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Abstract

Aircraft propellers have been an essential propulsion source since the origins of aviation. In order to
allow aviation to continue and remain a viable means of mass transportation, the aircraft of tomorrow
should become more energy-efficient, have less greenhouse gas emissions and have a lower noise
signature. Due to their high propulsive efficiency and the introduction of electric propulsion in aviation,
there is a renewed interest in propeller design. However, conventional propellers are often considered
noisy compared to turbofan engines. On top of that, further propulsion integration into the air-frame, for
instance, Boundary Layer Ingestion, results in additional sources of propeller noise due to increased
non-uniform inflow. In order to meet the challenges mentioned and develop novel energy-efficient pro-
pellers with a low acoustic footprint, a multi-disciplinary framework is being developed to optimize the
propeller design. Present work focuses on the structural analysis of the propeller blade in a steady rec-
tilinear flight operation to predict the blade stresses and ensure that the optimized blade can withstand
the aerodynamic and centrifugal loads.

The structural model is based on the Euler-Bernoulli beam theory for bending loads and the Saint-
Venant theory for torsional loads in the blade. The proposed low-level structural model is more robust,
fast, and efficient in terms of computational time and power than structural FEM simulations and can
thus be easily integrated into a multi-disciplinary design optimization framework, including aerodynam-
ics and aeroacoustics. The model is sensitive to changes in the blade’s planform (chord, twist, and
sweep) and airfoil geometry. In addition, to build confidence in the results the low-fidelity model was
validated against high-fidelity structural (Fluid-Structure interaction) simulations of the propellers in both
propulsive and regenerative regimes.

The sensitivity analysis was performed using various geometrical and operational parameters such
as advance ratio, propeller pitch, and blade sweep. Expected outcomes from the sensitivity study
were achieved, concluding that the centrifugal loads dominates over aerodynamic loads, and further
consolidating the structural model and demonstrating that the low-level model performs satisfactorily in
estimating the stress distribution. The proposed structural model serves as the foundation for aeroelas-
tic analysis, which includes unsteady aerodynamic loadings, which were not considered in the current
work.

Keywords: Propellers, Low-fidelity, Structures, Swept blades, FEM, design optimization
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Introduction

Aircraft propellers have always been an important part of research since the dawn of aviation. The
Wright brothers’ successful powered flight in 1903 was made possible by a propeller engine. Propellers
became an important source of propulsive devices to power aircraft in the four decades that followed.
Turbojet and turbofan engines were invented near the end of World War II. For the majority of passenger
aircraft, these continue to be the best source of aircraft propulsion. However, rising fuel prices and
increased environmental awareness have increased demand for engines that are more fuel efficient.
The high propulsive efficiency of propellers, combined with the introduction of electric propulsion in
aviation, sparked renewed interest in propeller design.
Higher propeller efficiencies can be explained using the following equations:

T = 1AV (1.1)

2
o = 2y avv,

From the equation 1.1, the thrust force T for the propeller is solely due to change in momentum and,
therefore the pressure difference contribution is not required. Equation 1.2, provides the propulsive
efficiency n,,, which becomes highest for a small increment in the velocity of accelerated flow. Hence,
the highest efficiency is produced with a high mass flow goes through a slight increment in flow velocity,
instead of low mass flow rate with high increment of velocity. Consequently, it can be said that a large
propeller with a large mass flow rate, leads to a higher propulsive efficiency. Figure 1.1 illustrates the
propulsive efficiencies of a turboprops and high bypass turbofan engines. As a result of high potential
propulsive efficiency, there has been a renewed rise in the use of turboprops in aviation.'

With the increasing awareness towards the environment and the Environmentally Responsible Avi-
ation (ERA) goals proposed by NASA3 and the European Commission,* a shift towards the Electric
and Hybrid Propulsion has been observed. In the past decade, aircraft concepts using electricity for

(1.2)

Figure 1.1: Propulsive efficiency for different forms of aircraft propulsion?
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Figure 1.2: Normalized energy cost of Northwest U.S. electricity versus U.S. Jet A-15

some or all of their propulsive power have captured the great attention in the popular press.® NASA's
Subsonic Fixed Wing program established aggressive goals for energy consumption, nitrogen oxides
(NOx), and noise for three generations of airplanes extending out to the 2030s. The benefits of electri-
fication can be broken down into two categories: first, lower operating costs for current missions when
compared to conventional aircraft, and second, entirely new capabilities that could lead to the opening
of lucrative new markets. The use of electricity instead of jet fuel, a decrease in the amount of energy
consumed overall, or lower maintenance costs can all result in lower operating costs. Figure 1.2 shows
that, over the last ten years, jet fuel has been more expensive than electricity, though the difference
has been less prominent in recent years.

