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Abstract

Today the use of drones is widely spread for many tasks, but for some of these,
such as firefighting, it is vital that the operator’s hands are kept free to do their job
properly. Hopefully speech recognition is an exploding discipline in deep learning. This
work therefore focuses on finding a deep learning model that recognises spoken com-
mands to control a drone from a pre-defined set.

The first part of the work was to build a training dataset of commands with the
combination of complete commands generated through the use of text-to-speech APIs
and hand-crafted commands. These were created thanks to the concatenation of an
open source spoken words dataset and another set of spoken words acquired through a
web platform created in order to complete the missing words of the vocabulary com-
mand set. The testing set was acquired by asking people to record complete commands
under real conditions.

The second part of the work focuses more on the different models that could be
developed and all the techniques that can be used. These are presented as an ablation
study, in order to improve the results on a test set in real conditions. Several meth-
ods were applied in order to achieve the final goal: the first is the use of computer
vision models where the input of these models is a simple spectrogram of the different
commands. The results using these types of models were not as good as those of the
new models which take directly the raw waveform as input and combines vision, atten-
tion and self-supervised learning. The best version of this model obtains a F1-Score of
0.9973 on a real conditions dataset.
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Chapter 1

Introduction

1 Context

Drones are increasingly present in everyday life. Civilians, companies and govern-
ments use drones in different ways, such as journalism for aerial photographs, docu-
mentaries or even news. They can also be used during disasters, such as the one that
happened last summer in Belgium and Germany, to assess the situation or to search for
people during rescue operations. They can be used by companies with different sensors
to inspect the condition of a building or a place when it is inaccessible for a human
being. Finally, they can be used for military purposes, either for reconnaissance or
combat. Here is the latest Drone Industry Barometer 2021 released by Germany-based
research firm Drone Industry Insights. The Figure 1.1 shows how people using drones
for commercial reasons reported how they actually use drones:

Figure 1.1: Purposes to operate drones

The problem is that you have to use a controller to command these drones which is
sometimes annoying when the pilot’s hands are already full. In the particular case of
this work, the ultimate goal is the use of drones by firemen who need their hands to fully
achieve their mission. Having a way to control the drone without hands is therefore
very useful. Luckily, over the last few years, Deep Learning models have emerged in the
field of Automatic Speech recognition (ASR) and are increasingly present in our daily
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Chapter 1 – Introduction

lives with various personal voice assistants such as Siri, Alexa, Google home and others.
Another type of task that deep learning models can achieve is command recognition.
This is some sort of ASR subset because you only need to recognise a set of commands
and not the entire vocabulary of a certain language.

2 Problem Statement

This Master thesis is in the line of Julien Bolland’s work (2021) [4]. The final goal
is to control a drone through voice, but the objective of this thesis is to focus on the
speech recognition of a command set. A command is made of a name, an instruction
and for some of these instructions a number. Each drone must be uniquely identified
by its name. In this case, it was decided to limit to 4 different names [Alpha, Beta,
Gamma, Delta]. Then, there are instructions without numbers [emergency, go, land,
stop] and instructions with numbers [ backward, down, forward, left, mission, right,
speed, up] where numbers can be [one, two, three, four, five, six, seven, eight, nine,
free]. Here are some examples of commands: {Alpha land, Beta forward two, Gamma
Stop, Delta up six ...}

The most efficient way to represent this is to create a regular language. According to
Louveaux (2021) [21] ”To show that a language is regular, it suffices to describe it using
one of these characterizations : [Regular expressions, Deterministic finite automata,
Non-deterministic finite automata, Regular grammar]” (Slide 75 of the course). Once
again according to Louveaux (2021) [21] ” a deterministic finite automaton is defined
by a five-tuple M = (Q,

∑
, δ , s, F), where :

• Q is a finite set of states

•
∑

is a finite alphabet

• δ : Q ×
∑

→ Q is the transition function

• s ∈ Q is the initial state

• F ⊆ Q is the set of accepting states.”

Here the regular language is represented by a deterministic finite automaton as in
Bolland’s work, 2021 [4]. The initial one for this problem can be seen in Figure 1.2
and can be defined by:

◦ Q = {q0, q1, q2, q3, q4} ,

Page 2



Chapter 1 – Introduction

◦
∑

={Alpha, backward, Beta, Delta, down, eight, emergency, five, forward, four,
free, Gamma, go, land, left, mission, nine, one, right, seven, six, speed, stop,
three, two, up, Other, Silence }

◦ δ corresponds to the set {N,O, I N, I W,Nb} where

– N stands for ”Names” and is activated with {Alpha, Beta, Gamma, Delta},
– O stands for ”Other”, is activated with {silence, other},
– I N stands for ”Instruction No number” and is activated with {emergency,

go, land, stop},
– I W stands for ”Instruction With number” and is activated with {backward,

down, forward, left, mission, right, speed, up},
– Nb, for ”Number”, is activated with {one, two, three, four, five, six, seven,

eight, nine, free}

◦ s = {q0}

◦ F = {q2, q4}

Figure 1.2: Initial representation of the deterministic finite automaton for the drone
control language from Bolland [4]

With the vocabulary presented above made of 28 words and this deterministic finite
automaton, there are 336 different possible ways to end up in an accepting state. This
means that there are 336 different existing commands.

This work presents how state-of-the-art models in automatic speech recognition and
keyword spotting were adapted in order to perform command recognition on a relatively
small dataset. This is done by a concatenation of commands generated by text-to-speech
APIs and commands created through the combination of an open source spoken words
dataset and another set of spoken words acquired through a web platform created in
order to complete the missing words of the vocabulary command set.
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3 Related work

3.1 Automatic Speech Recognition (ASR)

Automatic Speech Recognition is a subfield of computer science where the goal is
to transcribe spoken language into text. There are several state-of-the-art models for
the different public datasets that can be found on the paperswithcode website. The
best-known model for this problem nowadays is Wav2vec 2.0 by Baevski et al. (2020)
[2]. Wav2vec is explained in more detail in the Background chapter but in a few words,
Wav2vec takes advantage of a fairly large amount of unlabeled data and subjects it to
self-supervised learning and contrastive learning. Only after that, once the model has
a good representation of the data, the model is fine-tuned on labeled data. Wav2vec
has several variants such as Wav2vec-Bert by Chung et al. (2021) [8] which combines
contrastive learning and masked language modeling (MLM). This has a big success in
pre-training natural language processing models. There are plenty other variants like
W2V2-B-VP100K by Shon et al. (2021) [32] and others that improve some of the
multiple issues of the wav2vec model, but these will not be explained in great detail.

Moreover, there is HuBERT by Hsu et al. (2021) [15] that tackles different prob-
lems of Wav2vec 2.0, such as the presence of multiple sound units in each input utterance
by using a clustering step to provide aligned target labels for a BERT-like prediction
loss.

3.2 Keyword Spotting (KWS)

Keyword spotting in speech processing is a problem whereby certain keywords in
spoken language are tagged. A special case of this is the so-called ”wake word detection”
that is mainly present in personal voice assistants like Siri with the wake word ”Hey
Siri”, Alexa with simply ”Alexa” or Google Home with ”Okay Google” which aims to
wake the assistant. There are different methods to reach the final goal: Efficient CNN-
based models which are basically CNNs that either use 1D or 2D convolutions and
BC-ResNet by Byeonggeun et al. (2021) [18] which combines both. There are also
models such as MobileNets [30] or ShuffleNets [40] which utilise depthwise separable
convolutions, inverted bottleneck blocks. There are other approaches than CNN-only
like the one presented by Coimbra de Andrade et al. (2018) [1] which uses CNNs at
the front and then a RNN (LSTM) in order to perform high-level features. ASR-based
models like the one used in Wav2KWS by Seo et al. (2021) [31] can also be applied
but the number of parameters is really much larger than in CNN-based models.

4 Thesis outline

The work is structured as follows:

• Chapter 2: Background. This chapter gives background notions. Section 1
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gives reminders of sound, waveforms, Fast Fourier Transform (FFT) and spec-
trograms because these notions are used throughout this work. In section 2, it
also gives a brief reminder of Transformers and attention. Then, in section 3,
self-supervised learning is explained as it is used in a model. Finally, a summary
of the models used in this thesis is given in section 4.

• Chapter 3: Data. This chapter shows what data was acquired, several pre-
processing’s applied to it, what datasets were created using this data and how
these created datasets were separated into training, validation and testing sets.

• Chapter 4: Experiments. This chapter first explains how, and which metrics
are used to evaluate the different models and on which dataset they are calculated.
Then a large ablation study shows different experiments in order to improve those
results. After that a small comparison is made with Bolland’s [4] results. Finally,
the best models are fine-tuned on the real conditions dataset and their inference
time is computed to get an idea of how long it would take the drone to make a
prediction.

• Chapter 5: Conclusions. In this chapter, several ideas are given for improving
the work and defining the ideal next steps. Lastly, there is a short review and
summary of the work as a whole.

The different codes used for the experiments of this thesis can be found on this
GitHub page.
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Chapter 2

Background

1 Sound signal

Sound is a pressure wave produced by a vibrating object and which can be picked
up by the human ear. The average human being hears sounds in the frequency range
of [15 - 20k]Hz. The frequency of a sound is calculated as follows:

frequency =
speed

wavelength

where speed is the speed of the sound which depends on the medium (air, water, ...).
The Amplitude represents the strength of the sound pressure. The range of audible
sound pressure is [2 ∗ 10−5 - 20]Pa. Due to its large range, sound amplitude is mea-
sured on a logarithmic scale called Decibel[dB] which is not strictly speaking a physical
unit but a ratio between the intensity of two sounds. However, in order to make it
interpretable as a real unit, one of the pressures is fixed: P0 = 2 · 10−5Pa (which is
the reference of 0db and corresponds to the threshold of hearing). So, decibel can be
defined as:

20 · log10(
P

P0

)

where P is the intensity of the measured sound. Here are some examples with sound
levels in dB found on the website of iacacoustics:

▷ Threshold of hearing: 0 dB

▷ Breathing: 10 dB

▷ Quiet living room: 25-30 dB

▷ Library, bird calls; lowest limit of urban ambient sound : 40-50 dB

▷ Conversation in restaurant, office, background music: 60-70 dB

▷ MP3 players (at full volume), concerts, car horns: 100 dB

6
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Chapter 2 – Background

▷ Average human pain threshold: 110 dB

▷ Instant perforation of eardrum: 150 dB

A waveform displays the amplitude of the signal through time (the signal is viewed
in the time domain). The sounds encountered are not always so simple and periodic.
They are often the sum of waveforms of different frequencies. Waveforms produced by
different music instruments can be found in Figure 2.1. A sound spectrum displays
the amplitude of each of the different frequencies present in a sound (the signal is
viewed in the frequency domain) thanks to the Fast Fourier transform (FFT) algorithm.
Nevertheless before using this algorithm, the sound needs to be digitised.

