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Introduction

In the 1930’s, John von Neumann developed a formalism that describes how non-relativistic
physical systems behave at the atomic scale and below. This field, known as quantum
mechanics, has been ever growing since then. In 1935, Einstein, Podolsky, Rosen [1],
and Schrödinger [2] described a “spooky” quantum phenomenon called quantum entan-
glement. It describes how multipartite quantum states may not always be written as a
product of the individual states. In other words, the knowledge of the common system
does not infer the knowledge of its individual subsystems. In 1964, Bell tried to quantify
this correlation between quantum systems and described how it is impossible for this fea-
ture to be simulated in a classical formalism [3]. Quantum entanglement has since been
considered as the most distinguishable feature that separates quantum mechanics from
classical mechanics. More than just a subject of philosophical discussions, it is a resource,
and the key ingredient in applications that cannot be carried out, or very inefficiently,
with classical resources, e.g., quantum teleportation [4], and quantum cryptography [5],
which, combined with the idea of quantum computation, gave birth to a field called quan-
tum information [6]. Since the discovery of quantum entanglement and its importance for
applications, the theoretical description of quantum entanglement has been fast-growing
[7, 8, 9]. It revolves around the characterisation and detection of entanglement, that
is, if a state is entangled or not, its quantification, and manipulation. The problem of
determining whether a quantum state is entangled or separable is called the separability
problem and is the problem of interest in this work.

Although the characterization and detection of multipartite entanglement remains an
open question, the separability problem has been solved for any systems made of 2 qubits
or one qubit and one qutrit [10], and for any pure states [11]. For systems made of arbitrary
dimensional qudits, the number of variables increases exponentially with the number of
subsystems, and the problem becomes disheartening. Restricting the problem to quantum
systems whose states are invariant under the permutation of their constituent makes the
problem more approachable. Such states are called symmetric states. A criterion on
the separability of N symmetric mixed qubits has been found in 2014 [12]. In 2017, a
solution for the separability problem was described [13] by mapping it onto a problem in
probability theory called the moment problem.

The moment problem has been extensively studied in the literature [14]. In probability
theory, a probability distribution tells how likely it is for a particular event to happen.
There exist many tools that describe the shape of a probability distribution, e.g., its mean.
They are called the moments of the probability distribution. The moment problem is the
inverse problem: given a sequence of moments, the moment problem asks whether there
exists a probability distribution (a non-negative measure) that satisfies the given moments.
If it exists, the measure is called a representing measure. In the multivariate case, when
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all moments are given, the moment problem was solved in 1991 [15]. When the number
of moments given is truncated, i.e., finite, the problem is called a truncated moment
problem. In 2005 Curto and Fialkow presented a necessary and sufficient condition for a
truncated moment sequence to admit a representing measure [16]. In 2012, a semidefinite
optimization algorithm that determines if such a representing measure does exist for a
given truncated moment sequence was presented [17], and generalized in 2014 [18].

Optimization problems are widely used in science. Nature tends to optimize: physical
systems naturally tend to evolve to a state of minimum energy. Optimization problems
consist in the minimization (or maximization) of a function. They can be classified de-
pending on the nature of the function to minimize, and its constraints. Semidefinite
optimization, also referred as semidefinite programming, is a convex optimization prob-
lem, i.e., a problem whose solution is unique, of a linear function, and where the matrix
whose elements are the variables is constrained to be positive semidefinite. Since 1990s,
semidefinite programming has been widely used in optimization. It is considered among
the most powerful tools in theory and practice. They are commonly utilized in variety of
fields, such as approximation algorithms, graph theory, geometry, quantum information
and computation [19] [20] [21]. Indeed, the semidefinite and convexity property appears
naturally in quantum information. Applications include quantum error correction [22],
quantum state discrimination [23], and many others [24].

The use of semidefinite programming for the separability problem was already pro-
posed in a variety of publications. An algorithm presented in [25] detects entanglement
but never stops if the state is separable. Contrariwise, the algorithm presented in [26] iden-
tifies if the state is separable and never stops if it is entangled. The algorithm presented
in [13] provides a certificate of separability and entanglement, and gives a decomposition
into product states if the state is separable. It applies to arbitrary quantum states with
an arbitrary number of constituents, and arbitrary symmetries between the subparts.

The aim of this work is to give a comprehensive description on how one can map the
separability problem onto a moment problem, how to solve a moment problem, and how
to implement an algorithm that detects separability and entanglement using semidefinite
optimization. More specifically, this work aims to present the following equivalences:

A separable state is a convex combination of product states.

⇔ The global expectation values of basis operators can be written as a convex
combination of the product of local expectation values of the individual
basis operators.

⇔ There exists a representing atomic probability measure whose moment
sequence of order 1 is given by the local expectation values of the
individual basis operators.

⇔ There exists a flat extension of the above moment sequence such that its
moment matrix and localizing moment matrices are positive semidefinite.

⇔ A semidefinite optimization whose variables are the moments of the flat extension
above is feasible.
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Chapter 1 presents the necessary background in quantum mechanics used throughout
this work. The first section presents the basic notions of Hilbert spaces, state vectors,
operator spaces, operators and the Generalized Gell-Mann operators, including the equiv-
alence between two operators. Next, symmetric states, density operators, pure and mixed
states are exposed, followed by the separability problem in terms of state vectors and den-
sity operators. The second section presents the Bloch representation of states for qubits
and qudits, followed by the tensorial representation of states, and the equivalence between
separability in terms of product states, and in terms of product of local expectation values
of the basis operators.

Chapter 2 presents how one can map the separability problem onto a truncated mo-
ment problem, and the necessary and sufficient condition to solve a truncated moment
problem. The first section presents the basic algebraic notions of monomials, polynomials,
rank and flat extension of a matrix. The second section introduces the notions of moments
and truncated moment sequences. It is followed by a presentation of how a separable state
is equivalent to the existence of a probability measure whose first order moments are given
by the local expectation values of the basis operators for qubits, qudits, for general and
symmetric states. The rest of the second chapter then presents the notions of moment
matrices, localizing matrices, and a description of the truncated moment problem. A nec-
essary and sufficient condition to solve a truncated moment problem is presented, which
will lead to a necessary and sufficient condition for the separability of arbitrary states.

Chapter 3 presents a semidefinite optimization algorithm to solve a truncated moment
problem, and thus the separability problem. The first section presents the basic notions
of optimization problems, convex programming, and linear programming, followed by a
description of semidefinite programming. The dual theory of linear programming is then
presented, followed by an introduction to the concept of moment relaxation for polynomial
optimization, which shows that determining if a representing measure exist amounts to
determine if a linear program is feasible. A description of a semidefinite algorithm to
solve the truncated moment problem is then presented, which thus solves the separability
problem. The second section of chapter 3 then presents results of our implementation of
the algorithm.
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Chapter 1

The separability problem

The aim of this first chapter is to present the separability problem in quantum mechanics.
The first section of this chapter presents a brief mathematical background of quantum
mechanics and describes the basic concepts of state spaces, quantum states, symmetric
states, linear operators, as well as density operators. The separability problem is then
presented for state vectors and density operators. The second section presents the Bloch
representation of states, the tensorial representation of states, followed by the equivalence
between a convex combination of product states and a convex combination of products
of the local expectation values of basis operators. The content of this chapter comes
from various sources [6, 13, 27, 28, 29, 30, 31], where more insights and precisions of the
concepts presented can be found.

1.1 Quantum mechanics background

1.1.1 Hilbert spaces
The mathematical foundations of quantum mechanics are based on a Hilbert space for-
malism developed in the 1930s by John von Neumann [32]. A C-Hilbert space, or simply
Hilbert space, denoted as H, is a complex vector space with a defined inner product ⟨·|·⟩,
and a metric induced by the norm defined as ∥·∥ =

√
⟨·|·⟩. The elements of H are complex

vectors denoted as |·⟩ and called ket vectors. In quantum mechanics, a quantum system,
e.g., a particle, is associated to a Hilbert space H called the state space. In this context,
a quantum system is completely described by a normalized state vector |ψ⟩ ∈ H, i.e.,
∥ψ∥2 = ⟨ψ|ψ⟩ = 1.

An orthonormal basis of a Hilbert space H of dimension d is a set

Bd = {|ui⟩ ∈ H, i ∈ {0, . . . , d− 1} : ⟨ui|uj⟩ = δij,∀i, j ∈ {0, . . . , d− 1}}. (1.1)

When the basis vectors |i⟩ ≡ |ui⟩ are numbered from 0 to d− 1 the basis

Bd = {|i⟩ , i ∈ {0, . . . , d− 1}} (1.2)

is referred as a computational basis. Any vector |ψ⟩ ∈ H can be written as a linear
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combination of the elements of a computational basis Bd as

|ψ⟩ =
d−1∑
i=0

ci |i⟩ , (1.3)

where the ci = ⟨i|ψ⟩ are the coefficients of the decomposition of |ψ⟩ in Bd. It fol-
lows that ∑d−1

i=0 ⟨i|ψ⟩ |i⟩ = ∑d−1
i=0 |i⟩ ⟨i|ψ⟩ = |ψ⟩ , which leads to the completeness relation∑d1

i=0 |i⟩ ⟨i| = 1̂ where 1̂ is the identity operator in H. For a given basis, the coefficients
ci completely characterize the vector |ψ⟩.

A d-dimensional qudit, or simply a qudit, is a physical system whose state space is
Cd up to an isomorphism. For d = 2, the system is called a qubit, for d = 3, it is called
a qutrit. For any qudit written in a computational basis as in (1.3), the normalization
condition reads

∥ψ∥2 = ⟨ψ|ψ⟩ =
d−1∑
i=0

|ci|2 = 1. (1.4)

Multipartite systems

Consider a quantum system made of 2 subsystems, called a bipartite system. Consider the
case of 2 qudits. Let H(1) and H(2) be the state space of the first and second subsystem
respectively, and let {|i1⟩ , i1 ∈ {0, . . . , d − 1}}, and {|i2⟩ , i2 ∈ {0, . . . , d − 1}} be a
computational basis of H(1) and H(2) respectively. The Hilbert state space H of the
system of the two qudits is the tensor product of the two subsystems H(1) and H(2), that
is H = H(1) ⊗ H(2). The computational basis of H of dimension d2 is given by

Bd2 = {|i1i2⟩ ≡ |i1⟩ ⊗ |i2⟩ , i1, i2 ∈ {0, . . . , d− 1}} .

For instance, for a two-qubit system, given a computational basis {|0⟩ , |1⟩} of H(1) and
H(2), the computational basis of the state space H = H(1) ⊗ H(2) is

B4 = {|00⟩ , |01⟩ , |10⟩ , |11⟩},

and any state vector |ψ⟩ ∈ H can be written as

|ψ⟩ =
1∑

i1,i2=0
ci1i2 |i1i2⟩ = c00 |00⟩ + c01 |01⟩ + c10 |10⟩ + c11 |11⟩ , (1.5)

such that ∑1
i1,i2=0 |ci1i2|2 = |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.

When the system is made of N subsystems, the Hilbert state space is the tensor
product of all the subsystem state spaces H(i) :

H =
N⊗
i=1

H(i) = H(1) ⊗ · · · ⊗ H(N). (1.6)

This is called a multipartite system made of N subsystems. Consider the case of N qudits.
Let {|ij⟩ , ij ∈ {0, . . . , d−1}}, ∀j = 1, . . . , N be a computational basis of H(j) respectively.
The computational basis BdN of H is given by

BdN = {|i1 . . . iN⟩ ≡ |i1⟩ ⊗ · · · ⊗ |iN⟩ , i1, . . . , iN ∈ {0, . . . , d− 1}}, (1.7)

5



be the basis of H of dimension dN . Any vector |ψ⟩ ∈ H can be written in this basis as

|ψ⟩ =
d−1∑

i1,...,iN =0
ci1...iN |i1 . . . iN⟩ . (1.8)

For a given basis, the state |ψ⟩ of the system is entirely described by its coefficients
ci1...iN . For any multipartite system made of N d-dimensional qudits written as in (1.8),
the normalization constraint reads

∥ψ∥2 =
d−1∑

i1,...,i2=0
|ci1...iN |2 = 1. (1.9)

1.1.2 Operator spaces

A linear operator Â defined on a finite dimensional Hilbert space H is an internal linear
map acting on the elements |ψ⟩ of H as Â : H → H : |ψ⟩ → Â |ψ⟩ ,∀ |ψ⟩ ∈ H. One can
show that all linear operators defined on a finite-dimensional Hilbert space are bounded.
Throughout, L(H) will denote the complex vector space of all linear operators acting
on the Hilbert space H, and L+(H) ⊂ L(H) will denote the real vector subspace of all
hermitian operators. The operator space L(H) can be endowed with the scalar product〈
Â
∣∣∣B̂〉 ≡ Tr

(
Â†B̂

)
, which simplifies to Tr(ÂB̂), ∀Â, B̂ ∈ L+(H). To every observable in

classical mechanics denoted by A, there correspond a linear hermitian operator Â defined
on a Hilbert state space H whose eigenvalues an are associated to eigenstates |an⟩ ∈ H
which form an orthogonal basis of H : Â |an⟩ = an |an⟩. The matrix that represents
the operators Â with entries ⟨an|Â|am⟩ is hermitian, that is, A† = A, where Â† is the
hermitian conjugate of Â.

Consider a d-dimensional system of state space H. In L+(H), a basis of operators is
given by λ̂0 = 1̂ and λ̂i (i = 1, . . . , d2 − 1), where the operators λ̂i are the d2 − 1 traceless
hermitian generator of the special unitary group SU(d), i.e., Tr(λ̂i) = 0, ∀i = 1, . . . , d2−1.
They can be obtained by the generalized Gell-Mann matrices (GGM operators) defined
as [33] :

• d(d−1)
2 symmetric GGM

λ̂jks = |j⟩ ⟨k| + |k⟩ ⟨j| , 1 ≤ j < k ≤ d, (1.10)

• d(d−1)
2 antisymmetric GGM

λ̂jka = −i |j⟩ ⟨k| + i |k⟩ ⟨j| , 1 ≤ j < k ≤ d, (1.11)

• d− 1 diagonal GGM

λ̂l =
√

2
l(l + 1)

 l∑
j=1

|j⟩ ⟨j| − l |l + 1⟩ ⟨l + 1|

 , 1 ≤ l ≤ d− 1. (1.12)
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For d = 2, one gets 3 generators which correspond to the Pauli matrices

λ12
s = σx =

(
0 1
1 0

)
, λ12

a = σy =
(

0 −i
i 0

)
, λ1 = σz =

(
1 0
0 −1

)
. (1.13)

For d = 3, one gets 8 generators λ̂i as follows .

• 3 GGM symmetric matrices

λ12
s =

0 1 0
1 0 0
0 0 0

, λ13
s =

0 0 1
0 0 0
1 0 0

, λ23
s =

0 0 0
0 0 1
0 1 0

, (1.14)

• 3 GGM antisymmetric matrices

λ12
a =

0 −i 0
i 0 0
0 0 0

, λ13
a =

0 0 −i
0 0 0
i 0 0

, λ23
a =

0 0 0
0 0 −i
0 i 0

, (1.15)

• 2 GGM diagonal matrices

λ1 =

1 0 0
0 −1 0
0 0 0

, λ2 = 1√
3

1 0 0
0 1 0
0 0 −2

, (1.16)

One has
Tr(λ̂iλ̂j) = αiδij, (1.17)

∀i, j = 0, . . . , d2 − 1, with α0 = d and αi = 2 for i ̸= 0. Hence the operator basis
{λ̂i, i = 0, . . . , d2 − 1} is orthogonal.

