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ABSTRACT

Simulating the Earth’s climate is a complex and challenging task that the scientific community
is actively researching with various approaches. Besides the computer models that simulate the
climate for the entire Earth’s surface, also called Global Climate Models (GCMs), a significant part of
the ongoing research focuses itself on Regional Climate Models (RCMs). These computer models
simulate the climate over high resolution grids modelling specific regions of the globe in order to
produce finer results w.r.t. GCMs, notably regarding precipitations (i.e., rainfall and snowfall). The
MAR model is a good example of RCM, and is particularily effective at simulating precipitations as
well as snow and ice. As such, several research groups actively use it to study the evolution of polar
regions or to predict future hydroclimatic conditions in specific regions of the world.

In order to be as realistic as possible, a RCM needs to feed the borders of its grid with pre-existing
meteorological data in order to take account of how the climate evolves outside of the region of
interest. This data, or forcing fields, can come either from real-life measurements or from predictions
computed by a GCM. In the case of the MAR model, the large scale grids must first be processed
by NESTOR, a companion software that is responsible for downscaling said grids, i.e., inferring high
resolution data from the input domain to initialize the regional grids and prepare the forcing fields.

While the MAR model has been maintained and updated on a regular basis since its creation,
NESTOR has not received a major update since 2004, though some components have been added
much more recently to meet the needs of MAR users. While it is still doing its intended task, NESTOR
requires a significant amount of time to process most of its typical use cases, a problem which
constitutes an additional constraint to MAR users.

This master thesis thoroughly reviews the source code of NESTOR to identify its main issues and
subsequently introduces a few simple changes that significantly improve its performance. When all
suggested changes are applied, typical use cases can be computed in (much) less than one minute,
with some of these use cases having been accelerated up to 40 times with respects to the unedited
NESTOR. A comparison of the results of a MAR simulation started with the old NESTOR with those of a
second simulation kickstarted with the output files produced by the updated NESTOR demonstrates
that the suggested changes did not alter the results of the MAR model, despite the well-known chaotic
nature of some atmospheric processes. Finally, the updated NESTOR also drops obsolete features with
respects to the previous version and slightly improves the readability of its source code.

Keywords: forcing fields, surface fields, interpolation, regional model, NESTOR, MAR
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1
INTRODUCTION

S
imulating the Earth’s climate is a complex and ambitious task featuring multiple challenges. To

begin with, computer climate models must accurately account for all the physical processes

that occur in the atmosphere and at the interface between the atmosphere and the surface

(ground or sea) [13, 14, 20, 23]. Another major challenge lies in accurately modelling the Earth’s

surface and atmosphere. The surface can typically be modelled by a two-dimensional grid, with

each dimension accounting for the longitude and the latitude, respectively. In such a grid, a cell will

correspond to a small area of the Earth’s surface whose corners will have given longitude and latitude

coordinates. To account for the Earth’s atmosphere, a third dimension can be added to model the air

column above each cell in the initial two-dimensional grid (which will be subsequently referred to as

surface cell) [13, 23]. The final three-dimensional grid is depicted in Figure 1.1.

Naturally, a challenge with this modelling approach lies in choosing the right resolution for the

grid, i.e., determining how much surface area will be covered at most by each surface cell, as there is

a trade-off between the model resolution and the overall computational cost of the simulation. The

number of vertical levels in each air column is also a parameter, though the order of magnitude of

the Earth’s surface area far exceeds that of the thickness of the first layers of the atmosphere. Indeed,

the troposhere, where most of the weather processes occur, is only a dozen kilometers thick on

average [11, 14, 20], while the Earth’s surface area is more than 500 millions of square kilometers [36].

On the one hand, if a surface cell models a large area of the Earth’s surface (e.g., 1° of longitude

and 1° of latitude per pixel, leading to a 360 by 180 grid 1), the computer model will be able to simulate

the climate over extended periods of time. On the other hand, cells modelling smaller areas of the

Earth’s surface may not only allow the model to produce finer results, but may also help it simulate

more complex physical processes: for instance, if a single cell models an area of one square kilometer,

1It is worth noting such a resolution means each cell does not cover exactly the same area in square kilometers.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of the typical 3D modelling of the Earth’s surface and atmosphere [24].

the computer model may be able to estimate surface wind turbulence. Of course, using a higher

resolution also comes at the cost of increasing the overal computational cost of the simulation, which

also means a high resolution model may be only used to simulate short periods of time.

To tackle this resolution challenge, various computer models have attempted to simulate the

Earth’s climate at smaller scales, i.e., without simulating its whole surface. In some models, the Earth’s

atmosphere is even modelled as a single air column, such as MacKay and Khalil’s radiative convective

model, which they used in the early 1990s to simulate how the Earth’s atmosphere would react

to varying concentrations of greenhouse gases and varying cloud parameters [19]. More recently,

the research community has focused on the development and use of Regional Climate Models (or

RCMs 2) [8, 18]. These models aim at simulating the Earth’s climate over a specific region of its

surface with a high resolution grid to produce finer results, notably regarding precipitations (i.e.,

rainfall and snowfall). The MAR model (for Modèle Atmosphérique Régional) is such a model, and has

been developped and used since the early 2000’s by various research groups [21]. The MAR model is

especially well known for its exhaustive and refined simulation of rainfall, snow and ice (both snowfall

and snow/ice layers), and as such, has been used to study the evolution of polar regions [1, 12, 16] as

well as hydroclimatic conditions of other regions of the world, notably to study flood risks [43].

Because the climate of a specific region can still be influenced by atmospheric processes occurring

2RCM is also an acronym for Radiative Convective Model. In this work, RCM always denotes a regional model.

2



at a large scale, such as the North Atlantic oscillation [11, 40], a RCM still has to take account of

how the climate evolves outside of the region of interest to produce credible results. A common

approach to achieve this consists of feeding the cells at the boundaries of the regional grid with

real meteorological data or prospective data produced by a Global Climate Model (or GCM), i.e.,

a climate model simulating the Earth’s entire surface and atmosphere. This process is known as

boundary forcing . Because of the difference in resolution between the meteorological/GCM data

and the regional grid, the former must first be downscaled in order to be used by the latter. In climate

modelling, downscaling refers to the process of inferring high resolution data from a grid with a low

resolution, and is typically achieved with the help of interpolation algorithms [27, 33–35, 38].

Both grid initialization and boundary forcing of the MAR model are managed with its own com-

panion software, NESTOR [22]. NESTOR stands for NESTing ORganization for the preparation of mete-

orological and surface fields and, as its full name implies, is designed to process existing data (in the

form of NetCDF files [39]) to prepare the initial grid of the MAR model as well as the values that will be

used for boundary forcing throughout the simulation. A schematic view of how NESTOR processes a

large scale grid into a regional grid that is suitable to the MAR model is provided by Figure 1.2.

Figure 1.2: Schematic view of how NESTOR processes a large scale grid into a regional grid [10].

To produce regional grids, NESTOR uses bilinear [34] and bicubic [33] interpolation for the lon-

gitude/latitude axes, and makes use of linear [38] and cubic [35] interpolation for the air columns

above each surface cell. Parts of the implementation of such methods re-use Fortran code from the

1992 reference book "Numerical Recipes in FORTRAN 1977" by Press et al. [27]. Figure 1.3 provides

practical examples of a grid from an input domain being interpolated into regional grids by NESTOR 3,

with Fig. 1.3a depicting a 2D surface temperature map from the large scale input domain, Fig. 1.3b

providing a regional 2D surface temperature map over Western Europe fit for the MAR model obtained

3Using the original version, i.e., prior to any modification presented in this work.
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CHAPTER 1. INTRODUCTION

through bilinear interpolation, and Fig. 1.3c providing a similar map obtained through bicubic inter-

polation. The initial map (Fig. 1.3a) provides surface temperatures at noon on the first of December

2021 in the NCEP-NCAR Reanalysis 1 dataset [25]. This dataset normally provides temperatures

for the entirety of Earth’s surface, but for a convenient comparison, Fig. 1.3a is zoomed on Europe.

The same temperature scale, in Kelvin, is used in every map for readability. The resolution of the

NCEP-NCAR grid is 2.5 by 2.5 degree of longitude/latitude, while the resolution in both Fig. 1.3b and

Fig. 1.3c is 20 by 20 kilometers per cell. Note how Fig. 1.3c provides smoother area curves with respect

to Fig. 1.3b, which results from using bicubic rather than bilinear interpolation.

(a) Surface temperature (zoomed on Europe) on December 1st, 2021 (NCEP-NCAR R1 [25])

(b) Bilinear interpolation over Western Europe (c) Bicubic interpolation over Western Europe

Figure 1.3: Examples of input and output of NESTOR. All figures provide surface temperature maps for
December 1st, 2021 at noon, all using the same temperature scale (250 to 300 Kelvin) for readability.

Because of its relationship with the MAR model, NESTOR has been designed and written in Fortran

around the same time as the very first version of the MAR model. As such, some comments found in

4



specific sub-routines of NESTOR mention said sub-routines were first written as soon as 1996 [22].

However, NESTOR has not been maintained as thoroughly as the MAR model itself: while the latter

has been continuously updated and improved over time until very recently, the last major changes

brought to the core code of the former seem to date back to 2004. Indeed, several major interpolation

sub-routines, as well as some additional components, are commented with the NESTING keyword

and a date comprised between 2000 and 2004. This does not mean that NESTOR has not been updated

since then: a few components of its current code are much more recent, such as the HWSDsl and

GLOcov sub-routines (meant to prepare a regional grid for the soil texture and soil cover, respectively)

which are dated to 2018. Some additions in specific sub-routines are also dated to various years of the

2010-2019 decade. Nevertheless, the source code of the early 2022 NESTOR appears as old, especially

given that it is still formatted in fixed-formed Fortran 4.

Of course, having old-looking code does not prevent a computer program from doing its intended

job, and NESTOR is still regularly used due to its output being a prerequisite to run the MAR model.

However, the main issue currently experienced by MAR users with NESTOR is its slow execution time:

despite having straightforward tasks to carry out (downscaling existing maps into regional maps

for the MAR model), NESTOR can take from a few minutes to around half an hour to prepare a single

month of MAR input data with bilinear interpolation, knowing that using bicubic interpolation is even

slower. This means that a researcher planning a multi-year MAR simulation has to wait for several

hours for the complete MAR input to be ready, or has to start the MAR simulation when the first input

files are ready while NESTOR is still running in background to prepare the subsequent MAR input.

In either case, NESTOR is cumbersome: in the former scenario, NESTOR delays the start of the MAR

simulation by several hours, while it adds an additional burden to the host machine in the latter case.

Interestingly, and as will be commented later in this manuscript, a few parts of NESTOR code have

been partially optimized: running NESTOR with ERA-5 data [9] is significantly faster than running it

with NCEP-NCAR data [25]. Nevertheless, NESTOR, as of January 2022, can be considered as a serious

candidate for code optimization. The purpose of this master thesis is therefore to thoroughly review

the source code of NESTOR to find the sub-routines or sets of instructions where it needlessly loses

time and to refactor them, all while ensuring that the output of the refreshed NESTOR does not change

the MAR output despite the well-known chaotic nature of meteorological processes [26], i.e., the risk

of observing different outcomes following minor decimal changes.

To tackle this task, this master thesis will be articulated around four main questions.

1. Where does early 2022’s NESTOR waste time ? Before optimizing NESTOR, its typical execution

scenarios should be profiled, and its main flaws carefully characterized. Such an analysis

will serve as a basis for optimizing NESTOR. This first question will be addressed in Chapter 2.

This chapter will also mention a few obsolete features which were highlighted and eventually

removed from NESTOR throughout this master thesis.

4which notably enforces a limit of 72 characters per instruction, a remnant of the early days of the language [37].
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CHAPTER 1. INTRODUCTION

2. How can NESTOR be sped up where it loses time ? A solution to tackle each of the flaws identi-

fied in Chapter 2 will be presented. Potential improvements over some of these solutions will

also be discussed. This second main question will be tackled in Chapter 3.

3. How fast is NESTOR after optimizing its code ? The execution time of the improved NESTOR

will be compared with the one delivered by the initial version, that is, as of January 2022, in

order to quantify how much faster the former is. This third question will constitute the first

part of Chapter 4.

4. Is the MAR sensitive to the output produced by the improved NESTOR? What about its sensi-

tivity to the improved bicubic interpolation ? Because of small decimal changes between

both NESTOR versions, which will also be shortly discussed in Chapter 4, the impact of the new

NESTOR on the MAR model must be thoroughly assessed. More generally, the sensitivity of the

MAR model will be assessed, as the impact of choosing the (refactored) bicubic interpolation

over the classical bilinear interpolation for a same region and time period will also be discussed.

The impacts of the new NESTOR on the MAR model will constitute the second part of Chapter 4.

After discussing each aforementioned question, a general conclusion will be provided in Chapter 5

to summarize the contributions of this master thesis and potential improvements that could be

brought to NESTOR in the future.

6
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2
AN IN-DEPTH REVIEW OF THE SOURCE CODE OF NESTOR

T
his chapter reviews thoroughly the source code of NESTOR as of January 2022 [22], and as such,

answers question 1 from Chapter 1. An overview of the source code is first provided (Sec. 2.1),

followed by a short commentary on the modern use of NESTOR (Sec. 2.2). The main issues

of NESTOR, i.e. parts of its code where it needlessly loses time, are subsequently characterized by

analyzing and profiling practical use cases (Sec. 2.3). Finally, other issues, such as code readability or

obsolete, even practically unusable features, will be shortly discussed (Sec. 2.4) before concluding

this chapter with a roadmap of the modifications that should be brought to NESTOR (Sec. 2.5).

2.1 Overview of the source code of NESTOR

The unedited source code of NESTOR, i.e. as found within the src/ directory of its typical archive

as of January 2022 [22], consists in more than 90 files, among which 70 are Fortran source files (.f)

and 19 are .inc files designed for sharing common variables and arrays across the entire program.

Both numbers can be reduced to 69 and 17, respectively, by omitting library files (namely libUN.f,

libUN.inc and NetCDF.inc, all used for reading NetCDF files [39] in Fortran). A few additional files

feature unique extensions (such as NESTOR.stereo and USRant.offset) but appear to only provide

variants of specific instructions or of given subroutines for the sake of providing a complete picture

to future programmers, as they are ignored during compilation.

The vast majority of the Fortran source files of NESTOR (i.e., .f files without libUN.f) define and

implement a single subroutine, which shares its name with the file itself (e.g., the GLOcov.f source

file defines and implements the GLOcov subroutine). Occasionally, side subroutines or functions are

also provided along the main subroutine, but are usually only called by the main subroutine of the

file. As a result, the list of files that make up the source code of NESTOR already provides a clear view

7



CHAPTER 2. AN IN-DEPTH REVIEW OF THE SOURCE CODE OF NESTOR

of its subroutines. It is worth noting that almost all subroutines of NESTOR exhibit a name restricted

to six characters, which is again an old convention of fixed-form Fortran [37]. Within the list of the

Fortran source files, three are especially important for understanding NESTOR.

• NESTOR.f provides the main body of instructions of NESTOR. This includes, in order: welcome

and main error messages, handling the input parameters (as provided by the NSTing.ctr

control file 1), initializing all grids, and what will be referred to as the main loop. This loop

is responsible for generating the regional grids for the MAR model in the chronological order.

Each of its iterations reads large scale grids stored in a NetCDF file [39] associated to the input

domain at a given date and time and downscales them into regional grids that will be used by

the MAR model to perform boundary forcing at a specific time step. It is worth reminding that

the MAR model does not perform boundary forcing at every time step, but rather after a short

period of time. By default, this period is set to 6 hours (and is also a parameter of NESTOR).

• NSTint.f provides the subroutine NSTint, which contains the sequence of instructions for

downscaling the grids from the input domain associated to given date and time into regional

grids. It can be roughly considered to constitute a single iteration of the main loop of NESTOR,

though said loop calls other subroutines besides NSTint, notably to manage input/output oper-

ations (notably via LSCinp and MARout). Nevertheless, NSTint provides the core algorithmical

operations of a single iteration of the main loop of NESTOR.

• INTERp.f provides the main interpolation subroutines involved in downscaling the input

domain: INThor (horizontal interpolation for a 2D grid or one level of a 3D grid; calls another

subroutine depending on the input parameters), INTbil (bilinear interpolation), INTbic

(bicubic interpolation) and INTlin (linear interpolation; used for interpolating vertical levels).

It is worth noting that INTbil and INTbic from INTERp.f are tailored for regular grids, i.e.,

grids where the difference in longitude/latitude between adjacent cells is constant, just like in

most datasets covering the entire Earth’s surface (e.g., as shown in Fig. 1.3a in Chapter 1). NESTOR

also provides two subroutines for downscaling non-regular grids (e.g., produced by a past MAR

simulation). INTERp.f provides the INTnrg interpolation subroutine for non-regular grids, but as

will be discussed in Sec. 2.4.2, it is never called in practice by the early 2022’s NESTOR, which rather

uses the INTnrg2 subroutine, provided by a separate file, whose downscaling algorithm is essentially

a bilinear interpolation performed on a different grid format.

Outside of these three .f files, most of the subroutines of NESTOR are rather straightforward. In

particular, a large number of subroutines are dedicated to managing a specific format of input data.

For instance, all subroutines whose associated file name is suffixed in vgd.f (vgd is for vertical grid)

build the air column above a given surface cell, the instructions of each such subroutine varying

depending on how vertical levels are handled in the associated data source.

1as edited by the user or generated with a Shell script.
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A considerable number of subroutines of NESTOR are also dedicated to its initialization steps, such

as creating the output grid format (any subroutine whose file name ends with hgd.f, for horizontal

grid) or preparing regional grids that are not subject to boundary forcing during a MAR simulation.

For instance, the subroutines GLOveg, CORveg and BELveg are all three used to downscale known

vegetation characteristics of the Earth’s surface to the regional scale, and are only called at the

beginning of a NESTOR run. Another example is GLOcov, which reads a high resolution NetCDF file

providing soil cover for the entire Earth’s surface (i.e., is a given surface cell covered by a forest, a

city, a desert, etc.) to produce the regional equivalent for the MAR model. The same subroutine uses a

second high resolution file to manage the ice cover upon preparing data over Greenland or Antartica.

2.2 Past and modern uses of NESTOR

Another noteworthy characteristic of NESTOR is its considerable number of options. Outside the basic

parameters that are the start and end dates of the downscaled data, the data source and the preferred

types of interpolation, early 2022’s NESTOR also provides alternative modes to the usual downscaling

(rain disaggregation and wind gust estimation) and numerous options for the initialization steps. As

shortly mentioned in Sec. 2.1, it also provides the option of using MAR data as input, i.e., the results of

past MAR simulation are used and downscaled in order to simulate the climate over a sub-region with

an even higher resolution. For example, results of a simulation over the British Isles (United Kingdom

and Ireland) can be downscaled to mainland Scotland, with surface cells going from a 12 by 12 to a 5

by 5 kilometers resolution.

Strangely enough, with the notable exception of being able to force the MAR model with pre-

existing MAR data, several of these options are difficult if not impossible to use in practice: a quick

look into NESTOR.f notably reveals that the wind gust estimation mode requires a WGustE subroutine

which is absent from the current source code of NESTOR, and whose sole call has been commented. A

complete inventory of these options will be provided later in Sec. 2.4.2.

