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Préface

L’état actuel de la planète est désastreux : le rythme d’extinction des espèces est sans précé-
dent et le réchauffement climatique s’accélère pour ne citer que les plus importants. Les choses
commencent à bouger depuis quelques années dans notre société mais lentement et avec peu de
cohérence ou de vision d’ensemble. Le sujet ne semble ni urgent ni prioritaire. On l’a bien vu
avec le Covid, on le voit à nouveau avec la guerre en Ukraine.

Mais après tout, il n’est effectivement peut-être pas prioritaire... Car quel est son impact
sur notre vie quotidienne ? Les sécheresses ? On s’équipe d’un climatiseur. Les inondations ? On
reconstruira si besoin plus solide et plus adapté au même endroit. La baisse des rendements
agricoles ? On importera en provenance des endroits où ça pousse mieux. On le comprend bien,
dans notre société aveugle aux réalités physiques, la solution technique et court-termiste est très
attrayante, jusqu’il y a peu.

La guerre en Ukraine commence à nous faire comprendre l’importance de l’énergie dans notre
société. Si les coûts de l’énergie augmentent, cela se répercute sur l’ensemble des autres coûts,
sans exception. Or, l’énergie disponible et exploitable sans conséquences n’est pas illimitée sur
Terre et sa raréfaction a et aura des conséquences très importantes sur notre société. La solution
technique, souvent gourmande, perd petit à petit de sa splendeur et de son aura.

Pour exploiter durablement les ressources essentielles à notre vie (et pas forcément à notre
confort souvent superflu), il nous faut apprendre la sobriété. La nature, pérenne depuis des
millions d’années grâce à son adaptation constante, en est l’archétype. Penser la sobriété, cela
ne peut se faire sans comprendre le fonctionnement de la nature. Et pour la comprendre, on
doit avant tout réapprendre à en être curieux. Car la curiosité est la graine de l’observation qui
germe en intérêt et éventuellement fleurit en connaissances.

Cette démarche est notamment celle des scientifiques de la première heure. Newton, comme
tant d’autres avant lui, s’intéresse aux astres, De Vinci à la turbulence d’un écoulement ou
encore Descartes au trajet de la lumière. Le scientifique d’aujourd’hui doit à nouveau laisser
une petite place dans sa recherche aux phénomènes qui l’entourent car ils sont à la fois riches
en connaissances mais surtout porteurs de solutions économes en énergie. Car la nature n’a pas
besoin de pétrole pour croître.

Ce mémoire espère apporter son humble contribution à une science sobre en énergie au service
de la Terre et de ses occupants éphémères.
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Abstract

Les filets à nuages sont des structures composées de fibres verticales permettant de récolter,
de manière passive et dans les zones arides, l’eau issue de l’atmosphère. Ce travail s’intéresse
donc à la dynamique d’une goutte descendant le long d’une fibre verticale en fonction de la
viscosité de celle-ci et du nombre et diamètre des fibres. La vitesse de la goutte est inversément
proportionnelle à la viscosité et au diamètre de la fibre. Il a été démontré qu’une vitesse optimale
est obtenue pour des assemblages de deux ou trois fibres.

Cloud nets are structures composed of vertical fibers allowing to collect, in a passive way and
in arid areas, water coming from the atmosphere. This work focuses on the dynamics of a drop
descending along a vertical fiber as a function of its viscosity and the number and diameter of
the fibers. The velocity of the drop is inversely proportional to the viscosity and the diameter of
the fiber. It has been shown that an optimal velocity is obtained for assemblies of two or three
fibers.

vii



Chapitre 1

Introduction

Parmi les différents défis que rencontre la population humaine, il en existe un qui a traversé
les âges et les régions du globe. On commence à peine à le relever dans les pays riches. Il s’agit
de l’accès à l’eau potable pour tous et en suffisance.

Malgré cette avancée, deux milliards de personnes sont aujourd’hui situées dans des pays
soumis à des stress hydriques permanents. Cela signifie que les besoins en eau -qu’ils soient né-
cessaires aux populations, à l’agriculture ou à l’industrie- ne sont pas assouvis par les ressources
locales disponibles. Près de quatre milliards de personnes dans le monde sont soumises au moins
un mois par an à un stress hydrique et cette tendance est renforcée par le changement climatique
[1]. La question de l’eau potable est plus que jamais un enjeu crucial.

Pour répondre à ce besoin d’eau douce, il existe deux manières principales de procéder. La
première consiste à se servir d’eau déjà présente sous forme liquide et la seconde à condenser
ou à collecter l’eau présente sous forme de vapeur ou de microgouttelettes dans l’atmosphère.
Cette dernière est l’objet de ce travail.

Cette méthode ne permet pas de traiter des volumes conséquents pour l’instant, expliquant
sa faible visibilité, néanmoins, elle reste très intéressante [2]. Ici, c’est la nature qui nous montre
la voie à suivre et souffle les idées aux scientifiques. En effet, l’étude d’animaux et végétaux en
milieu aride a permis le développement de toutes une série de techniques pour récolter l’eau. On
mentionnera par exemple la forme des épines des cactus qui permet l’acheminement les gouttes
de l’extrémité de leur épines jusqu’à la plante [3], la texture de la carapace du scarabée de
Namibie qui favorise la condensation d’eau sur son dos [4] ou encore les toiles d’araignée qui se
décorent de perles de rosée chaque matin grâce à une structure au sein même de la fibre encore
insoupçonnée il y a peu [5].

C’est précisément ce dernier exemple et les techniques qui s’en inspirent qui sont à la base de
ce mémoire. L’observation de ces colliers de perles liquides est à l’origine de structures nommées
filet à nuages (que l’on peut observer sur la figure 1.1) et dont le rôle est de capter une partie
de l’eau présente dans l’atmosphère. Initialement constitué d’un simple filet à maille carrée, les
scientifiques ont étudié cette structure pour favoriser la meilleure récolte d’eau possible. Pour ce
faire, ils ont étudié la taille et la géométrie du maillage [6-8], le diamètre et la composition des
fibres [8, 9] ainsi que la morphologie de la structure [8, 10-12]. De ces études ressort une relation
qui rassemble les différents enjeux liés à la récolte d’eau potable par les filet à nuages [13]. On a

ηcoll = ηAC ηcapt ηdr , (1.1)

c’est-à-dire que le taux de collecte d’eau ηcoll est proportionnel
— au coefficient aérodynamique ηAC de la maille qui rend compte de la proportion de l’air

incident qui passera au travers de la structure.
— au coefficient de capture ηcapt qui représente la quantité effective d’eau qui se dépose sur

la maille.

1



2 CHAPITRE 1. INTRODUCTION

— au coefficient de drainage ηdr qui quantifie la part d’eau collectée qui aboutit dans le
réservoir.

Figure 1.1 – Exemple de filet à nuages. L’eau se dépose sur le maillage, coule jusqu’au bas de la
structure où elle est dirigée vers des réservoirs. Modèle commercialisé par la firme Low Tech.

Le sujet central de ce travail est l’étude de la dynamique de ces gouttes sur
fibre(s) verticale(s) en fonction de leur viscosité, du diamètre et du nombre de
fibres.

Dans ce but, on commence par une synthèse de la connaissance actuelle de la physique des
gouttes sur fibre(s). Ensuite, on analyse expérimentalement la dynamique d’une goutte d’huile
silicone descendant autour d’une fibre. On s’intéresse particulièrement à l’influence du diamètre
de la fibre sur cette dynamique ainsi qu’à celui de la viscosité de l’huile silicone. On propose un
modèle décrivant cette situation physique et on le confirme à l’aide des données expérimentales.
Finalement, on étudie la dynamique d’une goutte sur une fibre composite. Celle-ci est réalisée en
assemblant une à quatre fibres d’un même diamètre. On propose à nouveau un modèle que l’on
confronte à l’expérience. Finalement, on s’intéresse aux fibres composites formées d’un nombre
différent de fibres mais dont le périmètre total est constant.



Chapitre 2

État de l’art

2.1 Structure

Pour comprendre les phénomènes en jeu lorsqu’une goutte glisse le long d’une fibre, on doit
d’abord s’intéresser à ce qu’est une goutte ainsi qu’à certaines caractéristiques communes des
liquides. Ensuite, on peut comprendre la manière dont une goutte interagit avec un substrat
plan horizontal et par la suite incliné. Puis, on change le substrat pour comprendre ce qu’il se
passe lorsqu’une goutte interagit avec une fibre horizontale et puis deux, dans un premier temps,
et une fibre verticale par la suite. La démarche suivie par l’état de l’art est représentée en rouge
et jaune sur la figure 2.1. Les couleurs jaune et vert porteront sur le sujet de recherche de ce
mémoire, à savoir l’écoulement d’une goutte sur une ou plusieurs fibres verticales.

Figure 2.1 – Structure du mémoire. L’état de l’art (rouge et jaune) couvre les sujets de goutte seule,
goutte sur substrat et substrat incliné, goutte sur fibre(s) horizontale(s), goutte sur fibre verticale. Les
résultats (jaune et vert) portent sur une goutte sur une fibre verticale ainsi qu’une goutte sur plusieurs
fibres verticales.

2.2 Goutte et interfaces

On aborde dans cette première partie les notions relatives à une goutte seule. Cela concerne
des thèmes tels que la tension superficielle, qui permet aux gouttes d’être sphériques, la pression
de Laplace, qui explique pourquoi les petites bulles se vident dans les grosses lorsqu’elles se
touchent, quelques nombres adimensionnels, qui permettent de comprendre intuitivement le
comportement des fluides dans diverses situations, et finalement la viscosité associée à un fluide.

3



4 CHAPITRE 2. ÉTAT DE L’ART

(a) (b)

Figure 2.2 – Illustration de la tension superficielle dans l’espace - (a) Scott Kelly s’initiant au ping-
pong aquatique en apesanteur - comme sur Terre - avec (b) ces perles de rosée déposées sur une toile
d’araignée.

2.2.1 Tension superficielle

Quel est le point commun entre l’astronaute Scott Kelly s’amusant à faire rebondir une balle
liquide en apesanteur (figure 2.2(a)) et ces colliers de perles aquatiques qui parent nos jardins
chaque matin (figure 2.2(b)) ? Il s’agit de la tension superficielle, également appelée tension de
surface et que l’on détaille au travers de deux approches, l’une thermodynamique et l’autre
mécanique, pour en saisir les rouages.

Interprétation thermodynamique

Les molécules au sein d’un liquide jouissent d’interactions attractives permettant sa cohésion
[14]. Si l’on regarde qualitativement le nombre d’interactions attractives qu’une molécule possède
en fonction de sa position dans le liquide, on observe qu’une molécule en surface a moitié moins
d’interactions avec des molécules voisines qu’une molécule au coeur du liquide. Ainsi, la tension
de surface peut être interprétée comme étant un excès d’énergie libre découlant de l’asymétrie
de la situation à l’interface. Plus formellement, si l’on considère un système de N particules
contenues dans un volume V et à une température T , la tension superficielle issue de l’énergie
libre F par unité d’aire A entre l’interface liquide (L) et gazeuse (G) s’écrit

γLG =

(
∂F

∂A

)
T,V,N

, (2.1)

et a pour unité
[
J/m2

]
. Une interprétation de γ dans ce contexte est qu’il s’agit du travail

requis pour augmenter l’aire de l’interface d’une unité, c’est-à-dire

δW = γLGdA . (2.2)

Ce phénomène prend place autant à l’interface liquide/liquide (si les deux liquides ne sont pas
miscibles comme l’eau et l’huile par exemple) qu’à l’interface liquide/ gaz.

On a tous déjà expérimenté ce besoin en énergie ! En effet, lorsqu’on prépare une vinaigrette,
on utilise deux fluides non miscibles que sont l’huile et le vinaigre. L’interface qui les scinde est
nette et minimale au début. C’est justement ce que l’on cherche à éviter pour un assaisonnement
réussi. Pour ce faire, on produit une émulsion, c’est à dire une myriade de petites gouttelettes
très fines qui donne l’illusion d’un mélange. Cependant, cette action requiert de passer d’une
situation où l’interface est petite et d’un seul tenant à un grand nombre d’interfaces entre chaque
goutte de vinaigre comprise dans l’huile ! Or, on vient de le voir, augmenter la taille de l’interface
demande de l’énergie et c’est exactement ce à quoi notre poignet a servi !
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(a) (b)

Figure 2.3 – Interprétation (a) thermodynamique et (b) mécanique de la tension de surface.

Liquide Température (◦C) γ (10−3Nm−1)

Eau 25 71.97
Eau 50 67.91

Ethanol (40%) 25 29.63
Eau + savon 25 ≃ 30

Mercure 20 436

Table 2.1 – Quelques valeurs typiques de la tension superficielle entre l’air et certains liquides.

Interprétation mécanique

On peut également interpréter la tension superficielle d’un point de vue mécanique. Pour ce
faire, on imagine le dispositif expérimental suivant : un cadre métallique ainsi qu’une tige posée
sur ce cadre et parallèle à un coté du cadre. On crée ensuite un film d’eau savonneuse entre la
tige et une partie du cadre tout en maintenant la tige fixe. Lorsqu’on lâche la tige, on observe sa
mise en mouvement qui a pour conséquence (ou plutôt comme origine) de minimiser la surface
du film de savon. Même si le cadre était légèrement incliné, on pourrait encore observer ce
phénomène de sorte que la tige remonterait la pente. D’un point de vue plus formel, le travail
fourni pour que la tige se déplace d’une longueur dx est

δW = Fdx = 2γLGldx ,

où le facteur 2 trouve son origine dans le nombre d’interfaces entre le film de savon et l’air (une
sur la face supérieure et l’autre sur la face intérieure). Ainsi, γ est également une force par unité
de longueur, normale à la tige, dans le plan de la surface et dirigé vers le liquide.

On peut voir dans le tableau 2.1 des valeurs de la tension superficielle entre l’air et différents
liquides. On remarque que l’on peut diminuer ou augmenter la tension superficielle de deux
manières différentes : soit en augmentant localement la température soit en diluant un autre
composant dans le liquide. Cette propriété a une conséquence pratique très importante sur
certains insectes. En effet, tout une série d’entre eux se déplace sur la surface de l’eau grâce à
la tension superficielle. Or lorsque leur milieu est contaminé, par des détergents par exemple,
cela conduit à la chute de la tension superficielle du liquide. Leur poids n’est plus compensé par
celle-ci et, comme si le sol se dérobait sous leurs pieds, ils meurent noyés.

Dans la suite de ce travail, la tension superficielle sera simplement notée γ et représente
toujours la tension de surface entre un liquide et l’autre phase la plus pertinente. Lorsque la
situation peut induire en erreur, on spécifiera les phases en question.
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2.2.2 Pression de Laplace

Après avoir défini la tension superficielle sur une surface plane, on s’intéresse à l’interface
courbe de deux liquides grâce à la loi de Laplace. Elle permet d’expliquer des phénomènes tels
que le vieillissement de mousses et la stabilité de certaines interfaces. La loi de Laplace associe
une différence de pression à l’interface courbe séparant deux fluides. On illustre ceci dans le
cas d’une goutte (sphère) d’huile plongée dans l’eau. Pour les raisons discutées dans la section
précédente, la goutte d’huile adopte la géométrie la plus énergiquement favorable, c’est-à-dire
celle qui minimise sa surface, correspondant à celle d’une sphère. On suppose qu’elle possède un
rayon R et on note la tension superficielle entre l’eau et l’huile γ. Si l’on déplace l’interface de
la goutte d’une distance dR, le travail des forces de pression et capillaire s’écrit

δW = −pintdVint − pextdVext + γdA , (2.3)

où dVint = 4πR2dR = −dVext et dA = 8πRdR sont respectivement l’augmentation de volume
et de surface de la goutte, pint et pext sont les pressions au sein de la goutte d’huile et de l’eau
environnante. A l’équilibre mécanique, on doit avoir que δW = 0, soit

∆p = pint − pext =
2γ

R
. (2.4)

Si l’on cherche à généraliser cette loi à des surfaces quelconques, on obtient le résultat suivant
portant le nom de théorème de Laplace

∆p = γ

(
1

R
+

1

R′

)
= γ , (2.5)

où C = 1
R + 1

R′ est la courbure de l’interface selon deux coordonnées caractérisant celle-ci.
Il existe donc un différentiel de pression entre l’intérieur d’une goutte et le milieu environnant,

et ce différentiel est d’autant plus important que la courbure de l’interface est importante. On
comprend à présent pourquoi les petites gouttes, dont le rayon de courbure est plus important,
vont se vider dans les grosses à leur contact. En effet, la pression étant plus importante dans les
gouttes plus petites, il y aura un transfert de gaz au travers de l’interface perméable des gouttes
ce qui aura pour conséquence de vider la petite goutte dans la grosse. Ce phénomène s’accentue
d’ailleurs au cours du transfert de matière car plus la goutte se vide et plus elle s’amoindrit
augmentant ainsi son rayon de courbure et donc la différence de pression.