Any operator Â ∈ L+(H) can be expanded in the orthogonal basis {λ̂i} according to

Â =
d2−1∑
i=0

ai
αi
λ̂i (1.18)

with
ai = Tr(Âλ̂i) ∈ R. (1.19)

More explicitly, this yields

Â = 1
d

Tr(Â)1̂ + 1
2

d2−1∑
i=1

aiλ̂i. (1.20)

If Â is traceless, it thus follows that

Â = 1
2

d2−1∑
i=1

Tr(Âλ̂i)λ̂i. (1.21)
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The basis expansion (1.18) yields an interesting equality criterion for two operators. For
any Â, B̂ ∈ L+(H), one gets

Â = B̂ (1.22)
⇔ Tr(Âλ̂i) = Tr(B̂λ̂i), ∀i = 0, . . . , d2 − 1. (1.23)

For an N -multipartite system of state space H = ⊗N
j=1 H(j), with H(j) ≃ Cdj , it follows

L+(H) =
N⊗
j=1

L+(H(j)) (1.24)

and a basis of operators in L+(H) is given by

{Λ̂i1...iN =
N⊗
j=1

λ̂
(j)
ij , ij ∈ {0, . . . , d2

j − 1},∀j = 1, . . . , N}. (1.25)

It forms an orthogonal basis :

Tr
(
Λ̂i1...iN Λ̂i′1...i

′
N

)
= Tr

 N⊗
j=1

λ̂
(j)
ij λ̂

(j)
i′j


=

N∏
j=1

Tr
(
λ̂

(j)
ij λ̂

(j)
i′j

)

=
N∏
j=1

αijδiji′j

= α(i1,...,iN )δ(i1,...,iN )(i′1,...,i′N )

with
α(i1,...,iN ) =

N∏
j=1

αij , (1.26)

and with αij = dj if ij = 0 and 2 otherwise.
Any operator Â ∈ L+(H) can be expanded according to

Â =
∑

i1,...,iN

ai1...iN
α(i1,...,iN )

Λ̂i1,...,iN (1.27)

with ai1...iN = Tr
(
ÂΛ̂i1...iN

)
∈ R. More explicitly, this yields

Â = 1∏N
j=1 dj

Tr(Â)1̂ +
∑

i1,...,iN
(i1,...,iN )̸=(0,...,0)

a(i1...iN )

α(i1...iN )
Λ̂(i1,...,iN ). (1.28)

Two operators Â and B̂ ∈ L+(H) are identical if and only if

Tr
(
ÂΛ̂i1...iN

)
= Tr

(
B̂Λ̂i1...iN

)
, ∀i1, . . . , iN . (1.29)
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1.1.3 Symmetric states
Consider a two qubit system whose state |ψ⟩ ∈ H is written as (1.5), and let us permute
the two qubits. The operation that permutes the particle 1 and 2 is called the permutation
operator and is denoted by Π̂12 : Π̂12 |i1⟩ ⊗ |i2⟩ = |i2⟩ ⊗ |i1⟩. The state |ψ′⟩ of the system
after the permutation is

|ψ′⟩ = Π̂12 |ψ⟩ =
1∑

i1,i2=0
ci1i2 |i2⟩ ⊗ |i1⟩ = c00 |00⟩ + c01 |10⟩ + c10 |01⟩ + c11 |11⟩ . (1.30)

If the state is unchanged after the permutation, i.e., |ψ′⟩ = |ψ⟩, the state |ψ⟩ is said to be
symmetric, which, in this case, amounts to state that |ψ⟩ is symmetric if c01 = c10 ≡ cS,
that is

|ψS⟩ = c00 |00⟩ + cS(|01⟩ + |10⟩) + c11 |11⟩ .

The state space HS of all the symmetric states is a subspace of H and called the symmetric
subspace. A basis of HS in this case is given by B3

S = {|00⟩ , 1√
2(|01⟩+|10⟩), |11⟩} where 1√

2
is the normalization constant satisfying equation (1.4). If |ψ′⟩ = − |ψ⟩, the state is said to
be antisymmetric, i.e., in our case, |ψ⟩ is antisymmetric if c01 = −c10 ≡ cA, c00 = −c00 = 0,
and c11 = −c11 = 0 :

|ψA⟩ = cA(|01⟩ − |10⟩).
The state space HA of all the antisymmetric states is a subspace of H and called the
antisymmetric subspace. A basis of HS in this case is given by B1

A = { 1√
2(|01⟩ − |10⟩)}.

An interesting basis for H is the basis made of the different elements of B3
S and B1

A, that
is,

B4 = {|00⟩ , 1√
2

(|01⟩ + |10⟩), |11⟩ , 1√
2

(|01⟩ − |10⟩)}.

In this basis, any state |ψ⟩ ∈ H can be written as

|ψ⟩ = c00 |00⟩ + cS
1√
2

(|01⟩ + |10⟩) + c11 |11⟩ + cA
1√
2

(|01⟩ − |10⟩).

If cA = 0, |ψ⟩ is symmetric, and if cA is the only coefficient ̸= 0, |ψ⟩ is antisymmetric.
For a multipartite systems H = ⊗N

i=1 H(i) of N qudits, the permutation operator
denoted as Π̂ij is the operation that permutes the states of the particle i and j, that is,
the subsystem i and j. Permutation operators are hermitian (Π̂†

ij = Π̂ji = Π̂ij) which
implies that their eigenvalues are real, and unitary (Π̂ijΠ̂†

ij =
(
Π̂ij

)2
= 1̂) which means

that their eigenvalues are ±1. If Π̂ij |ψ⟩ = |ψ⟩, i.e., the eigenstate |ψ⟩ is associated to the
eigenvalue 1, for all i, j ∈ {1, . . . , N}, that is for all the possible permutations between
particles, the state is a symmetric state. Conversely, if Π̂ij |ψ⟩ = − |ψ⟩, the eigenstate |ψ⟩
is associated to the eigenvalue −1 for all i, j ∈ {1, . . . , N}, then |ψ⟩ is antisymmetric.

Note that quantum states can be neither symmetric nor antisymmetric. For d = 2, a
basis of HS is given by the states defined as∣∣∣D(k)

N

〉
= N

∑
π

∣∣∣ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
N−k

〉
, (1.31)
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with N − k excitations, k ∈ {0, . . . , N}, and where N is a normalization constant, and
where the sum runs over all the possible permutations π of the subsystems. These states
are called the Dicke states, and can be generalized for any dimension d [34]. One can
project any state |ψ⟩ ∈ H written in the computational basis onto the symmetric subspace
HS by using the projection operator P̂S made of the different Dicke states. Projection
operators are hermitian operators with the property P̂ 2 = P̂ . For N = 2 and d = 2, the
projection operator P̂S is

P̂S = |00⟩ ⟨00| + 1
2(|01⟩ ⟨01| + |10⟩ ⟨10|) + |11⟩ ⟨11| ,

and its matrix representation in the computational basis is

P̂S =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

.

1.1.4 Density operators
The mathematical formalism of quantum mechanics presented in the previous sections
describes quantum system by using state vectors |ψ⟩ ∈ H, which can be written in a
computational basis as ∑d−1

i=0 ci |i⟩ in H such that ⟨ψ|ψ⟩ = 1. Another formulation can be
done using the operator defined as

ρ̂ = |ψ⟩ ⟨ψ| =
(
d−1∑
i=0

ci |i⟩
)d−1∑

j=0
c∗
j ⟨j|

 =
d−1∑
i,j=0

cic
∗
j |i⟩ ⟨j| . (1.32)

This operator is called the density operator. Although it is mathematically equivalent
to the description of a quantum system using state vectors |ψ⟩, they are more conve-
nient to describe certain systems in quantum mechanics, as shown in the next sections.
Density operators ρ̂ have an hermitian matrix representation called the density matrix
ρ. One can observe that ρ̂ = |ψ⟩ ⟨ψ| is the projection operator on the state |ψ⟩ :
ρ̂ |ϕ⟩ = ⟨ψ|ϕ⟩ |ψ⟩ ,∀ |ϕ⟩ ∈ H. It thus has the property ρ̂2 = ρ̂. For a qubit system,
the density operator reads

ρ̂ =
1∑

i,j=0
cic

∗
j |i⟩ ⟨j| ,

and its density matrix is in the computational basis is

ρ =
(

|c0|2 c0c
∗
1

c1c
∗
0 |c1|2

)
, (1.33)

for |c0|2 + |c1|2 = 1, which can then also be written as Tr(ρ̂) = 1, i.e., the sum of
its diagonals elements, its trace, has to be unity : ∑

i ρ̂ii = 1. Any density operator
representing a state in quantum mechanics has to satisfy this condition. Density operators
also have the property to be positive semidefinite, that is, they are hermitian and all their
eigenvalues are ≥ 0. The set of all positive semidefinite operators acting on H is denoted
as P(H), and P(H) ⊂ L+(H).
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For a multipartite system made of N qudits, any density operator can be written in
the computational basis as

ρ̂ =
d−1∑

i1,...,iN =0
j1,...,jN =0

ci1...iN c
∗
j1...jN

|i1 . . . iN⟩ ⟨j1 . . . jN | , (1.34)

such that Tr(ρ̂) = 1. The mathematical formalism described in the previous sections for
state vectors can be rewritten in terms of density operators ρ̂ ∈ P(H). For instance, one
can show that the average value ⟨ψ|Â|ψ⟩ of an operator Â for a quantum system in the
state |ψ⟩ can be rewritten as Tr(Âρ̂) = Tr(ρ̂Â). Indeed,〈

Â
〉
ψ

= ⟨ψ|Â|ψ⟩ = ⟨ψ|1̂Â1̂|ψ⟩ =
∑
i,j

⟨ψ|i⟩ ⟨i|Â|j⟩ ⟨j|ψ⟩

=
∑
i,j

⟨i|Â|j⟩ ⟨j|ψ⟩ ⟨ψ|i⟩

=
∑
i,j

⟨i|Â|j⟩ ⟨j| ρ̂ |i⟩

=
∑
i,j

Âij ρ̂ji =
∑
i

(Âρ̂)ii

= Tr(Âρ̂) =
〈
Â
〉
ρ̂
. (1.35)

Pure and mixed states

The density operator ρ̂ is convenient to describe a quantum system whose state is not
entirely known in the sense that it is known to have probability p1 to be in the state |ψ1⟩,
p2 to be in the state |ψ2⟩ , . . . , pk to be in the state |ψk⟩. These states are said to be in a
probability mixture of states, and described by the operator

ρ̂ =
∑
k

pk |ψk⟩ ⟨ψk| , (1.36)

where ∑k pk = 1. These states are called mixed states. When the mixture is made of only
one state, ρ̂ = |ψ1⟩ ⟨ψ1|, ρ̂ is called a pure state. Pure states are a particular case of mixed
states. The description of pure states in the density operator formalism or in the state
vector formalism are equivalent.

Similarly to pure states, mixed states ρ̂ are represented by a positive semidefinite
matrix and have the property Tr(ρ̂) = 1. However, they do not have the same form
as projection operators, which means that for mixed states, ρ̂2 ̸= ρ̂. Thus a convenient
way to make the distinction between mixed and pure states is the number Tr(ρ̂2) called
the purity. Indeed, if ρ̂ is a pure state, then Tr(ρ̂2) = Tr(ρ̂) = 1. If ρ̂ is a mixed
state, one can easily show that Tr(ρ̂2) < 1. For a multipartite system H = ⊗N

j=1 H(j)

made of N qudits, any mixed state ρ̂ ∈ P(H) can be written in the computational basis
BdN = {|i1 . . . iN⟩ , ij ∈ {0, . . . , d− 1},∀j} as

ρ̂ =
∑
k

pk

 d−1∑
i1,...,iN =0
j1,...,jN =0

ck;i1...iN c
∗
k;j1...jN |i1 . . . iN⟩ ⟨j1 . . . jN |

 (1.37)
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such that Tr(ρ̂) = 1. The average value of an operator Â for a mixed state ρ̂ is

Tr(Âρ̂) = Tr(
∑
k

pkÂ |ψk⟩ ⟨ψk|) =
∑
k

pk Tr(Â |ψk⟩ ⟨ψk|) =
∑
k

pk ⟨A⟩ψk
. (1.38)

1.1.5 The separability problem

Entanglement for pure states

Consider a multipartite system H = ⊗N
j=1 H(j) made of N qudit subsystems H(j). The

computational basis of H is

BdN = {|i1 . . . iN⟩ = |i1⟩ ⊗ · · · ⊗ |iN⟩ , i ∈ {0, . . . , d− 1}},

for |ij⟩ ∈ H(j), j ∈ {1, . . . , N}. Any state |ψ⟩ ∈ H can be expanded in this basis as

|ψ⟩ =
d−1∑

i1,...,iN =0
ci1...iN |i1 . . . iN⟩ .

If |ψ⟩ can be written as

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψN⟩ , (1.39)

with |ψj⟩ ∈ H(j), ∀j = 1, . . . , N , the state |ψ⟩ is said to be separable. Otherwise, the state
is said to be entangled. If |ψ⟩ is separable, then

|ψ⟩ =
N⊗
j=1

|ψj⟩ (1.40)

=
N⊗
j=1

d−1∑
ij=0

c
(j)
ij |ij⟩

 , (1.41)

and there exist d · N coefficients c(j)
ij for ij ∈ {0, . . . , d − 1}, j = 1, . . . , N such that the

dN coefficients ci1...iN read

ci1...iN =
N∏
j=1

c
(j)
ij , (1.42)

for all i1, . . . , iN . The problem of determining if |ψ⟩ is separable or not is called the
separability problem.

Entanglement for mixed states

Consider an N -qudit system. If ρ̂ can be written as a convex combination of product
states ρ̂k = ρ̂

(1)
k ⊗ · · · ⊗ ρ̂

(N)
k , that is

ρ̂ =
∑
k

wk
(
ρ̂

(1)
k ⊗ · · · ⊗ ρ̂

(N)
k

)
(1.43)

for wk ∈ [0, 1], and ∑k wk = 1, then the state is separable. Otherwise, it is entangled.
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Figure 1.1: Bloch representation of a qubit.

1.2 Bloch representation of states

1.2.1 Qubit case
A convenient geometric picture to represent a qubit state |ψ⟩ = c0 |0⟩ + c1 |1⟩ is called
the Bloch representation. Rewriting c0 = eiγ0 cos

(
θ
2

)
and c1 = eiγ1 sin

(
θ
2

)
with θ ∈

[0, π], γ0, γ1 ∈ [0, 2π[, for γ0, γ1, θ real numbers. In this context, |ψ⟩ can be written as

|ψ⟩ = eiγ0 cos
(
θ

2

)
|0⟩ + eiγ1 sin

(
θ

2

)
|1⟩

= eiγ0

(
cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩
)
,

where ϕ = γ1 −γ0. Since quantum states are indistinguishable up to a global phase factor,
it follows

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ . (1.44)

ϕ and θ define a point on the unit three-dimensional sphere as illustrated on Figure 1.1.
This representation can be generalized for mixed states. Since Tr(ρ̂) = 1, any qubit

density operator ρ̂ ∈ P(H) can be written as [see Eq. (1.20)]

ρ̂ = 1
2 1̂ + 1

2(b · σ̂)

= 1
2 1̂ + 1

2(bxσ̂x + byσ̂y + bzσ̂z)
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where σ̂ = (σ̂x, σ̂y, σ̂z), with σ̂x, σ̂y, σ̂z the Pauli operators. They correspond to the GGM
operators for d = 2, and where b = (bx, by, bz), with bα = Tr (ρ̂σ̂α) ∈ R (∀α = x, y, z).
The vector b is called the Bloch vector and entirely describes the state ρ̂. In this context,
the density matrix ρ in the computational basis reads

ρ = 1
2

[(
1 0
0 1

)
+ bx

(
0 1
1 0

)
+ by

(
0 −i
i 0

)
+ bz

(
1 0
0 −1

)]
. (1.45)

As described before, density matrices are positive semidefinite, i.e., their eigenvalues
a are non negative. This leads to a constraint on the Bloch vector b = (bx, by, bz). Indeed,
from the characteristic polynomial det(ρ̂− a1), one has

a =
1 ±

√
1 − (1 − b2

x − b2
y − b2

z)
2

=
1 ±

√
|b2|

2

= 1 ± |b|
2 ≥ 0

which leads to the constraint |b| ≤ 1. If ρ̂ is a mixed state, one can show that the purity
Tr(ρ̂2) ≤ 1 leads to the same constraint |b| ≤ 1, where strict equality corresponds to a
pure state.

In summary, the Bloch representation of a qubit state is a vector b ∈ R3 with |b| = 1
for pure states, i.e, on the surface of the Bloch sphere, and with |b| ≤ 1 for mixed states,
i.e., inside the Bloch sphere.

1.2.2 Qudit case
The Bloch representation can be generalized for qudits. Any qudit state ρ̂ ∈ P(H) can
be written as [see Eq. (1.20)]

ρ̂ = 1
d
1̂ + 1

2
(
b · λ̇

)
= 1
d
1̂ + 1

2

d2−1∑
i=1

biλ̂i

 , (1.46)

where λ̇ = (λ̂1, . . . , λ̂d2−1), with λ̂i, (i = 1, . . . , d2 − 1) the GGM operators, and where
b = (b1, . . . , bd2−1), with bi = Tr(ρ̂Âi) ∈ R. The vector b is called the Bloch vector and
entirely describes the state ρ̂.

Since Tr(ρ̂2) ≤ 1, the purity for any mixed qudit states reads

Tr(ρ̂2) = Tr
1

d
1̂ + 1

2

d2−1∑
i=1

biλ̂i

1
d
1̂ + 1

2

d2−1∑
i=1

biλ̂i



= 1
d2 Tr(1̂)︸ ︷︷ ︸

d︸ ︷︷ ︸
1/d

+ 1
d

d2−1∑
i=1

bi Tr(λ̂i)︸ ︷︷ ︸
0


︸ ︷︷ ︸

0

+ 1
4

d2−1∑
i,j=1

bibj Tr(λ̂iλ̂j)︸ ︷︷ ︸
2δij


︸ ︷︷ ︸

|b|2/2

= 1
d

+ |b|2

2 ≤ 1,
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which leads to the constraint

|b| ≤
√

2(d− 1)
d

. (1.47)

To derive the constraints for the positivity of ρ̂, one can express the coefficients ai of the
characteristic polynomial using the Faddeev-LeVerrier algorithm [27]

ad−m = − 1
m

m∑
k=1

(−1)kad−m+k Tr(ρ̂k), (1.48)

for m ∈ {1, . . . , d} with ad = 1 and ad−1 = Tr(ρ̂) = 1 the normalization constraint. Using
Descartes sign rule, ρ̂ is positive if the coefficients ai i ∈ {d− 2, . . . , 0} are non-negative.
For a qutrit, they read

a1 = 1
2
(
1 − Tr(ρ̂2)

)
≥ 0,

a0 = 1
6
(
2 Tr(ρ̂3) − 3 Tr(ρ̂2) + 1

)
≥ 0. (1.49)

One can observe that the constraint a1 ≥ 0 is the purity. These constraint can also be
rewritten in terms of the GGM operators λ̂i.