Hopefully, most options are ignored by MAR users in practice. In fact, NESTOR is nowadays exclu-

sively used for preparing MAR input data, despite technically allowing the preparation of regional grids

for other purposes, as demonstrated by the existence of the subroutines GRAhgd, GRAvgd, CPLhgd and

CPLvgd which are used to prepare regional grids for GrADS (Grid Analysis and Display System [3];

GRA in NESTOR) and SVAT (Soil Vegetation Atmosphere Transfer) coupling (CPL), respectively.

As for the format of the input data, modern users of NESTOR typically feed it with data from:

• the ECMWF (European Centre for Medium-Range Weather Forecasts), either with hybrid

(ECM) or pressure (ECP) levels, such as ERA5 dataset [9],

• the NOAA (National Oceanic and Atmospheric Administration), with NCEP-NCAR datasets [25],

• a past Global Climate Model simulation (GCM),

• or a past MAR simulation (MAR).

9
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In addition to these sources, NESTOR allows use of LMD data (Laboratoire de Météorologie Dynamique),

though it can nowadays be considered as obsolete. In summary, modern NESTOR users exclusively

use it to produce MAR input data, using data from the ECMWF (ECM and ECP), the NOAA (NCP), a GCM

(GCM) or the MAR model itself (MAR). This leaves only one output format (MAR) and four different data

sources. Finally, several options of NESTOR are typically left with default values by modern users: for

instance, De Ridder and Schayes’ soil model [7] is always used though users can actually turn it off.

However, turning off this model results in two variables within the output data ending up completely

empty 2. This suggests that several features of NESTOR as used at the start of this master thesis should

be either removed, either re-evaluated, as will be discussed in Sec. 2.4 and Sec. 2.5.

2.3 Inefficient operations in NESTOR (as of January 2022)

With the architecture of NESTOR and its typical modern use in mind, a handful of realistic use cases

can be established to assess its performance (again, as of January 2022) but also to profile its execution

and to find the subroutines where NESTOR wastes time the most. Sec. 2.3.1 first presents typical use

cases and their performance. Sec. 2.3.2 subsequently discusses what makes these use cases slow or

faster than others with the help of a profiling command line tool (gprof [4]). The main issues of early

2022’s NESTOR are subsequently deduced and discussed: the setting of the vertical levels of the input

domain (Sec. 2.3.3), soil texture and soil cover interpolation (Sec. 2.3.4), expensive or redundant

interpolation subroutines (Sec. 2.3.5) and inefficient input domain management (Sec. 2.3.6).

2.3.1 Practical use cases of NESTOR and their performance

A simple way of building comparable use cases with NESTOR consists of running it for the same period

of time over the input domain, e.g., each experiment will process a certain amount of days with the

same dates. A realistic scenario consists of preparing MAR input data for 30 days of the same month

and the same year. The same output domain, i.e., the same region on which the input domain is

downscaled, can also be used in all scenarios. The experiments can then differ in two ways:

1. the data source (ECM/ECP, NCP or GCM) and the associated grid dimensions,

2. the type of horizontal interpolation (bilinear or bicubic).

Considering these options, a set of seven experiments has been designed, each experiment consisting

of a single NESTOR run on 30 days.

Six first typical use cases have been first deduced by using the data sources ECM (e.g. ERA-5 [9]),

ECP and NCP [25] with either bilinear or bicubic horizontal interpolation. Both ECM and ECP provide

data for Europe and Northern Africa only, while NCP provides data for the entire Earth’s surface. All six

experiments involved data for December 2021. There is no GCM scenario because the subroutines used

2namely TS (soil temperature) and SW (soil wetness).
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with such a data source are essentially the same as ECM, while there is actually different subroutines

used upon using either ECM or ECP. A seventh use case, involving MAR on MAR forcing, can complete

this set of experiments in order to be representative of the modern use of NESTOR. However, for this

last experiment, the output regional domain could not be the same as for the six other experiments,

due to the input domain (a simulation over the British Isles during July 2010 conducted in Fall 2021 3)

already being relatively small. Nevertheless, this experiment vastly differs from the others anyway

due to the unique interpolation method, which is already optimized in January 2022’s NESTOR.

To get a sample execution time for each of these experiments, the Linux time command [5]

has been used. For reminders, this command allows the user to evaluate how much time elapsed

during the execution of any program. More precisely, at the end of the execution, it provides three

values: real, user and sys. The real time corresponds to the wall clock time, while user provides

the time spent on a CPU outside system calls, whereas sys gives the time elapsed on a CPU while

performing system calls. Because all seventh experiments have been run on a server of climato.be

(srv5) shared with other users (meaning the CPU could not always be used by NESTOR for its whole

execution), and because sys times were always negligible (a few seconds), the real time will be

selected as representative of the execution time of NESTOR in any of the seven use cases.

Input Domain Grid dimensions Interpolation type user time

ECM Europe 367x167x40
Bilinear 1m 58’ 85”
Bicubic 54m 01’ 66”

ECP Europe 181x91x31
Bilinear 26m 58’ 78”
Bicubic 39m 28’ 99”

NCP Earth 144x73x18
Bilinear 12m 03’ 74”
Bicubic 19m 44’ 01”

MAR British Isles 100x100x24 Bilinear (variant) 2m 16’ 79”

Table 2.1: Summary of 7 sample experiments carried with NESTOR on srv5 from climato.be.

Table 2.1 provides the user execution times obtained with each of the seven sample NESTOR

runs, along with the conditions of each. All experiments prepared input MAR data for a period of

30 days, the six first in the table using December 2021 data and downscaling on the same region

(Western Europe, roughly centered on France, with surface cells of 20 by 20 kilometers). Dimensions

are provided with the longitude axis first, followed by the latitude axis and the number of vertical

levels. Finally, the MAR on MAR experiment downscaled the input domain on mainland Scotland with

a 5 by 5 kilometers resolution (versus 12 by 12 kilometers for the input domain).

Table 2.1 demonstrates that, no matter the use case, NESTOR spends several minutes to fully

prepare one month (30 days) of MAR input data. This holds especially true for the sample runs relying

on bicubic interpolation to downscale 2D grids, and this also holds true for the use cases involving

bilinear interpolation and the data sources ECP and NCP. Interestingly, the experiments with the

data source ECM provide both extremes in terms of execution time for the whole of Table 2.1. Its

3in the context of the CLIM0017 course [10].
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comparatively fast execution time while using bilinear interpolation can be explained by the fact

that a subroutine used by NESTOR during this specific scenario has already been optimized, as will be

detailed in Sec. 2.3.3. It should be noted that the variations in user times also appear to be related to

the dimensions of the input domains: indeed, both experiments with NCP as data source completed

faster than ECP with similar conditions but a smaller grid as for the input domain. The fact that the

experiment with ECM and bicubic interpolation is almost an hour long can also be tied to the large

dimensions of the input domain (largest grid among all data sources).

2.3.2 Profiling NESTOR in typical use cases with gprof

To better understand why NESTOR runs so slow in most experiments included in Table 2.1, the tool

gprof [4] can be used. gprof is a programming tool that investigates the call graph of a program

written in either C, Pascal or Fortran, i.e., how many calls to a specific subroutine or function have

been made and approximately how much time has elapsed while they were used. Because NESTOR

features a large number of subroutines and because gprof goes as far as enumerating underlying

subroutines or functions called by the libraries, only the five most costly subroutines or functions, i.e.

the ones in which NESTOR spent the most time, will be showed each time.

Listing 2.1: The five most called functions/subroutines in NESTOR with NCP/bilinear (by gprof)

% cumulative s e l f

time seconds seconds name

48.15 354.39 354.39 netcdf_mp_nf90_get_var_3d_fourbytereal_

5.09 391.83 37.44 nf_inq_var_

4.47 424.76 32.93 nf_inq_dim_

3.04 447.14 22.38 utf8proc_decompose

2.84 468.04 20.90 utf8proc_decompose_char

Example 2.1 provides the five most called subroutines/functions used while running the NCP

use case with bilinear interpolation, as provided by gprof. The given ranking, which is a rough

simplification of the full output of gprof, provides four columns for each function/subroutine:

a percentage of the total execution time spent with said function/subroutine, a cumulative time

in seconds, the time spent with the function/subroutine itself in seconds, and its name. What

immediatly catches the eye here is that all the listed functions are not NESTOR subroutines, but I/O

functions that are either from the NetCDF.inc library (namely nf_inq_var_ and nf_inq_dim_)

either from underlying code, and whose names heavily imply they are used for reading NetCDF files

and processing their content. In particular, the function prefixed with netcdf_ took almost half of

the entire execution time. This suggests that NESTOR wasted a considerable amount of time reading

and processing NetCDF files, which calls for an optimization of its file reading strategy.

Example 2.2 provides a similar ranking to that of Example 2.1 for the experiment involving bilinear

interpolation and the data source ECP. This second ranking obviously shows that the ECP/bilinear
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use case suffer from the same I/O issues as highlighted in Example 2.1: indeed, the functions are

identical, only with slightly different values as for the first column (percentage of the total execution

time) and greater times for the second and third columns. The latter observation can be tied to the

larger dimensions of the ECP input domain w.r.t. the NCP input large scale domain (cf. Table 2.1).

Listing 2.2: The five most called functions/subroutines in NESTOR with ECP/bilinear (by gprof)

% cumulative s e l f

time seconds seconds name

49.40 801.49 801.49 netcdf_mp_nf90_get_var_3d_fourbytereal_

5.15 884.98 83.49 nf_inq_var_

4.57 959.15 74.17 nf_inq_dim_

3.30 1012.68 53.53 utf8proc_decompose

2.92 1060.01 47.33 utf8proc_decompose_char

Listing 2.3: The five most called functions/subroutines in NESTOR with ECM/bilinear (by gprof)

% cumulative s e l f

time seconds seconds name

12.21 13.94 13.94 for_cpstr

9.89 25.23 11.29 i n t b i l _

9.46 36.03 10.80 read

7.51 44.60 8.57 close

6.72 52.27 7.67 __svml_logf4_e9

Example 2.3 now provides the same kind of ranking as in Examples 2.1 and 2.2 for the NESTOR run

involving the ECM input domain and bilinear interpolation. For reminders, this particular experiment

was the shortest listed in Table 2.1. Watching the console output of NESTOR unfold in this case

suggests this is because NESTOR runs faster while computing vertical levels. Reviewing the source

code of NESTOR [22] reveals this is indeed due to an optimization of ECMvgd, a subroutine whose

purpose is to prepare the vertical levels of an input domain using ECM as data source. Without going

to much into the details here (for those details, see Sec. 2.3.3), this subroutine is more efficient than

its peers ECPvgd and NCPvgd (doing the same job but for ECP and NCP data sources, respectively)

thanks to a logical variable maintained through all of its calls (via the save instruction of Fortran)

which allows ECMvgd to avoid redundant (and costly) I/O operations. Thanks to this optimization,

Example 2.3 provides a completely different ranking with respects to previous rankings, which can

now be explained by the fact that the subroutines ECPvgd and NCPvgd perform unnecessary I/O

operations with respects to ECMvgd. In particular, the first entry (for_cpstr, a Fortran function for

comparing strings) takes only around one eighth of the total execution time, while the first entry

in both previous rankings took almost half of the entire run time. The NESTOR subroutine INTbil

(bilinear interpolation) follows closely with almost 10% of the execution time. Nevertheless, because
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this particular experiment still took almost two minutes, there may still be room for improvement. A

first obvious candidate for optimization would be the bilinear interpolation itself, as will be explored

in Sec. 2.3.5, but the third and fourth entries suggest that there may also be some potential further

improvements in terms of I/O operations.

The first entry in the ranking provided by gprof for the ECM sample run in Example 2.3 is trickier

to analyze. It is indeed strange that a function for comparing strings in Fortran account for so much of

the total execution time, as the main tasks of NESTOR do not seem to involve string management. To

further the analysis of the top entry of Example 2.3, gprof was re-run on the ECM/bilinear experiment

with the −−graph option in order to display the complete call graph of NESTOR. Unfortunately, it

listed for_cpstr as a spontaneous call, meaning gprof could not trace back where it was called, most

probably because it belongs to an underlying library 4. To elucidate the role of for_cpstr, additional

manual testing of NESTOR has been performed by removing specific function/subroutine calls or

sets of instructions within its source code and running NESTOR again. This manual testing eventually

showed that for_cpstr is most likely involved in the aforementioned optimization implemented in

the ECMvgd subroutine. Indeed, removing the logical variable used by ECMvgd to avoid redundant

I/O operations (as well as all related instructions) not only slows down NESTOR drastically (around

10 minutes of user time to prepare 2 days of MAR input data due to the large grid dimensions; cf.

Table 2.1) but also cuts the total number of seconds spent with for_cpstr to only around 2 seconds

and an half, which may account for side operations that will not be further explored here due to the

difficulty of tracking for_cpstr calls. As will be discussed in Sec. 2.3.5, a similar optimization will

eventually be presented in Chapter 3 but with a more elegant implementation.

Listing 2.4: The five most called functions/subroutines in NESTOR with MAR/bilinear (by gprof)

% cumulative s e l f

time seconds seconds name

28.60 38.45 38.45 intnrg2_

9.25 50.88 12.43 __libm_cosf_e7

9.19 63.24 12.36 __libm_sinf_e7

7.04 72.70 9.46 __libm_atan2f_e7

5.09 79.54 6.85 i n t l i n _

Example 2.4 now provides the usual ranking for the MAR on MAR forcing scenario. Again, the

ranking is completely different from Examples 2.1 and 2.2, but this time around, the most called

function/subroutine is the NESTOR subroutine INTnrg2, which has been specifically designed for

forcing the MAR model with existing MAR output. This is, again, the consequence of some subroutines

used by NESTOR in this scenario being already optimized: in particular, MARvgd, which performs

the same operation (i.e., setting vertical levels of the input domain) as ECMvgd but for MAR grids,

4Some additional search [17] seems to point to for_cpstr being an Intel function that is added upon compilation by
the ifort Fortran compiler. However, no detailed, official documentation for for_cpstr has been found.
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uses the same optimization as ECMvgd to prevent redundant I/O operations. Moreover, INTnrg2 has

also been optimized with a comparable mechanism, except that it involves side arrays maintained

between each call via the common instruction of Fortran. As a consequence, the MAR sample run is the

second shortest experiment in Table 2.1. The functions from the second to the fourth place are all

trigonometric functions that are used by the dist function from INTnrg2.f, itself used in INTnrg2,

the fifth place being the linear interpolation routine INTlin (found in INTERp.f and used for vertical

interpolation). It should be reminded that this INTnrg2 subroutine essentially performs a bilinear

interpolation, like INTbil found in INTERp.f, but is slightly more complex due to MAR grids being

non-regular (as defined in Sec. 2.1). Interestingly, because the aforementioned subroutine MARvgd

also uses a saved logical variable to avoid redundant I/O operations, for_cpstr would be the sixth

entry (with 5.55 self seconds) in a more complete ranking. The fact that NESTOR spends twice less

time on for_cpstr than in Example 2.3 may be due to the difference in dimensions between ECM

and MAR grids (cf. Table 2.1), since both ECMvgd and MARvgd are used to prepare vertical levels.

Up to this point, only use cases of NESTOR involving bilinear interpolation have been investigated,

which means three more sample runs with bicubic interpolation (as there were seven sample runs, cf.

Sec. 2.3.1) needs to be profiled with gprof to have an exhaustive analysis. However, all three cases

are pretty straightforward to analyze: in all rankings produced by gprof, the INTbic subroutine from

INTERp.f ends up being the top entry. Examples 2.5 and 2.6 provide the rankings for the NCP/bicubic

and ECP/bicubic sample runs, respectively. Just like with Examples 2.1 and 2.2, the rankings are

essentially identical when it comes to the functions, though the numbers differ because of the

differing grid dimensions (cf. Table 2.1). In fact, the rankings are identical to those of the experiments

with bilinear interpolation aside the fact that INTbic became the most expensive subroutine.

Listing 2.5: The five most called functions/subroutines in NESTOR with NCP/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

43.70 519.63 519.63 intbic_

28.55 859.09 339.46 netcdf_mp_nf90_get_var_3d_fourbytereal_

3.10 895.93 36.84 nf_inq_var_

2.65 927.45 31.52 nf_inq_dim_

1.74 948.19 20.74 utf8proc_decompose_char

The ranking obtained for the ECM/bicubic sample run, shown in Example 2.7, also demonstrates

that the INTbic subroutine now constitutes most of the execution time. In fact, in this specific

instance, it even constitutes more than 90% of the total execution time. Such a large difference with

previous rankings can be explained in two ways. First, as discussed previously, the ECM scenarios

already benefit from an optimization in ECMvgd, hence why NESTOR wastes much less time perform-

ing I/O operations in Example 2.7 and why the previous rankings were very similar to the use cases

involving bilinear interpolation.
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Listing 2.6: The five most called functions/subroutines in NESTOR with NCP/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

39.36 935.46 935.46 intbic_

31.53 1684.79 749.33 netcdf_mp_nf90_get_var_3d_fourbytereal_

3.30 1763.12 78.33 nf_inq_var_

2.96 1833.38 70.26 nf_inq_dim_

1.87 1877.77 44.39 utf8proc_decompose_char

Listing 2.7: The five most called functions/subroutines in NESTOR with ECM/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

94.21 2443.00 2443.00 intbic_

0.85 2465.14 22.14 read

0.81 2486.21 21.07 for_cpstr

0.43 2497.28 11.07 _intel_fast_memcmp

0.40 2507.69 10.41 close

Second, a close inspection of the code of the INTbic subroutine (from INTERp.f) suggests its

approach to the problem is very inefficient. For reminders, bicubic interpolation [33] is achieved by

computing cubic splines [35] on the rows of the (sub-)grid whose cells are in the neighborhood of the

location closest to the interpolation cell, computing one additional cubic spline on the interpolated

values obtained by the previous splines, and finally computing the overall interpolated value with

this last spline. In theory, it is possible to achieve bicubic interpolation by building splines in a 4 by 4

sampling square whose inner cells are in the neighborhood of the selected location [27, 33], but the

implementation of INTbic actually computes splines over the entire input grid it has to downscale.

Even though this implementation reuses efficient code from a reference book on Fortran [27], this

makes the bicubic interpolation in NESTOR needlessly costly, as will be detailed in Sec. 2.3.5.

This also explains why the ECM/bicubic scenario features the worst total execution time (almost

an hour of user time): not only INTbic processes the entire input grid, but the grids from the ECM

input domain are also the largest in terms of dimensions as previously shown in Table 2.1. To refresh

NESTOR in this regard, computing cubic splines on 4 by 4 sampling squares should be preferred over

considering the entire input grid. Keeping track of these squares may also be a way to prevent NESTOR

from performing redundant computations between each iteration of the main loop of NESTOR (as

defined in Sec. 2.1). This specific question will be detailed further in Sec. 2.3.5 and Chapter 3.

Before going further with the issues of NESTOR, this performance analysis requires an important

closing remark: indeed, NESTOR also provides the option of performing interpolation of vertical levels

with either linear interpolation or cubic spline interpolation, as quickly mentioned in Chapter 1.

However, such an option has not been discussed at all in this chapter. The reason for this is simple:
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in January 2022’s NESTOR, using the cubic spline interpolation to prepare air columns above each

surface cell of a MAR grid instead of the default linear interpolation (performed with INTlin from

INTERp.f) results in bogus data, i.e., the output files are filled with "not a number" (NaN) values. This

issue will be discussed further in this chapter, in Sec. 2.4.2.