Figure 2.1: Waveform representations of a simple sinusoidal function, a sound
produced by a violin and a sound produced by a clarinet. Credits :

https://www.pngegg.com/en/png-ejfri

1.1 Digitising sound

In order to be processed and input into a model, the sound signal needs to be dis-
cretised and digitised. This is achieved by measuring the amplitude of this sound at
a certain rate. A sample is the name of one measurement and the sample rate is the
number of samples collected in one second (a sample rate of 16kHz means that 16,000
samples are collected per second). Figure 2.3 represents the waveform for one example
of the command ”Alpha up seven” recorded in real conditions with a samplerate equal
to 16kHz and more or less 50 dB of background noise measured around.

1.2 Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) is an important tool in digital signal pro-
cessing because it is used to find the spectrum of a finite-duration signal. It can be
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Chapter 2 – Background

defined by the formula:

x[k] =
N−1∑
n=0

x[n]e−i2πkn/N

In order to calculate this, it is necessary to compute N outputs and each of these is a
sum of N terms which gives O(N2) operations. The Fast Fourier Transform reduces
the number of computations needed to O(N ∗ log2(N)). It may seem insignificant, but
if an operation takes 1 nanosecond, for N = 109, it will take the FFT algorithm 30
seconds to calculate the DFT. Whereas the original algorithm will take more than 32
years.
In order to compute the FFT algorithm, the Fourier Transform is separated into even
and odd indexed subsequences. The advantage is that the 2 can be done in parallel and
each term consists of (N/2) ∗ N computations (still N2), but halving the calculation
time.

x[k] =

N
2
−1∑

r=0

x[2r]e−i2πk(2r)/N +

N
2
−1∑

r=0

x[2r + 1]e−i2πk(2r+1)/N (2.1)

=

N
2
−1∑

r=0

x[2r]e−i2πk(2r)/N + e−i2πk/N

N
2
−1∑

r=0

x[2r + 1]e−i2πk(2r)/N (2.2)

= xeven[k] + e−i2πk/Nxodd[k] (2.3)

Then it can be further improved by applying the divide and conquer approach and
halving once again the computational time. If N is a power of 2, the maximum number
of times it can be divided by 2 is log2(N) and the computation becomes O(N ∗log2(N)).

1.3 Frequency domain VS. Time domain

A figure comparing the time and frequency domain of a waveform can be found in
2.2. When FFT algorithm is applied to the sound signal, the problem is that it only
gives frequency values, and the track of time information is lost. The system is not
able to tell what word was spoken first if these frequencies are used as features. it is
necessary to find a different way to present the features for the system in such a way
that it has frequency values along with the time at which they were observed. This is
where spectrograms come in.
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Chapter 2 – Background

Figure 2.2: Time and Frequency domain representation.
Credits :

https://commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png

1.4 Spectrogram

A spectrogram represents how the spectrum evolves through time. The idea to con-
struct this spectrogram is to break the signal into smaller frames (called windows) and
computes FFT for each window. This gives the frequencies for each of the windows
and a window number represents time, as window 1 comes first, window 2 next and so
on. It’s a good practice to keep these windows overlapping, otherwise some frequencies
could be lost. On the horizontal axis, time is represented. The vertical axis repre-
sents frequency. A third ”dimension” is represented by the intensity of the colour of a
point and indicates the amplitude of a particular frequency at a particular time. The
spectrogram of the waveform represented in Figure 2.3 can be seen in Figure 2.4

Figure 2.3: Illustration of the waveform
of one of the spoken command: ”Alpha up

seven”

Figure 2.4: Spectrogram of one of the
spoken command: ”Alpha up seven”

Page 9
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Chapter 2 – Background

2 Transformer Attention Mechanism

Before the introduction by Vaswani et al. (2017) [36] in the paper ”Attention is
all you need” of the Transformer architecture, attention was implemented by Recur-
rent Neural Networks (RNN)-based encoder-decoder architecture as in Bahdanau et al.
(2014) [3] and Luong et al. (2015) [22]. Following Xu et al. (2015) [38], the context
attention mechanism can be adapted to caption generation (takes as input an image
and outputs a sentence describing the image) by replacing the encoder which was a
Recurrent Neural Network with a Convolutional Neural Network (CNN) that extracts
a feature map over the input image. Transformers have really revolutionised the imple-
mentation of attention by dispensing of recurrence and convolutions and solely relying
on the use of attention. It allows to process words in parallel instead of processing
them sequentially. As a reminder, the main idea of attention is that for every predicted
output word, the model only uses the part of the input where there is the most relevant
information, instead of using the entire input sequence.

As can be seen in Figure 2.7, there is an encoder part (on the left) made of multiple
stacked modules (N = 6 in the original paper). A module is composed of a multi-head
attention sub-module, and a one-hidden layer Feed Forward Network, with residual
pass-through and layer normalisation. Each of these N modules maps the input se-
quence to a contextualised encoding sequence. The decoder part on the right made of
multiple stacked modules (N=6 also in the original paper) is similar to the encoder
but uses a Masked Multi-Head Attention. This sub-module basically masks the future
tokens that are left to be generated and attention is only computed on the ones that are
already present. In addition, the decoder inserts a third sub-module which performs
multi-head attention over the output of the encoder stack. Each decoder module defines
the conditional probability distribution of a target sequence in the case of a sequence-
to-sequence problem given the contextualised encoding sequence or concatenates the
different contextualised encoding sequences and passes it to a feed-forward layer for a
classification problem such as sentiment analysis.

The attention-mechanism used in this architecture can be seen in Figure 2.5 and
is called Scaled Dot-Product Attention. It is computed as follows:

First, for each word in the input sequence, a fixed size vector called ”embedding”
is computed (computers understand numbers not words; words are therefore encoded
into vectors of numbers, depending on their context and more). This embedding is
coupled with a positional encoding because as the words are processed in parallel here
and not sequentially as in Recurrent Neural Networks, the positional encoding gives an
indication of the position of the word in the sentence.

With this in mind, three matrices are defined, ”Query” represented by matrix
Q ∈ RT×D where each of the T rows represents a query. ”Key” represented by matrix
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Chapter 2 – Background

Figure 2.5: Illustration from Vaswani et
al. 2017 [36] of the Scaled Dot-Product
Attention. The query and key matrices
are first multiplied and then normalised
thanks to the scale and softmax steps.
This gives a new matrix which is now
multiplied with the value matrix. The
final output of this multiplication gives

the attention.

Figure 2.6: Illustration of the
Multi-Head Attention from Vaswani et al.
2017 [36] which is basically a scaled dot

product attention, that you can see on the
left, replicated several times to have h
different representations and these

representations are then concatenated and
projected through a weight matrix.

K ∈ RT ′×D where each of the T ′ rows represents a key. ”Value” represented by matrix
V ∈ RT ′×D′

where each of the T ′ rows represents a value. These three matrices are
obtained by multiplying the embedding by a weight matrix: Q = XWQ, K = X’WK

and V = X’WV . In the case of Self-attention : X = X’.

After that, the attention weights are computed by a dot product between Q and K.
This dot product is scaled by the square root of the dimension of the keys. Optional
mask is applied to it and then a softmax is applied to the result.

Finally, attention weights are applied to values V to give this final formula

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V

The Multi-head attention that can be seen in Figure 2.6 is basically the scaled
dot product attention replicated several times (like for the convolution where you have
multiple filters). Thus, instead of having only one projection for Q, K and V, there are
h different projections and therefore h different representations of each matrix. Each
one of these scaled dot product attention can be written as:

Hi = attention(QWQ
i ,KWK

i ,VWV
i )

Page 11
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In the end, all the resulting Hi are concatenated and projected through the weight
matrix WO. The multi-head formula can be expressed as:

multihead(Q,K,V) = concat(Hi, ...,Hh)W
O

Figure 2.7: Illustration of Transformer architecture from the original paper of
Vaswani et al. 2017 [36]. On the left, the encoder which takes the input embedding to
which a positional embedding is added to keep track of the position. This whole is
passed to the multi-head attention and a feed forward network to produce some

hidden states. The decoder, on the right, takes two arguments: the outputs that are
already produced with previous inputs and the output hidden states of the encoder.
Once again, these 2 pass through some multi-head attention layers in order to produce

some hidden states and at the end a linear layer and a softmax serve as a head
classification to make a prediction of the best tokens to output.
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3 Self-supervised Learning

In the last decade, Scientists focused a lot on supervised learning methods. The
problem is that they require huge amounts of labeled data to train and having good
quality labelled data consumes time and money. Moreover, supervised learning works
very well on one specific task, but not necessarily on others. For example, if several
images of cows are shown to a baby, it will eventually be able to recognise any cow he
sees, however AI can fail to recognise it, if for example the cow is in an unusual situation
(i.e. cow lying on a beach). According to Yann LeCun in a blog about Self-supervised
learning: ”Supervised learning is a bottleneck for building more intelligent generalist
models that can do multiple tasks and acquire new skills without massive amounts of
labeled data”.

Humans beings rely on their previously acquired background knowledge of how the
world works thanks to observations and interactions. This is what Yann LeCun calls the
”common sense” and this is why humans beings don’t need huge amounts of labelled
data to learn a new task. Self-supervised learning (SSL) is one of the most promising
ways for a model to obtain such background knowledge and therefore attain some sort
of common sense.

Self-supervised learning is a machine learning process whereby the model trains it-
self to predict a part of the input (that it pretends it doesn’t have) from the rest of the
input. It is also known as predictive or pretext learning. This can be done in several
ways as can be seen in Figure 2.8 by predicting the future from the past or predicting
the past from the present or predicting the top from the bottom (and vice-versa) or
alternatively, predicting the occluded from the visible.

This method of self-supervised learning transforms the unsupervised problem into
a supervised problem by taking the unlabelled data and creating labels. By doing this,
it receives self-feedback which is its key difference compared to unsupervised learning.
The goal of the pretext task is to guide the model to learn intermediate representations
of data and it is expected that this representation carries good semantic or structural
meanings to be beneficial to a large number of practical downstream tasks. During
these downstream tasks which is the transfer of knowledge to a specific task, a subset
of the features learnt during the pretext task is relevant and is rapidly adapted and
used. Nonetheless, some of them are overwritten and re-learnt to get additional signal
from the input that was not learnt during the predictive learning.

Predictive learning can be : ”Patch localisation” as in the paper from Doersch et
al. (2015) [10] where the goal is to extract multiple patches from an image and train
the model to find the relationship between these patches as can be seen in Figure 2.9.
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Figure 2.8: Predictive learning: In self-supervised learning the model hides parts of
the input which can be images, videos, sentences, etc., and tries to predict these

hidden parts (transparent) thanks to the parts it didn’t hide (pink).

Figure 2.9: Illustration of self-supervised learning pre-training technique called patch
localisation where the goal is to extract several patches in the image and train the

model to understand the relationship between multiple patches.