La pression de Laplace joue un rôle prépondérant dans la microfluidique sur puce, un domaine
assez neuf. Elle y permet la formation de microgouttelettes et leur pilotage au travers de canaux
imprimés sur des puces. Il s’agit d’un domaine assez prometteur autant d’un point de vue de la
santé que de la biologie au vu de la précision des mesures possibles.

2.2.3 Nombres adimensionnels

Les nombres adimensionnels sont, comme leur nom l’indique justement, des quantités sans
dimension comparant l’influence de différents phénomènes tels que la gravité, la capillarité,
la convection, ... Ils permettent d’évaluer rapidement les paramètres clés d’un phénomène. Ils
sont fréquemment employés en hydrodynamique car l’équation maîtresse des fluides, l’équation
de Navier-Stockes, est une équation dont il n’existe pas de solution analytique. Par conséquent,
pour prédire dans les grandes lignes le comportement d’un fluide dans une certaine situation sans
recourir aux calculs numériques, il s’avère pertinent de calculer certains nombres adimensionnels
de sorte à pouvoir émettre des hypothèses qui simplifieront l’équation de Navier-Stockes. Cela
autorise des prédictions analytiques tout à fait pertinentes malgré les simplifications.

Un bel exemple de la pertinence de la physique adimensionnelle a été donné par Sir Geoffrey
Taylor en 1949. A l’aide de clichés sur l’évolution du premier champignon nucléaire à New
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Figure 2.4 – Déformation d’une goutte de mercure (λc ≃ 2mm) de tailles variables posées sur un
plan solide en verre sous l’effet de la gravité. Plus la taille de la goutte est importante et plus les forces
de pesanteur deviennent dominantes et aplatissent la goutte. Image issue de [16].

Mexico, il a su déterminer la puissance de la bombe à l’origine du champignon sans connaissances
particulières sur la physique d’une déflagration [15].

On détaille à présent trois nombres adimensionnels qui seront utiles dans la suite de l’exposé.
Le nombre de Bond, Bo, décrit la compétition entre la force de gravité et la force capillaire pour
un fluide. Il est défini par

Bo =
ρgr2

γ
=

Gravité
Capillarité

, (2.6)

où ρ est la masse volumique du fluide, g est l’accélération de pesanteur et r et la taille caracté-
ristique de la goutte. Il donne par exemple une indication sur la géométrie d’une goutte posée
sur substrat plan. Lorsque Bo ≫ 1, la gravité l’emporte et la goutte adopte une géométrie assez
plate et étalée. Au contraire, lorsque Bo ≪ 1, la capillarité domine, la goutte est ramassée et
d’allure sphérique. Ces deux géométries peuvent être observées sur la figure. La valeur Bo = 1
permet de définir la longueur capillaire

λc =

√
γ

ρg
. (2.7)

La longueur capillaire est de 2.7mm pour l’eau pure et de 1.5mm pour l’huile et l’eau savonneuse.
Une illustration de cette compétition est représentée sur la figure 2.4.

Le nombre capillaire Ca, décrit la compétition entre les effets visqueux et capillaires. Il est
défini par la relation

Ca =
ρµv

γ
=

Viscosité
Capillarité

, (2.8)

où µ est la viscosité cinématique (que l’on détaille plus en profondeur dans la section suivante)
et v est la vitesse de la goutte. Dans le cadre de la micro-fluidique et plus précisément de
l’écoulement de gouttes au sein de micro canaux, pour les grands nombres capillaires, la viscosité
l’emporte et la géométrie des gouttes est influencée par l’écoulement environnant. Dans le cas
contraire, la goutte reste entière et résiste aux forces visqueuses externes [17], comme illustré à
la figure 2.5.

Finalement, le nombre de Weber, We, décrit la compétition entre l’inertie et la capillarité. Il
est défini par

We =
ρrv2

γ
=

Inertie
Capillarité

. (2.9)

Une belle illustration de ce nombre adimensionnel est donnée par la chute d’une goutte sur un
plan horizontal mouillé. Dans le cas d’un grand Weber, l’inertie est telle que la goutte s’écrase
totalement, pouvant au passage former de belles structures éphémères. Alors que si la capillarité
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Figure 2.5 – Illustration de la compétition entre la viscosité et la capillarité. Pour les fluides très
visqueux, la goutte suit les écoulements en dépit de l’unicité de sa structure (images du haut) alors que
l’inverse se produit pour les faibles viscosité (images du bas). Image issue de [17].

(a) (b)

Figure 2.6 – Nombre de Weber en fonction de la déformation de la goutte lors de l’impact avec
une surface. Pour (a) We ≪ 1, la tension superficielle empêche la goutte de s’écraser totalement lors de
l’impact alors que pour (b) We ≫ 1, l’allure de la goutte est complètement modifiée lors de l’impact.
Pour les très grands We, l’enveloppe de la goutte peut même se fractionner en une collerette de gouttes
plus petites. Images issues de [18].

domine, après une courte transition où la goutte s’aplatit légèrement, la goutte retrouve une
forme quasi sphérique comme on peut le voir sur la figure 2.6.

2.2.4 Viscosité d’un fluide

Pour clôturer cette section, on revient sur une propriété des fluides qu’on a brièvement
énoncé plutôt : la viscosité. Pour l’introduire [16], on imagine un fluide immobile, contenu entre
deux plaques infinies, horizontales, parallèles et distantes d’une longueur h. On met ensuite en
mouvement la plaque supérieure à une vitesse constante V0 et on attend suffisamment longtemps
pour que le système soit stationnaire, comme c’est illustré sur la figure 2.7. Lorsque c’est le cas,
un profil de vitesse linéaire et oblique est présent dans le fluide, couramment appelé écoulement
de Couette plan. Ce profil admet une vitesse nulle le long de la plaque inférieure et une vitesse
égale à V0 le long de la plaque supérieure, de sorte à respecter la condition de continuité des
vitesses aux interfaces. L’équation du profil de vitesse est donnée par

vx(y) = V0
y

h
(2.10)

que l’on réécrit comme
vx(y)

y
=

V0

h
. (2.11)

Si l’on cherche à caractériser la force horizontale Fx par unité de surface S nécessaire à maintenir
le système stationnaire, force qui est en module égale à la force de friction entre le fluide et la
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⃗Fx⃗V0

⃗vx(y)

⃗y

⃗x

h

Figure 2.7 – Un fluide compris entre deux plaques distantes d’une distance h est contraint de
se mettre en mouvement sous l’action d’une force Fx appliquée sur la plaque supérieure. Après une
période transitoire, il atteint un régime stationnaire caractérisé par un profil de vitesse linéaire. C’est
un écoulement de Couette plan.

plaque supérieure, on peut écrire la relation de proportionnalité suivante

Fx

S
∝ V0

h
∝ vx(y)

y
. (2.12)

On admet que la relation exacte est donnée par

Fx

S
= η

∂vx
∂y

, (2.13)

où η est la viscosité dynamique (car associée à une force) qui a pour unité [Pa s]. Le terme Fx/S
est communément appelé le cisaillement et il aura son importance par la suite. Conformément à
notre intuition, plus un liquide est visqueux et plus il est compliqué de le mettre en mouvement.
D’un point de vue physique, la viscosité est essentielle car elle permet le transfert de la quantité
de mouvement entre les différentes couches composant le fluide.

On définit également la viscosité cinématique µ comme étant égale à

µ =
η

ρ
, (2.14)

où ρ est la masse volumique du fluide. La viscosité cinématique a pour unité
[
m2 s−1

]
. Cepen-

dant, le centi Stocke est souvent utilisé et on a que

1 cSt = 10−6 m2s−1 . (2.15)

2.3 Goutte sur un substrat
Une fois exploré le comportement d’une goutte et de son interface au sein d’un fluide envi-

ronnant, on regarde plus attentivement la manière dont elle se comporte lorsqu’on la pose sur un
substrat plan. On verra que cela dépend non seulement de la nature de la goutte mais également
de celle du substrat. D’un point de vue physique, on passe d’une situation caractérisée par une
interface scindant deux composants à une situation où l’interface peut scinder soit deux soit
trois composants. On examine ensuite ce qu’il se passe lorsqu’on incline le plan sur lequel repose
la goutte.
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γSG γSL

γLG

Figure 2.8 – Est-il plus favorable d’un point vue énergétique que le substrat soit couvert par un
gaz (à gauche) ou par le liquide (à droite) ? C’est le paramètre d’étalement S, fonction des différentes
tensions de surface γij qui en décide (S = Solide, G = Gaz, L = Liquide).

2.3.1 Coefficient d’étalement
Quand on pense à des gouttes posées sur des surfaces planes et horizontales, deux types de

comportements nous viennent en tête. D’un coté la goutte posée sur une feuille de lotus qui
admet une géométrie quasi sphérique, et d’un autre coté, la goutte sur la table en verre du
salon qui semble s’étaler de tout son long. La grandeur qui permet de distinguer les différents
types de comportements s’appelle l’étalement S et il mesure quelle configuration minimise au
mieux l’énergie de surface entre, d’une part, un solide (S) ayant une interface avec un gaz (G),
c’est-à-dire une interface sèche, et d’autre part, un solide ayant une interface avec un liquide (L)
ayant lui-même une interface avec un gaz, une interface mouillée, comme illustré sur la figure
2.8.

S = Esubstrat
sec − Esubstrat

mouillé , (2.16)

que l’on peut réexprimer en terme de tensions superficielles comme

S = γSG − (γSL + γLG) , (2.17)

où les γij sont les tensions superficielles entre les interfaces. Deux situations peuvent donc se
présenter

— Soit S < 0 et donc Esubstrat
sec < Esubstrat

mouillé de sorte que le système minimisera son énergie en
empêchant la goutte de s’étaler de trop, elle adoptera une géométrie en forme de calotte
formant un angle θ avec le substrat. C’est ce qu’on qualifie de mouillage partiel. Si θ > π

2 ,
on le qualifie de plutôt non mouillant (représenté par θ1 sur la figure 2.9) et si θ ≤ π

2 , on
qualifie le liquide de plutôt mouillant (représenté par θ2).

— Soit S > 0 et donc Esubstrat
mouillé < Esubstrat

sec . Par un argumentaire similaire à précédemment, le
système favorisera l’étalement de la goutte sur le substrat, de sorte que le fluide s’étendra
jusqu’à ne former qu’une fine pellicule de quelques atomes d’épaisseur (représenté par θ3
qui tend vers 0◦ sur la figure 2.9). C’est ce qu’on qualifie de mouillage total.

2.3.2 Relation de Young
On a mentionné dans la courte introduction la section 2.3 un élément particulier qu’est

l’intersection de trois interfaces. Cet élément constitue en réalité une ligne de démarcation entre
les trois phases que l’on nomme ligne de contact. A cette jonction, les trois différentes forces de



2.3. GOUTTE SUR UN SUBSTRAT 11

θ1 θ3θ2

Figure 2.9 – Angle de contact en fonction de l’étalement, cet angle peut varier grandement en
fonction de la nature du liquide et du substrat.

tension de surface entrent en compétition et c’est par exemple une situation que l’on rencontre
à la jonction du bord de la goutte avec le substrat et l’air environnant comme on le voit sur
la figure 2.10. La projection de ces trois forces sur l’axe horizontal donne lieu à la relation de
Young-Dupré

γLG cos θE = γSG − γLS

où θE est l’angle d’équilibre choisi par la goutte le long de la ligne de contact. On peut réintro-
duire ce résultat dans l’équation (2.17) de sorte à obtenir

S = γLG(cos θE − 1) (2.18)

d’où l’on déduit que l’on ne peut définir θE que dans le cas d’un paramètre d’étalement S négatif
puisque γ est supérieur à 0. On remarque également que plus le liquide est non mouillant et plus
l’angle de contact augmente. La composante verticale de la somme des forces est compensée par
une force de réaction du solide. Il est intéressant de noter que dans le cas de substrat flexible,
la goutte peut déformer le substrat. C’est par exemple ce qui arrive lorsqu’une goutte d’eau est
posée sur de la peinture encore fraîche, une auréole se crée.

L’équation de Young n’est valide que dans un cadre bien défini qu’est celui des petites
gouttes et des substrats parfaits. C’est-à-dire pour les gouttes dont la taille est inférieure à la
longueur capillaire et pour des substrats à la fois parfaitement lisses (sans défauts physiques) et
chimiquement inertes.

2.3.3 Effet du substrat sur l’étalement

Que se passe-t-il si l’on sort du cadre restreint dans lequel la relation de Young est valable ?
Le substrat peut avoir deux effets notables sur la géométrie d’une goutte lorsqu’il n’est pas
parfaitement lisse ou qu’il est chimiquement actif.

D’une part, il fait en sorte que l’angle de contact n’est plus unique mais est compris dans
un certain intervalle. On appelle ce phénomène l’hystérésis de l’angle de contact. D’autre part,
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θE

γLG

γSLγSG

Figure 2.10 – Illustration des trois forces de tension de surfaces agissant sur la ligne triple.

l’angle initial lorsqu’on pose la goutte sur le substrat n’est plus forcément celui prédit par la
relation de Young-Dupré.

Hystérèsis de l’angle de contact

On commence par détailler l’hystérésis de l’angle de contact. Si l’on pose une goutte sur
un substrat, l’angle de contact sera approximativement l’angle prédit par la formule de Young-
Dupré (comme on l’expliquera juste après). Si ensuite, on ajoute du fluide à cette goutte à
l’aide d’une seringue, on observe que l’angle de contact augmente sans que la ligne de contact ne
bouge. De plus, si on continue à injecter du fluide dans la goutte, il arrive un moment donné où
l’angle de contact cesse d’augmenter et où la ligne de contact se met finalement en mouvement.
Cet angle particulier est appelé l’angle de contact d’avancée θA. De manière similaire, si l’on
reprend une goutte identique à celle du début de l’expérience précédente et qu’on en retire du
fluide, l’angle de contact diminue jusqu’au moment où la ligne de contact se met en mouvement.
Ce second angle particulier s’appelle l’angle de reculée θR. D’une manière générale, on se rend
compte que l’angle de contact entre la goutte et le substrat dépend donc de la manière dont on
a préparé le système.

Cet effet permet d’expliquer pourquoi, lorsqu’on boit de l’eau avec une paille, il peut rester
quelques gouttes piégées à l’intérieur et qui semblent ne jamais descendre. En effet, on peut
montrer que sans hystérésis de l’angle de contact, il n’existe pas d’équilibre possible entre le
poids de la colonne de liquide et les forces de tensions de surface.

Rugosité et inhomogénéités

On s’intéresse ensuite d’un point de vue un peu plus formel à l’impact de la rugosité et des
inhomogénéités du substrat sur l’angle de contact [14].

