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Abstract

A radiotherapy department uses radiation to kill cancerous cells of the patient.

Planification treatment is a big part of the work for a physicist in a radiotherapy depart-
ment. The goal is to achieve an acceptable coverage of the target while sparring normal tissues.
There are different strategies to achieve the goal, but they are dependant on the physicist expe-
rience. All the strategies are iterative process that are time consuming.

New software and algorithm are based on the the Knowledge Based Planning, that aims
to make the process more efficient and less reliable on the physicist experience.

Varian has developed his version of this algorithm, RapidPlan. It is an algorithm that uses
machine learning to try and predict an achievable dose from the patient anatomy.

In this thesis I implemented RapidPlan for the prostate cancer treated with VMAT with
double dose level that follows the prescription 66Gy - 50Gy. I used gEUD objectives for the
implementation, as they were shown to be a powerful tool to achieve an acceptable planification.

I created "_in" and "_out" structure on the OAR to use with the gEUD, as it has been
proven of their efficacy when combined with gEUD objectives. For now the use of double gEUD
for RapidPlan is still not advised, as it will still need some manual tuning after the use of
RapidPlan. Thus the use of a single gEUD with one or more objectives gives better results.

The use of "_in" and "_out" structure are proven to be useful in lessening the hotspots
and the usage of a closed loop strategies to help having a better final model.

The RapidPlan model created for VMAT can also be used for IMRT treatments, even if
they are rarer. In the case of a IMRT planification needed, the RapidPlan model can still be
used.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Radiotherapy

Radiotherapy is a technique used for killing malignant cells exploiting ionising radiation.
It can be used alone as a curative treatment or as a part of an adjuvant therapy. It is most
generally used against cancerous tumours. In this case the purpose of the ionising radiation is
to damage the DNA of the tumour which will lead to its cellular death.
Ionising radiation are radiation that can be in form of electromagnetic waves (γ-rays or X-rays) or
particles (protons, neutrons, β-particles, α− particles or heavy nuclei) that have enough energy
to ionise atoms or molecules, directly or indirectly, by detaching one or more electrons from
them [1]. There is not a fixed energy threshold to distinguish between ionising and non-ionising
radiation because the ionisation energy changes for each atom or molecule.

1.1.1 Historical context

One can say that the history of radiotherapy started in 1895 with the discovery of X-Rays
by the German physicist Wilhelm Conrad Röntgen. Soon after the discovery of X-Rays there
were some early experiments which proved that exposure to X-Rays could produce negative
effects on the area of interest [2].

On the 29th January 1896, the first cancer treatment using X-Rays was done [3].
We had to wait until to 1902 to have the first proposal for the first type of dosimetry. This
dosimetry was done with a salt-mixture that when it was exposed to X-Rays it would change
colour from yellow to green [4]. In 1928, after the first Association of International Radiology
conference, the use of ionisation chamber was widely adopted [5].

Up until the 1950s, there was not a real treatment planning. As a matter of fact ra-
diotherapy was based on low energy with low penetration power. It was only when the first
mega-voltage systems based on 60Co γ-rays was introduced that started the first radiotherapy
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CHAPTER 1. INTRODUCTION 1.1. RADIOTHERAPY

period.
At the time the treatment planning was only based on basics radio-graphic images. In 1972, CT
images started to be used for the treatment planning, that was not much more complex than
plans done with basics radio-graphic images.

In 1982, a Swedish medical physicist introduced Intensity Modulated Radiation Therapy.
The IMRT was able to be created thanks to the change of the shape of the collimator with
a multi-leaf collimator (MLC). The first machine with this technique was commercialised in
1992.[6-7]
Due to the introduction of the MLC, new techniques could be born.

Since then, radiotherapy has advanced a lot and was more focused on 3D patient-based
dosimetry.

1.1.2 Basics Radiotherapy

There are different kinds of radiotherapy : external beam radiotherapy and internal radio-
therapy (Brachytherapy). In this thesis, I will focus on external beam radiotherapy with beam
of photons of 6MV.

1.1.2.1 Interaction of photons with matter

Photons can interact with atoms in different ways.
The can interact with : the whole atom, tightly bounded electrons, loosely bounded electrons,
the nucleus

There are 3 main interactions for the photons :

• Photoelectric effect

• Compton scattering

• Pair production

We can see, on the fig.1.1, the dominant interaction considering the energy of the incident
photon and the atomic number of the target material.

1.1.2.1.1 Photoelectric effects
When photons have a sufficient energy to completely ionise an electron of the atomic shell it can
undergo the photoelectric effect. The electron will completely absorb the photon energy, some
of the energy will be used to break the binding between the electron and the nucleus and the
rest will be transformed in kinetic energy for the ejected electron.
The probability of this interaction is proportional to : Z3

E3 [8]
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Figure 1.1: Probability of the photon interaction with matter considering the energy of the
photons and the atomic number of the target material [10].

• Z = Atomic number of the nucleus target

• E = Energy of the incident photon

1.1.2.1.2 Compton scattering
When photons have a higher energy than the binding energy of the electron, the photon could be
scattered by the electrons without being absorbed and it could give some energy to the electron.
As a result this will give us a photon with a lower energy than the incident one and a recoil
electron.
Compton scattering depends a bit on the Z of the target material and it is the dominant inter-
action in human tissues between photon energy of 30keV and 30MeV.[8]
The probability of this interaction is : 1

E . [10]

1.1.2.1.3 Pair production
Above the threshold of 1.022MeV, photons can interact with the electromagnetic nuclear field of
the target nucleus. The photon can disappear and become an electron-positron pair. The pair
will share the energy of the photon to create the mass and kinetic energy.
Those pair will loose their kinetic energy by interacting with the matter around them. The
electron will be absorbed into the electric shell of an atom and the positron will be annihilated
with an electron creating 2 photons with an energy of 511keV [8].
The probability of this interaction is proportional to : Z × ln(E) [10]

1.1.2.2 Creation of the photon beam

They can be generated via an accelerator or by a radioactive material. In this case, it will
engendered using a linear accelerator. [8-9]
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Figure 1.2: 3 main interactions of photons with matter. Photoelectric effect for low energy pho-
tons. High energy photons for Compton scattering. Higher energy photon for pair production.

We can define the energy of the EM radiation by linking it to the frequency of the electro-
magnetic wave :

E = h× ν

• h = Plank constant : 6.62607015× 10−34 m2 kgs−1

• ν = Frequency of the electromagnetic wave [s−1]

As already stated above, the photons beam is generated using a linear accelerator, which
will use an EM field to accelerate a beam of electrons up to the treatment energy. Afterwards
with the use of electromagnets, the electron beam will be deviated and will strike a target that
will generate a beam of photons. The photon beam will then pass through a flattening filter to
ensure an homogeneous beam before it goes towards the patient [9].
On fig.1.3., we can see the sketch on how the photon beam is created after that the electron
beam hit the target.

Most external radiotherapy machines are isocentrics, which means that the machine’s head
will rotate around an axis that passes between the isocenter and the centre of rotation of the
machine. The isocenter is the cross point between the axis of rotation of the gantry, the collimator
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Figure 1.3: Schematising of the electron beam hitting the target and creating the photon beam.
The primary collimator will shape the beam size. The flattening filter will create an homogeneous
dose field. The ionisation chamber will check the dose at the exit of the machine’s head. The
secondary collimator will allow us an even accurate beam shape [9].

and the couch. This type of machine will allow us precise calculation between the patient position
and the treatment head position. The treatment head can rotate around the isocenter because
of the gantry. We can see on fig.1.4 a sketch of the isocenter. This point is at the convergence
of the 3 axis of rotation of the radiotherapy machine : the gantry, the collimator and the couch
[9].

Figure 1.4: Schematising of the isocenter of gantry for an external radiotherapy machine [9].

1.1.3 Practical basics of radiotherapy in hospital

When a patient comes for a radiotherapy treatment, he must undergo some steps before
getting the treatment delivery.
The classical procedure is listed as follow and will be explained more carefully in the next
paragraphs.
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1. Simulation

2. Target volume delineation

3. Treatment planning

4. Treatment delivery

1.1.3.1 Simulation

The patient will first go through a simulation. After the simulation, the initial treatment
will be generally delivered a few days later. This step serve different purposes.
It allows to generate a reproducible setup: the patient can be in the same position for each
treatment session with the help of immobilisation devices. As a matter of fact, uncertainty in
patient position will lead to uncertainty in the delivery of the dose.
Simulation will also allow to take a CT scan of the area of interest. By doing so it is possible to
identify target volumes and normal tissue. It is also possible to plan and calculate the needed
dose. [9]

1.1.3.2 Target volume delineation

The radiotherapist will use the CT-scan taken at the simulation and will delineate not only
the target volume but also the normal tissue of the patient. This is done on the CT-scan, but
the delineation can be done with other types of imaging (MRI, PET-scan, SPECT) that could
aid to have a better definition of the tumour volume. [9]

The structure delineated follow the ICRU Nomenclature :

• GTV : Gross Target Volume

• CTV : Clinical Target Volume

• ITV : Internal Target Volume

• PTV : Planning Target Volume

• OAR : Organ at risk

1.1.3.2.1 Gross Target Volume
The Gross Target Volume is the gross demonstrable extent of the tumour. The delineation
can be done if the tumour is visible and big enough. In some cases, like for a post-operation
radiotherapy, the GTV may not be possible to delineate. [11]

6



CHAPTER 1. INTRODUCTION 1.1. RADIOTHERAPY

1.1.3.2.2 Clinical Target Volume
The Clinical Target Volume is formed by of the GTV and the tissues whereas it is a presumed
tumour. The delineation of the CTV supposes that there are no tumour cells outside the volume.
[11]

1.1.3.2.3 Internal Target Volume
The Internal Target Volume is recommended by the ICRU 62. The volume includes the CTV
with an internal margin to compensate for the internal physiological movements. [11]

1.1.3.2.4 Planning Target Volume
The Planning Target Volume is formed by the CTV with an internal margin and a setup margin.
Internal margin are the same one as the ITV and the setup margin are created for the setup
uncertainties.[11]
This margin can be calculated using the Van Herk Formula [12] :

MPTV−CTV = αΣ+ βσ − βσp

• Σ = Systematic errors

• α = Coefficient for the systematic errors for the coverage of a certain percentage of the
patients

• σ = Random errors

• β = Coefficient for the systematic errors for the coverage of a certain percentage of planning
volume

• σp = Random errors due to the beam penumbra

1.1.3.2.5 Organ At Risk
The Organ At Risk are the healthy organs situated near the target volume which are susceptible
to being irradiated.
There could be added a margin for an organ at high risk, and so creating another volume :
Planning Organ At Risk. The added margin would follow the same setup as the PTV. [11]

1.1.3.2.6 Treated Volume
The treated volume is the volume that is covered by the isodose of prescription. Therefore the
treated volume is generally a bit larger than the PTV. [11]

1.1.3.2.7 Irradiated volume
The volume receiving a significant dose is called the irradiated volume. This volume is always
larger than the treated volume and than the PTV. This depends on the technique used.[11]

7



CHAPTER 1. INTRODUCTION 1.2. DOSIMETRY

We can see the different volume in fig.1.5.

Figure 1.5: Schematising of the margins of the planning volume [11].

1.1.3.3 Treatment planning

After delineating the volume, the radiotherapist prescribes the desired dose coverage and
the OAR constraints. This doing is called the clinical goal. And it may differ for each case.

Finally the medical physicist or the assistant will use a treatment planning system.This
treatment planning consists in optimising a treatment plan that would meet the goals set by the
radiotherapist.
The physicist and dosimetrist can select different types of treatment to achieve the goals. The
target for the physicist is to get a better sparring of the healthy tissues while still having an
acceptable covering dose for the PTV. [9]

This part will be explained with more detail in the next section.

1.1.3.4 Treatment delivery

The treatment will be delivered to the patient in the same position as the simulation. The
RTTs are in charge to deliver this treatment.

1.2 Dosimetry

As said before, in this section, the treatment planning will be explained with more details.

1.2.1 Basics Dosimetry

Before going further with the explanations I would like to define some basics concepts.
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1.2.1.1 Dose

There are two way to measure the dose : the absolute dose and the relative dose.

The relative dose is the ratio between 2 doses. It can be used to assert a certain factor or
parameter.The relative dose can also be used as a ratio of two different doses that are measured
or simulated with different parameters.

The absolute dose is the value of the measured or calculated dose.

In radiotherapy when we speak about dose, we talk about the absorbed dose which is a
quantity of the energy deposited in the matter by ionising radiation per unit mass. The unit we
are talking about is the Gray [Gy]. This is used for every kind of ionising radiation [13].

D =
dϵ

dm
[Gy] = J Kg−1

• dϵ = Mean energy absorbed by the medium from ionising radiation

• dm = Mass of the medium having absorbed the energy from the ionising radiation

1.2.1.2 Percentage depth dose curve

The percentage depth dose curve (PDD) relates the absorbed dose given to a medium by
a radiation beam to the depth of the beam. The curve is normalised at the dmax at 100% as we
can see on fig.1.6. [17]

Figure 1.6: Exemple of a PDD curve for a 6X beam with a field size of 10× 10cm2 .[18]

As we can see on fig.1.6, there is a build-up region when the beam enter a material. This
build-up is due to the fact that most electrons liberated by the 6MV beam have energies between
1 to 2 MeV up to 6MeV, and electrons with those energies travels around 1-2cm, which explain
the build-up region. After the peak, it will start to fall-off due to the losing of energy.

9
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1.2.1.3 Monitor Units

A monitor unit, is a measure for the output belonging to each machine. [21]
At the CHU Namur, for the 6MV photon beam, they calibrated the machines in order to have
100UM = 0.798Gy when measuring the dose at DSP90 and 10cm depth in a water phantom.
They calibrated the machines as such, for having 100UM = 1Gy at the peak of the PDD curve.

1.2.1.4 Dose Volume Histogram

The DVH can be defined as an histogram that relates the dose given into the relative
volume of a structure [14]. While planning, we can use the Dose Volume Histogram to see the
dose given to the PTV or one or more OAR. The DVH is really helpful for comparing easily
doses from different planifications or to analyse quickly the quality of a planification. The DVH
is not the only tool for analysing the quality , but it can be a fast and useful tool for this task.
As we can see on fig.1.7 there is an example of DVH.

Figure 1.7: DVH of the PTV and lung of a planned plan [15].

1.2.1.5 Isodose

The isodose is defined as the line in which all points who belong to the line have the same
dose.
In all cases, the line reattaches to itself, and we know on account of its definition that all the
points inside the isodose have a higher dose than the specified value.
As we can see on fig.1.8 where the isodose 95% prescription cover the whole of the target volume.

1.2.1.6 Fluence

The fluence is defined as the total number of particles crossing over a surface of unit section
at a certain distance of the source of ionising radiation.[16]
The dose delivered at a certain point will also be related to the fluence and the particle energy.

10
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Figure 1.8: Exemple of the isodose D95% that covers the PTV, the green line is the isodose 95%
of the prescribed dose and the red is the PTV.

1.2.2 Planification treatment

The TPS I used is Eclipse from Varian.
The goal of the planification treatment is to have an adequate coverage of the PTV while sparring
the OAR.

In radiotherapy the most used technique for planification treatment is the inverse planning.
There are 2 type of inverse planning :

• IMRT : Intensity - Modulated Radiation Therapy.
IMRT is a technique of radiotherapy planning that uses CT-scan to calculate the dose
absorbed by the patient, as all the others techniques. This technique consists in using
different beams at different angles with a modulated intensity and with a static gantry.
The intensity modulation is done by the MLC and calculated by the treatment planning
system following the objectives given by the physicist.
There are 2 type of IMRT : step and shoot and sliding window. The difference between the
two is that step and shoot, wait for the leaf of the MLC to stop moving before irradiating
and that the sliding window irradiate while the leaf of the MLC are moving.

• VMAT : Volumetric Modulated Arc Therapy.
VMAT is a more advanced technique than the IMRT. The treatment is delivered by differ-
ent arcs rather then different beams. The gantry is moving during the beam period. The
beam intensity is modulated in the same way as it was in the IMRT sliding window.

1.2.2.1 Objectives function

In the inverse planning, the physicist adds the constraints on the different structures of
the patient and the TPS calculates the optimised plan in accord to the constraints asked. The
TPS create wwith the constraints a "cost function" that will be minimised by modulating the

11
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fluence of the beams or arcs.
The cost function is : [20]

Fobj =
∑
PTV

FPTV +
∑
OAR

FOAR + FNTO

• F = ξw(di − p)2

– w ≡ Linear function of priority of each objective

– ξ ≡

∗ 1 if the objective is reached

∗ 0 if the objective is not reached

– di ≡ The dose at the ith iteration

– p ≡ the dose of the objective

There are different objectives that can be used and modified during the planning optimi-
sation : Upper, Lower, Mean, Upper gEUD, Lower gEUD, Target gEUD, NTO.

