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1 Introduction
Mutual funds are experiencing substantial interest worldwide but especially in the United

States where their importance does not seem to stop growing. Indeed, the global mutual fund
industry knew an extensive growth in the 1990s, in part due to the globalization of Finance.
In the United States,“the total net assets of mutual funds grew from USD 1.6 trillion in 1992
to 5.5 trillion in 1998, equivalent to an average annual rate of growth of 22.4%” (Fernando
et al., 2003, p.2). Currently, according to the Mordor-Intelligence (2021) website, this amount
keeps increasing and reached $21.3 trillion in total net assets in 2019, making the United
States mutual fund industry remaining the largest in the world. In 2020, although equity funds
alone accounted for 55.3% of the US mutual fund net assets, bond mutual funds were the
second-largest category with 22% of the net assets (Mordor-Intelligence, 2021). Despite this
importance, bond mutual funds are much less studied in the literature and more generally the
bonds market receives little attention relatively to the stocks market. Yet in at least 1995, the
bond market value was several times higher than the equity market (Elton et al., 1995).

In addition, bond pricing models have received little attention compared to equity pricing
models. Still, it seems important to learn more about these models in order to know more about
the performance of bond mutual funds. Indeed, mutual fund performance is still a frequent
research topic but almost always related to the equity or hybrid mutual funds (eg. Barras et al.,
2010, 2021; Sharpe, 1966).

As a result, this research aims to provide a different approach to analyze the performance of
mutual funds such as those used in many previous studies and moreover to focus exclusively
on bond mutual funds that are still important financial vehicles in the United States. To this
end, we will follow the performance analysis of Barras et al. (2021) but on bond mutual funds.
A relevant question in the literature is the presence or absence of positive excess return in the
mutual fund industry and whether we eventually find positive excess return, then comes the
question of presence and prevalence of luck for these performing funds (Barras et al., 2010).
They conclude that a statistically indistinguishable from 0 number of funds were actually skilled
(net of expenses). The difference in this approach is that we will break down the gross excess
return, α, 1 into the skill and scale components of the fund to determine if the zero-alpha funds
could not actually be skilled but too big to have a positive α. In other words, the difference in
this work will be that we will not directly associate the fund’s skill to its excess return but rather
analyze this excess return in more depth to determine if the bond mutual funds’ managers are
skilled and if they create value. Barras et al. (2021) found that most equity mutual funds are
actually skilled and can extract value from the market. Our results are consistent with their
findings as we find that a large majority of bond mutual funds are truly skilled.

We are not unaware that mutual funds are experiencing diseconomies of scale, so mutual
funds’ managers could have skill and still get an average net excess return of 0 (Berk and
Green, 2004). Following their work and Barras et al. (2021), we decided to model the fund
gross return as αi,t = ai + bi × qi,t−1 where qi,t−1 is the lagged fund’s size. The skill component
(ai) is measured as the gross alpha on the first dollar invested in the fund. Finally, the bi

stands for the scalability which is the fund’s sensitivity to diseconomies of scale. With this
first part of the research, we can determine how many bond mutual funds, between 2004 and
2020, are actually skilled (ai > 0). A particular advantage of this measuring is that we could
allow ai and bi to be fund specific which reflects reality. To be able to determine the fund gross

1That is the excess return before that any expense is withdrawn.
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return, we needed to construct a suitable asset pricing model for bond portfolios. Following
Bai et al. (2019), we decided to take their newly introduced bond related risk factors that
have been proven to be more efficient than the previous common risk factors in explaining the
bond returns over the risk-free rate. However, unlike their papers, we do the study on all the
available bonds on the market as we include the investments of bond mutual funds and not
only corporate bonds. Consequently, we decided to add 4 more factors from Fama, French and
Carhart (1997) in our asset pricing model as it was the best fit among the models we tested.

Then, based on this first part of the research, we analyze the value added of these funds.
Still following Barras et al. (2021), we measure the value added as vai = E[αi × qi,t−1] =
E[(ai + bi × qi,t−1) × qi,t−1]. This measure of value added is quite simple because it has been
defined as the product of the fund gross alpha and its size. This can be compared with the
value added of a company calculated as the markup price of its products (fund gross excess
return) and the sold quantities (fund size). The value added analysis developed by Barras et al.
(2021) enables to have a cross-sectional distribution of the funds’ value added. Our results
showed that just like the equity mutual funds, the bond mutual funds can extract value from
the market. Over their entire life from 2004 to 2020, these funds created about $382K2 of value
and the range of value added is quite large as the standard deviation is almost 3 times the
mean.

In addition, as the lagged fund’s size varies over time depending on which period in their
lifetime we are and that the previous value added measure takes only into account the entire
period value added, we also decided to study the dynamics of the value added over time. To
this end, we create subperiods and analyze in particular the last subperiod value added, vai(5).

Finally, a remarkable advantage of their method is that we could estimate the cross-sectional
distributions of these different measures (ai, bi, vai and vai(s)) thanks to a nonparametric
approach enabling to estimate the distributions more precisely than would have the parametric
approach if the imposed density structure of the latter was incorrect. The motivations for
following this procedure will be explained later.

2In terms of the base year that is 2000.

7



2 Literature Review
Many studies have already been performed on mutual fund performance and the results are

often similar in the sense that mutual funds do not outperform the passive benchmark (Gruber,
1996; FRENCH, 2008; Fama and French, 2010). Although the measures of performance may
differ, most results point in this way saying that the alpha is often negative or equal to 0.
Sharpe (1966) studied performance of mutual funds with a measure of return and risk called
the reward-to-variability ratio. They suggested that the lack of persistence in mutual funds
performance could be partially due to the difference in management skill which goes in the sense
of this thesis in the idea that we want the skill coefficient to be fund-specific as difference in
management skill can occur across funds. However, they still concluded that actively managed
mutual funds do not outperform the passively managed portfolios. Unfortunately, bond mutual
funds do not seem to be exception to the rule although less in-depth studies have been conducted
on this industry. Indeed, Elton et al. (1995) associated the performance of bond funds with
their alpha (gross and net) and they found that the gross alpha (before expenses) was very
small, so most of the net alphas of the funds are negative. As a result, they concluded that
they found no evidence that managers were performing superior returns on the portfolio they
manage. Thus, the skill of the managers is a frequent question in the literature since the general
rule for mutual funds is well that they do not outperform the passive portfolios.

In that sense, Berk and Green (2004) wrote that there exists uncertainty that managers
add value through their activities because performance is sometimes seen as luck. This latter
statement would make no economic sense because then we would have no reason to reward it
(fund managers offer really expensive services). In conclusion, Berk and Green (2004) affirmed
that managers have differential skills to create abnormal return (alpha) but that this ability is
undermined by scale. This statement goes in the sense of our thesis approach but has not been
studied in the same way which makes our thesis research relevant.

However, there also exist some theories that do not go in the sense of our research. Indeed,
ones still maintain that most active funds that can get gross α (before expenses) positive, have
just been lucky (Fama and French, 2010; Barras et al., 2010). This supposes that managers’
skills do not have anything to do with this positive excess return relative to common bench-
marks. This supposition is driven by the performance measure that is often used (α) and
from which we usually draw conclusions regarding the managerial skills whereas other mea-
sures could be better. Fama and French (2010) investigated the equilibrium accounting in the
context of mutual fund performance, which supports that active investing must be a zero sum
game3. The latter statement implies that if some active funds have true positive gross α, then
other active funds must have negative gross α. This theory does not imply that every single
fund exhibit an α equal to 0 but that some funds may actually exhibit high positive α due to
the superior managers’ skills on condition that other funds exhibit negative α possibly due to
inferior managerial skills. According to Fama and French (2010), a lot of extreme events have
happened by chance and not imperatively because managers are skilled. Indeed, their results
on long-term performance showed that true net α (returns to investors) is negative for most
of active funds. In other words, we can say that most of managers cannot beat the market by
more than their cost which imply that the net return to investors is negative (after expenses
and fees). On the other hand, their research examined a portfolio of active funds and studied
the average α which does not imperatively mean either that any manager is skilled and that
no value can be extracted from the market. Indeed, as it will be more explained in Section 3.1,

3In a game with 2 players, if one gains 10, the other loses 10. So the sum of all the gains subtracted by the
sum of all the losses is always 0.
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we decided to work on the gross returns as the returns to investors (net α) is not always the
best choice to assess the real performance of mutual funds.

Regarding the article of Barras et al. (2010), they used an approach more similar to ours
as they studied the performance of each fund separately and not via the mean of a portfolio
of all funds. Indeed, they used a multiple-testing procedure and have built a measure (False
Discovery Rate (FDR)) to identify the percentage of lucky funds among the funds that exhibit
significant α different from 0. As our method is constructed on the same will to identify the
performance at the fund-level, their findings are pretty relevant for us if we want to go further
with respect to the analysis of the αi,t by multiple-testing. Moreover, their results indicate that
76.6% of the fund managers have abilities even after accounting for the FDR but as soon as
the expenses are taken into account the net α is still driven to 0. Although the net returns to
investors is understandably often used as a measure for performance, it is not entirely dependent
on managerial skills (Berk and van Binsbergen, 2015). So it can lead biased results if we only
use this measure to identify the managers’ abilities.

This is one of the reasons why this research thesis is relevant and interesting as we assess
performance with another measure as many previous studies even though our measure is linked
to the precedents (often gross and/or net α). As introduced earlier, our performance measure
is the value added, vai, that the funds create in the market which is different from numerous
previous studies. Then, this work is also relevant for its intent to really determine if mutual
fund managers are skilled (analyze of the skill coefficient, ai) as it is also a frequent question in
the literature. Finally, another major reason for showing interest in this research is that it is
applied on bond mutual funds and not on equity funds which are the main industry studied in
the literature whereas bond mutual funds also exhibit impressive records as introduced earlier.

9



3 Data

3.1 Bond Funds data
For this research, we needed the gross returns of US mutual funds that invest exclusively

in bonds. We have taken the gross returns (return before any fees) as we want to correctly
measure managerial skill. The choice of the gross excess returns instead of net excess returns
is therefore conscious. Although the gross excess return is not yet a value measure, starting
from it to compute our skill coefficient, ai, is the best we can do to have a correct measure.
Indeed, the net excess return is driven to 0 by the investor competition, so we could not take
this as a managerial skill measure as it is not determined by the managers’ skill (Berk and van
Binsbergen, 2015). As introduced, our managerial skill measure, ai, is the value extracted from
the market on the first dollar invested in the fund, so it is our measure of value for the skill of
managers.