The second one is ”Distortion” introduced by Dosovitskiy et al. (2015) [12] where
patches are sampled from different images with different scales, positions, etc. Then
each patch is distorted by applying random transformations (translation, rotation, scal-
ing, etc.), and all the resulting distorted patches belong to the same surrogate class (as
they all come from the same image). The final goal is to train the model to find the
class of a patch. The next one is called ”Colorization” as in Zhang et al. (2016) [39]. Its
aims is, as its name suggests, given a grayscale image, it outputs the same but coloured
image. Precisely, the task is to map the image to a distribution over quantized colour
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value outputs (Quantization is the process of mapping input from a large or continuous
set of values to output values in a finite ”small” set. A finite number of colours are
required, as in ”RGB”, where you have 16,777,216 different colours). Given an image
(but it can be an audio or a text) with some missing information in it, ”Context Filling”
can be used. It predicts what is missing to fill the gap as in Pathak, et al., (2016) [26]
and can be seen in Figure 2.10

Figure 2.10: Illustration of self-supervised learning pre-training technique called
context filling where the goal is to remove a part of the input image and train the

model to predict the missing part.

For videos, Video Motion Prediction can be used and consists of predicting from
a set of images all possible images that may precede or follow. For text, predictive
learning is when the model is shown a short text (typically 1,000 words) in which some
words have been masked or replaced. The model is then trained to predict the masked
or replaced words.

Another technique which is important for later use to learn general features of an
unlabeled dataset is called ”Contrastive learning”. This technique learns by teaching
the model which data points are similar or different. A simple example of this in the
real world is when a baby sees two cows and one dog, he understands that the two cows
look similar compared to the dog which is a little bit different. The baby recognises
similarities; contrastive learning works somewhat in the same way. It tries to compare
pairs of data to know if they are similar or different in order to learn high-level features
about this data. There are multiple contrastive learning methods : SimCLR introduced
by chen et al. (2020) [5] and SimCLRv2 again by chen et al. later that year [6], Moco
introduced by He et al. (2019) [14] and Mocov2 by Chen et al. (2020) [7] and PIRL
by Misra et al. (2019) [23]. Hereafter, the SimCLRv2 is explained to have a better
understanding of what contrastive learning is. SimCLRv2 can be described in 3 steps:
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first, for each image of the dataset, a combination of augmentations are performed
among crop, resize, color distortion, grayscale. This is done twice per image to get two
augmented images. The second step is to input these two augmented images in a CNN
(ResNet) which creates vector representations. The objective is for the model to find
similarities between these two images so it is also required to have approximately the
same vector representations for the two images. The third step to achieve this is to
maximise the similarity and therefore minimise the contrastive loss function which can
be explained as follows:

Lm(i, j) = −log

(
exp(si,j)

2N∑
k=1

1[k ̸=i]exp(si,k)

)
(2.4)

where si,j is the cosine similarity : si,j =
zTi zj

(τ∥zi∥∥zj∥) , and τ is a temperature parame-

ter. It allows to scale the inputs and widen the range [-1, 1] of cosine similarity

These self-supervised learning algorithms are useful when you don’t have a lot of
labelled data, on the other hand they can suffer from several limitations: The first
limitation is ”Computational Efficiency”. This is the fact that learning models with
labels can be built much faster compared to unlabeled learning models. This is due to
the fact that, in SSL approaches, generating labels for a given dataset is an additional
task, hence it requires more computer power. The second limitation is the amount
of data, SSL approaches need a lot more data to achieve accuracies close to those of
supervised learning approaches. Finally a last limitation is labeling accuracy, the model
may produce inaccurate labels and those inaccuracies can lead to serious inaccurate
results for your task.
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4 Deep Networks for Speech Recognition

In this section the main models used are presented

4.1 ResNet

It is known that the deeper a model is, the better the results [34]. Before ResNet
was introduced by He et al. (2014) [13], models such as VGG nets [33] or AlexNet [19]
suffered from a serious problem, they couldn’t go as deep as required. Even with a
proper initialisation adding more and more layers resulted in vanishing gradients and
a saturating of the network accuracy. With ResNets, the gradients can flow directly
through Residual Blocks as can be seen in Figure 2.11 below. The idea behind this

Figure 2.11: Description of a Residual Block: a skip connection is added from the
input of the first weight layer to the output of the second weight layer in order for the

gradients to flow and not vanish during backpropagation.

Residual Block is to add the input and the output of the 2 weight layers. Then perform
the ReLU activation on this sum. Here, the skip connection helps to bring the identity
function to deeper layers. This trick enables deeper networks than VGG nets but still
has lower complexity.

ResNets can have different sizes (i.e. a different number of layers and how big these
layers are). Here, an ”Operation” is made of a convolution, a batch normalisation and a
ReLU activation. A ”Block” consists of 2 or 3 operations depending on the ResNet and
a ”Layer” is a group of blocks. In the Appendix Figure 5.1, you can see a summary
of the different ResNet with the different blocks in brackets and the number of these
blocks. Downsampling of the volume through the network is done by increasing the
stride from 1 to 2, at the first convolution of each layer and not thanks to a pooling
operation. Therefore, the skip connection of the first block of each layer has to be a
slightly different in order to match the output size. Two options are considered in the
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paper: Either a 1x1 convolution and a stride of 2 is used, or the input volume is padded
with extra zero entries to increase dimensions.

At the end of all these blocks, a global average pooling layer is used. Since the in-
troduction by Min Lin et al. (2013) [20], experts use this global average pooling (GAP)
layer so as to minimise overfitting by reducing the total number of parameters in the
model. Thus, it starts with a tensor of dimensions h×w× d and this tensor is reduced
through the GAP layer in a tensor of dimensions 1× 1× d.

Figure 2.12: Description of the architecture of the ResNet 18 (He et al. (2015) [13])
in this work. The spectrogram is input and passed through a first convolution to

decrease the spatial dimensions and to increase the depth of the feature map. Then
the output of this convolution is passed through a stack of groups of residual blocks.
As can be seen all 4 groups contain 2 residual blocks with different convolutions
internal to them. At the end, the final feature map is reduced to a one-dimension

representation, passed through a linear layer and is then passed through a softmax to
obtain the different probabilities.
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In this work, the main ResNet architecture used is the ResNet-18. The architecture
can be seen in Figure 2.12. However, the batch normalisation and the ReLU activation
applied after each operation are not shown.

4.2 EfficientNet

In the classical convolution neural networks, scaling-up is often performed to achieve
better results. Nonetheless, this scaling-up is often applied to only one of the three fol-
lowing dimensions. The first dimension is depth: the number of layers is increased in
the network to recognise more complex patterns. When depth is too high, the problem
of vanishing gradients reoccurs. The second dimension is width: the number of chan-
nels is increased to recognise more variety in patterns in convolution layers. When this
dimension is too high, overfitting may occur. The last dimension is image resolution:
the width and height of the image are increased, leading to a higher number of pixels
and therefore a better resolution. Increasing only one of these dimensions is too random
and takes a lot of time, as searchers must analyse and test for the best architecture
that maximises the accuracy.

Figure 2.13: Description of the EfficientNet-B0 architecture (Tan and Le 2019 [35]).
The input spectrogram is passed through a first convolution in order to reduce the
spatial dimensions and then passed through a stack of MBConv blocks. MBConv

blocks are described in Figure 2.14

EfficientNet introduced by Tan M. and Le Q. (2019) [35] is a new kind of architecture
for CNN’s but also does what is called ”Compound scaling” and which is the scaling
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of all three dimensions at the same time and maintaining a sort of balance between
them. This may be some sort of intuition that if the input image resolution is bigger,
the network will require more layers and more channels in order to capture more fine-
grained patterns on this bigger image. As said before, compound scaling is done with
the aim to balance dimensions (width w, depth d, and resolution r) by scaling with a
constant ratio. The method proposed in this paper is the following:

depth : d = αϕ

width : w = βϕ

resolution : r = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(2.5)

where α, β, γ are constants determined by a small grid search and ϕ is a user-
specified coefficient that controls how many more resources are available for model
scaling. If ϕ = 1, it is called EfficientNet-B0 and α = 1.2, β = 1.1, γ = 1.15. To
obtain the scaled-up versions EfficientNet-B1 to EfficientNet-B7, α, β, γ are fixed and
different values of ϕ are used.

EfficientNet architecture consists of stacked MBConv blocks as can be seen in Fig-
ure 2.13 which are themselves a type of inverted residual block. These inverted residual
block were introduced in the paper of MobileNetV2 by Sandler et al. (2018) [30] and
the difference between an inverted residual block and the traditional residual block is
that the latter has a wide → narrow → wide structure in terms of channels. It starts
with an input that has a high number of channels, it is then compressed thanks to a
1x1 convolution and finally increased again thanks to a 1x1 convolution for the input
and the output to be added. The idea with the inverted residual block is the opposite.
It has a narrow → wide → narrow approach where it uses depthwise convolutions to
reduce the number of parameters and the number of computations. Swish activation
function introduced by Ramachandran et al. [27] is used inside MBConv block and is
computed as follows:

f(x) = x · sigmoid(βx) (2.6)

where β is a learnable parameter.

The MBConv block which can be seen in Figure 2.14 also uses the Squeeze-and-
Excitation block introduced by Hu et al. (2017) [16]. The idea behind this block is
similar to what attention does, it adds a parameter to each channel of convolutional
block to somehow adjust each feature map. It works as follows: the input is a convo-
lutional block, then each channel of this block is reduced to a single value using the
average pooling. These values are then passed to a dense layer followed by a ReLU
to add non-linearity and afterwards it is passed to a second dense layer, followed this
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time by a Sigmoid function to obtain weights that can be applied on each channel of
the input convolutional block. This, as well as the whole EfficientNet-B0 can be seen
in Figure 2.13. Finally, EfficientNet is trained to maximise accuracy but at the same
time it penalises it if the network is computationally heavy. It also penalises the net-
work if it has a slow inference time (i.e. when the network takes a long time to make a
prediction).

Figure 2.14: Description of the MBConv 6 block, k3x3 representation. The input is
given to the MBconv block which starts with a 1x1 convolution to compress the

number of channels then the output is given to a depthwise convolution before passing
into the Squeeze-and-excitation optimisation procedure which takes the channels of

the intermediate feature map and weighs them. The weights are computed by feeding
an average of the feature of each channel into two fully connected layers. Then the
weighted intermediate feature map is increased again thanks to a 1x1 convolution.

4.3 ViT (Vision Transformer)

The idea behind Vision Transformer is to use the self-attention mechanism of Vaswani
et al. (2017) [36] on images. The problem of Transformers is that it lacks inductive
biases inherent to CNNs, such as translation invariance (the fact that it can recognise
an object whatever its position in the image) and locality (convolutions are linear local
operators). In the original Vision Transformer paper from Dosovitskiy et al. (2020) [11]
authors claim that if the model is trained on small-sized or mid-sized datasets such as
ImageNet, it reaches accuracies slightly below the ResNets of comparable size because
of the lack of inductive biases and it does not generalise well when not enough data is
used. However, if the model is trained with large datasets (containing 14 to 300 Million
images) it outweighs inductive biases and can be as good or even better than ResNets
or EfficientNets.

The problem with Transformers is that they are designed to handle sequences not
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grid-structure data as images. Furthermore, they are known for their quadratic com-
plexity when computing the attention matrix. If self-attention was naively applied to
an simple grayscale image of size 256 × 256, it would be flattened into a sequence of
65536 pixels and the attention matrix would have a size 65536×65536 where each pixel
attends to every other pixel. The authors of the paper have therefore decided to break
the image into several patches.