1.2.2.1.1 Upper
It is the maximum dose to a percentage volume of the structure.If the calculated dose is higher
than the one asked by the function, then the upper function is reached. It is commonly used for
putting limits to the OAR.

1.2.2.1.2 Lower
It is the minimum dose to a percentage volume of the structure. If the calculated dose is lower
than the one asked by the function, then the lower function is reached. It is commonly used on
the PTV because that the volume is covered by the prescription dose.

1.2.2.1.3 Mean
If the calculated mean dose of the whole structure is lower than the one asked by the function,
then the mean function is reached.

1.2.2.1.4 gEUD

The gEUD is defined as : [20]

gEUD = (
∑
i

viD
a
i )

1
a

• vi = Fractional organ volume receiving a dose Di

12
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• a = Parameter describing the volume effect

The parameter a has been defined to be organ specific in the literature , but there are only
a few studies that tried to estimate the a value for different organs. [20]

Figure 1.9: The schematising of the concept for the gEUD. The arrows indicate the strength
applied to the DVH for different a value. On the left a = 1. On the right a > 10. [20]

The gEUD cost function is treated in the same way as the normal cost function. The main
discrepancy is that the variation of doses become the difference of gEUD.

In Eclipse, there are 3 gEUD function, they are the same gEUD basic function that need
to reach the equivalent uniform dose defined as the gEUD.
Nevertheless in order to have a better understanding, these functions are separated in 3 cate-
gories:

• Target gEUD : a ∈ [−40,−1] it is defined for the exact equivalent uniform dose value

• Lower gEUD : a ∈ [−40,−1] it is defined as the minimum equivalent uniform dose value

• Upper gEUD : a ∈ [1, 40] it is defined as the maximum equivalent uniform dose value

On fig.1.9. and fig.1.10. We can see the effect of the a on a OAR DVH and for a PTV
DVH with a high a.

• a⇝ −∞ ⇒ gEUD ≈ Minimum dose

• a = 1 ⇒ gEUD ≈ Mean

• a⇝ +∞ ⇒ gEUD ≈ Maximum dose

[20]

In a clinical study, we can see on fig.1.11 the influence of gEUD dosimetry for a whole
rectum, cropped rectum and a 4mm cropped rectum.
The best dosimetry done with the gEUD were done with a cropped rectum at 4mm. And the
influence of the "a" were minimal. [20]

13
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Figure 1.10: Example of a Target gEUD with a high a. [22]

In the same study, they looked at the DVH behaviour with different "a" for different
crop. And with with increasing "a" the usefulness of a cropped rectum become more and more
prominent. That is normal, because the higher the "a" the more the gEUD will work on the
high doses of the DVH.
With low "a" we can see that the use of a cropped 4mm rectum is less useful, even if we can
still see that it lower the DVH at low doses. We can see those effects on fig.1.12. [20]

1.2.2.1.5 NTO
Normal Tissue Objective is a spatially varying constraint in Eclipse used to limit the dose to
healthy tissues by steepening the dose gradient at the PTV edges.
You can selected 2 NTO in Eclipse, they follow the same formula, but the automatic one changes
its parameter following the planification, and the manual one is where the user changes the
parameters [21].

FNTO(x) = f
−k(x−xstart

0 + f∞(1− e−k(x−xstart),∀x ≥ xstart

• xstart = Distance from planning target volume

• f0 = Start dose

• f∞ = End dose

• k = Fall-off

1.3 Prostate Cancer

Prostate cancer is the second most frequent cancer found in men worldwide and the fifth
cancer leading death worldwide.[22]

14



CHAPTER 1. INTRODUCTION 1.3. PROSTATE CANCER

Figure 1.11: Whole rectum DVHs of prostate case for different gEUD a value settings. Plans
optimized on the whole rectum, OAR cropped by the target, OAR cropped 4 mm by the target.
[20]

The prostate is a gland found only in males, it produces some fluids that are part of the semen.
The prostate is situated below the bladder and behind the seminal vesicle. And finally there is
the urethra that goes through the centre of the prostate. We can see a sketch of the prostate
anatomy on fig.1.13.[23]

The prostate cancer, like all other cancer, begins when some cells start to grow out of
control, ergo becoming tumoral cells. The vast majority of prostate cancer are adenocarcinoma,
which is a cancer developed by the glands cells.
There are different treatments for the prostate cancer. These treatments will depend on the
cancer stage, on the age and the health of the patient.
If the cancer stay internally at the prostate the treatments are: External radiotherapy, Brachyther-
apy, Cryosurgery, High-intensity focused ultrasounds and prostatectomy.
If the cancer becomes metastatic then hormonal therapy and chemotherapy are the common
treatments employed.[24]

External beam radiotherapy, is one of the most important tools to cure localised prostate
cancer because it is the common therapy for men with intermediate or high-risk of side-effects.
[40-41]
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Figure 1.12: Whole rectum DVHs optimized on different OARs (whole OAR, cropped by the
target, cropped 4 mm by the target). a gEUD parameter set to 1, 3, 5, 10. [20]

Figure 1.13: Schematising of the prostate site and how the cancer is developed in the prostate.
[23]

1.3.1 Epidemiology in Europe

In Europe during 2020 the prostate cancer is the fourth most common cancer in Europe
and it is the most common one among men. It is the third most deathly cancer in males as we
can clearly see in fig.1.12.

The estimated number of new cancer in Europe in 2020 is of 148.1 cases per 100 000, with
a cumulative risk of being diagnosed with prostate cancer before the age of 75 is 8.18% .
The estimated new death of prostate cancer in Europe in 2020 is of 35.2 cases per 100 000, with
a cumulative risk of dying of prostate cancer before the age of 75 is 0.97%.
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Figure 1.14: Incidence and mortality of prostate cancer in Europe in 2020.

1.4 RapidPlan

All planning strategies aim to cover the PTV with enough dose while sparring all the
other healthy tissues even thought it is difficult to assess the best possible trade-off between the
healthy tissues and the PTV.
As stated before, IMRT and VMAT are inverse planning strategies, where the physicist needs
to input parameter into the TPS to find the best possible solution of the planification.
This is an iterative process and it is time consuming and user-dependent. For a plan to be
considered acceptable, it needs to check all the clinical goals set by the radiotherapist, but even
if all the clinical goals are observed, it does not mean that the plan could be optimised even
further. Thus this process is not perfect and could lead to sub-optimal plan and large variations
of plan quality. [29-30]

This process is really dependent on the physicist abilities to plan and on his experience.
To solve this problem, to simplify the process and to make it more faster, the "Knowledge Based
Planning" was investigated. [25]

1.4.1 Knowledge Based Planning

KBP has two main functions : it can predict an achievable dosimetry for a new planning
using prior knowledge and it can also help the physicist in the planification. [29-30-31]

The efficacy of the dose prediction is based on :

• Quality of the planning data inserted in the model

• Similarities between the old plan inserted in the model and the new plan

• The regression of the different structures inserted in the model

In this thesis, I will use the KBP RapidPlan engine from Varian Medical system, introduced
in the Eclipse treatment planning system in the release 13.5.
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RapidPlan uses old plans to create a new model for estimating the DVH and setting the
best objectives on the OAR and PTV set in the model, in order to have the best planning. The
predicted plan has a similar quality of those set. This solve the problem of consistencies between
different plans and speed up the process.
RapidPlan uses a regression analysis to correlate the geometry of the OARs and the PTV with
the DVH, by using a set of pre-planned plans.

1.4.2 RapidPlan estimation algorithm

1.4.2.1 Algorithm

An algorithm is a finite sequence of instruction, done by a computer, used to solve specifics
problems or to perform computations. By making use of artificial intelligence, algorithms can
perform automated deductions and to use the appropriate mathematical and logical test, follow-
ing various path. [51]

An heuristic algorithm, is an algorithm used for solving problems when a classical method
is too slow or when only an approximate answer is needed. It also does not guarantee correct or
optimal results. The reason is that the algorithm will trade accuracy and precision for speed. It
can be seen as a shortcut.

1.4.2.1.1 RapidPlan Algorithm RapidPlan is a Knowledge Base Planning, implemented
in Varian Eclipse treatment planning system. Its primary objective was to improve planning
time, plan quality and plan quality consistency. [30]

RapidPlan uses machine learning technique that is supervised by the user, in other words
it is a supervised machine learning. It needs to be trained with at least 20 cases. During the
utilisation of RapidPlan for a new planification, it provides its objectives according to the set of
plans used in the model. [39]

1.4.2.2 Machine Learning

Machine learning uses algorithms that receives input data to predict output value. As
more data is added to these algorithms, they will optimise and improve their performance, by
developing "intelligence". Machine learning is a subset of artificial intelligence.
Artificial intelligence is a term used to describe a machine or, in this case, an algorithm that
mimic and display "human skill" such as learning and problem solving.

"Machine learning is the study of computers algorithms that can improve automatically
through experience and by the use of data" .
In this case, we will feed RapidPlan with prior existing treatment plans. Only then our machine
learning task is to predict what DVH could achieve with its proper geometry due to the new
treatment. We only need to insert the following input : beam, target and OAR geometry. After
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a complex process, the algorithm gives us the output, which is the resulting plan.
The algorithm is based on heuristic principles. A heuristic technique is an approach of problem
solving, learning or discovery that employs a convenient method. It is not guaranteed to be
optimal or perfect, but sufficient enough for the time being. This principle is used in cases where
finding a perfect solution is difficult and time consuming. That is why heuristic methods are
used to speed up the process of finding a satisfactory solution.[28]

The algorithm will be useful only if the remaining level of uncertainty is acceptable and
the estimation model is applicable to a large variety of cases.

1.4.2.3 DVH Estimation Algorithm

The DVH estimation models are trained with a set of plans, thanks to their structure set,
dose and field geometry. It has 2 phases : extraction and training.
We will need to insert the extracted data, as mentioned for machine learning, into the algorithm
and then we can train it. When fully trained, we can use the DVH estimation model with a
DVH estimate, with upper and lower bound, and optimisation objectives for the planner. As we
can see on figure 1.15.

Figure 1.15: Example of a DVH estimate and the objectives set using RapidPlan. [28]

For different cases, we will need to feed the algorithm with different numbers of samples
depending on the region of interest. Varian advises us with the following samples [28]:

• Diagnosis specific : between 20 and 30 plans

• General pelvic/abdomen region : between 30 and 50 plans
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• General chest region : between 50 and 70 plans

• General H&N region : minimum 70 plans

In those basic principles, behind those numbers, the more the anatomy of a patient moves,
the more cases you need. In general, our target are fairly similar in cases of pelvic/abdomen
region and are almost the same in case of a specific diagnosis.
In this thesis, we will try to implement RapidPlan for diagnosis specific case. More information
will be given in the following pages.

1.4.2.3.1 Extraction Phase
The algorithm starts with the extraction phase, which is done individually for each plan.
Then we have the OAR partitioning and each OAR in a plan has a separate model. The OAR
will be segmented based in on-field and target geometry, thus being partitioned in smaller sub-
components. For the volume partition, it will use segment model with a 2.5mm of structure
resolution.
The OAR will be partitioned at the start with in-field region and out-of-field region. For the in-
field part, the dose will be greatly affected by the optimisation and the overlapping part with the
PTV, which will have a dose level comparable to it. The geometric evaluation will be calculated
for the whole structure : OAR volume, overlap (with PTV volume), out-of-field, and joint target
volume. As we can see on fig.1.16 the out-of-field and in-field region [28].

Figure 1.16: Schematisation of the partitioning done by RapidPlan algorithm for an IMRT
planification. Where it segments the part of the target following the geometry of the beam [28].

For the partitioning of the OAR structures there is a different weight for each part of the
structure during the optimisation :

• Out-of-field volume : will receive only the scattered dose.

• Leaf-transmission: the dose received in this area will not be strongly affected by the opti-
misation.
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• In field : the dose received in this area will be the most affected affected by the optimisation.

• Overlap with the PTV : dose levels will be comparable to target distribution.

For the regression of each structure that has been used and trained, the algorithm needs at
least 20 different plans where those structures are present. If the minimal number of structures
present in the plans is not met, then the algorithm will only use their mean and standard
deviation for the DVH estimation curves. The mean and the standard deviation need at least
2 data points. If even those minima are not met, then the model will not be trained for those
structures. Thus a default model will be used.
There are 3 default models, that are used for a different geometry part of the structure :

• Default model overlap : all the overlap volume with the PTV will receive 100% of the
prescribed dose.

• Default leaf-transmission model : all the leaf-transmission volume of the structure will
receive 4% of the prescribed dose.

• Default out-of-field model : all the out-of-field volume of the structure will receive 0Gy.

We can see on fig 1.17. the part of the DVH affected by this reasoning. And that the DVH
will be a sum of the various partitions of the structures.

Figure 1.17: DVH extraction from a planification following a normal partition[28]

It starts from the overlap partition. This part of the DVH can not be optimised, as it is a
volume part where we need to give the dose.
Next, the in-field partition is added to the cumulative DVH. This partition can be greatly affected
by the optimisation, as a consequence we can try to reduce the dose as low as possible.
Afterwards, the leaf transmission partition is added. The dose in this volume is just received on
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account of the geometry. The beam will not be blocked by the jaws, but only by the MLC. The
dose in this partition cannot be really optimised by the reason of the geometry.
Finally the out-of-field region. This partition follows also the same principle as the others.

For evaluation of the geometry, the algorithm will take into account multiple target shapes
and dose levels.
The expected behaviour is to try to spare normal tissue. Once the geometry has been set,
RapidPlan will limit the dose to the distributions achievable. Hence the geometric "signature",
that is the geometry of the beam and may be static (IMRT) or dynamic (VMAT), should be
correlated to the planned dose.

Varian uses the "Geometry-based Expected Dose" or GED. The GED uses the distance
from the voxel to the target surface per each target.

GED(i) ∝
n∑

f=1

m∑
t=1

δt ×
e−λh(i)

h(i)2
× Ct,f,l

Where :

•
∑m

t=1 δt : sum on the target dose levels.

• e−λ h(i)

h(i)2 : PDD where

– λ = attenuation coefficient

– h(i) = Source Target Distance.

• Ct,f,l : tissue sparing coefficient for target t, calculated for field f, and fanline l (in field f)

In the fig.1.18 we can see the differences between the real dose slice and the GED for a 7
field IMRT planification.

Figure 1.18: Difference between the real dose slice and GED in a 7 field IMRT. [28]

GED is a parameter used to characterise a given PTV, OAR and field geometry. It is
calculated for all voxels in the data-set henceforth creating a GED-volume histogram.

As we can see in fig.1.19., voxel 1 and 2 are at roughly the same distance from the PTV,
but voxel 1 is closer to the source than voxel 2. Because photons have attenuation in the tissues
and they follow the inverse square from the source, the GED in voxel 1 is higher than the GED
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in voxel 2. The h(i), as mentioned before,is the source target distance, that can be split in the
source skin distance, and the skin target distance :

e−λ×h(i) = e−λ×(SSD+STD) = e−λ×SSD + e−λ×STD

For the same line, we know that the SSD is constant, hence the GED is only due to the attenu-
ation and the inverse square.
We can also add a rule; if the fanline does not intercept a PTV, the GEDs of all the voxels
contained in that fanline are 0.

Figure 1.19: Influence of the PDD in the GED. [28]

In fig.1.20., we can see that voxel 2 and 4 are at the same distance from the source and
they have the same PDD. But in this case, the fanline for voxel 2 passes trough the PTV 1 and
PTV 2, so it is expected to have a higher dose than the dose for the voxel where its fanline only
passes PTV 2. This is due to the fact that PTV 1 has a higher prescription dose compared to
PTV 2, thus forcing to have a bigger fluence passing through PTV 1. thus we multiply the PDD
by the target dose levels.

GED(i) ∝
m∑
t=1

δt ×
e−λh(i)

h(i)2

As we can see in fig.1.21., voxel 5 and 6 have both similar distance from the source and
target "skin". They both go through the same target, but voxel 5 intercepts a longer distance
of the target than voxel 6. This propriety is characterised by including 2 additional factors that
can be defined by 4 parameters:

• Ct,f,l = tissue sparing coefficient for target t, field f and fanline l

• dtl = distance of fanline l travelling inside target t
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Figure 1.20: Influence on the GED for different dose level target, where dose PTV 1 is higher
than dose PTV 2. [28]

• G(dtl) = is a monotonically increasing function that describes the intensity differences
between different fanlines in a single field

• Hf = longest distance of any fanline in field f travelling inside the PTV

Hence, in the same field, different beamlets will need to be modulated in because of their
trajectory into the PTV. If the beamlet passes through a bigger portion of the target, then its
intensity will be higher than a beamlet that goes through a smaller portion. This characteristic
is captured by the inter-field modulation factor G(d), which is incorporated into the wider
coefficient Ct,f,l. This coefficient is the summary of both Hf and G(dtl) [28].