One of the challenging parts in this research was to obtain the gross returns at the fund
level. Indeed, Morningstar gives the monthly gross returns at the share class level for the entire
population of bond mutual funds. Thereby, we took these data from July, 2004 to December,
2020 from the Morningstar database (open-end funds category). We obtained information on
17 098 funds’ share classes, which corresponds to 5060 funds (retrieved by the Identification
Number (ID) of the fund).

Each mutual fund offers different products, referred as share classes, based on the investment
horizons of the investors. The most popular are the share classes A, B and C (Thune, 2021).

• A is the most attractive for long term investors with high initial investment as it has
front-end charges but lower expense ratios if you let your money in the fund. Moreover,
investors can benefit from "breakpoints discounts" as they invest a certain amount of
money.

• B is attractive for investors with middle-term to long-term investment horizons but with
lower capital amounts. This share class charges a contingent deferred sales charge which
decreases as the holding period increases but the charges are the same for any amount
of investment, investors cannot get reduction of the charges as they invest more money.
Additionally, it has higher expense ratios than the other share classes.

• C is made for investors who do not want to let their money in the long-run, this share class
charges yearly ’level-load’ fee (around 1%) and this fee never goes away, so this is the most
expensive share class if investors want to invest in the long-term. The main advantage of
this share class is that investors can redeem their fund’s shares in the short-term.

• The "Load Waived (LW)" category is for particular investors with particular conditions.
It is also often seen and allows investors to be exempt of fees. Some bond mutual funds
offer a LW option of their share classes (often on the share class A).

With these data, we could compute the fund level gross returns as Pollet and Wilson (2008)
did it: We took the total fund size which is equal to the sum of the share class’ net assets. Then,
we computed the fund gross returns by making the share class’ net assets weighted average of
the share class level gross returns. Thanks to this, we can determine if the actual bond mutual
funds managers (as of 2004) are skilled and can create value in the market at the fund-level
and not at the share class level.

10



The initial computed data set contained all the funds of the period but we had to apply some
selection rule in order to have enough observations to get some reliable estimators of ai, bi, vai

and vai(s). We chose to keep only those funds for which we had at least 60 monthly observations
as it is a threshold commonly used in studies. Then, we had 2258 funds during the sample
period on which we applied another selection rule discussed later in Section 4.3.1 to obtain
2257 funds in our final sample. Thereby, we are aware that a survivorship bias could arise first
from the fact that we study a sampling period as of 2004 and then from the first selection rule
imposed on the funds to be included in the final dataset. Thus, we maintain that this research
will only contain conclusions regarding current and relatively new bond mutual funds as many
funds (skilled and unskilled) could have existed before 2004 and have since disappeared. For the
potential bias arising from the first selection rule (number of observations to 60), we know from
Blake et al. (1993) that the survivorship bias in bond mutual funds is less important than for
stock funds as it is less variable so fewer bond funds dissolve or merge. Moreover, since Barras
et al. (2021) concluded that the survivorship bias coming from their selection rule (minimum
number of monthly observations to 60) was minimal and that their threshold was optimal to
mitigate both the survivorship bias and the reverse survivorship bias 4 while they studied stock
mutual funds, we have good hope that the survivorship bias introduced by our first selection
rule is minimal too.

As a measure of size, we took the aggregate share class net assets, which corresponds to
the total assets invested in the fund and that is useful in gauging the fund size as defined
by Morningstar. This definition is consistent with several studies using also the net assets as
measure of the size of the fund (Chen et al., 2004; Pollet and Wilson, 2008). We decided to run
a linear interpolation to compute the potential missing values of both the share class’ net assets
and the fund size from aggregate share class as this approach was also used by Barras et al.
(2021). Once we had the share class’ net assets and the fund size, we were able to calculate
the proportion of funds coming from one share class or another. So we had all we needed to
compute the funds gross returns as previously explained.

Finally, as our research covers several years and as we have measures in $, we had to take
into account the inflation because $1 in 2004 is not equal to $1 in 2020. We have therefore
chosen a reference year, 2000 as it is the same as Barras et al. (2021), so we will be able to
compare the value added measures. Thereby, we retrieved the yearly cumulative inflation rate
with 2000 as base year from the website US Inflation Calculator (2022) and we adjust the size
values of each year by the corresponding inflation rate. For example, the cumulative inflation
rate between 2000 and 2016 is equal to 39.4%, so $1 in 2000 is worth $1.39 in 2016 (1 × 1.394).
Thus, to get all the values in $ back in 2000 (base year) we took the $1 in 2016 divided by
1.394 to get the real worth of this Dollar in 2000 ($0.72).

3.1.1 Descriptive Statistics

From the graph below (Figure 1), you can observe the distribution of the funds returns
averages. It shows that on average, most US bond funds exhibit positive returns but below 1%.
Moreover, the average of the standard deviations of the funds is equal to 1.6823% which is not
very dispersed. You can also find the standard deviation distribution below (Figure 2) and you
can indeed observe that the large majority of the funds exhibit a standard deviation between 0
and 2%. Knowing that this measures the average difference between the various returns of one
fund and its average return, we can say that globally the returns of the funds do not extremely
vary.

4Bias that arises if actually skilled funds disapppear after unexpectedly low returns (Barras et al., 2021).
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Then, still based on the returns averages distribution (Figure 1), we can more or less think of
a normal distribution. As normality is a common feature of distribution which is often checked
when speaking about returns and as a lot of tests and results rely on normality assumption,
we decided to run a Lilliefors test on the returns of each fund. We chose this test because we
did not need to estimate the parameters of the null distribution in contrast to the Kolmogorov-
Smirnov test with which we must estimate them beforehand. The results showed that out of
the 2257 funds in our population, we rejected the null for 1741 funds which represent 77.14%.
That means that most funds do not have normally distributed returns at the 5% level.

Figure 1: Histogram of the averages of bond
funds gross returns

Figure 2: Histogram of the funds standard de-
viations

3.2 Risk factors data
To complete this research, we also needed bond related risk factors in order to extract the

gross excess returns, α. Although their papers only focus on corporate bonds, we decided to
use the 3 bond common risk factors introduced by Bai et al. (2019):

• Downside risk: measured with the 5% value at risk (VaR), so this is the potential
decline in value of an asset over a certain period and given a certain probability. This
risk factor accounts for the extraordinary events that could occur on the market as stock
market crashes or bond market collapses. More and more attention is given to the risk
management aptitude of financial and non-financial firms and simultaneously methods
were developed to calculate the risk these firms face. The VaR is a primary tool to
calculate this risk, so it seemed natural for us to use it. This factor is calculated by
taking the value weighted average return difference between the highest VaR-portfolio
and the lowest-VaR portfolio across the rating portfolios (Bai et al., 2019).

• Credit quality: measured via the credit ratings of the corporate bonds since these
ratings capture information on bond default probability and the loss severity. These
ratings furnished by rating agencies take into account information regarding both the
bond issuer and the bonds themselves, what makes them good proxies to evaluate the
credit quality of the bonds. This factor captures thus the difference of return you can get
by choosing a lower rated bond rather than a better one as it is the value-weighted average
return difference between the lowest rating portfolio and the highest rating-portfolio across
the VaR-portfolios (Bai et al., 2019).
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• Bond illiquidity: measured as −Cov(δpitd, δpitd+1) where δpitd = pitd − pitd−1 is the log
price change for bond i on day d of month t. This factor must extract the transitory
component from bond price. It is calculated by taking the value-weighted average return
difference between the highest-illiquidity and the lowest-illiquidity portfolios across the
rating portfolios (Bao et al., 2011, cited by Bai et al. (2019)).

As you might have understood it, Bai et al. (2019) constructed their risk factors in a similar
vein as Fama and French (1993), constructing bivariate portfolios by independently sorting
their corporate bonds into quintiles based on the measures mentioned above. Their principal
sorting variable was the credit quality as it is one of the most followed risk measure. Then,
still following Bai et al. (2019), we also decided to add the excess bond market return as a risk
factor. We took all these factors from Bali (2019). We were confident enough to choose the
model of Bai et al. (2019) as our main model because according to their results, their newly
proposed risk factors outperformed all other models considered in the literature in explaining
the returns of the corporate bond industry. Indeed, the most effective bond pricing model in
their research was the one built with these 4 risk factors mentioned above.

Although we decided to keep them as a potential model, we still wanted to try to complete
this model by adding some other known risk factors because our dataset is made of bond mutual
funds that do not necessarily invest exclusively in corporate bonds. Consequently, we also took
the excess stock market return, the size factor (SMB), the book-to-market factor (HML) and the
momentum factor (MOM) from the data library on the Kenneth R. French’s website (French,
1993). Finally, we computed the default spread factor (DEF) and the term spread factor
(TERM) following Bali et al. (2014) as the DEF factor is measured as the difference between
yields on BAA-rated and AAA-rated corporate bonds and the TERM factor is measured as the
difference between yields on ten-year and three-month Treasury securities. These yields data
come from the St. Louis FRED website (Federal Reserve Bank of St. Louis, 1991).
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4 Developments

4.1 Bond-oriented asset pricing model
The first step in our research was to find an adequate bond-oriented asset pricing model in

order to perform a linear regression and be able to express the bond mutual fund’s excess gross
return relative to the risk-free rate5 as a function of the fund’s skill (ai), the fund’s monthly
lagged size (qi,t−1) and the chosen risk factors (ft) (Equation 4.1).

Yi,t = ai + bi × qi,t−1 + βi × ft + ϵi,t (4.1)
where Yi,t is the fund’s gross return (before fees) over the risk-free rate, ft is a column vector

(Kf × 1) for the common risk factors (RF) relative to excess returns and ϵi,t is the error term.

We had to find the factors, ft, that we were going to use. Based on the results of Bai et al.
(2019), we decided to start with a model of 4 common risk factors that they studied on corporate
bonds and that we have introduced in the section 3.2. Indeed, according to their studies, the
bond market, although the latter and the stock market are integrated, also has its own unique
features such as the credit risk, due to the need for bond issuers to pay coupons; a particular
sensitivity to downside risk as the upside payoffs on a bond are capped, so bondholders are
more sensitive to downside risk than stockholders who can better benefit from great news in
firm fundamentals; and a much less liquid market than the stock one. For these different
characteristics, we decided to base ourselves on their asset pricing model.