In summary, the Bloch representation of a qudit state is a vector b ∈ Rd2−1 with
|b| =

√
2(d−1)
d

for pure states, and with |b| ≤
√

2(d−1)
d

for mixed states.
Equation (1.46) can also be written in the form

ρ̂ = N
d2−1∑
i=0

Xiλ̂i (1.50)

with N a normalization constant chosen so as to have X0 = 1, i.e., N = 1/d. It follows
that

Xi = d

2bi = d

αi
bi, ∀i = 1, . . . , d2 − 1. (1.51)

The numbers Xi (i = 0, . . . , d2 − 1) are called the real coordinates of ρ̂.

1.3 Tensorial representation of N-qudit states

Consider a N -qudit state ρ̂ acting on H = ⊗N
j=1 H(j) with H(j) ≃ Cdj ,∀j. Any state

ρ̂ ∈ L+(H) can be written as [see Eq. (1.28)]

ρ̂ = 1∏N
j=1 dj

1̂⊗N + 1
2N

 ∑
i1,...,iN =0

(i1,...,iN )̸=(0,...,0)

bi1...iN Λ̂i1...iN

 , (1.52)

where
bi1...iN = 2N

α(i1,...,iN )
Tr
(
ÂΛ̂i1...iN

)
(1.53)

with α(i1,...,iN ) as defined in Eq. (1.26).
Equation (1.52) can also be written in the form
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ρ̂ = N
∑

i1,...,iN

Xi1...iN Λ̂i1...iN (1.54)

with N a normalization constant chosen so that X0,...0 = 1, i.e.,

N = 1∏N
j=1 dj

. (1.55)

This implies

Xi1,...iN = 1
2N

 N∏
j=1

dj

 bi1,...iN =
 N∏
j=1

dj
αij

Tr(ÂΛ̂i1...iN ), (1.56)

for all i1, . . . , iN : (i1, . . . , iN) ̸= (0, . . . , 0). Equation (1.54) is the so-called tensorial
representation of multipartite N -qudit states.

The tensorial representation allows one to reformulate the separability problem. A
state ρ̂ ∈ P(H) is separable if it can be written in the form

ρ̂ =
∑
k

wk
(
ρ̂

(1)
k ⊗ · · · ⊗ ρ̂

(N)
k

)
(1.57)

for wk ∈ [0, 1], and ∑k wk = 1. Equivalently [see Eq. (1.29)], a state ρ̂ is separable if and
only if

Tr
(
ρ̂Λ̂i1...iN

)
= Tr

[(∑
k

wkρ̂
(1)
k ⊗ · · · ⊗ ρ̂

(N)
k

)
Λ̂(i1,...,iN )

]
, ∀i1, . . . iN

⇔ Tr
(
ρ̂Λ̂i1...iN

)
=
∑
k

wk Tr
 N⊗
j=1

ρ̂
(j)
k λ

(j)
ij


=
∑
k

wk
N∏
j=1

Tr
(
ρ̂

(j)
k λ

(j)
ij

)
, ∀i1, . . . , iN

⇔
〈
Λ̂i1...iN

〉
ρ̂

=
∑
k

wk
N∏
j=1

〈
λ̂

(j)
ij

〉
ρ̂

(j)
k

, ∀i1, . . . , iN (1.58)

In other words, ρ̂ is separable if the expectation values of all operators Λ̂i1...iN can be
written as a convex combination of products of the local expectation values. Since〈

λ̂
(j)
ij

〉
ρ̂

(j)
k

= Tr(ρ̂(j)
k λ̂

(j)
ij ) = b

(j)
k;ij , (1.59)

where b(j)
k;0 = 1 , b(j)

k = (b(j)
k;1, . . . , b

(j)
k;d2−1) is the Bloch vector of the jth-qubit state ρ̂(j)

k ,
one can write for a separable N -qudit state

〈
Λ̂i1...iN

〉
ρ̂

=
∑
k

wk
N∏
j=1

b
(j)
k;ij . (1.60)

or
Xi1...iN =

∑
k

wk
N∏
j=1

Xk;ij (1.61)

with Xk;ij the real coordinates of the state ρ̂(j)
k .
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Chapter 2

Entanglement and the moment
problem

The aim of this chapter is to present the moment problem, and how one can map the sepa-
rability problem to a truncated moment problem. The first section describes a basic alge-
braic background on monomials, polynomials, and matrices. The second section presents
the concepts of moments, moment sequences, and moment sequences for states. The third
section then introduce the notions of moment matrices, shifted moment sequences, and
localizing matrices, followed by a presentation of the moment problem and the necessary
and sufficient conditions to solve a truncated moment problem. The last section of this
chapter presents how one can map the separability problem onto a moment problem, and
describes a necessary and sufficient condition for a quantum state to be separable. The
content of this chapter comes from various references (mainly [13, 14, 27, 35, 36, 37]).

2.1 Algebraic preliminaries

2.1.1 Polynomials

Monomials

For α = (α1, . . . , αn) ∈ Nn, a monomial mα(x) in the n-tuple x ≡ (x1, . . . , xn) ∈ Rn is a
function Rn → R : x → mα(x) defined as

mα(x) = xα ≡
n∏
i=1

xαi
i = xα1

1 . . . xαn
n , (2.1)

where the integer αi indicates the degree of xi in the monomial xα. The monomial
xα for which α = (0, . . . , 0) is xα = 1. The set of all monomials in n variables is
Tn ≡ {xα|α ∈ Nn}. The degree of a monomial is defined as

deg(xα) = |α| ≡
n∑
i=1

αi. (2.2)

This means that for a given degree |α|, there are different n-tuples α, each corresponding
to different monomials, for which |α| is the same. If the degree of the monomial in n
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variables is of maximum d, that is |α| ≤ d, there are(
n+ d
d

)
= (d+ 1) . . . (d+ n)

n! (2.3)

distinct n-tuples α = (α1, . . . αn), each corresponding to distinct monomials xα of degree
≤ d. The set of all these n-tuple forms the set

Nn
d ≡ {α ∈ Nn, |α| =

n∑
i=1

αi ≤ d}, (2.4)

and the set
Tnd ≡ {xα|α ∈ Nn

d} (2.5)
is the set of all monomial in n variables of degree ≤ d.

Polynomials

Let xα be a monomial in n variables. A real-valued polynomial is a finite linear combina-
tion of monomials :

p(x) =
∑
α

pαxα, (2.6)

with pα ∈ R,∀α. The set of all real-valued polynomials p(x) forms a real vector space
R[x] ≡ R[x1, . . . , xn], where x ∈ Rn stands for the n-tuple (x1, . . . , xn). For pα ̸= 0, pαxα
is called a term of p(x).

The degree of p(x) is defined as

deg(p(x)) ≡ max
α

{deg(xα)}. (2.7)

The set of all polynomials of degree ≤ d is a vector subspace R[x]d of R[x].
The monomial basis Bn is the set made of all monomials xα sorted by degree, and

within each degree in a lexicographic order,

Bn ≡
(
(1), (x1, x2, . . . , xn), (x2

1, x1x2, x1x3, . . . , xn−1xn, x
2
n), . . .

)
. (2.8)

It forms a basis of R[x]. The monomial basis Bn
d is the set made of all

(
n+ d
d

)
monomials

in n variables of maximum degree d sorted as

Bn
d ≡

(
(1), (x1, x2, . . . , xn), (x2

1, x1x2, . . . , x1xn, x2x3, . . . , x
2
n), . . . , (xd1, . . . , xdn)

)
, (2.9)

and its dimension is
(
n+ d
d

)
.

In this context, any polynomial p(x) of degree ≤ d can be represented as p = (pα)α∈Nn
d

which denotes its sequence of coefficients pα in the monomial basis of dimension
(
n+ d
d

)
.

A polynomial p(x) is a sum of square of polynomials if it can be written as

p(x) =
m∑
j=1

u2
j(x) (2.10)

for some polynomials u1(x), . . . , um(x). One can show that any non-negative quadratic
polynomial is a sum of square [14].
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Exemple 2.1. Let n = 3 with d = 2.

• R[x] = R[x1, x2, x3],

• There are
(

3 + 2
2

)
= (2+1)(2+2)(2+3)

3! = 10 distinct triplet α = (α1, α2, α3) ∈ N3
2

= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 2, 0),
(0, 0, 2)},

• xα = xα1
1 xα2

2 xα3 ∈ T3
2 = {xα|α ∈ N3

2} = {1, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3}.

• B3
2 = (1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3) .

Product of monomials and polynomials

The product of two monomials of degree d xα and xβ, α, β ∈ Nn
d , is written as

xα ∗ xβ = xα+β, (2.11)

or simply xαxβ, for all α, β ∈ Nn
d . The product of two polynomials of degree d

p(x) =
∑
α∈Nn

d

pαxα,

and
g(x) =

∑
β∈Nn

d

gβxβ,

is

(p ∗ g)(x) = p(x)g(x)
=

∑
α∈Nn

d

pαxα
∑
β∈Nn

d

gβxβ

=
∑

α,β∈Nn
d

pαgβxαxβ

=
∑

γ∈Nn
lpg

(p ∗ g)γxα+β (2.12)

for all α, β ∈ Nn
d and γ ∈ Nn

lpg
where lpg ≡ deg ((p ∗ g)(x)) with

deg ((p ∗ g)(x)) = max
α+β

{deg(xα+β)},

and where (p ∗ g)γ is the sequence of coefficients representing the polynomial (p ∗ g)(x) in
the monomial basis Bn

lpg
.

Exemple 2.2. Consider the polynomials

p(x) = 1 − 3x2 + 7x3
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and
g(x) = 5 + 2x1 − x3

both of degree d = 1. p(x) is represented in B3
1 by the sequence

p = (pα)α∈N3
1

= (1, 0,−3, 7),

and g(x) s represented in B3
1 by the sequence

g = (gβ)β∈N3
1

= (5, 2, 0,−3).

The product (p ∗ g)(x) of p(x) and g(x) is then

(p ∗ g)(x) =
∑

γ∈Nn
lpg

(p ∗ g)γxα+β

= 5 − 15x2 + 35x3 + 2x1 − 6x1x2 + 14x1x3 − x3 + 3x2x3 − 7x2
3

= 5 + 2x1 − 15x2 + 34x3 − 6x1x2 + 14x1x3 + 3x2x3 − 7x2
3

with
deg(p ∗ g)(x) = max

α+β
{deg(xα+β)} = 2,

and γ ∈ N3
2. It’s sequence of coefficients (p ∗ g)γ in the monomial basis B3

2 is

(5, 2,−15, 34, 0,−6, 14, 0, 3,−7).

2.1.2 Matrices

Transpose, symmetry, and trace.

Let Mn(R) be the set of all real n×n matrices. Consider M = (mij) ∈ Mn(R). Through-
out, MT denotes the transpose matrix of M . A matrix is symmetric if M = MT . The set
of all symmetric matrices in Mn(R) is denoted Sn. The trace of an n × n matrix is the
sum of its diagonal entries:

Tr(M) =
n∑
i=1

mii. (2.13)

For two matrices A = (aij) and B = (bij), the map ⟨·|·⟩ : Mn(R)×Mn(R) → R : (A,B) →
⟨A,B⟩ where

⟨A,B⟩ = Tr
(
ATB

)
=

n∑
i,j=1

aijbij (2.14)

defines a scalar product on Mn(R).

Rank

An m×n matrix A = (aij) can be seen as a linear transformation from Rm to Rn : x → Ax
for x ∈ Rm. The n columns
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C1 =


a11
...
am1

, . . . , Cn =


a1n
...

amn

 (2.15)

define the vector subspace C(A) in Rm spanned, or generated, by the vectors (C1, . . . , Cm):

C(A) ≡ L(C1, . . . , Cn) (2.16)

that is, made of all the linear combination of the vectors (C1, . . . , Cn). C(A) is called the
column space of A. Similarly, the m rows of A,

R1 =
(
a11, . . . , a1n

)
...

Rm =
(
am1, . . . , amn

)
generate the vector subspace R(A) ∈ Rn

R(A) ≡ L(R1, . . . , Rm) (2.17)

called the row space of A. One can also show that dim(R(A)) = dim(C(A)) ≡ r, which
indicates that dim(R(A)) = dim(C(A)) is an integer that characterises A. This number
is called the rank r ≡ rank(A) of the matrix A, that is the dimension of its column space
and row space. Clearly, rank(A) ≤ min(m,n), and A is said to have maximal rank if
rank(A) = min(m,n). For a square matrix M = (mij) ∈ Rn×n, rank(M) ≤ min(n, n) = n
and M has maximal rank when rankM = n.

Positive semidefinite matrices

A symmetric matrix M ∈ Mn(R) is positive semidefinite and denoted M ⪰ 0 if

xTMx ≥ 0,∀x ̸= 0 ∈ Rn. (2.18)

There are several equivalent characterization: M ⪰ 0 if and only if any of the 3 following
equivalent properties holds.

• ∃V ∈ Mn(R) such that M = V V T . This decomposition is sometimes known as a
Gram decomposition of M. V can be chosen in Rn×r where r = rank(M).

• M = (vTi vj)ni,j=1 for some vectors v1, . . . ,vn ∈ Rn. The vi’s may be chosen in Rr,
where r = rank(M).

• All eigenvalues of M are non-negative.

Flat extension of matrices

Let M ∈ Sn with block form
M =

(
A B
BT C

)
(2.19)
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where A = AT , C = CT . M is said to be a flat extension of A if

rank(M) = rank(A), (2.20)

or equivalently if
B = AW (2.21)

and
C = BTW = W TAW (2.22)

for some matrix W . If M is a flat extension of A then

M ⪰ 0 ⇔ A ⪰ 0. (2.23)

2.2 Truncated moment sequence of states

2.2.1 Moments and truncated moment sequences
Any function pr(x) ∈ [0, 1] defined ∀x ∈ Rn such that

∫
Rn pr(x)dx = 1 can define a

function µ : K ∈ Rn → [0, 1] : µ(K) →
∫
K pr(x)dx, and pr(x)dx will be referred as a

probability measure supported on K, or simply a measure on Rn, and denoted dµ(x).

Moments of order n - univariate case

Consider the univariate case. For a given probability measure dµ(x) supported on R, its
moment of order n is the real quantity defined as

yn ≡
∫
R
xndµ(x) (2.24)

for x ∈ R. The moments of a probability measure give informations on the measure. The
moment of order 0 of dµ(x) is

y0 =
∫
R
x0dµ(x) =

∫
R

1dµ(x) = 1,

since dµ(x) is a probability measure. It is called the volume of the measure. The moment
of order 1 of dµ(x) is

y1 =
∫
R
xdµ(x),

and is called the mean of the measure. The moment of order 2 of dµ(x) is y2 =
∫
R x

2dµ(x),
and ∫

R
x2dµ(x) −

(∫
R
xdµ(x)

)2

is called the variance of the measure.
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Moment of order α - multivariate case

Similarly as in the univariate case, one can define the moment of a measure dµ(x) sup-
ported on Rn for the multivariate case. The quantity

yα ≡
∫
Rn

xαdµ(x) =
∫
Rn
xα1

1 . . . xαn
n dµ(x). (2.25)

with α ∈ Nn and xα ∈ Tn, is called the moment of order α of dµ(x). As an example, for
n = 2, the moment of order α = (1, 3) of dµ(x) supported on R2 is

y13 =
∫
R2
x1

1x
3
2dµ(x).

Truncated moment sequence

The moment sequence y is the (infinite) sequence of numbers yα,∀α ∈ Nn. A truncated
moment sequence y of order d (tms) is the finite sequence of numbers yα,∀α ∈ Nn

d , that
is, the sequence is of all the moments yα up to order d. In this case, one can also define

the column vector y = yT ∈ Rt(d) , t(k) =
(
n+ k
k

)
, ∀k ≥ 0.

2.2.2 N-Qubit case

Truncated moment sequence for qubit states

Let us associate to each H(i) an R3-variable x(i) ≡ (x(i)
j ), j ∈ {1, 2, 3}. Any monomial in

these variables can be written as

(x(i))α(i) ≡
3∏
j=1

(x(i)
j )α

(i)
j , (2.26)

where α(i) = (α(i)
1 , α

(i)
2 , α

(i)
3 ).