Ct,f,l = G(dtl)×Hf

GED(i) ∝
m∑
t=1

δt ×
e−λh(i)

h(i)2
× Ct,f,l

Finally, in fig.1.222 we can see that the GED of a certain voxel can have a contribution
from multiple fields. In conclusion, we need to sum for each trajectory intercepted by voxel i.
[28]

GED(i) ∝
n∑

f=1

m∑
t=1

δt ×
e−λh(i)

h(i)2
× Ct,f,l

Once we calculate the GED for each voxel, we can determine the DVH of both the GED
and the real dose for a given OAR. Then, the algorithm tries to find correlations between the
2 parameters. If a correlation can be found, then giving a new geometry, it could predict the
achievable dose. [28]
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Figure 1.21: Influence on the GED for the distance passed in a the PTV. [28]

Figure 1.22: Influence on the GED of the distance passed in a the PTV. [28]

1.4.2.3.2 Training
Training is done for the entire set of plans. Each volume partition is trained separately. The
algorithm calculates one model per region, and the sum of the different regions leads to a model
for each OAR. Then there is the analysis of the differences between the GEDs and DVH, which
can lead to the regression model.

The training is done following the Principal component analysis (PCA) which is a process
where you compute the principal components of a distributions and where you can use them to
create new data that correspond to that distribution.

To obtain the different PCA, you have to first subtract the mean DVH curve from all
the DVH curves. Then, you have to subtract the PC1 (first partial component), which is the
parameter that represents the majority of the volume left and so on until you can reconstruct
the original histogram with less than 5% of error.
Generally 2-3 PCs are enough to represent 98% of variance. Once you have the PCA’ of the
models, you can analyse any DVH to get the coefficient of each plan in order to recreate them
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easily.
On fig.1.21. You can see the representation of the partial component analysis.

Figure 1.23: Example of a partial analysis component and the parametization of a particular
DVH. [28]

The regression model is calculated for the in-field region for each OAR per each DVH PCA.
The algorithm uses the step-wise regression, which is an iterative process that will finally lead
to convergence.
The first iteration is called "forward" and it adds input to the DVH PCA. The second one is
called "backward", which subtracts the parameters to the first iteration until there are no more
parameters to add or subtract. Basically, the regression model is equal to a set of coefficients
that can be used to estimate the principal component score of the DVH from the geometry.
The coefficient are what RapidPlan find to characterise a DVH for a new model.

Moreover there are built in control for the model configurations like the following : Cook’s
distance, Modified Z-metrics, Studentized Residual Metrics.

• Cook’s distance : A parameter used to estimate the influence of a data point whenper-
forming a least-squares regression analysis

• Modified Z-metrics : The modified z-score that tells us how many standard deviations
away a value is from the mean

• Studentized residual metrics : It is the quotient resulting from the division of a residual
by an estimate of its standard deviation. It is used for the detection of outliers.

1.4.3 Literature for RapidPlan

Even if RapidPlan has been widely studied, unfortunately I could not find any paper that
stated the optimisation objectives of their RapidPlan model. Consequently, before beginning the
implementation process I experimented with some RapidPlan models and the gEUD, without
quantifying the different models, thus I did not wrote in this paper those models, but just the
finals one.
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RapidPlan has already been widely studied in different treatment sites since its introduc-
tions. Those studies have already proven its usefulness in improving the quality of plans, cutting
plan timing and enhancing inter-patient consistencies. Unfortunately, not a single paper quan-
tified the improvements. [32-34-35-36-37-41]
RapidPlan has been proven to standardise the planning quality between planners with widely
different experiences and between different centres. [36-37]

Even after the benefits of the implementation of RapidPlan have been widely proven, the
use of RapidPlan is still not widely implemented, even if it is still growing. This is due to the
lack of time for implementing it. Indeed, its implementation is a time consuming process and,
as a matter of fact, a lot of centres do not have neither the time nor the manpower to do such
a job.
This problem has been already tackled by some studies. One of the solutions was the introduction
of a script-driven automated planning. But smaller centres may not rely on this approach due
to the lack of older planification available during the same time span.[38]

The correlation quality between the structure’s geometry and the DVH estimation is rela-
tive to the quality of the set in the RP model. It is also dependant on the consistent quality of
the set model, on the regression of the predictive models and on the correlation between geom-
etry model set and geometry of new plans. Consequently, a set with high quality plans with a
relatively generalised geometry with enough consistency must be chosen. [32-33-34]

RapidPlan implementation is an iterative process and an heuristic method and as a con-
sequence even if it is not as user dependant as the treatment planning it still is dependant on
the constraints settled by the physicist [29]. But afterwards, it may lead to a better consistency
between different plans.

The implementation of RapidPlan with a closed loop strategy has been proven effective by
the literature. A closed loop strategies consists in creating a new RapidPlan model, model B,
by feeding it with the plans optimised thanks to the precedent RapidPlan model A. [35-38]
But this technique must be applied with caution, because by doing too much iterations during
the closed loop strategy it may lead to an overfitting of the structures used in the model.
The usage of the optimised plans for a new RapidPlan model will lead to a decrease in usefulness
of our RapidPlan model and it will become less and less generalised model. And as a result, the
plans will be more and more similar. [35-38]

Furthermore some studies have shown the feasibility of using a RapidPlan model, imple-
mented with VMAT models, for IMRT planning, in the case of the same treatment site. This
can be possible because a full-arc VMAT covers all possibilities for the field angles in IMRT.
Plus the GED algorithm of RapidPlan is independent from the type of treatment.
The study has shown that a RapidPlan model trained with only VMAT planification will lead to
an improved organ sparring both quality and consistency related to a manually optimised IMRT
plan. However, Wu and al. still recommend a manual processing after the use of RapidPlan for
a better tuning of the optimisation. [37]
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A weak point in using RapidPlan with auto-generated priorities (priorities generated by
RapidPlan), for the planification where the beam need to to go trough an heterogeneous medium,
is that it requires a manual modification to reach an acceptable dose homogeneity. In the
meanwhile, acceptable planification were generated with fixed priorities for the prostate cancer
planification.
Even though, the plans were clinically acceptable, it was demonstrated that an expert physicist
could still improve the planification. Consequently, it is recommended by some papers that a
manual optimisation should be done immediately upon the usage of RapidPlan.
A RapidPlan planification could still be optimised further, even so the usage of RapidPlan still
reduced significantly planning time, thus still being useful. [42-43-44]

It also has been exposed that there is no statistical difference between having a RP model
with or without geometric outliers. A geometric outlier is a treatment planification in the model
set that differs vastly from the other models.
Statistically pulling out from a RP model the geometric outliers makes no change in the final
planification. [45]

Finally, it has been observed that there are small changes going from a model set of 20
patients to a model set of 60 patient. The changes were minimal, but still useful. [46]
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Chapter 2

Methods

2.1 RapidPlan Implementation

2.1.1 Selection Process

We wanted to focus on the prostate treatment with 2 dose levels because they were the
most used treatment for prostate cancer at CHU Namur.
At the CHU Namur, the prescription dose used for a prostate treatment with 2 dose levels (SIB
: Single Integrated Boost) are :

• 70Gy/2Gy - 57.75Gy/1.65Gy : given in 35 fractions

• 66Gy/2.64Gy - 50Gy/2Gy : given in 25 fractions

• 66Gy/2Gy - 56.10Gy/1.7Gy : given in 33 fractions

• 60Gy/3Gy - 44Gy/2.2Gy : given in 20 fractions

The 2 dose levels are given simultaneously. The location of the dose levels will be explained
in the following paragraph.

And their usage in the time spanning from October 2019 to October 2021 were :

Prescription Dose Total number used Percentage time used
70Gy/2Gy - 57.75Gy/1.65Gy 22 13.1 %
66Gy/2.64Gy - 50Gy/2Gy 100 59.52 %

66Gy/2Gy - 56.10Gy/1.7Gy 8 4.76 %
60Gy/3Gy - 44Gy/2.2Gy 38 22.62 %

Table 2.1: Statistic of the prescription dose usage.
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As we can clearly see on table 2.1 the most used dose prescription, at the radiotherapy
service of the CHU Namur, for prostate cancer with 2 dose levels was 66Gy/2.64Gy-50Gy/2Gy.
It is a treatment given in 25 fractions.

Those 2 levels covers either :

66Gy/2.64Gy 50Gy/2Gy

Prostate Seminal vescicle
Prostate + seminal Vescile Prostate lymph node

Table 2.2: Placement of the dose levels

Figure 2.1: Exemple of the 2 PTV at 2 doses levels, the orange is PTV 66 Gy and the red one
is the PTV 50 Gy. On the left, without lymph nodes. On the right with lymph nodes.

As we can guess on fig.2.1, there is a significant size difference between the two cases. For
having the most generalised RapidPlan model I needed to insert in the model set an adequate
number of both type of geometry. the model set was composed of :

Numbers of plans
Total 56
With lymph nodes 23
Without lymph nodes 33

Table 2.3: Number of plans taken.

Even if Varian advise us to us at least 20 plans as previously said in the paragraph 1.4.3.,
the more plans you have in your model, the more improvements you have up until a limit. [46]
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That is why I have chosen to have 56 plans, with both planification with lymph nodes and
without lymph nodes. The proportion of the plans with and without lymph nodes taken into
the model set was similar to the proportion of the plans with and without lymph nodes done in
the 2 years span.

2.1.2 Structure set

For a better dosimetry, I created personalised structure on all the plans in the model set.

Because of the anatomy of the pelvic region and the marge to the cancerous volume (cfrt
1.1.3.2.4), the overlapping of the PTV with the OAR is a common occurrence. Hence, there is
a risk of conflicting optimisation objectives in the TPS; the avoidance of this occurrence is the
reason that I created some personalised structures.

Moreover it was studied that for the use of gEUD during the optimisation for the pelvic
treatment it was better fitted to use cropped structures with a 4mm crop from the PTV [21].
More details will follow in the upcoming section.

As follow, I not only created different structures for the implementation of RapidPlan but
I also used some structures that were already present. The structure I both used and created,
that will be explained in the following paragraph are :

• PTV_High_eval

• PTV_Low_eval

• PTV_Low_hotspot

• OAR_in

• OAR_out

• OAR

2.1.2.1 PTV_High_eval

This is a structure normally used at the CHU Namur. This structure is the volume of the
PTV that lies further than 5mm to the surface of the body.
Because of the build-up region that we have seen on the PDD for 6X photon (cfr 1.2.1.6) and
because the dose calculation algorithm of Eclipse, trying to optimise for a dose level so close to
the surface of the patient will lead to a dose hotspot deeper in it. This is not a standardised
margin and it may vary in each radiotherapy centre.
The mathematical formula to express it is :

PTV _High_eval = PTV _High ∩ (Body − ⃗5mm)
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In this specific case, the PTV_High_eval always lies further than 5mm from the surface
of the body, nevertheless I used this structure in case there was an exception where the prostate
anatomy varied from a normal patient.

We can see it on fig.2.2. in orange.

2.1.2.2 PTV_Low_eval

This was also a structure already used at the CHU Namur. This structure is used because
of the overlapping of the PTV_High and PTV_Low, due to the margin added. During the
optimisation it is preferred to favour the High dose PTV.
We will also take the volume of the PTV_Low that lies 5mm from the body for the same reasons
named before.
The mathematical formula to express it is :

PTV _Low_eval = (PTV _Low ∩ (Body − ⃗5mm)) ̸⊂ PTV _High_eval

As for the PTV_High_eval, the PTV_Low_eval always lies further than 5mm from the
surface of the body, but for the same reason, I preferred using this structure.

We can see it on fig.2.2. in red.

Figure 2.2: PTV_6600_eval and PTV_5000_eval, which are considered respectively as
PTV_High_eval and PTV_eval in orange and red

2.1.2.3 PTV_Low_hotspot

This was a structure already used at the CHU Namur, it is the volume of the PTV_Low_eval
that lies 8mm from the PTV_High_eval.
Because the PTV_Low_eval is close fitted to the PTV_High_eval and due to their different
dose levels, it is impossible to put an optimisation objective to avoid hotspots. To bypass this
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problem, we place the optimisation objective onto the PTV_Low_hotspot, which lies 8mm from
the PTV. Leaving some space for a dose gradient to be optimised by the TPS.
The mathematical formula to express it is :

PTV _Low_hotspot = PTV _Low_eval − (PTV _High_eval + ⃗8mm)

We can see it on fig.2.3. is the fraction of the PTV_5000_eval, in a slight darker red.

Figure 2.3: PTV_5000_hotspot in a darker red compared to the PTV_6600_eval in orange
and PTV_5000_eval the combination of a lighter red and darker red.

2.1.2.4 OAR_in

Those structures were created for the implementation of RapidPlan. It is the volume of a
OAR that overlaps with at least one of the two PTV.
As I already said, the planification treatment using gEUD improves when combined with cropped
structure for the "in" and the "out" (cfrt 2.1.2), but it makes impossible to place optimisation
objectives on the part of the OAR that overlaps with one of the two PTV stopping us from
putting an upper objective to avoid hotspots.
The mathematical formula to express it is :

OAR_in = OAR ∩ (PTV _Low_eval + PTV _High_eval)

The OAR for which I created this structure are : rectum, anal canal, bladder, small bowel,
sigmoid colon.
I wanted to do the same for the large bowel, but there was only one case where it overlapped with
the PTV out of the 56 planification in the set model. Thus rendering impossible the training of
the structure set by RapidPlan (cfrt 1.4.2).

We can see it on fig.2.4.
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Figure 2.4: Rectum_in in blue compared to the PTV_5000_eval in red and PTV_6600_eval
in orange.

2.1.2.5 OAR_out

Those structures were created for the implementation of RapidPlan. It is the volume of a
OAR that lies 4mm from both PTVs.
I created those structures because of the improved planification using gEUD with cropped OARs
(cfrt 2.1.2).
The mathematical formula to express it is :

OAR_out = OAR − ((PTV _Low_eval + PTV _High_eval)) + ⃗4mm

The OAR for which I created this structure are the same named in the previous paragraph.

We can see an example for this structure it on fig.2.6.

2.1.2.6 OAR

I only used only one OAR structure : large bowel. As I previously said, it only occurred
once in the 56 plans that it was present as "BowelLarge_in". In such a way, I preferred using
the whole structure.

2.1.3 RapidPlan Implementation

The process advised by Varian for a model configuration such as the prostate model is the
following, and will be explained in further details in the next paragraph [28]:
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Figure 2.5: Rectum_out in light green compared to the PTV_5000_eval in red and
PTV_6600_eval in orange.

1. Define the scope and clinical goals of the model.

2. Add a DVH estimation model container and structures.

3. Add plans to the DVH Estimation Model.

4. Train the DVH estimation model.

5. Verify the results of model training : add Optimisation objectives.

[28]

2.1.3.1 Define the scope and clinical target of the model

As already told, the implementation of RapidPlan will be done for the prostate treatment
and for a specific prescription for VMAT. The model obtained will be tested for another VMAT
prescription and the same prescription for IMRT plans.

The clinical target is to achieve treatment plans that will reach all the clinical goal attached
to the prescription. The created plans will have either the same quality or better than the plans
in the model set.

The treatment plans will be preferred to reach the coverage of the 95% prescription iso-
dose to 100% of the target volume, but I will consider acceptable if those plans could give us
acceptable (acceptable planification are a subjective matter and depends on the patient anatomy
hence they can not be fixed by some rules), they can plan that could be improved furthermore.
This will still lead to a better time efficiency for the physicists.
Another implementation of RapidPlan found that the treatment plans created with RapidPlan
could be optimised even further by a trained physicist. This will still give a better time effi-
ciency due to the better starting point from the optimisation, instead of starting from a blank
planification (Cfrt1.4.3).
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2.1.3.2 Add a DVH estimation model container and structures

I started by creating a new model by creating all the structures mentioned in the previous
paragraphs.

I followed the guidelines given by Varian.[28]
I added the structures for the models as I wanted to generate some DVH estimations. Some
structures in the model are not always present in the plans from the model set. The name of
the structures and their ID were created to match automatically with the ID and names in the
structure set.
The model contains several target structures, they are not automatically matched even if they
have the same ID and structure name.

2.1.3.3 Add plans to the DVH estimation model

I remember to the reader that I used a total of 56 plans to insert into the model.

2.1.3.3.1 General plan set guidelines
I tried to create the most general model possible one in this case. As a consequence, I placed all
the plans on the model without considering the structure overlap, the size OAR and target and
the numbers of arc.
But I still used the treatment plans with the same treatment technique (VMAT) and with the
dose prescription.

Even though the minimum number for creating a model was 20, I decided to generate 56
plans in order to have a more generalised model (cfrt 1.4.2.2).
Even if RapidPlan allows to insert the same plan with a different planification, I always inserted
different plans [28].
All the planification present in the set model were accepted for treatment even if some had some
clinical goals that were not achieved. Because of the unique anatomy of the patient, the physicist
and radiotherapist decided that it was impossible to achieve those goals.