However, in our research, we did not include only corporate bonds but all bonds in which
mutual funds could have invested. This suggests to us that their asset pricing model could
perhaps be completed by some additional factors as it concerns all the bond mutual fund
investments. Consequently, we constructed 3 other linear regression models:

• Model 2: Composed of the 4 risk factors previously introduced along with the excess stock
market return, the size (SMB), the book-to-market (HML) and the momentum factors
(MOM). This model requires thus to estimate 9 coefficients.

• Model 3: Composed of the 4 risk factors previously introduced along with the default
spread (DEF) and the term spread (TERM).

• Model 4: Composed of all the factors mentioned.

At this point, we had thus 4 different models for the linear regression below (Equation 4.2)
from which we quickly want to compare the performance between each other at explaining the
bond mutual funds returns before going on with our initial goal. In each model, the number of
columns (Kf ) for the vector ft varies such that it is in order (from Model 1 to Model 4) equal
to 4, 8, 6 and 10.

Yi,t = αi + βi × ft + ϵi,t (4.2)
5proxied by the 1-month Treasury Bill return from Ibbotson and Associates, Inc.
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In order to select the best model among those introduced, we decided to look at the average
adjusted R2, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
since they allow to compare all the models with each other (nested or not) and they assign
a penalty according to the number of parameters to be estimated. Below (Table 1) are the
average values of these measures for each model.

R2
Adj AIC BIC

Model 1 47.31% −1.0048e+ 03 −990.12
Model 2 53.64% −1.0233e+ 03 −996.83
Model 3 49.29% −1.0085e+ 03 −987.94
Model 4 55.41% −1.0265e+ 03 −994.14

Table 1: Averages Adjusted R-square and Information Criteria

The 2 best values of these measures have been colored with the corresponding models. As
you can see, the choice of the best model fit will be between model 2 and model 4 according to
the AIC/BIC analyze. Although the BIC of model 2 and 4 are very close, the results of these
criteria compete with each other. Therefore, we looked at the R2

adj which only increases by less
than 2% by adding 2 factors (model 4) which means that the variation of Yi,t that is explained
by the model increases only by 2% as we add 2 more factors in the model, so they do not bring
much extra explanation relatively to the penalty they cause.

Another useful tool to compare these 2 competing models is the empirical cumulative dis-
tribution function (ECDF) of their respective R2

adj. Below (Figures 3 and 4), you can observe
2 graphs which represent for each model (2 and 4) the percentage of funds for which the R2

adj

was higher than the measure on the x-axis (as we took the measure 1 − F (x) on the y-axis
because it was more legible). From these graphs, we know that a bit more than 34% of the
funds exhibit a R2

adj above 80% with the configuration of Model 2. To compare, with model 4,
this percentage of funds increases to 37%, so these 2 ECDF are close to each other.

Figure 3: 1-F(x) for each value of R2
adj from

Model 2
Figure 4: 1-F(x) for each value of R2

adj from
Model 4
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As a result, following parsimony6 and since the BIC is better for model 2, we decided to keep
model 2 as asset pricing model for our research. This choice comes from the will to keep a
relatively parsimonious model while still fitting to the data as well as possible.

Now that the adequate risk factors are chosen, we can analyze in more depth how interact the
bond mutual fund returns with these factors. In Appendix A.1, you can find the distributions
of the intercept (αi) and of the different coefficients for each risk factor included in the model.

The analysis of the intercept is not what will matter the most from this regression as our
main purpose is to later break down this αi for each fund into its skill and scale coefficients
because our performance measure is not exactly this abnormal return. Nevertheless, it is still
interesting to look a bit at its distribution to notice that the αi are concentrated around 0
with positive and negative values although the majority of the funds seems to get an αi that
is between 0 and 0.002. Moreover, it seems that some funds are experiencing some very high
abnormal returns compared to the average because the right tail goes far (positively skewed).

Regarding the analysis of the βi, their distributions will show how our population of bond
mutual funds interacts with the different risk factors in our model. Indeed, the βi are the
premia per unit of determinable risk (risks that are represented by the different risk factors)
from which the mutual funds can benefit (or not) according to their investment. In other words,
we also say that the βi are the sensitivities of the fund i with respect to each variable. For
example, the distribution of the βi relative to the Bond Market factor (Appendix 12) shows
that most of the coefficients are concentrated between 0 and 2.5 and that the distribution is
positively skewed. This means that a large majority of the funds moves with the bond market,
i.e. when the bond market is doing well, most bond mutual funds are doing well too as their
βi relative to this factor are mostly positive and even greater than 1.

We can observe other factors to which our bond funds population is on average positively
sensitive (Table 2) like the Credit RF, Liquidity RF and Stock Market. From this, we know
that most funds in our population invest in bonds from lower-rated companies and that can be
quite illiquid as on average the βi relative to these corresponding RF are positive. This means
that on average our population benefits from the premia related to these determinable risks
because they invest accordingly to them. On average, the Stock market βi are also positive but
the median is slightly negative which means that there is probably a little majority of funds
that are negatively sensitive to this variable and the other part that is positively impacted. So
we can conclude that the sensitivity to this RF in our population is rather mitigated and that
still an important amount of bond mutual funds seem to move with the stock market (i.e. this
could be explained by the presence of corporate bonds in their portfolio).

6We preferred a good model with less predictors to a slightly better model with more predictors. Indeed, we
preferred to have 8 variables instead of 10.
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Mean Median
Intercept 9.54e− 04 9.31e− 04
Bond Market Coefficient 0.57 0.52
Downside RF Coefficient −0.045 −0.021
Credit RF Coefficient 0.086 0.015
Liquidity RF Coefficient 0.0025 4.86e− 04
Stock Market Coefficient 0.022 −0.009
SMB Coefficient −0.0082 −0.0134
HML Coefficient −0.012 −0.022
MOM Coefficient −0.019 −0.014

Table 2: Mean and Median of the Intercept and the different RF coefficients

On the other hand, our funds population is on average negatively sensitive to the Downside
RF, SMB, HML and MOM which means that most funds do not invest accordingly to these
risk and thus do not benefit from the corresponding premia. For example, from the results
relative to the SMB factor, we could assume that on average the bond mutual funds invest in
bonds issued by big companies. Moreover, concerning the downside risk, we can assume that
on average our bond funds population is not exposed to this risk (as the average βi is negative),
so they invest more in bonds from instituions/companies with low VaR.

To conclude, if you look at the different distributions in Appendix A.1, you can observe
that the whole distributions are concentrated around 0, meaning that although the average
is sometimes negative (positive), some funds may (not) still benefit from premia for some RF
while the average of funds does not (does). Furthermore, we can also observe that most of the
distributions exhibit one tail that goes far (right or left) and thus are not very symmetrical
except the distribution of the βi relative to the momentum factor that is more symmetric.
The asymmetry in the other distributions reflects that some funds appear to exhibit extreme
coefficient values either positive or negative if they invest (maybe exclusively) in bonds that
are risky with relative to the corresponding RF or not at all.

4.2 Skill, Scale and Value added measures
As Barras et al. (2021) followed Berk and Green (2004) to construct their linear model, we

did the same. Indeed, they assumed that the costs incurred by actively managing is a convex
function that depends on the size such that it can be expressed as TCi,t = bi × q2

i,t−1, then, we
assumed that the total revenue of the fund over the benchmark was TRi,t = ai × qi,t−1. As a
result, if we take the difference TRi,t − TCi,t and after divide by qi,t−1, we have the gross alpha
expressed as αi,t = ai − bi × qi,t−1 such that it depends on the lagged fund size. Thereby, the
skill coefficient ai is measured as the performance of the fund when qi,t−1 = 0 which "captures
the profitability of the fund’s investment ideas" (Barras et al., 2021, p.9). In addition, the scale
coefficient bi reflects the fund’s sensitivity to diseconomies of scale, so that is the fund’s gross
alpha decrease as the lagged size increases by one.

As it can be noted, the skill and scale coefficients are fund specific, so this approach does not
use a panel specification which includes that all the funds should have the same a and b but
treats them as random realizations from their cross-sectional distributions ϕ(a) and ϕ(b). This
approach is consistent with the economic perspective that the diseconomies of scale should not
be the same across all funds.
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From this point, we could estimate the value added of the fund that is defined as the "the
average product of the fund gross alpha and size" (Barras et al., 2021, p.10).

vai = E[αi,t × qi,t−1] = ai × E[qi,t−1] − bi × E[q2
i,t−1] = ai × p lim

T →∞
q̄i − bi × p lim

T →∞
q̄i,2 (4.3)

where q̄i = 1
T

∑T
t=1 qi,t−1 and q̄i,2 = 1

T

∑T
t=1 q

2
i,t−1 denote the time-series averages of the fund

size and its squared value and p lim denotes the limit in probability.7 The convergence to an
equilibrium value of q̄i when the costs function is convex is rather logical as this supposes that
the fund on the long run tries to minimize its cost by reaching and remaining at the critical
value q̄i that minimizes the costs function.

However, this measure (4.3) takes into account the value added that the fund creates through-
out its entire lifetime over the studied period. As we know that the fund’s size varies over time,
this measure could not reflect precisely the potential fluctuations in the fund’s value added.
As a result, we split each fund’s return history into S subperiods in order to examine the
different value added measures on each subperiod which depend on the average size over the
corresponding subperiod. Thereby, the value added of the subperiod s, vai(s), is computed like
this:

vai(s) = ai × q̄i(s) − bi × q̄i,2(s) (4.4)
where q̄i(s) and q̄i,2(s) are the realized averages (respectively) of the fund size and its squared

value over the subperiod s (s = (1, ..., S)). With this measure, we will be able to analyze deeper
the dynamics of the size over our relatively recent studied period.

This approach to calculate the value added is also fund-specific as it is derived from ai and
bi. Moreover, vai and vai(s) are also treated as random realizations from their cross-sectional
distributions ϕ(va) and ϕ(va(s)) as they inherit the randomness of the 2 coefficients.