Figure 2.15: Description of Vision Transformer’s architecture (Dosovitskiy et al.
2020 [11]) in this work. The input image is first divided in several non-overlapping
patches which are flattened and linearly projected to obtain patch embeddings to

which a positional embedding is added to keep track of the position of the embedding.
This whole embedding is passed through a transformer encoder then to a MLP and

finally through Linear layers to get the probabilities for the three categories.

The whole architecture of the model can be seen in Figure 2.15 and can be de-
scribed as follows: the image x ∈ RH×W×C is reshaped into a sequence of flattened 2D
patches xp ∈ RN×(P ·P ·C), where H is the height, W the width and C the number of
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channels of the original image, (P, P ) is the resolution of a patch, and N = H·W
P 2 is the

number of patches and therefore also the length of the sequence. The flattened patches
are then transformed into a patch embedding of size D thanks to a linear projection.
Thereafter, a positional embedding is concatenated to the patch embedding to keep
track of the position of the patch in the image. The resulting embedding is input into
a Transformer encoder and its output is passed to a MLP. In the case of this work, the
output of the MLP is passed into three linear layers to predict the three classes.

4.4 Wav2vec 2.0

As said by Lukasz Sus on its blog about Wav2vec: Wav2vec 2.0 introduced by
Baevski et al. [2] is one of the State-of-the-art (SOTA) models for Automatic Speech
Recognition (ASR) thanks to the use of self-supervised learning techniques which allow
to first pre-train the model on large amount of unlabeled data and fine-tune it for a
particular downstream task afterwards (as discussed in section 3). The training is split
into two stages, the first stage is the self-supervised mode where unlabeled data is used
to learn the best data representation. The only difference with what was explained
before is that, in the case of wav2vec 2.0, data is audio data, so the model tries to learn
the best speech representation possible. The second stage is the supervised fine-tuning
or downstream task where labeled data is used for the model to predict what it is
supposed to, like words or phonemes (smallest possible unit of sound that makes one
word different from another word. For example, p, b, d, and t in the English words
pad, pat, bad, and bat.). The two stages can be seen in Figure 2.16.

Figure 2.16: Illustration of the two stages of the Wav2vec training from Lukasz Sus
in a blog on wav2vec. The first stage is the self-supervised mode where unlabeled data

is used for the model to learn a good representation of the data which is speech
representation here. The second stage is the supervised learning or downstream task
where labeled data is used so that the model can predict what it is supposed to, which

is to predict correct words here.

The most important part of this training is the first stage. If the model learns good
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speech representations, it can achieve state of the art results with very few labelled
data. In the original paper, they pre-trained their model either on Librispeech corpus
[24] without transcriptions containing 960 hours of audio or the audio data from Lib-
riVox [17] containing more than 60k hours of audio. They then fine-tune the model
on the Libri-light low-resource labeled data setups of 10 min, 1 hour, 10 hours and
the clean 100h subset and using all 960 hours of LibriSpeech’s labeled data. It was
then tested on Librispeech dev/test sets and gave very good results even with only 10
minutes of data which is really not much data. The results can be found in Appendix
Table 5.1.

Figure 2.17: Illustration of Wav2vec 2.0 architecture (Baevski et al. 2020 [2]) in this
work. The input waveform X is passed through CNN’s in order to get latent

representations Z. Then these latent representations are passed through transformers
to obtain context representations C which are themselves linearly combined and
passed through a softmax to finally get the output probabilities for each category.

The final architecture of the wav2vec 2.0 model used in this work after it has been
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fine-tuned can be seen in Figure 2.17 and is composed of the following elements:
first the raw waveform X is given as input to the feature encoder which, as its name
indicates, aims to reduce the dimensionality of the audio data to obtain latent repre-
sentations Z. This encoder is simply a 7-layer convolutional neural network. Then
these latent representations are input in the Transformer encoder so as to obtain con-
textualised representations C. This Transformer encoder is composed of 12 Transformer
blocks for the BASE model and 24 for the LARGE model. Finally linear projections
are done on these contextualised representations in order to obtain the final output
probabilities for all three classes.

The key idea of the pre-training is similar to what is done in the BERT pre-training
[9]. BERT focuses on Natural Language Processing (NLP) and is trained by simply
masking part of the input text, then the model is asked to predict these masked words.
Here, in the case of wav2vec 2.0, a part of the latent representations, which are the
transformer’s inputs, is masked and the goal could be to predict these masked latent
feature vector representations zt. Nevertheless, this is not the case here, as authors of
the paper have improved this type of training thanks to contrastive learning.

But before digging into this contrastive learning, a few words must be said about
why quantization is needed. A big challenge when using Transformers for speech data
processing is that speech is continuous. Of course, speech has a high variance such as
the speaker or background noise that may be present and this can be harmful to the
training. In Natural Language Processing, text in any language can be easily discre-
tised into words or sub-words and a finite vocabulary of discrete units can be created.
Here, during the training, the output of the feature encoder is discretised to qt with a
quantization module Z → Q to represent the targets. As previously mentioned, the
process of quantization is to convert values from a continuous space into a finite set
of values in a discrete space. It is known that the number of phonemes in a language
is finite, therefore a codebook containing all the different phonemes can be created.
Then, the quantization can choose the right code word from the codebook. The only
limitation is that even if it is finite, the number of all possible sounds is really large.
In order to facilitate the training of Wav2vec 2.0, the authors have chosen to create G
codebooks, each one composed of V codewords. The quantized representation is a linear
projection of the concatenation of the best word from each codebook. This best word
is chosen by using a modified softmax called Gumbel Softmax and comes with several
upgrades, such as randomisation and temperature. Randomisation allows the model to
choose different codewords and not only use a subset of them. Temperature enables to
decrease the effect of this randomisation through time. In the original paper, authors
used 2 codebooks with 320 codewords in each of them. This leads to a maximum of
320× 320 = 102, 400 speech units.

Contrastive learning has been explained before, however, hereby, for a latent repre-
sentation zt which is masked, the model should have a context representation ct that is
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good enough so as to guess the correct quantized representation qt among many others.
This can be seen in Figure 2.18 and here is the formula in the case of Wav2vec 2.0:

Lm = −log
exp(sim(ct,qt)/κ)∑

q̃∼Qt
exp(sim(ct, q̃)/κ)

(2.7)

In Figure 2.18, it is represented as if only one latent representation was masked,
however, in reality there is a certain proportion that is masked and all of them are
replaced with the same trained feature vector. The input to the quantization module
is of course not masked so as to obtain the correct quantized representation. To mask
the latent speech representations, a proportion p of all time steps is randomly sampled
without replacement. These are the starting indices, thereafter the M following time
steps from every sampled index are also masked. This means that there may be over-
laps. In the original paper of Wav2vec 2.0 [2] p = 0.065 and M = 10 which led to
approximately 49% of all time steps to be masked.

Figure 2.18: Illustration of the wav2vec 2.0 (Baevski et al. 2020 [2]) framework
which jointly learns contextualised speech representations and an inventory of
discretised speech units by using contrastive learning. It masks some latent

representations and tries to have the best context representation to guess the correct
quantized representation among others.

During the pre-training stage, contrastive loss is not used alone. Another loss called
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diversity loss is added to the contrastive loss so that the model can use with the same
probability all codewords V in each of the G codebooks and not only a subset of them.
This is done by maximising the entropy of the Gumbel-Softmax distribution. This way,
the model cannot always choose in a subset of all possible codewords. This loss can be
express as follows:

Ld =
1

GV

G∑
g=1

−H(pg) =
1

GV

G∑
g=1

V∑
v=1

pg,vlog pg,v (2.8)

The final objective of the pre-training is to learn representations of speech audio by
using a contrastive learning augmented by the diversity loss:

L = Lm + αLd (2.9)

Page 27



Chapter 3

Data

1 Speech Commands Dataset

Word No. of samples Word No. of samples
Backward 1,664 No -
Bed - Off -
Bird - On -
Cat - One 3,890
Dog - Right 3,778
Down 3,917 Seven 3,998
Eight 3,787 Sheila -
Five 4,052 Six 3,860
Follow - Stop 3,872
Forward 1,557 Three 3,727
Four 3,728 Tree -
Go 3,880 Two 3,880
Happy - Up 3,723
House - Visual -
Learn - Wow -
Left 3,801 Yes -
Marvin - Zero -
Nine 3,934 - -

Table 3.1: List of words present in the Speech Commands Dataset V2 by Warden,
2018 [37]. Bold words are words both present in the dataset and vocabulary presented

in the problem statement.

In order to achieve the final goal, an algorithm that aims to recognise the different
commands is needed and therefore a dataset is also needed. Unfortunately, there are
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no existing dataset containing audio files with the desired commands described in the
problem statement. However, the open-source Speech Commands Dataset by Warden,
2018 [37] contains some of the words present in the vocabulary. The one used in this
work is the second version of the dataset where more samples have been recorded and
some words were added compared to the first version. The words available in this
dataset are listed in Table 3.1, bold words are the ones present both in the dataset
and in the vocabulary. The interesting words are present with their number of samples,
the others are discarded. This dataset consists of 105,829 one-second utterances of 35
short words recorded by thousands of different people around the world on the AIY
website.

2 Acquired data

This Speech Commands Dataset is a good starting point but some of the vocabulary
words are still missing from it and had therefore to be collected through the web appli-
cation created by Julien Bolland [4] once again based on Warden’s work [37] which is
also open source. People (mostly French speakers) were asked to record themselves in a
quiet environment through this platform saying some of the vocabulary words missing
from Warden’s dataset. Only two words (Backward and Forward), already present in
the Speech commands dataset, were requested on the platform because there were fewer
of them than others in the dataset. Note that if the user wanted to stop the recording,
discard a record or exit the platform, he could whenever he wanted. This unfortunately
leads to unrecorded words and this is why the number of occurrences of the words that
have been collected is not the same for all whether in this dataset or in the Speech
Commands Dataset. The missing words from the vocabulary collected through the web
platform and their respective number of samples can be found in the Table 3.2.

Word No. of sam-
ples

Word No. of sam-
ples

Alpha 873 Free 947
Backward 763 Gamma 918
Beta 901 Land 999
Delta 891 Mission 866
Emergency 745 Speed 879
Forward 811 - -

Table 3.2: List of missing vocabulary words in the Google Speech Dataset V2 and
their respective number of samples collected through the web platform created by

Bolland [4]
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2.1 Data pre-processing

The number of samples presented in the two tables above is the final number of
samples after a manual pre-processing. All audio files were listened to in order to elim-
inate mislabeled words, incomprehensible, non-complete words or even empty audios.
Another interesting point is that the web platform sometimes creates for an unknown
reason duplicate files (with different names) which were removed automatically during
this pre-processing step simply by hashing the content of files. Then a list of hash was
created, and all hash were checked to see if they were already present in the list or not.

Figure 3.1: Biased training using the test set to fine-tune the model. Inspired from
François Fleuret’s deep learning slides.