2.1.3.4 Train the DVH estimation model

In the beginning, I inserted all the plans with all of the structures present in it and all the
correct prescriptions (cfrt 2.1.3.2).

Then you can train the model, RapidPlan gives all the different DVH superposition and
statistic about the planification.
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2.1.4 Verification of the results of model training

The verification of the model training were accomplished by using the model analytic from
Varian and using the statistical information given by RapidPlan.
Model Analytics is the first cloud-based application for knowledge guidance from Varian. When
a DVH estimation model is uploaded into Model Analytics, it is automatically analysed and the
results are given immediately.
This tool helps us by giving a guidance in the outlier identification.

We can see the processus on fig.2.6.

Figure 2.6: Schematising of the process for the verification of a RapidPlan Mode. [28]

1. Processing the target DVH by training the model

2. Processing the influential data points by training the model

3. Checking the geometric and dosimetric outliers with the tools implemented in RapidPlan
: Cook’s distance, etc...

4. Removing the most important geometric and dosimetric outliers

5. Repeat until satisfied and model verification complete

After the model is extracted and exported into Model Analytics, it will be analysed.
Model analytics will follow two phases.

1. Individual outlier structures, from specified plans in the model set, are identified and will
be advised to take them out of the model, and iterate again until an acceptable model will
be achieved. This is at the discretion of the model planner.
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2. Model Analytics will identifies the remaining structures that are significantly different from
the rest of the model and will report any gaps in the data.

I also verified the model in RapidPlan by checking the Cook’s distance then I removed the
influential data points in the regression. I iterated this processus as many time as I needed to
achieve a model that I was satisfied of.
I tried to achieve a R2 as close as possible to 1, but for the Rectum structures I never had
more than 0.609 due to the variation of the anatomy from a patient to another. It was, then,
impossible for it to give a better regression. This was also observed in other pelvic RapidPlan
model. [28]

2.1.5 RapidPlan models

I have created 5 different models by iterating and comparing with the last model iteration.
I will explain further the changes on each iteration .
In the first RapidPlan model I took the manually optimised plan and imported it in the set.
But for the other, I compared every manually optimised one with the RapidPlan optimised one,
then I put into the new models the best one between the manually optimised and the RapidPlan
optimised.

2.1.5.1 RapidPlan implementation models

I created the RapidPlan models in an iterative process, aiming to improve the plan quality
with each iteration. When I started this process I didn’t knew how many Rapidplan models I
needed to achieve an acceptable quality. I finished by doing 5. The idea behind was to continue
up until when a new model gave me worse results than the precedent model.

Rapidplan aim to achieve a minimum for the cost function (cfrt 1.2.2.1), and with this
process for creating the model there is no way of knowing if the best model achieve an absolute
minimum or a local minimum, but it was the most efficient way of creating the models due to
the time constraints of the simulations for this thesis.

All the constraints and NTO for the models are in the annex 1.

2.1.5.1.1 RP Model 1 : RP1 I placed fixed optimisation objectives on all the targets
because it would give a better results for the pelvic treatment (cfrt 1.4.3).
For the OAR_out, I put 2 gEUD with different value with generated dose to try to optimise on
the whole DVH (Cfrt 1.2.2.1.4). I also set optimisation objectives on the 20Gy dose for trying
to decrease the volume receiving it. And so reducing the low doses volume and having a bigger
dose gradient around the target.
For the OAR_in, I put an upper objective to avoid hotspots and in order to achieve the clinical
goals sets by the radiotherapist.
I used a classic NTO, that would try to force the 95% isodose at 3mm from the target border.
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I didn’t put at 0mm from the target border in order to not shrink too much the 95% isodose
around the PTVs.

2.1.5.1.2 RP Model 2 : RP2 In this model I did not changed a lot of parameters : it was
just a refining of the priorities and NTO with a change in the plans into the model set. I compared
the 56 plans singularly MO vs RP1, and put into the model the best of each comparison. (cfrt
1.4.3)

The last big change was the changing of the plans set was the lowering of the lower objective
for the PTV_High_eval, because of the conflict with the upper on the z_Rectum_in. In RP1
I set an upper on the z_Rectum_in that was lower than the lower set on the PTV_High_eval,
thus giving a contradictory objective.

2.1.5.1.3 RP Model 3 : RP3 In this model I again compared all of the 56 plans MO vs
RP1 vs RP2 and I put into the model set the best one in it. (cfrt 1.4.3).
For the OAR_out I replaced the double gEUD with a single gEUD and an upper on 1% volume
of the structure to try having a better planification.
I lower and refined the priorities accordingly. The "Distance from target border" of the NTO
was set to 0 for trying having a better conformity.

I also stopped using the "z_BowelLarge_out" and started using the "BowelLarge", because
there was only one occurency where the two structures were different. (cfrt 2.1.2)

2.1.5.1.4 RP Model 4 : RP4 In this model, I again compared separately each of the 56
planifications (MO vs RP1 vs RP2 vs RP3) and I chose the best for each one to put into the
model set.

I removed the upper 0% from the PTV_low_eval and the z_CanalAnal_in, because I
noticed they were not useful. I also added an upper 0% on the z_ColonSigm_in to avoid and
decrease the hotspot for this structure. I also removed the upper 20Gy on the z_Bladder_out
and z_ColonSigm_out because they were counter productive.

Finally I also refined the priorities and the NTO accordingly.

2.1.5.1.5 RP Model 5 : RP5 As per usual, I compared separately each of the 56 planifi-
cations (MO vs RP1 vs RP2 vs RP3 vs RP4) and I chose the best for each to put into the model
set.

I only changed the priorities of all the objectives to "Generated", as such RapidPlan will
chose them accordingly.

2.1.5.1.6 RP model with standard planifications : RP_sp4 After comparing the
first 5 models, I took the best of the 5 and created a model with the same objectives but the
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planifications in the models where all the manual optimised one. I created this to confirm the
hypothesis that putting new RapidPlan optimised models into it would get us a better model.
(cfrt 2.1.3)

2.1.5.1.7 RP Model without in and out : RP_wo After comparing the first 5 models,
I took the best of the 5 and used its objectives to create a new model without the structures
"_in" and "_out". The best of the 5 models was RP4, this will be explained furthermore in the
next sections.

I didn’t use any structure with the "_in" and "_out", but the entire structure.
I put all the objectives that I previously used separated into the "_in" and "_out" into the full
structure and I refined the objectives accordingly.

This model was created to assess if the use of the structures "_in" and "_out" were useful.

2.1.6 Test

I tested all the 5 model for the prescription : 66Gy/2.64Gy - 50Gy/2Gy

Then the best of the 5 model has been tested also for :

• VMAT 2/3 arcs : 70Gy/2Gy - 57.75Gy/1.65Gy

• VMAT 2/3 arcs : 60Gy/3Gy - 44Gy/2.2Gy

• IMRT 5 Beam : 66Gy/2.64Gy - 50Gy/2Gy

• IMRT 7 Beam : 66Gy/2.64Gy - 50Gy/2Gy

For the two IMRT test, I will test with two different beams geometry.

As we can see on fig.2.8. the 2 geometries are mirrored. The biggest impact on this is that
IMRT A irradiates the target without irradiating directly the rectum and IMRT B irradiates the
target while irradiating directly the rectum. This is the same principle for the IMRT 7 beams
A and B as we can clearly see on fig. 2.9.

Following that, I chose to create 2 more models, to do some more tests.
One with the same structures and constraints that of the best model, but the plans in the set
model were all the manually optimised plans.
The other one, was one without _in and _out structures where the constraints set for them
were combined into the OAR.
Those 2 models were compared with the manually optimised plans and the best of the first 5
models. The comparation was done with the clinical goal : 66Gy/2.64Gy - 50Gy/2Gy.
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2.2 Clinical constraints

The clinical constraints come from the protocol attached to the plan before the planifica-
tion, the radiotherapist attaches the protocol to plan by his own discretion.

There are 2 type of constraints : volume constraints and dose constraint.

2.2.1 Volume Constraints

The volume constraint is noted as V xGy [% orcm3]. It is required that the volume of the isodose
xGy is smaller than a certain percentage of the total volume of the OAR (%) or of a fixed volume
(cc).

2.2.2 Dose constraints

The dose constraint is noted as Dx% [Gy]. It is required that x% volume of the PTV or OAR
is irradiated to be more or less than the constraint (more for the PTV, less for the OAR) , or
that the mean dose received by the volume to be less than a certain dose x.

2.2.3 Clinical prescription

As said above on 2.1.6, I will test following the clinical prescriptions also for different dose
prescriptions.

2.2.3.1 Clinical prescription 66Gy/2.64Gy - 50Gy/2Gy

The clinical constraints for the prescription : 66Gy/2.64Gy - 50Gy/2Gy, 70Gy/2Gy -
57.75Gy/1.65Gy, 0Gy/3Gy - 44Gy/2.2Gy are in the third annex.

2.3 Plan evaluation

On the planification I always normalised that 100% of the prescribed dose is given to
50% of the PTV_High_eval volume. This is a step always done, because the final goal for
the PTV_High_eval is to be a perfect step function. This is clearly impossible due to the
uncertainties, but to try and achieve the goal this step helps to normalise the DVH of the
PTV_High_eval around 100% of the prescribed dose.
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The models will be compared on all the clinical constraints from the clinical protocols for
all the OARs and PTVs, and on 3 index for the PTVs. I took the average and standard deviation
of the results of the clinical constraints and the 3 index for having a better assessment of the
plan quality, but it is just a faster tool to show the results, the reality is that the results don’t
always follow a normal distribution, and for the OAR individual results depend heavily on the
the patient geometry.

The 3 index, that will be explained in more details in the following sections are :

• CIP95, Conformity Index Paddick 95% isodose.

• CIP100, Conformity Index Paddick 100% isodose.

• HI , Uniformity Index.

2.3.1 Index

2.3.1.1 Conformity Index Paddick

A conformity index is a formula to see how well the volume of a certain isodose conforms
to the shape and size of a target volume. Because the conformation of a certain isodose to the
shape and size of a target is related to the success of the irradiation, and accurate Conformity
Index (CI) is needed to assest the quality of the planification.[47]
In the literature, different CI were compared and analysed. The two most used CI were [47] :

• PITV (Prescribed Isodose Treatment V olume) = PIV
TV

– PIV = Volume prescribed isodose

– TV = Target volume

• RCI (Raiation Conformity Index) = VPIV

VI

– VPIV = target volume

– VI = volume of the target volume covered by the prescription isodose

They are easy to calculate, but they have intrinsic flaws. For the PITV and RCI, a score of 1
should be a perfect score. If the score is greater than 1 it indicates over-treatment, if the score
is lower than 1, it indicates under-treatment, and vice-versa for the RCI. Nonetheless, those are
heavily criticised because they do not take into account the location of the PIV relative to the
TV.
The PITV could score 1, whether the RCI conforms perfectly to the TV or not. We can see the
process on fig.2.10.

For the RCI, a perfect score would be a score of 1, and it will never be higher than 1.
Although the RCI would not gives us a false perfect score for radiation distribution far from the

42



CHAPTER 2. METHODS 2.3. PLAN EVALUATION

target volume, it would gives us a perfect score even if the isodose volume does not conform to
the PTV, which leads to overtreatment. As we can see on fig 2.11. [47]

A new index was created, the Conformity Index Paddick (CIP). Which combines the two
indexes.

CIP =
TVPIV

TV
× TVPIV

PIV
=

TV 2
PIV

TV × PIV

• TVPIV = volume of the target covered by the prescription isodose

• PIV = volume of the target isodose

• TV = target volume

A score of 1 is the perfect score for this index. It cannot be higher than 1.

As we can see on fig.2.12, the CIP gives us a better CI that can be used in a wider range
of cases, while still giving us an easy understanding of the plan quality. Nevertheless, it still has
intrinsic flaws, such as not taking into account the dose gradient around the target volume or
the type of normal tissues.

In this case the CIP100 will always be near 50% because of the normalisation of 100% of
the dose given to 50% of the PTV_High_eval volume.

2.3.1.2 Homogeneity Index

The Homogeneity Index (HI) is a tool used for analysing the dose uniformity in the target
volume. Different formulas are used in the literature, but the most common used one is [48]:

HI =
D2% −D98%

DP

• D2% = dose to 2% of the target volume, indicating the max dose

• D98% = dose to 98% of the target volume, indicating the min dose

• DP = prescribed dose to the target volume

The reason behind the selection of the D2% and D98% is that the calculation of the dose
maximum and minimum is sensitive to the calculation parameter. Furthermore, the high dose
gradient in IMRT and VMAT could skew the minimum dose. A perfect score would be 0, the
higher it gets the worst it becomes.
This index still had its limitation such as the multiple indexes proposed in the literature and their
difficulties in their interpretation. Moreover, the limited information regarding the usefulness of
having a planification with a lower HI compared to one with a higher HI. Even if some studies
suggest that a better dose homogeneity (lower HI) will lead to a better OAR preservation. [49]
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2.3.2 Plan

For all the models created with the clinical prescription 66Gy/2.64Gy - 50Gy/2G, I com-
pared them with the MO plans and with the model created before. During the implementation
I compared the 56 planifications of the model set.

For the 2 different clinical prescriptions I will compare the RP plans with the MO. I
compared all the planifications done in the 2 years span.
20 planifications (11 with lymph nodes and 9 without lymph nodes) for the 60Gy prescription.
10 planifications (1 with lymph nodes and 9 without lymph nodes) for the 70Gy prescription.

For the IMRT vs VMAT, I will compare the 4 against the MO VMAT.
I compared 20 planifications taken arbitrarily from the model set as to have a sample with
the same proportion of planifications with and without lymph nodes. In total they were 20
planifications (12 without lymph nodes and 8 with lymph nodes).

2.3.2.1 Kolmogorov-Smirnov test

For comparing the models, I will use the Kolmogorov-Smirnov test. Because the data were
not always distributed following a normal distribution, I could not do a test-t Student. This is
a statistical test that allows to compare two or more distributions that don’t follow the normal
distribution.

The Kolmogorov-Smirnov test determines if two distributions are statistically different
or not, without making specific assumptions. I will use a p-value of 0.05 to determine if the
distributions are statistically different or not.

I performed the Kolmogorov-Smirnov test following with an online tool [50] created by the
company AAT Bioquest. This tool has been cited in 5 different publications.

2.3.3 Determining the better model

For determining the better model, I compared the different clinical goals and the 3 index
defined in the previous sections.

Because this RapidPlan implementation is for a double target prescription, the 2 targets
will be superposed, so that the usage of the CIP95 and CIP100 would be difficult to understand
for the lower dose target, I only used them for the PTV_High_eval.
I used the HI for the PTV_High_eval and the PTV_Low_hotspot, I did not use it for the
PTV_Low_eval because of its adjacency with the PTV_High_eval, thus we would have skewed
results. Indeed, being up to the PTV_High_eval, the results would be skewed.

For determining if a model is better than another, I will compare if the coverage and
conformity of the isodose is statistically different from one to another. If they are, then I will
check if there are statistical differences in the clinical goals for the OAR and see if the one with
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the better coverage and isodose has at least no statistical difference or better OAR sparring.
If the OAR is worse on the model with the better coverage and conformity of the isodose, the
model is worse.
For the comparison of model where there are no statistical differences for the coverage and
conformity of the isodose, I will look if there are statistical differences for OAR sparring, if there
are, then the one with the better OAR sparring is better, if there are not then the 2 models are
statistically equal.

An important part is that the definition of "acceptable planification" is a subjective matter
and there isn’t an absolute consensus amongst physicist. For me, an acceptable planification is
a planification that achieves all the clinical constraints while still having an adequate coverage
of the isodose 95% prescription. An adequate coverage isn’t defined because it depends on the
geometry of the PTV, if the PTV is big enough to overlap with a bone structure, it will be
accepted that the isodose don’t cover that part of the PTV or if there are micro volume on
the edge of the PTV aren’t covered by the isodose it could still be accepted, because there are
uncertainties on the dose calculation algorithm of the TPS.
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(a)

(b)

Figure 2.7: Image of the 2 geometries for IMRT : a) IMRT 5 A; b) IMRT 5 B
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(a)

(b)

Figure 2.8: Image of the 2 geometries for IMRT : a) IMRT 7 A; b) IMRT 7 B
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Figure 2.9: Cross-section of four different three-dimensional treatment plans using the PITV
ration. The area shaded is the TV and the dashed line is the prescription isodose. The PITV of
all 4 is one. [47]

Figure 2.10: A non conformal dose plan that has a perfect RCI of 1. [47]
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Figure 2.11: Comparison of the 3 CI for various treatment plans. [47]
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Chapter 3

Results

Now, I will talk about the results of the comparison between the model for each case. I will
compare separately the 33 cases without lymph nodes and 23 cases with lymph nodes. In order
to have a clear understanding if a model works better for one or another. The other comparison
will be done with all these cases together.