Before carrying on, some remarks need to be made about these different specifications. First,
concerning the baseline specification, αi,t = ai − bi × qi,t−1, 2 comments must be made.

First of all, the estimation of ai and bi does not require that we specify the determinants
of these coefficients across funds. In this way, we do not need to determine if a fund A has
extremely talented managers compared to a fund B if the skill coefficients are different. In the
same way for the scale coefficient, it could be different because fund A trades more efficiently
compared to fund B. Instead, we can simply interpret ai and bi as functions of the characteristics
of the funds like the managers and the fund’s strategy (liquidity and turnover).

Second, this specification of the gross α could omit some time-varying effects that could
lead the coefficients values. Indeed, the skill may also depend on time as the levels of industry
competition vary just like the scale coefficient (bi) may vary with time if the relationship between
the gross α and the lagged size was actually non-linear. These problems may lead bias in the
coefficients estimations and end with false conclusions regarding the presence of skilled funds in
the population or the magnitude of the diseconomies of scale the funds face. To examine this
issue, Barras et al. (2021) made an extensive analysis on the coefficients computed on short-
time windows to evaluate the impact of time on them. As a quick conclusion to their analysis,
they found that the empirical results are not driven by the omission of important variables in

7The limit in probability referred to the convergence in probability to a fund size of q̄i, as T is large.
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their baseline specification. Since we have still done our analysis on mutual funds and that this
specification is not directly linked to the kind of assets managed, we can hope that the same
conclusions can be drawn for our case without exaggeration.

4.3 Method
Our goal is thus to estimate the density of the measure mi ∈ {ai, bi, vai, vai(s)} now we

have chosen an asset pricing model. To achieve this work, we have to follow 3 steps:

• Estimate the different coefficients

• Apply the Kernel density estimation

• Adjust the density for the potential bias

To achieve these steps, we use the non-parametric approach from Barras et al. (2021). Indeed,
this approach has several advantages that may apply in our case. First, the biggest advantage
of this approach is that we do not have either to respect some assumptions about the data
sample or to estimate the potential parameters that define the underlying distribution of the
data. Thereby, we do not need to determine or to define the actual density of the data and by
the way the number of parameters that underlie this distribution, so the great misspecification
risk we avoid by this method is considerable. Moreover, it is an important advantage in our
case where we do not have much guidance in the theory concerning the distribution of these
measures (Barras et al., 2021). As a result, the distributions of the data will be given by
the data sample itself and not guided by theoretical assumptions even though we will deduce
the asymptotic properties of each estimated quantity and rely on econometric theory to make
statistical inference.

Then, the non-parametric approach is also simple and quick to implement, once you
have chosen your non-parametric method, it provides an unified framework for estimating both
density and its different characteristics and finally, it comes with a fully developed inferential
theory.

Obviously, the non-parametric approach also has its disadvantages of being less powerful
than the parametric approach if the assumptions of the corresponding parametric method are
maintained. However, as we jointly study 4 measures, the task of correctly specifying a mul-
tivariate distribution whose marginals are potentially mixtures of distributions with different
supports is really dissuasive. In addition, Cai et al. (2018) also uses a non-parametric approach
to estimate the time-varying funds’ alphas that they interpreted as skill indicator instead of the
constant coefficient (the traditional α that is constant over time for one fund), so the method
employed seems to be the best considering the measures we want to estimate.

We will explain deeper each step of the method in the following subsections. We insist that
the whole method exposed here after is taken from Barras et al. (2021).

4.3.1 Estimation of the measures

Starting from the linear regression equation 4.1 which takes into account the decomposition
of gross α and the common risk factors adapted to bond portfolios, we will estimate ai and
bi. As a reminder, ai and bi are considered as random realizations from their cross-sectional
distributions. Once we have these estimated measures for each fund, we can infer their density.
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Although the non-parametric approach imposes few assumptions, there is still one assumption
to be made here regarding the size of the fund over the long-term. Indeed, we have to assume
that the size of the fund is asymptotically stationary. That means that as t grows large, the
size of the fund will become independent of past size values. This assumption is accepted as it
is consistent with any model that features diseconomies of scale at the fund or industry level
(Chen et al., 2004). Moreover, this implies that in the early years (t is small), the size of the
fund can change upwards as the investor’s learning process is strong. Then, the size is stabilized
around a certain mean (no more upwards trend) and with a certain fluctuation. The intuition
behind this accepted assumption has been exposed earlier when speaking about the convex
costs function.

Then, another important remark is the estimated coefficients that could be biased as the
mutual fund size qi,t can be modelled with the regression below (Equation 4.5)8:

qi,t = θqi
+ ρqi

× qi,t−1 + eqi,t (4.5)

As we know that eqi,t = ϵqi,t + βqi
× xt where xt = (1, f ′

t)′, we know that the size at time t
can be explained by a previous value of the time series (size at lag 1), the other independent
variables ft and what we called the innovation in size ϵqi,t. As a result, we can say that the
lagged size is partially endogenous in time series. This violates the exogeneity assumption of
the OLS regression model which requires that the error term is independent of the explanatory
variables. In other words, it should not be possible to explain part of the error term through the
explanatory variables. However, the driving forces of the reality cannot exactly be reproduced
by theoretical models. Therefore, the error term appears to be a mix of the randomness of
the process and a certain amount of omitted variables (MathWorks, 2022). When the omitted
variable contain one important variable, it creates endogeneity.

To understand better where this violation comes from, let use this example from our case:
Assume that the "true" model to explain our dependent variable Yi,t is

Yi,t = ai + bi × qi,t−1 + βi × ft + ψi × ϵqi,t + νi,t (4.6)
However, for some reasons, we did not include ϵqi,t in the model, so it is estimated as

previously in Equation 4.1:

Yi,t = ai + bi × qi,t−1 + βi × ft + ϵi,t (4.7)
where ϵi,t = ψi × ϵqi,t + νi,t so that the innovation in size (ϵqi,t) has been absorbed in the

bond returns innovation (ϵi,t). If the correlation between qi,t−1 and ϵqi,t is not 0 (which is the
case) and that this ϵqi,t affects the bond returns Yi,t (meaning that ψi ̸= 0), then one of our
explaining variables qi,t−1 is correlated with the error term ϵi,t and the exogeneity assumption
is violated. As a result, the coefficients suffer from the small-sample bias as it is called (as it
vanishes asymptotically) because the ϵqi,t is positively correlated with the ϵi,t.

To remove this bias, Barras et al. (2021) followed Amihud and Hurvich (2004) and Avramov
et al. (2013) and we will follow their lead too. The idea is linked to our previous example
as it is to include a proxy for the size innovation, ϵc

qi,t
, in the explanatory variables in order

to remove it from the mutual fund error term, ϵi,t. We know that the innovation in size is
positively correlated with the error term, i.e., ϵi,t = ψi × ϵqi,t + νi,t where ψi > 0. In particular,

8As t is not large, we are not talking about the asymptotic behaviour anymore.
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ϵqi,t denotes the size innovation coming from ϵqi,t = eqi,t − βqi
× xt where xt = (1, f ′

t)′ and eqi,t

is the innovation of the size regression from Equation 4.5 : qi,t = θqi
+ ρqi

× qi,t−1 + eqi,t. If we
do not adjust for this small-sample bias, the estimated coefficients, ai and bi, will be too high
compared to their actual values since the correlation is positive.

Consequently, adding the regressor, ϵqi,t, removes the small-sample bias. To do it, we will
replace the mutual fund error term, ϵi,t by ψi × ϵqi,t + νi,t to have

Yi,t = ai + bi × qi,t−1 + βi × ft + ψi × ϵqi,t + νi,t (4.8)
and we will check that the exogeneity assumption is now verified, so that E[νi|Xi] = 0

where νi = (νi,1, ..., νi,T )′ and Xi is the Ti × (Kf + 3) matrix of the available observations
xi,t = (1,−qi,t−1, f

′
t , ϵqi,t) with Kf which is the number of factors. However, as we cannot

observe the true innovation in size, ϵqi,t, we compute a proxy denoted as ϵc
qi,t

(Amihud and
Hurvich, 2004; Avramov et al., 2013). Following their four-step procedure on each fund i
individually (i = 1, ..., n), we first run the size regression to obtain the estimated coefficients,
θ̂qi

and ρ̂qi
. Second, we compute the adjusted size innovation as

ec
qi,t

= qi,t − θ̂c
qi

− ρ̂c
qi

× qi,t−1 (4.9)
where the second order coefficients corrected for the small sample bias are given by ρ̂c

qi
=

min(ρ̂qi
+ (1 + 3ρ̂qi

)/Ti + 3(1 + 3ρ̂2
qi

)/T 2
i , 0.999) and θc

qi
= (1 − ρ̂qi

)q̄i. Third, we had to regress
ec

qi,t
on the Kf factors to get ϵc

qi,t
= ec

qi,t
− β̂qi

× xt. Finally, we can insert ϵc
qi,t

in Equation 4.8
to obtain

Yi,t = ai + bi × qi,t−1 + βi × ft + ψi × ϵc
qi,t

+ νi,t (4.10)

Thereby, from this regression using least-square estimation method, we can get estimated
coefficients for ai and bi that are corrected for the small sample bias, γ̂i = {âi, b̂i, β̂i, ψ̂i}, such
that

γ̂i = Q̂−1
x,i

1
Ti

T∑
t=1

Ii,txi,tYi,t (4.11)

where Ii,t is an indicator variable equal to 1 if the gross return of the fund i at time t
is observable, Ti is the number of observations for fund i, xi,t = (1,−qi,t−1, f

′
t , ϵ

c
qi,t

)′ is the

vector of explanatory variables and Q̂x,i = 1
Ti

∑T
t=1 Ii,txi,tx

′
i,t is the estimated matrix of the

second moments of xi,t. The latter gives an overview of the linear dependence between the
explanatory variables as it is a variance-covariance matrix of the explanatory variables.

For each fund individually, these coefficients were thus estimated in relation to the period
during which the gross returns were observable. In order to have some reliable coefficients, we
decided to apply 2 selection rules as Barras et al. (2021): the first one requires the fund to have
at least 60 monthly observations as it is a recurrent threshold used in literature and the second
rule aims at dealing with some potential collinearity problems.