After merging the two datasets described above, three folders were created so as
not to bias the training: Training set of words, Validation set and finally Test set. On
the one hand, indeed if the same word is used during training and testing, the results
are biased as the model has already seen this exact same spoken word. On the other
hand, three folders are created so as not to bias the final results of the evaluation of
the model. The reason for this is that, without the validation set, the test set is used
to fine-tune parameters, etc., as in Figure 3.1. Hence, the final evaluation is biased
because the model has been changed to better ”fit” the test set. Adding the validation
set no longer biases the test set since it is this validation set that is used to fine tune
the model; therefore the test set has nothing to do with it; it is used once and only once
to evaluate the model at the very end as can be seen in Figure. 3.2 The first folder is
the training folder and contains 50% of the total number of words of each class. The
second folder is the validation folder and contains 25% of the total number of words of
each class and the third and last folder is the test folder that contains the last 25%.

Figure 3.2: A good way to train the model without compromising the test set
evaluation by using a validation set to fine-tune the model. Inspired from François

Fleuret’s deep learning slides.
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3 Background noise dataset

The MS SNSD dataset [28] is used here. This dataset contains a large collection of
clean speech files, that were discarded, because they were useless in this case, but it also
contains various environmental noise files. These files are the interesting ones, However,
there are background noises that are most unlikely to be heard in this project’s appli-
cation ( sounds such as airport announcements, munching, applause, air conditioner,
...).
It was therefore been decided to add some real-life noise files found on the website
mixkit.co such as crowd sounds, sirens, cars sounds and so on. All these noise files
were cut into smaller files to match the length of the command files.
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Experiments

1 Metrics

Figure 4.1: Illustration of a confusion matrix

A confusion matrix can be used to obtain information on the performances of an
algorithm, such as the values for which the model is wrong and with which other values
it predicts instead of the real value. It is useful as it can be used to calculate other
metrics which are needed. Accuracy alone is not a good choice because: first, if there
are more than two classes (for example, if your data has 10 categories), the model may
have a classification accuracy of 90%. You have no idea whether all classes are pre-
dicted equally well, or whether one or two classes are wrongly predicted by the model.
Second, if the dataset is unbalanced (for example, if you have two classes with 9 true
values and only 1 false value), if the model always predicts ”true”, the model still has a
classification accuracy of 90%. Though, in fact, the model is useless because it always
predicts ”true”. Therefore, new metrics need to be defined in order to better assess the
performance of the model.
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• Accuracy: Accuracy represents the number of correct predictions out of the
total number of predictions and it can be computed thanks to the confusion
matrix. The range of values for the accuracy is between 0 and 1 where 1 is a
perfect model that predicts everything correctly and 0 is a perfect inverse model
where each prediction should be taken as the inverse of the true value (for binary
classification). 0.5 is the worst accuracy score for binary classification as it means
that every prediction is made at random.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

• Precision: Precision measures how many values predicted as Positives are rele-
vant. Precision is therefore the number of ”True Positives” divided by the total
number of positive predictions. The value range is between 0 and 1 where 0 is a
model that only makes ”False Positive” predictions and 1 is the best model that
does not make any ”False Positive” predictions.

Precision =
TP

TP + FP
(4.2)

• Recall: Recall measures how many relevant positive values were predicted. It is
the ratio between the number of ”True Positives” to the total number of Positive
samples which is the sum of ”True Positive” and the ”False Negative”. The range
of values is again between 0 and 1.

Recall :
TP

TP + FN
(4.3)

These two metrics are better suited to assess the performance of a model, than the
accuracy alone. However, they are not always equally important. In certain cases, the
focus is on one or the other. For example in medicine, whether for the detection of can-
cer or coronavirus, ”False Negatives” absolutely have to be avoided absolutely because
they can have really bad consequences. In this case, recall is a better measure than
precision. In the case of email spam detection, if the model misses detecting a spam
email it is not a big deal. Nevertheless if the model predicts that an important email is
a spam email, it is slightly more serious. Here, precision is a better measure than recall.

Now, if there is a need of compromise between precision and recall, the F1-score can
be used.

• F1-score: the F1-score is used to synthesise the precision and recall values and
is defined as the harmonic average of these 2 values.

F1-score =
2

1
precision

+ 1
recall

=
TP

TP + FN + FP
2

(4.4)
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2 Evaluation Procedure

The hardware specifications of the computer that performed all the experiments can
be found in the Appendix.

In order to evaluate the different models, a test set is needed. Words are available
and can be grouped together in order to create commands. It is a combination of words
spoken by different people. This is explained in an upcoming section, but this does
not reflect reality. What was finally chosen as the final testing set is a real condition
dataset. In this case, real conditions means that a command is spoken fully by one
and only one person. Moreover, people were asked to record themselves in a noisy
environment to represent the reality of the use case as much as possible. This means
that noises heard in these audio files are noises from the real world that are effectively in
the background of the people speaking. There aren’t noises added during the processing
of the audio. More than 50 people contributed to this dataset, recording at least 10
commands per person. The noise was measured behind them with a decibel meter
application which isn’t a professional instrument that accurately measures decibels but
it gives an estimation. On average, there were background noises of 45 dB. Some were
recorded in more extreme cases, such as the tram works in Liège, or with the song of
cicadas behind them, or during the ” Les Ardentes” music festival. The background
noise, in some cases, reached 75-80 dB. At the end, this dataset is composed of 998
commands and the word count in each category can be found in Figures 4.2, 4.3 and
4.4.

Figure 4.2: Count of the names in all the
real conditions test commands set.

Figure 4.3: Count of the instructions in
all the real conditions test commands set.

In the different models presented beforehand, all of them have 3 outputs from 3
different categories: a name, an instruction and a number. The metrics defined above
are computed on the whole commands, not on each category. In the datasets, there are
only true commands and no false commands, therefore there are no ”True Negatives”.
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Figure 4.4: Count of the numbers in all the real conditions test commands set.

In order to compute metrics on complete commands, the three categories are predicted.
When the three categories are well predicted the command is therefore classified as a
”True Positive”, but when one of the three categories is wrongly predicted, the command
is considered as a ”False Positive”. When a certain threshold is defined, the three
categories must satisfy this threshold. If one of them does not satisfy it, the command
is rejected and is therefore considered as a ”True Negative”. This way, there is a binary
classification on the complete commands: ”True” commands and ”False” commands.
The fact that there are no ”True Negatives” commands is the reason why other metrics
(such as specificity which measures the proportion of ”True Negatives” that are correctly
identified by the model) are a bit useless in this case.

3 Ablation study

In this section, several experiments are performed to find the optimal models, to
check the robustness of these models against noise, to check if augmentation is useful,
etc.

3.1 Artificial voices commands dataset

Before using the words that were collected, it was first decided to train the model
by only using a generated spoken command dataset. This dataset was generated using
text-to-speech models from two different platforms. Text-to-speech models are simply
Deep Learning models that take some written text as input and, as output, an audio
file containing the spoken text that was input.

The first idea to create this dataset of commands was to generate these commands
thanks to Microsoft text-to-speech service, part of Azure Cognitive Services. Microsoft
Azure text-to-speech has an API to generate realistic speech from text in different lan-
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guages with different voices, styles, emotions and tones. In the context of this work,
only English voices were used and more precisely English neural voices. Neural voices
are voices that are difficult to differentiate from real voices. The API contained 40 neu-
ral voices with different accents (Australia, US, India, Nigeria, UK, ...) at that time,
although new accents are added on a regular basis. The 336 commands multiplied by
the number of voices gives a dataset of 13,440 commands.

The idea is exactly the same as for the Azure API but it is done with the text-to-
speech API from Google Cloud. In this case, the voices that sound real are tagged as
”WaveNet” and not ”Neural” as in Azure and there are 23 English voices of this type
once again with different accents. The size of this second dataset produced with this
API is 7,728 commands.

In both cases, it was decided to slightly slow down the speaking rate, so that the
command sounds like a command to the ear and not like spoken sentences where the
words flow much faster.

All commands, whether using APIs for artificial voice commands, or commands
created with human voices, (explained below), have been extended to a length of 4.6
seconds so that they are uniform. This was chosen based on the longest artificial
command that is the ”Alpha backward seven” a command spoken by a voice mimicking
a child in the Google API which is 4.52 seconds long. This extension was done during
the pre-processing phase of the data. For the real conditions data, the waveforms
are simply padded during the getitem function of the dataset class as if it were
a transformation of the data. For all data modified during pre-processing, padding is
done as follows: first, the length of the audio file is checked, as audio files are asked to
be of fixed length (4.6 seconds), the length of the audio is subtracted from 4.6 to know
how many seconds of empty noise have to be added. Then this new duration is divided
randomly into 2 smaller durations and empty noise of a duration corresponding to the
first of the 2 is added in front of the command audio file and the same is done for the
second part, but it is added at the end of the command audio file.

Results of Artificial voices commands dataset

The first experiment was to train the models with this dataset only made of arti-
ficial voices and no real human voices. The results for the two models can be found
in Table 4.1 below. For the Wav2vec model the results are already quite good, but
for the ResNet model the results are really very bad. Then by looking at the different
confusion matrices for the 3 categories of the Wav2vec 2.0 model, which you can see in
the appendix in Figures 5.8, 5.9 and 5.10, it can be seen that the model struggles with
some words but not particularly with specific words. The fact that the Wav2vec model
is so much better than the ResNet model is probably due to self-supervised learning
phase where the model trains itself to recognise the different phonemes on a very large
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corpus of spoken sentences with different accents, speaking rate, microphones quality
and so on. So, even without much data during training on the downstream task, it
can already perform well. For the small errors that remain, one intuition could be that
the commands of the real conditions test set were mostly spoken by French-speaking
people and in reality, people’s diction is not as good as native English speakers or that
of a text-to-speech model such as those of Google and Microsoft.

On the other hand, the ResNet bad results can be seen in Table 4.1 and in con-
fusion matrices 5.11 5.12 and 5.13. These results may be explained by the fact that
ResNet has not been pre-trained on spectrograms, but on real images from the Ima-
geNet dataset [29]. So in fact, it is like it was trained from scratch. Several experiments
were performed to highlight this like training a non-pretrained ResNet which gives ap-
proximately similar results. In addition to that, as mentioned for the Wav2vec model,
artificial voices do not represent the reality as they are too perfect.

Training dataset Model Precision Recall F1-Score

artificial voices alone
Wav2vec 2.0 0.9178 1.0 0.9572
ResNet-18 0.0862 1.0 0.1587

Table 4.1: Results on the real conditions Test set of the models trained on the
artificial voices commands dataset.