In the second annex there will be all the graph of all the constraints for each comparison.
I advise dearly to have them on the side for each comparison to have a better understanding,
even if just with the tables should be enough to understand the differences.

3.1 Comparison between models

As stated above, I will compare separately the planification with lymph nodes and without
lymph nodes.
I will start with the comparison between the 5 models to understand which one is better. I will
compare for each PTV and OAR separately.

3.1.1 Planning treatment without lymph nodes

3.1.1.1 PTV_6600_eval

As we can clearly see from Table 3.1 and 3.2, the D95% is statistically lower, compared to
the MO plans, for all the models with the only exception being RP4.
Unlike what it is said in the literature (cfrt 1.4.3), the hotspots in the PTV were not statistically
different for any case, as the exception when comparing the model 2 and the model 3.
The HI were fairly similar for all cases, but the fact that the models gave more consistent results,
it gave a statistical difference in some cases.
For the CIP100, we waited for a measure of around 0.5, and when it was the case, then the only
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difference was the smaller standard deviation because of the more consistent plans.
As for the CIP95, we had more consistent results and also statistically higher, this is due to
the better conformity of the isodose 95% because the D95% was statistically lower for all cases
except for the model 4.

Between models, the biggest statistical difference was between model 4 and model 5, that
is caused by the generated priorities.

Table 3.1: Mean and standard deviation of the model parameter for PTV_6600_eval

MO RP1 RP2 RP3 RP4 RP5
PTV_6600_eval

D95% [Gy] 64.51 ± 0.42 64.09 ± 0.24 64.17 ± 0.15 64.11 ± 0.25 64.39 ± 0.13 63.87 ± 0.45

D01cc [Gy] 68.29 ± 0.60 68.00 ± 0.37 68.00 ± 0.42 68.36 ± 0.42 68.70 ± 0.50 68.14 ± 0.28

HI 0.051 ± 0.012 0.055 ± 0.007 0.054 ± 0.007 0.057 ± 0.007 0.071 ± 0.007 0.079 ± 0.011

CIP100 0.47 ± 0.11 0.49 ± 0.02 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 0.50 ± 0.02

CIP95 0.86 ± 0.05 0.90 ± 0.03 0.90 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 0.91 ± 0.01 height

Table 3.2: P-value of the comparison between models for PTV_6600_eval, in green the p-value
lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
PTV_6600_eval

D95% [Gy] 0.01 < 0.01 0.13 < 0.01 < 0.01 0.06 < 0.01 < 0.01 < 0.01

D0.1cc [Gy] 0.12 0.10 0.98 0.65 < 0.01 0.06 0.05 0.29 < 0.01

HI 0.03 0.03 0.72 < 0.01 0.34 0.24 0.97 < 0.01 < 0.01

CIP 100 0.06 0.05 1.00 0.03 1.00 0.65 0.97 0.05 0.97
CIP 95 < 0.01 < 0.01 0.80 < 0.01 0.96 0.03 0.17 < 0.01 < 0.01

3.1.1.2 PTV_5000_hotspot and PTV_5000_eval

As we can clearly see on table 3.3 and 3.4, the RapidPlan optimised plan were more consis-
tents with a smaller standard deviation. For the PTV_5000_eval and PTV_5000_hotspot we
have different behaviours, the D95% is not statistically different for almost all cases, and between
models we have some statistically differences.

Table 3.3: Mean and standard deviation for the model parameter of PTV_5000_eval and
PTV_5000_hotspot

MO RP1 RP2 RP3 RP4 RP5
PTV_5000_hotspot

D0.1cc [Gy] 52.39 ± 1.32 51.62 ± 0.44 51.56 ± 0.43 52.19 ± 0.55 51.87 ± 0.50 51.70 ± 0.47

HI 0.065 ± 0.019 0.047 ± 0.010 0.049 ± 0.011 0.060 ± 0.011 0.058 ± 0.011 0.057 ± 0.011

PTV_5000_eval
D95% [Gy] 49.01 ± 0.40 49.35 ± 0.10 49.20 ± 0.11 49.25 ± 0.25 49.07 ± 0.12 48.97 ± 0.16

Table 3.4: P-value for model comparison PTV_5000_eval and PTV_5000_hotspot, in green
the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
PTV_5000_hotspot

D0.1cc < 0.01 < 0.01 0.88 0.17 < 0.01 0.23 0.03 0.01 0.29
HI < 0.01 < 0.01 0.98 0.17 < 0.01 0.87 0.65 0.06 0.84

PTV_5000_eval
D95% < 0.01 < 0.01 < 0.01 0.04 < 0.01 0.24 0.09 0.01 0.01
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3.1.1.3 Rectum

As we can understand tables 3.5 and 3.6, when comparing RP optimised with the Manually
optimised plans, we have that the RP optimised plan to have a better rectum sparring for doses
lower than 53Gy and the dose coverage across different doses. Furthermore, other than for the
model 5, there were no differences on the hotspot dose. For the model 5, we have lower doses
for each constraint the Rectum that are statistically significant.

Between models there were not many differences, sometimes the hotspots were statistically
different. They were always on acceptable levels.

Table 3.5: Mean and standard deviation for the model parameter of Rectum

Rectum MO RP1 RP2 RP3 RP4 RP5
V62Gy [%] 11.85∓ 3.16 10.25∓ 3.33 9.96∓ 2.82 10.13∓ 2.88 10.18∓ 2.88 8.68∓ 2.43

V53Gy [%] 21.29∓ 5.29 18.17∓ 5.03 17.37∓ 4.42 17.62∓ 4.54 17.35∓ 4.42 15.98∓ 4.19

V44Gy [%] 35.33∓ 7.08 29.80∓ 7.01 28.44∓ 6.77 27.78∓ 6.75 27.28∓ 6.53 25.48∓ 6.40

V35Gy [%] 50.06∓ 9.17 42.69∓ 8.58 40.58∓ 8.81 38.34∓ 8.51 37.34∓ 8.34 34.74∓ 8.05

V27Gy [%] 63.43∓ 11.85 59.13∓ 9.61 55.67∓ 9.56 51.30∓ 9.47 49.44∓ 9.47 45.22∓ 9.33

D30% [Gy] 46.81∓ 5.49 43.17∓ 5.10 41.94∓ 5.12 41.13∓ 5.87 40.55∓ 6.01 38.62∓ 6.46

D25% [Gy] 49.92∓ 5.09 46.88∓ 4.78 45.83∓ 4.79 45.42∓ 5.45 44.94∓ 5.49 43.19∓ 5.90

D53% [Gy] 32.05∓ 7.45 29.20∓ 5.55 28.08∓ 5.12 26.20∓ 5.06 25.24∓ 5.20 22.97∓ 5.03

D0.1cc [Gy] 65.57∓ 0.40 65.49∓ 0.37 65.65∓ 0.42 65.28∓ 0.50 65.62∓ 0.35 65.33∓ 0.31

Table 3.6: P-value for comparison of model for Rectum, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Rectum
V62Gy 0.15 0.17 0.92 0.29 1.00 0.41 1.00 0.01 0.29
V53Gy 0.07 0.10 0.90 0.17 1.00 0.10 1.00 0.01 0.65
V44Gy 0.01 0.01 0.69 0.01 0.97 0.01 1.00 0.01 0.45
V35Gy 0.01 0.01 0.47 0.01 0.85 0.01 0.97 0.01 0.65
V27Gy 0.02 0.01 0.22 0.01 0.17 0.01 0.85 0.01 0.29
D30% 0.01 0.01 0.78 0.01 0.65 0.01 0.97 0.01 0.45
D25% 0.01 0.01 0.75 0.01 0.97 0.01 1.00 0.01 0.45
D53% 0.01 0.01 0.21 0.01 0.29 0.01 0.84 0.01 0.17
D0,1cc 0.37 0.65 0.23 0.05 0.03 0.65 0.03 0.01 0.03

3.1.1.4 Anal canal

As we can see on table 3.7 and 3.8. There is not any statistical difference with the first 4
models, the only statistical difference was when comparing the RP model 5 and the manually
optimised. Even without any statistical difference, we can still see a decrease in the mean dose
for the anal canal. The absence of the statistical difference is probably due to the high standard
deviation. This is due to the different anatomies of a patient.

Table 3.7: Mean and standard deviation for the model parameter of anal canal

Canal_Anal MO RP1 RP2 RP3 RP4 RP5
Dmean [Gy] 16.16∓ 7.94 13.57∓ 7.74 13.63∓ 7.60 13.29∓ 7.50 12.90∓ 7.52 11.63∓ 6.74
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Table 3.8: P-value for comparison of model for anal canal, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Anal canal

Dmean 0.01 0.01 0.01 0.04 0.05 0.24 0.10 0.01 0.01

3.1.1.5 Bladder

As we can see on table 3.9 and 3.10, the only statistical differences for the bladder clinical
goal were for the model 4 were the hotspot was higher. For the model 5 we can see that the varian
for the hotspot was the half of the other, which mean that it gave more consistent planification
for the bladder.

Between models there were only 4 statistical differences.

Table 3.9: Mean and standard deviation for the model parameter of bladder

Bladder MO RP1 RP2 RP3 RP4 RP5
V49Gy [%] 19.27∓ 9.86 17.89∓ 9.99 16.80∓ 9.10 16.77∓ 9.17 16.43∓ 8.96 15.50∓ 8.77

V62Gy [%] 10.31∓ 6.03 9.52∓ 5.97 9.12∓ 5.66 9.26∓ 5.75 9.31∓ 5.81 8.47∓ 5.46

D53% [Gy] 18.07∓ 12.93 17.04∓ 12.37 15.53∓ 10.96 14.41∓ 10.31 13.77∓ 9.88 12.58∓ 9.19

D0.1cc [Gy] 67.58∓ 0.52 67.45∓ 0.52 67.49∓ 0.56 67.68∓ 0.56 68.30∓ 0.64 67.30∓ 0.28

Table 3.10: P-value for comparison of bladder parameter, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Bladder
V49Gy 0.78 0.65 0.95 0.65 0.97 0.01 1.00 0.17 0.84
V62Gy 0.72 0.65 0.99 0.84 1.00 0.17 1.00 0.29 0.84
D53 0.76 0.45 0.87 0.45 0.97 0.84 1.00 0.10 0.97

D0.1cc 0.73 0.84 0.97 0.45 0.29 0.29 0.01 0.01 0.01

3.1.1.6 Sigmoid colon

For the sigmoid colon as we can see on table 3.11 and 3.12, there is not any statistical
difference other than the V35Gy when comparing MO and RP model 5. But even without the
statistical differences we can see a slight decrease for all the RP model in almost all of the
parameters, the absence of the statistical difference is due to the high standard deviation, which
are caused by the big difference in patient anatomies.
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Table 3.11: Mean and standard deviation for the model parameter of sigmoid colon

Colon_Sigmoid MO RP1 RP2 RP3 RP4 RP5
V62Gy [%] 0.04∓ 0.13 0.02∓ 0.09 0.02∓ 0.07 0.03∓ 0.10 0.02∓ 0.10 0.02∓ 0.06

V53Gy [%] 0.13∓ 0.44 0.11∓ 0.36 0.08∓ 0.27 0.10∓ 0.35 0.09∓ 0.33 0.08∓ 0.29

V44Gy [%] 1.11∓ 1.60 0.99∓ 1.39 0.70∓ 1.09 0.81∓ 1.23 0.75∓ 1.12 0.59∓ 0.93

V35Gy [%] 2.71∓ 3.53 2.22∓ 2.81 1.67∓ 2.23 1.83∓ 2.36 1.72∓ 2.20 1.29∓ 1.68

V27Gy [%] 4.64∓ 5.99 3.74∓ 4.58 2.97∓ 3.74 3.11∓ 3.86 2.94∓ 3.66 2.15∓ 2.67

D30% [Gy] 6.16∓ 4.57 5.33∓ 3.22 5.23∓ 3.00 5.12∓ 2.84 5.05∓ 2.75 4.58∓ 2.35

D25% [Gy] 7.28∓ 5.62 6.24∓ 3.97 6.04∓ 3.64 5.87∓ 3.42 5.76∓ 3.30 5.13∓ 2.76

D53% [Gy] 3.57∓ 2.25 3.29∓ 1.89 3.31∓ 1.85 3.30∓ 1.84 3.27∓ 1.80 3.05∓ 1.63

D0.1cc [Gy] 33.68∓ 20.82 33.03∓ 21.70 30.98∓ 21.39 31.55∓ 21.72 31.63∓ 21.63 30.42∓ 21.52

Table 3.12: P-value for comparison of colon sigmoid parameter, in green the p-value lower than
0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Sigmoid colon
V62Gy [%] 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.33 1.00
V53Gy [%] 0.46 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60
V44Gy [%] 0.88 0.35 0.76 0.52 0.85 0.57 0.98 0.35 0.93
V35Gy [%] 0.53 0.11 0.29 0.39 0.88 0.29 1.00 0.03 0.88
V27Gy [%] 0.94 0.42 0.46 0.40 0.96 0.40 0.97 0.10 0.59
D30% [Gy] 0.99 0.99 1.00 0.89 1.00 0.89 1.00 0.67 0.89
D25% [Gy] 0.99 0.90 0.99 0.89 1.00 0.89 1.00 0.45 0.89
D53% [Gy] 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.90 0.89
D0,1cc [Gy] 1.00 0.90 0.99 0.99 1.00 0.99 1.00 0.99 1.00

3.1.1.7 Bowel small

As we can see on table 3.13 and 3.14., there is not any statistical difference for the bowel
small.

Table 3.13: Mean and standard deviation for the model parameter of small bowell

Bowel_Small MO RP1 RP2 RP3 RP4 RP5
V45Gy [cc] 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.00

D2% [Gy] 3.18∓ 2.23 2.95∓ 1.78 3.05∓ 1.71 2.93∓ 1.70 3.04∓ 1.77 2.86∓ 1.60

D0.1cc [Gy] 5.18∓ 4.14 4.86∓ 3.58 4.79∓ 3.71 4.44∓ 3.14 4.58∓ 3.33 4.33∓ 2.93

Table 3.14: P-value for comparison of small bowel parameter, in green the p-value lower than
0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Small bowel
V45Gy [cc] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D2% [Gy] 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.98

D0,1cc [Gy] 0.95 1.00 0.95 0.99 1.00 0.95 0.99 0.97 1.00
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3.1.2 Planning treatment with lymph nodes

3.1.2.1 PTV_6600_eval

In table 3.15 and 3.16,we can asserts that the D95% is statistically lower for all models,
but the model 4 is thee one that decrease the less, and is still within acceptable limits compared
to the manually optimised plan.
The hotspot is statistically lower compared to the manually optimised for model 1 and 2, for the
other models it is the same.
The homogeneity index was statistically higher for all the 5 models.
And for the CIP95 it was statistically higher for the 5 models too.
Another interesting feature is that the standard deviation of all parameters for the PTV_6600_eval
were always smaller than the standard deviation for the manually optimised.

Table 3.15: Mean and standard deviation for the model parameter of PTV_6600_eval

PTV_6600_eval MO RP1 RP2 RP3 RP4 RP5
D95% [Gy] 64.70∓ 0.44 64.15∓ 0.27 64.15∓ 0.17 64.10∓ 0.23 64.45∓ 0.13 63.96∓ 0.33

D0.1cc [Gy] 68.13∓ 0.71 67.72∓ 0.24 67.73∓ 0.19 68.02∓ 0.26 68.24∓ 0.42 68.28∓ 0.33

HI 0.048∓ 0.016 0.053∓ 0.006 0.052∓ 0.005 0.054∓ 0.004 0.051∓ 0.005 0.06∓ 0.01

CIP 100 0.50∓ 0.05 0.50∓ 0.01 0.50∓ 0.009 0.50∓ 0.01 0.50∓ 0.01 0.50∓ 0.01

CIP 95 0.84∓ 0.07 0.90∓ 0.02 0.90∓ 0.021 0.89∓ 0.03 0.88∓ 0.02 0.90∓ 0.02

Table 3.16: P-value for comparison of PTV_6600_eval parameter, in green the p-value lower
than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
PTV_6600_eval

D95% [Gy] < 0.01 < 0.01 0.13 < 0.01 < 0.01 0.06 < 0.01 < 0.01 < 0.01

D0,1cc [Gy] 0.12 0.10 0.98 0.65 < 0.01 0.06 0.05 0.29 < 0.01

HI 0.03 0.03 0.72 < 0.01 0.34 0.24 0.97 < 0.01 < 0.01

CIP 100 0.06 0.05 1.00 0.03 1.00 0.65 0.97 0.05 0.97
CIP 95 < 0.01 < 0.01 0.81 < 0.01 0.97 0.03 0.17 < 0.01 < 0.01

3.1.2.2 PTV_5000_hotspot and PTV_5000_eval

We can see in table 3.17 and 3.18 that again, there significant differences for the PTV_5000.
The hotspot are statistically lower from the RP optimised plan compared to the manually opti-
mised. And between models there were some statistical differences.
The homogeneity index was statistically higher for the model 4 and 5, but still within acceptable
margins.
But the D95% was statistically different for all the models, and even worse for the model 5. For
the other model, it was lower but within acceptable margin.
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Table 3.17: Mean and standard deviation for the model parameter of PTV_5000_hotspot and
PTV_5000_eval

PTV_5000_hotspot MO RP1 RP2 RP3 RP4 RP5
D0.1cc [Gy] 55.39∓ 1.92 54.21∓ 0.61 54.09∓ 0.68 54.88∓ 0.68 54.80∓ 0.74 55.05∓ 0.77

HI 0.06∓ 0.01 0.06∓ 0.01 0.060∓ 0.009 0.069∓ 0.007 0.069∓ 0.009 0.08∓ 0.01

PTV_5000_eval
D95% [Gy] 48.97∓ 0.39 48.83∓ 0.20 48.80∓ 0.18 48.78∓ 0.22 48.63∓ 0.19 48.25∓ 0.27

Table 3.18: P-value for comparison of PTV_5000_hotspot and PTV_5000_eval parameter, in
green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
PTV_5000_hotspot

D0,1cc < 0.01 < 0.01 0.88 0.17 < 0.01 0.24 0.03 < 0.01 0.29
HI < 0.01 < 0.01 0.98 0.17 < 0.01 0.88 0.65 0.05 0.84

PTV_5000_eval
D95% < 0.01 < 0.01 < 0.01 0.04 0.05 0.24 0.10 < 0.01 0.01

3.1.2.3 Rectum

As we can see on table 3.19 and 3.20, when comparing the MO plans with the RP optimised
plans, we can easily see that statistically speaking, all the 5 RP models were better than the
manually optimised one for the Rectum.
Out of the 5 models, the best for the rectum was the model 5.