Indeed, collinearity is a threat to correct estimations of coefficients measures as it greatly
increases their variance, so it is important to check that any explanatory variable is not a linear
combination of another variable. In order to check that, Barras et al. (2021) constructed a
selection rule, following Gagliardini et al. (2016), based on the matrix Q̂x,i such that condi =
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√
eigmax(Q̂x,i)/eigmin(Q̂x,i) is the condition number of the matrix Q̂x,i constructed by the ratio

of the largest to smallest eigenvalues, eigmax and eigmin. This will need to be lower than the
threshold, which is equal to 15, in order for the fund to be selected as it is the threshold
advocated by Greene (2008) (as cited in Gagliardini et al., 2016)

4.3.2 Kernel Density: densities inference

In this section, we compute the density function, ϕ, thanks to the non-parametric method
which is the Kernel estimation. Thereby, the estimated density, ϕ̂, for a given point m is
computed like this:

ϕ̂(m) = 1
nh

n∑
i=1

K(m̂i −m

h
), (4.12)

where n is the number of selected funds after the application of the 2 selection rules, K is
a symmetric Kernel function and h is the vanishing bandwidth which determines how many
observations around point m are used for estimation (Barras et al., 2021).

As pointed it out by Barras et al. (2021) and in the theory of the Kernel density estimation,
the choice of the Kernel function is not crucial in the analysis, so they favored simplicity and
chose the standard Gaussian Kernel K(u) = 1√

2π
exp(−u2

2 ) and we decided to do the same.

With this method, the estimated density, ϕ̂, counts the percentage of observations which are
close to m, which corresponds to m̂i −m

h
that will be small for each estimated m̂i that is close

to the true point m. The smaller |u| is in K(u), the higher the function K will be, so the weight
of this estimation in the kind of average that we make to compute the estimated density ϕ̂ will
be higher than the one for which m̂i was far from m. The bandwidth h controls for the degree
of smoothing.

The non-parametric approach hardly ever involves being indexed by a bandwidth or tuning
parameter which controls the degree of complexity. The choice of this index is important for the
implementation as it must imply a good bias-variance trade-off (Hansen, 2009). Indeed, if h is
too small, we could overfit the data and increase too much the estimation variance. In contrast,
if h is too big, we could smooth too much the density and create bias. As Hansen (2009)
stated it, non-parametric methods must come with a data-dependent rules for determining the
bandwidth but it is a difficult task and often the bandwidth is finally selected based on a
statistical problem that is related to the length of the bandwidth.

We use the same approach as Barras et al. (2021) to determine the optimal bandwidth such
that we take h∗ that minimizes the Asymptotic Mean Integrated Squared Error (AMISE) of
ϕ̂(m). Thereby, we could control the trade-off between the bias and the variance exposed earlier.

Barras et al. (2021) formulated a proposition to examine the asymptotic properties of the
estimated density, ϕ̂ as n and T grow large. They imposed that n > T to derive these properties
in order to capture the large cross-sectional dimension of the (bonds) mutual funds population.
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Important remarks can be done and retained as content and consequences of their proposition
(Barras et al., 2021). First, the estimated density, ϕ̂(m), has different sources of bias that can
be detected and for which we can adjust the estimated density to improve it. The first source
of bias comes from the smoothing. Thereby, the first bias term adjusts for the bias coming from
the difference between the actual density ϕ(m) and the smoothed density which can be written
like this: I1 = 1

h
E[K(mi −m

h
)] − ϕ(m) where I1 is representing the smoothing bias. Then,

another bias term that can be deducted is the bias arising from the Error-In-Variable (EIV)

bias, this bias can be written as I2 = 1
h
E[K(mi + ηi,T/

√
T −m

h
)] − 1

h
E[K(mi −m

h
)] where

η̂i,T/
√
T corresponds to the estimation error of m̂i and I2 is representing the EIV bias. This

bias arises because of the noise we put in our estimation of ϕ(m) by using estimated measures
m̂i and not the true ones. Based on that, Barras et al. (2021) defined a bias term composed
of 2 components, bs1(m) and bs2(m), in order to adjust the density. Thereby, following their
approach, we can get a reliable estimated density if we have n and T that grow large. The bias
term is the sum of its components, bs(m) = bs1(m) + bs2(m) which accounts respectively for
the smoothing and EIV biases.

However, a second important remark is that in the asymptotic case, the key driver of the
bias is actually the EIV bias. Indeed, the latter depends on T the number of observations,
so whatever the number of funds in the population, it will not disappear (we imposed that
T < n). In contrast, the smoothing bias becomes negligible as we have n that is large, several
thousands funds are enough to vanish this bias (Barras et al., 2021).

Third, it is important to know that "noisier estimation measures does not translate into a
noisier estimation of the density ϕ(m)" (Barras et al., 2021, p. 21). Thus, if EIV bias gets
larger, it will not impact the variance of ϕ̂(m). As a result, Barras et al. (2021) concluded that
adjusting for the EIV bias enables to estimate ϕ(m) accurately in the asymptotic case.

Finally, a last remark regarding this proposition is that it has made it possible to obtain an
expression for the optimal bandwidth h∗.

4.3.3 Adjusting for the biases

Barras et al. (2021) formulated a second proposition that enabled to construct the closed-
forms of the 2 components of the bias and of the optimal bandwidth. To resume shortly,
they applied a Gaussian reference model such that estimated measure mi and the log of the
asymptotic variance si = log(Si) follow a bivariate normal distribution: mi ∼ N (µm, σ

2
m),

si ∼ N (µs, σ
2
s) knowing that Si is the asymptotic variance of the centered measure

√
T (m̂i−mi).

This enabled them to compute good estimation of the bias that is closed to its true value.

As a result, by following their approach and computations, we could get the total bias
(smoothing and EIV) in order to adjust the estimated density. This adjustment changes the
shape of the estimated density ϕ̂(m) in 2 ways. First, as the estimated measures, m̂i, tend
to be larger because of the estimation noise, the tails of ϕ̂(m) would be too big if we did not
adjust for the bias. Thus, the bias-adjusted density will have lower tail probabilities. Then,
this adjustment could be asymmetric as it could remove more mass from the left tail than from
the right. This is explained because the correlation between the measure mi and the log of
the asymptotic variance si, ρ = corr(mi, si) could be positive. A positive ρ is found to be an
empirical regularity for each measure mi ∈ {ai, bi, vai, vai(s)} (Barras et al., 2021). A fund
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with a positive measure mi will exhibit a higher estimation variance Si which implies that the
estimated value m̂i will be lower (left tail too thick).

Using the results of their second proposition, we computed the optimal bandwidth h∗ and
the bias-adjusted estimated density ϕ̃(m) = ϕ̂(m) − b̂s

r

1(m) − b̂s
r

2(m) where b̂sr

1 and b̂s
r

2 are
the approximations of the bias terms computed from the Gaussian reference model. With this
bias-adjusted density, we could then compute the different characteristics of the distribution
such as the moments, proportions and quantiles. The proportion of fund with a positive mi

will be given by the cdf estimate π̃+ =
∫ ∞

0 ϕ̃(u)du.

4.4 Empirical Results
4.4.1 Skill analysis

Thanks to the fund-level estimated values, âi, we could compute the bias-adjusted density
ϕ̃(a) from which we can now draw some results in order to have more insight concerning the
bond mutual funds’ skill as of 2004 until now (skill measure of the relatively new bond mutual
funds).

In the table below (Table 3), you can see the different characteristics of the skill distribution.
It reveals that the monthly average of the skill coefficient is equal to 0.15% which corresponds
to an annualized average of 1.85%. To analyze statistically this result, we ran a one-sided
t-test9 that says that we could reject the null at the 5% level meaning that the ai come from a
distribution with a mean that is significantly greater than 0 at this level. Moreover, the skill
distribution is slightly positively skewed, which means that its right tail tends to be a bit larger
than its left tail, so the probability of observing an extremely high skilled fund is higher than
the probability of observing extremely low skilled funds. Some of our shape-related parameters
are quite strongly consistent with the ones observed by Barras et al. (2021) in their research.
Indeed, our distribution is positively skewed and exhibits a relatively high kurtosis as does their
skill distribution except that our kurtosis is almost the double theirs, meaning that our skill
distribution is a bit sharper than their skill distribution. You can find the bias-adjusted skill
distribution in the Appendix 20.

Then, the most important observation we can make is that the bias-adjusted proportion of
funds that are actually skilled (ai > 0) is equal to 77.34% which is close to the rate of 76.6%
of skilled managers from the results of Barras et al. (2010) that concerned US domestic-equity
funds. Thus, the large majority of the bond mutual funds in the population is actually skilled
which means that bond funds can find profitable investment ideas. These results also resonate
with the findings of Barras et al. (2021) who found that about 87% of the equity mutual funds
were skilled during the period from 1975 to 2019. Our research is different on 2 aspects: first, it
concerns bond mutual funds and second, the targeted period is much more recent. As a result,
before asserting that US bond mutual funds are less skilled than US equity mutual funds, we
must be careful with the fact that the analyzed period is very different which makes the absolute
comparison very difficult and irrelevant. Instead, we will rather draw the common conclusion
that the majority of the US mutual funds seem actually skilled.

Finally, looking at the quantiles, we can discover that 5% of the funds in the population has
a skill coefficient of less than −0.23% per month which corresponds to −2.75% per year. In
contrast, for the highest skilled funds (5% of the population), they exhibit skill levels above

9By the Central Limit Theorem and our sample size of 2257 funds, we know we can use this test.
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0.61% (7.58%) per month (per year) which is four times more than the average. We observe
thus disparities across bond funds concerning their abilities to invest in profitable ideas.

Skill coefficient
Mean (Monthly) 0.0015
Standard deviation (Monthly) 0.0039
Skewness 1.003
Kurtosis 38.89
Proportion Positive (\%) 77.34
Proportion Negative (\%) 22.66
(Monthly) Quantile 5% −0.0023
(Monthly) Quantile 95% 0.0061

Table 3: Characteristics of the Skill distribution

4.4.2 Scale analysis

In the same way as the skill coefficient, we estimated the fund scale coefficient and then infer
its bias-adjusted density with the non-parametric approach. The objective is to have more
insights on the behaviour of the scale coefficient of our bond mutual funds population for the
relatively recent period from July 2004 to December 2020.