2.3.3 Issue n°1: setting the vertical levels of the input domain

A very obvious issue that arises from the gprof rankings discussed in Sec. 2.3.2 is how NESTOR man-

ages the vertical levels of the input domain. In its unmodified source code (i.e., as of January 2022),

this operation is managed by 6 different subroutines (in alphabetical order): CM3vgd, ECMvgd, ECPvgd,

LMDvgd, MARvgd and NCPvgd. All six subroutines are called in practice by the VERgrd subroutine,

which itself receives the type of large scale input domain (LSC in NESTOR terminology, for Large SCale)

and calls one of the aforementioned subroutines depending of this type. The VERgrd subroutine

itself is called on a few occasions in the code of the NSTint subroutine. For reminders (see Sec. 2.1),

the NSTint subroutine amounts to the main algorithmical operations carried out by a single iteration

of the main loop of NESTOR.

Listing 2.8: Example of a call to the VERgrd subroutine in NSTint.f

DO j =1 , nj

DO i =1 , ni

LSC1sp=LSC_sp ( i , j )

LSC1sh=LSC_sh ( i , j )

CALL VERgrd (LSCmod, emptyC , fID , k , nk , LSC1sp ,

. LSC1sh , LSC1_t , LSC1_p , LSC1hp ,

. LSCgdz ,WK1_1D,WK2_1D,WK3_1D)

LSC__p ( i , j )=LSC1_p ( k )

ENDDO

ENDDO

An important feature of VERgrd is that it is reponsible, at the same time, for building the vertical

levels of the input domain and the output domain. A logical parameter (i.e., the equivalent of a

boolean value in Fortran) tells the subroutine whether it is called to prepare the vertical levels of the

input or the output domain. Moreover, VERgrd also receives, as parameters, the pressure, temperature

and elevation of a single surface cell, and subsequently computes the pressure levels on top of this

surface cell and only this cell. As a consequence, VERgrd must be called for every cell of a grid whose

vertical levels must be computed. Example 2.8 shows a typical instance of NSTint calling VERgrd to
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process the input domain, comments being removed for readability. In this set of instructions, ni

and nj gives the dimensions of a 2D grid (longitude-wise and latitude-wise, respectively) from the

input domain while LSC_sp and LSC_sh corresponds to the 2D arrays giving the surface pressure

and elevation of each surface cell of the input domain. The nk gives the number of vertical levels,

and k a specific level to compute. The LSC1_p is the vector containing the final vertical levels. Note

also the many parameters in the call to VERgrd: in particular, the first two parameters give the type of

LSC (source) data and the logical value telling if the subroutine should compute the vertical levels

for the input or the output domain. Additional commentary on VERgrd will be provided in Sec. 2.4.1.

Listing 2.9: Reading pressure levels in NCPvgd.f

C +−−−Atmospheric l e v e l s : pressure l e v e l s

C + −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C + * * * * * *

CALL UNread ( fID , ’ level ’ , 0 , 0 , 0 , 0 , nk , 1 , 1 , NCP__z ,

. empty1 , empty1 , var_units , plevel )

C + * * * * * *

To elucidate what makes the computation of the vertical levels so slow, the code of the subroutines

dedicated to each type of input domain should be investigated. A simple example would be the

NCPvgd subroutine, as its source code is less than 100 lines of code, and much less if we omit

comments and spacing. In this context, the culprit for the slowness of NESTOR in the NCP sample runs

(see Table 2.1 as well as Examples 2.1 and 2.5) is easy to find and shown in Example 2.9 (comments

included), which provides the very first instructions of NCPvgd after setting the variables. The call to

UNread (a subroutine from the libUN.inc library) reads a specific field (called level) of a NetCDF

file, provided through the fID argument, and stores its values in a plevel vector with NCP__z

receiving the coordinates along the vertical axis.

The main issue with the call to UNread in NCPvgd shown in Example 2.9 is that it will re-read the

level variable of the input NetCDF file for every surface cell of the input domain, this variable being

a simple one-dimensional vector (this can be easily checked with the ncdump -h command). In other

words, the content of the plevel array should always be the same no matter the surface cell for which

vertical levels are being computed. This is especially visible looking back at the double loop shown

in Example 2.8. While this code seems innocuous from a semantic point of view, it is catastrophic

for performance from a computing science perspective. Indeed, the speed of I/O operations in a

computer depends on what type of memory is accessed [28, 29]. The fastest I/O access is typically

CPU registers, while the RAM (Random Access Memory) provides a fast access to actively running

programs and the data they manage. Reading files on hard drives (such as NetCDF files, in this

context), however, is approximately a hundred times slower [28, 29]. This means that a subroutine

such as NCPvgd not only re-reads the same vector for each surface cell of the input domain, but also

does it in one of the slowest possible ways, hence the rankings in Sec. 2.3.2.
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As discussed in Sec. 2.3.2, the ECMvgd already fixes this issue by using a single logical variable

named lfirst which is carried on throughout the execution of NESTOR via the save instruction

of Fortran. This variable is initially set to true and become false after reading the pressure levels

vectors it needs to read, knowing the format of ECM data is slightly different. The vectors themselves

are also maintained via the save instruction. This means that, after the very first call to ECMvgd,

subsequent calls only have to check whether the lfirst variable is set to false to avoid re-reading

NetCDF files again. Example 2.10 provides the part of ECMvgd which provides this optimization,

cleaned from comments with less spacing. In this code extract, CSTp and SIGp correspond to the

vectors that ECMvgd needs to read (but only once) in the NetCDF files. It should be reminded that

this approach for speeding up the subroutine is followed identically in MARvgd.

Listing 2.10: Extract from ECMvgd.f showing the optimization

REAL pp ,ppm, pps , ppf , pp1 , dpsl , hh , empty1 ( 1 ) ,CSTp( nk ) , SIGp ( nk ) ,

. ECM_sp,ECM__p( nk+1) ,ECM_hp( nk+1)

SAVE CSTp, SIGp

CHARACTER*10 var_units

LOGICAL l f i r s t

SAVE l f i r s t

DATA l f i r s t / . true . /

IF ( l f i r s t ) THEN

CALL UNsread ( fID , ’ CSTp’ , 0 , 0 ,

& 0 ,0 ,nk , 1 , 1 , var_units , CSTp)

CALL UNsread ( fID , ’ SIGp ’ , 0 , 0 ,

& 0 ,0 ,nk , 1 , 1 , var_units , SIGp )

DO k=1 ,nk

CSTp( k ) = CSTp( k ) * 1 .E−3 ! ( Pa−−>KPa)

ENDDO

l f i r s t = . f a l s e .

ENDIF

It should be reminded that, as mentioned in Sec. 2.3.2, the optimization provided in ECMvgd by

the unmodified NESTOR has the small apparent downside of making calls to the hidden for_cpstr

function more frequent. Nevertheless, Examples 2.9 and 2.10 clearly shows that the subroutines

called by VERgrd should all be refactored in a way that ensures they read the vectors they each require

only once, or at the very least a minimum of times throughout the entire execution of NESTOR. One
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way to achieve this would be to include the loop over the 2D grid shown in Example 2.8 within the

subroutines themselves. A thorough refactoring of VERgrd and its subroutines will be presented in

Sec. 3.2.1, taking also account of subsequent remarks in this chapter (such as in Sec. 2.4).

Finally, on a side note, it is worth mentioning that early NESTOR programmers seemed to have

had preferred VERgrd computing vertical levels over a 2D grid rather than a single surface cell, as

a comment provided along with the vgd subroutines point out the latter option was picked due to

memory constraints. However, comments found in the source code and the documentation provided

along with NESTOR [22] do not document this topic further.

2.3.4 Issue n°2: soil texture and soil cover interpolation

While Sec. 2.3.2 focused a lot on vertical levels computation, NESTOR users may also attest of at

least two operations carried out at the start of the program that takes some time to complete: the

interpolation of soil texture and soil cover over the regional grid, respectively carried out by the

subroutines HWSDsl and GLOcov. Indeed, the console output of NESTOR goes as far as printing out

the number of the row it finished interpolating during both operations to display their progress to

the user. While these operations only occur at the start of NESTOR, they still require a significant

amount of time to complete (one or several dozens of seconds with small regional grids). This partially

explains why NESTOR still takes around two minutes to complete its execution with use cases like

ECM/bilinear and MAR forcing MAR (cf. Sec. 2.3.1).

Listing 2.11: Extract from HWSDsl.f; checking texture in the neighborhood of a location

do k=in−nint ( dx1 ) , in+nint ( dx1 ) ; do l =jn−nint ( dy1 ) , jn+nint ( dy1 )

kk=k

l l = l

i f ( kk <1) kk=cx+kk

i f ( l l <1) l l =cy+ l l

i f ( kk>cx ) kk=kk−cx

i f ( l l >cy ) l l = l l −cy

kk=max( 1 ,min( cx , kk ) )

l l =max( 1 ,min( cy , l l ) )

s t a r t (1)= kk

s t a r t (2)= l l

count (1)=1

count (2)=1

Rcode = nf_get_vara_int ( NETcid , NET_ID, s t a r t , count , cov )
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Looking into the code of either HWSDsl and GLOcov quickly reveals why these operations are

slow: much like VERgrd and the associated subroutines, their interpolation process involves multiple

I/O operations. Example 2.11 provides a code extract from the HWSDsl subroutine to discuss the

issue, with less spacing than in the source code. This extract provides the beginning of an inner

loop within HWSDsl which is meant to explore, for a given location (closest cell to the regional cell to

interpolate), the neighboring cells from a large grid providing high resolution texture data. A very

similar inner loop also exists in GLOcov, though the subsequent operations differ. In both cases,

however, exploring the neighborhood of a given location is meant to make a census of how many

cells feature a given texture/cover value, the final value assigned to the interpolated regional cell

depending on this census.

In Example 2.11, the dx1 and dy1 give the maximum difference, respectively longitude-wise and

latitude-wise, used to explore neighboring cells top, bottom, left or right from a cell that is assumed to

be the closest to the regional cell (whose indexes are in and jn). The kk and ll variables are the actual

indexes of a neighboring cell, checked by several instructions to ensure they remain within the index

ranges of the high resolution grid. Finally, cov is the texture value retrieved by the nf_get_vara_int

function, whose return value is a code Rcode provided so the user can document any I/O error 5.

The call to nf_get_vara_int and the values stored in the count tuple (i.e., an array of two values),

which provides the size of a sub-grid to load in memory, show that the code retrieves only one pixel

from the high resolution grid at once, which is arguably even more inefficient than the I/O operations

previously discussed in Sec. 2.3.3.

This peculiar choice of reading data pixel by pixel can however be partially explained. On the one

hand, the NetCDF files the HWSDsl and GLOcov subroutines read to get high resolution texture/cover-

age data are very large: for instance, GLOcov reads a NetCDF file providing a 43200 (longitude-wise) by

21600 (latitude-wise) grid providing texture data for the entire Earth’s surface, the file itself weighing

around 891 megaoctets. On the other hand, due to how HWSDsl and GLOcov proceed algorithmically,

the neighborhood around the in,jn cell will not necessarily constitute a clean rectangular or square

area in the high resolution grid due to the varying number of kilometers between two degrees of

longitude/latitude, especially when getting close to the poles.

Optimizing HWSDsl and GLOcov will therefore amount, again, to reducing as much as possible

the I/O operations. Given that modern day machines now feature dozens of gigaoctets of RAM, it

is reasonable to load large chunks of data at once at the cost of loading more pixels than necessary,

as this will reduce the slowdown induced by the multiplication of I/O operations on the NetCDF

files. Doing so may result in HWSDsl and GLOcov subroutines only taking a few seconds (or less) to

complete, and in the I/O calls shown in Examples 2.3 to become negligible. The solution used to

achieve this goal will be detailed in Sec. 3.2.2.

5In practice, the code of HWSDsl and GLOcov does not check the value of Rcode after calling nf_get_vara_int.

21



CHAPTER 2. AN IN-DEPTH REVIEW OF THE SOURCE CODE OF NESTOR

2.3.5 Issue n°3: expensive or redundant interpolation

Another clear issue highlighted in Sec. 2.3.1 and Sec. 2.3.2 is the slowness of the bicubic interpolation.

In the unmodified NESTOR (i.e., as of early 2022), this task is assumed by the INTbic subroutine found

in INTERp.f. The code of such a subroutine is rather straightforward: after adjusting the input values

and the arrays providing their positions (longitude-wise and latitude-wise), the code of INTbic can

be summarized to Example 2.12 (slightly simplified with respects to comments).

Listing 2.12: Extract from INTbic (in INTERp.f); actual interpolation

! Construction of 1D splines of rows

CALL SPLIE2 ( tmp_Ix , tmp_Iy , tmp_in , dim_Ix , dim_Iy , tmp_I2a )

! Interpolation for each output grid point

DO j =1 ,dim_Oy

DO i =1 ,dim_Ox

CALL SPLIN2 ( tmp_Ix , tmp_Iy , tmp_in , tmp_I2a , dim_Ix , dim_Iy ,

. grd_Ox ( i , j ) , grd_Oy ( i , j ) , var_O ( i , j ) )

ENDDO

ENDDO

In Example 2.12, dim_Ix (longitude-wise) and dim_Iy (latitude-wise) give the dimensions of the

input grid while dim_Oy and dim_Ox provide the same information for the output grid. The tmp_

variables all correspond to pre-processed input data (in particular, tmp_in contains the values of the

input grid) with the exception of tmp_I2A, which buffers interpolation data. All four tmp_Ix, tmp_Iy,

grd_Ox and grd_Oy provide coordinates of each cell from the input and output grids, respectively.

The SPLIE2 and SPLIN2 subroutines are efficient Fortran implementations of numerical methods

provided by a 1992 reference book by Press et al. [27]. The purpose of the former is to create a cubic

spline for each row of the input grid with the help of another subroutine from Press et al. [27]: the

SPLINE subroutine. Prediction of a value with a spline built by SPLINE is done with SPLINT [27]. To

understand these subroutines, let us review precisely how bicubic interpolation works.

First of all, a cubic spline is an interpolation method tailored for one dimensional problems: given

a sequence of values along an axis, the cubic spline tries to fit the sequence so that new values can

be predicted between the known values [35]. As mentioned before, this task is assumed in NESTOR

by the SPLINE subroutine. Fig. 2.1a provides a toy example of a cubic spline, built with four values

(in red, yellow, green and blue) to predict a fifth value (in black). Bicubic interpolation consists of

building cubic splines for each row (or each column) of a (sub-)grid, retrieving interpolated values

for the first coordinate of the interpolated point for each spline (predicted in NESTOR with the help

of SPLINT [27]), then build a final cubic spline with these values to predict the final interpolated
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(a) Toy example of a cubic spline
(b) Toy example of bicubic interpolation

Figure 2.1: Depictions of cubic spline and bicubic interpolation [33]. The black point corresponds
each time to the predicted value, while coloured points are known values.

value using the second coordinate (with a combination of SPLINE and SPLINT) [33]. Fig. 2.1b shows

a toy example of bicubic interpolation on a 4 by 4 grid, where red, yellow, green and blue values

correspond to individual splines for each row (or column) and where the purple curve represents the

final spline used to predict the final value (again, in black). In NESTOR, computing the cubic splines

for each row of a grid is assumed by SPLIE2, as shown in Example 2.12, and predicting the value of

each interpolated (regional) cell with the final spline is performed by SPLIN2.

As mentioned earlier in Sec. 2.3.2, the main issue of bicubic interpolation in NESTOR is the fact

that splines are computed over the entire input grid. Let us assume, for instance, that the input grid is

a square grid of 120 by 120 cells. This would mean that INTbic would first compute 120 cubic splines

using 120 values each. Then, for each output grid cell, a new spline must be computed with the 120

interpolated values obtained with each of the first 120 cubic splines. If the computational cost is

approximated by the number of values that have to be managed, this means that INTbic has to toy

with 1202 (first 120 splines) plus 1203 values (one additional cubic spline built with 120 values for

each of the 1202 cells), which leads to a total of 1,742,400 values to consider. However, as mentioned

in the literature [27, 33], bicubic interpolation can be achieved by using a 4 by 4 sampling square

surrounding the location of interest. The same approach as described above can then be followed,

giving 42 plus 4 values to manage per interpolated value. Multiplied by the dimensions of the grid,

this gives a total of 288,000 values to manage, which is only around 16% of the previous total.

Of course, this calculation excludes the cost of finding the sub-grids accomodating the locations

associated to each output grid cell. Hopefully, said locations do not change between each iteration of

the main loop of NESTOR (cf. Sec. 2.1): the longitude/latitude coordinates of both the input and the

output domain remain the same for entire execution of NESTOR. In other words, it is possible to find

the sub-grids in the input domain for each output domain cell only once and re-use the results for

each subsequent bicubic interpolation. Such an approach will be developped in Sec. 3.2.3 in order to

optimize bicubic interpolation.
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In fact, the aforementioned approach for reducing the computational cost of the bicubic inter-

polation can also be applied to the bilinear interpolation. Indeed, just like bicubic interpolation,

bilinear interpolation in NESTOR starts by finding a small set of input grid cells neighboring a given

location (as longitude and latitude coordinates). These cells are also called sampling points in NESTOR

source code. NESTOR subsequently performs a bilinear interpolation [34] with each sampling point

and the adjacent cells located bottom, right and bottom-right (for a total of four points). The bilinear

interpolation itself consists of performing two linear interpolations [38] between two adjacent cells,

using the first coordinate of the location of interest to get interpolated values, then performing a

second linear interpolation with these interpolated values and the second coordinate of the location.

For reminders, a linear interpolation consists of assuming there is a straight line passing between two

points and predicting the value of another point using the slope of this line and the coordinate of this

third point. Figure 2.2 depicts linear and bilinear interpolation, respectively in Fig. 2.2a and Fig. 2.2b.

(a) Toy example of linear interpolation
(b) Toy example of bilinear interpolation

Figure 2.2: Depictions of linear and bilinear interpolation [33]. The black point corresponds each
time to the predicted value, while coloured points are known values.

As previously implied, the INTbil subroutine of NESTOR (from INTERp.f) actually uses several

sampling points from the input grid and their respective adjacent cells to predict the value of a cell in

the output grid. It then performs a bilinear interpolation as depicted in Fig. 2.2b between a sampling

point and its bottom/right/bottom right neighbors, and assigns, as the final value of the output grid

cell, an average of the interpolated values produced with each sampling point.

Just like with bicubic interpolation, the longitude/latitude coordinates of each cell in both the

output and input grids do not change between each iteration of NESTOR. It is therefore possible to

compute only once the sampling points used for each output grid cell during the bilinear inter-

polation along with their coordinates. By doing so, subsequent interpolations simply consists of

applying the linear interpolation formulas with the values of each grid from the input domain, as

there is no need to search for sampling points any longer. This is further motivated by the fact that

the values from the input domain are used very late in the code of INTbil, meaning most of this code

is dedicated to preparing the input coordinates/values and performing sampling point selection 6.

6Because INTbil is quite lengthy, no code extract will be provided here.
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While the bilinear interpolation is not the most expensive operation performed by NESTOR,

going by the rankings presented in Sec. 2.3.2, it can still amount to a significant percentage of the

total execution time as evidenced by Example 2.3. Therefore, preventing INTbil from re-doing the

sampling search point at each call can prevent redundant computations and reduce the overall

execution time. It is worth mentioning, however, that the INTbil is already optimized to some extent:

the sampling points selection is already tailored to minimize how many cells from the input domain

will be considered. The algorithmic simplicity of INTbil and its few optimizations may explain why

modern NESTOR users overwhelmingly prefer the bilinear interpolation (which is also the default

interpolation mode). Nevertheless, the INTbil from the early 2022’s NESTOR still performs redundant

operations if used repeatedly. How to suppress this redundancy will be discussed in Sec. 3.2.3.