Table 3.19: Mean and standard deviation for the model parameter of Rectum

Rectum MO RP1 RP2 RP3 RP4 RP5
V62Gy [%] 8.97∓ 4.90 7.11∓ 3.80 6.94∓ 3.81 7.23∓ 3.95 7.33∓ 3.93 5.93∓ 3.36

V53Gy [%] 16.53∓ 6.88 13.00∓ 5.98 12.42∓ 5.85 12.85∓ 6.21 12.60∓ 5.98 11.07∓ 5.52

V44Gy [%] 35.24∓ 7.44 27.67∓ 8.46 26.19∓ 8.46 25.53∓ 8.37 24.58∓ 7.85 21.82∓ 8.29

V35Gy [%] 54.85∓ 7.76 48.45∓ 9.02 45.34∓ 90.92 41.27∓ 8.62 38.43∓ 8.40 34.82∓ 9.06

V27Gy [%] 73.35∓ 7.85 74.05∓ 8.62 70.04∓ 8.72 62.97∓ 8.79 58.28∓ 8.43 53.25∓ 7.86

D30% [Gy] 46.06∓ 3.42 42.97∓ 4.50 41.53∓ 4.17 40.99∓ 4.57 40.06∓ 4.74 38.10∓ 5.08

D25% [Gy] 48.40∓ 3.61 45.05∓ 3.86 44.12∓ 4.12 43.94∓ 4.64 43.20∓ 4.78 41.12∓ 5.12

D53% [Gy] 36.00∓ 4.06 33.69∓ 3.10 32.57∓ 3.49 30.53∓ 3.53 28.98∓ 3.40 27.45∓ 3.34

D0.1cc [Gy] 65.43∓ 1.00 65.18∓ 1.50 65.30∓ 1.58 64.75∓ 1.51 65.16∓ 1.69 64.91∓ 2.37

Table 3.20: P-value for comparison of rectum parameter, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Rectum
V62Gy 0.15 0.17 0.92 0.29 1.00 0.41 1.00 < 0.01 0.29
V53Gy 0.07 0.10 0.90 0.17 1.00 0.10 1.00 < 0.01 0.65
V44Gy < 0.01 < 0.01 0.69 < 0.01 0.97 < 0.01 1.00 < 0.01 0.45
V35Gy < 0.01 < 0.01 0.47 < 0.01 0.85 < 0.01 0.97 < 0.01 0.65
V27Gy 0.02 < 0.01 0.22 < 0.01 0.17 < 0.01 0.85 < 0.01 0.29
D30% < 0.01 < 0.01 0.78 < 0.01 0.65 < 0.01 0.97 < 0.01 0.45
D25% < 0.01 < 0.01 0.75 < 0.01 0.97 < 0.01 1.00 < 0.01 0.45
D53% < 0.01 < 0.01 0.21 < 0.01 0.29 < 0.01 0.84 < 0.01 0.17

D0,1cc 0.37 0.65 0.23 0.05 0.03 0.65 0.03 < 0.01 0.03
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3.1.2.4 Anal canal

As we can see on table 3.21 and 3.22, the only statistical difference is between the RP
model 5 optimised and the MO plan. The other 4 models, even if the DMean were slightly
lower, it was not enough to be a statistical difference.

Table 3.21: Mean and standard deviation for the model parameter of anal canal

Canal_Anal MO RP1 RP2 RP3 RP4 RP5
Dmean [Gy] 16.97∓ 7.44 14.33∓ 6.38 13.52∓ 5.93 12.78∓ 5.71 12.24∓ 5.65 10.72∓ 4.63

Table 3.22: P-value for comparison of anal canal parameter, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Canal_Anal

Dmean 0.38 0.45 1.00 0.29 1.00 0.17 0.97 0.02 0.84

3.1.2.5 Bladder

As we can see in table 3.23 and 3.24, we can clearly see that the hotspot for the RP models
were statistically smaller and more consistent when compared to the MO plans and the D53%
was statistically smaller for the models from 2 to 5.

Table 3.23: Mean and standard deviation for the model parameter of bladder

Bladder MO RP1 RP2 RP3 RP4 RP5
V49Gy [%] 26.75∓ 10.31 24.31∓ 11.52 23.96∓ 11.15 23.80∓ 11.60 23.02∓ 11.45 21.36∓ 10.97

V62Gy [%] 9.39∓ 5.67 8.24∓ 5.14 8.23∓ 5.08 8.50∓ 5.41 8.66∓ 5.54 7.97∓ 5.04

D53% [Gy] 38.60∓ 4.70 36.77∓ 4.83 36.70∓ 4.68 36.62∓ 4.73 35.58∓ 4.82 34.32∓ 4.78

D0.1cc [Gy] 67.64∓ 0.83 67.07∓ 0.28 67.04∓ 0.23 67.00∓ 0.26 67.52∓ 0.30 67.22∓ 0.17

Table 3.24: P-value for comparison of bladder parameter, in green the p-value lower than 0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vs RP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Bladder
V49Gy 0.78 0.65 0.95 0.65 0.97 < 0.01 1.00 0.17 0.84
V62Gy 0.72 0.65 0.99 0.84 1.00 0.17 1.00 0.29 0.84
D53% 0.76 0.45 0.87 0.45 0.97 0.84 1.00 0.10 0.97
D0,1cc 0.73 0.84 0.97 0.45 0.29 0.29 < 0.01 < 0.01 < 0.01

3.1.2.6 Sigmoid colon

As we can see on table 3.25 and 3.26, there were only statistical differences between MO
plans and the model 4 and 5 for the doses below 44Gy.
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Table 3.25: Mean and standard deviation for the model parameter of sigmoid colon

Colon_Sigmoid mo RP1 RP2 RP3 RP4 RP5
V62Gy [%] 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.000 0.00∓ 0.00 0.00∓ 0.00 0.00∓ 0.00

V53Gy [%] 0.07∓ 0.23 0.02∓ 0.10 0.011∓ 0.04 0.01∓ 0.05 0.01∓ 0.05 0.01∓ 0.04

V44Gy [%] 17.36∓ 10.86 13.27∓ 9.81 12.76∓ 9.37 12.16∓ 9.08 11.33∓ 8.72 10.41∓ 7.98

V35Gy [%] 39.37∓ 13.96 31.30∓ 16.28 30.98∓ 17.19 29.40∓ 15.45 26.37∓ 13.28 24.05∓ 12.28

V27Gy [%] 61.20∓ 12.92 58.48∓ 20.50 56.60∓ 20.32 51.38 19.46 48.55∓ 18.81 44.17∓ 17.32

D30% [Gy] 38.08∓ 5.23 34.56∓ 6.38 34.29∓ 6.55 33.38∓ 7.22 32.41∓ 7.18 31.48∓ 7.10

D25% [Gy] 39.76∓ 5.08 36.40∓ 6.45 36.06∓ 6.69 35.42∓ 7.03 34.48∓ 7.06 33.64∓ 7.06

D53% [Gy] 29.85∓ 5.53 28.51∓ 5.56 28.31∓ 5.75 26.63∓ 6.22 25.39∓ 6.05 24.07∓ 5.68

D0.1cc [Gy] 51.05∓ 2.27 50.85∓ 2.14 50.70∓ 1.71 51.02∓ 1.93 50.82∓ 1.86 50.67/mp2.04

Table 3.26: P-value for comparison of sigmoid colon parameter, in green the p-value lower than
0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vsRP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Sigmoid colon
V62Gy [%] 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.33 1.00
V53Gy [%] 0.46 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60
V44Gy [%] 0.88 0.35 0.76 0.52 0.85 0.57 0.98 0.35 0.93
V35Gy [%] 0.53 0.11 0.29 0.39 0.88 0.29 1.00 0.03 0.88
V27Gy [%] 0.94 0.42 0.46 0.40 0.96 0.40 0.97 0.10 0.59
D30% [Gy] 0.99 0.99 1.00 0.89 1.00 0.89 1.00 0.67 0.89
D25% [Gy] 0.99 0.90 0.99 0.89 1.00 0.89 1.00 0.45 0.89
D53% [Gy] 0.99 0.99 1.00 0.99 1.00 0.99 1.00 0.90 0.89
D0,1cc [Gy] 1.00 0.90 0.99 0.99 1.00 0.99 1.00 0.99 1.00

3.1.2.7 Bowel small

As we can see on table 3.27 and 3.28., there are not any statistical difference. The high
standard deviation is due to one exception, in a planification where it was not optimised at all
for the Bowel Small. But for the rest, there is not a statistical change, even if we can see a
decrease in the constraints.

Table 3.27: Mean and standard deviation for the model parameter of small bowell

Bowel_Small Treat RP1 RP2 RP3 RP4 RP5
V45Gy [cc] 23.30∓ 42.26 17.12∓ 32.62 2.01∓ 2.35 3.01∓ 5.50 2.81∓ 4.93 1.75∓ 1.97

D2% [Gy] 41.26∓ 8.97 39.01∓ 9.77 38.22∓ 10.48 38.96∓ 9.92 38.48∓ 10.13 38.04∓ 10.10

D0.1cc [Gy] 48.29∓ 7.70 48.03∓ 8.24 47.78∓ 8.34 48.17∓ 8.51 47.94∓ 8.44 47.31∓ 8.69

#RED 1.17∓ 0.94 1.70∓ 0.88 1.45∓ 0.9625004 1.26∓ 1.01 1.43∓ 0.66 1.19∓ 0.60

Table 3.28: P-value for comparison of small bowel parameter, in green the p-value lower than
0.05

MO vs RP1 MO vs RP2 RP1 vs RP2 MO vsRP3 RP2 vs RP3 MO vs RP4 RP3 vs RP4 MO vs RP5 RP4 vs RP5
Small bowel
V45Gy [cc] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D2% [Gy] 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.98

D0,1cc [Gy] 0.95 1.00 0.95 0.99 1.00 0.95 0.99 0.97 1.00
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3.2 comparison with other dose prescription

As already stated, I also tested the best of the 5 models for other dose prescription, RP4.
One with higher dose levels and one with smaller dose levels. And I compared it with the
manually optimised plans. (cfrt 2.2.1.2 and 2.2.1.3)

For the 70Gy prescription the set I compared was composed of 10 treatment plans : 7 with
lymph nodes and 3 without lymph nodes.
For the 60Gy prescription the set I compared was composed of 20 treatment plans : 9 with
lymph nodes and 11 without lymph nodes.

3.2.1 PTV_High_eval

As we can see on table 3.29 and 3.30 there was only a statistical difference for the D95%
on the 70Gy prescription.

Table 3.29: Mean and standard deviation for other dose levels PTV_High_eval

MO RP MO RP
PTV_6000_eval PTV_7000_eval

D95% [Gy] 58.61± 0.41 58.56± 0.12 D95% [Gy] 68.28± 0.35 68.22± 0.46

D0.1cc [Gy] 62.12± 0.51 62.55± 0.49 D0.1cc [Gy] 72.42± 0.46 72.80± 0.59

HI 0.055± 0.014 0.055± 0.007 HI 0.054± 0.007 0.60± 0.0022

CIP100 0.49± 0.06 0.49± 0.01 CIP100 0.51± 0.05 0.51± 0.02

CIP95 0.87± 0.04 0.88± 0.02 CIP95 0.85± 0.04 0.86± 0.02

Table 3.30: P-Value for comparison of different dose level, in green the p-value lower than 0.05

MO vs RP MO vs RP
PTV_6000_eval PTV_7000_eval

D95% 0.99 D95% < 0.01

D0.1cc 0.42 D0.1cc 0.08
HI 0.98 HI 0.56

CIP 100 0.98 CIP 100 0.08
CIP 95 0.76 CIP 95 0.08

3.2.2 PTV_Low_eval and PTV_Low_hotspot

As we can see on table 3.31 and 3.32, for the PTV_Low_eval and PTV_Low_hotspot,
there were not any statistical differences on any of the constraints.
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Table 3.31: Mean and standard deviation for other dose levels PTVLowevalandPTVLowhotspot

MO RP MO RP
PTV_4400_hotspot PTV_5775_hotspot

D0.1cc [Gy] 46.26± 0.99 46.48± 1.26 D0.1cc [Gy] 60.94± 0.64 61.00± 1.13

HI 0.059± 0.013 0.061± 0.014 HI 0.074± 0.028 0.067± 0.025

PTV_5000_eval PTV_5775_eval
D95% [Gy] 43.09± 0.24 43.04± 0.26 D95% [Gy] 56.25± 0.59 56.28± 0.59

Table 3.32: P-Value for comparison of different dose level 5000 eval and 5000 hotspot, in green
the p-value lower than 0.05

MO vs RP MO vs RP
PTV_4400_hotspot PTV_5775_hotspot

D0.1cc 0.56 D0.1cc 0.99
HI 0.56 HI 0.99

PTV_4400_eval PTV_5775_eval
D95% 0.82 D95% 0.99

3.2.3 Rectum

As we can see on table 3.33 and 3.34, there were again no statistical difference for any of
the constraints. But even if the difference were not statistically significant, we can still see a
decrease in all of the constraints.

Table 3.33: Mean and standard deviation for other dose levels Rectum

MO RP MO RP
Rectum_60 Rectum_70
V60Gy [%] 0.09± 0.16 0.05± 0.0.06 V60Gy [%] 21.65± 8.65 20.01± 9.44

V50Gy [%] 14.05± 5.98 12.88± 5.75 V50Gy [%] 34.02± 8.10 32.29± 9.97

V40Gy [%] 29.65± 6.93 25.67± 8.44 V40Gy [%] 46.96± 8.83 43.11± 10.83

V30Gy [%] 49.51± 8.55 41.09± 12.01 D30% [Gy] 53.30± 7.20 50.66± 8.78

D0.1cc [Gy] 59.76± 0.32 59.62± 0.32 D25% [Gy] 56.86± 6.96 54.50± 7.84

D53% [Gy] 35.28± 6.42 34.81± 6.33

D0.1cc [Gy] 69.43± 0.61 69.57± 0.57
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Table 3.34: P-Value for comparison of different dose level rectum, in green the p-value lower
than 0.05

MO vs RP MO vs RP
Rectum (60Gy) Rectum (70Gy)

V60Gy 0.85 V60Gy 0.76
V50Gy 0.85 V50Gy 0.76
V40Gy 0.17 V40Gy 0.76
V30Gy 0.08 D30% 0.76
D0.1cc 0.17 D25% 0.76

D53% 0.76
D0.1cc 0.40

3.2.4 Anal canal

In table 3.35 and 3.36, we can see that there was a statistical difference for the V28Gy on
the lower prescription, and even for the V32Gy, even if the p-value was not smaller than 0.05, it
was still close and gave us a remarkable decrease of the dose received by the anal canal.