Below, in the Table 4, you can observe the different characteristics of the scale distribu-
tion. We can see that on average, the bond mutual funds suffer from diseconomies of scale
(bi > 0 as we multiply the lagged size by −1) since the mean is positive and on average, the
gross α decreases by 0.00051% (0.0061%) per month (per year) as the lagged size increases
by $1,000,00010. Then, we can see that we have a slightly negative skewness but a very high
positive kurtosis which means that the left tail is slightly longer than the right one but also that
the concentration is highly around the mean as the bell is very sharp, so the tails are very small
because of the high kurtosis. The distribution of the scale coefficient is thus not very dispersed.
Indeed, the kurtosis of the scale distribution from Barras et al. (2021) is much smaller implying
that our scale coefficients might be less dispersed and thus bond mutual funds might be more
homogeneous with respect to their sensitivity to diseconomies of scale. However, as Barras
et al. (2021) obtained these results based on standardized regression, the comparisons are very
difficult as this could influence the distribution’s characteristics. You can find the bias-adjusted
scale distribution in the Appendix 21.

These results differ from the ones of Barras et al. (2021) in several other aspects but as
already mentioned, the distributions characteristics are not really comparable as Barras et al.
(2021) used standardized regression to interpret the scale coefficient and we did not in order
to have the true impact of the size on the gross alpha. Moreover, since we do not compare the
predictors coefficients with each other but only the intercept (ai) and the scale coefficient (bi),
the standardization did not make sense to us. However, we can still make some comparisons as
long as the scaling is not concerned, for example, the proportions of positive and negative should
not differ too much between standardized and non-standardized coefficients. As a reminder,
this also cannot be interpreted as a fair comparison between bond mutual funds and equity
mutual funds as the periods analyzed are different, so any difference could be due either to the
different types of assets studied (bond vs equity) or to the different periods.

10$1M in terms of the base 2000 as we control the sizes for inflation.
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With this in mind, we can see that about 72% of the population experience real diseconomies
of scale (bi > 0). This turns out to be a bit less than the results of Barras et al. (2021) where
this proportion reached 82.4% but we are still in agreement with many theories on mutual
funds which affirm that the diseconomies of scale in the mutual fund industry is big. Indeed,
it appears from our research that a large majority of funds are still experiencing diseconomies
of scale but also that about 27% apparently experience economies of scale against 17.6% for
Barras et al. (2021). Barras et al. (2021) classified the left funds (that had significant b̂i < 0 (at
the 5% level)) as false discoveries as the true bi was actually equal to 0. Indeed, they explained
that the EIV bias adjustment does not enable to control perfectly for the estimation noise with
a cluster of values for b̂i around 0. In order to investigate in this direction, we choose to run
a one-tailed t-test at the 5% level to identify the significantly negative bi among the estimated
coefficients. We found that only 184 bi values were significantly negative at the 5% level which
represent only 8.15% of the 2257 estimated bi. Assuming that the Type I error is at 5% by the
level of the test, we can suppose that among these 184 negative bi, 9 are actually equal to 0.
As a result, we still observe a very low proportion of funds that seem to exhibit economies of
scale but this could be due to some estimation noise that could not be totally neutralized by
the EIV bias as Barras et al. (2021) also supposed it.

Then, we could also compare the impact of a $100M increase in size on the gross alpha,
for us this results in a decrease of 0.051% in the gross alpha per month which is equivalent
to a decrease of 0.61% per year. In contrast, this same increase, lowered the gross alpha by
0.2% per year in the research of Barras et al. (2021). As a conclusion, we can say that either
bond mutual funds are more sensitive to diseconomies of scale than equity mutual funds or
that recently (during the period 2004-2020) mutual funds are more sensitive to diseconomies
of scale than in the period from 1975 to 2019.

Finally, regarding the quantiles, we can observe that 5% of the funds suffer from levels
above 0.00699% for their scale coefficients. That implies that some funds have large sensitivity
to diseconomies of scale compared to the mean (around 14 times the average) although the
dispersion in the distribution is rather limited. Indeed, the tails are small but go far. This
confirms the choice of constructing a fund specific scale coefficient instead of imposing a constant
b across all funds.

Scale coefficient
Mean 5.10e− 06
Standard deviation 3.94e− 05
Skewness −1.60
Kurtosis 67.20
Proportion Positive (%) 72.55
Proportion Negative (%) 27.45
Quantile 5% −2.20e− 05
Quantile 95% 6.99e− 05

Table 4: Characteristics of the Scale distribution

4.4.3 Correlation between skill and scale coefficients

Following some insight from Barras et al. (2021), we decided to look at the correlation
coefficient between the estimated skill and scale coefficients. As might be expected, they are
positively correlated as the pairwise correlation between âi and b̂i is equal to 0.5732. This
means that the bond mutual funds that exhibit the best skill (high ai) also exhibit a quite high
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level of diseconomies of scale. In other words, the best skilled funds will have difficulties to grow
in size as they want to maintain a positive and high gross α. As explained and illustrated by
Barras et al. (2021), this correlation is partially linked to the fund’s investment style. Indeed,
as ai and bi depend both on the characteristics of the fund strategy, it is quite logical that they
are correlated.

What we can learn from this correlation is that the most profitable funds may not be the ones
which exhibit the highest skill as their sensitivity to diseconomies of scale would also be very
high and thus would rapidly decrease the gross α. Alternatively, the most profitable funds may
actually be the ones which exhibit a more balanced pair of coefficients as it will be discussed
in the next section which introduces the value added measure.

4.4.4 Value added analysis

Finally, we can get the cross-sectional distribution of the value added computed based on
ai and bi. This distribution concerns the value added that the bond mutual funds create
during their entire lifetime from July 2004 to December 2020. Again, we put the different
characteristics of the distribution ϕ̄(va) in a table below (Table 5).

Value added
Mean (in Millions $) 0.3818
Standard deviation (in Millions $) 1.05
Skewness 1.93
Kurtosis 24.20
Proportion Positive (\%) 82.69
Proportion Negative (\%) 17.31
(In Millions $) Quantile 5% −0.2425
(In Millions $) Quantile 95% 2.33

Table 5: Characteristics of the Value added distribution. The value added measures are
expressed in $M in terms of the base year 2000.

As you can see, bond mutual funds create value in the marketplace as the average value
created over the studied period is equal to almost $382K which is equivalent to a value added
of about $24.6K per year from all funds in the population. Comparing to the results of Barras
et al. (2021), bond mutual funds do not create much value in the market because equity mutual
funds create on average $1.9M of value per year. Then, we can see that almost 83% of the bond
mutual funds exhibit a positive value added, so a huge majority of the bond mutual funds from
2004 to 2020 create value. This is more than the findings of Barras et al. (2021) who found that
60% of the equity mutual funds had a positive value added over their studied period. However,
as already explained, we cannot use these results to compare bond and equity mutual funds as
the analyzed periods are different and also play a role in the results. Indeed, the value added
depends on the average of the lagged size and the average of the squared lagged size over the
period studied and since the lagged size varies over time, the periods analyzed can influence
the results. Therefore, as our studied period is more recent, this higher proportion of funds
that create value could be due to the learning process from which investors benefit during the
period 1975-2004 and not necessarily because more bond mutual funds can extract value from
the market. Precisely, as explained by Barras et al. (2021), the value added in the early stages
of the mutual funds’ life tends to be smaller as it takes time to investors to learn about skill and
scalability and allocate the right amount of capital to each fund. Thereby, one hypothesis to
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explain this higher proportion could be that in our study we benefit from the investors’ learning
process without including the consequences of this period of process in our computations (or
at least less consequences for funds that were created well before 2004), what could inflate the
results compared to the ones of Barras et al. (2021).

Furthermore, we cannot miss the big gap that exists between the 5% and the 95% quantiles.
Indeed, we still learn from Table 5 that 5% of the funds in the population destroy more than
$242K of value unlike the most valuable funds (5%) which create more than $2M of value.

Then, from the plot below (Figure 5), you can see the effect the EIV bias adjustment had
had on the value added density. As you can notice, the proportion of lower values would have
been greater without the adjustment as the left tail of the unadjusted density is thicker, so
the proportion of funds that destroy value would have wrongly been higher. Moreover, this
adjustment also makes it possible to correctly detect the funds that create more value than the
average as it would have been largely underestimated without it.

Figure 5: Bias-adjusted and unadjusted densities of the Value added. The value added
measures are given in $M in terms of the base year 2000.

Although there is a small proportion of funds that destroy value, we can still questioning
what makes that these funds cannot create value. From our computations of the value added
va = ai × E[qi,t−1] − bi × E[q2

i,t−1], we know that the funds with a negative value added are
either unskilled (ai < 0) or are too big (0 < ai but ai ×E[qi,t−1] < bi ×E[q2

i,t−1]). By combining
results from our skill analysis and value added, we discover that the funds population seems to
exhibit more unskilled funds (22.66%) than there exist non-performing funds (17.31%). This
supposes that some unskilled funds could still create value and go in the sense of some existing
economies of scale. However, this may concern a very tiny proportion of funds that could arise
because of some estimation noise that the EIV bias could reduce but not make it equal to 0, as
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already mentioned earlier (Barras et al., 2021). In view of the inconsistency of this result with
the model, we will investigate deeper the fund size impact in the following sections in order to
see if other results affirm or deny the hypothesis that funds could create value if they decreased
their size. Indeed, several reasons could explain this abnormal result and we will confirm it to
be an anomaly later.

4.4.5 Last Subperiod Value Added

As already mentioned, the previous section concerns the value added that the funds create
over their entire lifetime from 2004 to 2020. However, as the lagged fund’s size varies over
time, it can be influenced by the start-up period of the fund and thus does not reflect well the
value added of the funds when they get older. As a result, we decided to create 5 subperiods
(S = 5) by splitting the total number of observations of each fund. Then, in order to have
more insights concerning the dynamics of the lagged fund’s size during our period of research,
we computed ∆qi,s = q̄i,s − q̄i where q̄i,s is the average over subperiod s and q̄i is the average
over the full sample. We plot the median value of ∆qi,s for each subperiod and as you can see
in Figure 6 funds’ sizes varied a lot during our period of analysis. As the median of the ∆qi,s

is negative, we know that the funds’ sizes during this subperiod s are lower than their average.
For the first subperiod (s = 1), we can see that the funds’ sizes during this subperiod are well
under their averages, the median gap is equal to $ − 29M . On the other hand, we can see that
for subperiods 3 and 4, the funds’ sizes are above their averages and were particularly close to
their average in subperiod 5. A maximum is reached in subperiod 4 before falling back towards
the average. This graph supposes that bond mutual funds become bigger and bigger over their
lifetime before reducing their sizes as they get older.