Apart from high propulsive efficiencies, propellers have the unique advantage of being easily scaled

and coupled to multiple electric motors on an aircraft. As a result, a propeller can easily power all types
of electric and hybrid electric aircraft, such as small passenger planes, drones, or unmanned aerial
vehicles (UAV). There are numerous examples of novel electric aircraft concepts available, ranging
from distributed propulsion to a single propeller configuration.
The casing and nacelle of a turbofan engine reduce the axial Mach number at rotor, allowing a high flight
velocity. Furthermore, the casing also helps to contain noise emissions produced by the entire propul-
sor. However, propeller blades are not surrounded by a casing, they are subject to freestream velocity,
which can result in flight velocity limitations and a significant noise emissions. High Mach numbers at
the propeller blade tip cause a large amount of drag, limiting flight speed. To complicate problems, high
tip Mach numbers can cause a lot of noise from the propeller. Because there is no casing, direct noise
is emitted to the observer. These can cause significant sleep disturbances and other psychological
effects in a large number of people. To use a propeller in aircraft propulsion, research is being con-
ducted to mitigate both the cruise speed limitations and extensive noise emissions. Both constraints
can be mitigated to some extent by optimizing the propeller blades. Previous researches has shown
that propeller noise can be reduced along with maximizing the propeller aerodynamic performances.”-°
A reduction of noise emissions can be achieved by using advanced blade design methods. Typically,
a certain amount of variable blade sweep is incorporated in advanced propeller blade designs, which
is both beneficial for reducing noise emissions and for increasing the speed limit of propeller aircraft.”
Figure 1.3 shows the swept propeller blades used by Airbus A400m aircraft.

Previously, optimization studies with varying objectives, constraints, and aerodynamic/aeroacoustic
models were carried out. For each of these optimization studies, an isolated propeller was assumed.
The resulting blade geometries in these studies differed in shape due to these differences in approach,
emphasizing the importance of accurate numerical models and a well-defined optimization framework.
Numerous approaches in numerical model and optimization studies resulted in optimistic results with
a optimum propeller blade geometry, with a better aerodynamic performances and a reduction in noise
emissions with the help of swept blades in the propellers. Higher-fidelity models draw attention because
of their accuracy in computing results. However, using higher-fidelity models in propeller optimization
frequently results in high computational times. Pagano et al. [10] used the BEM model coupled with
the more advanced CFD model, to optimize the propeller blade with a blade sweep. Figure 1.4 shows
the blade geometry of the optimum blade generated by Pagano et al. [10].

Throughout the optimization studies, an attempt is made to find the best propeller design for maxi-
mum aeroacoustic and aerodynamic performance. The selection of an aerodynamic and aeroacoustic



Figure 1.3: Airbus A400m propeller blades in Paris Airshow, 2009

Figure 1.4: Comparison of baseline blade (left) with the other optimum blades (right) by Pagano et al. [10]
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model is critical for generating the best blade geometry. However, in addition to the aerodynamic and
aeroacoustic models, the coupling of structural models is critical to ensure blade stability and that the
blade can withstand the high centrifugal and aerodynamic loadings of the propeller. To generate thrust,
the propeller is operated at extremely high rotational speeds, can go up to 30000 RPM depending upon
the size and diameter of the propeller; therefore, it is critical to ensure that the blade is capable of sus-
taining such high loads; otherwise, the propeller blade may experience structural failure, resulting in a
catastrophic flight operation. The optimum blade generated in figure 1.4 can be used to demonstrate
why a structural model must be coupled with aerodynamic and aeroacoustic optimization. Optimal
blades have a sudden increase in sweep angles towards the tip, which can result in a stress concen-
tration zone where the blade sweep begins. If the propeller is operated at a higher rotational speed,
the maximum stress in the stress concentration zone can exceed the allowable maximum stress of the
material, resulting in crack initiation in the propeller structure and, eventually, structural failure of blade.
In this thesis, a low fidelity structural model is proposed that, along with the aerodynamic and aeroa-
coustic models, can be employed later in optimization studies to generate optimal swept blades that
can operate in the required range. A low fidelity structural model can predict maximum stress during
flight operation while using limited processing time and power, and it can be easily coupled with other
optimization studies such as aerodynamic and aeroacoustic models. Before using low-order methods
in optimization studies, a rigorous verification procedure is required to build confidence in these mod-
els. It is possible to obtain high fidelity structural results by using a verification method that combines
CFD and FEM propeller results, and it is possible to determine whether these low order numerical tools
are suitable for use in optimization studies. As a result, design advancements may make the propeller
more appealing as a propulsion device for an all-electric aircraft, drone, or a turboprop.