Concernant l’impact de la rugosité, Wenzel [19] a été le premier à modéliser ce phénomène. Il
a supposé que l’angle de contact local, à l’échelle de la rugosité, était bien donné par la relation
de Young. A partir de cette hypothèse, il a cherché à déterminer l’angle apparent θ∗, celui qu’on
observe à notre échelle, sur une surface rugueuse en supposant l’échelle de la rugosité bien plus
petite que celle de la goutte. Pour ce faire, il considère un déplacement infinitésimal dx le long de
la ligne de contact et parallèlement à la surface. Suite à ce déplacement, les énergies de surface
changent d’une quantité dE :

dE = r(γSL − γSV )dx+ γLV dx cos θ
∗ (2.19)
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Figure 2.11 – La rugosité est égale au quotient de l’aire de la surface en contact (en rouge) par l’aire
de la surface projetée (en vert). Pour une surface lisse, on a donc r = 1 mais pour tous les autres types
de surface, on a r > 1.

où r est la rugosité du solide et correspond au ratio de l’aire totale de la goutte en contact avec
le substrat sur l’aire projetée comme c’est illustré sur la figure 2.11. La rugosité vaut un pour
une surface lisse mais est supérieur à un pour tout autre type de surface. L’équilibre s’établit
naturellement pour la valeur la plus faible de l’énergie. Pour une surface lisse (r = 1), on retrouve
la relation de Young mais pour r > 1, on obtient la relation suivante :

cos θ∗ = r cos θE (2.20)

où θE est l’angle d’équilibre déterminé par la formule de Young-Dupré.
Cette relation permet de remarquer un phénomène intéressant. Si l’on suppose un milieu

rugueux (r > 1) et hydrophile (θE < 90◦), on aura θ∗ < θE de sorte que l’angle réel est
plus faible que l’angle prédit par Young. De manière similaire, pour une surface hydrophobe
(θE > 90◦), on aura θ∗ > θE . Ainsi, la rugosité du substrat aura tendance à renforcer la qualité
du mouillage.

Quant à l’impact de la composition du substrat sur l’angle de contact [14], le modèle Cassie-
Baxter [20] nous permet de saisir l’essentiel du problème. On suppose une surface composée de
deux matières distinctes ayant des propriétés de mouillage différentes, caractérisées par deux
angles de contact distincts, θ1 et θ2 et de deux fractions de surface, f1 et f2 tel que f1 + f2 = 1.
En supposant des domaines dont la taille est plus petite que la taille de la goutte, un déplacement
dx le long de cette interface donne lieu à une variation d’énergie

dE = f1(γSL − γSV )1dx+ f2(γSL − γSV )2dx+ γLV dx cos θ
∗ (2.21)

La relation de Young liée au principe de minimisation de l’énergie donne ainsi la relation :

cos θ∗ = f1 cos θ1 + f2 cos θ2 (2.22)

de sorte que l’angle apparent est compris dans l’intervalle [θ1, θ2] et correspond à une moyenne
sur le cosinus des angles.

2.3.4 Mouvement d’une goutte sur un substrat incliné
On incline à présent le plan sur lequel reposait la goutte. Tant que l’inclinaison du plan ne

dépasse pas un certain seuil, on remarque que la goutte est fixe mais que ses angles de contacts
varient. L’angle de contact sur le bas de la pente augmente tandis que celui sur le haut de la
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Figure 2.12 – Modification de l’angle de contact et apparition d’une hystérésis lorsque le substrat
n’est pas physiquement parfait et chimiquement inerte.
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Figure 2.13 – (a) Goutte sur un plan incliné et (b) Différentes géométries de goutte en fonction de
leur vitesse.
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pente diminue. Ensuite, une fois un certain seuil passé, la goutte se met en mouvement et atteint
très rapidement une vitesse limite. Celle-ci est d’autant plus grande que le plan est incliné. Au
fur et à mesure que la vitesse augmente, la géométrie de la goutte évolue. Initialement de forme
ovale, la goutte s’allonge et s’affine avec la vitesse. L’arrière forme petit à petit une pointe qui
évolue vers un triangle qui lui-même s’incurvera jusqu’à se déstabiliser et laisser derrière la
goutte une traînée de gouttelette, dites satellites. Ces dernières sont d’autant plus grandes que
la goutte mère se déplace rapidement. L’apparition d’un coin est d’ailleurs un résultat étonnant
puisqu’usuellement, les fluides n’adoptent pas de géométries en coin à cause des surpressions
locales qu’ils engendrent suite au rayon de courbure important qu’ils supposent.

Frenkel [21], à l’origine de cette description apporte un ensemble d’éléments pour justifier
ces différents comportements. Il se sert de l’hystérèsis de l’angle de contact pour expliquer l’ap-
parition d’angles seuils avant que la goutte ne se mette en mouvement. Ces angles définissent
de nouveaux angles d’avancement et de recul qualifié de dynamiques, θdA et θdR, qui sont pro-
portionnels à l’inclinaison δ du plan et aux angles θA et θR caractérisant la situation statique.
Ensuite, Frenkel trouve l’expression du nombre de Bond critique, cela lui permet de trouver
la vitesse limite de la goutte lorsqu’elle se déplace. Finalement, il a réussi, à l’aide du nombre
capillaire associé au système, à caractériser les différentes transitions de géométries de la goutte
en fonction de l’inclinaison du plateau et du rayon de courbure de l’arrière de la goutte.

On peut voir sur la figure 2.13 un exemple de schéma de la situation avec les angles d’avance-
ment θdA et de reculement θdR ainsi que l’inclinaison δ de plan. On y voit également les différentes
géométries prises par la goutte en fonction de sa vitesse.

Au niveau du déplacement de la goutte, Mahadevan [22] signale qu’il existe deux comporte-
ments distincts en fonction de la mouillabilité du substrat. Pour ceux qui sont hydrophobes, la
goutte roule sur le substrat à une vitesse constante déterminée par le ratio entre la dissipation
visqueuse et l’énergie potentielle gravifique. Tandis que pour les substrats hydrophiliques, la
goutte glissera le long du plan à une vitesse également constante.

2.4 Goutte sur fibres

On arrive finalement sur le type de substrat qui nous intéresse dans notre étude, la fibre. Bien
que paraissant similaires, ces deux situations se différencient par la présence d’une courbure non
nulle à la base de la goutte ainsi que par la possibilité d’enrober la fibre là où précédemment,
elle n’avait d’autre choix que d’être posée sur le substrat plan. On va donc être confronté à
une myriade de propriétés étonnantes et amusantes dont on n’aurait pas soupçonné l’existence
plutôt.

Il faut cependant commencer par introduire deux phénomènes physiques importants pour
bien saisir la suite de l’exposé. Le premier concerne l’instabilité de Rayleigh-Plateau et le second,
l’équation de Landeau-Levich-Derjaguin (LLD en abrévié).

2.4.1 Instabilité de Rayleigh-Plateau

L’instabilité de Rayleigh-Plateau est un phénomène que l’on rencontre fréquemment dans
la vie de tous les jours. Typiquement, lorsqu’on fait couler l’eau de son robinet à faible débit,
on peut observer que le filet d’eau s’amenuise au fur et à mesure que les particules qui le
compose gagnent en vitesse jusqu’au moment où il se brise en une suite de gouttelettes. C’est la
tension superficielle qui est le moteur de cette instabilité car il devient à un moment donné plus
favorable d’un point de vue énergétique de réduire la surface totale du cylindre en le brisant
en une multitude de sphères à la surface moindre pour un volume constant. Ce phénomène se
déroule également sur les toiles d’araignée chaque matin, la rosée se dépose uniformément sur
le fil et l’instabilité va briser la colonne de fluide entourant la fibre pour la transformer en une
suite régulière de gouttes d’eau. C’est précisément ce phénomène que l’on va détailler dans cette
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λ = 2π
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R e⋆
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Figure 2.14 – Schéma d’une instabilité de Rayleigh Plateau. Le cylindre initial (en bleu clair) se
déforme sous l’action de la tension de surface qui cherche à créer une structure avec une plus faible
surface correspondant à une suite de sphères.

Figure 2.15 – Instabilité de Rayleigh plateau se développant au cours du temps. On observe bien
la formation de gouttes équidistantes ainsi que la dominance de la force capillaire sur la gravité par la
forme parfaitement axisymétrique. Issu de [23].
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section, l’instabilité de Rayleigh-Plateau dans le cadre d’un manchon de fluide entourant une
fibre. Une photo montrant l’évolution de l’instabilité au cours du temps est visible sur la figure
2.15.

Pour commencer, on remarque sur l’illustration précédemment mentionnée que les gouttes
sont axisymétriques le long de la fibre. C’est-à-dire que la capillarité domine la gravité qui aurait
tendance à faire pendre les gouttes. Pour vérifier cela, on calcule le nombre de Bond associé à
la situation

Bo =
ρ g R2

γl
=

R2

λc
≃ 0.01 , (2.23)

où R = rf + emax, avec rf le rayon de la fibre et emax la hauteur de la goutte, λc la longueur
capillaire associée au système et γ la tension superficielle entre le liquide et l’air. Le calcul est
fait en considérant une fibre d’une centaine de micron de diamètre.

Avant de calculer la variation d’énergie de surface associée à cette transition, on écrit la
modulation de l’épaisseur e du film lorsque l’instabilité prend place.

e = e⋆ + δe cos qx , (2.24)

où e⋆ est la hauteur moyenne de la déformation, δe l’amplitude verticale de la déformation
et q = 2π/λ est le vecteur d’onde caractérisant l’amplitude longitudinal de la déformation.
Si on nomme e0 l’épaisseur initiale du manchon, on remarque que la conservation du volume
impose que e⋆ < e0. C’est-à-dire que la hauteur moyenne de la déformation est plus basse que
la hauteur initiale du manchon. D’une part, c’est intuitif car on se situe sur une fibre à symétrie
cylindrique donc pour atteindre une certaine hauteur il faut élever plus de matière que si on se
situe sur un plan, et d’autre part, cela donne une première indication sur le fait que l’instabilité
va effectivement réduire la taille de l’interface. A l’aide d’un développement de Taylor justifié
par δe ≪ e⋆, c’est-à-dire qu’on suppose que les déformations sont petites vis à vis de l’épaisseur
moyenne du fluide, on peut réécrire cette expression comme

e⋆ = e0 −
δe

4R
. (2.25)

Ainsi, la variation d’énergie est donnée par

∆E =

∫ λ

0

2π(rf + e)γds− 2π(rf + e0)γλ . (2.26)

En supposant que la surface est faiblement inclinée, on peut réécrire ce résultat comme

∆E =
1

4
γ
δe

R
2πλ(q2R2 − 1) . (2.27)

On remarque que l’énergie diminue si le vecteur d’onde vérifie la condition q(rf + e0) < 1, c’est
à dire si la longueur d’onde est supérieur au périmètre du cylindre initial

λ < 2πR . (2.28)

Une analyse non linéaire du problème permet de trouver la longueur d’onde qui sera observée
en pratique, il s’agit de

λ⋆
c = 2π

√
2rf , (2.29)

et qui donne au chapelet de gouttes cet espacement si régulier. On peut également déterminer
le temps caractéristique de croissance de l’instabilité

τ⋆ = 12
ηr4f
γe30

. (2.30)
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On termine cette section sur deux remarques. La première est qu’il arrive d’observer entre les
gouttes issues d’une instabilité primaire, et que l’on nommera gouttes primaires, de plus petites
gouttes, nommées gouttes satellites, également équidistantes. Celles-ci se forment à partir d’une
instabilité secondaire prenant place sur le manchon de liquide liant deux gouttes primaires. Ce
phénomène peut se dérouler plusieurs fois (instabilité tertiaire, quaternaire, ...) menant à la
création de gouttes satellites d’une taille de plus en plus petite.

La seconde remarque précise la première. Il existe une épaisseur minimale de film de sorte
qu’une fois atteinte, cette taille ne permet plus la déstabilisation du film. Cette stabilisation du
manchon est due à la force de van der Waals et mène à des manchons d’une taille de l’ordre de
la dizaine de nanomètre.

2.4.2 Loi de Landeau-Levich-Derjaguin

Entraînement par une plaque

On s’intéresse à présent à ce qu’il se passe lorsqu’on retire délicatement une plaque verticale
à moitié immergée dans un bain. Pour commencer, si la surface est mouillante, la jonction entre
le solide et le liquide se fera avec un angle de contact nul. Cela engendre donc la présence d’un
ménisque d’une taille caractéristique de la longueur capillaire au voisinage de la ligne de contact.

Lorsqu’on retire doucement la plaque du liquide avec une vitesse V , celle-ci entraîne avec
elle le fluide avoisinant de sorte qu’elle se couvre progressivement d’un fin film de liquide au fur
et à mesure qu’on la sort du bain. Ce film est le résultat d’une compétition prenant place aux
deux interfaces. A l’interface solide/liquide, la viscosité η du fluide et la condition de continuité
des vitesses fait en sorte que le fluide est obligé de suivre en partie le mouvement de la plaque.
Cependant, à l’interface liquide/air, la création de ce film augmente la surface de l’interface γ ce
qui va à l’encontre de la tension superficielle. Par conséquent, le nombre adimensionnel le plus
à même de nous renseigner sur cette situation est le nombre capillaire

Ca =
ηV

γ
. (2.31)

Ainsi, on peut déterminer l’épaisseur e du film entraîné par la plaque

e ∼ λcCa2/3 . (2.32)

Cette relation porte le nom des chercheurs qui l’ont exprimée : Landeau, Levich et Derjaguin
(LLD en abrévié).

On remarque que puisque Ca est proportionnel à à la vitesse V , plus la vitesse augmente et
plus l’épaisseur de film entraîné augmente et donc sa masse. Cependant, il arrive un point ou
l’effet de la gravité sur le film, que l’on a jusqu’à présent négligé, ne peut plus être ignoré. Cette
transition de régime s’effectue typiquement lorsque le nombre capillaire avoisine l’unité. Si l’on
dépasse cette limite alors l’épaisseur du film est donnée par l’équation de Derjaguin

e ∼ λcCa1/2 . (2.33)

On retrouve bien la continuité entre ces deux expressions lorsque que Ca = 1.

Entraînement par une fibre

Pour un petit nombre capillaire, on peut montrer que l’épaisseur du film de liquide entraîné
par une fibre verticale de rayon rf varie comme

e ∼ rfCa2/3 (2.34)
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Figure 2.16 – Différentes formations possibles d’un liquide sur une fibre. De gauche à droite, un
manchon, un tonneau et une cloche.

2.4.3 Dynamique de l’étalement

Pour les gouttes posées sur un substrat, on a vu que la dynamique d’étalement était guidée
par le coefficient d’étalement S défini aux équations (2.16) et (2.17). Pour rappel, lorsque S
est positif, il est énergétiquement favorable pour la goutte de s’étaler jusqu’à former un fin film
alors que lorsque S est négatif, la goutte minimise sa surface de contact et adopte une forme
plus sphérique avec un angle de contact θE bien marqué à la ligne triple.

Pour les gouttes posées sur une fibre (de rayon rf ), Brochard [24] a montré que la situation
est différente à cause de la courbure du substrat. Pour comprendre cette dynamique, on imagine
deux cas extrêmes : S ≃ 0 et S ≫ 0.

Dans le premier cas, lorsqu’on dépose une goutte, elle ne s’étale pas comme on s’y attend.
Au contraire, elle forme une calotte plutôt sphérique. La raison de cette première propriété
réside dans le fait que la taille des interfaces varie lorsqu’on change de substrat. En effet, l’aire
de l’interface liquide/air augmente lorsqu’une goutte passe d’un substrat plan à un substrat
cylindrique. Ceci induit une augmentation de l’énergie lié à l’interface liquide/air et augmente
donc la valeur de S pour laquelle on observe un étalement complet. Par contre, pour le cas
S ≫ 0 on observe bien que la goutte mouille complètement la fibre et forme un manchon. Le
point d’équilibre entre ces deux régimes ne se situe donc pas en S = 0 comme pour une surface
plane mais en un Scrit plus grand que 0. Les auteurs ont calculé cette valeur et l’ont estimée
comme valant :

Sc =
3

2
γ

(
r

rf

)2/3

(2.35)

où r est la taille d’une molécule du fluide. Cela signifie que même pour des liquides totalement
mouillants, des gouttes peuvent se former sur des fibres. En pratique, l’épaisseur de fluide associée
à une formation manchon est si faible qu’il est difficile de l’observer.

2.4.4 Géométrie des gouttes

Comme on vient de le voir, les gouttes peuvent soit s’étaler le long de la fibre soit garder une
géométrie sphérique. Dans ce dernier cas, deux conformations différentes peuvent être observées
en fonction du diamètre de la goutte, de son volume et des propriétés de mouillage. La première
est la formation dite du "tonneau" où la goutte fait le tour de toute la fibre, on dit qu’elle est
axi-centrée. Elle survient généralement pour les grosses gouttes ou pour de petites fibres. La
seconde est la formation dite de la "cloche" où la goutte est accrochée à un flan de la fibre et
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n’en fait plus le tour. Celle-ci apparaît plutôt lorsque le volume de la goutte est petit ou encore
lorsque la fibre est épaisse. Les trois formations possibles sont visibles sur la figure 2.16.