Figure 6: Dynamics of fund size over time from subperiod 1 to 5. The sizes are given
in $M in terms os te base year 2000.

Motivated by the results of Barras et al. (2021), we decided to analyze the last subperiod
(s = 5) in order to have more insights over the value added of the funds when they get older.
To that end, we have computed the last subperiod value added density, ϕ(va(5)) with the same
non-parametric approach as previously. In the table below (Table 6), you can observe the
characteristics of this distribution as for the precedents. Although the proportions of positive
and negative value added did not change a lot, the average value added extracted from the
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market by all funds over the last subperiod is equal to $291K which is more or less equivalent
to a value of $94K per year (vs $24.6K per year for the entire period mean).

Subperiod Value Added
Mean (in Millions \$) 0.2916
Standard deviation 1.06
Skewness 1.07
Kurtosis 45.03
Proportion Positive (\%) 85.40
Proportion Negative (\%) 14.60
(In Millions \$) Quantile 5% −0.1199
(In Millions \$) Quantile 95% 2.18

Table 6: Characteristics of the last Subperiod Value Added distribution. The value
added measure are given in $M in terms of the base year 2000.

From these results, we can draw several conclusions: first unlike Barras et al. (2021), the
proportion of funds in the population that create value over the entire analyzed period from
2004 to 2020 does not differ much from the proportion of funds that create value during their
last subperiod (respectively 83% vs 85%). However, since the yearly average amount is largely
higher, we can assume that these funds which create value, create on average more value during
their last subperiod. So, the funds are getting more performing when getting older. This lets
suppose that a learning process has still to be done but the funds might have benefited from the
investors learning process about which Barras et al. (2021) talk. Consequently, the proportions
of performing funds during the entire period or the last subperiod are the same, so we observe
almost no fund that had negative value added during the entire period and then positive value
added during the last subperiod, i.e. after reducing their sizes. This is another lead towards the
previously drawn hypothesis that our higher proportion of funds that create value compared to
the proportion obtained by Barras et al. (2021) is more due to the different analyzed periods
than to the difference of performance between the 2 categories of funds. Another lead could
also be that the increase in size that the funds have experienced was sufficient to decrease
the average value added over the entire period but not enough to make it become negative
(this would be more linked to the kind of assets managed by the funds as the bond funds sizes
increase is more moderate). However, as mentioned before, our results show superior sensitivity
to diseconomies of scale, so this hypothesis might be a bit less likely.

Then, a second conclusion that we can draw from this Table 6, is that this average value added
created by the funds over their last subperiod is greater than the average value added created by
the funds over the entire period (relatively to one year). This means that, while no additional
funds create value, the funds create even more value added when they are getting older, we
might therefore think that in the relatively recent period from July 2004 to December 2020,
the funds benefit from the investors’ learning process and the majority can create value but by
getting older they can manage their size even better in order to create even more value added.
To confirm this intuition, we can look at the shape-related characteristics of the distribution
and see that the kurtosis is not far from twice the kurtosis of the entire period value added
distribution. This means that this distribution is sharper and that there is more concentration
around the average. You can observe the difference between these 2 distributions with Figure
7 below, you can see that the last subperiod value added distribution has a concentration
at the mean much more important and also that the proportion of funds that create value
added a bit larger than the average is higher. Furthermore, the tails of the last subperiod
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added distribution both go further than the tails of the entire period value added distribution.
However the positive tail is even longer, meaning that some extreme values could positively
influence the average.

Figure 7: Comparison between the last subperiod value added and the entire period
value added distributions. The value added measures are given in $M in terms of the base
year 2000.

4.4.6 Best combination of the coefficients

In this section, we decided to analyze deeper the value creation process in order to determine
which funds can create the most value. Indeed, as the skill and scale coefficients are positively
correlated, we know that the most skilled funds could not be the funds that create the most
value as their good investments ideas are expected to be very difficult to scale up due to this
correlation (high ai means that bi is high too). To examine this issue, we decided to compute
the 10 deciles of each coefficient and then stretch each of them on a scale from 1=lowest to
10=highest. Next, we search after the funds having highly positive and significant estimated
value added, v̂ai. For that selection, we run a one-sided test with H0 : v̂ai = 0 and took
the funds from the right tail that rejected the null with a 5%-significance level. In other
words, we took the funds for which the t-stat was above the threshold (only the positive one),
equal to 1.6513, in the case of a Student with 187 degrees of freedom11. We computed the
t̂va
i as t̂va

i = v̂ai − 0
σva

i

where the standard deviation is computed with the estimated asymptotic

variance Ŝi such that σva
i =

√
1
T
Ŝi. As a result, we ended up with 948 funds.

11Student distribution with a degree of freedom as high is very close to a normal distribution
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Next, we found that the median skill and scale scores of these funds are respectively 5 and
3. Moreover, the proportion of these funds that actually exhibit the best score for skill (10)
and scale (1) are respectively 8% and 14.6%, so the majority of the best performing funds have
neither the best investment ideas nor the lowest scalability cost. Instead, the best performing
funds actually seem to have a balance between skill and scalability. In other words, the best
performing funds are those with less great investment ideas but that can scale up more easily
as they have lower scalability cost.

These results are consistent with the ones of Barras et al. (2021) who found that the best
performing funds had skill and scale scores of 7 and 4. We can therefore conclude that these
results are valid for the mutual fund industry in any period of time.

4.5 Additional Results
4.5.1 Comparisons with the optimal value added

As we found earlier that eventually, all the funds that may be destroying value are unskilled,
supposing that no funds got negative value added because they were too big. We wanted to
deep a bit this hypothesis by trying to have insights regarding the size management of the bond
mutual funds. To that end, we determine the optimal size, q∗

i , the fund should have to maximize
its value added. In the same idea, this additional analysis could give us an overview of how
far/close from the optimal value added funds are with their real sizes. To run this analysis, we
base on several assumptions from the Berk and Green model and their equilibrium predictions
(Barras et al., 2021). Thereby, the assumptions are first that the number of skilled funds is
limited for supply; second that numerous investors compete for performance. By following
these assumptions, the funds have power over the investors and can maximize their profit by
charging investors fees fe,i equal to the gross alpha αi (supply and demand law which says that
as demand is high prices increase). As a result, the profit is equal to the value added since
πi = fe,i × qi = αi × qi = vai.

Then, from the linear specification αi = ai − biqi, and by taking the first order derivative
∂vai

∂qi

= 0, we know the expression of the optimal size q∗
i = ai

2bi

for the value added to be
maximized (Barras et al., 2021). We know that the vai function is concave as its second order

derivative ∂2vai

∂2qi

= −2bi < 0, so we also know that this maximization gives well a maximum
value and not a minimum. By replacing qi in the expression of the value added, we get:

va∗
i = aiq

∗
i − bi(q∗

i )2 = a2
i

4bi

, (4.13)

so we can compute the optimal value added and then compare it to the actual value added
we computed earlier.

Of course, our comparison requires some prior precaution as checking that the va∗ is positive.
To achieve this, we decided to run an hypothesis test and to select only the funds which rejected
the null. This test aims at finding the funds which exhibit highly significant and positive
estimated values v̂a∗

i . As a result this is a one-tailed test for which the null is:

Hi,0 : va∗
i = 0. (4.14)
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First thing to do to run this test is to construct the t-statistic in the same way we did before

for the highly significant and positive actual value added. So t̂i = va∗
i /

√
1
T
Ŝi is our t-statistic

for the test with the asymptotic variance computed following the same approach as for the
measures (following Barras et al. (2021)). Then, we could select all the funds that rejected the
null, so the funds for which the t̂i was above the threshold which is the 1, 5 or 10% t-distribution
quantile (with 187 degrees of freedom). Indeed, we run this test using several significance levels
such that the proportion of Type I errors12 in the selected funds in each case is equal to the
level of the test and we will be able to analyze how many false discoveries slipped in the selected
funds when we increase the level of the test. In the table 4.13 here under, we report the results
for the average optimal value added of the selected funds as well as the actual value added
(entire period and last subperiod) that the very same funds actually exhibit.

1% level 5% level 10% level
Mean Ratio Mean Ratio Mean Ratio

Optimal value added (in Mio, per year) 0.2451 0.1955 0.1862
Actual value added

Entire period value added (in Mio, per year) 0.1 41.04% 0.0829 42.41% 0.0768 41.23%
Last subperiod value added (in Mio, per year) 0.1828 74.57% 0.1898 97% 0.1781 95.64%

Trimming the 10% smallest and highest values of a and b
Optimal value added (in Mio, per year) 0.25 0.1990 0.1853

Actual value added
Entire period value added (in Mio, per year) 0.1029 41.11% 0.0845 42.47% 0.0784 42.33%
Subperiod value added (in Mio, per year) 0.1863 74.43% 0.1930 96.98% 0.1810 97.67%

Table 7: Table of the averages of the optimal value added and actual value added
of the selected funds before and after trimming the highest and lowest values for
âi and b̂i. The value added measures are given in $M in terms of the base year 2000.

As it can be seen, funds capture between 41 and 43% of their optimal value added which is
consistent with the fact that funds could maximize their value added if they were paying more
attention to the management of their sizes. Additionally, we know that these results are not
driven by high/low estimated ai or bi as after trimming 10% of the highest and lowest values for
these coefficients, we still get very close results. Furthermore, as we want to have more insights
regarding the actual size with respect to the optimal size of the funds, we decided to look at
the difference between the optimal size and the average of the actual size for each fund selected
at the 5% level. As we can observe it on the graph below (Figure 8), on average, some funds
are indeed too big compared to their optimal size given by q∗

i = ai

2bi

as the difference (q∗
i − q̄i)

is negative but we learn that some funds are also too small on average at the equilibrium since
this difference is also highly positive, so bond mutual funds should manage their sizes in 2 ways:
(i) They have to grow until their optimal size, which is probably the most obvious goal of each
fund, they intend all to grow but (ii) they have also to manage their growth in order not to be
higher than their optimal size. Indeed, as they grow, the funds should try to have on average
a size close to their optimal size and not higher as it will decrease their value added on the
market. However, the majority of the funds still tend to be too big as 70.19% of the selected
funds have an average actual size higher than their optimal size.