2.3.6 Issue n°4: inefficient input domain management

One last issue of NESTOR that has not been discussed in details in Sec. 2.3.2 is the way it manages the

input domain. Indeed, the unmodified NESTOR always processes the entire input domain, notably

during the computation of its vertical levels (see also Sec. 2.3.3). In practice, this is not necessary: the

values NESTOR actually needs lie in a sub-region of the input domain that accommodates the entire

regional domain. Even if the full grids from the input domain are available, NESTOR never use points

outside this hypothetical sub-region during both interpolation subroutines, especially since said

subroutines should select specific cells close to the regional cells to begin with (cf. Sec. 2.3.5).

(a) Large scale grid (latitude band), land/sea mask (b) Regional grid (gulf of Alaska), soil texture

Figure 2.3: Another use case of NESTOR where the dimensions of the input domain (1200 by 137)
induce a slow execution. In both figures, the purple color corresponds to sea and oceans.

At first, this did not appear to be a problem with the experiments discussed in Sec. 2.3.1, though

the dimensions of the ECM and ECP input domains explain some user times, especially when com-

pared to the NCP use cases (again, see Table 2.1). However, an experiment performed later with an

even larger grid demonstrated that NESTOR was still performing unnecessary calculations and losing

time, even after having received solutions to all three issues discussed in Sec. 2.3.3, Sec. 2.3.4 and

Sec. 2.3.5. The problematic grid was an ECM grid which covered an entire latitude band in the north
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of the Northern hemisphere, therefore covering regions such as Greenland, Scandinavia, Siberia,

Alaska and Canada. Its dimensions were 1200 cells longitude-wise and 137 latitude-wise. However,

the NESTOR scenario were such a grid was used aimed at producing a regional grid over a portion

of Northern America facing the gulf of Alaska, meaning a very large number of cells from the input

domain were useless to prepare the regional data. Despite involving the already optimized ECMvgd,

this use case of NESTOR still took a bit less than four minutes of user time to process one month of

data, with an already optimized NESTOR fixing all previous issues barely dividing this time by a factor

of two. For illustration purpose, Figure 2.3 shows the large scale and regional grids of this specific

scenario, with Fig. 2.3a showing the land/sea mask of the input data and Fig. 2.3b depicting the soil

texture of the output regional data.

A very simple solution to this issue would consist of truncating the NetCDF files tied to the

input domain in order to restrict the data to a range of longitudes where the regional grid entirely

fits. However, expecting NESTOR users to add this additional truncation step to their pipeline (i.e.,

before even using NESTOR) would not be user-friendly: on the contrary, input domain truncation

should be another job for NESTOR. It should therefore also be tuned such that it does not consider

the entire input domain at given steps, such as the computation of vertical levels which is typically

performed over the entire input grids (see also Sec. 2.3.3). A partial solution to this problem will

also be introduced in Sec. 3.2.4; it will only be partial because making NESTOR truncate the entire

input domain (e.g., as the first step of NSTint) would require considerable modifications to the

current code. As such, the solution that will be eventually introduced is only meant to minimize the

computational cost of the steps where a very large input domain can significantly slow down NESTOR.

2.4 Miscellaneous issues

While the technical issues discussed in Sec. 2.3 are the main focus of this chapter, other issues found

in NESTOR deserve to be shortly discussed here. Indeed, in addition to purely technical problems

such as bad management of I/O operations (cf. Sec. 2.3.3 and Sec. 2.3.4), the source code of NESTOR is

also not always easy to go through because of its occasionally complex subroutine calls, while some

features which appear to have been used or planned at some point in the past have been poorly

maintained since or poorly tested. Sec. 2.4.1 will first discuss the former issue, while Sec. 2.4.2 will

provide a brief review of features of NESTOR that are either not usable in practice, either too old or

cumbersome to be kept "as is".

2.4.1 Code readability

While not discussed in details in Sec. 2.3.3 via Example 2.8, the list of parameters needed to call the

VERgrd subroutine is a prime example, if not the worst example of needlessly complex interface that

can be found within NESTOR. Indeed, VERgrd requires no less than 14 arguments, while in practice,

only a subset of them are actually useful for the tasks it is meant to carry out.
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One of the main reasons explaining why VERgrd has so many parameters is that it is a multi-

purpose subroutine: indeed, it is called to prepare the vertical levels of either the input or the output

domain regardless of the format of the data that is received or produced. While preparing vertical

levels seems to be simple enough to design a multi-purpose subroutine, a quick look into the code

of VERgrd and at its calls in NSTint (see also Sec. 2.1) suggests this approach overloads the list of

parameters more than anything. First of all, the two first parameters, the 3-characters-long strings

LSCmod and NSTmod (as denoted in VERgrd.f), are in practice used in a mutually exclusive manner:

either the call to VERgrd provides a valid LSCmod and an empty string, or it provides an empty string

in the place of LSCmod and a valid NSTmod. Second, the calls to the subroutines associated to each type

of data source or output data format are much, much simpler than the calls to VERgrd. For instance,

ECMvgd requires only five arguments, but since the design of the subroutines means VERgrd should

still be used as a kind of gateway to the vgd subroutines, the calling code still has to prepare a list of

14 arguments among which most will be useless. Interestingly, early programmers of NESTOR seem to

have been at least partially aware of this design flaw, as a small code extract in NSTint.f 7 points out

that the temperature parameter is not used at all. This code extract is provided in Example 2.13.

Listing 2.13: Extract from NSTint commenting on the uselessness of LSC1_t

DO j =1 , nj

DO i =1 , ni

LSC1sp=LSC_sp ( i , j )

LSC1sh=LSC_sh ( i , j )

C + * * * * * *
CALL VERgrd (LSCmod, emptyC , fID , k , nk , LSC1sp ,

. LSC1sh , LSC1_t , LSC1_p , LSC1hp ,

. LSCgdz ,WK1_1D,WK2_1D,WK3_1D)

C + * * * * * *
C LSC1_t ne semble ni a f f e c t e ni u t i l i s e ! Supprimer ?

Another issue lies in the last three parameters WK1_1D, WK2_1D and WK3_1D. These parameters

are supposedly arrays that should receive data about vertical coordinates, according to a comment

of VERgrd and their use in ECPvgd and NCPvgd. Unfortunately, the documentation of the VERgrd

subroutine (and its associated subroutines) does not describe in details what they are used for in

practice, as these parameters are not only not taken account of by several subroutines (e.g. ECMvgd

and CM3vgd) or only partially required (ECPvgd and NCPvgd require WK1_1D), but they also seem

to have no practical use. Indeed, all three arrays are local arrays in NSTint (meaning they are not

used elsewhere in NESTOR), and their few occurrences in NSTint only consist of feeding them to

VERgrd or (re)fill them with zeros. It is possible that the WK1_1D parameter of ECPvgd and NCPvgd was

7Starting at line 1274 in January 2022’s NESTOR.
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envisioned at some point as a way to avoid the cumbersome I/O operations discussed in Sec. 2.3.3,

but their respective code does not take advantage of this possibility. The differences between WK1_1D,

WK2_1D and WK3_1D are also not documented, so it is hard to guess what they were supposed to be

used for. Perhaps these three arrays were meant to receive each a different format of pressure levels.

All in all, the VERgrd is a puzzling subroutine at first glance, especially due to the lack of docu-

mentation surrounding some of its parameters. It is possible early NESTOR programmers included

more parameters than necessary at first in order to add other kinds of algorithms in ulterior versions.

The same kind of remark could also be applied to some interpolation subroutines: for instance,

INTbic requires two temporary arrays as for its two first parameters, said arrays being declared in

the INThor subroutine (which kickstarts 2D interpolation, calling another subroutine depending on

the parameters). However, INThor makes no use of these temporary arrays (which are also local to

INThor), therefore questioning why they are required by INTbic in the first place.

A less puzzling issue, but which calls for some simplification, lies in the numerous similarities

between vgd subroutines. In particular, the only differences between ECMvgd and CM3vgd 8 are

indexes used in the UNsread calls. Given how few arguments both these subroutines require, it

may be preferrable to go the other way around in this specific instance and add a simple logical

argument to adjust the UNsread calls when necessary, such that there remains only one subroutine

(and the associated file) for both use cases.

All these small issues have hopefully no significant impact on the performance of NESTOR (if not

none at all), but they worsen the readability of the source code for future programmers. This is why

Chapter 3 will also discuss ways to simplify a few subroutine calls. In particular, it will discuss how

the improved vgd subroutines can be made clearer (i.e., their purpose in NESTOR is easier to grasp) to

future programmers while reducing the number of source files they involve (see Sec. 3.2.1).

2.4.2 Obsolete or unusable features

As hinted multiple times throughout this chapter, January 2022’s NESTOR also suffers from having

multiple features that are, in practice, impossible to use. A simple instance of this problem lies in

the option allowing users to use cubic splines for interpolating vertical levels between the input and

the output grid, which consists in practice of NSTint successively calling the SPLINE and SPLINT

subroutines [27] (see also Sec. 2.3.5) rather than calling the INTlin subroutine (linear interpolation).

However, as mentioned at the end of Sec. 2.3.2, tuning the NESTOR parameters to use cubic splines

for vertical interpolation result in the output data being filled with "not a number" values, typically

displayed in console output with the symbol NaN. Fellow programmers know by experience that such

an error usually hints the program attempted a division by zero at some point.

Hopefully, finding and fixing this issue is not very difficult. NESTOR usually adds one additional

level to vertical columns, which is usually set to zero. However, the level before is also typically equal

to zero as a result of the computations in the vgd subroutines. Having two consecutive zeros in

8Found in a CM3vhd.f file, which constitutes a typo in the file name.
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SPLINE resulted in this subroutine dividing by zero at some point. The solution to this issue simply

consisted of modifying the calls to SPLINE in NSTint in order to ignore the additional level. After

this modification, vertical interpolation by cubic splines in NESTOR worked as intended. This specific

problem however raises the question of whether or not all features available in NESTOR were properly

tested by the first programmers.

Regardless of the extent to which NESTOR has been tested in the past, some of its options cannot

be used in a meaningful way. In particular, the two modes that act as alternatives to the typical down-

scaling, respectively rain disagregation and wind gust estimation, are unusable. Running NESTOR with

the former mode leads to the program stopping at the start of the main loop because it cannot find a

specific variable within the input NetCDF files 9, while the latter appears to have been removed: as

mentioned in Sec. 2.2, it requires calling a WGustE subroutine that is not present in any source file of

early 2022’s NESTOR and whose sole call in NESTOR.f has been commented. The reason why the rain

disagregation mode does not work may be due to a lack of maintenance over time, as the associated

subroutines PRCdes and PRCout seem to be as thorough as NSTint and MARout (for instance).

Just like with previous issues discussed in this chapter (see also the case of the parameters of

VERgrd in Sec. 2.4.1), the lack of documentation for the aforementioned modes (and their dedicated

subroutines) makes it difficult to know how they can be fixed. It would be therefore preferable to

remove such modes and their subroutines, especially since modern NESTOR users do not use them

anymore. Another good reason for removing these subroutines is that the way they call the interpola-

tion subroutines from INTERp.f slightly differ from how they are used during the usual downscaling

(in NSTing), which can complexify the design of improved interpolation subroutines (notably regard-

ing the required parameters). This is why the improved NESTOR introduced in Chapter 3 will remove

these subroutines altogether both to ease the refactoring of the interpolation library and to alleviate

the source code of NESTOR for future programmers.

Besides features crippled by a lack of testing or maintenance, the source code of NESTOR also

comprises obsolete subroutines or options. For instance, as no one uses LMD data (Laboratoire de

Météorologie Dynamique) anymore, a few instructions across NSTint and even some variables in

NSTdim.inc have no practical use any longer. The same goes for the initialization of NESTOR with

sounding data, this possibility also lacking documentation to inform modern users as to how it can

be used. NESTOR also contain subroutines that are simply not called anymore, or which appear to be

alternative or deprecated implementations of existing subroutines: for instance, MARoutp appears

to be an older version of MARout, as it is not called in practice. Moreover, as already mentioned

in Sec. 2.1, the non-regular interpolation subroutine INTnrg is never called in practice: because

non-regular interpolation is exclusively performed on MAR grids, the current NESTOR exclusively calls

the already optimized INTnrg2 subroutine (specifically tailored for MAR on MAR forcing).

Finally, the removal of some obsolete or poorly maintained features of NESTOR has also reper-

cussions on other subroutines. For instance, the INThor1 subroutine, designed as an alternative to

9Tested with ECM, ECP and NCP as data sources.

29



CHAPTER 2. AN IN-DEPTH REVIEW OF THE SOURCE CODE OF NESTOR

INThor for the PRCdes subroutine, is obviously no longer needed if PRCdes is removed. The same

goes for INThorV, a variant of INThor that is apparently tailored to handle the slightly different

format of LMD NetCDF files 10. Removing these subroutines would not only simplify the source code

NESTOR, but would also improve its readability to future programmers.

2.5 Updating NESTOR: a roadmap

Despite being practically mandatory to kickstart a simulation with the MAR model, NESTOR has not

had a thorough update since 2004, and is in great need of receiving a more consequent update to at

least improve its performance. Indeed, as discussed in Sec. 2.3.1, preparing a single month of MAR

forcing fields can take around a quarter of an hour or even more with most use cases, the worst use

case envisioned in this chapter lasting almost one hour (i.e., ERA-5 data [9] downscaled with bicubic

interpolation). Moreover, the source code of NESTOR as of early 2022 exhibits several issues beyond its

performance problems, such as having multiple unused, poorly maintained or obsolete subroutines.

Hopefully, the main weaknesses of NESTOR have been well identified and thoroughly commented

in this chapter, leading to the three following suggested changes.

• First of all, to address the performance issues experienced while computing the vertical levels

of a grid (see Sec. 2.3.3) and to improve code readability, a complete refactoring of VERgrd and

its associated subroutines should be done. This refactoring should also allow an improved

management of the input domain (cf. Sec. 2.3.6), as NESTOR also loses time by preparing the

entire vertical levels of large input domains.

• Second, the interpolation library INTERp.f should be reorganized in order to clean it from

outdated subroutines but also to save useful interpolation data that can be kept between

iterations of NESTOR. Indeed, since the longitude/latitude of each cell of both the input and

the output domains do not change during the execution of NESTOR, sampling points used

by any interpolation subroutine can be saved to avoid searching for them again at ulterior

calls. Moreover, a new bicubic interpolation method should be written to ensure the bicubic

interpolation can take advantage of this idea, as the current INTbic subroutine is unfit for it.

• Last but not least, to save a bit of time at the start of NESTOR, optimizing I/O operations in the

HWSDsl and GLOcov subroutines should be considered.

All three changes, which will be described in more details in Chapter 3, have the merit of being

easily feasible. In other words, it is not necessary to refresh the entirety of NESTOR, but only critical

operations, with a bit of cleaning here and there to ensure the readability is also improved for future

NESTOR programmers. As will be demonstrated later in Chapter 4, these simple changes already

drastically improve the performance of NESTOR in all envisioned use cases.

10INThorV requires the njv variable from NSTdim.inc, which would be equal to nj−1 with LMD data (or similar). In all
other cases, i.e. all modern use cases of NESTOR, njv is equal to nj.
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IMPROVEMENTS BROUGHT TO NESTOR

T
his chapter presents the improvements that have been brought to NESTOR in order to tackle

the issues described in Chapter 2, and therefore constitutes an answer to question 2 from

Chapter 1. First of all, Sec. 3.1 discusses to which extent and how NESTOR has been modified

in general and provides a few practical details regarding the new version (e.g., where it can be found).

Second, Sec. 3.2 presents the practical changes that have been brought to NESTOR in order to tackle

the four main issues discussed in Sec. 2.3 from Chapter 2. Finally, Sec. 3.3 concludes this chapter by

discussing how NESTOR could be further improved in the future.

3.1 Methodology to update NESTOR and other practical details

Given the large number of source files found in the source code of NESTOR [22] (roughly 70 .f files),

but also the length of its main files described in Sec. 2.1 1, re-writting NESTOR from scratch is off the

table. Even if many files ultimately provide a single short subroutine (see for instance NCPvgd.f),

the time that would be required to re-write the entirety of NESTOR would be too ambitious in the

context of this work. This is why this master thesis will rather introduce a few meaningful changes

that already improve the performance of NESTOR, as the slowness of early 2022’s NESTOR is the main

problem its users have with it.

Still, bringing changes to NESTOR should be done in a way that ensures the code will remain

consistent-looking to future programmers. In other words, modifications or additions to the current

source code of NESTOR should not end up making said source code look like two different programs

mangled together. A few simple conventions have therefore been adopted while modifying NESTOR

for this master thesis.

1NSTint.f is more than 2000 lines of code, INTERp.f sligthly more than 1500 lines.

31



CHAPTER 3. IMPROVEMENTS BROUGHT TO NESTOR

• Despite being outdated, the old coding style conventions of Fortran [37] that are still applied

by the source code of NESTOR have been kept. This means, among others, that each line of

code does not exceed 72 characters and that subroutine names stick to the convention of being

maximum 6 characters long 2 to more easily follow the previous convention.

• Whenever possible, the new code of NESTOR calls existing subroutines and functions, either

from NESTOR itself or from the included libraries (namely NetCDF.inc and libUN.inc).

• Likewise, no new external library has been included.

• For convenience, new variables or arrays that had to be kept throughout the entire execution

of NESTOR, and in particular sampling points used for interpolation (cf. Sec. 2.3.5), have been

declared in .inc files. The new .inc files follow the same instruction ordering and presentation

as existing .inc files, such as LSCvar.inc, which maintains variables and arrays associated to

the input domain for the whole execution of NESTOR.

• For the sake of compatibility with MAR scripts, the format of the control files used by NESTOR

(NSTing.ctr and MARgrd.ctr) has been left untouched.

This does not mean that the new NESTOR has not taken any liberty.

• Thanks to the flexible compilation script (Compile.exe) provided along the source code

of NESTOR, the refreshed NESTOR includes several new or renamed subroutines. Obsolete

subroutines and side associated files (including a few .inc files) have been removed altogether.

• Any subroutine declared and implemented in the modified source files that was not called

anywhere in NESTOR in practice, either in the unedited source code or following an ulterior

modification, has been removed.

• Any component of the new NESTOR that involves interlinked subroutines, in particular the

updated interpolation subroutines, has been reorganized into a small library. Each such library

groups subroutines based on their purpose, e.g., subroutines involved in bilinear interpolation

are provided by the same source file. This convention is essentially only followed by the

refactoring of the interpolation library (cf. Sec. 3.2.3), the initial INTERp.f lacking readability.

Careful readers will point out that removing unused or obsolete features sounds incompatible

with keeping the same control files as before. In particular, NSTing.ctr files still reference features

of NESTOR that have been previously deemed outdated (see Sec. 2.4.2). To find a middle ground

between these seemingly opposite conventions, the main file of NESTOR, i.e. NESTOR.f, has been

edited throughout this master thesis to enforce certain parameters or to advertise users (via console

output) that the (obsolete) features they attempted to turn on have been removed.

2In practice, a few subroutines in the unmodified slightly break this convention (e.g., INTnrg2).
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On a side note, another change brought by the new NESTOR is a minimized console output: for

each iteration of the main loop (cf. Sec. 2.1), the updated NESTOR will only print the path to the

NetCDF file being used as well as the time step it is reading, complete with the associated date and

time. This modification was motivated by the fact that NESTOR has become fast enough (cf. Chapter 4)

for the old console output to be deemed as unnecessary. For legacy reasons, however, a new verbosity

flag was added to NESTOR.inc to allow one to force NESTOR to print the old console output. This

parameter can only be used by editing the source code at the time of writing, but an ulterior update

of control files should allow users to turn on and off this verbose mode via said control files.