For a given state ρ̂(i) of the qubit i, one can define the tms y(i) of order 1 y(i) ≡
(y(i)

000, y
(i)
100, y

(i)
010, y

(i)
001) whose elements are given by the Bloch vector elements of ρ̂(i), that

is y(i) = (b(i)
0 , b

(i)
1 , b

(i)
2 , b

(i)
3 ). Explicitly, they read

y
(i)
000 =

∫
K(i)

(x(i))000dµ(x(i)) =
∫
K(i)

dµ(x(i)) = b
(i)
0 = 1,

y
(i)
100 =

∫
K(i)

(x(i))100dµ(x(i)) =
∫
K(i)

x
(i)
1 dµ(x(i)) = b

(i)
1 ,

y
(i)
010 =

∫
K(i)

(x(i))010dµ(x(i)) =
∫
K(i)

x
(i)
2 dµ(x(i)) = b

(i)
2 ,

y
(i)
001 =

∫
K(i)

(x(i))001dµ(x(i)) =
∫
K(i)

x
(i)
3 dµ(x(i)) = b

(i)
3

One can observe that there is a unique correspondence between α(i) ∈ N3
1 (the tuples

α(i) contain 1 at most once) and µi,∀i ∈ {1, . . . , N}, that is, α(i) is the index such that

(x(i))α(i) =
3∏

µ=1
(x(i)

µ )α
(i)
µ , (2.27)
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since each Bloch vector element b(i)
µ appears at most once in the expansion

ρ̂(i) = 1
2

3∑
µ=0

b(i)
µ σ̂

(i)
µ .

Any state ρ̂(i) ∈ P(H(i)) can then be expanded as

ρ̂(i) = 1
2

 3∑
µ=0

y(i)
µ σ̂

(i)
µ

 (2.28)

One can construct a 3-dimensional vector y(i) ∈ R3 made of the different moments of the
moment sequence y(i) = (y(i)

α(i))α(i)∈N3
1

except y(i)
0...0 = 1,

y(i) =
(
y

(i)
1 , y

(i)
2 , y

(i)
3

)
=
(
y

(i)
100, y

(i)
010, y

(i)
001

)
=
(
b

(i)
1 , b

(i)
2 , b

(i)
3

)
.

Entanglement and the moment problem

Recall that for a separated state ρ̂, one has

⟨σ̂µ1...µN
⟩ρ̂ =

∑
k

wkb
(1)
k;µ1 . . . b

(N)
k;µN

=
∑
k

wk
N∏
i=1

b
(i)
k;µi

, (2.29)

which can then be rewritten as

⟨σ̂µ1...µN
⟩ρ̂ =

∑
k

wky
(1)
k;µ1 . . . y

(N)
k;µN

=
∑
k

wk
N∏
i=1

y
(i)
k;µi

. (2.30)

Every density operator ρ̂(i) is positive, that is

ρ̂(i) =
d2−1∑
µi=0

y(i)
µi
σ̂(i)
µi

≥ 0 (2.31)

for all i ∈ {1, . . . , N}. As presented in the previous chapter, it amounts to constraint the
coefficients of the characteristic polynomial of each ρ̂(i), given by the Faddeev-LeVerrier
algorithm, to be non-negative. One can observe from equation (1.48) that each of these
coefficients is a linear combination of traces of power of ρ̂(i), which in turns, from equation
(2.31), means that the coefficients are functions of the moments y(i)

µi
, µi ∈ {0, 1, 2, 3}, which

themselves are functional in the variables x(i)
j , j ∈ {1, 2, 3}. These polynomial inequalities

define the compact subsets K(i) ⊂ Rd2−1 to which each vector y(i)
k =

(
y

(i)
k;1, y

(i)
k;2, y

(i)
k;3

)
is

restricted. Positivity on any separable mixed state ρ̂ ∈ P(H) amounts then to restrict
the n-dimensional vectors yk ≡

(
y(1)
k , . . . ,y(N)

k

)
∈ Rn on the compact K ⊂ Rn where

K = K(1) × · · · ×K(N), with n = N · 3.
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If equation (2.30) holds, that is for any separable state ρ̂, it can always be rewritten
in an integral form [38]

⟨σ̂µ1...µN
⟩ρ̂ =

∫
K

(x(1))α(1)
. . . (x(N))α(N)

dµ(x) (2.32)

=
∫
K
x(1)
µ1 . . . x

(N)
µN
dµ(x) (2.33)

with dµ(x) an atomic probability measure supported on K defined by

dµ(x) =
∑
k

wkδ(x − yk)dx, (2.34)

and x
(i)
0 = 1, x ∈ Rn,

x = (x1, . . . , xn) =
(
x(1), . . . ,x(N)

)
(2.35)

(x(i)
j ) ∈ R3 for j ∈ {1, 2, 3} the vector of n variables associated to H. Conversely, one can

show that equation (2.33) can be reduced to a finite sum as in equation (2.30) such that
the measure dµ(x) can be written as an atomic measure. This is called Carathéodory’s
theorem [39]

Let us denote ⟨σ̂µ1...µN
⟩ as yα where the tuple α is such that

α =
(
(α(1)

1 , α
(1)
2 , α3

3), . . . , (α(N)
1 , α

(N)
2 , α

(N)
3 )

)
where each α

(j)
j ∈ N3

1 ,i.e., the N -tuple α is such that each tuple α(j)
i contains 1 at most

once. Equation (2.33) can be rewritten as

yα =
∫
K

xαdµ(x) (2.36)

where α can only takes the value as described above, that is α ∈ A ⊂ N3
N . A state is

then separable if and only if its real coordinates can be written such that (2.36) is met.
For (2.36) to holds, it requires the existence of an atomic measure as in (2.34) . In other
words, the problem of determining if ρ̂ ∈ L+(H) is separable is equivalent to the existence
of a probability measure such that (2.36) holds, that is, whose first moments are given by
the real coordinates of ρ̂, i.e., if (2.32) holds for all yα, α ∈ A, for A ⊂ N3

N . The existence
of an arbitrary measure such that equation (2.33) holds is equivalent to the existence
of an atomic measure of the form (2.34). If there exists a representative measure, then
the state can be written as (2.30), and is then separable. The problem of determining
whether there exists a probability measure such that (2.36) holds, α ∈ A is called an
AK-truncated moment problem.

Exemple 2.3. Let us consider a two qubit system. The state space H is the tensor
product of the state spaces H(1) and H(2) of the individual qubits. A basis of L(H(1)) is
given by {σ̂µ1 , µ1 = 0, 1, 2, 3} = {σ̂(1)

0 = 1̂, σ̂
(1)
1 , σ̂

(1)
2 , σ̂

(1)
3 } where σ̂µi

for µi = 1, 2, 3 are
the Pauli operators. Similarly, a basis of L(H(2)) is {σ̂(2)

0 = 1̂, σ̂
(2)
1 , σ̂

(2)
2 , σ̂

(2)
3 }. Any mixed
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states ρ̂(1) ∈ L+(H(1)) and ρ̂(2) ∈ L+(H(2)) can be written in their respective basis as

ρ̂(1) = 1
2

 3∑
µ1=0

b(1)
µ1 σ̂

(1)
µ1

 ,
ρ̂(2) = 1

2

 3∑
µ2=0

b(2)
µ2 σ̂

(2)
µ2

 ,
where b(1)

µ1 = Tr(ρ̂(1)σ̂(1)
µ1 ) and b(2)

µ2 = Tr(ρ̂(2)
k σ̂(2)

µ2 ). Let us now associate to H(1) and H(2)

a set of 3 variables x(1) = (x(1)
1 , x

(1)
2 , x

(1)
3 ) and x(2) = (x(2)

1 , x
(2)
2 , x

(2)
3 ) respectively. For

a given mixed state ρ̂(1) ∈ L+(H(1)) and ρ̂(2) ∈ L+(H(2)), one can define the truncated
moment sequence y(1) ≡ (y(1)

α(1))α(1)∈N3
1

and y(2) ≡ (y(2)
α(2))α(2)∈N3

1
of each pure state ρ̂(1) and

ρ̂(2) respectively. The moments of the sequences are

y
(1)
α(1) =

∫
K(1)

(x(1))α(1)
dµ(x(1)) = bµ1 ,

y
(2)
α(2) =

∫
K(2)

(x(2))α(2)
dµ(x(2)) = bµ2 ,

for µ1 ∈ {0, 1, 2, 3} , α(1) = (α(1)
1 , α

(1)
2 , α

(1)
3 ), µ2 ∈ {0, 1, 2, 3} , α(2) = (α(2)

1 , α
(2)
2 , α

(2)
3 ),

where
(x(1))α(1) = (x(1)

1 )α
(1)
1 (x(1)

2 )α
(1)
2 (x(1)

3 )α
(1)
3 ,

(x(2))α(2) = (x(2)
1 )α

(2)
1 (x(2)

2 )α
(2)
2 (x(2)

3 )α
(1)
3 ,

for dµ(x(1)) and dµ(x(2)) two probability measure supported on the semi-algebraic sets
K(1) and K(2) defined by the polynomial inequalities derived from the positivity constraint
of ρ̂(1) and ρ̂(2),

ρ̂(1) = 1
2

 3∑
µ1=0

y(1)
µ1 σ̂

(1)
µ1

 ≥ 0 (2.37)

ρ̂(2) = 1
2

 3∑
µ2=0

y(2)
µ2 σ̂

(2)
µ2

 ≥ 0 (2.38)

The positivity constraints can be formulated by using the coefficients of the characteristic
polynomial of ρ̂(1) and ρ̂(2), imposing them to be non-negative. They can be obtained
using the Faddeev-Leverier algorithm

gd−m(x) = − 1
m

m∑
k=1

(−1)kgd−m+k(x) Tr((ρ̂(i))k),

for m = 1, . . . , d with gd(x) = 1 and gd−1(x) = Tr((ρ̂(i))k) = 1. For ρ̂(1), g(1)
2 (x(1)) = 1 and

g
(1)
1 (x(1)) = Tr((ρ̂(1))) = (x(1)

1 )2 + (x(1)
2 )2 + (x(1)

3 )2 = 1,

they read

g
(1)
0 (x(1)) = (x(1)

1 )2 + (x(1)
2 )2 + (x(1)

3 )2 ≤ 1. (2.39)
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Similarly, for ρ̂(2)

g
(2)
0 (x(2)) = (x(2)

1 )2 + (x(2)
2 )2 + (x(2)

3 )2 ≤ 1. (2.40)

They define the subsets K(1) and K(2) respectively. The moments of the two moment
sequences for α(1), α(2) ∈ N3

1 are

y
(1)
000 =

∫
K(1)

(x(1))000dµ(x(1)) =
∫
K(1)

1dµ(x(1)) = 1 = b
(1)
0

y
(1)
100 =

∫
K(1)

(x(1))100dµ(x(1)) =
∫
K(1)

x
(1)
1 dµ(x(1)) = b

(1)
1 ,

y
(1)
010 =

∫
K(1)

(x(1))010dµ(x(1)) =
∫
K(1)

x
(1)
2 dµ(x(1)) = b

(1)
2 ,

y
(1)
001 =

∫
K(1)

(x(1))001dµ(x(1)) =
∫
K(1)

x
(1)
3 dµ(x(1)) = b

(1)
3 ,

and

y
(2)
000 =

∫
K(2)

(x(2))000dµ(x(2)) =
∫
K(2)

1dµ(x(2)) = 1 = b
(2)
0

y
(2)
100 =

∫
K(2)

(x(12))100dµ(x(2)) =
∫
K(2)

x
(2)
1 dµ(x(2)) = b

(2)
1 ,

y
(2)
010 =

∫
K(2)

(x(12))010dµ(x(2)) =
∫
K(2)

x
(2)
2 dµ(x(2)) = b

(2)
2 ,

y
(2)
001 =

∫
K(2)

(x(12))001dµ(x(2)) =
∫
K(2)

x
(2)
3 dµ(x(2)) = b

(2)
3 ,

The basis of L+(H) is {σ̂µ1µ2 = σ̂(1)
µ1 ⊗ σ̂(2)

µ2 , µ1, µ2 ∈ {0, . . . , 3}}. For any separable state
ρ̂ ∈ P(H), one can write

⟨σ̂µ1µ2⟩ρ̂ =
∑
k

wk
(
y

(1)
k;µ1y

(2)
k;µ2

)
, (2.41)

which can be rewritten as

yα = ⟨σ̂µ1µ2⟩ρ̂ =
∫
K

(x(1))α(1)(x(2))α(2)
dµ(x)

=
∫
K
x(1)
µ1 x

(2)
µ2 dµ(x) (2.42)

=
∫
K

xαdµ(x),

with x
(i)
0 = 1, x ∈ R6,

x =
(
x(1),x(2)

)
=
(
(x(1)

1 , x
(1)
2 , x

(1)
3 ), (x(2)

1 , x
(2)
2 , x

(2)
3 )

)
= (x1, x2, x3, x4, x5, x6) ,
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and dµ(x) a probability measure supported on K = K(1) ×K(2), that is,

K = {x ∈ R6|g(1)
0 (x(1)) = 1 − (x(1)

1 )2 − (x(1)
2 )2 − (x(1)

3 )2 ≥ 0,
g

(2)
0 (x(2)) = 1 − (x(2)

1 )2 − (x(2)
2 )2 − (x(2)

3 )2 ≥ 0}
= {x ∈ R6|g(1)

0 (x) = 1 − x2
1 − x2

2 − x2
3 ≥ 0,

g
(2)
0 (x) = 1 − x2

4 − x2
5 − x2

6 ≥ 0},

and dµ(x) defined by
dµ(x) =

∑
k

wkδ(x − yk)dx. (2.43)

The problem of of determining if ρ̂ ∈ L+(H) is separable is equivalent to an AK-tms
problem, that is, to determine if there exists a representative measure dµ(x) such that
(2.42) holds for all yα, α ∈ A, for A ⊂ N3

2 such that

α = (α1, α2, α3, α4, α5, α6)
=
(
(α(1)

1 , α
(1)
2 , α

(1)
3 , ), (α(2)

1 , α
(2)
2 , α

(2)
3 )

)
where each α

(i)
j ∈ N3

1, i.e., the 2-tuple α is such that each tuple α(j)
i contains 1 at most

once.
Explicitly, ρ̂ is separable if and only if there exists a representing measure dµ(x)

supported on K such that

⟨σ̂10⟩ρ̂ = y100000 =
∫
K
x1dµ(x) =

∫
K
x

(1)
1 dµ(x) = b

(1)
1

⟨σ̂20⟩ρ̂ = y010000 =
∫
K
x2dµ(x) =

∫
K
x

(1)
2 dµ(x) = b

(1)
2

⟨σ̂30⟩ρ̂ = y001000 =
∫
K
x3dµ(x) =

∫
K
x

(1)
3 dµ(x) = b

(1)
3

⟨σ̂01⟩ρ̂ = y000100 =
∫
K
x4dµ(x) =

∫
K
x

(2)
1 dµ(x) = b

(2)
1

⟨σ̂02⟩ρ̂ = y000010 =
∫
K
x5dµ(x) =

∫
K
x

(2)
2 dµ(x) = b

(2)
2

⟨σ̂03⟩ρ̂ = y000001 =
∫
K
x6dµ(x) =

∫
K
x

(2)
3 dµ(x) = b

(2)
3

⟨σ̂11⟩ρ̂ = y100100 =
∫
K
x1x4dµ(x) =

∫
K
x

(1)
1 x

(2)
1 dµ(x) = b

(1)
1 b

(2)
1

⟨σ̂12⟩ρ̂ = y100010 =
∫
K
x1x5dµ(x) =

∫
K
x

(1)
1 x

(2)
2 dµ(x) = b

(1)
1 b

(2)
2

⟨σ̂13⟩ρ̂ = y100001 =
∫
K
x1x6dµ(x) =

∫
K
x

(1)
1 x

(2)
3 dµ(x) = b

(1)
1 b

(2)
3

⟨σ̂21⟩ρ̂ = y010100 =
∫
K
x2x4dµ(x) =

∫
K
x

(1)
2 x

(2)
1 dµ(x) = b

(1)
2 b

(2)
1

⟨σ̂22⟩ρ̂ = y010010 =
∫
K
x2x5dµ(x) =

∫
K
x

(1)
2 x

(2)
2 dµ(x) = b

(1)
2 b

(2)
2

⟨σ̂23⟩ρ̂ = y010001 =
∫
K
x2x6dµ(x) =

∫
K
x

(1)
2 x

(2)
3 dµ(x) = b

(1)
2 b

(2)
3

⟨σ̂31⟩ρ̂ = y001100 =
∫
K
x3x4dµ(x) =

∫
K
x

(1)
3 x

(2)
1 dµ(x) = b

(1)
3 b

(2)
1
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⟨σ̂32⟩ρ̂ = y001010 =
∫
K
x3x5dµ(x) =

∫
K
x

(1)
3 x

(2)
2 dµ(x) = b

(1)
3 b

(2)
2

⟨σ̂33⟩ρ̂ = y001001 =
∫
K
x3x6dµ(x) =

∫
K
x

(1)
3 x

(2)
3 dµ(x) = b

(1)
3 b

(2)
3

If such a measure exists, i.e., such that the integrals above holds, then

⟨σ̂µ1µ2⟩ρ̂ =
∑
k

wk
(
y

(1)
k;µ1y

(2)
k;µ2

)
, (2.44)

which means that the state is separable.