12Type I error is the fact to reject the null whereas it is actually true, so that is the funds that apparently
reject the null whereas their va∗

i = 0
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Figure 8: Difference between q∗
i and q̄i (in Mio) for the selected funds at the 5%

level. The sizes are given in $M in terms of the base year 2000.

Then, another previous hypothesis that we would like to clarify is the fact that some funds
that destroy value (v̂ai < 0) may be too big. Otherwise, the previous result supposed that the
only reason why these funds destroy value is because they are actually unskilled. As a result, we
will take the funds that destroy value among the selected funds in order to have insights even
if this result will not be over the whole sample. As a reminder, the funds are selected as their
estimated optimal value added v̂a∗

i is significantly positive at the 5% level, so funds with actual
negative value added among these funds is possible. Below on the graph (Figure 9), we can
observe the actual value added in Mio13 of these funds. We can see that several funds exhibit
negative value added. In order to have insights regarding these non-performing funds and their
position with respect to their optimal size, we construct a graph (Appendix 22) representing
the difference q∗

i − q̄i (as before) with the non-performing funds depicted as vertical dotted lines.
Surprisingly, for most of the dotted lines (vai < 0), the difference between the optimal size and
the actual size of the selected fund is negative which cannot be a coincidence. This goes in the
sense of the hypothesis of Barras et al. (2021) saying that maybe these funds could create value
if they decreased their size. Thereby, the previous result implying that the reason why some
funds destroy value is only because they are unskilled is probably driven by some estimation
noise that either increases the proportion of unskilled funds in the population or decreases the
proportion of funds that destroy value. For example, some funds may exhibit ai = 0 that are
classified as negative by estimation noise. Additionally, we also computed the difference q∗

i − qi

for the other significance levels and you can find the median of these differences for each level
in the table here under (Table 8). As you can see, the median at each level is negative, so lots
of funds have well an actual size too big.

13In terms of the base year 2000.
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1% level 5% level 10% level
Median of the difference between −22.24 −26.27 −24.32actual size and optimal size (in Mio)

Table 8: Table of the medians of the difference between the selected fund’s optimal
size and its average actual size. The sizes are given in $M in terms of the base year 2000.

Figure 9: Actual value added of the selected funds at the 5% level. The value added
measures are given in $M in terms of the base year, 2000.

Finally, the last aspect we would like to analyze is the subperiod value added and the actual
size dynamics with respect to the optimal value added and the optimal size. First, from the
previous table 7, we can see that the last subperiod value added is much closer to the optimal
value added, let us think that funds learn during their lifetime and might optimize their size
as time goes.As a result, we computed the difference between the fund’s optimal size and the
average actual size for each subperiod s = (1, ..., 5), q̃i(s). We computed these differences for
the 5% significance level and then for each subperiod we took the median that you can see
represented here under on the graph (Figure 10). As you can see, at the first subperiod, the
actual size of the funds seems to be lower than the optimal and then it grows and in the last
subperiod the actual size is on average higher than the optimal size whereas the value added
in the last subperiod seems to be higher and thus closer to the optimal value added. A remark
that we can make is that, it is not because the actual size of the fund is higher than the optimal
size that the fund fails to optimize its value added as long as the funds in excess of the optimal
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size is invested passively. Indeed, this hypothesis is supported by the Figure in Appendix 22
which shows that although almost each dotted line (vai < 0) seems to exhibit an actual average
size greater than the optimal size, the inverse is not true. So each fund that has a negative
difference between q∗ and q̄i has not obviously a negative vai, i.e. if they invest the excess funds
passively, they can still maximize their value added.

Furthermore, our results are consistent with the ones of Barras et al. (2021) as their last
subperiod average actual sizes are also on average higher than the optimal size but still the last
subperiod value added was closer to the optimal va∗

i . These observations drive to the outcome
that funds might learn during their lifetime and get closer to their optimal value added if not
at their optimal value added. Indeed, during the last subperiod, selected funds at the 5% and
10% levels seem to reach their optimal value added. One remark has to be made here regarding
the potential false discoveries that were incorporated as we increased the level of the test (from
1% to 5%). When the level equals 1%, 389 funds are selected for having an optimal value
added significantly positive, among them, only 4 funds can be considered as false discoveries
(1%×389). Then, as we increase the level to 5%, 658 funds are selected (62% more) and among
them 33 funds can be considered as false discoveries (8× more). As a result, the optimal value
added average as the level increases can be underestimated because from the 240 additional
funds that we discover for having a significantly positive optimal value added, 12% (29/240%)
have actually an optimal value added equal to 0. This reduces the optimal value added average,
which can explain the difference between the ratios from the 1% level and from the 5% level.

As a conclusion, we can say that since the last subperiod value added of the funds is closer
to the optimal value added than the value added of the entire period, the funds probably learn
and invest partially the excess of funds passively. So by getting older, bond mutual funds can
become more performing and get closer to their optimal value added.

Figure 10: Medians of the differences q∗
i − q̄i(s) for the funds selected at the 5% level

during each subperiod. The sizes are given in $M in terms of the base year 2000.
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5 Conclusions
We have shown that during the period from July 2004 to December 2020, US bond mutual

funds create value in the market although they are too large to achieve their optimal value
added amount. Furthermore, our results support the popular statement that mutual funds are
experiencing diseconomies of scale and more importantly we have provided a different measure
to assess the managerial skills of bond mutual funds as it is expressed by one part of the gross
α and not the value as a whole since we consider that the managerial skills can be good (in
accordance with the funds managers’ remuneration) but reduced due to the size of the funds.
Based on our measurement, we can thus affirm that bond mutual funds are skilled because
first, the distribution of the ai has an average significantly above 0 at the 5% level and second
based on the bias adjusted distribution of these ai, we found that 88% of the funds exhibit a
positive ai.

This means that based on gross returns (before any fees and expense), funds appear to be
skilled and create value. However, as it has also been demonstrated, the best performing funds
are funds that have mitigated values for ai and bi because these coefficients are positively
correlated. So unfortunately, the best investments ideas (highest ai) do not offer the best
performance (highest value added). These measures of performance can be interesting because
they provide insights into managerial skills and the ability of the funds to manage their size
and investments to create value. However, as previously mentioned, these measures might not
be sufficient for investors who want to invest in bond mutual funds. Indeed, investors may be
more interested in measures based on net returns as they are more related to the actual return
they will get. It could be an idea to go further on this research thesis (doing this work on net
returns).

Then, we could also open the discussion about the robustness of our results. Indeed, we
should check the impact of the choice of the asset pricing model on our results. To get on
overview of this impact we performed the procedure using the model 4 (introduced in Section
4.1). We found that our results may not be as robust as we might hope relatively to the asset
pricing model choice. Indeed, although the proportions of performing funds (vai > 0) still
held for both the entire period and the last subperiod, the average value added drastically
increased to $1.9M for the whole period with the factors of model 4. Moreover, the averages of
the skill and scale coefficients increased as well as the proportions of positive ai and bi (they
both reached values close to 90%). So, even if the conclusions may not differ drastically, the
results from each model still vary little. Indeed, we can confirm that the previous weird result
implying that some economies of scale could occur, does not appear here since based on the
model 4, we find that 85% of the funds that destroy value are unskilled14, which support well
the statement that a proportion of funds could create value if they decreased their size as
we concluded. However, the distributions’ shapes remained close to each other except for the
means and standard deviation, so the estimation procedure does not give totally contrasted
results from one model to another.

Finally, another point that could also be interesting to study based on this approach is the
αi,t distributions for each fund. Indeed, as we have αi over time, we could have analyzed them
and used the work of Barras et al. (2010) to obtain the actual percentage of funds that are
performing based on the αi,t distributions (another measure of performance that is the most
used in literature) and see if the results are very different from the results obtained while

14We find that 13.61% of funds were unskilled and that 15.96% were non-performing, so 1-(13.61/15.96)%
destroy value because they are too big.
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analyzing the value added measure. Unfortunately, this was a bit out of scope for our research
thesis but could be an interesting point to go further.
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A Bond Asset Pricing Results

A.1 Coefficient Distributions from the linear regression of Equation
4.2 with Model 2 variables

Figure 11: Intercept Distribution Figure 12: Bond Market Coefficients distribu-
tion

Figure 13: Downside Risk Factor Coefficients
Distribution

Figure 14: Credit Risk Factor Coefficients Dis-
tribution
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Figure 15: Liquidity Risk Factor Coefficients
Distribution

Figure 16: Stock Market Coefficients Distribu-
tion

Figure 17: SMB Coefficients Distribution Figure 18: HML Coefficients Distribution

Figure 19: MOM Coefficients Distribution
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B Skill and Scale distributions

Figure 20: Bias-adjusted skill distribution, ϕ̃(a)

Figure 21: Bias-adjusted scale distribution, ϕ̃(b)

41



C Optimal value added

Figure 22: Plot of the difference between q∗
i and qi with negative vai illustrated. The

sizes measures are given in $M in terms of the base year 2000.
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Executive Summary
This research thesis aims at applying the performance measures of Barras et al. (2021) on US

bond mutual funds from July 2004 to December 2020 unlike most studies which concern equity
mutual funds. Performance can be assessed in several ways but the most common measure of
performance stays the abnormal return (alpha). However, this thesis supports that assessing
the managers’ skill the same way as assessing the fund’s performance might not deliver the
right conclusions especially regarding the managerial skills. Thereby, the gross alpha has been
broken down into a skill and a scale coefficient. Mutual funds suffering from diseconomies of
scale, the managers might be skilled but their performance could be undermined by the size of
the fund. The results show that most US bond mutual funds are actually skilled, confirming the
previous statement. Then, the performance of the fund is assessed based on the value added it
brings to the market which is calculated by multiplying the gross alpha by the average fund’s
size. The densities of the skill, scale and value added measures could be deduced thanks to a
non-parametric approach. As a result, it has been possible to obtain some reliable bias-adjusted
densities from which some conclusions can be drawn, i.e. 87% of the bond funds create value
in the market between 2004 and 2020.
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