At the time of writing, the updated NESTOR can be found on the climato.be server in the

/srv5_tmp2/jfgrailet/TFE_NESTOR/ folder. Note that this folder is actually the root folder of

NESTOR (providing, among others, the Compile.exe script, the NSTing.ctr control file, the exe-

cutable NESTOR.exe when available, etc.), which means the actual source files will be found in a src/

subfolder. The updated NESTOR will eventually be available within the MAR gitlab repository [21, 22].

3.2 Practical modifications of NESTOR

Now that the spirit of the modifications brought to NESTOR for this master thesis is established, the

changes themselves can be described one by one. First, Sec. 3.2.1 presents the refactoring of the

VERgrd and the vgd subroutines which were both slowing down NESTOR and impairing the readability

of the source code, as detailed in Sec. 2.3.3 and Sec. 2.4.1 back in Chapter 2. Sec. 3.2.2 subsequently

presents a very simple change to speed up the HWSDsl and GLOcov subroutines that slow down the

initial steps of NESTOR, as discussed in Sec. 2.3.4. Sec. 3.2.3 then enumerates the changes brought

to the interpolation library (INTERp.f), including an entirely new bicubic interpolation subroutine,

to reduce the cost of interpolation throughout the execution of NESTOR, therefore addressing the

problems pointed out in Sec. 2.3.5. Finally, to partially answer to Sec. 2.3.6, Sec. 3.2.4 introduces the

notion of input domain truncation, i.e., the process of reading only a sub-region of the input domain

accommodating the output domain to prevent NESTOR from performing useless computations, and

apply this idea to the computation of vertical levels.

3.2.1 Refactoring of VERgrd and the vgd subroutines

As evidenced in Sec. 2.3.2 and Sec. 2.3.3, one of the main reasons why the unedited NESTOR is slow

lies notably in unnecessary I/O calls performed by the vgd subroutines processing the input domain

(except with the already optimized ECMvgd and MARvgd, cf. Sec. 2.3.2), themselves called by the

VERgrd subroutine. Not only the repeated I/O calls to read the same levels vector(s) stored in NetCDF

files (said vectors depending on the data source, compare for instance ECMvgd and NCPvgd) constitute

a technical flaw, but the design of the VERgrd subroutine can be considered to be flawed as well.

One the one hand, VERgrd is designed to prepare the vertical levels of a single surface cell (as

shown in Example 2.8). While the comments in the source files suggest this was done to optimize
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memory use at the time of the creation of NESTOR, this constraint seems obsolete with the multiple

gigaoctets of RAM available on modern hardware. Moreover, other subroutines of NESTOR called in

NSTint (the main caller of VERgrd in the unedited NESTOR), such as the interpolation subroutines,

have no issue processing full 2D grids in a single call, which suggests the same thing could be done

with the vgd subroutines for convenience. On the other hand, as discussed in Sec. 2.4.1, the multiple

use cases of VERgrd and several unused parameters make this subroutine rather puzzling at first.

This is why the first major change brought to NESTOR consisted of a full refactoring of VERgrd

and the associated vgd subroutines. This refactoring brought the following changes.

• First of all, VERgrd has been split into two subroutines LSCvgd and NSTvgd, respectively to

prepare the vertical levels of the input (LSC) and the output domain (NST). This change was

notably motivated by the fact that both tasks call different subroutines in early 2022’s NESTOR,

with the notable exception of MARvgd (see MARvgd.f in the original NESTOR) which however

requires a logical variable (LSCmar) to differentiate the input from the output domain.

• The LMDvgd subroutine has been removed due to LMD data being outdated.

• ECMvgd now receives an additional logical parameter to adapt its calls to UNsread for GCM

data, initially prepared with CM3vgd, as the code of ECMvgd and CM3vgdwas otherwise identical.

• Likewise, ECPvgd and NCPvgd have been merged into a new subroutine XCPvgd (X replacing

both E and N ) due to their similarities. A new logical parameter isNCP allows the calling

code to run the (very) few instructions that were unique to the initial NCPvgd.

• Just like VERgrd has been split into two subroutines to avoid the multi-purpose issue, MARvgd

has been split into MRLvgd (vertical levels of the input domain) and MRNvgd (vertical levels of

the output domain). MRL and MRN respectively stands for MAR LSC and MAR NST.

• As a result of the previous changes, LSCvgd can call ECMvgd, XCPvgd or MRLvgd, while NSTvgd

can call MRNvgd, CPLvgd or GRAvgd.

• All vgd subroutines have been modified so they receive a 2D grid of surface cells as input, with

dimensions being provided as parameters in the case of LSCvgd (due to a specific use case

in NSTint) and via NSTdim.inc as for NSTvgd. As a consequence, all subroutines called by

LSCvgd now perform their respective I/O calls only once per 2D grid.

• Because they had no practical use in NSTint, WK1_1D, WK2_1D and WK3_1D have been removed.

The temperature and elevation parameters have also been dropped for similar reasons.

Thanks to these changes, the new vgd subroutines feature a more readable code, avoid per-

forming repeated and unnecessary I/O calls at the LSC side (that slow down NESTOR, as shown in

Sec. 2.3.3) and also require less parameters than initially: LSCvgd requires 9 parameters while NSTvgd

only needs 7 (twice less than the initial VERgrd). It is worth noting, however, that the former actually
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needs 13 parameters in the final updated NESTOR due to 4 additional parameters being required for

input domain truncation, as will be discussed in Sec. 3.2.4.

Regardless of input domain truncation, former calls to VERgrd in NSTint could be simplified by

removing some parameters and the loops that initially encompassed them to process 2D grids. Finally,

VERgrd was initially also called by the subroutines SOUNDg, SNDweb (initialization with sounding) and

PRCdes (used by the rain disagregation mode). However, all three were obsolete (cf. Sec. 2.4.2), so

they have been removed rather than updated with respects to the new vgd subroutines.

Note that the refactored vgd subroutines still include CPLvgd and GRAvgd (both updated to

receive 2D grids rather an individual surface cell) despite these types of output being seemingly not

used at all by modern NESTOR users. If they were eventually removed, the refactored vgd subroutines

would consist in only 5 source files (as NSTvgd could be entirely replaced by MRNvgd) versus the 9 files

used in the unedited NESTOR. Finally, a minor flaw of this refactoring is that repeated calls to LSCvgd

will still imply additional I/O reads (one or two) per call, though the final number of I/O calls will

remain negligible compared to the total obtained with VERgrd outside the ECM and MAR use cases.

Computing vertical levels
of the input domain (LSC)

ECMvgd

(9+4 param.)

LSCvgd

(9+4 param.)

XCPvgd

(9+4 param.)

MRLvgd

(8+4 param.)

Calls

Computing vertical levels
of the output domain (NST)

MRNvgd

(6 param.)

NSTvgd

(7 param.)

CPLvgd

(6 param.)

GRAvgd

(5 param.)

Calls

Figure 3.1: Schematic summary of the refactored vgd subroutines in the updated NESTOR. LSCvgd
and NSTvgd replace the old VERgrd subroutine, which required 14 parameters.

To conclude this section, Figure 3.1 provides a schematic summary of the refactored vgd subrou-

tines. The green numbers (+4) account for the additionnal parameters required by LSCvgd and its

associated subroutines to perform input domain truncation (cf. Sec. 3.2.4) while CPLvgd and GRAvgd

are highlighted in red to account for the fact that modern NESTOR users will probably barely use them

in practice, or not at all. Finally, while not shown in Figure 3.1, it is important to keep in mind all new

vgd subroutines prepare vertical levels for full 2D surface grids rather than for a single surface cell.

3.2.2 Single I/O read of soil texture and soil cover data

The HWSDsl (soil texture) and GLOcov (soil cover) subroutines are two additional examples of subrou-

tines where the unedited NESTOR wastes time because of numerous I/O calls. However, as explained

in Sec. 2.3.4, there were good motivations for avoiding loading more data at once: both subroutines

are reading high resolution grids stored in files that can weigh almost one gigaoctet. Yet, their reading
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strategy remains flawed, as both subroutines read one cell at a time, which is slow enough for the

console output of the unedited NESTOR to advertise their progress.

A simple strategy to solve this issue consists of loading the sub-region of the high resolution grid

that fully includes the output domain. In a way, this is the same idea as for the aforementioned input

domain truncation (cf. Sec. 3.2.4). Determining this sub-region is not a difficult task: it simply consists

of finding the minimum and maximum longitude and latitude coordinates of the output domain,

find the corresponding indexes with respects to the dimensions of the high resolution grid, then load

the whole sub-region they delimit. Since the algorithms of both HWSDsl and GLOcov look for the cells

that are the closest to regional cells, the sub-region can be slightly extended in all directions in case

cells outside the sub-region of the high resolution grid could be valid sampling points.

The only hurdle of this strategy lies in handling the extreme case where the algorithms use cells

that are located around 180 degrees of longitude (West or East): in this scenario, the sub-region may

be split into two chunks located at both sides of the high resolution grid. It is naturally possible to

detect such a scenario, load both chunks then concatenate them together, but this requires additional

variables and instructions that are unnecessary in all other cases.

A simple yet effective solution to this issue, which was chosen to save time, consists of loading

a latitude band regardless of the longitude coordinates of the sub-region. The rollovers over the

boundaries can then be handled exactly like in the original code. While this means loading much

more data than necessary, it is an effective strategy: there is indeed a single I/O read garanteeing

all cells that could interest HWSDsl/GLOcov are in memory. A side subroutine bufLim (located in its

own source file bufLim.f) has been written specifically to determine the minimum and maximum

indexes along the latitude axis of the high resolution grids to later extract the appropriate latitude

band. The outputs of such a subroutine can then be used to load an allocatable block that will store

the high resolution data. Another benefit of this strategy is that the HWSDsl and GLOcov subroutines

eventually required very few modifications with respects to their initial code.

With this simple change, the interpolation of both soil texture and soil cover is now performed

near instantaneously while providing identical output (as will be detailed in Chapter 4), all while

avoiding to load the full high resolution grid in memory. This also means displaying the progress in

the console output is no longer needed. This change may still be improved in the future by loading

the ideal sub-region rather than a complete latitude band in order to minimize memory use, though

this memory use is short-lived in practice: once any of both aforementioned subroutines completed

their respective tasks, the allocatable block used to buffer the high resolution data is freed.

3.2.3 Reorganized interpolation library with new bicubic interpolation

Much like the VERgrd and the vgd subroutines (see Sec. 3.2.1), the INTERp.f library (which provides

most interpolation subroutines) needed to be reworked both to improve the performance of NESTOR

and to improve the readability of its source code. Indeed, the initial INTERp.f can be quite intim-

idating at first sight, as most of the interpolation code of the unedited NESTOR is found in this file.
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Moreover, there are two variants of the INThor subroutine, which is designed to kickstart horizontal

interpolation of a 2D grid and calls either INTbic, INTbil or INTnrg2. These variants (INThorV and

INThor1) can be puzzling too, as they exhibit very few differences with the original INThor.

Hopefully, INThorV and INThor1 are only called in situations tied to obsolete features (cf.

Sec. 2.4.2). Assuming the rain disagregation subroutines have been removed from NESTOR (as an-

nounced in Sec. 3.2.1), a first simplification of INTERp.f therefore consists of removing the INThor1

subroutine as well as the INThorV and the associated call in NSTint. Indeed, INThorV is only relevant

for the case where the variable njv from NSTdim.inc differs from nj, which is in theory only true

with LMD data. As already reminded in Sec. 3.2.1, today’s NESTOR users no longer use LMD data, so all

occurrences of njv can be replaced with nj and all sets of instructions related to LMD data can be

removed as well. This not only simplifies INTERp.f, but also NSTint.f.

Of course, the previous removals are only improving code readability for future programmers.

Actual optimization of NESTOR regarding interpolation methods require more significant changes.

First, as already discussed in Sec. 2.3.5, a key strategy to optimize NESTOR in this regard consists

of exploiting the fact that longitude/latitude coordinates of cells in both the input and the output

domain will not change between each iteration of the main loop in NESTOR.f. Therefore, the sampling

points and sampling squares (in the case of bicubic interpolation [33]) used by the interpolation

subroutines should be identical at all iterations. As such, the sampling points/squares computed

during the very first call to an interpolation subroutine can be saved and reused at ulterior calls, such

that these calls can skip the search for these sampling points/squares.

Before reorganizing the code of INTERp.f, the bicubic interpolation should be thoroughly refac-

tored 3. Indeed, the INTbic subroutine from January 2022’s NESTOR is not suitable for the suggested

optimization, since it computes splines over the entire input grid and not over sampling squares as

recommended in the literature [27, 33]. A refreshed bicubic interpolation should therefore consists

of first establishing the best sampling squares for each regional cell, then re-using the code from

INTbic on each sampling square to get the interpolated regional values.

Finding a sampling square in the input grid for each regional location (output domain) can be

hopefully easily implemented. The first step consists of looking, for each regional cell, for the cell

in the input domain that is the closest to the regional location. This first task can be implemented

very quickly by re-using the dist function that already exists in INTnrg2.f, though it can be located

anywhere in NESTOR. The second step is trickier, as it consists of adjusting the 4 by 4 sampling square

such that the 16 cells are the closest to the regional cell. Indeed, because of the 4 by 4 dimensions, the

closest large scale cell cannot just be chosen as the center of this square: at best, it can be in the inner

2 by 2 square. The positioning of this center of the sampling square can be optimized by checking

which of the 4 corner cells of the encompassing 5 by 5 square (where the closest large scale cell can

be truly in the center) is the closest to the regional location. Based on this result, the sampling square

can be adjusted to minimize the distance between each of the 16 cells and the regional location.

3Note that this sequence of ideas is used because it fits better the developments of this manuscript, but in reality,
optimization of INTbil has been implemented first due to being easier to design, implement and test.
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The closest corner of the encompassing 5 by 5 square simply becomes the cell that is diagonally the

farthest from the closest large scale cell (i.e., closest to the regional cell).

Figure 3.2: Visual representation of how the new bicubic interpolation adjusts a sampling square.
The dark blue cells correspond to the cell from the input domain that is closest to the location to
interpolate, while light blue cells correspond to the closest corner of the encompassing 5 by 5 square.

Figure 3.2 illustrates the sampling squares the updated NESTOR deduces during bicubic interpola-

tion for each regional cell to interpolate. In each of the four squares, the dark blue cell corresponds

to the cell from the input domain which is the closest to the regional cell, based on the result of

the dist function. The light blue cell corresponds to the corner of the encompassing 5 by 5 square

which is also the closest to the regional cell. As shown by Figure 3.2, the sampling square is adjusted

such that the closest corner is also the cell that is the farthest from the dark blue cell (i.e., large scale

cell closest to the regional cell) within the sampling square. This heuristic aims at minimizing the

distance between the regional cell and each of the 16 cells of its associated sampling square, such

that the resulting interpolation is as accurate as possible. On a side note, it is worth noting a sampling

square can be saved by the code by keeping track of the indexes of its top left corner cell.

Once a sampling square has been found and adjusted to each regional cell, the instructions of the

original INTbic can be re-used on each sampling square, which also means SPLIE2 and SPLIN2 [27]

will be reused as well. Interestingly, the SPLIN2 subroutine found in early 2022’s NESTOR is not actually

the code provided by Press et al. in their book [27], but a "rough optimization" according to a code

comment 4. Unfortunately, the comments do not document exactly how it was optimized, even

though the code looks like it roughly includes parts of SPLINT [27]. Due to this lack of documentation,

the SPLIN2 subroutine from the unedited NESTOR has been replaced with the version provided by

Press et al. [27] to ensure accuracy of the interpolation process.

With slightly less code and a refreshed bicubic interpolation, the interpolation library can be

reorganized to prevent redundant sampling data search while improving code readability. Preventing

redundant computations is not difficult to implement in practice, as it simply consists of decompos-

ing the bilinear and bicubic interpolation subroutines (knowing the non-regular interpolation used

for MAR forcing is already optimized, cf. Sec. 2.3.1) into two separate subroutines each, with the first

one finding the sampling points/squares and the second one performing the actual interpolation

on that basis. The outputs of the former can be saved for the entire execution of NESTOR, meaning it

4The actual comment is in French: "version grossièrement optimisée".
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needs to be called only once, while the latter will be called at every interpolation. To avoid overloading

INTERp.f with multiple subroutines, the different types of interpolation have been moved in side

files (therefore applying one of the guidelines mentioned in Sec. 3.1) with INTERp.f keeping the

most general subroutines, such as INThor. More precisely, the following changes have been made.

• The new bilinear interpolation subroutines bilSet (sampling points search) and bilDo (actual

interpolation), derived from the initial INTbil, have been moved to a new intBil.f file.

• The same goes for the refreshed bicubic interpolation, i.e., bicSet (establishing sampling

squares) and bicDo (actual interpolation) are found in intBic.f.

• The variables and arrays that maintain the sampling points or squares in order to avoid re-

dundant computations during a bilinear or bicubic interpolation are respectively declared in

intBil.inc and intBic.inc.

• For consistency’s sake, the INTnrg2 subroutine has been renamed intMAR, just like its source

file (intMAR.f rather than INTnrg2.f), this name better reflecting its practical purpose.

• Because the dist function is now involved in both bicSet and intMAR, it has been moved in

INTERp.f to acknowledge its now more general purpose.

• Conversely, SPLIE2 and SPLIN2 [27] have been moved to intBic.f since they are exclusively

used in the context of bicubic interpolation (SPLINE and SPLINT are used in other contexts).

After applying these changes, the initial INThor subroutine can be slightly updated to take

advantage of the decomposition of the interpolation subroutines. It simply consists of adding a

logical variable, maintained through the execution of NESTOR via the save instruction (just like in

Example 2.10 from Sec. 2.3.3), to remember whether or not the bilSet/bicSet subroutines have

been already called once. The code of INThor, which was also renamed intHor to keep a consistent

naming convention, is otherwise the same as before.

For illustration purpose, Example 3.1 shows the updated instructions of intHor regarding the

calls to bilinear and bicubic interpolation subroutines. In this code extract, grd1Ix and grd1Iy

provide respectively the longitude and latitude coordinates of each cell from the input domain

(assuming it is a regular grid, cf. Sec. 2.1) while grd_Ox and grd_Oy assume the same roles for

the output domain. The ifirst variable is the aforementioned logical variable used to know

whether or not sampling points/squares are already available 5. The SPHgrd is an additional logical

parameter that is inherited from the unedited NESTOR and still used to signal the use of spherical

coordinates in the input domain. Finally, the var_I provides the values from the input domain, and

therefore, var_O collects the interpolated values needed on the output domain.

5It is worth noting this code also assumes that NESTOR uses bilinear and bicubic interpolation in a mutually exclusive
manner. Should an ulterior version use both for some reason, the code would need to be adapted in this regard.
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Listing 3.1: Extract from the updated intHor

! B i l i n e a r interpolat ion

IF ( intype .EQ. 1 ) THEN

IF ( i f i r s t ) THEN

CALL b i l S e t ( grd1Ix , grd1Iy , SPHgrd , grd_Ox , grd_Oy )

i f i r s t =. f a l s e .

ENDIF

CALL bilDo ( grd1Ix , grd1Iy , var_I , SPHgrd , var_O )

! Bicubic interpolat ion

ELSE IF ( intype .EQ. 3 ) THEN

IF ( i f i r s t ) THEN

CALL bicSet ( grd1Ix , grd1Iy , grd_Ox , grd_Oy )

i f i r s t =. f a l s e .