3.2 Human voice commands dataset

Another experiment is to train the model with a dataset only made of human voices
and no artificial voices to see if the results are better or not than with only artificial
voices, because the real conditions test set only consists of real voices. Words are avail-
able since they were collected before, though there are only words, not commands. In
order to create a command, words have to be combined together. If various commands
are produced through the created language (see problem statement), the dataset is
unbalanced. Indeed, there are 20 times less commands with an instruction without a
number than commands with n instruction and numbers. For example there is only
one command with the instruction without number ”land” together with the name
”Alpha”, but there are 10 commands with the instruction with numbers ”up” together
with the name ”Alpha” because there are ten numbers : ”Alpha up one”, ”Alpha up
two”, until ”Alpha up free”. As there are, for a single name, only 4 instructions without
a number but 80 instructions with numbers (8 instructions with a number multiplied
by 10 numbers), there are 20 times less commands without a number than commands
with a number. In the case of the human voice dataset, the commands are created
randomly but follows this distribution. Firstly, a random name is chosen and an audio
file is selected randomly in the corresponding folder. Then an instruction is chosen at
random, and there is a 5% chance that the chosen instruction is one without a number.
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If this is the case, there is no need to choose a number. In the other case, an instruction
with a number and an additional number are chosen at random as the corresponding
files. The Figures 4.5, 4.6 and 4.7 represent the count of the words, for each category,
in all generated commands with human voices for the training dataset. It can be seen
that the distribution is respected as there are about 4 ∗ 170 instructions without num-
ber for 8 ∗ 1600 instructions with a number. This is approximately the 4/80 that were
expected, as explained above.

Figure 4.5: Count of the names in all the
human voices training commands set.

Figure 4.6: Count of the instructions in
all the human voices training commands

set.

Figure 4.7: Count of the numbers in all the human voices training commands set.

It was decided to have the same number of artificial voices commands as human
voice commands in the training and validation sets. For that, 13,440 commands were
created for the training set which is equal to the 13.440 commands created, thanks to the
Azure API. 7,728 commands were created for the validation set, which is equal to the
7,728 commands created hereby, thanks to the Google cloud API. The only difference
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is that there are no artificial voices in the test set and again 12,144 commands were
created for this one.

Results of human voice commands dataset

The results are in Table 4.2 and they are rather bad for both the wav2vec model
and the ResNet model. The two models struggle with the commands with no number.

Figure 4.8: Confusion matrix for the ”Instruction” category of the ResNet model
trained only on human voices and with commands that are only part of the grammar.

By looking at the confusion matrices on the instructions for the ResNet in Figure
4.8 and for the wav2vec in appendix Figure 5.17, it can be seen that instructions with-
out a number are not well predicted. The same can be seen for the ”Nothing” word
again for both models in Figure 4.9 and Figure 5.18 in the appendix. This ”word”,
which is more the absence of a number in a command, is obviously only present in these
commands. This result can be expected, since the dataset is unbalanced. As explained
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at the beginning of this section, there are far fewer commands with no numbered in-
structions, than commands containing a numbered instruction. An interesting result
is that, compared to training with artificial voices only, the ResNet gains in terms of
accuracy while the Wav2vec loses a lot and becomes completely unusable. This result
can be due to the fact that the test set is a real conditions dataset and therefore each
command is spoken by one and only one person. The fact that here, the model is
trained on commands assembled with 2 or 3 different voices depending on the type of
command can harm the model.

Figure 4.9: Confusion matrix for the ”Number” category of the ResNet model
trained only on human voices and with commands that are only part of the grammar.
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Training dataset Model Precision Recall F1-Score

human voices alone
Wav2vec 2.0 0.3818 1.0 0.5526
ResNet-18 0.1884 1.0 0.3170

Table 4.2: Results on the real conditions Test set of the models trained on the
human voices commands dataset.

3.3 Mixed commands dataset

To see if the results could be improved, a decision was taken to combine the two
datasets presented above.

Results of the mixed commands dataset

Figure 4.10: Confusion matrix for the ”Number” category of the ResNet model
trained on the mixed commands dataset with commands that are only part of the

grammar.

Page 41



Chapter 4 – Experiments

The results for the two models can be found in Table 4.3 and in both cases this new
dataset leads to better results which means that coupling the 2 types of voices (human
and artificial) is a good thing. These improved results may be explained by the fact
that artificial voices are too perfect: there are only 40 different voices in the training
dataset, people speak clearly even with their accent and the quality of the audio is
perfect. This is not the case when you have real recorded human voices. The human
recorded dataset not only brings a large diversity of voices, accents and microphones
qualities, but also heterogeneity where artificial voices bring uniformity to the dataset
with commands spoken clearly by only one person.

Figure 4.11: Confusion matrix for the ”Instruction” category of the ResNet model
trained only on the mixed dataset with commands that are only part of the grammar.

By looking at the confusion matrix of the instruction in the wav2vec model in
Figure 5.19, it can be seen that the biggest errors that the model still makes are on
the instructions without number. Then by looking at the model’s confusion matrix
on the numbers Figure 5.20, one can see that it is focused on the word ”free” and
”three”. This can be expected, as these two words are really close in terms of hearing
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and understanding.

Training dataset Model Precision Recall F1-Score

mixed
Wav2vec 2.0 0.9739 1.0 0.9868
ResNet-18 0.6052 1.0 0.7541

Table 4.3: Results on the real conditions Test set of the models trained on the
dataset which is a mix of both human and artificial voices.

The ResNet model not only has the same problem as Wav2vec model, which is to
differentiate between ”free” and ”three”, but it also has a bigger problem which is to
spot when there is no number at the end, as can be seen in Figure 4.10. For the
instructions in Figure 4.11, one can be seen that it is a bit more disorganised.

3.4 Biased mixed commands dataset

Now, it is known that the results are better when the models are trained on the
mixed commands dataset which includes both human and artificial voices. As men-
tioned before, it was observed that there is a problem with the 4 instructions that do
not have a number after them. As explained beforehand, the training dataset is not
balanced and here, the idea is to bias the dataset in order to overcome this problem. To
do that, the two lists of instructions are merged into one, thus one doesn’t have to be
concerned whether it was a numbered instruction or not. That is to say, each instruc-
tion can include a number after it, or not. The dataset is therefore only biased during
training and validation but not during testing. This is a kind of augmentation which is
implemented to overcome the fact that the dataset is unbalanced. A ”Nothing” word
is therefore added in the list of numbers to indicate that there is no number in a given
spoken command. Now, there is only one list of instructions [emergency, go, land, stop,
backward, down, forward, left, mission, right, speed, up] and the list of numbers is now
[one, two, three, four, five, six, seven, eight, nine, free, Nothing ]. It is thus possible to
use for instance ”Alpha land five” or ”Alpha up”, neither of which are in the language,
but they help the model by balancing the training data. With these new lists of words,
there are 4 names, 12 instructions and 11 numbers which give 528 different commands.
In the case of the human voices dataset, as previously mentioned, the commands are
created randomly. This means that, in the case of the biased dataset, each word in
a command is chosen randomly with the same probability so at the end they should
appear approximately the same number of times. The figures 4.12, 4.13 and 4.14
represent the count of the words, for the different categories, in all commands of the
hand crafted human voices training dataset. As expected, there are nearly the same
number of words in each category. You can find the same figure for the validation
and test sets in the section Dataset of the Appendix.
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Figure 4.12: Count of the names in all
the train hand-crafted commands set.

Figure 4.13: Count of the instructions in
all the train hand-crafted commands set.

Figure 4.14: Count of the numbers in all the train hand-crafted commands set.

Results of the biased mixed commands dataset

The results of the biased mixed commands dataset can be found in Table 4.4.
Before having the test set in real conditions, the test set consisted of commands created
with human voices as explained in Subsection 3.2 and this biased mixed dataset helped
the model to generalise better. Now, it can be seen that when the dataset is biased,
the results deteriorate.

Training dataset Model Precision Recall F1-Score

biased mixed
Wav2vec 2.0 0.9319 1.0 0.9647
ResNet-18 0.5601 1.0 0.7180

Table 4.4: Results on the real conditions Test set of the two models trained on the
biased dataset as explained in produced datasets section
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3.5 Augmentation

The results using the wav2vec model on the whole non-noised dataset are already of
good quality. However, for the ResNet model, the results are not great and by looking
at the ”Number” category confusion matrix in Figure 4.10, it can be seen that the
model predicts the number ”Nothing” when it shouldn’t (vertical ”Nothing” line). This
means that it thinks that there are more commands without a number than there really
are.

In an attempt to correct this problem and to try to improve the model results, noise
is added to the background. This is a form of augmentation and allows the model to
generalise a little more and not overfit. Here, every command is augmented with a
certain quantity of a random noise file as follows:

(1 - quantity) ∗ command file + quantity ∗ noise file

This noise is different for each epoch of the training to have a real augmentation. Firstly,
this helps because it is similar to ”generating” more data as the same instruction has a
different background noise every new epoch. Secondly, this helps the model to be more
robust to noise. If it is not trained with noise and then tested with noise, it will be bad
at the task.

Another augmentation that can be used when working with spectrograms is called
”SpecAugment” introduced by Park et al. (2019) [25]. This simple augmentation is
basically applied on the input spectrogram of the CNN’s or DNN’s. This method is
simple and computationally cheap to apply, as it directly acts on the spectrogram as
if it were an image. The 2 modifications used are time and frequency masking, where
either a block of consecutive time steps is masked, or some frequency channels are
masked. An example of this augmentation is shown below in Figures 4.15, 4.16 and
4.17. This augmentation is applied to every spectrogram but in the torchaudio API
used throughout the project, a maximum possible length of the mask for frequency
and time (freq mask param and time mask param) must be chosen and indices are then
uniformly sampled from [0, freq mask param) and [0, time mask param)

The results of the noised training dataset can be found on Table 4.5. It can be
seen that this really helps reduce the error rate in both models. The Wav2vec model
goes from an error rate of 7% to only 2%, whereas the ResNet model goes from an error
rate of 45% to 25%. Moreover, what can also be seen on the last line of the Table
is that augmentation on the ResNet model further improves results. The precision is
improved by 3%. In addition to that, it can be observed that the biased dataset helps
the Wav2vec model improve results.
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Figure 4.15: Simple spectrogram of a command within the dataset without any
augmentation.

Figure 4.16: Spectrogram of the same commands as above but with frequency
masking.
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Figure 4.17: Spectrogram of the same command as above but with frequency and
time masking.

Training dataset Model Precision Recall F1-Score

noised biased mixed
Wav2vec 2.0 0.9790 1.0 0.9894
ResNet-18 0.7255 1.0 0.8409

noised non-biased mixed
Wav2vec 2.0 0.9760 1.0 0.9878
ResNet-18 0.7445 1.0 0.8535

augmented noised non-biased mixed ResNet-18 0.7735 1.0 0.8723

Table 4.5: Results on the real conditions Test set of the two models trained on the
biased and non-biased dataset augmented with 20% of noise. The ResNet was also

trained on the noised non-biased dataset augmented through SpecAugment.

3.6 Comparison between the models

Several models were trained to see which one leads the best results. The different
training losses for the 3 categories can be seen in Figures 4.18, 4.19 and 4.20. The
accuracies for the validation set can be found in the appendix to Figures 5.21, 5.22
and 5.23.

First, what can be noted here is that, for the ViT model, the loss decreases, but
not as much as for the other models. Training was been continued, but doesn’t appear
on the graph. During continuation, it can be seen that the loss becomes a straight
horizontal line, even if the learning rate is reduced, there is no longer any real progress.
This result may be explained by the fact that, as mentioned previously, spectrograms
are so different from images that the model has to be trained from scratch and, as
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specified in the paper, more than 14 million images are necessary to obtain SOTA re-
sults of the ResNets and other models. Here, the model may need less than 14 million
images because there is less diversity in the spectrograms than in ”normal” images.
Nevertheless, it can be seen that the images in this dataset are not numerous enough
to reach outstanding results.