2.2.3 N-qudit case

Truncated moment sequence for qudit states

Let us associate to each H(i) an Rt(i)-variable x(i) ≡ (x(i)
j ), j ∈ {1, . . . , t(i)}. Any monomial

in these variables can be written as

(x(i))α(i) ≡
t(i)∏
j=1

(x(i)
j )α

(i)
j , (2.45)

where α(i) = (α(i)
1 , . . . , α

(i)
t(i)). For a given state ρ̂(i) of the qudit i, one can define the tms

y(i) of order 1, i.e., y(i) ≡ (y(i)
α(i))α(i)∈Nt(i)

1
whose elements are given by the real coordinates

X(i)
µ of ρ̂(i). Explicitly,

y
(i)
α(i) =

∫
K(i)

(x(i))α(i)
dµ(x(i)) (2.46)

There is a unique correspondence between α(i) ∈ Nt(i)
1 (the tuples α(i) contain 1 at most

once) and µi,∀i ∈ {1, . . . , N}, that is, α(i) is the index such that

(x(i))α(i) =
t(i)∏
µ=1

(x(i)
µ )α

(i)
µ . (2.47)

since each real coordinate X(i)
µ appears once and alone in the expansion

ρ̂(i) = N (i)
t(i)∑
µ=0

X(i)
µ λ̂(i)

µ .

Any state ρ̂(i) ∈ P(H(i)) can then be expanded as

ρ̂(i) = N (i)

 t(i)∑
µ=0

y(i)
µ λ̂

(i)
µ

 (2.48)

One can construct a t(i)-dimensional vector y(i) ∈ Rt(i) made of the different moments of
the moment sequence y(i) = (y(i)

α(i))α(i)∈Nt(i)
1

except y(i)
0...0 = 1, that is

y(i) =
(
y

(i)
1 , . . . , y

(i)
t(i)

)
=
(
X

(i)
1 , . . . , X

(i)
t(i)

)
.
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Entanglement and the moment problem

Recall that for a separable state ρ̂, one has

〈
Λ̂µ1...µN

〉
ρ̂

=
∑
k

wk
(
X

(1)
k;µ1 . . . X

(N)
k;µN

)
=
∑
k

wk

(
N∏
i=1

X
(i)
k;µi

)
. (2.49)

which can then be rewritten as
〈
Λ̂µ1...µN

〉
ρ̂

=
∑
k

wk
(
y

(1)
k;µ1 . . . y

(N)
k;µN

)
=
∑
k

wk

(
N∏
i=1

y
(i)
k;µi

)
. (2.50)

Every density operator ρ̂(i) is positive, that is

ρ̂(i) =
t(i)∑
µi=0

y(i)
µi

Λ̂(i)
µi

≥ 0 (2.51)

for all i ∈ {1, . . . , N}. Similarly as presented for the qubit case, the polynomial inequalities
given by the Faddeev-Leverrier algorithm define the compact subsets K(i) ⊂ Rt(i) to
which each vector y(i)

k =
(
y

(i)
k;1, . . . , y

(i)
k;t(i)

)
is restricted. Positivity on any separable state

ρ̂ ∈ L+(H) amounts then to restrict the n-dimensional vectors yk ≡
(
y(1)
k , . . . ,y(N)

k

)
∈ Rn

on the compact K ⊂ Rn where K = K(1) × · · · × K(N), with n = ∑N
i=1 t

(i). As described
for the qubit case, if equation (2.50) is met, that is for any separable state ρ̂ ∈ L+(H), it
can be rewritten in an integral form [13]〈

Λ̂µ1...µN

〉
ρ̂

=
∫
K

(x(1))α(1)
. . . (x(N))α(N)

dµ(x) (2.52)

=
∫
K
x(1)
µ1 . . . x

(N)
µN
dµ(x) (2.53)

with dµ(x) a probability measure supported on K defined by

dµ(x) =
∑
k

wkδ(x − yk)dx, (2.54)

and x
(i)
0 = 1, x ∈ Rn,

x = (x1, . . . , xn) =
(
x(1), . . . ,x(N)

)
(2.55)

(x(i)
j ) ∈ Rt(i) for j ∈ {1, . . . , t(i)} the vector of n variables associated to the product space

H. Conversely, one can show that equation (2.53) can be reduced to a finite sum as in
equation (2.50) such that the measure dµ(x) can be written as an atomic measure [39].

Let us denote
〈
Λ̂µ1...µN

〉
as yα where the tuple α is such that

α =
(
(α(1)

1 , . . . , α
(1)
t(1)), . . . , (α(N)

1 , . . . , α
(N)
t(N))

)
where each α(i) ∈ Nt(i)

1 ,i.e., the N -tuple α is so that each tuple α(j) contains at most one
1. Equation (2.53) can be rewritten as
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yα =
∫
K

xαdµ(x) (2.56)

where α can only takes the values as described above, that is α ∈ A ⊂ Nn
N . A state is

then separable if its real coordinates can be written such that (2.56) is met. The problem
of determining if ρ̂ ∈ L(H) is separable is then equivalent to an AK-tms problem, that
is, to determine if there exists a measure dµ(x) whose moments correspond to the real
coordinates of ρ̂, i.e., if (2.52) holds for all yα, α ∈ A, for A ⊂ Nn

N . If there exists a
representive measure, then the state can be written as (2.49), and is then separable.

Symmetric case

Consider now that every qudit have the same dimension d, and t = d2 − 1. As presented
in the last chapter, symmetric states are invariant under any permutation of the qudit
states. For ρ̂ ∈ P(H), let

Xµ1...µN
≡ Tr{ρ̂P̂ †

SΛ̂µ1...µN
P̂S}, (2.57)

where P̂S is the projector operator made of the Dicke states∣∣∣D(k)
N

〉
= C

∑
π

∣∣∣ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸
N-k

〉
,

with N −k excitations, and where C is a normalisation constant. ρ̂ can then be expanded
as [13]

ρ̂ = NXµ1...µN
P̂ †
SΛ̂µ1...µN

P̂S, (2.58)
where N is the normalization constant such that X0...0 = Tr ρ̂ = 1.

Since the state is symmetric, any permutation of the qubit states i.e., of the indices
µi ∈ {0, . . . , t}, i = 1, . . . , N in Xµ1...µN

, leaves the tensor X in the symmetric subspace
unchanged :

Xµ1µ2...µN
= Xµ2µ1...µN

, (2.59)

which means that the local expectation values X(i)
k;µi

of each qubits are indistinguishable
between them, i.e., X(i)

k;µj
= X

(i′)
k;µj

∀i, i′, µj. It follow that the moment sequences y(i)

of each qudit are indistinguishable between one another, that is y(i)
k;µj

= y
(i′)
k;µj

, ∀i, i′, µj,
thus the different sets of variables associated to the subspaces H(i) are indistinguishable
between them. It follows that only one of the N different sets of variables needs to be
considered, e.g., x(1)

j for j = 1, . . . , t. One has x(i)
j = x

(i′)
j , for all i, i′, j In other words, the

α in equation (2.56) is then ∈ Nn
N . Indeed, since x(1)

1 x
(2)
1 = (x(1)

1 )2 for the symmetric case.
In summary, the total number of variables is divided by N compared to the general case
of N -qudit of same dimension d, i.e., n = t.

For a separable symmetric state, one has then, in terms of average values of the basis
operators,

Xµ1...µN
=
∑
k

wk (Xk;µ1 . . . Xk;µN
) =

∑
k

wk

(
N∏
i=1

Xk;µi

)
, (2.60)
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where Xk;0 = 1 ∀k, j, which can then be rewritten as

Xµ1...µN
=
∑
k

wk (yk;µ1 . . . yk;µN
) =

∑
k

wk

(
N∏
i=1

yk;µi

)
. (2.61)

For a symmetric pure separable state, one has the simple form

Xµ1...µN
= Xµ1 . . . XµN

= yµ1 . . . yµN
(2.62)

Equation (2.61) can be rewritten as [13] [27]

Xµ1...µN
=
∫
K
xµ1 . . . xµN

dµ(x) (2.63)

=
∫
K

xαdµ(x)

with x
(i)
0 = 1, x ∈ Rt, x = (x1, . . . , xt) the vector of t variables, and with dµ(x) a

probability measure supported on K = K(1) defined by

dµ(x) =
∑
k

wkδ(x − yk)dx. (2.64)

Let us denote Xµ1...µN
as yα where the tuple α is such that

α = (α1, . . . , αt)

for α ∈ N3
N . Equation (2.33) can be rewritten as

yα =
∫
K

xαdµ(x) (2.65)

where α ∈ Nt
N . Compared to the general case, α ∈ A in (2.52) is replaced by α ∈ Nt

N .
In other words, when ρ̂ is symmetric, the separability problem is reduced to a K-tms
problem, that is to determine if there exists a measure dµ(x) supported on K such that
each moment of the moment sequence y = (yα)α∈Nt

N
satisfies equation (2.65).

Exemple 2.4. Consider a two-qubit system as in example (2.3), for symmetric 2-qubit
states. Since the two qubits are indistinguishable, b(1)

k;1 = b
(2)
k;1, b

(1)
k;2 = b

(2)
k;2, b

(1)
k;3 = b

(2)
k;3,

thus y(1)
k;1 = y

(2)
k;1, y(1)

k;2 = y
(2)
k;2, y(1)

k;3 = y
(2)
k;3, and then x

(1)
1 = x

(2)
1 = x1, x(1)

2 = x
(2)
2 = x2,

x
(1)
3 = x

(2)
3 = x3. If ρ̂ is symmetric, then ρ̂ is separable if there exists a representing
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measure dµ(x) supported on K = K(1) such that each of the following equations holds :

X10 = X10 = y100 =
∫
K
x1dµ(x) =

∫
K
x

(1)
1 dµ(x) = b

(1)
1 = b

(2)
1 =

∫
K
x

(2)
1 dµ(x)

X20 = X02 = y010 =
∫
K
x2dµ(x) =

∫
K
x

(1)
2 dµ(x) = b

(1)
2 = b

(2)
2 =

∫
K
x

(2)
2 dµ(x)

X30 = X03 = y001 =
∫
K
x3dµ(x) =

∫
K
x

(1)
3 dµ(x) = b

(1)
3 = b

(2)
3 =

∫
K
x

(2)
3 dµ(x)

X12 = X21 = y110 =
∫
K
x1x2dµ(x) =

∫
K
x

(1)
1 x

(2)
2 dµ(x) = b

(1)
1 b

(2)
2 = b

(1)
2 b

(2)
1 =

∫
K
x

(1)
2 x

(2)
1 dµ(x)

X13 = X31 = y101 =
∫
K
x1x3dµ(x) =

∫
K
x

(1)
1 x

(2)
3 dµ(x) = b

(1)
1 b

(2)
3 = b

(1)
3 b

(2)
1 =

∫
K
x

(1)
3 x

(2)
1 dµ(x)

X32 = X23 = y011 =
∫
K
x1x3dµ(x) =

∫
K
x

(1)
1 x

(2)
3 dµ(x) = b

(1)
1 b

(2)
3 = b

(1)
3 b

(2)
1 =

∫
K
x

(1)
3 x

(2)
1 dµ(x)

X11 = y200 =
∫
K
x2

1dµ(x) =
∫
K
x

(1)
1 x

(2)
1 dµ(x) = b

(1)
1 b

(2)
1

X22 = y020 =
∫
K
x2

2dµ(x) =
∫
K
x

(1)
2 x

(2)
2 dµ(x) = b

(1)
2 b

(2)
2

X33 = y002 =
∫
K
x2

3dµ(x) =
∫
K
x

(1)
3 x

(2)
3 dµ(x) = b

(1)
3 b

(2)
3 .

If such a representing measure exists, then ρ̂ is separable.

2.3 The AK-truncated moment problem

2.3.1 Moment matrices and localizing matrices

Moment matrix

For a given integer k ≥ 0, the k-th order moment matrix Mk(y) is the real matrix ∈
Mt(k)(R), whose rows and columns are indexed by the tuples α, β ∈ Nn

k , i.e., |α|, |β| ≤ k,
and with elements Mk(y)α,β defined as

Mk(y)α,β =
∫
Rn

xαxβdµ(x) =
∫
Rn

xα+βdµ(x) = yα+β, (2.66)

One has Mk(y)α,β = Mk(y)β,α, and Mk(y) is thus a symmetric matrix.
From a given tms y of order d, moment matrix can be build up to a maximal order.

Indeed, the k-th moment matrix Mk(y) requires the moments yα up to order

max
α,β∈Nn

k

{deg
(
xαxβ

)
} = 2k,

thus leading to an upper bound for k:

k ≤ d/2. (2.67)

For a given k-order moment matrix Mk(y), any k′-order moment matrices Mk′(y), for all
k′ ≤ k, is a submatrix of Mk(y) :

Mk(y) =
(
Mk′(y) B
BT C

)
. (2.68)
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Exemple 2.5. Let n = 3 and d = 4.

• R[x] = R[x1, x2, x3],

• There are
(

3 + 4
3

)
= (4+1)(4+2)(4+3)

3! = 35 distinct triplet α = (α1, α2, α3) ∈ N3
4.

• xα = xα1
1 xα2

2 xα3
3 ∈ T3

4 = {xα|α ∈ N3
4}. There are 35 distinct monomials in T3

4 (see
Appendix A).

• The monomial basis is B3
4 is made of the 35 monomials of T3

4 sorted by degree, and
within each degree in a lexicographic order (see Appendix A).

Let dµ(x) be a probability measure supported on R3. The order of the moment matrices
can be of

k ≤ 4/2 = 2,
that is k = 0, 1, or 2.

k=0

The moment matrix of order 0 is made of only one element:

y000 =
∫
x0

1x
0
2x

0
3dµ(x) =

∫
1dµ(x) = 1,

and then
M0(y) = (1).

k=1

To construct the 1-st order moment matrix (k = 1), the moments up to order d = 2k = 2
are needed. The truncated moment sequence of degree 2 is the vector y ≡ (yα)α∈N3

2
made

of the moments yα,∀α ∈ N3
2 of µ, that is ∀α such that |α| = ∑3

i αi ≤ 2. The number of

elements in y is
(
n+ d
d

)
=
(

3 + 2
2

)
= 10 :

y = (y000, y100, y010, y001, y200, y110, , y101, y020, y011, y002)
where
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y100 =
∫
Rn
x1

1x
0
2x

0
3dµ(x) =

∫
Rn
x1dµ(x),

y010 =
∫
Rn
x0

1x
1
2x

0
3dµ(x) =

∫
Rn
x2dµ(x),

y001 =
∫
Rn
x0

1x
0
2x

1
3dµ(x) =

∫
Rn
x3dµ(x),

y200 =
∫
Rn
x2

1x
0
2x

0
3dµ(x) =

∫
Rn
x2

1dµ(x),

y110 =
∫
Rn
x1

1x
1
2x

0
3dµ(x) =

∫
Rn
x1

1x
1
2dµ(x),

y101 =
∫
Rn
x1

1x
0
2x

1
3dµ(x) =

∫
Rn
x1

1x
1
3dµ(x),

y020 =
∫
Rn
x0

1x
2
2x

0
3dµ(x) =

∫
Rn
x2

2dµ(x),

y011 =
∫
Rn
x0

1x
1
2x

1
3dµ(x) =

∫
Rn
x1

2x
1
3dµ(x),

y002 =
∫
Rn
x0

1x
0
2x

2
3dµ(x) =

∫
Rn
x2

3dµ(x).

The 1-st order moment matrix is

M1(y) =


1 y100 y010 y001
y100 y200 y110 y101
y010 y110 y020 y011
y001 y101 y011 y002

 .

One can observe that the 0-order moment matrix M0(y) of y is indeed a sub-matrix of
the 1-st order moment matrix M1(y) of y :

M1(y) =
(
M0(y) B
BT C

)
(2.69)

with
B =

(
y100 y010 y001
y200 y110 y101

)
, (2.70)

BT =

y100 y200
y010 y110
y001 y101

 , (2.71)

and
C =

(
y020 y011
y011 y002

)
. (2.72)

k=2

Similarly, to construct the 2-nd order moment matrix (k = 2), the moments up to order
d = 2k = 4 are needed. The truncated moment sequence of degree 4 is the vector y ≡
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(yα)α∈N3
4

made of the moments yα,∀α ∈ N3
4 of dµ(x), that is ∀α such that |α| = ∑3

i αi ≤ 4.

The number of elements in y is
(

3 + 4
4

)
= 35 , and the 2-nd order moment matrix is (see

Appendix A):

M2(y) =



1 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004



(2.73)

One can observe that M1(y) of y is a sub-matrix of the 2-nd order moment matrix M2(y)
of y, as well as M0(y), since M0(y) is a sub-matrix of M1(y). Indeed, one can write

M2(y) =
(
M1(y) B
BT C

)
(2.74)

with

B =


y200 y110 y101 y020 y011 y002
y300 y210 y201 y120 y111 y102
y210 y120 y111 y030 y021 y012
y201 y111 y102 y021 y012 y003
y400 y310 y301 y220 y211 y202

 , (2.75)

BT =



y200 y300 y210 y201 y400
y110 y210 y120 y111 y310
y101 y201 y111 y102 y301
y020 y120 y030 y021 y220
y011 y111 y021 y012 y211
y002 y102 y012 y003 y202


, (2.76)

and

C =


y202 y121 y112 y103
y121 y040 y031 y022
y112 y031 y022 y013
y103 y022 y013 y004

 . (2.77)

2.3.2 Shifted moment sequence and localizing matrix
For any polynomial

g(x) =
∑
γ∈Nn

tg

gγxγ
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of degree tg = deg(g(x)) ≥ 1, and a truncated moment sequence y of degree d, the
truncated moment sequence of degree d− deg(g(x)) defined as

(g ∗ y)α =
∑
γ∈Nn

tg

gγyα+γ, (2.78)

where |α| ≤ tg, is called a shifted truncated moment sequence.
Let g(x) be a polynomial of degree deg(g(x)) ≥ 1 and

dg = ⌈deg(g(x))/2⌉, (2.79)

where ⌈x⌉ denotes the smallest integer equal or larger than x. For any integer (k − dg),
the kth-order localizing matrix Mk−dg(g∗y) of g(x) is the (k−dg)-th order moment matrix
Mk−dg(g ∗ y) whose elements are defined as

Mk−dg(g ∗ y)α,β = (g ∗ y)α+β

=
∑
γ∈Nn

tg

gγyα+β+γ, (2.80)

for (k − dg) ≥ 0, α, β ∈ Nn
k−dg

, i.e., |α|, |β| ≤ (k − dg).
From a given tms y and a polynomial g(x), localizing matrices do not exist for any

integer k. Indeed, the (k − dg)-th moment matrix Mk−dg(y) requires the moments yα up
to order:

d ≥ deg (g(x)) + 2(k − dg).