ENDIF

CALL bicDo ( grd1Ix , grd1Iy , var_I , grd_Ox , grd_Oy , var_O )

ENDIF

Finally, two last minor changes brought to INTERp.f deserve a mention. First, the INTlin linear

interpolation subroutine has been renamed intLin to ensure the refreshed interpolation library

always uses the same naming convention. Second, a variant of INTbil, used in the context of the

ETOPO1 and ICEmsk subroutines, has been moved into INTERp.f under the new name bilSim (Sim

for "simple"). Such a subroutine was initially declared and implemented in ETOPO1.f under the

name INTsimple. While it first looks almost identical to INTbil, there are a few subtle differences

which prevent using the subroutines from intBil.f and intBic.f "as is". Hopefully, this variant of

bilinear interpolation is called only once in both ETOPO1 and ICEmsk, which are only called at the

initial steps of NESTOR upon preparing MAR input data for a simulation over Antartica. In other words,

even when they are used by NESTOR, these specific interpolations do not need to be optimized.

3.2.4 Input domain truncation during the computation of vertical levels

The main motivation for reorganizing and partially refactoring the interpolation library of NESTORwas

to prevent it from performing redundant computations, i.e., in this case, searching again for sampling

data at each new call of a 2D interpolation subroutine. Before that, the previous sections (Sec. 3.2.1

and Sec. 3.2.2) described changes designed to minimize the I/O calls that slow down NESTOR due to

the large difference in memory access speed between reading data stored in the RAM (i.e., program
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data and instructions) and stored on a disk (like a NetCDF file, in this context) [28, 29]. This section

now introduces yet another way to speed up NESTOR: avoiding useless calculations. Because the

output domain typically only covers a portion of the input domain, some steps of NESTOR actually

perform unnecessary computations. For instance, the preparation of vertical levels is performed

on the entire input domain in the unedited NESTOR, despite that NESTOR will only need the vertical

levels within the sub-region that encompasses the output domain. Therefore, computing vertical

levels outside that sub-region of interest is a waste of time in practice.

The process of restricting operations on the input domain to a sub-region will be referred to

as input domain truncation. This idea could be applied to various steps of NESTOR. In a way, the

approach used in Sec. 3.2.2 to speed up HWSDsl and GLOcov already partly follows this idea since it

restricts the loaded data to a latitude band (as already discussed, this could be optimized further).

Moreover, determining an ideal sub-region encompassing the output domain is an easy task: it only

requires finding the extreme values of the longitude/latitude coordinates from the output domain

then selecting the index ranges in the input domain that guarantee these extremes will be included.

However, exploiting these index ranges throughout the code of NESTOR is a not-so-easy task

and requires significant changes across the entire program, notably due to how the source code

is built around the idea of knowing in advance the dimensions of the input and output domain

via NSTdim.inc. Indeed, if the index ranges of the sub-region are computed by NESTOR itself, then

the arrays associated to the truncated domain would have to be dynamically allocated via the

allocatable keyword contrary to the arrays associated to both the input and the output domains.

Otherwise, the NSTdim.inc file could be expanded to also include the index ranges of the sub-region

within the input domain, but this would then require the user to know them in advance or compute

them via a side program. Either way requires a significant change of approach with respect to early

2022’s NESTOR, while all changes suggested in previous sections were implemented while staying

consistent with the initial code and coding style (cf. Sec. 3.1). A third, simpler option would consist of

keeping the arrays associated to the input domain and only filling the cells of the sub-region, but this

would also mean NESTOR would waste a significant amount of memory.

This is why the idea of input domain truncation has been only applied to the vgd subroutines

dedicated to the input domain side (hence the green numbers in Fig. 3.1) in the context of this master

thesis. To do so, the following changes have been brought to NESTOR in addition to the previous

changes (in particular those described in Sec. 3.2.1).

• NSTint now contains a few more variables and some additional instructions (found in the

beginning of the subroutine) to determine the index ranges of the sub-region of the input

domain that accommodates the output domain. In particular, baseI and maxI provide the

extreme indexes (lowest and highest, respectively) along the longitude axis, while baseJ and

maxJ provide the same indexes for the latitude axis.

• To ensure there is some leeway around the sub-region, in case interpolation algorithms would

need to look for sampling points/squares close to the boundaries of the truncated domain,
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some padding has been added around the sub-region. This padding is 5 cells wide. E.g., a 20 by

20 sub-region would be extended to a 30 by 30 sub-region (5 cells added to each side).

• The vgd subroutines designed to prepare vertical levels of the input domain have all been mod-

ified to receive the baseI, baseJ, maxI, maxJ variables delimiting the truncated domain. These

four variables therefore correspond to the +4 annotations shown in Figure 3.1 in Sec. 3.2.1.

These four variables are simply used to set the ranges of the loops used in said subroutines,

therefore effectively ignoring all surface cells outside of the sub-region.

While this solution could be perfected, notably by finding better ways to share the index ranges

across all subroutines and by computing them only once, it has the merit of already drastically

speeding up NESTOR when using large input domains. After applying the aforementioned changes,

the use case discussed in Sec 2.3.6 could be fully processed in less than one minute, versus a bit

less than 2 minutes with the updated NESTOR without said changes and around 4 minutes with the

unedited NESTOR (see also Chapter 4). This suggests NESTOR could become even faster by generalizing

input domain truncation, as other steps can still suffer from considering the entire input domain,

such as the search for sampling squares in the bicSet subroutine (see also Sec. 3.2.3 and Sec. 4.2.2).

Finally, on a side note, it is important to stress that the aforementioned changes assume that

the output domain is always fully included in the input domain, i.e., if the input domain covers the

whole longitude range, the output domain will not be overlapping the West/East borders. Hopefully,

NESTOR users already rely on this assumption, which could also be used to motivate more economic

memory allocations in HWSDsl and GLOcov (cf. Sec. 3.2.2) 6.

3.3 Closing comments: a refreshed NESTOR, yet still improvable

The various changes brought to NESTOR described throughout this chapter have the merit of being

simple, in the sense that they do not significantly change the architecture of the program nor its

calculations, with the obvious exception of the bicubic interpolation (cf. Sec. 3.2.3). Despite being

rather light, these changes still address all the issues that were put forward by Chapter 2.

However, this does not mean the updated NESTOR could not be improved further. As discussed in

Sec. 3.2.4, input domain truncation is still in its infancy at the time of writing. To better apply this idea

would require carefully updating the code of multiple subroutines of NESTOR, as well as re-evaluating

some of its assumptions. In particular, by assuming the full inclusion of the output domain within

the limits of the input domain, the memory allocations currently performed in the updated HWSDsl

and GLOcov may be optimized.

Before discussing in details the future of NESTOR in Chapter 5, Chapter 4 will first assess both the

performance of the new NESTOR and the sensitivity of the MAR model to the forcing data it provides,

notably when produced with the new bicubic interpolation.

6It should be noted, for context, that input domain truncation was the last change I brought to NESTOR for this master
thesis. At the time of updating HWSDsl and GLOcov, I still considered overlapping input domain borders as a possibility.
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ASSESSMENT OF THE UPDATED NESTOR AND SENSITIVITY OF THE MAR MODEL

T
his chapter thoroughly assesses the updated NESTOR presented in Chapter 3. Not only this

chapter demonstrates how much faster NESTOR has become, but it also aims at evaluating

whether or not small decimal changes observed with the new version have an impact on the

MAR model, and whether or not the new bicubic interpolation results in different or comparable

outputs (and to which extent). Therefore, this chapter provides answers to both questions 3 and 4

from Chapter 1. Sec. 4.1 first provides more context regarding the decimal changes to better justify

the evaluation methodology used throughout this chapter. Second, Sec. 4.2 directly compares early

2022’s NESTOR with the updated version. Sec. 4.3 subsequently discusses the sensitivity of the MAR

model with respects to the updated NESTOR, regardless of the type of interpolation. Finally, Sec. 4.4

summarizes the main results of this chapter before moving to the general conclusion (Chapter 5).

4.1 The multiple ways to evaluate the updated NESTOR

Usually, assessing the correctness of a program that has just received one or several updates can be

easily done by comparing the outputs of the updated program with respects to those of a previous

version. If these outputs are identical, it can be assumed that the new program still performs the

same job as before. Unfortunately, this simple strategy cannot be used in the case of NESTOR because

the vast majority of its variables (e.g., temperature, pressure, specific humidity, etc.) are real values.

In a computer, real values are typically stored in floating-point representation with finite preci-

sion [15]. This means that, if a real value has an arbitrary long number of decimals, only a certain

number of these decimals may be accurately represented. In Fortran standards contemporary of

the first NESTOR, real values are typically represented with either simple or double precision. Real

values represented with simple precision have 6 significant digits of precision, i.e., the 6 first decimals
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should be correct [30, 31]. With double precision, the number of significant digits rise to 15 [30, 31].

Having a limited number of significant digits of precision means real values in a computer program

are bound to have rounding errors when each feature a large number of decimals [15].

While two computer programs running in the exact same way (and using no random values)

should produce the same outputs with the same inputs, the outputs may vary if one of both programs

feature a different ordering in terms of instructions. The rounding errors will differ due to the

new ordering and propagate, eventually resulting in decimal changes between the outputs of each

program. This was practically observed very early with NESTOR during this master thesis: indeed, one

of the first changes ever made in the context of this work was an attempt at decomposing INTbil in

several subroutines in order to test the idea elaborated in Sec. 3.2.3. However, this meant that the flow

of instructions between the newly edited NESTOR and the old version was slightly different (despite

using the same algorithms), and therefore, decimal changes quickly appeared.

Early quantification of the decimal changes hopefully showed that the errors between early

2022’s NESTOR and the work in progress version were actually very small, e.g., the average error

for temperature values was of the order of 10−5. However, this is not sufficient to conclude that

the updated NESTOR is equivalent to the previous version: indeed, many physical processes (e.g.,

convection [14, 20, 26]) simulated in computer climate models, including the MARmodel, are naturally

chaotic [26]. This means that small decimal changes can potentially eventually lead to different results

with the same model. In other words, to assess the new NESTOR, the MAR model should be run twice

with outputs coming respectively from January 2022’s NESTOR (or older) and the updated NESTOR

presented in Chapter 3, after what the resulting MAR outputs should be compared to assess whether

or not the updated NESTOR eventually led to comparable results. Obtaining different results would

suggest the decimal changes are problematic, and conversely, strong correlation between both MAR

outputs would demonstrate the updated NESTOR can be safely used.

This is why the updated NESTOR will be evaluated in at least three ways throughout this chapter.

• First of all, it will be compared directly with January 2022’s NESTOR in Sec. 4.2. On the one

hand, the decimal changes between both versions will be quantified. On the other hand, the

performance of the updated NESTOR will be carefully assessed in order to evaluate how much

faster it is. For reminders (cf. Chapter 1), improving the performance of NESTOR is one of the

main motivations for this master thesis.

• Second, the MAR model has been run with a given regional setting (i.e., simulating the climate

over mainland Scotland for an entire year) twice: a first time with forcing fields as produced

by early 2022’s NESTOR (with bilinear interpolation), and a second time with the same data

as prepared by the new NESTOR (also with bilinear interpolation). The outputs of the MAR

will be compared to evaluate if the MAR model produced comparable or different results as

a consequence of the decimal changes of the updated NESTOR. The precise settings of these

experiments and their comparison will be provided respectively in Sec. 4.3.1 and Sec. 4.3.2.
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• Finally, using a third MAR simulation run with the same regional setting and period as before,

the effects of using forcing fields prepared with the updated bicubic interpolation will be

assessed. This final evaluation aims at determining whether or not the bicubic interpolation

changes the results of a MAR simulation and to which extent. This will be discussed in Sec. 4.3.3.

4.2 Accuracy and performance of the updated NESTOR

This section assesses the updated NESTOR by directly comparing it to January 2022’s version. Sec. 4.2.1

first compares the outputs of the updated NESTOR with those of the old version. This sort of validation

aims at demonstrating that the small decimal changes observed with the NESTOR introduced in

Chapter 3 are negligible, i.e., small changes in the ordering of the operations did not result in

significantly different output files. Sec. 4.2.2 subsequently evaluates the performance of the updated

NESTOR on use cases that are comparable to those introduced in Sec. 2.3.1.

4.2.1 Validation of the output files

To validate the outputs of the updated NESTOR, the grids obtained for seven representative variables

and for the same region and time period have been compared in five different use cases. Four of

these five use cases involved the four different data sources already used in the experiments from

Sec. 2.3.1, i.e., there is an ECM scenario, a NCP scenario, etc. The fifth scenario is the one described in

Sec. 2.3.6, i.e., the production of forcing fields for a region next to the Gulf of Alaska using an input

domain covering an entire latitude band. This scenario was added both for exhausitivity and to have

a more ambitious use case to assess the performance of NESTOR in Sec. 4.2.2.

For each use case, both versions of NESTOR have been run with the same region, the same time

period, the same duration (30 or 31 days) and the bilinear interpolation. The bicubic interpolation

has not been considered here: indeed, the algorithm itself has been modified (cf. Sec. 3.2.3), which

means it is very unlikely both versions of NESTOR would produce the (exact) same outputs with

bicubic interpolation. For an easier comparison, both versions of NESTOR have been tuned to provide

their output data in a NetCDF file in addition to the regular binary files they build for the MAR model.

The seven variables that have been compared are given below.

• UU: longitude-wise wind speed component.

• VV: latitude-wise wind speed component.

• TT: real temperature.

• PT: potential temperature 1.

• QQ: specific humidity.

1Temperature the air parcel would have if brought adiabatically to the reference 1000 hPa level [14, 20].
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• SP: pressure thickness.

• SST: sea surface temperature.

It is worth noting that, for the first five variables of the list, all levels (24 in total, as recommended for

the MAR model) have been compared. For the SP and SST variables, only the surface level is available

due to their nature. Finally, the variables regarding the soil texture and cover (TEX and SOL in the

NetCDF files) have been omitted: because the values for these variables are treated as simple integers,

the updated NESTOR produced the exact same results as the old version.

Data Chg UU VV TT PT QQ SP SST

ECM
Avg 5.3∗10−6 4.9∗10−6 3.5∗10−5 3.3∗10−5 2.5∗10−4 9∗10−6 3.7∗10−5

Max 7.1∗10−4 6∗10−4 3∗10−4 1.03 1∗10−3 9.1∗10−5 1.5∗10−4

ECP
Avg 1∗10−5 1∗10−5 5.9∗10−5 5.4∗10−5 2.5∗10−4 1.5∗10−5 6.7∗10−5

Max 7.4∗10−4 7.2∗10−4 2.1∗10−4 1.8∗10−4 1.1∗10−3 9.1∗10−5 1.8∗10−4

NCP
Avg 7.1∗10−6 6.5∗10−6 3.5∗10−5 3.2∗10−5 2.7∗10−4 1∗10−5 4∗10−5

Max 8.9∗10−4 6.2∗10−4 3.2∗10−3 0.68 1.1∗10−3 9.1∗10−5 1.8∗10−4

MAR
Avg 0 0 0 0 0 0 0

Max 0 0 0 0 0 0 0

GRD
Avg 4.6∗10−6 3.9∗10−6 3.2∗10−5 3∗10−5 4∗10−9 8.4∗10−6 3.4∗10−5

Max 8.7∗10−4 6.7∗10−4 3.2∗10−4 0.051 6.3∗10−7 9.1∗10−5 1.8∗10−4

Table 4.1: Decimal changes between the unedited and the updated NESTOR for five comparable use
cases (processing of 30 days for the same region and time period with bilinear interpolation).

Table 4.1 provides the results of this validation. The GRD label refers to the aforementioned fifth

scenario: the data source is actually ECM to NESTOR (ERA-5 dataset [9]). The GRD label rather denotes

the type of region the data covers (GRD is for Greenland). For each use case, both the average and the

largest decimal changes between both versions of NESTOR are provided. While not shown in the table,

it should be noted that the validation program 2 also quantified how many values were not exactly

identical between both output NetCDF files. The ratio of output values differing between the old and

the new NESTOR ranged from 75% to more than 95% for the selected variables.

The decimal changes shown in Table 4.1 are reassuring, especially when it comes to the average

decimal changes: at worst, the average change is of the order of 10−4, with the overwhelming majority

of the averages being even lower. Moreover, there was no change at all in the use case of MAR on

MAR forcing: this is simply due to the fact that the interpolation subroutine used in this case has not

been modified in practice (cf. Sec. 3.2.3). The largest changes are also negligible, with the notable

exception of the PT variable (potential temperature) for which the most significant change even

reaches the unit with the ECM use case. Hopefully, this large difference does not prevent the average

from staying very low. A closer look to the largest decimal changes observed between both NetCDF

2Available on climato.be: /srv5_tmp2/jfgrailet/TFE_NESTOR/validation/validation.f90.
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files of each use case suggest that they are often located at the levels closest to the surface 3. This

result may be due to the fact that NSTint subroutine processes vertical levels for output variables

from the highest pressure level to the surface, causing the decimal changes to become greater as the

code gets closer to the surface in some cases. However, this is not a rule of thumb for all variables, as

how each variable is processed with respects to vertical levels in NSTint slightly varies.

4.2.2 Performance of the updated NESTOR

Now that the differences that exist between the respective outputs of both versions of NESTOR

have been demonstrated to be negligible, a greater question remains: is the updated NESTOR faster

than the old one, and to which extent ? To answer this question thoroughly, each interesting use

case of NESTOR discussed so far (in both Sec. 2.3.1 and Sec. 4.1) has been run multiple times with

the time command [5] rather than a single time as in Sec. 2.3.1. There are 9 use cases in total:

ECM/bilinear, ECM/bicubic, ECP/bilinear, ECP/bicubic, GRD/bilinear, GRD/bicubic, MAR, NCP/bilinear

and NCP/bicubic. 6 of these uses cases (i.e., all except GRD and MAR) produce forcing and surface fields

for the same output domain (a portion of Western Europe). The GRD use cases derive from Sec. 2.3.6

(see also Sec. 4.2.1). The MAR use case uses an input domain encompassing British Isles to downscale

it to the mainland Scotland, using a bilinear interpolation tailored for non-regular grids.

Each use case has been run a total of 10 times. For each experiment, the real time and the sum

of the user and sys times have been recorded. For reminders, real time gives the actual wall clock

time elapsed between the start and the end of the NESTOR run, while user gives the time elapsed

while NESTOR was actually running on a CPU outside system calls, with sys giving the time elapsed

during system calls. As a result, the sum of user and sys times gives a good idea of the time spent by

NESTOR on a CPU, especially given that the sys time is no longer negligible in some cases.

Running 10 times NESTOR is motivated by the fact that, on an actual shared server such as srv5

(via climato.be), the execution time of any program will fluctuate with the load of said server. When

no other computationally intensive program is running, NESTOR can complete a run with a real

time close to the sum of user and sys. Otherwise, it may perform slightly worse due to the load.

The sum of the user and sys times should conversely stay almost constant, with slight random

variations. Plotting the evolution of both times across all 10 experiments for a given use case gives a

realistic outlook on how NESTOR should typically perform 4, while the times themselves can be used

to compute mean times that are representative of the performance of NESTOR.

Figure 4.1 provides the performance of the NCP/bilinear (Fig. 4.1a) and NCP/bicubic (Fig. 4.1b)

use cases. The former demonstrates a spectacular acceleration with respects to the comparable

experiment discussed in Table 2.1: the bilinear case could be completed in less than 30 seconds in all

cases, with an ideal time (user+sys) even below 20 seconds. In other words, this specific use case

3This can be verified by slightly modifying the validation program so that the indexes of the cell with the largest
decimal change are kept and eventually displayed.