1.1. Thesis Aim and Objectives

As previously discussed, changing the blade planform: chord, blade sweep, twist, and airfoil geometry
is a promising design step for reducing propeller noise and emissions. However, in order to ensure
the design safety of blades, a structural model must be included in the optimizations. As a result, the
primary goal of this thesis is stated as follows:

” To built a low-fidelity structural model of the propeller mechanical loadings to be used in an optimization
study.”

The objectives of the thesis is summarized as follows:

+ To establish a methodology for developing a low fidelity structural model based on analytical
equations to evaluate stress variations in an isolated propeller blade.

To evaluate and compare the stress distribution on the propeller blade caused by aerodynamic
and centrifugal loadings.

+ To determine the effect of the propeller blade’s sweep, pitch angle and advance ratio on the stress
developing on the blade.

To validate and compare the results of the given low fidelity analytical model with the high fidelity
FEM software.

1.2. Stakeholders

The present thesis is done in coordination with the Flight Propulsion and Performance (FPP) research
group in the Faculty of Aerospace Engineering at Technical University of Delft. The thesis is part of
the project conducted within the framework of the research project APPU (Advanced Propulsion and
Power Unit).

1.3. Outline

The thesis report is divided into four parts, as shown in the figure 1.5. Part | covers the introduction
in Chapter 1 and background theory on propeller aerodynamics and structural module including the
influence of sweep on the propeller blades in the chapter 2. Then, part Il discusses the methodology
and structural model proposed for the analysis in Chapter 3 This part is largely based upon the literature
study in the preparation of this thesis. In the part lll, verification and validations are first presented in the



1.3. Outline 5

Figure 1.5: Research Outline

chapter 4, and the sensitivity study results by varying physical parameters are presented in the chapter
5. Finally in the part IV, this thesis is concluded in the chapter 6, in which conclusions, recommendations
and scope of future studies are stated.

In addition to the main results, some of the results which eventually did not contributed to the re-
search are also presented in the Appendix. These results can be used as a reference for future work.






Background of propeller aerodynamics
and structures

In this chapter, some basics of the propeller aerodynamics, performance and structural analysis are
provided, and past studies are shortly discussed. The basics of the propeller are discussed in section
2.1. Aerodynamics and flow over the propeller are discussed in section 2.2, while more discussions on
the structural investigations and previous studies are provided in the section 2.6.

2.1. Terms and definitions

A propeller is a device for providing a force or thrust, at the expense of power generated by a motor,
for driving a craft of some type through a fluid medium, such as air or water. In order to provide this
thrust, the propeller must set a mass of the fluid in motion in a direction opposite to that of the craft
being propelled.’ The force which drives the aircraft forward, is the reaction obtained due to certain
mass of air pushed backwards by the propeller. This backward moving air is called as slip-stream and
it has a certain kinetic energy due to its motion which represents a loss. Other losses includes loss due
to friction of air on the blade surface, and hence, the thrust power developed by the propeller is always
lower than the power delivered by the engine/motor to the propeller. The ratio of the power transferred
as thrust to the power developed by the engine is the propulsive efficiency and it is the most important
goal of the propeller design to obtain a high propulsive efficiency. Before moving forward into in depth
analysis of the propeller blade, it is necessary to know the basic terminology of the propeller blades.
Figure 2.1 helps to explain the terms used for the propeller blades.

1. Diameter (D) Diameter of the circle swept by the blade tips.

2. Pitch (p) This refers to the advancement in a single revolution of the propeller. A propeller since
it operates in the fluid, can have different airspeed, hence, pitch is usually not fixed. However,
advancement per revolution is the fundamental importance and is known as the effective pitch.

Boss of the propeller is central part of propeller where hub is mounted.
Hub is the metal fitting inserted to the propeller which helps in mounting the blade to the shaft
Root of the blade is part of the blade near the hub.

Aspect Ratio is the radius of the tip of the blade, with the maximum width of the blade.

N o o &~ e

Pitch Angle (8) The acute angle between the chord of the propeller cross section and a plane
perpendicular to the axis of rotation of the propeller.