Figure 4.18: Training loss of the different best models for the ”Name category.

Figure 4.19: Training loss of the different best models for the ”Instruction” category.
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Figure 4.20: Training loss of the different best models for the ”Number” category.

Second, when looking at the EfficientNetB0 training loss and validation accuracies,
it can be seen that this model doesn’t lead to better results than the ResNet model.
Therefore, it was decided to continue the different experiments with the ResNet as the
CNN architecture model as this is the fastest to train. The Wav2vec 2.0 was also kept
as this is the one that provides the best results in all the models.

3.7 Normalisation

When listening to the files of the commands that were mis-predicted during the
training, what was noticed was that the volume of the voice was very low compared to
that of the noise, so all the voice files were normalised to avoid this problem.

3.8 With/without free

Since the beginning of the Experiments chapter, it can be seen in every confusion
matrix on ”Number” that each one of the models has big problems with the two words
”free” and ”three”. This is normal because, as aforementioned, all the commands in
the test set were recorded by French speakers, and with a French accent, the 2 words
can be homonyms. Homonyms are 2 words that have the same spelling, or the same
pronunciation, but have different meanings. Fortunately, most of these homonyms do
not appear in the same sentence at the same place and thanks to the context of the
sentence the right word can be selected.

The challenge here is that there is no context as these are commands. The two
words, ”free” and ”three”, belong at the same place and can occur with the same prob-

Page 49



Chapter 4 – Experiments

ability. If longer sequences, or with NLP’s were used, the context of the sentence could
easily be used, but here it’s impossible. So, in the end, it was decided to simply delete
the word ”free” from the vocabulary.

The results can be found in Table 4.6 below:

Training dataset Model Precision Recall F1-Score

noised biased norm. w/o free Wav2vec 2.0 0.9891 1.0 0.9945
noised non-biased norm. w/o free augm. ResNet-18 0.7849 1.0 0.8795
noised biased norm. w/o free augm. ResNet-18 0.8002 1.0 0.8890

Table 4.6: Results on the real conditions Test set of the models trained on biased or
non-biased, augmented with SpecAugment in the case of the ResNet, and augmented
with 20% of noise for both models, normalised datasets without the word ”Free”.

3.9 Quantity of Noise

Now, several quantities of noise are tested on the wav2vec model to see which one
gives the best results without a classification threshold. As can be seen in Table 4.7,
the best results are obtained when the quantity of noise is 30%. What can also be
seen is the precision of the model even with 90% of noise and only 10% of the original
command file as defined in subsection 3.5. This really shows the power of this model,
it is able to concentrate on the words and not on the noise, which is very much present
in this case.

Quantity of noise Precision Recall F1-Score

0. 0.9727 1.0 0.9862
0.1 0.9869 1.0 0.9934
0.2 0.9891 1.0 0.9945
0.3 0.9945 1.0 0.9973
0.4 0.9924 1.0 0.9962
0.5 0.9825 1.0 0.9912
0.6 0.9782 1.0 0.9890
0.7 0.9836 1.0 0.9917
0.8 0.9028 1.0 0.9489
0.9 0.8188 1.0 0.9003

Table 4.7: Wav2vec model trained with different level of noise on the biased
normalised dataset without the word ”Free” and tested on the real conditions set with

no threshold.
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4 Summary of the results

Training dataset Model Precision Recall F1-Score

artificial voices alone
Wav2vec 2.0 0.9178 1.0 0.9572
ResNet-18 0.0862 1.0 0.1587

human voices alone
Wav2vec 2.0 0.3818 1.0 0.5526
ResNet-18 0.1884 1.0 0.3170

mixed
Wav2vec 2.0 0.9739 1.0 0.9868
ResNet-18 0.6052 1.0 0.7541

biased mixed
Wav2vec 2.0 0.9319 1.0 0.9647
ResNet-18 0.5601 1.0 0.7180

noised biased mixed
Wav2vec 2.0 0.9790 1.0 0.9894
ResNet-18 0.7255 1.0 0.8409

noised non-biased mixed
Wav2vec 2.0 0.9760 1.0 0.9878
ResNet-18 0.7445 1.0 0.8535

augmented noised non-biased mixed ResNet-18 0.7735 1.0 0.8723
noised biased norm. w/o free Wav2vec 2.0 0.9891 1.0 0.9945

noised non-biased norm. w/o free augm. ResNet-18 0.7849 1.0 0.8795
noised biased norm. w/o free augm. ResNet-18 0.8002 1.0 0.8890

30% noised biased norm. w/o free Wav2vec 2.0 0.9945 1.0 0.9973

Table 4.8: Summary of the different results obtained during the ablation study. The
models are trained on different training sets and tested on the real conditions test set.

”Noised” is by default 20% of noise applied on each command except when a
percentage is specified.

4.1 Metrics according to the threshold

Various metrics are computed on the model trained with different quantities of noise,
according to an increasing threshold. The F1-Score for the different quantities can be
found in Figure 4.21. It can be seen that, when the model is trained to 80% or 90%
of noise. The model is not as bad as was thought with no threshold. However, when
this threshold increases, the F1-Score slowly decreases until a threshold of 0.8 where a
real drop can be observed. Now, the focus of the Figure 4.22 is on the model trained
with noise going from 0% to 50%. What can be noticed is the fact that the F1-Score
increases with noise up to 30% and then decreases. For the best model, which is the
one trained with 30% of noise, the big drop in the F1-Score appears at a threshold of
approximately 0.95.

In the use-case of this project, precision is important because the operator control-
ling the drone wants the drone to obey the command he just gave it. However, recall is
also important as it is not good to reject too many commands just because the model
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is not certain enough of its prediction. In order to better visualise the number of un-
predicted commands, Figures 4.23 and 4.24 show the fractions of the dataset that are
not predicted according to the classification threshold. As can be seen for the model
trained to more than 70%, a large part of the dataset is not predicted. For our best
model (i.e. the model trained to 30% of noise), if a threshold of 0.99 is used, ”only”
7.5% of commands are discarded.

The precision and recall for the different quantities can be seen in the appendix in
Figures 5.24, 5.25, 5.26 and 5.27.

As already mentioned, both precision and recall are important and this is why the
focus is on the F1-Score. By only looking at this F1-Score, the best model that can be
obtained is the model trained to 30% of noise and no threshold. This may be explained
by the fact that without any threshold, the precision is already 0.9945 and the maximum
result that can be attained with a threshold of 0.9 is 0.9967. Therefore, there isn’t a
large increase in the precision where the recall falls from 1.0 with no threshold to 0.9923
with a threshold of 0.9. So, there’s a bigger loss in the recall, than there is a gain in the
precision. The same behavior can be seen for each of the models. A last observation is
that when this model predicts a command, it does so with a great certainty, because,
as can be seen in the Figure 5.25, the precision still increases until a threshold of 0.97
or 0.98 from which it is possible to see a very small slope.

Figure 4.21: F1-Score of the best model trained with different quantities of noise
going from 0 to 90% and tested on the real conditions dataset according to a

classification threshold.
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Figure 4.22: F1-Score of the best model trained with different quantities of noise
going from 0 to 50% tested on the real conditions dataset according to a classification

threshold.

Figure 4.23: Percentage of non predicted commands of the model trained with
different quantities of noise going from 0 to 90% according to a classification threshold
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Figure 4.24: Percentage of non predicted commands of the model trained with
different quantities of noise going from 0 to 50% according to a classification threshold

5 Comparison with Bolland’s results

To make a good comparison, only the best model from Bolland’s work [4] is taken.
The best result he was able to obtain is through the training of a ResNet-15, which he
called like this because it is a ResNet architecture consisting of 15 identical Residual
blocks, as can be seen in Figure 4.25. Te current challenge was to try to reproduce
its architecture and transpose it into this work, to re-train it with this work’s dataset,
and finally obtain results.

In his work, Bolland has one model for all words. As input, he only gives one word
to the model, not an entire command and output probabilities for the 28 words of the
vocabulary. In fact, this is quite similar to what is done in this work, because here,
the same model is used for the three categories, but at the really end of the model, it’s
separated into 3 different heads (3 simple linear layers) that have their own learnable
parameters.

Bolland’s dataset only consists of the Google commands dataset combined with the
collected words (note that he had fewer words collected than there is in our case). Bol-
land’s dataset is separated into 2 folders ”train” and ”test” sets. What was observed is
that Bolland didn’t search for duplicate files, as explained in the Dataset section, and
therefore he ended up with duplicate files between training and testing set which bias
the evaluation.
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Figure 4.25: Representation of the ”ResNet-15” architecture used in Bolland’s work
[4]. The spectrogram is input and passed through 2 convolutions and then the output

of these 2 convolutions is passed through a group of 15 identical residual blocks
containing 2 internal convolutions. At the end, the final feature map is reduced into a
one-dimension representation and passed through a linear layer and passed through a

softmax in order to obtain the probabilities for the 28 different words of the
vocabulary.

To have approximately the same testing procedure as in Bolland’s work, a test set
was created consisting of hand-crafted commands as explained in section 3.2. By doing
that, 2 or 3 different words from 2 or 3 different persons are present in a single com-
mand. He also only considered accuracy when evaluating his models. This accuracy
is also used here. Moreover, he doesn’t use the accuracy on the commands, but the
accuracy on the words; so the exact same thing is done here and an average of the 3
categories is made.
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The comparison can be found in Table 4.9. A first observation is that with the
ResNet trained with noise in this work, a better accuracy can be obtained on words
than the one from Bolland. This may be explained in several ways. First, in this work
a lot more words were acquired compared to what Bolland had. This allows the model
to better generalise. The second point is that Bolland used the noise from the Google
commands dataset which consists of 5 noise files, namely the sound of a meowing cat,
someone washing dishes, someone on an exercise bike, a running tap and the siren of
a Belgian firefighter truck. With only 5 different noise files, the model learns these
sounds by heart and doesn’t try to generalise what is behind them. Furthermore, using
these same sounds during the testing phase clearly biases the testing phase as they are
sounds that the model has already heard during the training.

What you can also see in this Table is that word accuracy is not really an efficient
measure. Very good results are obtained in terms of word accuracy with the ResNet-18,
but there is a drop-off between this accuracy and the precision of the commands. A
second observation regarding our results with this test set is that, for the ResNet, the
results are much better than with the real conditions test set. However, the results
for the Wav2vec model are not as good as with the test set in real conditions. These
results are expected as there are no real condition commands in the training set and,
as the ResNet has to be trained from scratch, ResNet is expected to perform better
on a similar set of tests to the training. For the Wav2vec model, it is normal that it
performs better on the real conditions test set since its self-supervised learning phase
is done on real conditions data.

A final observation was common in both works: the fact that using the MFCC
instead of the spectrogram gives worse results. This was tested, but not shown in our
work, because it was thought it was not relevant.