La forme en tonneau a été étudiée par Carroll [25] qui a déterminé le profil de la goutte en
négligeant la gravité. Pour ce faire, il est parti de l’équation de Laplace traduisant une condition
d’équilibre par un saut de pression constant le long de l’interface liquide/gaz. Cette équation est
ensuite résolue à l’aide de conditions de bords imposant que les extrémités de la goutte touchent
la fibre avec un angle égal à l’angle de contact. Ce résultat permet à Carroll de déterminer le
volume de la goutte lorsque l’angle de contact avec la fibre est nul. Par la suite, McHale [26] a
défini une énergie de surface

F = γLGSLG + (γSG − γSG)SSG (2.36)

où S sont les différentes interfaces entre les phases. Il a intégré les résultats de Carroll pour
déterminer théoriquement les angles de contacts d’équilibre lorsqu’ils ne sont pas nuls et d’autres
propriétés de la goutte comme sa longueur ou son volume. Les résultats ne possédant pas de
solutions analytiques, il les a simulées numériquement.

Par ailleurs, McHale a également observé et expliqué la présence d’un point d’inflexion dans
le profil d’une goutte en tonneau. En effet, suite à l’équation de Laplace, il en découle que les
deux rayons de courbure de la goutte sont positifs sur le sommet de la goutte. Cependant, si
la goutte veut s’étaler le long de la fibre, elle doit réduire l’un de ses rayons de courbures pour
respecter la conservation du volume. Le long de la ligne de contact, la surpression engendrée par
la baisse de courbure peut être réduite en inversant le signe d’un des rayons de courbure le long
du profil de la goutte, ce qui peut amener à un point d’inflexion dans ce dernier.

Ainsi, au sein même de la géométrie tonneau, deux sous géométries apparaissent, l’une où
la goutte n’a pas de point d’inflexion et l’autre où il est présent. En fonction du volume de la
goutte, ce point d’inflexion peut se produire proche des extrémités de la goutte et amener le
cas particulier d’une goutte possédant un angle de contact nul. Alors que cette condition amène
à l’étalement complet de la goutte posée sur un substrat plan, on voit que ce n’est pas le cas
pour une goutte posée sur un substrat possédant une courbure. Plus formellement, McHale a
déterminé la valeur de l’angle du point d’inflexion apparent comme étant

tan θi = ±
(
n− a

2
√
an

)
où n est le ratio entre le rayon maximal de la goutte et le rayon de la fibre et a est donné par
a = (cos θ − 1)/(n − cos θ). Ainsi, de manière générale l’angle de contact est bien différent de
l’angle d’inflexion sauf dans le cas où n = (1 + sin θ)/ cos θ où ils se confondent. Plus le volume
de la goutte est grand par rapport à la taille de la fibre et plus l’angle d’inflexion se rapproche
du bord du profil de la goutte. Ainsi, pour les grosses gouttes, la mesure de l’angle de contact
aux extrémités de la goutte devient compliquée car l’angle d’inflexion vient parasiter l’angle de
contact.

Pour la forme en cloche, il n’existe pas de solutions connues à l’équation de Laplace et elle
requiert donc des solutions purement numériques [28]. McHale, aidé de la méthode des éléments
finis et de son expression de l’énergie libre de surface a pu simuler des profils de gouttes en
cloche. Pour ce faire, il a utilisé le logiciel Surface Evolver développé par Brakke [29]. Cette
méthode se sert d’un volume de départ à la forme quelconque et puis par itérations successives,
le programme adapte la surface à l’aide de contraintes telles que l’énergie libre de surface ou
encore un angle de contact spécifique. On peut voir quelques résultats de ses analyses sur la
figure 2.17. Cette méthode a permis à McHale de tracer un diagramme de stabilité des deux
géométries en fonction de l’angle de contact et des longueurs caractéristiques de la goutte en
comparant l’énergie de surface dans les deux situations pour un même volume.
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Figure 2.17 – Exemple de résultats de simulation du logiciel Surface Evolver par McHale [27].

2.4.5 Transition de géométrie tonneau - cloche

Les deux géométries principales d’une goutte sur fibre ayant été présentées, on s’intéresse
en détail à la transition d’une conformation à l’autre. Intuitivement, suite à ce qui a été dit
précédemment, on se rend compte que pour une goutte en formation tonneau, réduire son
volume va l’amener à changer de formation. De plus, pour cette même goutte initiale, si on vient
augmenter par la pensée le volume de la fibre progressivement, une transition de géométrie va
également prendre place. On se rend bien compte de l’influence du volume de la goutte considérée
ainsi que du rayon de la fibre dans le cas présent. Ces deux quantités n’étant pas complètement
indépendantes, on voit souvent dans la littérature le terme de volume réduit apparaître. Il est
défini comme Ω/r3f et permet de mettre en rapport ces deux quantités.

Outre ces deux éléments, Eral [30] a montré l’influence de l’angle de contact sur la transition.
Pour ce faire, il a fait passer un courant au sein d’une fibre de sorte à en modifier les propriétés
mouillantes et donc les angles de contact de la goutte. Il a ainsi observé pour une goutte donnée
la transition tonneau - cloche et la transition inverse uniquement en faisant varier l’intensité du
courant au sein de la fibre.

Ces transitions ont été largement documentées et deux critères ont été envisagés pour tenter
de les décrire lorsqu’on néglige la gravité.

— Carroll [32] fut le premier à l’envisager à l’aide d’une solution analytique de l’équation
de Laplace. Ensuite, il perturbe cette solution en déplaçant la ligne de contact tout en
conservant un volume constant. Cela induit une modification de la géométrie de la goutte
et ainsi des rayons de courbures. Il a pu mettre en évidence une frontière entre une zone
stable pour les tonneaux et une zone métastable où les deux formations cohabitent.

— Chou [31], quant à lui se base sur la minimisation de l’énergie libre de surface pour discri-
miner ces deux géométries. A l’aide de Surface Evolver, il crée des gouttes qu’il perturbe
en déplaçant la ligne de contact et il observe la réaction des gouttes en retour. Il ressort
de son étude un diagramme de phase de l’angle de contact en fonction du volume réduit
où l’on peut voir les zones dans lesquelles les géométries sont stables. On remarque bien
une zone métastable entre les deux zones stables. Dans cette zone, seule une perturbation
suffisamment puissante permet le passage d’une géométrie à une autre et vice versa.
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(a)
(b)

Figure 2.18 – Diagramme de stabilité des géométries possibles des gouttes. (a) La gravité est négligée
et on observe trois zones majeures. La première en blanc est la zone où la formation tonneau est stable,
les zones en mauves sont les zones métastables où les deux géométries cohabitent et finalement, la
zone en gris montre les paramètres où la géométrie en cloche est stable. (b) Diagramme équivalent où
la gravité est prise en compte, la zone rouge représente la zone métastable, la zone noire représente
la configuration cloche et la zone verte représente la situation où la goutte se décroche. La formation
tonneau seule n’est plus une géométrie stable. Issu de [31].

2.4.6 Effet de la gravité

Négliger la gravité est une approximation qui est valide lorsque la taille de la goutte est bien
plus petite que la longueur capillaire. Que se passe-t-il lorsqu’on sort de cette approximation ?

Lorenceau [33] a étudié l’effet du volume de la goutte sur sa symétrie. Il remarque que pour
les volumes assez faibles, on observe bien la formation axisymétrique du tonneau. Cependant,
lorsque le volume de la goutte augmente, son centre de gravité quitte le centre de la fibre et
descend d’autant plus que la goutte s’enfle. Ainsi, bien que la géométrie soit encore qualifiée de
tonneau puisque la goutte englobe la fibre, elle n’est plus du tout axisymétrique comme on peut
le voir sur la figure 2.19. Cette géométrie ne peut d’ailleurs pas tenir éternellement puisque la
force capillaire est fixée alors que la force poids augmente en r3. A partir d’un certain volume
critique, on assiste alors au détachement de la goutte. Pour trouver ce volume critique où la
goutte se détache, Lorenceau égalise la force issue de la tension de surface avec celle du poids
et détermine de la sorte une relation entre le rayon de la goutte et l’angle avec lequel agit la

Figure 2.19 – Effet de la gravité sur des gouttes de plus en plus grandes. Alors que l’effet semble
minime sous la longueur capillaire, il devient prépondérant lorsqu’on considère des tailles supérieures
et peut mener jusqu’à la chute de la goutte.
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tension de surface.
Par la suite, Chou [31] a également étudié l’influence de la gravité sur la transition tonneau

- cloche. D’un point de vue énergétique, il faut donc à présent également prendre en compte la
contribution de l’énergie potentielle gravifique. Cela a pour conséquences de rendre les formations
tonneau asymétriques comme on vient d’en discuter mais également à faire en sorte que les
formations cloche soient majoritairement orientées vers le bas. Majoritairement car il existe
quelques cas ou la force de tension permet de fixer la goutte sur le haut de la fibre de sorte à ce
que la gravité n’affecte pas la situation.

Cependant, l’effet le plus important est le suivant : d’une situation qui acceptait trois types
de comportements, à savoir tonneau, cloche et métastable, on passe à trois zones qui sont cloche
orientée vers le bas, zone métastable et goutte qui tombe. Ainsi la géométrie tonneau seule n’est
plus une géométrie stable en tant que telle lorsqu’on considère l’effet de la gravité. De plus, la
zone métastable s’est considérablement réduite par rapport au cas où l’on néglige l’effet de la
gravité. Finalement, le problème est plus complexe à traiter puisqu’au lieu de pouvoir représenter
la situation physique à l’aide de deux données que sont le volume réduit et l’angle de contact,
il faut en plus prendre en compte la longueur capillaire de sorte que le diagramme devient un
diagramme 3D dont on voit une tranche sur la figure 2.18(b).

2.4.7 Fibres doubles

On continue notre voyage spécial au coeur du domaine des gouttes en se penchant sur le
cas d’une goutte en contact avec deux fibres. L’étude de l’interaction d’une goutte avec plus de
deux fibres est encore récent et ne comporte pas encore d’études à notre connaissance.

Pour commencer, Princen [34] a étudié le cas d’une goutte coincée entre deux fibres rigides
horizontales. Il a montré que deux formations étaient possibles en fonction du rayon de la fibre
rf , de l’espacement entre celles-ci d et de l’angle de contact. Il a illustré ce phénomène à l’aide
d’un fluide totalement mouillant de sorte à éliminer la dépendance en l’angle de contact. En
dessous d’un ratio d/rf critique on observe la formation d’un onduloïde englobant les deux
fibres, géométrie qui a l’apparence d’une goutte, et au-dessus de ce ratio, c’est-à-dire lorsqu’on
augmente la distance entre les deux fibres, on observe une colonne de liquide entre les deux
fibres. Proche de ce ratio critique, les deux géométries sont possibles et l’on peut passer de l’une
à l’autre en perturbant le système. Concernant la dépendance de la longueur de l’étalement du
fluide en fonction de l’angle de contact, Bedarkar [35] a déterminé que la formation en onduloïde
est bien plus sensible aux variations de l’angle de contact que la formation en colonne.

Par la suite, Sauret [36] a raffiné cette description en utilisant des fibres rigides parallèles
mais de deux rayons différents. Il en ressort que ce sont toujours les deux mêmes configurations
qui apparaissent mais avec une distance critique différente du cas précédent. Cette nouvelle
distance critique dépend par ailleurs toujours de quantités similaires que sont les rayons des
fibres (à présent différents), la distance entre elles et l’angle de contact.

Dans la lignée du travail initié par Princen, Duprat [37] a approfondi le travail de son collègue
en détaillant non plus deux mais trois géométries. Il s’agit des géométries pont, tonneau et
colonne. Les géométries pont et tonneau se différencient par le fait que les fibres touchent ou
pas les interfaces latérales de la goutte. Si c’est bien le cas, c’est pont et dans le cas contraire,
il s’agit d’un tonneau. Les transitions entre ces géométries sont toujours guidées par la même
distance critique dans le cas d’un liquide mouillant et il observe bien une zone métastable entre
la formation tonneau et colonne. Les deux premières géométries étant d’allures similaires, il se
peut que Princen ne les aient pas différenciées dans son travail.

Duprat continue l’investigation en ne considérant plus deux fibres rigides et fixes mais bien
deux fibres souples dont une des extrémités est libre (schéma sur la figure 2.20(a)). A cause
de la compétition entre la tension superficielle qui cherche à minimiser la surface de la goutte
en formant une sphère (et donc à s’éloigner de l’extrémité fixe qui l’écartèle) et l’élasticité des
fibres qui empêche la goutte de trop les fléchir, Duprat observe un mouvement spontané de la
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goutte le long de ces fibres. Cette dynamique est un beau condensé de la théorie sous-jacente car
au fur et à mesure que la goutte se déplace vers l’extrémité libre sous l’impulsion de la tension
superficielle, elle force les fibres a se rapprocher. Par conséquence, le ratio d/rf diminue au fur et
à mesure de l’avancement de la goutte, en entraînant avec lui plusieurs transitions de géométrie
comme on peut le voir sur la figure 2.20(a).

Duprat a cherché à caractériser l’état final de la goutte en fonction du volume initial, de la
longueur des fibres et de la distance critique. Elle a remarqué que 3 types de comportements
pouvaient apparaître à la fin du mouvement : soit la goutte ne s’étale pas, soit la goutte s’étale
partiellement, c’est-à-dire qu’une partie de la goutte est encore d’allure onduloïde alors que le
reste est d’allure colonne, et finalement un étalement complet en géométrie colonne comme c’est
illustré sur la figure 2.20(b). De plus, contrairement aux fibres rigides et fixes, la géométrie finale
dépend de six paramètres que sont le rayon des fibres, la distance initiale entre elles, leur rigidité,
leur longueur, le volume déposé et la tension de surface. En fixant certains des paramètres, elle
a pu tracer un diagramme de phases des comportement finaux en fonction du volume initial
déposé et de la longueur des fibres.

Finalement, Sauret [36] a étudié l’impact de l’orientation des fibres sur la géométrie de la
goutte. Pour ce faire, il a déposé une goutte mouillante sur deux fibres rigides quasi-parallèles
en contact et a ensuite fait varier l’angle entre elles. Pour les angles très petits, on retombe
en quelque sorte sur le cas de deux fibres parallèles et l’on obtient une géométrie en colonne.
Ensuite, au fur et à mesure que l’angle entre les fibres augmente, la longueur de la colonne
diminue jusqu’à adopter une géométrie mixte entre onduloïde et colonne. Si l’on continue à
augmenter cet angle, le liquide prend finalement la forme d’une goutte. Si ensuite on diminue
progressivement l’angle, on repasse par les mêmes géométries mais dans le sens inverse. On peut
voir un diagramme schématisant ces résultats en fonction du volume de liquide déposé et de la
longueur des fibres sur la figure 2.21. Pour les gros volumes déposés ou pour des fibres courtes,
la géométrie finale est plutôt celle d’une goutte. Une fois qu’on augmente à la fois la taille de la
fibre et celle des volumes déposés, on observe plutôt des configurations finales en colonnes. Et
entre ces deux régimes se situe le régime intermédiaire où la goutte est à moitié en colonne et à
moitié en onduloïde.

2.5 Fibres verticales

2.5.1 Goutte sur fibre inclinée

De manière similaire au fait qu’une goutte posée sur un substrat incliné ne se met pas
forcément en mouvement, Huang [38] a montré qu’il existait un angle d’avancement et de recul
tel que tant que la goutte ne les excède pas, elle reste bien statique. Cependant, d’un point de
vue théorique, la goutte est censée se mouvoir dès qu’on incline la fibre. La justification réside
selon Huang dans les aspérités de la fibre capable de maintenir la goutte en place jusqu’à un
certain angle. Il s’agit d’un argument de même nature que celui justifiant le déplacement d’une
goutte sur un plan incliné. De plus, Huang remarque de manière expérimentale qu’il existe un
volume critique tel que même si la fibre est verticale, la goutte reste suspendue à la fibre sans
bouger.