8. Rake or Tilt of the propeller blade is defined as the mean angle which the line joining the centers
of area of the sections makes with a plane perpendicular to the axis of rotation.
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Figure 2.1: Basic Terminology of the propeller blade, adapted from Weick [11]

(a) General Propeller
(b) 2D blade section at radial distance r

Figure 2.2: Propeller blade diagram'2

2.2. Propeller Aerodynamics

Main objective of a propeller in the aircraft is to provide a force, which can be thrust to fly an aircraft or
lift to operate a drone for example. A propeller should operate at the highest propulsive efficiency, i.e.
a propeller should be able to produce a maximum amount of force while using the least power input.
In this section, the mechanisms of generating the thrust forces and key performance parameters are
discussed.

2.2.1. Propeller Blade Loadings

Thrust is generated by a set of propeller blades, each blade can be considered as a lifting surface which
provides the lift and drag to the body. In the figure 2.2, a 2D blade section of a propeller at a radial
distance r is depicted. The propeller experience a combination of translation (due to the wind speed)
and rotation, as a consequence propeller blade experiences an angle of attack a, from the airflow,
which ultimately results in Lift and Drag forces on the section of blade. The thrust and torque forces on
the blade are the consequences of the Lift and Drag forces, on the propeller blade sections.

Velocity triangle can also be observed in the figure 2.2, where 1, is the axial or freestream velocity
and V.4, is the tangential or rotational velocity in the direction of rotation of the blade. The angle between
the axial and the tangential velocity is known as inflow angle and is denoted as ¢. The difference
between the pitch angle () and the inflow angle (¢) is the angle of attack («) of the blade section. Due
to the angle of attack of flow and airfoil as a lifting surface, Lift (dL) and Drag forces (dD) are generated,
which in turn, generated Thrust(dT) and Torque(dQ) forces.
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Equation 2.10 gives relations from the velocity triangle in a 2D blade section of a propeller blade.

Vett = ,Véx + Vg

6 = tan™" (Lax> (21)
Vtgt

a=p—¢

Thrust and Torque can be related to the lift and drag forces, with the relations 2.11
1 2
dL = EpVeffCl(a,Re,Ma)c

1
dp = EpVéfde(a, Re,Ma)c (2.2)

dT =dLcos¢ —dD sin¢
dQ = (dLsin¢ + dD cos ¢p)r

In 3D representation of the blade, loading of the entire blade along the radius is considered. As
the blade is rotating about the center, the local rotational velocity of the blade increases with radial
coordinate. Point of maximum loading of propeller blade is generally at around 70% of the radius,
dependent on the operating conditions and propeller geometry.

2.2.2. Aerodynamic Performance Indicators

The key Aerodynamic performance indicators includes propulsive power, shaft power and the pro-
peller efficiency. These parameters represents the output power, input power and the efficiency of the
propeller. The blade pitch angle 8 along with the operating conditions determines the performance
parameters. The operating conditions of the propeller is determined using advance ratio (J) of the pro-
peller with D as the diameter, V,, as the freestream velocity and n denoting the angular frequency of
rotation of propeller.

_te 23
]_E (2.3)

For a given blade pitch g, the advance ratio is a scalable variable for which the performance pa-
rameters of the propeller can be defined. These key parameters are usually defined in the non di-
mensionalized forms, which are as shown in the equations 2.4 - 2.7. The thrust and power are non-
dimensionalized with respect to the dynamic pressure relative to the tip speed of propeller.

Cr = r 24
T — pwn2D4 ( . )
Q
Cr
n _}a (2.7)

However, in the case of optimization studies, Thrust is non dimensionalized with freestream velocity
and hence, a new performance parameter is defined as T,. The advantage of using T, is that the
parameter provides a comparison between the different propeller designs, and operating conditions for
a given disk loading.

_ T

T peoVED?
The propeller performance are defined by the key performance indicators described in the equation

2.3-2.8, and by the radial loading distribution in the propeller blades. Depending upon the performance,

propeller are distinguished into two broad categories - Fixed pitch propellers and fixed speed propellers.
For a fixed pitch propeller, the propeller operates on a constant pitch with a controllable rotational speed,

(2.8)

Tc
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Figure 2.3: Performance Graph - Relation between advance ratio and key aerodynamic performance parameters'3

(b) Propeller Efficiency curves with advance ratios r

(a) Propeller performance curves with advance ratios

Figure 2.4: Typical Propeller performance and efficiency curves with advance ratios

while for the fixed speed propeller, rotational velocity remains constant, while pitch can be changed
depending upon the flight. In the case of constant pitch propeller, the key performance parameters
depends only upon the rotational speed of the propeller and flight velocity.