Model Training set Testing set
Accuracy Precision F1-Score
of words of commands of commands

words non-noised
words non-noised 97%

/ /
ResNet-15 40% noised words 73%

from Bolland
40% noised words

words non-noised 91%
40% noised words 85%

ResNet-18 from augm. 40% noised non-noised test set 97.16 % 0.9167 0.9565
this work commands norm. 40% noised test set 97.26% 0.9197 0.9598

Wav2vec 2.0 30% noised non-noised test set 99.36% 0.9813 0.9906
this work commands norm. 40% noised test set 99.35% 0.9813 0.9905

Table 4.9: Comparison of word accuracies between Bolland’s ResNet-15 model and
our models tested on a test set consisting of handcrafted commands (NOT the real
conditions test set as before) to obtain a testing procedure similar to Bolland’s work.
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6 Fine-tune on a part of the real conditions test set

Some fine-tuning was attempted on the best model on the real condition dataset.
This is a very small dataset, consisting of 916 commands, where those containing the
word ”Free” are discarded.

When dealing with a small dataset, the k-fold cross validation technique can be
used. This method consists of splitting the dataset into k folds of equal size. Then a
fold is selected as the testing set and the remaining are combined to form the training
set. This can be seen in 4.26. This process is repeated k times, so that each of the k
folds is used once as the test set. The performance is measured at each of the k steps
and at the end, the mean is computed in order to obtain the final performance of the
model.

Figure 4.26: K-fold cross validation. The dataset is split into k folds and a fold is
chosen to be the test set and the remaining are combined to form the train set. This

is repeated k times for the k folds to be used once as the test set.

In this case, the dataset was split in 5 folds, which means that the first 4 folds con-
tain 183 commands and the last one contains 184. The k-fold cross validation technique
was first applied to fine-tune the best ResNet from this work which is the ResNet-18
trained on the augmented noised biased normalised dataset without the word ”Free”
and the results can be found in Table 4.10. These results are a little bit better than
the one which isn’t fine-tuned on the real conditions data, but it isn’t a big improve-
ment. Then, it was also applied on a ResNet pre-trained with ImageNet [29] to see the
difference and as can be seen in Table 4.11, there is a huge gap between the two.

The same was done, but this time on the best Wav2vec 2.0 model which is trained
on 30% noised biased normalised dataset again without the word ”Free”. The results
in Table 4.12 appear to be worse than with the original best model. This may simply
be explained by the fact that there isn’t enough data. With the Wav2vec 2.0 model
simply coming out of its self-supervised learning phase, it can be seen in Table 4.13
that the results are really bad, even worse than for the pretrained ResNet.
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Model Precision F1-Score

Fold 1

Best ResNet18 in this work

0.7204 0.8406
Fold 2 0.7705 0.8703
Fold 3 0.8033 0.8909
Fold 4 0.9126 0.9543
Fold 5 0.9837 0.9917
Mean 0.8381 0.9095

Table 4.10: Fine-tuning of the best ResNet using a 5-folds cross validation on the
real conditions dataset.

Model Precision F1-Score

Fold 1

Simple ResNet18 pre-trained on ImageNet

0.5301 0.6929
Fold 2 0.1311 0.2319
Fold 3 0.2076 0.3439
Fold 4 0.5847 0.7379
Fold 5 0.6793 0.8090
Mean 0.4266 0.56312

Table 4.11: Fine-tuning of a simple ResNet pre-trained on ImageNet using a 5-folds
cross validation on the real conditions dataset.

Model Precision F1-Score

Fold 1

Best Wav2vec 2.0 in this work

0.9836 0.9917
Fold 2 0.9836 0.9917
Fold 3 0.9945 0.9973
Fold 4 0.9890 0.9945
Fold 5 0.9891 0.9945
Mean 0.9880 0.9040

Table 4.12: Fine-tuning of the best Wav2vec model using a 5-folds cross validation
on the real conditions dataset.
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Model Precision F1-Score

Fold 1

Simple Wav2vec only self-supervised

0.3990 0.5703
Fold 2 0.2676 0.4224
Fold 3 0.1257 0.2233
Fold 4 0.2459 0.3947
Fold 5 0.1522 0.2642
Mean 0.2381 0.3750

Table 4.13: Fine-tuning of a Wav2vec 2.0 after the self-supervised stage using a
5-folds cross validation on the real conditions dataset.

7 Inference

In the final use case, it is important to know how much time it takes the model to
understand and predict a command. This is therefore the last experiment, which is to
compute the inference time on CPU for both models. The Table 4.14 below shows
the time observed. What can be noted is that the prediction time of a command for
Bolland is almost 3 times higher than that of our ResNet. This is quite logical since
he has to make 3 predictions on the 3 different words with his model to obtain the
prediction of a complete command.

Model Audio processing time (ms) Prediction time (ms) Total time (ms)

ResNet-18 4 38 42
Wav2vec 2.0 3 280 283
ResNet-15

/ / 130
from Bolland

Table 4.14: Inference time on CPU for the best ResNet and the best Wav2vec 2.0 of
this work but also for the best model from Bolland’s work [4]
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Conclusions

1 Further work

1.1 Improvement of the model

The major drawback of this whole project was the data. For the human voices, only
words were collected and these words were assembled into commands. Nonetheless,
this doesn’t reflect reality. To obtain better results on real conditions data, one should
think about acquiring a large amount of data by asking people with different accents,
microphones to record complete commands in noisy places and not in the tranquility
of a room at home. What could also improve the model, is to add False commands.
Here, no threshold was set, because there were only real commands. Therefore, the
model could only go wrong in one of the 3 categories. If false commands are added, a
threshold must also be defined, below which the command is not taken into account.

Moreover, advanced augmentation techniques should be used during the training of
the model, such as changing the frequency by a certain amount to change the person’s
voice by one or more semitones. This would help the model to generalise more.

Finally, new models are launched quite regularly and fix certain problems of previous
models, so training a newer model such as ”HuBERT” could further improve the results.

1.2 Integration into the final project

The next step in this project is to integrate this model into a slightly more complex
one. For example, Keyword Spotting could be carried out and more specifically wake
word detection on each of the names. A model is trained to recognise several names and
as stated before, each drone has its own name. The different drones listen continuously
and when one of them detects its name, it listens for a certain number of seconds and
tries to predict whether what follows its name is a valid command or not.
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2 Discussion

In this Master’s Thesis, state-of-the art automatic speech recognition modelWav2vec
2.0 was used and fine-tuned on this downstream task which is speech command recogni-
tion. More specifically, this work shows how data was acquired and, through an ablation
study, the different methods that can be used in order to improve the results, when only
small amount of data is available. The results on real conditions data are quite good
and the model is very confident about its predictions. This is probably thanks to the
fact that the model has an initial self-supervised phase. The power of this technique
can be seen when the model is only trained on artificial voices and already obtains
outstanding results on data in real conditions.

The ResNet results aren’t so good on this test set, but it has been seen that using
the same kind of data as in the train in a test set, the ResNet results were much better
and almost equivalent to those of Wav2vec 2.0. It was also established that this ResNet
is 10 times faster to make a prediction. If the ResNet was trained on real conditions
data, it could be as good as Wav2vec 2.0.
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Chapter 2

Figure 5.1: Summary of the different ResNet architectures with the blocks inside
according to their size

Model
dev test

clean other clean other

10 min labeled 4.6 7.9 4.8 8.2
1h labeled 2.9 5.4 2.9 5.8
10h labeled 2.4 4.8 2.6 4.9
100h labeled 1.9 4.0 2.0 4.0
960h labeled 1.6 3.0 1.8 3.3

Table 5.1: Word-Error-Rate(WER) for the LARGE wav2vec 2.0 on the Librispeech
dev/test sets when pre-trained on LibriVox (60k unlabeled audio) and fine-tuned on

the Libri-light low-resource labeled data setups
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Chapter 3

Figure 5.2: Count of the names in all the
validation hand-crafted commands set.

Figure 5.3: Count of the instructions in
all the validation hand-crafted commands

set.

Figure 5.4: Count of the numbers in all
the validation hand-crafted commands set.

Figure 5.5: Count of the names in all the
test hand-crafted commands set.

Page b



Chapter 5 – Conclusions

Figure 5.6: Count of the instructions in
all the test hand-crafted commands set.

Figure 5.7: Count of the numbers in all
the test hand-crafted commands set.

Chapter 4

The hardware specifications of the computer that performed all the experiments are
the following :

• CPU : Intel Core i5-11400F

• GPU : NVIDIA GeForce RTX 3060

• RAM : 16 GB

• VRAM : 12 GB

Concerning the ResNet18, the largest batches that can be taken with these specifications
are batches of size 64. Therefore all the following experiences are performed with that
batch size.
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Figure 5.8: Confusion matrix for the
”Name” category of the wav2vec model
trained only on artificial voices and with

commands that are only part of the
grammar

Figure 5.9: Confusion matrix for the
”Instruction” category of the wav2vec

model trained only on artificial voices and
with commands that are only part of the

grammar

Figure 5.10: Confusion matrix for the ”Number” category of the wav2vec model
trained only on artificial voices and with commands that are only part of the grammar
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Figure 5.11: Confusion matrix for the
”Name” category of the ResNet model
trained only on artificial voices and with

commands that are only part of the
grammar

Figure 5.12: Confusion matrix for the
”Instruction” category of the ResNet

model trained only on artificial voices and
with commands that are only part of the

grammar

Figure 5.13: Confusion matrix for the ”Number” category of the ResNet model
trained only on artificial voices and with commands that are only part of the grammar
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Figure 5.14: Confusion matrix for the
”Name” category of the wav2vec model

trained on dataset of human and artificial
voices with commands that are only part

of the grammar

Figure 5.15: Confusion matrix for the
”Instruction” category of the wav2vec
model trained on the dataset of human
and artificial voices with commands that

are only part of the grammar

Figure 5.16: Confusion matrix for the ”Number” category of the wav2vec model
trained on the dataset of human and artificial voices and with commands that are

only part of the grammar
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Figure 5.17: Confusion matrix for the ”Instruction” category of the wav2vec model
trained only on human voices and with commands that are only part of the grammar.
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Figure 5.18: Confusion matrix for the ”Number” category of the wav2vec model
trained only on human voices and with commands that are only part of the grammar.
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Figure 5.19: Confusion matrix for the ”Instruction” category of the wav2vec model
trained on the mixed commands dataset with commands that are only part of the

grammar.
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Figure 5.20: Confusion matrix for the ”Number” category of the wav2vec model
trained only on the mixed dataset with commands that are only part of the grammar.
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Figure 5.21: Validation accuracy of the different best models for the ”Name”
category

Figure 5.22: Validation accuracy of the different best models for the ”Instruction”
category
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Figure 5.23: Validation accuracy of the different best models for the ”Number”
category

Figure 5.24: Precision of the best model trained with different quantities of noise
going from 0 to 90% and tested on the real conditions dataset according to a

classification threshold.
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Figure 5.25: Precision of the best model trained with different quantities of noise
going from 0 to 50% and tested on the real conditions dataset according to a

classification threshold.

Figure 5.26: Recall of the best model trained with different quantities of noise going
from 0 to 90% and tested on the real conditions dataset according to a classification

threshold.
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Figure 5.27: Recall of the best model trained with different quantities of noise going
from 0 to 50% and tested on the real conditions dataset according to a classification

threshold.
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