This leads to an upper bound for k − dg:

deg(g(x)) + 2k − 2dg ≤ d

⇔ 2k − 2dg ≤ d− deg(g(x))

⇔ k − dg ≤ (d− deg(g(x)))
2 .

Since (k − dg) ≥ 0,

dg ≤ k ≤ (d− deg(g(x)))
2 + dg, (2.81)

and with
⌊(d− deg(g(x)))/2⌋ = ⌊d/2⌋ − dg,

where ⌊x⌋ is the largest integer smaller than x, localizing matrices for a given tms y of
order d and a polynomial g(x) exist for any integer k such that

dg ≤ k ≤ d/2. (2.82)

The definition of dg has been chosen in such a way that the upper bound k ≤ d/2 is
the same as that for the kth-order moment matrix. Any k′-th order localizing matrix
Mk′−dg(g ∗ y) for k′ ≤ k is as sub-matrix of the k-th order localizing matrix Mk′−dg(g ∗ y).
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Exemple 2.6. Let n = 3 and d = 4, dµ(x) a measure supported on R3, α ∈ N3
4,xα ∈ T3

4.
Consider the polynomial

g(x) = 1 − x2
1 − x2

2 − x2
3 (2.83)

of degree deg(g(x)) = 2, and dg = ⌈2/2⌉ = 1. The values of k for which the moment
matrix Mk−dg(g ∗ y) exists are

1 ≤ k ≤ 4/2,
that is, k = 1 or 2.

k=1

The 1st-order (k = 1) localizing matrix M1−1(g ∗ y) = M0(g ∗ y) is

M0(g ∗ y) = 1 − y200 − y020 − y002

k=2

The 2nd-order (k = 2) localizing matrix M2−1(g ∗ y) = M1(g ∗ y) is

M1(g ∗ y) =


1 − y200 − y020 − y002 y100 − y300 − y020 − y002 y010 − y200 − y030 − y002 y001 − y200 − y020 − y003
y100 − y300 − y020 − y002 y200 − y400 − y020 − y002 y110 − y300 − y030 − y002 y101 − y300 − y020 − y003
y010 − y200 − y030 − y002 y110 − y300 − y030 − y002 y020 − y200 − y040 − y002 y011 − y200 − y030 − y003
y001 − y200 − y020 − y003 y101 − y300 − y020 − y003 y011 − y200 − y030 − y003 y002 − y200 − y020 − y004

 .
(2.84)

2.3.3 The truncated moment problem
For a given probability measure dµ(x) on Rn, one can find its moment sequence y =
(y)α∈Nn made of the moments given by equation (2.25), and obtain informations on the
probability measure dµ(x). The moment problem is the inverse problem: given a (trun-
cated) sequence of moments, one can try to find a measure from the knowledge of its
moments. Formally, the (truncated) moment problem is to find conditions under which
there exists a measure dµ(x) such that each yα of a (truncated) moment sequence y can
be represented as an integral of the form

yα =
∫
Rn

xαdµ(x). (2.85)

If such a measure exists, dµ(x) is called a representing measure.

The K-truncated moment problem

If the support of the unknown measure dµ(x) is a subset K of Rn defined by multivariate
polynomials gi(x) in the variables (x1, . . . , xn):

K ≡ {x ∈ Rn|g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (2.86)

that is, a semialgebraic set of Rn, the truncated moment problem is called a K-truncated
moment problem, or a K-tms problem. In other words, in a K-tms problem, dµ(x) has to
satisfy

yα =
∫
K

xαdµ(x) (2.87)
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for all α ∈ Nn
d and for xα ∈ Tnd , with dµ(x) supported on K ⊂ Rn

A generalisation of the K-tms problem is the AK-tms problem where the moments yα
are known only for a finite subset A ⊂ Nn

d of degree |α| ≤ d. In other words, (2.87) has
to be fulfilled only for α ∈ A rather than for all |α| ≤ d.

The rest of this section presents necessary, and necessary and sufficient conditions for
a truncated moment sequence to admit a representing measure.

Necessary conditions

Theorem 2.1. An order-d tms y ≡ (yα)α∈Nn
d

admits a representing measure such that
(2.85) holds for all yα if the k-th order moment matrix Mk(y) for k ≤ d/2 is positive
semidefinite.

Proof. If
yα =

∫
K

xαdµ(x)

holds for all yα, then for any polynomial p(x) in R[x]

p(x) =
∑
α∈Nn

k

pαxα,

of degree k or less, one has

pTMk(y)p =
∑

α,β∈Nn
k

pαyα+βpβ

=
∑

α,β∈Nn
k

pαpβ

∫
K

xα+βdµ(x)

=
∑

α,β∈Nn
k

∫
K

(pαxα)(pβxβ)dµ(x)

=
∫
K
p(x)2dµ(x)

≥ 0,

where p is the column vector made of the element of the sequence p. Mk(y) is thus a
positive semidefinite matrix.

Since moment matrices Mk′(y) of order k′ are sub matrices of Mk(y) for k′ ≥ k, one
can consider the largest possible value for k, which is the upper bound d/2 in the equation
(2.67), to get the strongest necessary conditions:

Theorem 2.2. An order-d tms y ≡ (yα)α∈Nn
d

admits a representing measure such that
(2.85) holds for all yα if the moment matrix M⌊d/2⌋(y) is positive-semidefinite.

A similar necessary condition exists for localizing matrices.

Theorem 2.3. If an order-d tms y = (yα)α∈Nn
d

admits a representing measure such that
(2.85) holds for all yα, then any kth order localizing matrix is necessarily positive semidef-
inite.
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Proof. If
yα =

∫
K

xαdµ(x)

holds, then for then for any polynomial g(x) ∈ R[x]

g(x) =
∑

γ∈Nn
deg(g(x))

gγxγ,

of degree k or less where

K = {x ∈ Rn|g1(x) ≥ 0, . . . , gm(x) ≥ 0}, (2.88)

and for any polynomial
p(x) =

∑
α∈Nn

k−dg

pαxα,

of degree k − dg or less, one has

pTMk−dg(g ∗ y)p =
∑

α,β∈Nn
k−dg

pα
∑

γ∈Nn
deg(g(x))

gγyα+β+γpβ

=
∑

α,β∈Nn
k−dg

pαpβ
∑

γ∈Nn
deg(g(x))

gγ

∫
K
xα+β+γdµ(x)

=
∑

α,β∈Nn
k−dg

∑
γ∈Nn

deg(g(x))

∫
K

(gγxγ)(pαxα)(pβxβ)dµ(x)

=
∫
K
g(x)p(x)2dµ(x)

≥ 0.

since g(x) is positive on K by definition, where p is the column vector made of the
elements of the sequence p. Mk−dg is thus positive-semidefinite

Since moment matrices Mk′(g ∗ y) of order k′ are sub-matrices of Mk(g ∗ y) for k′ ≥ k,
one can consider the largest possible value for k, which is the upper bound d/2 of equation
(2.82), to get the strongest necessary conditions:

Theorem 2.4. If an order-d tms y ≡ (yα)α∈Nn
d

admits a representing measure such that
(2.85) holds for all yα, then all localizing matrix M⌊d/2⌋−dgi

(gi ∗ y) for each polynomial
gi(x) ∈ R[x] as in (2.88),and with dgi

= ⌈deg(gi(x))⌉, is necessarily positive-semidefinite.

Sufficient condition

The following sufficient condition was obtained in [16] for even order truncated moment
sequences. The formulation below comes from [17] and presented again in [13, 14]. Proofs
of the theorem can be found in [16, 40].

Theorem 2.5. If an order 2k tms z = (zβ)β∈Nn
2k

is such that its kth order moment matrix
and all kth order localizing matrices are positive, and if additionally

rank (Mk(z)) = rank (Mk−d0(z)) , (2.89)
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that is, the moment matrix Mk(z) is a flat extension of the moment matrix Mk−d0(z),
with

d0 = max
1≤i≤m

{1, ⌈deg(gi(x))/2⌉}, (2.90)

for gi(x), then the tms (zβ)β∈Nn
2k

admits a representing measure composed of

r = rank (Mk(z))

delta functions.

Necessary and sufficient condition

Since the latter condition is only sufficient, a representing measure does not necessarily
satisfy the rank condition. One can however search for an extension of y that satisfies
it. An extension of an order d tms y ≡ (yα)α∈Nn

d
is defined as any order 2k tms (zβ)β∈Nn

2k

of degree 2k with 2k > d such that zα = yα for all |α| ≤ d. An extension (zβ)β∈Nn
2k

is
called flat if it satisfies rank (Mk(z)) = rank (Mk−d0(z)) with d0 as in (2.90). If (zβ)β∈Nn

2k

satisfies theorem (2.5) above, then it has a representing measure, and so does (yα)α∈Nn
d

as
a restriction of (zβ)β∈Nn

2k
. One can then formulate a necessary and sufficient condition for

the existence of a representing measure. The following necessary and sufficient condition
was obtained in [16]. The formulation below comes from [17] and presented again in [14]
[13]. A proof of the theorem can be found in [16].

Theorem 2.6. A tms y = (yα)α∈Nn
d

admits a representing measure supported on K if
and only if there exists a flat extension (z)β∈Nn

2k
with 2k > d such that Mk(zβ) ⪰ 0 and

Mk−dgi
(gi ∗ z) ⪰ 0 with dgi

= ⌈deg(gi(x))/2⌉ for i = 1, . . . ,m.

The necessary and sufficient condition in Theorem (2.6) has been generalized for AK-
tms in [18]. A proof can be found in [14, 18].

Theorem 2.7. An A−tms (yα)α∈A, A ⊂ Nn
d admits a representing measure supported

on K if and only if there exists a flat extension z = (zβ)β∈Nn
2k

with 2k > d such that
Mk(z) ⪰ 0 and Mk−dgi

(gi ∗ z) ⪰ 0, with dgi
= ⌈deg(gi(x))/2⌉ for i = 1, . . . ,m.

Exemple 2.7. Let n = 3 and d = 4, dµ(x) a measure supported on R3, α ∈ N3
4, xα ∈ T3

4.
Consider the following K-truncated moment problem: Given the tms y = (yα)α∈N3

4
, what

are the conditions under which y admits a representing measure dµ(x) over R3 supported
on the subset K ⊂ R3

K = {x ∈ Rn|1 − x2
1 − x2

2 − x2
3 ≥ 0}, (2.91)

where g(x) = ∑
γ∈Nn

2
gγxγ = 1 − x2

1 − x2
2 − x2

3 is a polynomial of degree 2, such that

yα =
∫
K

xαdµ(x)

holds for all yα of y. Theorem (2.6) states that y admits a representing measure if there
exists any extension z = (zβ)β∈Nn

2k
of degree 2k with

2k > d = 4 ⇔ k > 2,
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such that zα = yα for all |α| ≤ d = 4, and that satisfies the rank condition rankMk(z) =
rankMk−d0(z) where

d0 = max
1≤i≤m

{1, ⌈deg(gi(x))/2⌉} = max{1, ⌈1⌉} = 1,

and such that
Mk(z) ⪰ 0

and
Mk−dg(g ∗ z) ⪰ 0,

with dg = ⌈deg(g(x))/2⌉ = 1.

k=3

Let us construct the conditions for the smallest k possible, that is k = 3. y admits a
representing measure if and only if the following conditions hold:

• All the moments zβ up to order 4 of the extension z = (zβ)β∈N3
2k=6

are the same as
the moments yα in the tms y = (yα)α∈N3

4
.

• The ranks of the moment matrices M3(z) and M2(z) are the same, i.e., M3(z) is a
flat extension of M2(z).

• M3(z) is positive semi-definite.

• M2(g ∗ z) is positive semi-definite.

k=4

Let us construct the conditions for the smallest k possible, that is k = 4. y admits a
representing measure if and only if the following conditions hold:

• All the moments zβ up to order 4 of the extension z = (zβ)β∈N3
8

are the same as the
moments yα in the tms y = (yα)α∈N3

8
.

• The ranks of the moment matrices M4(z) and M3(z) are the same, i.e., M4(z) is a
flat extension of M3(z).

• M4(z) is positive semi-definite.

• M3(g ∗ z) is positive semi-definite.

The conditions for k > 4 are analogous. One can keep increasing the value k until the 4
conditions above are satisfied for a given k. If the conditions are satisfied for some k∗ > 2,
then the tms y admits a representing measure composed of rankMk∗(z) delta functions.

From theorem 2.7, one can derive a necessary and sufficient condition for the separa-
bility of ρ̂.
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Theorem 2.8. A state ρ̂ is separable if and only if its coordinates Xµ1...µN
correspond

to a tms (yα)α∈A such that there exists a flat extension z = (zβ)β∈Nn
2k

with 2k > d such
that Mk(z) ⪰ 0 and Mk−dgi

(gi ∗ z) ⪰ 0, gi(x) ∈ K the polynomial inequality constraints
derived from the positivity of ρ̂, with dgi

= ⌈deg(gi(x))/2⌉ for i = 1, . . . ,m.

As an example consider the 2-qubit case presented in example 2.3. For the K-tms
problem, that is, when the state is symmetric, the conditions to be satisfied are presented
in the example 2.7 above. For the AK-tms for the general case, for k = 3, y admits a
representing measure if and only if the following conditions hold:

• All the moments zβ up to order 4 of the extension z = (zβ)βN3
2k=6

are the same as
the moments yα in the tms y = (yα)α∈A⊂N3

4
.

• The ranks of the moment matrices M3(z) and M2(z) are the same, i.e., M3(z) is a
flat extension of M2(z).

• M3(z) is positive semi-definite.

• M2(g(1)
0 ∗ z) is positive semi-definite where g(1)

0 (x) = 1 − (x(1)
1 )2 − (x(1)

2 )2 − (x(1)
3 )2 =

1 − x2
1 − x2

2 − x2
3.

• M2(g(2)
0 ∗ z) is positive semi-definite where g(2)

0 (x) = 1 − (x(2)
1 )2 − (x(2)

2 )2 − (x(2)
3 )2 =

1 − x2
4 − x2

5 − x2
6.

The conditions for higher values of k are analogous.
The mapping allows some flexibility on the problem and its constraints. For instance,

for a 3 qubit system, one can determine if the two first qubits are separable with respect
to the third qubit while ignoring any entanglement between the first two ones. This can
be done by taking the first two qubits as a 4-level system. There are then two sets of
variable, 15 for the two qubits, 3 for the second one, then n = 18 and N = 2. One can
also impose a symmetry between the two first qubits only, by equating the first two sets
of variables.
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Chapter 3

Semidefinite optimization for the
separability problem

The aim of this chapter is to describe how one can solve a moment problem, thus the
separability problem, using semidefinite optimization. The first section presents the basic
notions related to semidefinite optimization. First a description of optimization problems
is presented following [41]. The concepts of global solutions, convexity, semidefinite op-
timization, and the dual theory of linear programming are then presented, followed by a
description of how one can relax a polynomial optimization. An algorithm to solve a trun-
cated moment problem is then presented. The second section of this chapter describes
a semidefinite optimization algorithm to solve the separability problem as a truncated
moment problem. Results of our implementation of the algorithm are then presented.

3.1 Semidefinite optimization for the truncated
moment problem

3.1.1 Optimization problems
Throughout, Rn is considered as the set of n-tuples presented as column vectors.

Generalities

An optimization problem is the minimization or maximization of a function subjects to
constraints in its variables. Mathematically, it is formulated as:

minimize
x ∈ Rn

f(x)

subject to hi(x) = 0, i ∈ E ,
gj(x) ≥ 0, j ∈ I.

(3.1)

where

• x = (x1, . . . , xn)T ∈ Rn is the real vector of variables (also called unknowns or
parameters),
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Figure 3.1: Geometrical representation of the problem (3.2) where the dotted lines rep-
resent the contours of the objective function f , c1 and c2 the constraints, and x∗ is the
solution of the problem. The shaded part represents the infeasible region. (Figure taken
from [41])

• f(x) : Rn → R is the scalar function we want to maximize or minimize, usually
called the objective function,

• ∀i, j, hi(x), gj(x) : Rn → R are the scalar constraints functions of x that define
equalities and inequalities respectively the unknown vector x must satisfy,

• E and I are finite sets of indices for equality and inequality constraints respectively.