Table 3.35: Mean and standard deviation for other dose levels Canal Anal

MO RP MO RP
Canal Anal 60Gy Canal_Anal 70Gy

V28Gy [%] 24.32± 10.98 15.32± 9.32 D35% [Gy] 13.64± 13.66 9.20± 12.13

V32Gy [%] 20.36± 9.78 13.20± 8.39 D40% [Gy] 10.91± 12.16 7.33± 10.37

Table 3.36: P-Value for comparison of different dose level canal anal, in green the p-value lower
than 0.05

MO vs RP MO vs RP
Canal_Anal Canal_Anal

V28Gy < 0.01 D35% 0.70
V32Gy 0.07 D40% 1.00

3.2.5 Small bowel and sigmoid colon

In table 3.37 and 3.38 we can see that for this 2 OAR too there is not any statistical
differences.
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Table 3.37: Mean and standard deviation for other dose levels Bowel small and sigmoid colon

MO RP
Colon_Sigmoid 70

V60Gy [%] 0.19± 0.47 0.13± 0.34

V50Gy [%] 17.18± 13.23 16.92± 13.53

V40Gy [%] 29.52± 20.65 24.16± 22.10

D30% [Gy] 37.34± 14.23 35.56± 14.97

D25% [Gy] 39.65± 14.66 37.48± 15.35

D53% [Gy] 27.69± 11.91 26.82± 13.41

D0.1cc [Gy] 55.73± 15.48 55.18± 9.56

Bowel_Small 60 MO RP Bowel_Small 70
V42.86Gy [cc] 21.05± 33.18 16.80± 27.78 V45Gy [cc] 3.76± 7.09 3.08± 4.55

D2% [Gy] 25.42± 17.93 21.51± 17.94 D2% [Gy] 34.38± 13.37 35.65± 14.14

D0.1cc [Gy] 37.06± 13.85 35.80± 15.49 D0.1cc [Gy] 43.32± 15.48 47.11± 16.55

Table 3.38: P-value for model comparison for other dose levels for sigmoid colon and bowel small,
in green the p-value lower than 0.05

MO vs RP
Colon_Sigmoid 70

V60Gy 0.78
V50Gy 1
V40Gy 0.63
D30% 0.98
D25% 0.98
D53% 0.98
D0.1cc 0.98

Bowel_Small 60 MO vs RP Bowel_Small 70
V42.86Gy 1.00 V45Gy 0.99

D2% 1.00 D2% 1
D0.1cc 0.79 D0.1cc 0.62

3.3 Comparison with other techniques

3.3.1 comparison with IMRT vs VMAT using RapidPlan for the same
models

While comparing IMRT and VMAT, I chose non to do a p-value test, because the two
different techniques will show us different results, this has already been tested in the literature
[52]. .
This analysis was mostly to see if RapidPlan could give us adequate planifications for IMRT
while using a RapidPlan model that has only VMAT planifications in its model.
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3.3.1.1 PTV_6600_eval

Table 3.39: Mean and standard deviation for other techniques on the PTV_6600_eval

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
PTV_6600_eval

D95% [Gy] 64.43± 0.36 63.20± 0.36 63.53± 0.26 63.93± 0.27 63.84± 0.18

D0.1cc [Gy] 68.35± 0.66 68.67± 0.72 68.76± 0.39 68.01± 0.59 68.28± 0.40

HI 0.054± 0.009 0.085± 0.012 0.079± 0.008 0.061± 0.017 0.067± 0.005

CIP 100 0.50± 0.07 0.48± 0.01 0.49± 0.01 0.49± 0.07 0.48± 0.01

CIP 95 0.88± 0.01 0.89± 0.02 0.89± 0.02 0.88± 0.02 0.89± 0.02

We can see on table 3.38 that the manually optimised plans are still better than the
planifications done with IMRT and RapidPlan.

3.3.1.2 PTV_5000_eval and PTV_5000_hotspot

Again we can clearly see on table 3.39 that the D95% was lower on all the IMRT planifi-
cation while all the hotspot were higher.

Table 3.40: Mean and standard deviation for other techniques on the PTV_5000_ hotspot and
PTV_5000_eval

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
PTV_5000_hotspot

D0.1cc [Gy] 53.18± 2.62 54.30± 2.69 54.57± 2.04 53.44± 2.20 53.43± 1.55

HI 0.061± 0.032 0.125± 0.039 0.128± 0.023 0.090± 0.034 0.094± 0.013

PTV_5000_eval

D95% [Gy] 48.88± 0.88 46.92± 0.96 47.11± 0.57 47.99± 0.57 47.83± 0.35

3.3.1.3 Rectum

We can see on table 3.40 that all the objectives were similar while comparing IMRT and
MO planifications, while the hotspot were a bit lower.
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Table 3.41: Mean and standard deviation for other techniques on the Rectum

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
Rectum

V62Gy [%] 8.60± 2.60 7.68± 2.47 7.88± 2.55 7.78± 2.56 7.85± 2.67

V53Gy [%] 14.34± 4.89 16.49± 4.03 15.47± 3.81 14.05± 4.01 15.01± 3.96

V44Gy [%] 26.45± 6.48 29.96± 6.16 28.89± 6.12 26.24± 5.99 27.84± 6.77

V35Gy [%] 38.98± 7.84 50.30± 9.06 50.82± 9.69 43.86± 8.14 43.21± 8.64

V27Gy [%] 54.72± 12.65 70.17± 12.32 69.19± 13.26 62.69± 10.35 62.07± 10.13

D30% [Gy] 40.44± 3.56 43.74± 3.35 43.18± 4.20 41.15± 3.83 42.03± 4.96

D25% [Gy] 43.94± 3.49 46.49± 3.16 45.89± 3.70 44.01± 3.32 45.00± 4.03

D53% [Gy] 27.45± 4.18 33.06± 4.75 33.12± 4.71 30.42± 4.18 30.35± 5.15

D0.1cc [Gy] 65.69± 0.31 65.37± 0.23 65.42± 0.27 65.23± 0.49 65.34± 0.29

3.3.1.4 Anal Canal

We can see on table 3.41 that the mean doses were similar across the planifications.

Table 3.42: Mean and standard deviation for other techniques on the anal canal

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
Canal_Anal
Dmean [Gy] 13.91± 9.30 14.47± 6.75 14.12± 6.49 13.56± 6.54 13.70± 6.49

3.3.1.5 Bladder

We can see on table 3.42 that again the objectives were similar across the 5 planifications.

Table 3.43: Mean and standard deviation for other techniques on the bladder

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
Bladder

V49Gy [%] 18.22± 9.30 17.08± 8.99 16.49± 9.12 17.68± 8.75 16.54± 9.44

V62Gy [%] 7.83± 4.18 7.19± 4.04 7.23± 4.03 7.46± 4.12 7.39± 4.35

D53% [Gy] 23.15± 15.20 24.87± 14.17 23.37± 14.70 23.354.01 22.59± 12.98

D0.1cc [Gy] 67.78± 0.58 67.49± 0.54 67.44± 0.45 67.02± 0.49 67.10± 0.41

3.3.1.6 Sigmoid Colon

We can see on table 3.43 that the objectives were a bit higher on the IMRT planifications,
not by a lot, but we can still see the difference.
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Table 3.44: Mean and standard deviation for other techniques on the sigmoid colon

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
Colon_Sigmoid

V53Gy [%] 0.01± 0.33 0.11± 0.31 0.09± 0.15 0.04± 0.07 0.02± 0.05

V44Gy [%] 6.61± 9.50 6.85± 10.10 7.45± 8.87 6.93± 8.78 6.47± 9.26

V35Gy [%] 14.90± 21.08 20.25± 19.05 17.94± 18.35 17.98± 16.44 15.46± 15.19

V27Gy [%] 28.65± 28.80 33.10± 29.26 35.30± 27.01 30.60± 23.87 27.07± 23.41

D30% [Gy] 20.83± 17.37 22.17± 16.36 21.46± 16.41 21.36± 15.82 20.59± 15.33

D25% [Gy] 21.86± 17.83 23.40± 16.78 22.65± 17.01 22.79± 16.46 22.00± 16.02

D53% [Gy] 15.34± 13.88 16.36± 14.26 17.56± 12.87 15.68± 12.34 15.35± 11.49

D0.1cc [Gy] 42.73± 21.29 42.14± 20.88 42.56± 20.97 42.29± 20.63 41.90± 19.69

3.3.1.7 Bowel Small

We can see on table 3.44 that the objectives were similar for the 5 planifications.

Table 3.45: Mean and standard deviation for other techniques on the bowel small

MO IMRT 5 1 IMRT 5 2 IMRT 7 1 IMRT 7 2
Bowel_Small
V45Gy [cc] 1.60± 1.98 1.52± 1.98 1.56± 2.07 1.66± 2.05 1.64± 2.02

D2% [Gy] 25.48± 20.63 25.48± 20.19 25.55± 20.50 25.84± 20.41 25.85± 20.57

D0.1cc [Gy] 30.22± 23.03 30.08± 22.39 30.46± 22.60 30.21± 22.43 30.35± 22.54

3.4 comparison with new models

3.4.1 Comparison for 2 new models

I will now test the 2 models : RP_WO and RP_SP that I mentioned (Cfrt 2.1.5.1.6 and
2.1.5.1.7). I analysed the results to see the effects of the closed loop strategy (RP_SP) and the
effect of the structures "_in" and "_out" (RP_WO).

3.4.1.1 PTV_6600_eval

As we can see on table 3.45 and 3.46, the only two models there were not statistically
different for the PTV_6600_eval were the RP4 and RP_WO.
As before, the CIP100 was consistent across all the models.
And when using a RapidPlan model, the standard deviation was lowered, which means the
planification were more consistent.
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Table 3.46: Mean and standard deviation for comparison of new models for the PTV_6600_eval

MO RP RP_WO RP_SP
PTV_6600_eval

D95% [Gy] 64.58± 0.43 64.41± 0.14 64.41± 0.19 64.50± 0.10

D0.1cc [Gy] 68.24± 0.64 68.52± 0.51 68.69± 0.48 68.30± 0.38

HI 0.050± 0.014 0.062± 0.007 0.065± 0.008 0.058± 0.005

CIP 100 0.49± 0.09 0.49± 0.01 0.49± 0.01 0.49± 0.01

CIP 95 0.85± 0.06 0.88± 0.02 0.89± 0.02 0.88± 0.02

Table 3.47: P-Value for for comparison of new models for the PTV_6600_eval

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
PTV_6600_eval

D95% [Gy] << 0.01 < 0.01 0.33 < 0.01 < 0.01

D0.1cc [Gy] 0.02 < 0.01 0.15 0.10 0.15
HI < 0.01 < 0.01 0.15 < 0.01 0.04

CIP 100 0.10 0.08 1.00 0.10 1.00
CIP 95 < 0.01 < 0.01 0.90 < 0.01 0.10

3.4.1.2 PTV_5000_eval and PTV_5000_hotspot

As we can see on table 3.47 and 3.48, the only statistical differences were when comparing
the RP_WO and MO planifications and RP4 and RP_SP.

Table 3.48: Mean and standard deviation for comparison of new models for the PTV_5000_eval
and PTV_5000_hotspot

MO RP RP_WO RP_SP
PTV_5000_hotspot

D0.1cc [Gy] 53.58± 2.15 53.06± 1.57 53.15± 1.62 53.02± 1.74

HI 0.063± 0.017 0.063± 0.012 0.068± 0.013 0.061± 0.016

PTV_5000_eval
D95% [Gy] 49.00± 0.38 48.89± 0.27 48.79± 0.32 48.92± 0.39

Table 3.49: P-Value for comparison of new models for the PTV_5000_eval and
PTV_5000_hotspot

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
PTV_5000_hotspot

D0.1cc [Gy] 0.23 0.33 0.90 0.06 0.62
HI 0.77 0.10 0.33 0.46 0.23

PTV_5000_eval
D95% [Gy] 0.06 < 0.01 0.23 0.77 < 0.01
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3.4.1.3 Rectum

As we can see on table 3.49 and 3.50, the RP_WO was comparatively similar to the RP4
across all range of doses while having a statistically higher hotspot.
While the RP_SP was statistically worse than the RP4 at lower doses.
But when comparing RP_SP with the MO planifications, all of the objectives were still statis-
tically better across all ranges of doses.

Table 3.50: Mean and standard for comparison of new models for the rectum

MO RP RP_WO RP_SP
Rectum

V62Gy [%] 10.58± 4.13 8.95± 3.58 8.65± 3.49 9.69± 3.92

V53Gy [%] 19.21± 6.32 15.30± 5.53 14.98± 5.64 16.52± 5.89

V44Gy [%] 35.24± 7.15 26.07± 7.12 25.88± 8.33 28.45± 7.30

V35Gy [%] 52.04± 8.87 37.75± 8.27 39.21± 10.83 42.71± 8.23

V27Gy [%] 67.54± 11.42 52.96± 9.96 55.86± 12.36 60.18± 9.78

D30% [Gy] 46.44± 4.70 40.26± 5.44 40.21± 5.73 42.55± 4.67

D25% [Gy] 49.21± 4.52 44.13± 5.19 43.77± 5.50 46.08± 4.64

D53% [Gy] 33.67± 6.54 26.73± 4.86 27.98± 5.62 29.67± 4.90

D0.1cc [Gy] 65.50± 0.70 65.43± 1.12 66.23± 1.64 65.35± 0.87

Table 3.51: P-Value for comparison of new models for the rectum

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
Rectum

V62Gy [%] 0.15 0.06 0.90 0.46 0.90
V53Gy [%] 0.04 < 0.01 0.98 0.15 0.90
V44Gy [%] < 0.01 < 0.01 0.98 < 0.01 0.33
V35Gy [%] < 0.01 < 0.01 0.62 < 0.01 < 0.01

V27Gy [%] < 0.01 < 0.01 0.33 < 0.01 < 0.01

D30% [Gy] < 0.01 < 0.01 1.00 < 0.01 0.06
D25% [Gy] < 0.01 < 0.01 1.00 < 0.01 0.33
D53% [Gy] < 0.01 < 0.01 0.33 < 0.01 < 0.01

D0.1cc [Gy] 0.23 < 0.01 < 0.01 < 0.01 0.15

3.4.1.4 Anal canal

As we can see on table 3.51 and 3.52, RP4 and RP_WO were statistically better than the
manually optimised plans, but between the RapidPlan models there are no statistical differences.
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Table 3.52: Mean and standard deviation for comparison of new models for the anal canal

MO RP RP_WO RP_SP
Anal Canal
Dmean [Gy] 16.72± 7.49 12.79± 6.66 12.60± 6.54 14.21± 7.03

Table 3.53: P-Value for comparison of new models for the anal canal

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
Canal_Anal
Dmean [Gy] < 0.01 < 0.01 1.00 0.23 0.46

3.4.1.5 Bladder

As we see on table 3.53 and 3.54, the performance of the models are the same on what we
saw with the anal canal.

Table 3.54: Mean and standard for comparison of new models for the bladder

MO RP RP_WO RP_SP
Bladder

V49Gy [%] 22.42± 10.61 19.21± 10.47 18.39± 10.01 19.94± 11.10

V62Gy [%] 9.99± 5.83 9.10± 5.64 8.74± 5.26 9.40± 5.98

D53% [Gy] 26.40± 14.47 22.56± 13.49 22.72± 13.34 23.77± 14.04

D0.1cc [Gy] 67.62± 0.65 68.00± 0.64 68.10± 0.67 67.79± 0.50

Table 3.55: P-Value for comparison of new models for the bladder

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
Bladder

V49Gy [%] 0.04 0.04 0.77 0.46 0.77
V62Gy [%] 0.50 0.33 0.98 0.77 0.98
D53% [Gy] < 0.01 0.02 1.00 0.06 0.90
D0.1cc [Gy] < 0.01 < 0.01 0.62 0.10 0.23

3.4.1.6 Sigmoid colon and small bowel

As we can see on table 3.55 and 3.56, there were no statistical differences at all even if the
manually optimised plans seems having a higher mean across the objectives. This phenomena
is due to their high standard deviation, which will not allow the test to confirm the statistical
differences.
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Table 3.56: Mean and standard deviation for comparison of new models for the Sigmoid colon

MO RP RP_WO RP_SP
sigmoid colon
V62Gy [%] 0.02± 0.08 0.01± 0.06 0.01± 0.06 0.02± 0.08

V53Gy [%] 0.10± 0.32 0.06± 0.22 0.05± 0.21 0.06± 0.25

V44Gy [%] 9.05± 10.76 5.86± 7.71 5.52± 7.37 6.16± 8.07

V35Gy [%] 20.43± 20.62 13.46± 14.94 13.84± 16.18 14.08± 15.41

V27Gy [%] 31.79± 29.87 24.64± 25.68 24.97± 26.74 26.78± 26.95

D30% [Gy] 21.49± 17.24 18.09± 14.95 17.99± 15.04 18.75± 15.35

D25% [Gy] 22.88± 17.80 19.46± 15.73 19.28± 15.76 20.09± 16.07

D53% [Gy] 16.18± 13.97 13.81± 11.97 14.13± 12.42 14.74± 12.76

D0.1cc [Gy] 42.00± 22.09 40.80± 22.40 40.53± 22.45 40.08± 22.61

Bowel_Small
V45Gy [cc] 13.57± 29.12 1.49± 3.33 0.89± 1.38 0.96± 1.41

D2% [Gy] 25.02± 20.14 22.74± 18.95 22.07± 18.81 23.29± 19.08

D0.1cc [Gy] 29.42± 23.00 28.96± 23.02 28.23± 23.03 29.36± 23.10

Table 3.57: P-Value for comparison of new models for the sigmoid colon

MO vs RP4 MO vs WO RP4 vs WO MO vs SP RP4 vs SP
Colon_Sigmoid

V62Gy [%] 1.00 1.00 1.00 1.00 1.00
V53Gy [%] 0.98 0.98 1.00 0.91 0.82
V44Gy [%] 0.34 0.21 1.00 0.70 0.88
V35Gy [%] 0.05 0.18 1.00 0.15 0.88
V27Gy [%] 0.27 0.43 0.93 0.60 0.98
D30% [Gy] 0.35 0.35 1.00 0.35 1.00
D25% [Gy] 0.24 0.24 1.00 0.35 1.00
D53% [Gy] 0.35 0.50 1.00 0.67 0.95
D0.1cc [Gy] 0.84 1.00 0.95 0.84 1.00

Bowel_Small
V45Gy [cc] 0.16 0.09 0.92 0.10 0.72
D2% [Gy] 0.68 0.56 1.00 0.67 1.00

D0.1cc [Gy] 0.99 0.36 0.88 0.99 0.96
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Chapter 4

Discussion

As in chapter 3, I highly advise to look at the third appendix when reading this chapter,
it may lead to a faster understanding.