4It is important to note that the repeated runs have not been conducted at selected times, i.e., the load of the server was
random. Even more complete experiences would run NESTOR at the same time as, for instance, a running MAR simulation.
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(a) NCP/bilinear; averages: 27.58s / 18.65s
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(b) NCP/bicubic; averages: 91.83s / 84.05s

Figure 4.1: Performance of the NCP use cases (30 days) with the updated NESTOR.

has been sped up between 24 and 36 times. While the performance of the bicubic case (Fig. 4.1b) is

worse, with an average real time of one minute and an half, there is still a significant acceleration:

prior to the optimization, such a use case took almost 20 minutes (user time), which amounts to

more than 13 times slower than the updated NESTOR.
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(a) ECP/bilinear; averages: 37.89s / 26.64s
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(b) ECP/bicubic; averages: 135.28s / 125.11s

Figure 4.2: Performance of the ECP use cases (30 days) with the updated NESTOR.
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(a) ECM/bilinear; averages: 42.74s / 26.62s
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(b) ECM/bicubic; averages: 207.57s / 198.63s

Figure 4.3: Performance of the ECM use cases (30 days) with the updated NESTOR.

Figures 4.2 and 4.3 provides figures comparable to those of Figure 4.1 for the ECP and ECM use

cases. These use cases are very similar to both NCP use cases: the output domain and time periods

are the same and the input domains always consist of regular grids. The main differences are the

dimensions of these input domains: for reminders (cf. Table 2.1), ECP features a larger domain than

NCP, with 181 by 91 surface cells and 31 vertical levels, while ECM has the largest domain of the initial

experiments of Sec. 2.3.1 with 367 by 167 surface cells and 40 vertical levels. Despite these larger
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dimensions, the bilinear use cases (Fig. 4.2a and Fig. 4.3a) are barely slower than in Fig. 4.1a: around

40 seconds for the real times in both cases, and below 30 seconds as for the ideal (user+sys) times.

These times are also better than initially, especially for the ECP use cases (bilinear is almost 40 times

faster), given that the ECM/bilinear case already benefitted from an optimization (cf. Sec. 2.3.2).

The larger dimensions of ECP and ECM grids however appear to have a significant impact on the

performance of the bicubic use cases (Fig. 4.2b and Fig. 4.3b). The final times are hopefully still much

better than initially, with a bit more than 3 minutes for the ECM/bicubic case versus almost one hour

user time with the unedited NESTOR (cf. Table 2.1). One possible explanation for this considerable

difference is that the search for sampling squares during bicubic interpolation (cf. Sec. 3.2.3) is

neither optimized via heuristics 5 nor benefitting from input domain truncation (cf. Sec. 3.2.4): the

bigger the input domain, the slower the bicSet subroutine.

Listing 4.1: The five most called functions/subroutines in NESTOR with ECP/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

42.24 41.78 41.78 spline_

12.87 54.50 12.73 s p l i n t _

5.02 59.46 4.96 __svml_logf4_e9

4.21 63.62 4.16 bicdo_

3.85 67.43 3.81 d i s t _

Listing 4.2: The five most called functions/subroutines in NESTOR with ECM/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

39.56 64.08 64.08 spline_

10.54 81.16 17.08 s p l i n t _

8.83 95.45 14.30 d i s t _

6.69 106.29 10.84 __libm_sinf_e7

6.33 116.54 10.25 __libm_atan2f_e7

To assess the hypothesis of bicSet slowing down NESTOR, Examples 4.1 and 4.2 provide the

five most called functions/subroutines, as determined by the gprof tool [4], respectively for the

ECP/bicubic and the ECM/bicubic use cases. The times in seconds are not average times but can be

considered as representative. In both cases, the most called functions/subroutines are the SPLINE and

SPLINT subroutines, which are typically called by bilDo (cf. Sec. 3.2.3). This suggests that, regardless

of how bicSet performs, bicubic interpolation will always be slower than bilinear interpolation

because of the need to compute cubic splines all the time. However, both rankings also include the

dist function, typically involved in the search for sampling squares in bilSet. This is especially

5Mostly due to a lack of time; the refreshed bicubic interpolation was amongst the last changes brought to NESTOR.

49



CHAPTER 4. ASSESSMENT OF THE UPDATED NESTOR AND SENSITIVITY OF THE MAR MODEL

more visible in Example 4.2, where the fourth and fifth most called functions/subroutines are also

trigonometric functions called by dist. Moreover, their cumulated times account for more than 30

seconds: this suggests NESTOR may be rendered even faster if a few heuristics (e.g., to take advantage

of input domain truncation) were added in bicSet.

On a side note, input domain truncation should have a limited effect on ECP and ECM grids:

since they cover Europe only, the output domain (a portion of Western Europe notably covering

France, Northern Spain, Belgium, etc.) still occupy a significant portion of the input domain. More

precisely, the benefits may be less significant than with NCP use cases (dataset covering the entire

Earth’s surface) or GRD use cases (complete latitude band).
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(a) GRD/bilinear; averages: 55.50s / 46.98s
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(b) GRD/bicubic; averages: 661.84s / 660.93s

Figure 4.4: Performance of the GRD use cases (31 days) with the updated NESTOR.

Figure 4.4 now depicts the performance of the GRD use cases, with the GRD/bicubic use case

having been unassessed with the unedited NESTOR in this work, but being most probably very slow

given the dimensions of the input domain. Once again, the performance of the bilinear case (Fig. 4.4a)

is clearly below the minute, and even though it constitutes only 4 times less than the time obtained

with the unedited NESTOR, it clearly demonstrates the benefits of the changes presented in Chapter 3,

and input domain truncation in particular (cf. Sec. 2.3.6). The GRD/bicubic scenario (Fig. 4.4b), on

the other hand, is arguably slow, with around 11 minutes spent in all experiments. Like the ECP/ECM

use cases, this is likely at least partially due to the lack of heuristics during the search for sampling

squares in the bicSet subroutine (cf. Sec. 3.2.3), causing NESTOR to explore the entire latitude band.

Listing 4.3: The five most called functions/subroutines in NESTOR with GRD/bicubic (by gprof)

% cumulative s e l f

time seconds seconds name

27.74 150.08 150.08 spline_

16.33 238.45 88.37 d i s t _

12.46 305.85 67.40 __libm_sinf_e7

11.82 369.81 63.96 __libm_atan2f_e7

9.05 418.77 48.96 __libm_cosf_e7

To determine the extent of this last issue, Example 4.3 provides the five most called functions/-

subroutines as determined by gprof for the GRD/bicubic use case. Here, four of the five most called
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functions/subroutines are none others than dist and the trigonometric functions it calls. This clearly

demonstrates a significant amount of time is wasted with bicSet, the cumulated times (i.e., those

shown in Example 4.3) accounting for around four minutes and an half. Yet, the most called sub-

routine remains SPLINE. This suggests that bicubic interpolation should remain a computationally

worse option than bilinear interpolation in all cases, though NESTOR (as delivered at the time of

writing) may still be able to process such a use case faster as long as a few heuristics are added to

bicSet. This may cut the total execution time down to a few minutes rather than almost one quarter

of an hour. Nevertheless, the times obtained with GRD/bicubic remain clearly better than all the times

obtained with the unedited NESTOR using its own bicubic interpolation (cf. Sec. 2.3.1), which means

the updated NESTOR outperforms the old version in all cases.
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Figure 4.5: Performance of the MAR use case (30 days) (averages: 88.84s / 76.90s).

Finally, Figure 4.5 provides the performance for the MAR on MAR forcing scenario. Due to the

interpolation subroutine used for such a case (i.e., intMAR, previously named INTnrg2, cf. Sec. 3.2.3)

being already optimized, the updated NESTOR does not outperform the old version as much as

with other use cases. Some of the changes proposed in Chapter 3, notably regarding HWSDsl and

GLOcov (cf. Sec. 3.2.2), definitely manage to save several dozens of seconds. However, the most costly

operation in this scenario remains the interpolation process itself. Example 4.4 clearly demonstrates

that: all five functions/subroutines in the given ranking are involved in the interpolation process

tailored for MAR on MAR forcing. Further optimizing this use case of NESTOR would therefore require

further optimizing the intMAR (formerly INTnrg2) subroutine itself.

Listing 4.4: The five most called functions/subroutines in NESTOR with MAR on MAR forcing (by gprof)

% cumulative s e l f

time seconds seconds name

16.17 11.12 11.12 d i s t _

14.39 21.01 9.89 intmar_

11.60 28.98 7.97 __libm_atan2f_e7

11.50 36.88 7.90 __libm_sinf_e7

10.07 43.80 6.92 __libm_cosf_e7
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4.3 Sensitivity of the MAR model to the updated NESTOR

While the updated NESTOR appears to drastically improve the performance of early 2022’s NESTOR

while inducing only very small decimal changes in the output files (cf. Sec. 4.2.1), the impact of these

small changes on a MAR simulation should be assessed too due to the chaotic nature of meteorological

processes [14, 20, 26], as explained in Sec. 4.1. This section therefore evaluates to which extent the

MAR results are impacted by the outputs of the new NESTOR by comparing said results to those of a

reference simulation (i.e., same settings but with forcing fields computed by the old NESTOR). In other

words, this section discusses the sensitivity of the MAR model to the updated NESTOR.

Sec. 4.3.1 first provides some practical details regarding the settings of the simulations used

to evaluate the sensitivity of the MAR model, along with a description of how this sensitivity will

be quantified precisely. Sec. 4.3.2 subsequently discusses the sensitivity of the MAR model upon

using forcing fields computed by the updated NESTOR with bilinear interpolation. Finally, Sec. 4.3.3

evaluates the effects of using forcing fields prepared with the new bicubic interpolation (cf. Sec. 3.2.3)

rather than bilinear interpolation.

4.3.1 Methodology

First of all, to evaluate the sensitivity of the MAR model to the new NESTOR, results from a reference

simulation are required. This simulation must have been run using the output files from January

2022’s NESTOR (or an older version) in order to have MAR results that are representative of the previous

version(s) of NESTOR. This simulation should be long enough, as decimal changes may not have an

impact on the first days of a simulation but rather on the longer term. Several months or a year of

simulation should therefore be preferred.

In the context of the CLIM0017 course taught during the first semester of academic year 2021-

2022 [10], I had the opportunity to learn how to run the MAR model and managed to run several

simulations. The most ambitious of them consisted of simulating the 2001-2010 decade on Scotland

and its surroundings. To prepare such a simulation, Fall 2021’s NESTOR was run using:

• the NCEP-NCAR Reanalysis 1 dataset [25] for the input domain (144 by 73 cells covering the

entire Earth’s surface, with 18 levels),

• an output domain of 120 by 120 cells covering 5 by 5 kilometers areas (i.e., 25 square kilometers),

centered on the Scottish Highlands,

• and bilinear interpolation.

For illustration purpose, Figure 4.6 pictures the simulated region using the TEX variable found in

the output NetCDF file created by NESTOR after tuning it to also create this file. For reminders, this

variable corresponds to the soil texture and has 12 possible integer values (0 to 11, included), with 0

corresponding to the sea and sea-level water bodies (colored in purple in Figure 4.6).
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Figure 4.6: Soil texture (TEX) for the regional area simulated with the MAR model throughout Sec. 4.3.
It encompasses mainland Scotland and some of the surrounding isles (including Northern Ireland).

To assess new simulations kickstarted with output files produced by the updated NESTOR, the

same simulation as above was re-run for the same input/output domains but only for the duration of

the year 2001. Indeed, one year is long enough to assess the sensitivity of the MAR model, and is also

preferable to save time: the aforementioned simulation of the whole 2001-2010 decade indeed took a

bit less than four weeks to complete, while simulating one year can be done in 2 or 3 days (depending

on the load of the server on which the MAR model is running).

Two new simulations with the MAR model have been conducted. The first one consisted of simu-

lating 2001 again but using output files produced by the updated NESTOR with bilinear interpolation.

As such, this simulation is equivalent to the initial one, except the new NESTOR is preferred over the

old version to prepare the forcing fields. The comparison of both simulations, which will demonstrate

whether or not the small decimal changes had a non-negligible impact, is the topic of Sec. 4.3.2.

The second new simulation also consisted of re-simulating 2001 using output files prepared by

the updated NESTOR, but using bicubic interpolation. Comparing the reference simulation with the

last one therefore amounts to evaluating the effects of preparing the MAR input data with bicubic

interpolation rather than bilinear interpolation, since modern NESTOR users typically rely on the

former. This second comparison is detailed in Sec. 4.3.3.

Before comparing the results of the three MAR simulations, how they can be compared precisely

must be established. First of all, six representative variables have been selected to compare the results

of the MAR model, much like in Sec. 4.2.1.
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These six variables are

• TT, the average temperature,

• TTMAX, the maximum temperature,

• TTMIN, the minimum temperature,

• QQ, the specific humidity,

• UV, the wind speed 6,

• and PRC, the sum of MBRR (rainfall) and MBSF (snowfall) 7, which therefore amounts to the total

of precipitations.

Each of these variables provides a value for each regional cell and for each day of the year. In fact,

the first five variables provide three values for three different levels in sigma coordinates: 0.999 (first

level), 0.9994 (second level) and 0.9997 (third level). For convenience, only the level closest to the

surface (the third one) will be used to get a single time series of values for each regional cell.

Indeed, by using two sets of time series, respectively for the reference and the new simulation, for

each regional cell and for each variable, three common metrics from statistics can be used.

• The Pearson correlation coefficient [41] is a normalized correlation coefficient used to eval-

uate how much two time series correlate, i.e., how similar their evolution are, and typically

outputs a value included between -1 and 1. When a coefficient is close to 1, the time series can

be considered as evolving in the same manner.

• The Root-Mean-Square Error (RMSE) [42] is used to evaluate the magnitude of the differences

(or errors) between two time series. It is always non-negative and is sensitive to outliers. A small

RMSE means the differences (errors) are marginal.

• Finally, the bias [32] quantifies the tendency with which a time series deviate from a reference

time series. A positive bias, for instance, expresses the fact that the predicted time series tends

to have higher values than the reference. Conversely, a negative bias shows that the second

time series tends to provide lower values.

The last two metrics can be further divided by the standard deviation of the reference time series

to take account of the day-to-day variability. All three metrics can be computed for each regional

cell and for each variable, resulting in 2D maps that can show how similar the new simulation is,

and if not similar enough, where it differs from the reference and by how much. These maps will be

subsequently used in Sec. 4.3.2 and Sec. 4.3.3 to compare the aforementioned MAR simulations.

6UVZ, the horizontal wind speed, could also have been used but has been omitted due to space constraints.
7PRC does not exist "as is" among the MAR variables. It is computed by the comparison program.
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4.3.2 Sensitivity to forcing fields prepared with bilinear interpolation

To compare the results of two MAR simulations with the help of the metrics described in Sec. 4.3.1, a

small Fortran program has been written to ease the comparison of two NetCDF files with respects

to specific variables. For each variable, this program creates a NetCDF file providing three 2D grids

with the same dimensions as the regional grid used in the MAR simulations, these 2D grids providing

respectively, for each regional cell: the correlation coefficient, the root-mean-square error (or RMSE)

and the bias (the last two being divided by the standard deviations for each time series in the reference

simulation). This program can be found, if necessary, on climato.be 8.

Figure 4.7 first provides the correlation coefficients obtained for all six variables listed in Sec. 4.3.1

between the reference simulation (whose input data has been prepared with the unedited NESTOR)

and the MAR simulation that used output files produced by the updated NESTOR. Both versions used

bilinear interpolation, which means the settings for both versions of NESTOR are identical, though

there are small decimal changes in the output files, as previously discussed in Sec. 4.2.1.

Hopefully, the correlation coefficients are very close to 1 for all variables: each sub-figure of

Figure 4.7 is labelled with a lower bound (space constraints prevent having readable scales), with

the color scale ranging from this lower bound to 1. Visually speaking, the purple shade is associated

with the lower bound while dark red corresponds to 1. With the notable exception of Fig. 4.7f, due to

some artifact in the top right corner 9, all coefficients are greater than 0.95, with four of the six figures

using a lower bound greater than 0.99. Moreover, the two figures with the lowest bounds, i.e. Fig. 4.7e

and Fig. 4.7f, are overwhelmingly (dark) red, meaning the correlation coefficients are very high in

most regional cells. All these figures point to the fact that running the MAR model with forcing and

surface fields as prepared by the updated NESTOR had a very negligible impact on the results, as the

time series strongly correlate for the vast majority of the regional cells.

Figure 4.8 now provides the RMSEs for all six variables of interest for the same duo of MAR

simulations. This time, the sub-figures are labelled with an upper boundary for the RMSE values

(sometimes adjusted to have a convenient scale), since the minimum is always 0. For reminders, it

is preferrable for the RMSEs to be low, and RMSEs are sensitive to outliers [42]. Again, the results

suggest the MAR model is barely sensitive to the decimal changes of the updated NESTOR: only the

wind speed (Fig. 4.8e) and precipitations (Fig. 4.8f) feature seemingly non-negligible RMSEs, i.e.,

greater than 10−1 (though one location in Fig. 4.8c also fits that criterion). These results should

however be nuanced. On the one hand, the RMSEs are still low with respects to the units used for

both UV and PRC (m/s and mm, respectively). On the other hand, Fig. 4.8f shows very small RMSEs

around the center of the grid (purple areas), which is the area for which the MAR model is well tuned

when it comes to simulating precipitations. This means that both experiments discussed in this

section produced very similar (almost identical) precipitations where they typically should.

8/srv5_tmp2/jfgrailet/TFE_NESTOR/MAR_output_assessment/original_vs_modified2/comparison.f90
9This artifact likely results from how MAR proceeds with precipitations. It is typically recommended to expand the

borders of a regional grid for the MAR to simulate realistic precipitations, because the borders of the regional grid are the
locations where clouds start forming in the MAR model.
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(a) TT (lower bound: 0.9996) (b) TTMAX (lower bound: 0.9988)

(c) TTMIN (lower bound: 0.994) (d) QQ (lower bound: 0.9986)

(e) UV (lower bound: 0.966) (f) PRC (lower bound: 0.5)

Figure 4.7: Pearson correlation coeffficients for 6 variables between two MAR simulations of the year
2001 over Scotland (prepared with old and new NESTOR, respectively; bilinear interpolation).

Finally, Figure 4.9 provides the biases for the variables of interest in the same manner as Figure 4.7

and 4.8. Each sub-figure is labelled with a symmetric range of values designed to encompass all values

contained in each grid. The symmetry of these ranges ensures that the shades of green coincide with

bias values close to 0. The very small ranges provided for each figure, combined with the dominant

colours of each figure (shades of green), demonstrate that there is little to no bias coming from the

MAR simulation prepared with the updated NESTOR with respects to the reference simulation.
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(a) TT (upper bound: 0.03) (b) TTMAX (upper bound: 0.06)

(c) TTMIN (upper bound: 0.12) (d) QQ (upper bound: 0.06)

(e) UV (upper bound: 0.26) (f) PRC (upper bound: 1)

Figure 4.8: RMSEs for 6 variables between two MAR simulations of the year 2001 over Scotland
(prepared with old and new NESTOR, respectively; bilinear interpolation).