Optimization problems can be classified depending on the nature of the objective function,
their constraints, and the number of variables. An important distinction is made between
problems that have constraints and those that do not. If E = I = ∅, the problem is
called an unconstrained optimization problem. If at least E or I is ̸= ∅, the problem
is called a constrained optimization problem. These constraints define a subset of points
K ⊂ Rn called the feasible region. If the problem is an unconstrained problem, the feasible
region is Rn. When the objective function is a polynomial p(x), the problem is called a
polynomial optimization. The solution of the optimization problem is denoted as x∗ ≡
(x∗

1, x
∗
2, . . . , x

∗
n)T , and the minimum value of the polynomial is denoted as p(x∗) = pmin.

The problem has no solutions if the feasible region is empty (called the infeasible case) or
if the objective function is unbounded below on the feasible region (called the unbounded
case).

45



Figure 3.2: Graph of a function with many local minima.(Figure taken from [41])

As an example, consider the following problem:

min
x ∈ R2

(x1 − 2)2 + (x2 − 1)2

s.t. x2
1 − x2 ≤ 0,
x1 + x2 ≤ 2

(3.2)

We can rewrite it in the form of (3.1) by identifying

• x = (x1, x2)T ,

• f(x) = (x1 − 2)2 + (x2 − 1)2,

• g1(x) = −x2
1 + x2,

• g2(x) = −x1 − x2 + 2,

• I = {1, 2} and E = ∅

A geometrical representation of the problem is shown on figure 3.1. The contours of f is
the set of points for which f(x) as a constant value.

Global solutions

Solutions x∗ = (x∗
1, . . . , x

∗
n) that minimizes the value of the objective function can be

either local solution, or global solutions. If f(x∗) is smaller than all other feasible nearby
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Figure 3.3: Representation of the minimization problem (3.3) where x = (x(i)) is the
vector of the local solutions (Figure taken from [41]).

points, the solution is called a local solution. If f(x∗) is the point with lowest function
value among all feasible points, the solution is called a global solution. Depending on
the problem, global solutions can be difficult to recognize and locate. Figure 3.2 shows
a function with many local minimums, where programs that solve optimization problems
tend to be "trapped".

Constraints might improve the situation. The feasible region they define may exclude
local minima. It may then be easier to locate the global minima from the remaining
minima. They, however, can make the problem more difficult. Indeed, consider the
optimization

minimize
x ∈ R2

(x2 + 100)2 + 0.01x2
1

subject to x2 − cos(x1) ≥ 0, .
(3.3)

When one considers the problem without the constraint g(x) = x2 − cos(x1) ≥ 0, it
has the unique solution (0,−100)T while with the constraint, there are local solutions
near the points (kπ,−1), for k ∈ {±1,±3,±5, . . . } as shown in Figure 3.3.

Convex programming

A set S ∈ Rn is a convex set if for any two points x, y ∈ S we have

αx+ (1 − α)y ∈ S, ∀α ∈ [0, 1]. (3.4)

A function f is a convex function if its domain S is convex, and if for any two points
x, y ∈ S,

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) (3.5)
is satisfied ∀α ∈ [0, 1]. If −f is convex, then the function is said to be concave.

If the objective function f in the optimization problem (3.1) and its feasible region are
both convex, any local solution of the problem is a global solution. As an example, the
linear function f(x) = cTx + α for any constant vector c ∈ Rn and α a scalar, is convex.
The quadratic function f(x) = xTHx where H is a symmetric positive semidefinite matrix
is also convex. The problem (3.1) in which the objective function is convex, the equality
constraint functions are linear, and the inequality constraint functions are concave, is
called a convex programming. It is the latter that is of interest in this work.
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Linear programming

A linear program is a an optimization problem where the objective function and all the
constraints are linear functions of the variables. Every optimization problem of this kind
can be written as [42]

min
x ∈ Rn

cTx

s.t. Ax = b,
x ≥ 0.

(3.6)

where x and c are vectors ∈ Rn, b is a vector ∈ Rm, and A is an m × n matrix. The
inequality x ≥ 0 means that every component xi of the vector x are ≥ 0. As an example

min
x ∈ R3

3x1 + 5x2 + x3

s.t. x1 + 3x2 + 5x3 = 2,
x1 + 9x2 + 4x3 = 1,

x1 ≥ 0,
x2 ≥ 0,
x3 ≥ 0.

(3.7)

where

• x =

x1
x2
x3

 ∈ R3 the vector which contains the parameters,

• c =

3
5
1

 ∈ R3 the vector which contains the coefficients,

• A =
[
1 3 5
1 9 4

]
the 2 × 3 matrix which contains the coefficients for the inequality

constraints,

• b =
[
2
1

]
∈ R2 is the vector which contains the left side of the inequality constraints.

This formulation is called the standard form. Since cTx is a convex function, linear
programming is a convex programming. If the objective function or some of the constraints
are nonlinear functions of the variables, the problem is called a nonlinear programming
problem.

3.1.2 Semidefinite programming
Semidefinite programming (SDP) is a generalization of linear programming. Consider X
a symmetric n× n matrix. A linear function of X is a real valued function of the form

n∑
i=1

n∑
j=1

cijxij (3.8)
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with cij ∈ R (i, j = 1, . . . , n). Let C be the n × n matrix with element Cij defined as
Cij = cij, ∀i, j. Equation (3.8) can be equivalently written as Tr(CX).

A Semidefinite program is an optimization problem of the form

min
X ∈ Sn

Tr(CX)

s.t. Tr(ATi X) = bi(i = 1, . . . ,m),
X ⪰ 0.

(3.9)

where C,Ai (i = 1, . . . ,m), and b = (b1, . . . , bm)T are given, and C is a symmetric matrix
∈ Mn(R). The m linear equality constraints Tr(ATi X) are called linear matrix inequalities
(LMI).

Semidefinite programs are convex programs, that is, the solution is the global minimum
of the problem. They are a generalisation of linear programming. Indeed, on can always
formulate (3.6) in the form (3.9). As an example, problem (3.7) can be rewritten in the
form (3.9) where

• X =
[
x11 x12
x12 x22

]
is the 2 × 2 symmetric matrix which contains the parameters, with

the identification x11 = x1, x12 = x2, and x22 = x3,

• C =
[

3 2, 5
2, 5 1

]
is the 2 × 2 symmetric matrix which contains the coefficients of the

inequality constraints,

• A1 =
[
1 3
0 5

]
, A2 =

[
1 9
0 4

]
, the 2 × 2 matrices which contain the coefficients for the

inequality constraints,

• b =
[
2
1

]
∈ R2 is the vector which contains the left side of the inequality constraints.

Dual theory of linear programming

The above formulation of the linear programs (3.6) and (3.9) is called the primal formu-
lation. One can rewrite these problems in a so-called dual form. The dual semidefinite
program of (3.9) is

max
y ∈ Rm

bTy

s.t.
m∑
i=1

Aiyi + S = C,

S ⪰ 0.

(3.10)

Let p∗
P denote the optimal objective function value of the primal problem with solution

X∗, and p∗
D the one for the dual problem with solution (y∗, S∗). The primal and dual

problem are said strictly feasible if there exists such X∗ for the primal problem, and
(y∗, S∗) for the dual problem respectively. One has p∗

P = −∞ if the primal problem is
infeasible, and p∗

D = ∞ if the dual problem is infeasible. For any SDP, one has

p∗
P ≤ p∗

D, (3.11)
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and
Tr(CX∗) −

m∑
i=1

biy
∗
i = Tr(S∗X∗) ≥ 0, (3.12)

called the duality gap. If (3.12) holds, it is called a weak duality. It allows one to bound
the optimal values of the dual problem by choosing a valid variable of the primal problem,
and conversely. An important problem in dual theory is to identify sufficient conditions
that ensure a zero duality gap, that is where (3.12) is a strict equality and called a strong
duality, thus (3.11) is a strict equality. One can show that any SDP satisfying the following
conditions, called the Slater’s conditions, has a strong duality between its primal and dual
problem [24] :

• If the primal (respectively the dual) problem is feasible and the dual (respectively
the primal) problem is strictly feasible, then p∗

P = p∗
D, i.e., the strong duality holds.

There exist then a valid choice X∗ ⪰ 0 for the dual problem with p∗
P = ⟨C,X∗⟩

(respectively there exists a valid choice (y∗, S∗ ⪰ 0) for the primal problem with
p∗
D = bTy∗).

• If both primal and dual problems are strictly feasible, the strong duality holds and
there exists valid choices X∗ ⪰ 0 and (y∗, S∗ ⪰ 0) such that p∗

P = p∗
D = ⟨C,X∗⟩ =

bTy∗.
In other words, strong duality allows to identify the optimal value of an SDP by choosing
valid variables of both primal and dual problem.

3.1.3 Moment relaxation for polynomial optimization
The global optimization of a polynomial p(x) = cTx

min
x ∈ Rn

p(x)

s.t. hi(x) = 0,
gj(x) ≥ 0.

(3.13)

where hi(x) and gj(x) are polynomials is NP-hard to solve in general [14], and as described
in the previous section, when the problem is not convex (non linear), it may be hard for
solvers to find and locate global minimum. However, one can approximate and reformulate
the problem (3.13) in such a way that it becomes convex. This process is called a convex
relaxation. Works in [35] describe how one can construct a hierarchy of convex relaxations
using representations of nonnegative polynomials as sum of squares, and the dual theory
of moments. Indeed, one can show that a sequence of moments of nonnegative measure
corresponds to positive linear functionals on R[x]. The following approximation of the
problem (3.13) was first proposed by Lasserre [35]. The presentation here follows the
one described in [14]. Consider a polynomial p(x) of degree d and the subset K defined
by polynomial equalities and inequalities. For all points x∗ ∈ K minimizing p(x), and
dµ(x) = δ(x − x∗)dx the Dirac measure, one can write∫

p(x)dµ(x) =
∫
p(x)δ(x − x∗)dx

= p(x∗)
= pmin, (3.14)
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and thus
pmin ≥ min

dµ(x)

∫
p(x)dµ(x). (3.15)

where the minimum is taken over all probability measure dµ(x) on Rn. Since p(x) ≥ pmin

for all x ∈ K, for dµ(x) a probability measure supported on K, i.e.,
∫
k dµ(x) = 1,∫

K
p(x)dµ(x) ≥

∫
K
pmindµ(x)

= pmin, (3.16)

which leads to the following results

pmin = min
x∈K

p(x) = min
dµ(x)

∫
K
p(x)dµ(x), (3.17)

which, with p(x) = ∑
α pαxα, can be written as

pmin = min
dµ(x)

∫
p(x)dµ(x) = min

dµ(x)

∑
α

∫
pαxαdµ(x)

= min
(yα)α∈Nn

d

∑
α

pαyα

= min
y∈RNn

d

pTy, (3.18)

where p is the column vector made of all the coefficient elements pα of its sequence
(pα)α∈Nn

d
, and y is the column vector made of the moments

yα =
∫
K

xαdµ(x)

in the moment sequence y = (yα)α∈Nn
d

of the measure dµ(x), which is a functional of
xα. In other words, the problem of minimizing the polynomial p(x) with solution x∗ is
equivalent to the problem of minimizing the linear functional pTy, that is, solving the
optimization problem

min
y ∈ RNn

d

pTy

s.t. y0 = 1,
y has a representing measure on K,

(3.19)

where the constraint y0 = yα=(0,...,0) = 1 ensures that dµ(x) is a probability measure on
K, ∫

K
y0dµ(x) =

∫
K

1dµ(x) = 1,

and with solution δ(x−y∗)dx. This in turns means that solving the K-truncated moment
problem, that is to find a representing measure dµ(x) supported on a given subset K such
that the moments yα of the the given truncated moment sequence y = (yα)α∈Nn

d
can

be represented as yα =
∫
K xαdµ(x), amounts to solve the optimization problem (3.19).

Indeed, if a minimizer y∗ is found, y has a representing measure, as a constraint to the
problem. If it does not exists such a representing measure, the optimization problem is
infeasible, thus has no solution.

51



Figure 3.4: Graphs of a function with multiples local minima (on the right) and with a
unique minima (on the left) (Figure taken from [43]).

3.1.4 Semidefinite algorithm for the K-tms problem
Recall Theorem 2.6: a truncated moment sequence y = (yα)α∈Nn

d
admits a representing

measure supported on the subset K defined by

K = {x ∈ Rn|g1(x) ≥ 0, . . . , gm(x) ≥ 0},

where gi(x) are polynomials if and only if there exists an extension (z)β∈Nn
2k

with 2k > d
such that zα = yα for all |α| ≤ d, and that satisfies the rank condition rank (Mk(z)) =
rank (Mk−d0(z)) where

d0 = max
1≤i≤m

{1, ⌈deg(gi(x))/2⌉},

and such that localizing matrices Mk−dgi
(z) for i ∈ {1, . . . ,m} are positive semi-definite.

In other words, to solve the K-tms problem amounts to construct a positive semidefinite
moment matrix Mk(z) with some entry given by zα = yα for α ∈ Nn

d , and with constraints
on the moment matrices and localizing matrices linear in the zα. This problem is a
semidefinite optimization where the variables are the zβ for β ∈ Nn

2k with the smallest
extension order k0 = ⌊d/2⌋ + 1. The flatness condition rank (Mk(z)) = rank (Mk−d0(z))
with d0 = max1≤i≤m{1, ⌈deg(g(x)i)/2⌉} cannot be directly implemented in the SDP as
a constraint. To implement the flatness condition, one can consider the semidefinite
optimization problem [18]:

min
z ∈ RNn

k

RTz

s.t. y0 = 1,
Mk(z) ⪰ 0,
Mk−di

(gi ∗ z) ⪰ 0, (i ∈ {1, . . . ,m}),
zα = yα α ∈ Nn

d ,

(3.20)
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where R is the column vector made of the randomly chosen coefficients Rα of the poly-
nomial

R(x) =
∑
α∈Nn

k0

Rαx
α, (3.21)

where R(x) is taken as a sum of square polynomial of degree 2k0 to ensure that RTz has
a global minimum.

One can then implement an algorithm using the semidefinite optimization (3.20). The
algorithm works as follow: first, the SDP runs for the extension order k = k0, that is, the
lowest order possible. There are then 3 cases depending on the outcome of the SDP:

• If the SDP is infeasible, meaning all constraints cannot be satisfied, the tms y admits
no representing measure.

• If the SDP is feasible, and for that value k the rank condition rankMk(z) =
rankMk−d0(z) is met, i.e., there exist a flat extension z of y, the tms y admits
a representing measure.

• If the SDP is feasible, but for that value k the rank condition rankMk(z) =
rankMk−d0(z) is not met, there exists no flat extension z at the order k and the
SDP remains inconclusive. One can then run another SDP with a different Rα, or
increase the order k by one, and this until the SDP is either feasible or not.

According to Theorem 2.5, when a feasible flat extension z is found, z admits a rep-
resenting measure composed of r = rankMk(z) delta functions :

dµ(x) =
r∑

k=1
wkδ (x − y∗

k) dx (3.22)

where :

• r is finite,

• wj > 0,

• y∗
k ∈ K.

Suppose the SDP finds an extension z = z∗ at an order k that satisfies the rank
condition, it is possible to obtain an explicit decomposition of Mk(z∗) with rank r of the
form

Mk(z∗)αβ =
r∑
j=i

wj(x∗
j )α(x∗

j )β, (3.23)

with α, β ∈ Nn
k , wj ≥ 0, and x∗

j ∈ K. The method to do so is described in Appendix B.
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3.2 Semidefinite optimization for the separability
problem

3.2.1 Separability problem algorithm
Determining whether a state ρ̂ ∈ P(H) of a N -qudit system is separable, i.e., if ρ̂ can be
written as a convex linear combination of pure states :

ρ̂ =
∑
k

wk
(
ρ

(1)
k ⊗ · · · ⊗ ρ

(N)
k

)
,

amounts to run the semidefinite optimization algorithm described above for the optimiza-
tion problem (3.20), where the moments yα are the real coordinates of ρ̂ in the tensorial
representation, and where the feasible region is the subset K defined by the polynomial
constraints derived from the positivity of ρ̂. In terms of separability of ρ̂, the three
different outcomes of an SDP for an order k are :

• If the SDP is infeasible, the state is entangled.

• If the SDP is feasible, and for that value k the rank condition rank (Mk(z)) =
rank (Mk−d0(z)) is met, the state is separable.

• If the SDP is feasible, but for that value k the rank condition rank (Mk(z)) =
rank (Mk−d0(z)) is not met, the problem remains inconclusive. One can then run
another SDP with a different Rα, or increase the order k by one, and this until the
SDP is either feasible or not.