4.1 Implementation of RapidPlan

The version of RapidPlan I used was the first one that uses gEUD, thus is a new technique
and still suffer from immaturity.
During the implementation of RapidPlan, I tried different strategies as already stated with the
goal to create the best model possible.
The simplest was to put the objectives on the PTV_6600_eval, PTV_5000_hotspot and
PTV_5000_eval. I used the most used constraints utilised in the service and the most im-
portant feature for this work were the different constraints to the OAR’s.

4.1.1 Double gEUD combined

A double gEUD is when I used two different gEUD for the same OAR.

I started by using a double gEUD (RP1, RP2) on all the "OAR_out" but that lead to a
worse sparring of the OAR and a worse coverage of the PTV_6600 and the PTV_5000 when
compared to models done with a single gEUD (RP3, RP4 and RP5). This is due to the fact
that RapidPlan was intended to work with simpler constraints that work on a single point of
the DVH in contrast of the gEUD that work on all the DVH curve (cfrt 1.4). Hence the double
gEUD led to a overlapping and maybe contradictory constraint, comparatively to the upper and
lower where the overlapping is more difficult to achieve. But with the nature of the gEUD they
will overlap over a dose range, and they will give us a worse results. Double gEUD can lead
us to better results when manually optimised by a trained physicist, but for now it does not
fit well with RapidPlan. RapidPlan still needs refinements about how it calculates the gEUD
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constraints when using double gEUD. In fact the lowest gEUD possible in this case may not be
the best, it would be better to have a compromise between the two.

4.1.2 Single gEUD

When using a single gEUD and one or more upper on the OAR (RP3, RP4 and RP5),
RapidPlan started to give better results compared to the models created before (RP1, RP2) by
having a better coverage of the 2 PTV’ and a better OAR sparring across the whole DVH. This
was due to the change of the double gEUD up to a single one, this manoeuvre led to better
constraints set by RapidPlan.

After introducing the single gEUD model, the greatest difficulty was to optimise the pri-
orities of the objectives and to add some upper objectives in order to help RapidPlan to do a
better planification.

4.1.3 Auto-generated priorities

RP5 had the same constraints as RP4. The only differences were the priorities who were
auto-generated by RapidPlan like so they were not fixed by the creator of the model.
As said in the literature, having fixed priorities for pelvic treatment would give us better plani-
fications when using RapidPlan,but I wanted to explore to see the feedback that I would receive
using gEUD in a RapidPlan model. That is the main reason why I used the first method. The
results were clear, across all the OAR there was a sharp improvement. But in the meantime the
loss in the PTVs coverage was too great to be considered as acceptable.
This is due to the fact that gEUD are powerful constraints that work on all the DVH and not
only on specific points of it. This means that RapidPlan is still not mature enough to use
auto-generated priorities with gEUD because it sets too high priorities for the geometry of the
patient.

4.1.4 PTV behaviour

As expected from RapidPlan, the standard deviation of the PTVs’ constraints were lower
that the ones compared to the manual optimisation (cfrt 1.4.2). Thus having a better interplan-
ification consistency.

Another important aspect was that the D95% for RP models were always lower than
the MO planifications, but the CIP95 were always higher. This means that the coverage and
conformity were always better for the RP models while the minimum dose received by the 95%
of the volume was lower. This was not a problem because the D95% were still higher than the
constraints of the clinical protocol set by the radiotherapist.

The HI was higher when using the RP models.
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4.1.5 OAR behaviour

Across the 5 models, the OARs had mainly the same behaviour, the biggest difference was
the amplitude of those differences. This means that the difference on the doses when comparing
OARs were similar. The consequence of this behaviour was that the standard deviation of the
OARs constraints were very close in every model.

This behaviour was to be expected. In fact, prostate treatments are similar to the treatment
of a sphere, when without lymph nodes and of a cylinder when with lymph nodes . That is the
reason why, when optimising, we lower the dose all around in about the same way. This may
not be true due to the priorities of the OAR, but in this work the ratio of the priorities did not
change a lot.

4.1.6 Hotspots

The average hotspots when comparing RP planifications with the MO have a big depen-
dency on the considered structure.
For the PTV_6600_eval the hotspot were slightly higher for RP planifications on average but
with a smaller standard deviation. This is also one of the factor that led to the higher HI for
the RP planifications.
For the PTV_5000_hotspot they were always lower with a smaller standard deviation for RP
planifications.
The rectum had a lower hotspot with the same standard deviation. In other papers they found
that RP almost always led to a higher hotspot, but this was not the case, in this work. The
reason is probably due to the fact that I used the OAR structure "_in" and "_out".

4.1.7 Differences for treatment with lymph nodes and without lymph
nodes

The biggest difference when comparing the RP planifications and MO planifications with
or without lymph nodes was that with lymph nodes there was a biggest increment in OAR
sparring. The coverage of the PTVs was slightly worse, but this was not a big problem because
the decrease was still within acceptable margin, and the gain in OAR was better than the lost
coverage of the PTVs. Physicist may need to optimise manually more after using RapidPlan for
prostate treatment with lymph nodes.
This was due to the fact that RapidPlan generally prioritise the OAR sparring.

Thus a model for two different geometries can be done if there are at least 20 plans for
each geometry in the model set.
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PRESCRIPTION FOR OTHER DOSE PRESCRIPTIONS

4.1.8 Best RP Models

I previously said, the best of the 5 models I created during the implementation was RP4.
The reason is that it gives a similar coverage of the two PTVs while still having a better OAR
sparring than the MO planifications.
The rectum was the OAR where we saw the biggest improvements, this concerns the case of
planifications with or without lymph nodes.
Regarding the other OARs there were big improvements. Nevertheless they were not big enough
to be statistically significant because of the high standard deviation.

4.2 Usage of RapidPlan models trained with a specific dose

prescription for other dose prescriptions

The RapidPlan optimised planifications were done with the RP4, which is the best amongst
the 5 models that I created.

I averaged the results of 10 cases for the 70Gy prescription (8 with lymph nodes and 2
without lymph nodes) and 20 cases for the 60Gy prescription (10 with lymph nodes and 10
without lymph nodes).
This indicates that the statistical importance was less compared to other tests. Nonetheless they
were the only cases made with those prescription in the 2 years span.

4.2.1 Coverage of the PTVs

While using a RapidPlan model created with another dose prescription than the one of
the planification we can see that there are no big statistical differences for the coverage of the
PTVs. And that is a good news, because on the tests done in the precedent section we saw that
the D95% was lower but the CIP95 was higher. In this particular case there were no differences,
which is a positive way to show that it has not gone worse.

The standard deviations were the same, they did not decrease as when comparing RP4
for the 66Gy prescription with MO, but they maintained approximately the same. The only
exception was the hotspot of the PTV_5000_hotspot. This exception was probably due to
difference in the dose ratio of the two PTVs. As a consequence of the added margin of 8mm to
create the PTV_low_hotspot is probably not adequate for these two cases prescriptions, but it
could be modified by the physicist beforehand.

4.2.2 OAR sparring

There were no statistical differences in the OAR constraints, nonetheless they were slightly
lower while using RapidPlan. The standard deviation were always higher or the same(excluded

73



CHAPTER 4. DISCUSSION
4.3. USAGE OF RAPIDPLAN MODEL TRAINED WITH A VMAT TREATMENT USED

FOR A IMRT TREATMENT

some rare exceptions), oppositely in what I have explained in the last section. Once again, this
may be due to the constraints not being enough powerful in some planifications and too powerful
in others. It all depends on the geometry of the patient.
The model was created on purpose for the 66Gy prescription, this is why this model may not be
the best for those other prescriptions.

4.2.3 Differences between the two dose prescriptions

I expected the results not to be different depending on the dose prescription when com-
paring the RapidPlan with the MO planifications and my expectation were met. This is was
due to the ratio of the two dose levels.

This can be explained with the fact that the most important parameter for RapidPlan is
the ratio between the different DVH of the PTVs and OARs rater than the absolute dose of
them.
Consequently this RapidPlan model can be used as a starting point for planifications with other
dose prescriptions and it should be similar to a manually optimised planification.

4.3 Usage of RapidPlan model trained with a VMAT treat-

ment used for a IMRT treatment

In order to compare the use of RapidPlan for a different treatment technique, I averaged
the value of 20 planifications (11 without lymph nodes and 9 with lymph nodes). My main goal
was to have faster results. I only compared 20 planifications because I would not have done the
KS test. In fact, as I already said, I did not want to assert the differences between IMRT and
VMAT, but to see if it could give us an achievable planification. I already knew there would be
differences in comparing IMRT and VMAT.
With those comparisons I wanted to see if RapidPlan would give coherent results for another
technique.
This has already been tested in the literature, however I wanted to see if a RapidPlan model
with gEUD would still give acceptable results[34].

4.3.1 Number of beam

The quality of the planification treatment will get better as the number of beams increase.
This has already been proved multiple times [53].
I tried with 5 and 7 beams with two different geometry to attempt and test if the results would
be acceptable or not. In the end, acceptable planifications were achieved only for treatments
without lymph nodes, but it was because of not having enough beams.
The constraints generated by RapidPlan were coherent.
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In the hypothesis I would have continued to add beams, we would have had acceptable
results even for the treatment with lymph nodes.

4.3.2 RapidPlan usage

Unfortunately, I could not compare MO planifications of IMRT with a IMRT RP planifi-
cation, because this kind of planification was not done in the last two years at the CHU Namur.
Yet the constraints generated by RapidPlan for this technique were acceptable for this kind of
approach. In fact those were the expected results for IMRT planifications, consequently I can
conclude that RP4 can be used for IMRT planification. However it is still advisable to manually
fine tune to get an even better planifications.

These conclusions are the same as the ones that I found in the literature, hence the use of
gEUD will not change their results [34].

I still advise to add some IMRT planification into the RapidPlan model if the model would
be used daily also for IMRT planifications. Or creating a model for it.

4.4 RapidPlan models with manual planifications in the

model and without personalised structures

During my work at CHU Namur I created two extra models.
The first was created with the same constraints as RP4 but with all the planifications in the
model set were MO planifications, thus not taking advantage of the closed loop strategy. This
model was created to quantify the amelioration due to the closed loop strategy.
The second was created without "_in" and "_out" structures. This model was created in order
to quantify the amelioration we have achieved with the use to those two structures.

4.4.1 RapidPlan model with standard planifications

With this model, the changes are in the same direction as the improvements of RP4, but
to a smaller degree.
The planifications done with this model are in the middle of the MO planifications and the
RP4 planifications. This was an expected results. Because the closed loop strategy helped us in
widening the differences for the model.
The D95% of the PTV_6600_eval and the PTV_5000_eval was better in this model than the
RP4, same for the homogeneity index. But this model lost some of the gains in the OAR sparring
of the low to middle doses.
In addition almost all of the standard deviation were bigger than the standard deviation of the
model RP4.
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The lost of OAR sparing was greater than the gain of the D95% on the 2 PTVs, hence
I considered that the RP4 was the best of the two as expected. Furthermore, the closed loop
strategy is a good strategy when implementing RapidPlan.

4.4.2 RapidPlan model without "_in" and "_out" structures

When comparing this model to the RP4, all the results were almost the same. The biggest
differences were the hotspot for the OAR the PTVs. They were always higher than the RP4
planifications. The biggest drawback were the hotspots of the rectum, indeed the average hotspot
was higher than the limit set by the clinical protocol. Even the hotspots of the other OARs,
even if they were not statistically different, they were always higher and their clinical objectives
were met with more difficulties than when using the RP4 model.

The biggest benefit of this model, is that it is a faster model to use due to not having to
create all the OAR "_in" and "_out", as a consequence its use becomes more efficient.

The results of this model were closer to what we have seen on the literature, with higher
hotspot seen when utilising RP model compared to MO planifications. The use of "_in" and
"_out" structures helped to not have hotspot on the structures. Although it may not have been
the only reason, it is possible that the priorities set on the upper constraints for the hotspot on
the OAR were not high enough, but if I changed them to be higher, they may have worsen the
coverage of the isodose 95% of the PTVs.

When choosing which model was the best by considering efficiency and quality, I think the
RP4 model was fitting better that position thanks to its results. If we think of the usage of the
RP_WO model as a starting point for the planification, it can be seen as a better model, because
afterwards the physicist could lessen the hotspot with some manual modifications. After all it is
a matter of preference when choosing which one of the two model is better (RP4 or RP_WO).

76



CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

RapidPlan is a powerful tool that can help physicist to achieve good planification faster,
easier and in a more reliable way without taking into account the experience. It can helps greatly
the efficiency of a radiotherapy department.
Yet there are still greats drawbacks. When creating a RapidPlan model for a department,
the quality of the model is dependant on the experience of the physicist who creates it. An
experienced physicist could create a good model in a matter of hours, but for a newly physicist
it could take some days. The implementation time will be higher if the physicist wants to do
a quantified comparison of the models to try and achieve an even preciser model, but in my
experience, the quantifying of the changes is not a required step.

5.1 Usage for a different prescription or treatment tech-

nique

RapidPlan is also a good tool to use when optimising a planification of the target organ
that has a different dose prescription or a different treatment technique than the one that are
in the model. It would be better if the model would be adapted to them, but because of the
implementation of RapidPlan, this process is a time consuming work. It would not be time
efficient to create a model for each dose prescription or technique for a specified organ.

5.2 Usage of gEUD

The usage of gEUD in a RapidPlan model was never done before. Indeed, RapidPlan
implemented the gEUD only in late September 2021. Thanks to the work made in this thesis,
I could tell that the gEUD is a really powerful tool if used in a good manner, and the use of
it could simplify the objectives for the planification treatment. But RapidPlan sometimes push
too much the gEUD objective having as a consequence a better OAR sparing but a worsened
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PTVs coverage.

The use of a double gEUD constraint could be a great idea, but more studies should be
done and it should be used with more caution. I think that the way RapidPlan set the constraints
of the objective is not adequate to a double gEUD and should be refined more. For a single
gEUD there are no problems for RapidPlan to set a good constraint.

5.3 Closed loop strategy

The usage of the closed loop strategy is the foundation for a RapidPlan implementation.
Without it, the implementation would not be as refined as it should be. The biggest help this
strategy can give, is to improve planifications that were not as optimised as they could have
been.

This strategy could not be used, if the planifications in the model are known to be the best
for their respective geometry. But because there is not a way of knowing that, using the closed
loop strategy would always gives us better results or in the worst case scenario, the same result.

5.4 Personalised structure : "_in" and "_out"

The usage of the structure "_in" and "_out" were really useful to cushion the hotspot
due to RapidPlan. However the creation of those structure can take some time and it can reduce
the efficiency of RapidPlan. Nevertheless the creation of them could be made faster with a
personalised script to implement in the TPS Eclipse. This would render the process of using
RapidPlan more efficient and it would also add some time to the implementation of it.

The choice to use RP4 instead of RP_WO is a personal one. Some physicist may prefer
RP_WO because it would be faster in addition the physicist could use it as a starting point for
a subsequent optimisation. Some would prefer RP4 because even if it takes a longer time to use
it, it would be more probable to give a satisfactory optimisation without the need to optimise it
even further.
My personal choice would be to use RP4, because it would give me a better starting point if I
want to optimise it further, also I think it is easier to optimise a planification when using those
structures because it would be easier to optimise when the structure are more segmented by
working on smaller and more important parts of the structures. I chose the quality of the model
rather than the efficiency.

Between RP4 and RP_WO there is no worse or better model, what really matter is the
personal choice made by the physicist.
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