Pour ce qui traite de la dynamique de la goutte, Lorenceau [39] a mis en évidence que la
vitesse limite d’une goutte sur une fibre inclinée est inversement proportionnelle à sa viscosité
en raison de la dissipation. De plus, cette vitesse limite est bien plus grande sur une fibre pré-
mouillée que sur une fibre sèche, en accordance avec les travaux de Bico [40] dans un domaine
similaire.

Gilet [41] s’est également penché sur le problème et a mis en évidence une transition de
géométrie au cours du mouvement de la goutte comme on peut le voir sur la figure 2.22(a). Ce
comportement peut s’expliquer à la lumière de ce qui a été dit précédemment. D’une part, la
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(a)

(b)

Figure 2.20 – (a) On peut voir les différentes géométries possibles lorsqu’on dépose une goutte
sur deux fibres aux extrémités libres. On y voit également un exemple de dynamique de goutte avec
les différentes transitions entre géométries en fonction de la distance entre les fibres. (b) Différents
comportements à la fin du mouvement. Un diagramme répertoriant le comportement choisi en fonction
de certains paramètres synthétise le comportement du système.
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(a)

(b)

Figure 2.21 – (a) Forme de la goutte en fonction de l’angle entre les fibres. Initialement en géométrie
colonne, le liquide repasse par une forme mixte entre onduloïde et colonne pour finalement adapter une
géométrie purement en goutte. (b) Diagramme des phases détaillant le comportement du liquide en
fonction du volume déposé et de l’angle entre les fibres. Pour les faibles angles, on a majoritairement
une formation colonne à l’opposé des grands angles où la formation onduloïde prédomine. Entre ces
deux situations, la géométrie mixte domine.

goutte perd continuellement de sa masse suite au fin film qu’elle laisse derrière elle sur la fibre,
conformément à l’équation LDD. De plus, plus elle perd en masse et plus l’influence de la gravité
face à la capillarité diminue, favorisant in fine la formation tonneau.

2.5.2 Goutte sur fibre verticale
Gilet [41] s’est intéressé au mouvement d’une goutte déposée sur une fibre verticale et a ob-

servé quelques phénomènes intéressants. Au niveau de sa dynamique, Gilet observe que la goutte
atteint très vite sa vitesse limite résultant d’un équilibre entre poids et dissipation visqueuse,
issue de gradients de vitesse au sein même de la goutte. Le mouvement du centre de masse peut
ainsi être déterminé grâce à la seconde loi de Newton :

ρΩ
dV

dt
= ρΩg − Fν . (2.37)

De cette équation, il estime le temps nécessaire pour qu’une goutte atteigne sa vitesse limite

t ≃ V

g
, (2.38)

qui est de l’ordre de 0.1 s pour une vitesse initiale de 1m/s (déjà élevée). Ainsi, l’équilibre entre
le poids et la force de friction est très vite atteint et permet de négliger le terme d’accélération
dans le bilan des forces.

D’autre part, la goutte initiale englobe généralement la fibre dans une formation axi-centrée
mais il se peut qu’elle soit également posée de manière instable sur un flanc. Il observe que
cette transition ne se fait que dans le sens cloche - tonneau et que cela se fait au détriment de
la vitesse de la goutte puisque la zone de dissipation augmente brutalement lorsque la goutte
englobe la fibre. C’est un comportement similaire à ce qu’il a observé pour une fibre inclinée.

Gabbard [42] s’est également intéressé à cette instabilité pour essayer de comprendre dans
quelles situations chaque formation est privilégiée. Il a remarqué que les ingrédients clés étaient
le diamètre de la fibre ainsi que la tension de surface du fluide. Ainsi, pour les grands diamètres
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(a)
(b)

Figure 2.22 – Transition de géométrie d’une goutte au cours de son déplacement (sur une fibre
inclinée (a) et sur une fibre verticale (b)). Celle-ci passe d’une forme cloche à une forme tonneau
décentrée. On remarque également que sa vitesse diminue lors de cette transition.

Figure 2.23 – Diagramme de phase des géométries stables en fonction du rayon de la fibre et de
la tension superficielle du liquide. Pour les grands rayons de fibre ou les grandes tensions de surfaces,
la configuration asymétrique est plus stable, celle symétrique est présente pour les petits rayons et les
petites tensions superficielles. Une zone métastable ou les deux configurations sont possibles sépare les
deux zones.
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ou les tensions de surfaces hautes, on observe majoritairement le régime asymétrique alors que
pour les petits diamètres et les faibles tensions de surface, l’autre configuration est préférée.
Entre ces deux régimes s’étend une zone métastable comme on peut le voir sur la figure 2.23



Chapitre 3

Matériel et Méthodes

3.1 Dispositif expérimental

3.1.1 Description

Le dispositif expérimental a été élaboré par l’atelier du département de Physique de l’Uni-
versité de Liège. Ce dispositif permet d’étudier le mouvement d’une goutte descendant le long
d’une fibre en faisant défiler la fibre en sens inverse ce qui a pour effet de rendre la goutte
stationnaire devant l’objectif d’une caméra.

Le dispositif comprend une plaque métallique support (visible sur la figure 3.1) sur laquelle
sont fixées deux bobines motorisées (1) permettant le déroulement et l’enroulement de la fibre
ainsi que deux bras (2) munis chacun d’une roulette et d’un ressort de tension. Les deux bobines
sont synchronisées et sont entraînées par un moteur (3) à vitesse variable. Le fil (4) est déroulé
de la bobine inférieure et enroulé sur la bobine supérieure en passant par les roulettes situées à
l’extrémité des bras. Ce dispositif nous donne une longueur de fibre verticale à tension constante
de 30 cm.

La prise d’image est réalisée au moyen d’une caméra CCD de la marque Thorlabs (5) sur
laquelle est fixé un objectif Canon d’une focale de 60 mm. La prise de donnée ainsi que le
contrôle de la vitesse du moteur sont effectués par un programme Python réalisé par l’atelier.
Finalement, un écran lumineux (6) de la marque Effilux permet d’accentuer le contraste des
images enregistrées.

On s’intéresse aux éléments essentiels de cette expérience que sont les fils ainsi que les huiles
silicones. Pour les premiers, il s’agit de fils en nylon de la marque Platil et de type Strong. Ces
fils sont disponibles en plusieurs diamètres (en mm) : 0.08, 0.1, 0.12, 0.14, 0.16, 0.22, 0.25, 0.28,
0.35. Les huiles silicones sont de la marque Dow Corning et ont une viscosité (en cSt) de : 10,
20, 50, 100, 300. On peut retrouver quelques propriétés de ces huiles [43] dans la table 3.1.

µ (10−6m2s−1) ρ (kgm−3) γ (10−3Nm−1)

10 935 20.1
20 949 20.6
50 960 20.8
100 964 20.9
300 968 21.0

Table 3.1 – Propriétés des huiles silicones utilisées : viscosité cinématique (µ), masse volumique (ρ)
et tension de surface (γ).

29
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5
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Figure 3.1 – Dispositif expérimental sous deux angles : (1) Roues centrales, (2) Tige munie d’une
roue et d’un ressort à chaque extrémité, (3) Moteur et courroie, (4) Fil, (5) Appareil photo et objectif,
(6) Panneau lumineux, (7) Goutte.

Les gouttes de silicone sont déposées sur la fibre à l’aide d’une micro-pipette de la marque
Nichiryo Le délivrant des volumes entre 5 et 10 µl. Le volume réellement déposé sur la goutte
est fonction du diamètre de l’embout de la pipette [44]. Cet embout est amovible et peut être
changé assez simplement. Cela a pour atout de ne pas mélanger différentes huiles silicones dans
l’embout entre les différentes expériences mais également de pouvoir accommoder le diamètre
de l’embout à nos besoins simplement en coupant une section de celui-ci à l’aide d’une pince.

L’utilisation d’huile silicone et non d’eau est justifiée par plusieurs arguments. D’une part
l’huile silicone a un angle de contact nul avec les fibres ce qui permet de simplifier le problème
en négligeant les hystérésis des angles de contact. D’autre part, lorsqu’on change sa viscosité,
les autres propriétés restent dans les mêmes ordres de grandeur, comme on peut le constater
sur le tableau 3.1. Finalement, l’huile silicone s’évapore bien moins rapidement que l’eau ce
qui permet d’éviter de prendre en compte le taux d’évaporation de l’huile silicone. Tous ces
arguments permettent de comprendre que l’huile silicone, bien que différente de l’eau permet
une première étude systématique simple et pertinente de l’influence de la viscosité ainsi que du
diamètre et du nombre de fibres.

3.1.2 Limites du dispositif expérimental

Le dispositif expérimental est principalement limité par la vitesse des gouttes. La limite
haute de vitesse est imposée par le programme Python réalisé par l’atelier. En effet, le champ
de la caméra permet de couvrir une longueur de 2 cm de fil et lorsque les gouttes possèdent des
vitesses supérieures à 25mm/s, la détection de la goutte devient hasardeuse. La limite basse du
dispositif est imposée par les caractéristiques du moteur. Celui-ci s’enclenche pour une vitesse
minimale de 0.21mm/s et est capable d’incrémenter sa vitesse par un pas minimal de 0.14mm/s.

Cette limitation sur la vitesse induit une limitation sur la viscosité de l’huile silicone. Comme
on le verra par après, la viscosité étant liée à la vitesse d’une goutte, on n’a pas pu utiliser des
huiles silicones d’une viscosité cinématique inférieur à 10 cSt.
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Une autre limitation concerne la taille de la fibre ou de la fibre composite. Lorsque le diamètre
effectif dépasse les 0.5mm, la goutte est tellement petite vis à vis de la taille de la fibre que la
détection n’est à nouveau plus optimale. A l’inverse, lorsque la fibre est trop petite (en dessous
de 0.08mm) la goutte se met en configuration tonneau et n’est plus correctement détectable par
le programme ni soumise aux mêmes caractéristiques physiques.

Une dernière limite est issue d’un problème de communication entre le programme de détec-
tion et la caméra. En effet, la caméra Thorlabs enregistre moins d’images que ce que l’ordinateur
en demande. Il arrive donc assez fréquemment (environ toutes les vingt images) que l’ordinateur
demande une image à la caméra mais que cette dernière n’en ai pas encore prise de nouvelle. La
caméra fournit donc la dernière image prise, ce qui crée un décalage entre l’image et les données
temporelles fournies par l’ordinateur à cet instant-là. Cet inconvénient empêche le traitement
d’images de phénomènes se déroulant sur de courts intervalles de temps et nécessitant une ana-
lyse image par image. Cependant, cela ne pose pas de soucis pour une étude portant sur une
centaine d’images ou plus comme ce sera toujours le cas dans le présent travail.

Les autres paramètres ne sont pas limitants. La fibre en nylon et les huiles silicones n’ont pas
été soumis à des contraintes exceptionnelles qui modifieraient leurs propriétés physico-chimiques.
On est donc en mesure d’étudier le système goutte sur fibre sur une gamme largement suffisante,
autant d’un point de vue des vitesses que des viscosités ou encore des diamètres de fibre.

3.2 Méthodes

3.2.1 Plan d’expériences

Lors des expériences, on commence par faire varier le diamètre de la fibre en gardant la
viscosité fixe. Ensuite on a fait varier la viscosité avec un diamètre de fibre constant.

Après ce premier set de mesures à une fibre, on assemble plusieurs fibres de même diamètre
pour former une fibre composite. Lors de la fabrication de cette fibre, on prend soin d’utiliser
des fibres de même longueur de sorte à garantir une tension identique. De plus, on imprime
une légère torsion à la fibre composite pour s’assurer qu’elle adopte la forme la plus compacte
possible. On prend garde à ce que le pas de torsion de la fibre soit bien plus grand que la
taille caractéristique d’une goutte, ceci assure que la torsion ait une influence négligeable sur la
dynamique de la goutte. On étudie donc dans un second temps l’influence du nombre de fibres
pour un diamètre et une viscosité constante et on fait varier ensuite la viscosité.

Finalement, on étudie les fibres composites ayant des périmètres équivalents mais un nombre
de fibres et un diamètre différents.

Afin d’obtenir des résultats pertinents, chaque expérience est reproduite au moins cinq fois
et jusqu’à dix fois dans les situations les plus délicates. C’est-à-dire lorsque la viscosité est très
faible ou lorsque la taille de la goutte déposée est proche de la taille de la fibre.

3.2.2 Protocole

Le protocole consiste en une suite d’étapes dont chacune est importante pour garantir la
pertinence du résultat final. On commence par préparer la fibre, ensuite on dépose la goutte,
l’ordinateur détecte la présence de la goutte sur l’image et on enclenche l’enregistrement des
données. Le traitement des images est réalisé au moyen de 3 codes personnels en Python :
analyse, traitement et synthèse.

Préparation de la fibre

La fibre doit être bien orientée selon la verticale, sous tension grâce aux ressorts de tension
fixés aux roulettes externes, et défiler sans à-coups. Afin de s’assurer d’un état de surface iden-
tique à chaque expérience, un essuyeur de précision Kimtech est frotté sur chaque fibre avant le
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dépôt d’une goutte. Cette étape permet notamment d’assurer que la tension superficielle de la
goutte ne s’exerce que sur le haut de celle-ci.

Dépôt de la goutte

On dépose ensuite une goutte sur la fibre et on prend soin à ce qu’elle englobe la fibre. Pour
les gouttes à faible viscosité ou déposées sur des fibres fines, il faut déposer le plus petit volume
possible en adaptant la taille de l’embout. En effet, une goutte trop volumineuse glisserait trop
vite le long de la fibre. Cette vitesse excessive ne permettrait pas la détection de la goutte et
donc la mise en marche du moteur. On peut également modifier la hauteur à laquelle on dépose
la goutte pour contrôler sa vitesse. En effet, en descendant la fibre, la goutte perd une partie de
son volume et ralentit donc. Ainsi, dans le cas d’une fibre fine ou d’une viscosité faible favorisant
des gouttes rapides, on choisira un embout fin et on déposera la goutte assez haut sur la fibre,
dans le cas d’une fibre épaisse ou d’une viscosité importante, on la déposera proche de la zone
de détection et avec un embout large.

Détection et enregistrement de la goutte

Une fois la goutte dans le champ de la caméra, le logiciel réalisé par l’atelier de l’Université
permet de détecter la goutte et d’adapter la vitesse du moteur en conséquence. Comme dit
précédemment, cette détection n’est possible que si la vitesse de la goutte n’est pas excessive.
Si c’est le cas, la goutte est stabilisée dans le champ de la caméra par le moteur et on enclenche
manuellement la collecte de données. On retrouve parmi celles-ci le nombre d’images par seconde
fourni par la caméra, le numéro de chaque image, les coordonnées de la position du centre de la
goutte, sa vitesse ainsi que le temps précis au centième de seconde. Le nombre d’images prises par
seconde par la caméra (fps en abréviation) n’étant pas stable, il justifie l’intégration de l’heure
précise dans les données de sorte à conserver une trace temporelle exacte. Une image typique
affichée par l’ordinateur et des données qu’il enregistre est représentée sur la figure 3.2(a).
Le programme permet donc d’obtenir un enregistrement vidéo de l’écoulement de la goutte
ainsi qu’un fichier "comma separated value" (également appelé CSV) reprenant les informations
mentionnées plus haut.

