̃µν = 0) and using the De
Donder gauge, the equations become

G̃µν + δGµν = 8πG
(
T̃µν + δTµν

)
(B.39)

=⇒ δGµν =
1

2

(
−∇̃α∇̃α h̄µν + 2 R̃λ

µνα h̄λ
α
)
= 8πG δTµν , (B.40)

where δTµν is related to the source of the gravitational wave. If we assume that we are
outside the source, we can take δTµν = 0. We then obtain the linearised Einstein’s equations
in vacuum and the full system including the gauge condition reads−∇̃α∇̃α h̄µν + 2 R̃λ

µνα h̄λ
α = 0 ,

∇̃αh̄
αβ = 0 .

(B.41)

It can also be found written as [18] ∇̃α∇̃α h̄µν + 2 R̃λ
µαν h̄λ

α = 0 ,

∇̃αh̄
αβ = 0 .

(B.42)

This is obtained by simply changing the order of the two last indices of R̃ , which leads to
the apparition of a minus sign.
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Appendix C

Rewriting the wave equation

To rewrite the wave equation, one starts from

∇α∇α hµν = ∇α∇α (Φeµν) = 0 . (C.1)

Assuming the polarisation does not change, one can then write

∇α∇α Φ = ∇α ∂
α Φ = 0 , (C.2)

where we used the fact that the covariant derivative is the partial derivative when applied
to a scalar. Considering any vector V α, one can show that [87]

∇α V
α =

1√
−g

∂α
(√

−g V α
)
, (C.3)

where g is the determinant of the metric. Note that one needs a minus sign, since the
determinant is negative (see Eq. the Minkowski metric). In our case, V α = ∂ α Φ. Using also
the fact that ∂ α = gαλ∂λ , the wave equation then becomes

∇α∇αΦ =
1√
−g

∂α
(√

−g gαλ∂λΦ
)
= 0 . (C.4)
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