Figure 3.5 illustrate the semidefinite algorithm for the separability problem.
If the state is separable, one can extract a the optimal values y∗

k whose entries are the
elements of the convex combination

xµ1µ2...µN
=
∑
k

wk
(
y

(1)
k;µ1 . . . x

(N)
y;µN

)
,

that is, the elements of the Bloch vector of every pure state ρ̂(i)
k , i ∈ {1, . . . , N}. As an

example, for a 2 qubit system as presented in example (2.8), the optimal values y∗
k is a

vector made of the 6 elements
(
b

(1)
k;1, b

(1)
k;2, b

(1)
k;3, b

(2)
k;1, b

(2)
k;2, b

(2)
k;3

)
where the first 3 are the Bloch

vector elements of the 1st qubit pure state k, and the last 3 are the Bloch vector of the
2ndqubit pure states k. If the 2 qubit state is symmetric, then only one Bloch vector
is given i.e., x∗

k is of three variables, since they are indistinguishable from one qubit to
another. The method to extract the optimal solutions is described in Appendix (B).

In summary, if the semidefinite optimization whose variables is the flat extension of the
truncated moment sequence given by the local expectation values of the basis operators
of a given state is feasible, then there exists a representing atomic probability measure.
It then means that the global expectation values of the basis operators can be written as
a convex combination of product of the local expectation values, which means that the
state is a convex combination of product state, and is then separable. If the optimization
is not feasible, the state is entangled.
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Figure 3.5: Illustration of the semidefinite algorithm for the separability problem.

Exemple 3.1. Consider a 2 qubit systems as described in example (2.8). There are 6
variables (x1, x2, x3, x4, x5, x6) and 16 moment constraint defined by the real coordinates of
the state in the tensorial representation. As an example, consider the randomly generated
separated pure state ρ̂

0.41 + 0i −0.16 + 0.12i −0.24 + 0.32i 0.001 − 0.198i
−0.16 − 0.12i 0.1 + 0i 0.19 − 0.056i −0.06 + 0.08i
−0.24 − 0.32i 0.19 + 0.056i 0.39 + 0i −0.15 + 0.115i
0.001 + 0.198i −0.06 − 0.08i −0.15 − 0.115i 0.1 + 0i

 (3.24)

It’s real coordinates are

X =


1.0000 −0.6368 −0.4745 0.6077

−0.6013 0.3829 0.2853 −0.3654
−0.7985 0.5085 0.3789 −0.4852
0.0281 −0.0179 −0.0133 0.0171

 (3.25)

The outcome of the SDP gives the optimal solutions

y∗ =
(
−0.6 −0.8 0.03 −0.64 −0.47 0.61

)
(3.26)

where the three first elements is the Bloch vector of the first qubit, and the last three the
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one for the second qubit. It follows that

ρ(1) =1
2 1̂ + −0.6

2

(
0 1
1 0

)
+ −0.8

2

(
0 −i
i 0

)
+ 0.03

2

(
1 0
0 −1

)

=
(

0.51 + 0i −0.3 + 0.4i
−0.3 − 0.4i 0.485 + 0i

)

and

ρ(2) =1
2 1̂ + −0.64

2

(
0 1
1 0

)
+ −0.47

2

(
0 −i
i 0

)
+ 0.61

2

(
1 0
0 −1

)

=
(

0.805 + 0i −0.32 + 0.24i
−0.32 − 0.24i 0.195 + 0i

)
,

and one can check that ρ̂ = ρ̂(1) ⊗ ρ̂(2). For mixed states, one can construct each pure
states similarly, where the weights can then be computed.

3.2.2 Results
The rest of this section present different results of the SDP algorithm for different quantum
system. We implemented the algorithm in Matlab [44] using the package Gloptipoly 3.10
[45]. To solve the SDP, we use two different solvers, namely SeDuMi 1.3.5 [46] and Mosek
9.3.7 [47].

To test our algorithm, we created different kinds of states in the sense that we knew
beforehand whether they are entangled or separable. The states were constructed using
the functions in the package QUBIT4MATLAB V3.0 written by Géza toth [48] :

• Separated pure states : Created by making the tensor product of N random
state vectors of dimension d. These random states are created from a uniform
distribution on the complex sphere of radius 1 implemented in QUBIT4MATLAB.
For symmetric states, the state is N times the tensor product of a single random
state vector of dimension d.

• Separated mixed states : Created by making a random combination of p random
separated pure states constructed as described above, with random weights. For
symmetric states, the p random pure states are symmetric.

• Entangled pure states : We first created two random pure state vectors |ϕ1⟩
and |ϕ2⟩ of dimension d. We then created two tensor product states |ψ1⟩ and |ψ2⟩
constructed by making N times the tensor product of |ϕ1⟩, and N times tensor
product of |ϕ2⟩ respectively. The two tensor product states are then summed and
normalized. More specifically, the state created is

|ψ⟩ = N (|ψ1⟩ + |ψ2⟩)
= N (|ϕ1 . . . ϕ1⟩ + |ϕ2 . . . ϕ2⟩)

with N a normalization constant. One can observe that |ψ⟩ is symmetric.

• Entangled mixed states : Created by making a random combination of p random
entangled states constructed as described above, with random weights.
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Timings

We run the sdp algorithm for 100 of each of the 4 kinds of states above for qubit systems,
up to 10 qubits. Every constructed separable states were detected as separable (the SDP
was feasible), and every constructed entangled states were detected as entangled (the
SDP was infeasible). We computed the average time it took for the algorithm to run
for systems made of 2 to 10 symmetric qubits, and for the 4 kinds of states. The mixed
states for both entangled and separable states are a mixture of 3 pure states, with random
weights. When the SDP is inconclusive, up to 5 different R are tested before increasing
the order k. For a set of 4 different kinds of states, the SDP algorithm was performed
using the two different solvers SeDuMi and Mosek. They were performed on a laptop
computer on a Linux distribution, equipped with a 2.6GHz processor and 16GB RAM.
The results are displayed in the table below.

Table 3.1: Average time in seconds of the algorithm for N ∈ {2, . . . , 10} symmetric qubits.

2 3 4 5 6 7 8 9 10

Sep. pure Sedumi 0.13 0.15 0.25 0.42 1.1 2.38 5.89 15.45 33.5
Mosek 0.18 0.18 0.21 0.29 0.45 0.9 2.09 4.9 12.11

Ent. pure Sedumi 0.11 0.13 0.21 0.46 1.12 3.08 7.28 17.2 42.5
Mosek 0.15 0.16 0.19 0.24 0.39 0.8 1.96 5.56 11.75

Sep. mixed Sedumi 0.14 0.16 0.24 0.5 1.23 3.11 8.01 19.42 44.59
Mosek 0.18 0.19 0.21 0.29 0.46 0.97 2.28 5.56 13.45

Ent. mixed Sedumi 0.11 0.14 0.22 0.46 1.1 2.95 7.28 17.71 42.39
Mosek 0.15 0.16 0.18 0.24 0.4 0.83 1.95 4.86 11.73

All entangled and separable states were detected by the algorithm in a single run. We
observe that the performance of SeDuMi and Mosek are very similar for up to systems
made of 4 qubits. For systems of > 4 qubits, Mosek starts to be more performant. It is
more than 3 times faster for systems made of 10 Qubits.

For a set of 4 symmetric, the SDP was performed using both the symmetric method,
and the general method to compare them for the same state. The results are displayed
in the tables below for 2 Qubits, 3 Qubit, and 2 Qutrits.

We observe that the general method, that is when the variables of the subsystems
are not equated, it takes significantly more time to detect entanglement/separability for
systems of 3 qubits and 2 qutrits. We again observe that Mosek is significantly faster
than SeDuMi when it comes to the general method, up to 20 times faster.

Table 3.2: Timing in seconds for a separable symmetric pure state solved with the general
method and the symmetric method

Sep. pure 2 Qubits 3 qubits 2 qutrits
Symmetric

Method
Sedumi 0.18 0.2 0.72
Mosek 0.16 0.24 0.37

General
Method

Sedumi 0.25 317.9 222.5
Mosek 0.19 17.53 12.64
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Table 3.3: Timing in seconds for a separable symmetric mixed state solved with the
general method and the symmetric method

Sep. mixed 2 Qubits 3 qubits 2 qutrits
Symmetric

Method
Sedumi 0.15 0.19 0.98
Mosek 0.18 0.21 0.97

General
Method

Sedumi 0.25 380.75 440.75
Mosek 0.22 25.4 49.78

Table 3.4: Timing in seconds for a entangled symmetric pure state solved with the general
method and the symmetric method

Ent. pure 2 Qubits 3 qubits 2 qutrits
Symmetric

Method
Sedumi 0.14 0.15 0.48
Mosek 0.16 0.16 0.24

General
Method

Sedumi 0.2 320.95 272.26
Mosek 0.16 17.44 12.34

Table 3.5: Timing in seconds for a entangled symmetric mixed state solved with the
general method and the symmetric method

Ent. mixed 2 Qubits 3 qubits 2 qutrits
Symmetric

Method
Sedumi 0.13 0.14 0.62
Mosek 0.15 0.16 0.25

General
Method

Sedumi 0.18 323.38 289
Mosek 0.17 19.38 12.31
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Probability of separability

We generated 2 random states chosen from two different measures, namely the Hilbert-
Schmidt measure and the Bures measure. For 1000 random 2 qubit states tested on the
H-S measure, 243 were separable, while 72 were separable for the Bures measure. Our
results are consistent with results in [49] stating that 24,24 % of 2 qubit states for the H-S
measure are separated, and 7,3% for the Bures measure. For 3 qubits, non were separable
states for both measure. Even though our sample of states was only of 1000 random
states, we can conclude that the number of separable states is close to 0. Results in
[49] shows that a random state made of one qubit and one qutrit has a 3,7% probability
to be separable for the H-S measure, and 0.1% for the Bures measure. It shows that
the probability for random states to be separable significantly decreases with the size of
the system. Our results of 0 separable states for 3 qubits system for both measures are
consistent with this idea.
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Conclusion

The separability has been widely studied since its discovery. Many criteria and algorithms
for the separability of states have been developed. The aim of this work was to present
a necessary and sufficient condition for separability of arbitrary states with an arbitrary
number of constituents, and arbitrary symmetries between the subparts, by mapping it
onto a truncated moment problem, and solved using semidefinite optimization.

In the first chapter, we presented the basic notions of quantum mechanics used in
this manuscript. The first section summarized the concepts of Hilbert spaces, quantum
states, operator spaces and how one can write any operators in the basis made of the
GGM operators in a convenient tensor notation. A description of symmetric states was
then exposed and how one can represent them in the symmetric subspace using the Dicke
states. The notion of density operators and the difference between pure and mixed states
was then exposed. The Bloch representation of qubit, qudit, and multiple qudit states was
then introduced. The separability problem was then exposed and, with the criterion of the
equivalence between two operators, a necessary and sufficient condition for separability of
states in terms of product of local expectation values of the basis operators was obtained.

In the second chapter, algebraic preliminaries on monomials, polynomials, and matri-
ces were presented, followed by the notions of moment and (truncated) moment sequences.
The mapping between a state and a truncated moment sequence whose moments are the
local expectation values of basis operators was then exposed. It lead to the equivalence
that a separable state can be written as an integral form whose probability measure is
an atomic measure, and where its first order moments are given by the local expectation
values of the basis operators for a given state. The latter meant that a given state is sepa-
rable if and only if there exists an atomic representing measure whose first order moments
are given by the local expectation values of the state. This problem is called a truncated
moment problem. To derive a necessary and sufficient condition on the existence of such
a measure, we presented the notions of moment matrices, localizing matrices and flat
extensions of truncated moment sequences. A necessary and sufficient condition on the
separability of a state was then given.

The third chapter introduced the notions of optimizations problems, convex program-
ming, linear programming and semidefinite programming. The dual theory of linear
programming was then exposed, followed by the presentation on how one can solve a mo-
ment problem using semidefinite optimization. Solving a moment problem amounted to
detect if an SDP whose variables are a flat extension of the truncated moment sequence
given by the local expectation values of the basis operators for a given states is feasible,
then there exists a representing measure, which meant that the state can be written as
convex combination of product states, thus the state is separable. An algorithm was then
presented to solve the separability problem. To conclude the chapter and this manuscript,
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results on our implementation of the algorithm in Matlab were then exposed. We exposed
the average timing it took for an SDP to be solved for 4 different kinds of states. We
then presented our results on the probability that a random state is separable for two
qubits and three qubits, for two different measures. When the dimension and the number
of subparts of a system increase, we observed that the probability for a random state to
be separable significantly decreases. For a 1000 random 3-qubit states tested, none were
separable.

Mapping the separability problem onto a truncated moment problem provides a nec-
essary and sufficient condition for a state to be separable. It provides a certificate of
separability and easily accommodates with missing data, which makes it a powerful tool
for applications and experiments. The idea of mapping the separability problem onto a
truncated moment problem has also been applied to the more general problem of quantum
channel separability [27].

The codes we developed within the framework of this master thesis could be further
used in a variety of applications when detection of separability of mixed states is required.
In particular when decoherence plays a significant role in the dynamics of multipartite
systems.
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Appendix A

Sets, basis, and truncated moment
sequence

For n = 3 and d = 4,

N3
4 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0),

(0, 1, 1), (0, 0, 2), (3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2),
(0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3), (4, 0, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0),
(2, 1, 1), (2, 0, 2), (1, 0, 3), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 4, 0), (0, 3, 1),
(0, 2, 2), (0, 1, 3), (0, 0, 4)} (A.1)

T3
4 = {1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3, x

3
1, x

2
1x2, x

2
1x3, x1x

2
2,

x1x2x3, x1x
2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3x

4
1, x

3
1x2, x

3
1x3, x

2
1x

2
2, x

2
1x2x3,

x2
1x

2
3, x1x

3
2, x1x

2
2x3, x1x2x

2
3, x1x

3
3, x

4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3} (A.2)

B3
4 = ((1), (x1, x2, x3), (x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3),

(x3
1, x

2
1x2, x

2
1x3, x1x

2
2, x1x2x3, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3, x

3
3)

(x4
1, x

3
1x2, x

3
1x3, x

2
1x

2
2, x

2
1x2x3, x

2
1x

2
3, x1x

3
2, x1x

2
2x3, x1x2x

2
3, x1x

3
3,

x4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3)) (A.3)

y = (yα)α∈N3
4

= {1, y100, y010, y001, y200, y110, y101, y020, y011, y002, y300, y210,

y201, y120, y111, y102, y030, y021, y012, y003, y400, y310, y301,

y220, y211, y202, y103, y121, y112, y103, y040, y031, y022, y013, y004} (A.4)
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Appendix B

Extracting globally optimal solutions

The content of this appendix comes from [50]. Let the tms z∗ be a flat extension satisfying
the rank condition rankMk(z∗) = rankMk−d0(z∗). Since the condition holds, z∗ is the
vector of a rankMk(z∗)-atomic measure supported on K. The moment matrix Mk(z∗)
can then be constructed as

Mk(z∗) =
r∑
j=1

B((x∗
j )α)

(
B((x∗

j )α)
)T

= V ∗(V ∗)T

for α ∈ Nn
d , where r = rankMk(z∗) and

V ∗ =
(
Bk((x∗(1))α) Bk((x∗(2))α) . . . B((x∗(r)))α

)
(B.1)

for Bk((x∗
j )α) the column vector whose elements are made of the elements of the monomial

basis in the same order, up to order k, and x∗
j , j = . . . , r are r global minimizers of the

objective function. One can extract a Cholesky factor V of Mk(z∗), that is, a matrix V
with r columns such that

Mk(z∗) = V V T . (B.2)
Since both V and V ∗ span the same linear subspace, the solution extraction algorithm
amounts to transform V into V ∗ using suitable column operations. First, one can reduce
V to a column echelon form as

U =



1
x
0 1
0 0 1
x x x

... . . .
0 0 0 · · · 1
x x x · · · x

... ...
x x x · · · x



. (B.3)

Each row in U corresponds to a monomial xα in the monomial basis by construction of
the moment matrix. The first non-zero elments in each columns, called the pivot element,
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correspond to the monomials xβj , j = 1, 2, . . . , r of the basis that generates the solutions.
Let

w =
[
xβ1 ,xβ2 · · · xβr

]T
(B.4)

denote the generating basis of the r solutions. For all solutions x = x∗
j , j = 1, 2 . . . , r one

has
Bk((x∗)α) = Uw. (B.5)

Extracting the optimal solutions the amounts to solve (B.5), i.e., a polynomial system
of equations. To solve these polynomial equations, one can extract from U the r × r
multiplication matrix Ni made of the coefficients of the monomials xixβ

j
, j = 1, . . . , r in

the generating basis for each first degree monomials xi, i = 1, 2, . . . , n, i.e.,

Niw = xiw. (B.6)

One can show that the entries of the solutions x∗(j), j = 1, . . . , r are common eigenvalues
of multiplication matrices Ni, i = 1, . . . , n. One can build a random combination of the
Ni as

N =
n∑
i=1

λiNi (B.7)

for λi, i = 1, . . . , n are non-negative numbers such that ∑i λi = 1. The i-th entry x∗
j;i of

x∗
j ∈ Rn is given by

x∗
j;i = qTj Niqj, (B.8)

where the qi are the elements of an orthogonal matrix Q =
[
q1 q2 . . . qr

]
, i.e., qTi qi = 1

and qTi qj = 0 for i ̸= j such that
N = QTQT , (B.9)

where T is an upper triangular matrix with eigenvalues of N sorted increasingly along
the diagonal, also called the Schur decomposition. This procedure has been implemented
in the Matlab package Gloptipoly 3 [45]
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