Traitement des images

Un code Python développé dans le cadre de ce mémoire permet ensuite d’analyser cet en-
semble de données. Dans un premier temps, le code doit supprimer les données parasites issues
de la chaîne de capture d’images à la fois de la vidéo mais également du fichier CSV associé.
Une fois éliminées, le code transforme successivement les images restantes de sorte à pouvoir
en extraire les données relatives au contour de la goutte. Pour ce faire, il commence par mettre
l’image en nuance de gris et lui appliquer un seuil. Ce seuil permet de dichotomiser l’image :
les pixels dont la nuance est plus faible que le seuil deviennent blancs tandis que les autres
deviennent noirs. Ensuite, une fonction d’OpenCv, une librairie de Python, permet de trouver
les différents contours présents sur l’image sur base des contrastes et on sélectionne le plus long.
Celui-ci correspond toujours au profil combiné de la goutte et de la fibre. Ce seuil ne doit pas
être choisi au hasard. En effet, sur les bords de la goutte se déroule un phénomène de diffusion
de la lumière émise par le panneau lumineux situé en arrière-plan. Si le seuil est trop bas, on
agrandit artificiellement le contour de l’image alors que s’il est trop haut, on la diminue. On
peut voir sur la figure 3.3 que cet effet peut induire une variation du volume calculé de la goutte
de l’ordre de 10%. Il est donc impératif de choisir le seuil qui permet d’obtenir l’image la plus
fidèle et de ne pas le modifier au cours des expériences. Ce seuil étant directement fonction
de la luminosité produite par le panneau lumineux, il convient de ne plus toucher non plus à
l’intensité lumineuse.
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(a) (b)

Figure 3.2 – (a) Image telle qu’enregistrée par le programme Python. On y retrouve quelques-unes
des données qui seront par la suite conservées dans un fichier CSV telles que l’heure ou la position du
centre de la goutte. (b) Image analysée par un programme Python personnel permettant de délimiter le
contour de la goutte. La taille de la goutte est de l’ordre du millimètre tandis que la hauteur du cadre
de la photo de droite mesure 2 cm de haut.

0 250 500 750 1000 1250 1500 1750
Image

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Vo
lu

m
e 

[m
m

3 ]

seuil 200
seuil 220
seuil 230
seuil 240

(a)

0 250 500 750 1000 1250 1500 1750
Image

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 E
rre

ur
 m

ax
im

al
e 

co
m

m
ise

(b)

Figure 3.3 – (a) Différence de volume calculé en fonction du seuil ainsi que (b)Erreur maximale
commise calculée à partir de l’écart de volume maximum normalisé par le volume moyen à chaque
image.
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l

A

Figure 3.4 – Schéma d’une goutte reprenant les quantités nécessaires à en calculer le volume. Il
s’agit de l’aire de la moitié du profil ainsi que la distance l entre le centre de la fibre et la position du
centre de masse de cette même aire.

Une fois le contour obtenu, il faut encore isoler le profil de la goutte de celui de la goutte
et la fibre unie et en calculer son volume. La première étape est réalisée grâce au fait que tous
les points du contour de la fibre sont alignés. On se sert donc de cette propriété pour extraire
les contours de la goutte comme on peut le voir sur la figure 3.2(b). La seconde est effectuée à
l’aide du théorème de Guldin [45]. Ce théorème, illustré sur la figure 3.4 lie le volume Ω de la
goutte à la distance l entre le centre de masse d’une moitié de profil, l’axe de rotation et à l’aire
A de ce demi profil :

Ω = 2π · l · A . (3.1)

On extrait sans difficulté les données nécessaires à cette formule de notre code. De plus, on
effectue le calcul de volume à partir des deux moitiés de la goutte et on moyenne le résultat
pour plus d’acuité.

Analyse des données

Les données issues de mêmes expériences sont ensuite traitées ensemble. Comme on le verra
par la suite, à partir de données telles que volume et vitesse en fonction du temps, on souhaitera
les réexprimer en vitesse en fonction du volume. Voici comment on analyse ces ensembles de
nuages de points pour en tirer un ensemble restreint de points munis d’une barre d’erreur.

Pour commencer, il faut se rappeler des limites du moteur. En effet, celui-ci n’est pas capable
d’effectuer des variations infinitésimales de vitesse et agit par à-coups. La vitesse minimale
non nulle est de 0.21mm/s qu’il est ensuite capable d’augmenter d’un incrément minimal de
0.14mm/s. On se sert de cette spécificité du moteur pour réaliser des classes de vitesses d’une
valeur de 0.50mm/s dont on ne retiendra que la vitesse moyenne sur ladite classe. On réduit
donc le nombre de points à traiter au nombre de classes et on fait en sorte que s’il y a moins
de cinq points expérimentaux par classe, on ne considère pas la classe en question. Une fois un
premier traitement statistique effectué sur les vitesses, on ajoute une barre d’erreur à chaque
point correspondant à la variance des volumes associés à chaque classe de vitesse.

Illustrations des données analysées

Finalement, un dernier programme original en Python permet d’illustrer les résultats précé-
demment obtenus.



Chapitre 4

Résultats

4.1 Fibre unique

Cette première section cherche à caractériser les paramètres qui influencent l’écoulement
d’une goutte le long d’une fibre. Pour ce faire, on modifie à la fois la viscosité de la goutte mais
également le diamètre de la fibre. On interprète les résultats sur base des données relatives à la
vitesse V de la goutte et de son volume Ω à tout instant.

4.1.1 Description générale

On commence notre série d’expériences par la caractérisation de l’écoulement d’une goutte
d’une viscosité de 50 cSt le long d’une fibre de 0.16mm de diamètre. On relève la vitesse V
et le volume Ω de la goutte au cours du temps. Ces données sont visibles sur la figure 4.1(a).
On remarque que le volume et la vitesse de la goutte décroissent au cours du temps. Si l’on
cherche à caractériser cette décroissance, cela peut être fait en mettant en relation la vitesse et
le volume. Cela est représenté sur la figure 4.1(b). On relève d’emblée qu’une relation linéaire
semble unir ces deux variables. Au départ, la vitesse et le volume sont grands, on se situe dans
le coin supérieur droit de la figure 4.1(b), ensuite, plus la goutte descend le long de la fibre, plus
elle perd en volume et vitesse, et donc plus on se dirige vers le coin inférieur gauche de cette
même figure.

On note également la présence d’un offset, c’est à dire que si on extrapole la tendance jusqu’à
l’axe des abscisses, il semble qu’à vitesse nulle, il subsiste une goutte de volume non nul que l’on
nomme volume résiduel et que l’on note Ω0. Autrement dit, il arrive un moment où le volume
de la goutte est si faible (et donc sa masse) qu’elle s’arrête, retenue par la tension superficielle
qui, contrairement au poids, reste constante quel que soit le volume de la goutte.

Enfin, on constate que la densité de points est plus forte dans le coin inférieur gauche que
dans le coin supérieur droit, c’est une conséquence du fait que l’intervalle de temps entre deux
mesures est sensiblement toujours identique. Ainsi, on obtient une densité de points de mesure
proportionnelle au temps passé à un certain volume/vitesse. Or, on remarque dans la figure
4.1(a) que le temps passé à un(e) certain(e) volume/vitesse semble être d’autant plus grand que
le volume/la vitesse est faible. Par conséquent, la région la plus dense est également la région
où la goutte est la plus petite/lente.

4.1.2 Modification du diamètre et de la viscosité

On répète l’expérience en modifiant successivement le diamètre de la fibre et la viscosité des
huiles. On se contente d’observer les résultats dans un premier temps, on les commentera par
après.

35
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Figure 4.1 – (a) Évolution du volume Ω et de la vitesse V au cours du temps (b) Évolution du
volume en fonction de la vitesse de la goutte. Une tendance linéaire entre la vitesse et le volume de la
goutte semble se dégager.
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Figure 4.2 – (a) Vitesse de la goutte V en fonction de son volume Ω pour différents diamètres de
et (b)Vitesse de la goutte en fonction de son volume pour différentes viscosités. On remarque qu’une
augmentation du diamètre de la fibre ou de la viscosité entraîne une plus faible vitesse à un volume Ω
donné.
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Figure 4.3 – Résultats d’expériences faisant varier à la fois le diamètre (0.10 mm en ocre et 0.16
mm en bleu) mais également la viscosité (50, 100, 300 cSt, respectivement de la teinte la plus foncée à
la plus claire).

Diamètres variables Dans le premier cas, on fixe la viscosité à 50 cSt et on prend des
diamètres de fibres de 0.10, 0.16 et 0.28 mm. Les résultats sont visibles sur la figure 4.2(a). On
relève trois points. Le premier est que pour un volume donné, la vitesse associée est d’autant
plus grande que le diamètre est fin. Le second est que les extrapolations des régressions linéaires
semblent pointer vers une région commune aux alentours des 0.2 - 0.5 mm3 (ou µl). Finalement,
on note que les derniers points de chaque expérience semblent décrocher vers le bas. Ceci pourrait
être une conséquence du pas de vitesse du moteur qui viendrait parasiter les données à très faible
vitesse, lorsque le moteur oscille entre marche et arrêt.

Viscosités variables On s’intéresse ensuite à l’influence de la viscosité sur le système. Pour
ce faire, on fixe le diamètre à 0.16 mm et on prend des huiles silicone d’une viscosité de 50, 100,
300 cSt. On peut observer les résultats sur la figure 4.2(b). Pour un volume donné, on observe
que la vitesse est d’autant plus grande que la viscosité est faible. A nouveau, tous les volumes
résiduels Ω0 semblent être du même ordre de grandeur.

Finalement, on peut observer à la figure 4.3 les résultats obtenus lorsqu’on mélange à la
fois des diamètres différents et des viscosités différentes. Pour cette figure, on a utilisé une fibre
de 0.10 mm (teintes ocres) ainsi qu’une fibre de 0.16 mm (teintes bleutées) et on fait varier la
viscosité entre 50, 100 et 300 cSt (respectivement des teintes les plus foncées aux teintes les
plus claires). On retrouve bien les informations précédentes dans ce graphique : à une viscosité
donnée, c’est au diamètre le plus fin que correspond la goutte la plus rapide à un volume fixe, et
à un diamètre donné, c’est à l’huile la moins visqueuse que correspond la goutte la plus rapide
à un volume fixe.

4.1.3 Modèle théorique pour une fibre

Maintenant que les premiers résultats sont connus, on essaye de les comprendre à partir d’un
développement théorique. On justifie dans une premier temps la perte de volume de la goutte
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Figure 4.4 – Présence d’un fin film de liquide gainant la fibre après le passage de la goutte. Ce film
peut ensuite se déstabiliser suite à l’instabilité de Rayleigh-Plateau comme on le voit sur le haut de la
fibre.

⃗P

⃗Fη
⃗Fγ

Ω

ε

d

⃗ez

Figure 4.5 – Modèle théorique d’une goutte de volume Ω et de viscosité η sur une fibre de diamètre d.
Tandis que la force de gravité P⃗ favorise l’écoulement de la goutte vers le bas de la fibre, les frottements
visqueux (F⃗η) et la tension de surface (F⃗γ) s’y opposent. La goutte laisse dans son sillage un fin film de
fluide d’une épaisseur ϵ.
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au cours du temps. Celle-ci se comprend dans le cadre de l’équation de LLD de la section 2.4.2
adaptée au cas d’une fibre. En effet, il existe une similitude entre le fait de tirer une fibre hors
d’un bain et celui d’une goutte descendant le long d’une fibre. Tout se passe comme si la fibre
n’était pas tirée d’un bain mais bien de la goutte, elle emporte donc une partie du liquide de
la goutte avec elle. On peut observer la présence de ce film ainsi que sa déstabilisation sur la
figure 4.4. On passe à présent à la dynamique du phénomène grâce à la seconde loi de Newton
que l’on applique à notre situation. On répertorie les forces en présence, il s’agit

— du poids P⃗ = mg⃗ avec m la masse de la goutte et g l’accélération de pesanteur. Il s’agit
du moteur du mouvement car c’est bien la gravité qui pousse la goutte à descendre le long
de la fibre.

— du frottement visqueux entre le liquide et la fibre F⃗η = ξdη⃗̇z où ξ est un préfacteur
adimensionnel dépendant du contexte physique, d est le diamètre de la fibre, η est la
viscosité dynamique de la goutte et ż sa vitesse verticale. Ce frottement agit comme un
frein au mouvement et est opposé à la force poids.

— des tensions de surfaces aux interfaces supérieures et inférieures. On ne considère ici qu’une
seule tension de surface F⃗γ = γ⃗πd dirigée vers le haut et appliquée sur le haut de la goutte.
En effet, puisqu’on prend soin de sécher la fibre après chaque expérience, la cohésion du
liquide fait en sorte que le fin film déposé par la goutte ait tendance à tirer la goutte vers
le haut.

On met tout ceci en équation en le projetant selon l’axe e⃗z

ma = P − Fγ − Fη , (4.1)

soit
ρΩz̈ = ρgΩ− γπd− ξdηż . (4.2)

Comme l’a montré Gilet [41], la goutte atteint très rapidement sa vitesse limite V (en moins de
0.1 s) et permet de négliger le terme d’inertie dans la seconde loi de Newton. On vérifie cette
hypothèse par un calcul du nombre de Weber associé à notre expérience

We =
ρdV 2

γ
≃ 10−5 ≪ 1 , (4.3)

On peut ainsi réécrire l’équation précédente comme étant

0 = ρgΩ− γπd− ξdηV . (4.4)

où l’on remplace ż par V , la vitesse limite de la goutte, pour bien distinguer ce régime particulier.
Cette expression peut être réécrite comme

V =
ρg

ξdη
Ω− γπ

ξη
. (4.5)

On peut déterminer la valeur théorique du volume résiduel Ω0. Il faut pour cela égaler V à zéro
et isoler Ω0

Ω0 =
γπd

ρg
. (4.6)

Le volume résiduel symbolise la compétition entre la gravité et la tension de surface. La viscosité
n’intervient pas dans l’expression puisqu’elle résulte du mouvement et on exprime un volume
final statique.
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Figure 4.6 – Graphique après le premier dimensionnement du volume Ω par le diamètre d de la
fibre. On observe qu’il a pour conséquence de supprimer la dépendance sur le diamètre de la fibre. Trois
groupes se distinguent donc et ils sont relatifs aux différentes viscosités employées.

Vérification du modèle On peut dès à présent vérifier si le modèle est cohérent avec les
premiers résultats obtenus. On remarque que

V ∝ (dη)−1Ω . (4.7)

Cette dépendance est effectivement vérifiée puisque plus la viscosité et le diamètre des fibres
augmentent et plus la vitesse de la goutte est faible à un volume donné comme on le voit sur la
figure 4.5. De plus, on peut estimer une valeur générale de Ω0 pour vérifier s’il est bien cohérent

Ω0 =
γπd

ρg
≃ 0.5mm3 , (4.8)

qui est bien dans la région pointée par les différentes extrapolations linéaires des expériences.

Prédictions du modèle Puisque le modèle est fonctionnel, on peut tenter d’en extraire des
prédictions. La première consiste à réécrire l’équation (4.5) sous la forme suivante

V =
ρg

ξη

(
Ω

d

)
− γπ

ξη
. (4.9)

Ainsi, en traçant un graphique de la vitesse limite en fonction de volume dimensionné par le
diamètre effectif, on devrait observer que la pente des droites n’est plus dépendante du diamètre
de la fibre. Par conséquent, seules les viscosités différentes devraient ressortir sous forme de
trois groupes (respectivement µ = 50, 100, 300 cSt) et dans chacun de ces groupes, on devrait
retrouver une droite de chaque couleur, correspondant aux deux diamètres possibles. Le résultat
de ce dimensionnement est visible sur la figure 4.6. On y observe effectivement que les droites
ont tendance à se regrouper par deux et que trois groupes distincts sont visibles, correspondant
aux trois huiles silicone de viscosités différentes.

La seconde prédiction propose un dimensionnement encore plus audacieux. Pour ce faire, on
reprend l’équation (4.5) et on la réécrit comme(

V η

ρ

)
=

g

ξ

(
Ω

d

)
− γπ

ξρ
. (4.10)
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Figure 4.7 – Graphique après le second dimensionnement. On dimensionne le volume Ω par le
diamètre d et la masse volumique ρ mais également la vitesse V par la viscosité η.