All in all, Figures 4.7, 4.8 and 4.9 demonstrate that using the updated NESTOR did not significantly

alter the results of the MAR model. While there are definitely some minor variations, the small errors,

near-zero biases and strong correlation coefficients all indicate that the small decimal changes

induced by the updated NESTOR, as provided in Table 4.1 in Sec. 4.2.1, had a proportionally negligible

impact on the outputs produced by the MAR model. Using the updated NESTOR to prepare new MAR

simulations can be therefore considered as safe.
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(a) TT (range: -0.003, 0.003) (b) TTMAX (range: -0.004, 0.004)

(c) TTMIN (range: -0.01, 0.01) (d) QQ (range: -0.002, 0.002)

(e) UV (range: -0.011, 0.011) (f) PRC (range: -0.05,0.05)

Figure 4.9: Biases for 6 variables between two MAR simulations of the year 2001 over Scotland
(prepared with old and new NESTOR, respectively; bilinear interpolation).

4.3.3 Sensitivity to forcing fields prepared with bicubic interpolation

While the updated NESTOR has been demonstrated to be safe to use despite the small decimal changes

induced by the optimized bilinear interpolation (cf. Sec. 4.2.1), nothing suggests the MAR model is

not sensitive to forcing and surface fields as prepared with the refreshed bicubic interpolation. After

all, bicubic interpolation does not just change a few decimals: as shortly discussed in Chapter 1, the

main benefit of bicubic interpolation over bilinear interpolation is that it produces smoother area
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curves [33, 34]. In other domains of computer science where both types of interpolation are also

used to infer high resolution data, such as image processing, bicubic interpolation typically produces

finer results. Using NESTOR with bicubic interpolation therefore produces slightly different regional

distributions of values (or areas, when visualized) for each variable.

(a) With bilinear interpolation (b) With bicubic interpolation

Figure 4.10: Temperature maps (TT; Kelvin) produced by the updated NESTOR with each type of
interpolation. ECP data downscaled to Western Europe with 20 by 20 kilometers cells.

For illustration purpose, Figure 4.10 provides 2D temperature grids (TT variable) for December

4, 2021 at midnight as produced by the updated NESTOR for a regional domain over Western Eu-

rope (including France, Belgium, United Kingdom, etc.) with either bilinear (Fig. 4.10a) or bicubic

interpolation (Fig. 4.10b). The temperature scale (in Kelvin) is the same in both cases. The input

domain was a dataset from the ECMWF (ECP in NESTOR terminology) providing meteorological data

over Europe. The bicubic interpolation produces arguably more elegant areas: see for instance how

the few isolated pixels in the middle of the top half of Fig. 4.10a appear as better defined areas in

Fig. 4.10b. The same goes for various shades of red in the bottom left corner of both maps.

To evaluate the sensitivity of the MAR model to input data prepared with the updated bicubic

interpolation (cf. Sec. 3.2.3), a third MAR simulation of 2001 over Scotland has been run using forcing

and surface fields produced by the updated NESTOR using bicubic interpolation. The MAR results have

then been processed with the same program as described in Sec. 4.3.2, therefore producing three

metrics for each regional cell for a total of six variables, as already announced in Sec. 4.3.1.

Figure 4.11 first provides the Pearson correlation coefficients obtained for each of the six variables

of interest between the reference simulation and the last simulation. The presentation is the same as

in Figure 4.7: each sub-figure is labelled with a lower bound corresponding to the lowest possible

value represented by the colour scale, the highest value being 1. It is important to remember here that

the reference simulation used forcing files prepared by the old NESTOR with bilinear interpolation,

knowing bilinear interpolation in the updated NESTOR induces near identical results (cf. Sec. 4.3.3).

The main conclusion that can be drawn from Figure 4.11 is that changing the type of interpolation

in NESTOR did not significantly change the predictions made by the MAR model: the correlation

coefficients remain high for all variables, with five of the six lower bounds being above 0.95 and half
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of all lower bounds being above 0.99. The main change from Figure 4.7 is the way the correlation

coefficients vary: more variations can be observed above the seas surrounding mainland Scotland.

Fig. 4.11c (TTMIN) also shows a surprising artifact: a tear-like area where the correlation coefficients

drop significantly with respects to the rest of the map, though they remain high (higher than 0.98).

Interestingly, this artifact only appears for the level closest to the surface of TTMIN: recomputing the

maps with either of the other two levels does not produce such an artifact.

(a) TT (lower bound: 0.998) (b) TTMAX (lower bound: 0.993)

(c) TTMIN (lower bound: 0.98) (d) QQ (lower bound: 0.997)

(e) UV (lower bound: 0.96) (f) PRC (lower bound: 0.7)

Figure 4.11: Pearson correlation coeffficients for 6 variables between two MAR simulations of the year
2001 over Scotland (with old and new NESTOR, respectively using bilinear and bicubic interpolation).
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To complement the previous figure, Figure 4.12 provides the root-mean-square errors (RMSEs)

for the same duo of simulations with the same presentation as before. Like Figure 4.8, each sub-figure

is labelled with an upper bound on the RMSE. Again, these new figures suggest the MAR model did

not behave much differently than in Sec. 4.3.2: the RMSEs are slightly higher, but the upper bounds

used to represent all of them have been a bit more than doubled at worst.

(a) TT (upper bound: 0.07) (b) TTMAX (upper bound: 0.12)

(c) TTMIN (upper bound: 0.25) (d) QQ (upper bound: 0.08)

(e) UV (upper bound: 0.3) (f) PRC (upper bound: 0.8)

Figure 4.12: RMSEs for 6 variables between two MAR simulations of the year 2001 over Scotland (with
old and new NESTOR, respectively using bilinear and bicubic interpolation).
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Like in Figure 4.11, there are also more variations above the seas in Figure 4.12, and a tear-like

artifact also appears for TTMIN in Fig. 4.12c. This last observation is however not surprising, given

that this visual artifact corresponds to a sudden drop in the correlation coefficients in Fig. 4.11c: due

to the RMSE being sensitive to outliers [42], it was bound to appear too.

(a) TT (range: -0.02, 0.02) (b) TTMAX (range: -0.02, 0.02)

(c) TTMIN (range: -0.05, 0.05) (d) QQ (range: -0.008, 0.008)

(e) UV (range: -0.05, 0.05) (f) PRC (range: -0.15,0.15)

Figure 4.13: Biases for 6 variables between two MAR simulations of the year 2001 over Scotland (with
old and new NESTOR, respectively using bilinear and bicubic interpolation).

Finally, Figure 4.13 provides the biases obtained with the same duo of simulations, presented

in the same way as Figure 4.9, i.e., with symmetric ranges of values for each sub-figure. This last
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figure highlights the differences that are induced by the bicubic interpolation in a much clearer

way than previously. While Figure 4.9 in Sec. 4.3.2 suggested there was little to no bias between two

MAR simulations kickstarted respectively with the old and the updated NESTOR (both using bilinear

interpolation), Figure 4.13 shows slight biases above the seas surrounding Scotland. In particular, the

MAR model seems to have predicted slightly higher temperature values in the north of the maps for

TT (Fig. 4.13a) and TTMAX (Fig. 4.13b), and conversely, colder temperatures on the eastern coast of

Scotland. The QQmap (Fig. 4.13d) follows the same trend. Finally, the maps obtained for UV (Fig. 4.13e)

and PRC (Fig. 4.13f) show a tendency to predict slightly stronger winds and a bit more precipitations.

Interestingly, the TTMIN map (Fig. 4.13c) suggest there is little to no bias for this variable.

The biases for surface levels highlighted by Figure 4.13 tends to suggest the MAR model is slightly

sensitive to whether NESTOR uses bilinear or bicubic interpolation. The latter seems to have had an

impact on marine areas in the context of the regional setting used throughout this section (Scotland

and the surrounding isles). However, these observations must be nuanced in at least two ways. On the

one hand, the observed biases and RMSEs remain low, meaning we are dealing here with only subtle

variations with respects to the reference simulation. On the other hand, the variations over marine

areas may depend on the regional setting: to have a better picture of the effects of the new bicubic

interpolation, additionnal MAR simulations should be run over other regional settings featuring either

more, either less land areas. Simulating regional settings with a soft topography (including seas or

not) should also be considered: Scotland being a mountainous area, its topography may have played

a role in the distribution of the biases in Figure 4.13.

(a) σ = 0.9997 (range: -50, 10) (b) σ = 0.9994 (range: -5, 10)

Figure 4.14: Bizarre TTMIN maps for the first day of the third MAR simulation of 2001 over Scotland.

Finally, the tear-like artifact shown in Fig. 4.11c and Fig. 4.12c (that is also barely visible in

Fig. 4.13c) deserves some comments. For reminders, this artifact only occurred at the level of TTMIN

that was the closest to the surface (σ = 0.9997), other levels (σ = 0.9994 and σ = 0.999) showing no

particular anomaly. After a quick look into the output files produced by the third MAR simulation,

it turned out that the very first day of 2001 for the TTMIN variable 10 provided a very unusual map

10The MAR NetCDF files, in this context, provide grids for each day and each variable.
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for the surface level: there was indeed a very sharp decrease in TTMIN towards the east, partially

coinciding with the tear-like artifact, with a thermal amplitude of around 60 degrees. Looking at the

level above, surprisingly, provided a perfectly sound map whose thermal amplitude was a bit less

than 15 degrees. At the time of writing, it is unclear why the MAR model produced such a result for

the first day, especially since there seemed to be no particular issue with the files provided by the

updated NESTOR, at least regarding the TT and PT variables for the first day of 2001. Whether it is a

NESTOR or a MAR issue and how it can be fixed is left for future work. The two aforementioned levels

of TTMIN for the first day of 2001 are pictured in Figure 4.14 for illustration purpose.

4.4 Closing comments: small changes for the code, a big step for NESTOR

The multiple evaluations performed throughout this chapter have led to two major results. On the

one hand, the updated NESTOR is significantly more performant than the old version, the former

being up to 40 times faster than the latter, notably with a use case involving bilinear interpolation and

the ECP data source (cf. Sec. 4.2.2). Only the case of the MAR on MAR forcing appears to have been only

marginally improved, as the constraining factor of this use case remains the interpolation process,

which has been already optimized (cf. Example 4.4 in Sec. 4.2.2). Otherwise, the various changes

introduced in Chapter 3 all allow the updated NESTOR to divide the execution times of the old version

several times. For instance, the execution time of the Gulf of Alaska scenario (introduced in Sec. 2.3.6)

could be divided by four notably thanks to the idea of truncating the input domain before preparing

its vertical levels (cf. Sec. 4.2.2), this use case being already arguably fast by the standards of the old

NESTOR thanks to some optimization for the ECM data source (cf. Sec. 2.3.3).

On the other hand, a new MAR simulation demonstrated that small decimal changes induced by

the optimizations of the interpolation library (cf. Sec. 3.2.3 and Sec. 4.2.1) did not result in significant

differences, the new simulation showing near-perfect correlation with a reference simulation, along

with small root-mean-square errors [42] and little to no bias. This shows that using the updated

NESTOR to prepare new MAR simulations is safe, at the very least with bilinear interpolation.

Indeed, the new bicubic interpolation (cf. Sec. 3.2.3), while being significantly faster and more

realistically usable than before (cf. Sec. 4.2.2), may require some more work in order to assess thor-

oughly its impact on the MAR model. A third MAR simulation involving this new bicubic interpolation

has demonstrated that there are some positive and negative biases within sub-areas of the regional

setting. However, these biases may change in other settings. It also seemed this last simulation also

predicted slighty stronger winds and more precipitations, though the changes remain subtle. Regard-

less of its impact on the MAR model, the new bicubic interpolation itself may also need some more

work to optimize the search for sampling squares and therefore speed up typical use cases involving

it, though it is clear, at this point, that running NESTOR with bicubic interpolation will always be

slower than with bilinear interpolation (cf. Sec. 4.2.2).
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CONCLUSION

S
imulating the Earth’s climate is a challenge that is as crucial as it is complex. Not only computer

climate models must accurately simulate the physical processes occurring in the atmosphere

and at the interface between this same atmosphere and the surface [13, 14, 20, 23], but they

should also be computationally efficient to obtain predictions regarding the future of our climate

in a reasonable time (or in an exhaustive manner), both at the global and the regional scales. The

MAR model [21], for Modèle Atmosphérique Régional, is a good example of regional computer climate

model that is particularily effective at handling precipitations, snow and ice and which is actively

used by several research groups to study polar regions and hydroclimatic regimes [1, 12, 16, 43].

To be able to simulate regional climates in a realistic manner, the MAR model requires forcing

fields, i.e., climatic data that is fed to the borders of the regional domain at specific time steps in

order to take account of the evolution of the climate outside the region of interest. This data comes

either from real-life measurements or from a simulation run with a global climate model. Regardless

of where the data comes from, it first has to be processed by a companion software of the MAR model

called NESTOR [22] (NESTing ORganization for the preparation of meteorological and surface fields).

NESTOR receives NetCDF files [39] providing various grids (for temperature, specific/relative humidity,

etc.) associated to a large scale domain (e.g., covering the entire Earth’s surface or a continent, like

the ERA-5 dataset [9]) and downscales said grids into regional grids that the MAR model will use both

for its initialization and for boundary forcing throughout the simulation. In practice, this consists

of inferring high resolution data from low resolution grids through various interpolation processes,

most notably bilinear and bicubic interpolation [33, 34] 1.

Despite being essential to start simulations with the MAR model, NESTOR has not been maintained

as thoroughly as the MAR model itself. Its main source file NESTOR.f still advertises the user that the

1Some subroutines of NESTOR do not rely on neither bilinear nor bicubic interpolation. See for instance HWSDsl.
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current version was released around June 2004, though a few components of early 2022’s NESTOR [22]

have been added much more recently, such as the HWSDsl and GLOcov subroutines (used to down-

scale soil texture and soil cover data). While NESTOR still does the job it is intended to do, its lack of

maintenance over time and its poor performance constitute additional constraints to MAR users. For

instance, in some typical use cases, NESTOR may require between 15 to 30 minutes (sometimes more)

to process one month of MAR input data. As a result, a scientist planning a MAR simulation over several

months or years may have to delay the start of this simulation or start it even before NESTOR finished

preparing the boundary forcing fields. Both situations are problematic for performance and call for

an update of NESTOR at the very least improving its performance.

The purpose of this master thesis was to review the source code of early 2022’s NESTOR to pinpoint

where it wasted time and to design a solution for each performance issue. The main outcome of this

work is an updated NESTOR that divides several times the execution times of the previous version,

with numerous typical use cases now completing in (much) less than a minute (cf. Sec. 4.2.2). The

greatest acceleration observed is 40 times faster than with the initial version (i.e., as of January 2022).

This significant outcome results from the three following contributions.

• First of all, the main computational flaws of NESTOR have been characterized and quantified

to determine where NESTOR was losing time the most. This first contribution is important

because future programmers wishing to further update NESTOR may need to know what were

its typical flaws prior to this work. For instance, a programmer tasked with fully refactoring

NESTOR may want to learn more about I/O calls (i.e., in this context, reading NetCDF or control

files), as it was demonstrated a lot of time was wasted by early 2022’s NESTOR by making an

unnecessary large number of such calls. This detailed analysis can be found in Chapter 2.

• Second, practical solutions to tackle these flaws have been designed and implemented. Each

of these solutions was pragmatic and did not require to significantly edit the source code. At

worst, some groups of files (subroutines) have been re-organized, but the updated NESTOR still

features the same program architecture and coding style. On top of that, the updated NESTOR

also cleans the former version from obsolete features and slightly improves code readability.

The details regarding these changes can be found in Chapter 3.

• Third, new MAR simulations demonstrated that the updated NESTOR leads to MAR results that

are consistent with those of past simulations started with the old NESTOR. Indeed, the up-

dated NESTOR produce forcing files whose real variables exhibit small decimal changes with

respects to what the old NESTOR produced (cf. Sec. 4.2.1). In climate science, this may be an is-

sue because of the well-known chaotic behaviour of some meteorological processes [20, 23, 26].

Hopefully, practical experiments with both the old and new NESTOR and the MAR model demon-

strated these decimal changes have a negligible impact on the results. This holds also true

upon using the refreshed bicubic interpolation, though it still induces some variations. This

last contribution is detailed in Chapter 4.
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Moreover, two topics discussed in this work may be further deepened in the future.

• As highlighted many times through Chapter 4, the idea of input domain truncation may be

generalized to other algorithmic steps of NESTOR. In the updated version, this idea is only

applied to the preparation of vertical levels because this was one of the steps where NESTOR

wasted the most time upon downscaling a large input domain (such as the one discussed in

Sec. 2.3.6), but the same idea could also be applied to other areas. For example, the memory

allocations used in the refreshed HWSDsl and GLOcov subroutines could be reduced with this

idea, and the search for sampling squares during the very first bicubic interpolation (new

version) could be optimized by restricting said search to the truncated domain.

• Speaking of bicubic interpolation, the sensitivity of the MAR model to forcing files produced

with bicubic interpolation rather than bilinear interpolation may be studied in greater details

(e.g., with other regional settings) to assess whether or not bicubic interpolation has benefits.

Indeed, a first evaluation provided in Sec. 4.3.3 showed that bicubic interpolation induces some

small biases in the MAR output files with respects to output files coming from a MAR simulation

initially prepared with bilinear interpolation. Since running NESTOR with bicubic interpolation

should always be slower than upon using bilinear interpolation, potential benefits of the former

should be characterized to give an incentive for keeping this feature.

Finally, there are a few other ways to improve NESTOR that have not been investigated yet due to a

lack of time. These ways may be explored by future programmers to either ease the maintenance of

NESTOR or to improve its main features.

• For readability’s sake, the source code of NESTOR should be re-formatted in "free form" Fortran,

the current code still being formatted according to the old "fixed form" conventions [37]. Other

old conventions (e.g., using .eq. to test equality rather than the more common ==) may be

updated to improve the readability of the source code to future programmers.

• While this work did some cleaning regarding obsolete features (cf. Sec. 2.4.2 and Chapter 3),

there may still be a few subroutines or sets of instructions that could be simplified or removed

altogether. To achieve this, future programmers could make an exhaustive inventory of the

features offered by NESTOR and which one are still benefitial to modern users.

• As neither the old nor the updated NESTOR takes advantage of parallel computing (i.e., using

multiple CPUs), it could be interesting to re-design the main loop of NESTOR (cf. Sec. 2.1)

such that each available CPU processes a different iteration. This is feasible notably because

producing regional grids at a specific iteration does not depend on values computed at the

previous iteration(s). One way to achieve this would consist of performing the initialization

steps of NESTOR on a single CPU, along with the very first iteration (in order to load the sampling

data used to optimize subsequent interpolations, cf. Sec. 3.2.3), then share the subsequent
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iterations between multiple CPUs. Another way to take advantage of parallel computing would

consist of parallelizing operations within a single iteration of the main loop (i.e., in the NSTint

subroutine). No matter the selected approach, future updates of NESTOR could definitely benefit

from parallel computing to improve its performance.

• Finally, while this work fixed in NESTOR the option for using cubic splines [35] to interpolate

vertical levels (the same option in the old NESTOR produced broken NetCDF files, cf. Sec. 2.4.2),

the benefits of this approach with respects to the traditional linear interpolation (as performed

by INTlin in the interpolation library INTERp.f) have not been assessed. In practice, this is

only due to a lack of time. Some early practical tests suggest, however, that there is little to no

difference between both types of interpolation.

In conclusion, while there are still many ways to improve NESTOR, the updated version presented

in this work should definitely save time to MAR users thanks to the significantly improved performance.

While performance may still be improved for specific use cases (in particular those involving bicubic

interpolation), future updates of NESTOR may focus on code readability and maintenance, at least to

ensure NESTOR is eventually as well maintained as the MAR model itself [21].
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