C’est à dire qu’on dimensionne la vitesse V par la viscosité η et par la masse volumique ρ. On
devrait donc voir apparaître des courbes dont la pente ne dépend plus que de ξ et g. Puisque
g est une constante, une différence de pente entre les droites donnerait une indication sur la
manière d’interpréter le rôle de ξ dans ce contexte. On peut observer les résultats obtenus
sur la figure 4.7. On y observe que les différentes droites semblent former un faisceau serré de
droites approximativement parallèles. L’extrémité supérieure du faisceau parait évasée mais les
barres d’erreur sont également plus larges qu’à la base et celles-ci se recoupent près de la droite
centrale orangée. On remarque également deux points qui décrochent plus tôt dans le bas du
faisceau mais ils pourraient être dus à l’imprécision du moteur aux faibles vitesses. Les droites
se confondant, cela ne nous permet pas, pour l’instant, d’apporter de nouvelles informations au
sujet de l’interprétation et des éventuelles dépendances de ξ envers d’autres variables. On peut
néanmoins donner une première valeur approximative de ξ en utilisant la pente de la droite
orangée la plus au centre du faisceau

ξ ≃ 0.15 . (4.11)

En résumé, à l’aide du modèle précédemment établi, on réexprime successivement les don-
nées de sorte à provoquer graduellement l’agglutinement des régressions linéaires des données
expérimentales selon une unique droite de pente g/ξ, ne nous permettant pas d’inférer sur la
nature du paramètre de dissipation ξ mais d’estimer sa valeur à 0.15.

4.2 Fibres composites

Quel est l’impact sur la dynamique de la goutte lorsqu’on remplace une fibre unique par un
ensemble de fibres de même diamètre et légèrement torsadées ?

4.2.1 Résultats expérimentaux

On peut voir sur la figure 4.8 les résultats obtenus lorsqu’on conserve un diamètre constant
(de 0.14mm) et une viscosité constante (de 20 cSt) mais que l’on fait varier le nombre de fibres
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Figure 4.8 – Impact du nombre de fibres au sein de la fibre composite sur la vitesse associée à un
volume fixe. Plus ce dernier augmente et plus la vitesse diminue.

façonnant la fibre composite entre N = 1 et N = 4. On constate que plus le nombre de fibres
augmente et plus la vitesse d’une goutte pour un volume donné est faible. C’est intuitif car
augmenter le nombre de fibres revient à augmenter la section de la fibre composite. Celle-ci est
liée, d’une manière que l’on détermine plus tard, à un diamètre effectif qui permet de créer un
lien entre la fibre composite et une fibre unique imagée. Cette fibre fictive a pour propriété de
conserver une caractéristique de la fibre composite comme l’aire ou le périmètre par exemple.
On appelle diamètre effectif le diamètre de cette fibre imagée. Or, vu la section précédente, on
sait qu’augmenter le diamètre d’une fibre a pour conséquence de réduire la vitesse associée à un
volume donné. Cependant, on note que la distribution des pentes ne semble plus homogène : les
pentes associées à deux et trois fibres sont assez proches. Ensuite, on fait varier non seulement
le nombre de fibres mais également la viscosité des gouttes entre 10, 20 et 50 cSt. On observe le
résultat sur la figure 4.9(a). A une couleur est associée un nombre de fibres fixe et au sein d’une
couleur, les différentes viscosités sont distinguées par le ton de la couleur. Plus ce ton est foncé
et plus la viscosité est faible. A nouveau, on note un comportement similaire à ce qui a été fait
pour une fibre, plus la viscosité augmente et moins la vitesse pour un volume donné est grande.

4.2.2 Diamètre effectif

Avant d’entrer dans les détails du modèle, il convient de faire un point sur la manière de
traiter les fibres composites. En effet, il existe au moins trois façons de faire le lien entre une
fibre simple fictive et une fibre composite au travers d’un diamètre effectif. Pour rappel, ce
diamètre effectif est le diamètre de la fibre fictive ayant une caractéristique commune avec la
fibre composite. Ces trois manières différentes sont illustrées sur la figure 4.10.

La première, en rouge sur la figure, lie les deux diamètres au travers de l’aire d’une section de
fibre. C’est à dire qu’à une fibre composite élaborée à partir de fibres de diamètre d, on peut lui
associer une fibre unique ayant un diamètre effectif dAeff de sorte que les aires des deux types de
fibres correspondent. La seconde technique, en gris, permet de préserver la distance maximale
entre le centre de la fibre et le point le plus éloigné et consiste à tracer le cercle circonscrit à la
fibre composite. Ainsi, à la fibre composite composée de fibres de diamètres d, on peut associer
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Figure 4.9 – (a) Impact du nombre de fibres et de la viscosité sur la vitesse associée à un certain
volume. A une couleur est associée une viscosité (vert : 10 cSt, bleu 20 cSt et rouge 50 cSt), à chaque
intensité est associée un nombre de fibres (pour la plus foncée, N = 1 et pour la plus claire N = 4). On
retrouve des comportements similaires à ce qu’il se passe pour une fibre unique : plus le diamètre effectif
et la viscosité augmentent et moins la vitesse est forte. (b) Zoom sur la région du volume résiduel. Il
semble que plus le diamètre effectif est faible et plus le volume résiduel l’est également.

d d d

dCdA dP

Figure 4.10 – Différents diamètres effectifs en fonction de la grandeur que l’on souhaite conserver.
En rouge, l’aire est conservée, en gris, la distance maximale entre le centre de la fibre et le point le plus
extrême est conservé et en bleu, le périmètre extérieur est conservé.
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Table 4.1 – Évolution des différents diamètres effectifs de la fibre composite en fonction du diamètre
des fibres qui la constituent. On y retrouve le diamètre effectif qui préserve l’aire dAeff , celui qui préserve le
périmètre dPeff et celui qui préserve la distance maximale dCeff de la fibre composite. Les deux géométries
possibles pour les quatre fibres donnent lieu à un seul diamètre effectif sauf pour celui conservant la
distance maximale.

Figure 4.11 – Différentes géométries possibles en fonction du nombre de fibres. Pour quatre fibres,
on retrouve la géométrie carrée à gauche et celle en losange à droite.

un cercle de diamètre dCeff qui englobe au mieux les fibres. Finalement la dernière technique, en
bleu, fait l’équivalence au niveau du périmètre des fibres de sorte qu’à la fibre composite soit
associée une fibre de diamètre dPeff ayant un périmètre similaire.

Un problème de taille associé à ces diamètres effectifs est qu’ils sont dépendants de la façon
dont les fibres s’assemblent au sein de la fibre composite. En effet, dès qu’on dépasse deux fibres,
il existe plusieurs manières d’arranger les fibres au sein de la fibre composite. Le fait d’induire
une certaine torsion dans le fil permet d’augmenter la compacité du système et ainsi de réduire
la probabilité d’apparition de certains arrangements tel que l’arrangement linéaire. Pour éviter
d’augmenter drastiquement les degrés de liberté de notre système, on se limitera à quatre fibres
car plus le nombre de fibres augmente et plus il existe de manières différentes d’arranger les
fibres. De la sorte, on fait l’hypothèse que seule la fibre composite à quatre fibres admet deux
géométries, celle en carré et celle en losange que l’on peut apercevoir sur la figure 4.11.

Les différents diamètres effectifs ont été calculés à l’aide de relations trigonométriques, on les
retrouve dans la table 4.1. On y remarque que malgré la présence de deux géométries possibles
pour les quatre fibres, seul le diamètre effectif conservant la distance maximale possède deux
expressions distinctes. On note également que le diamètre effectif croit avec le nombre de fibres
N comme nous le suggère l’intuition.

deff ∝ N . (4.12)

Dit autrement, affirmer que le diamètre effectif augmente ou que le nombre de fibres augmente
est strictement équivalent dans les cas traités dans ce mémoire. Pour un nombre de fibres plus
grand, cette relation peut ne plus être vérifiée en fonction des arrangements possibles des fibres.

4.2.3 Modèle théorique
Puisqu’on modifie la situation physique, il faut que le modèle théorique s’adapte. L’équation

de base reste la même que dans le cas à une fibre puisque les forces en présence sont identiques
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et on peut à nouveau négliger l’inertie, c’est à dire

0 = ρgΩ− γπd− ξdηV . (4.13)

Dans cette équation, seul le terme relatif au poids de la goutte n’est pas impacté par la modifi-
cation de la fibre. Les termes relatifs à la tension de surface ainsi qu’aux frottements visqueux
font intervenir le périmètre de la fibre et doivent donc être modifiés. Pour ce faire, on fait l’hypo-
thèse qu’il suffit de remplacer d par deff . On peut ainsi réécrire l’expression de la vitesse limite
comme :

V =
ρg

ξdeffη
Ω− γπ

ξη
. (4.14)

Au vu de la situation physique fortement dépendante du périmètre de la fibre, on utilisera le
diamètre effectif dPeff .

Vérification

Le modèle théorique permet de retrouver les tendances visibles sur la figure 4.9(a), on observe
bien que plus le nombre de fibres augmente, et donc le diamètre effectif, et plus la vitesse associée
à un certain volume est faible. De plus, comme précédemment, plus la viscosité augmente et
plus cette vitesse diminue. Au niveau du volume résiduel, celui-ci est donné par l’expression

Ω0 =
γπdeff

ρg
. (4.15)

On devrait donc observer une dépendance de ce volume envers le diamètre effectif. Plus ce
dernier augmente et plus le volume résiduel de la goutte devrait augmenter. C’est effectivement
la tendance qui se dégage de la figure 4.9(b) mais cette observation est à prendre avec précaution
puisque certaines courbes se superposent à d’autres.

Prédiction

A nouveau, on cherche à prédire de nouvelles tendances à l’aide du modèle. Premièrement, on
peut, dans une démarche similaire à ce qui a été fait précédemment, redimensionner le volume
par le diamètre effectif. La pente des droites serait ainsi donnée par le coefficient p1

p1 =
ρg

ξη
. (4.16)

On devrait observer que toutes les droites relatives à un même diamètre effectif sont parallèles.
Ainsi devrait émerger des groupes correspondant à des fibres composites de même diamètre
effectif. Le résultat est visible sur la figure 4.12(a). Malgré que les droites d’une même couleur
(et donc d’un même diamètre effectif) semblent moins rassemblées que dans le cas à une fibre, on
observe néanmoins qu’elles ont sensiblement les mêmes pentes tel que nous le suggère le modèle.

On cherche ensuite à redimensionner encore une fois notre équation de sorte à essayer d’ob-
tenir des droites formant un faisceau comme ce qui avait été obtenu dans la section précédente.
Pour ce faire, on va représenter nos données en fonction de ηV/ρ et de Ω/deffη de sorte que la
pente soit donnée par le coefficient p2

p2 =
g

ξ
. (4.17)

Le résultat est visible sur le graphique 4.12(b). Conformément à ce qui a été dit précédemment,
on observe un faisceau de droites alignées. Ce résultat permet donc de vérifier que le diamètre
effectif relatif au périmètre est bien pertinent dans ce cas de figure. On peut recalculer une valeur
de ξ approximative sur base de la pente moyenne du faisceau et on trouve

ξ ≃ 0.12 , (4.18)

qui est bien du même ordre de grandeur que dans le cas d’une fibre unique.
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Figure 4.12 – (a) Vitesse V de la goutte en fonction du volume dimensionnalisé par le diamètre
effectif (Ω/deff ). (b) Vitesse de la goutte dimensionnée par la viscosité (ηV/ρ) en fonction du volume
de la goutte dimensionnalisé par le diamètre effectif (Ω/deff ). On note des comportements similaires à
ce qui est observé pour le cas à une fibre, c’est à dire un rassemblement successif de toutes les données
selon une pente de valeur g/ξ.

4.2.4 Super vitesse

Bien que le graphique précédent semble montrer des droites plus ou moins parallèles, il
est intéressant de voir l’évolution des pentes au cours des redimensionnements. Initialement,
l’expression de la pente est donnée par le coefficient p0

p0 =
dV
dΩ

=
ρg

ξηdeff
. (4.19)

On constate qu’elle doit diminuer au fur et à mesure que le nombre de fibres augmente mais
également en fonction de la croissance de la viscosité. C’est bien ce que l’on peut observer sur
la figure 4.13(a) où l’on représente la pente en fonction du nombre de fibres au sein de la fibre
composite. Pour une viscosité fixe (une couleur donnée) la pente est de plus en plus faible lorsque
le diamètre effectif, et donc le nombre de fibres, augmente. Pour un diamètre effectif donné, plus
la viscosité est forte et plus la vitesse associée à un volume donné est faible.

On observe cependant que les courbes ne semblent pas suivre une décroissance "naturelle",
quelque chose se passe entre le diamètre effectif relatif à deux et à trois fibres.

Lorsqu’on représente la pente du graphique dont le volume est redimensionné par diamètre
effectif en fonction du nombre de fibres, l’intuition se confirme. En effet, la valeur de la pente
est à présent donnée par le terme p1

p1 =
ρg

ξη
. (4.20)

Alors qu’on s’attend à ce que toutes les pentes relatives à un même diamètre effectif soient
identiques, c’est à dire alignées horizontalement sur le graphique 4.13(b), on observe l’apparition
d’une courbe en forme de bosse dont le maximum semble se situer autour de la fibre composite
assemblant trois fibres. De plus, cette bosse semble d’autant plus prononcée que la viscosité de
la goutte est faible.

Finalement, on regarde ce qu’il se passe lorsqu’on dimensionne à la fois le volume et la vitesse,
c’est à dire lorsque la pente est donnée par le coefficient p2

p2 =
g

ξ
. (4.21)
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Figure 4.13 – (a) Pentes des régressions linéaires en fonction du nombre de fibres. On note qu’a
une viscosité donnée (Vert = 10 cSt, Bleu = 20 cSt, Rouge = 50 cSt) plus le nombre de fibres augmente
et plus la pente diminue. A un nombre de fibres données, plus la viscosité augmente et plus la pente
est faible. (b) Pente des régressions linéaires en fonction du nombre de fibres lorsqu’on dimensionne
le volume par le diamètre effectif. On observe des tendances horizontales pour chaque viscosité mais
avec une bosse dont le maximum se situe autour de N = 3. La bosse est d’autant plus marquée que la
viscosité diminue.
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Figure 4.14 – Pente des données dimensionnalisées par le diamètre effectif et la viscosité en fonction
du nombre de fibres. Toutes les courbes semblent à présent se superposer malgré un léger décalage
vertical et une faible dilatation horizontale.
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Le résultat est représenté sur la figure 4.14. On y observe que les courbes semblent avoir des
formes similaires, c’est à dire d’une même hauteur et d’une même largeur, mais légèrement
décalée en hauteur et dilatée en largeur. Cependant, toutes ces courbes semblent posséder un
maximum assez clair aux alentours de trois fibres.

Ce décalage et cette dilatation peuvent être expliqués par deux raisons différentes. La pre-
mière est que les données peu fiables à faibles vitesses parasitent le calcul de la pente. En effet,
si on néglige les deux derniers points de chacune des courbes, on observerait des pentes généra-
lement plus faibles. Cependant, on note que l’erreur commise parait de plus en plus importante
lorsque la viscosité augmente. On le constate clairement sur la figure 4.9(b) où l’erreur commise
semble plus importante pour les courbes oranges (50 cSt) puis pour les courbes bleues (20 cSt)
alors qu’elle parait assez faible pour les courbes vertes (10 cSt). C’est logique puisque la vitesse
minimale à 10 cSt s’avère assez éloignée de la vitesse minimale du moteur, ce qui n’est pas le
cas pour les autres courbes. Cette erreur graduelle pourrait expliquer pourquoi il semble que
la viscosité permet encore de distinguer les groupes de pentes. Dans le but de vérifier cette
possibilité, il faut reprendre les données expérimentales et mettre de côté toutes les données
prises sous une vitesse seuil d’environ 3.5mm/s. Le choix du seuil doit être une juste balance
entre la plus grande marge de sécurité et la prise en compte du plus grand nombre de données
expérimentales pertinentes.

La seconde raison suppose une dépendance cachée de ξ vis-à-vis de la viscosité η. Pour vérifier
cette hypothèse, une piste est de reprendre le cas à une fibre et représenter la valeur de la pente
en fonction de la viscosité. Si la pente est identique quelle que soit la viscosité, alors il n’y a
effectivement pas de relation entre ξ et η.

Ces remarques faites, on peut se concentrer sur le résultat surprenant qui vient d’être trouvé.
Le facteur 1/ξ admet un maximum aux alentours de trois fibres. Cela signifie que la dissipation
visqueuse est moindre pour un périmètre donné lorsque la fibre composite contient entre deux
et trois fibres.

Diamètres effectifs équivalents

Pour confirmer ce résultat, on réalise les expériences suivantes : on prend une fibre de 0.16mm
ainsi qu’une fibre composite constituée de deux fibres de 0.08mm. On répète cette expérience
avec une fibre de 0.28mm et une fibre composite de deux fibres de 0.14mm. Les expériences ont
été menées avec de l’huile silicone de 20 cSt et 50 cSt. Les résultats sont visibles sur la figure 4.15
où les diamètres effectifs identiques sont représentés par une même couleur et où la fibre unique
est d’une teinte plus claire que la fibre composite. Les teintes rouge et bleu sont les expériences
menées à 20 cSt tandis que les teintes vert et mauve sont menées à 50 cSt.

Deux choses au moins sont à remarquer. La première, bien visible sur la figure 4.15(b) est
que la pente est plus importante pour les fibres composites que pour les fibres uniques pour un
périmètre équivalent donné. Cet effet est bien plus marqué pour les faibles viscosités comme
on l’a déjà noté par avant. Ensuite, on remarque que le nombre de fibres impacte également la
valeur du volume résiduel Ω0, la fibre unique admet un volume résiduel supérieur à celui de la
fibre composite.

On montre dans la figure le graphique reprenant toutes les données relatives aux fibres
composites, ayant des diamètres équivalents ou non. Ces derniers sont représentés par des croix.

Structure de la fibre

Maintenant que l’effet est clairement identifié, il reste à lui attribuer une cause. Celle-ci n’est
pas encore établie à ce jour mais on soupçonne que la structure de la fibre composite joue un
rôle important. Plus précisément, on pense que la profondeur relative des rainures est l’élément
clé permettant de caractériser ce phénomène.
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Figure 4.15 – (a)Vitesse de la goutte en fonction de son volume et (b) Pente de la régression en
fonction du nombre de fibres. Rouge : deff = 0.16mm et η = 20 cSt, Bleu : deff = 0.28mm et η = 20 cSt,
Vert : deff = 0.16mm et η = 50 cSt, Mauve : deff = 0.28mm et η = 50 cSt. La fibre unique est en teinte
foncée et la fibre composite (2 fibres) en teinte claire. On remarque à la fois une pente plus forte (les
traits pointillés sont un guide pour les yeux) et un volume résiduel plus faible pour les fibres composites.
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Figure 4.16 – Pentes de la vitesse dimensionné par la viscosité en fonction du volume dimensionné
par le diamètre effectif. Les points représentent les expériences avec des fibres composites faites de
fibres de 0.14mm tandis que les croix représentent les expériences faites à partir de diamètres effectifs
multiples. Toutes les données semblent suivre le même comportement.
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Figure 4.17 – Illustration du mouillage d’une fibre composite. Les parties en bleu foncé pourraient
permettre au reste de la goutte (en bleu) de couler plus rapidement le long de la fibre en diminuant le
cisaillement du fluide localement et donc la dissipation visqueuse.

En effet, pour une fibre, la profondeur de la rainure est nulle. Ensuite, pour tous les autres
types de fibre composite, des rainures de l’ordre du rayon des fibres qui les composent sont
présentes. Cependant, plus le nombre de fibres augmente et plus la taille de la rainure vis-à-vis
de la longueur du diamètre effectif diminue. Pour un grand nombre de fibres, la taille relative
de la rainure tend progressivement vers zéro, on retombe sur le cas à une fibre, permettant de
comprendre pourquoi la courbe redescend lorsque N augmente. Cependant, la taille relative de
la rainure est une fonction qui admet un maximum pour deux fibres et qui diminue ensuite
lorsque N augmente. Or, on observe que le maximum de la courbe ne semble pas se situer à
deux fibres mais plutôt vers trois fibres. C’est parce qu’il faut également prendre en compte
le nombre de rainures qui, lui, augmente avec N . Ainsi, le sommet de la courbe représente un
optimum entre la taille relative des rainures et leur nombre.

Cependant, on n’a pas encore apporté d’hypothèses permettant de lier le nombre de rainures
et leur profondeur relative à une diminution de la dissipation visqueuse. On parle bien d’hypo-
thèse puisque à ce jour, ce sujet n’est pas encore établi ni totalement compris d’un point de vue
théorique.

La première hypothèse est qu’une partie du fluide de la goutte (en bleu foncé sur la figure
4.17) vient combler les rainures et permet au reste de la goutte de "glisser" en partie dessus. En
effet, le cisaillement du fluide, et donc la dissipation visqueuse, est plus faible dans les rainures
qu’au contact direct de la fibre. Cependant, plus la taille relative de la rainure est faible et moins
la baisse de cisaillement est importante. On a donc bien un phénomène qui résulte également
d’un optimum entre le nombre de rainures et leur profondeur relative.

Une façon de tester cette hypothèse serait de calculer la perte de masse de la goutte dans
les deux cas. En effet, le liquide coincé entre les rainures est laissé dans le sillage de la goutte et
devrait donc contribuer à la perte de volume de la goutte.

Une autre hypothèse, très incertaine, concerne la formation d’un ménisque dans la rainure
en bas de la goutte. Ce ménisque agirait tel un prémouillage et faciliterait le déplacement de la
goutte comme l’a constaté Lorenceau [39]. Cependant, il faudrait vérifier le temps caractéristique
de formation du ménisque vis-à-vis de la vitesse de la goutte.



Chapitre 5

Phénomènes annexes

Dans ce chapitre, on se contente de relever certains phénomènes qu’on a observé mais que
l’on n’a pas pu caractériser par manque de temps ou de pertinence vis-à-vis du sujet principal
de ce mémoire.

Naissance de gouttes secondaires

Suite à l’instabilité de Rayleigh Plateau, la gaine de fluide laissé par le passage de la goutte
sur la fibre se déstabilise. On assiste donc à la naissance de gouttes secondaires, dites satellites,
le long de la fibre. La dynamique de ces gouttes est complètement différente de celle de la goutte
mère. En effet, les gouttes satellites se situent sur une fibre mouillée alors que la goutte mère se
déplace sur une fibre sèche. Ce changement d’environnement modifie non seulement les forces
en présence mais également la manière dont la goutte perd son volume. D’une part, il faut à
présent prendre en compte la tension superficielle tirant la goutte vers le bas et d’autre part, une
partie du volume que la goutte laisse derrière elle est comblé par le prémouillage de la fibre qui
lui permet de regagner de la masse. Ces gouttes ne semblent pas posséder de volume résiduel
et se déplacent constamment vers le bas de la fibre comme le montre la figure 5.1. En effet,
on observe que les droites joignant les gouttes satellites à chaque instant possèdent une faible
pente, signature de leur faible vitesse de déplacement.

A la suite de ce premier phénomène surgit un second très intéressant. Les gouttes satellites
n’ont pas toujours le même volume, les mêmes conditions de mouillage ou encore une épaisseur
du gainage de la fibre identique en dessous d’elle. Cela a pour conséquence que certaines gouttes
satellites peuvent se déplacer légèrement plus rapidement que leurs voisines directes. Par consé-
quent, il arrive un moment où l’une rattrape l’autre et elles fusionnent. Celle-ci a pour effet
d’augmenter brusquement le volume de la goutte, donc son poids, donc sa vitesse. Une fois ce
phénomène amorcé, il va s’amplifier de plus en plus puisque la goutte satellite initiale va pro-
gressivement rattraper, et donc se nourrir en quelque sorte, de toutes les autres gouttes satellites
laissées dans le sillage de la goutte mère. On qualifiera cette goutte de cannibale puisqu’elle se
nourrit de ses consoeurs.

Cependant, la goutte mère évoluant sur fibre sèche, elle perd constamment en volume. Cette
perte de volume est toujours supérieure à celle de la goutte cannibale grandissante qui, elle,
évolue sur fibre mouillée. Progressivement, on observe donc que la goutte satellite rattrape la
goutte mère, jusqu’au moment où elles collisionnent, augmentant ainsi le volume et la vitesse
de la goutte mère. Ce phénomène peut prendre place plusieurs fois à partir d’une seule goutte
mère. Cela a pour conséquence qu’une goutte peut parcourir une distance beaucoup plus grande
si on considère son interaction avec son sillage.
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Figure 5.1 – Goutte cannibale se nourrissant des autres gouttes satellites laissées dans le sillage de
la goutte mère. Cette goutte secondaire finira par rattraper la goutte mère et fusionner avec elle.

Collision entre gouttes

Puisqu’on vient de mettre en évidence le phénomène de collision entre gouttes, il est inté-
ressant de regarder de plus près ce qu’il se passe exactement durant ces brefs instants, illustrés
sur la figure 5.2.

La première observation est que le phénomène est très rapide, plus rapide que la fréquence
de capture d’image de la caméra, c’est à dire moins d’un vingtième de seconde. La seconde
concerne la goutte satellite issue de la collision entre les deux gouttes. Quelle est son origine ?
Une hypothèse serait que lorsque les deux gouttes fusionnent, la goutte supérieure est très
rapidement aspirée par la goutte inférieure à cause de l’action conjuguée de la gravité et de la
tension superficielle. Or, plus la vitesse de la goutte est grande et plus elle laisse derrière elle un
film dont l’épaisseur est grande. La goutte satellite pourrait donc provenir de la déstabilisation
du court, mais épais, gainage de la fibre qui survient lorsque les deux gouttes fusionnent.

Quoi qu’il en soit, cette goutte satellite, manifestement plus grosse que les autres gouttes
issues du gainage normal de la fibre, est un candidat intéressant comme goutte cannibale. Tout
semble se dérouler comme si chaque collision donnait naissance à la goutte qui provoquera la
suivante.

Géométrie des gouttes

Une autre observation intrigante est la forme des gouttes en fonction du nombre de fibres.
Sur la figure 5.3, on peut observer différentes gouttes d’un volume de 1µl en fonction du nombre
croissant de fibres (de la gauche vers la droite). Plus ce nombre augmente et plus la géométrie de
la goutte s’allonge. Cet effet influence-t-il le prémouillage de la goutte et donc sa dynamique ?

Découpe d’une goutte

Finalement, on s’intéresse à ce qui s’apparente plus à un défaut de la fibre qu’à un compor-
tement spécial de la goutte. On observe sur la figure5.4 qu’une goutte initialement entière se fait



53

Figure 5.2 – Collision entre deux gouttes. On observe à la suite de cet évènement une goutte
secondaire d’une taille supérieure à celle des autres gouttes secondaires issues de la déstabilisation
classique de la gaine de fluide.

Figure 5.3 – Géométrie des gouttes en fonction du nombre de fibres. On observe que plus ce dernier
augmente et plus la géométrie de la goutte s’allonge.
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Figure 5.4 – Découpe d’une goutte le long d’une fibre. Ce comportement est probablement du à une
impureté présente sur les fibres.

couper en deux. L’explication la plus probable est la présence d’un défaut sur une moitié de la
fibre qui fait en sorte de retenir une partie du liquide à un endroit qui semble fixe. Cet accident
ouvre la porte à toute une série d’expériences avec des fibres composites dont les brins ont des
propriétés différentes.
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Conclusion et Perspectives

Conclusion

L’étude de la dynamique des gouttes sur fibres verticales dans le cadre de ce mémoire a
permis de mettre en évidence les rôles joués par la viscosité des huiles silicone et le diamètre
de la fibre d’une part ainsi que l’influence du nombre de fibres (N : 1 → 4) de même diamètre
composant la fibre composite d’autre part.

L’état de l’art permet de cerner les différents paramètres pertinents pour notre étude et
d’élaborer le plan d’expériences. Pour ce faire, on a passé en revue la physique relative à une
goutte isolée, une goutte sur un substrat plan horizontal et incliné, une goutte sur une et deux
fibres horizontales et finalement une goutte sur une fibre inclinée et par la suite verticale.

Le plan d’expériences élaboré pour mettre en évidence l’influence de la viscosité ainsi que
celle du diamètre et du nombre de fibres est le suivant : on commence par une fibre verticale
où l’on fait varier à la fois la viscosité de l’huile silicone et le diamètre de la fibre. Ensuite, on
réitère les expériences mais en remplaçant la fibre unique par une fibre composite.

Lorsqu’on utilise une fibre (N = 1), on trouve que la vitesse est inversément proportionnelle
à la viscosité et au diamètre de la fibre. On observe également que la goutte de silicone ralen-
tit et fini par s’arrêter lorsqu’elle atteint un volume, appelé volume résiduel, d’environ 0.3µl.
On élabore ensuite un modèle qui prend en compte trois forces, le poids qui est le moteur du
phénomène ainsi que la tension superficielle et la dissipation visqueuse qui s’opposent au mou-
vement. Ce modèle, dans un premier temps confirmé par les expériences permet, dans un second
temps de déterminer le coefficient de dissipation visqueuse ξ (4.2) associé aux paramètres de
l’expérience.

Pour une fibre composite (N : 1 → 4), la géométrie du problème change. Lorsqu’on assemble
les fibres pour créer la fibre composite, sa section n’est plus un disque comme précédemment
mais un ensemble de disques collés. Cette particularité crée des rainures sur le périmètre de
la fibre composite. A l’aide des données expérimentales, on retrouve des résultats similaires
au cas N = 1 concernant la dépendance en la viscosité. Pour celle vis-à-vis du diamètre, il
faut préalablement introduire un diamètre effectif tenant compte du périmètre total de la fibre
composite avant de la vérifier. Le modèle nous permet d’observer une variation de ξ en fonction
du nombre de fibres. Celui-ci est minimal pour N = 2 ou 3, ce qui permet de prédire une vitesse
de la goutte plus grande dans ces cas-là, tous les autres paramètres étant fixes. On qualifie ce
phénomène de super-vitesse. Cette propriété est vérifiée grâce aux expériences menées sur des
fibres composites ayant un périmètre équivalent. Une explication possible de l’origine de cette
propriété est l’équilibre idéal entre le nombre de rainures et leur profondeur relativement au
diamètre de la fibre composite.

Les conclusions de ce travail nous montrent qu’augmenter le nombre de fibres permet d’aug-
menter la vitesse des gouttes et donc le coefficient de drainage des filets à nuages. Toutefois,
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d’autres facteurs tels que l’épaisseur du gainage déposé par la goutte ou le volume retenu par
les rainures pourraient réduire ce gain. Le résultat de ce travail est donc encourageant et se doit
d’être complété par des recherches futures.

Perspectives

Ce mémoire permet d’apporter de nouveaux éléments de réponse quant à la dynamique
d’une goutte sur fibre(s) mais soulève également de nouvelles questions. Celles-ci sont à la fois
pratiques et théoriques. Elles sont toutes sujettes à des perspectives intéressantes dans le but
d’approfondir ce travail et d’en cerner encore mieux les acteurs ainsi que leur rôle.

Du point de vue des expériences déjà menées, est-ce que le coefficient de dissipation varie
avec la viscosité ? Sinon, est-ce qu’une simple épuration des données permettrait d’affiner la
courbe présente sur le graphique de g/ξ en fonction du nombre de fibres (figure 4.14) ?

Les futures expériences devraient tenter d’approfondir les points suivants :
— Au niveau des rainures : quel est leur rôle exact et comment le comprendre d’un point de

vue théorique, quel est le rôle du cisaillement et comment s’effectue-t-il au sein des rai-
nures ? La perte de volume au cours du temps est-elle plus importante lorsqu’on introduit
des rainures ?

— Au niveau de la gaine de fluide laissée derrière la goutte : Quelle est l’épaisseur de cette
gaine et quels paramètres l’influencent ? Le modèle théorique actuel suppose un bain infini,
que se passe-t-il au sein d’une goutte de volume fini et variable ?

— Au niveau des phénomènes annexes : comment caractériser le système goutte mère et
gouttes satellites, quels changements dans la dynamique de la goutte mère induisent la
prise en compte du système global ? Comment se passe exactement la fusion de deux
gouttes, quels paramètres influencent la taille de la goutte satellite issue de la fusion ?

— Quelle est l’influence de la géométrie de la goutte sur sa dynamique ?
Comme on le voit, le champ des interrogations est encore large. Nul doute qu’une recherche

expérimentale couplée à une observation approfondie de notre environnement nous apporteront
les éléments nécessaires à la compréhension de ces phénomènes.
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