The relation between key performance parameters, and the advance ratio for the case of fixed
pitch propellers are depicted in the figure 2.3. With increase in advance ratio, there is an increase
in axial/tangential velocity ratio (%’t), which consequently, increases the inflow angle. Now, since

pitch angle is constant, angle of attack experienced by the blade section decreases, which results in
decrease in Thrust force by the propeller blade. When the advance ratio, becomes too small, the thrust
and power starts to flatten out due to the non linearity in propeller induction with advance ratio, and
eventually resulting in flow separation as seen in the left side of the figure 2.3. This mechanism can be
seen analogous to the stall of an aircraft wing, where flow is separated due to high angle of attack.

In the case of fixed speed propellers, the rotational speed of a propeller is constant and the pitch
can be controlled. The advantage of a fixed speed propeller is that the propeller can be optimized for
the single operation during the flight. Moreover, pitch can be controlled in such a way that propeller
is maintained at a maximum efficiency during the different phases of the flight. Therefore, in such
propellers, the aerodynamic performance of the propeller is dependent on both advance ratios and
the pitch angle, which can be changed during the flight. Therefore, the thrust and power coefficients
of propeller are dependent on two variables, and a performance graph becomes a performance map,
which is given in the figure 2.4. In this plot power coefficient is plotted as a function of thrust coefficient,
advance ratio and pitch. Using the performance map, propeller efficiency can be optimized my matching
correct pitch with the flight conditions.

A propeller can also be used to generate a negative net torque during the descent and landing
phases of a flight mission by changing the pitch and rotational speed of the propeller until the angle



2.3. BEM Model 11

(a) Propulsive Regime
(b) Regenerative Regime

Figure 2.5: Velocity triangles of fixed-pitch propeller in propulsive and regenerative mode'?

of attack at the blade sections is negative. The electric motor can function as a generator and can be
used to harvest the energy as a result of the negative torque produced.'* This state is known as the
regenerative regime, where the propeller pitch is changed to produce negative thrust and torque, which
can help slow the aircraft during landing and additionally generate the energy that can be harvested
subsequently. Design optimizations by Pipistrel for small electric trainer aircraft trainer led to energy
savings by 19 percent.'® Figure 2.5 illustrates the fixed pitch propeller blade sections in the propulsive
(positive thrust) and regenerative (negative thrust) modes.

2.3. BEM Model

In this section, the blade element momentum (BEM) theory to compute thrust and torque forces is
presented. The blade element momentum theory is a fast method to compute aerodynamic and flow
analysis, but it has its own limitations. However, it is required that the BEM solution shows at least
a dependency or sensitivity to sweep.2 The implementation of a basic BEM model is discussed here,
which is also used as an input to the structural analysis to compute stress and deformations. It is
important to note that the implementation of BEM is not the primary scope of the present work, and
hence, it is only used as an input for the structural analysis. In order to have a correct aerodynamic
loads, especially for the case of swept blades, it is urged to use updated BEM model for the swept
propeller blades.

2.3.1. General Theory

The BEM theory is commonly used in the applications for wind turbines and propeller analysis. The
blade element momentum theory combines two theories, the momentum theory and the blade element
theory.

Actuator Disk Theory

Actuator disk theory is commonly known as the classical momentum theory. In this theory, a steam
tube through an actuator disk, such as propeller is considered. It was introduced by Rankine in 1865.16
Figure 2.6 depicts the contracting stream tube used in the research to explain this theory. The stream-
tube is contracting so as to increase the axial velocity of the stream. The bernoulli’'s theory is used
throughout the streamtube to compute flow properties. The thrust is generated by the actuator disk
due to the momentum difference between far upstream and far downstream of the streamtube. This
momentum difference created an instantaneous increase in the total pressure at the actuator disk. The
main assumptions of the actuator disk are as follows:

» Freestream is assumed to be steady, inviscid and incompressible.

» Flow passing through the streamtube is separated from the rest of the flow by well defined stream-
tube.

* Rotation of the flow is neglected

» There is a uniform velocity profile across the disk and stream-tube.
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Figure 2.6: Representation of actuator disk theory, showing contracting streamtube and the actuator disk

Blade Element Theory

Blade element theory, combined along with Actuator disk model results in BEM model for the prediction
of aeroforces in the propeller. In this theory, it is assumed that the streamtube in the figure 2.6, is
divided into several streamtube control volumes, and as a consequence, the propeller blade is divided
into several sections of width dr. In Blade element theory, relevant two dimensional force can be
determined by using the shape of element and the angle of attack «. Figure 2.2b shows a 2D blade
element at a certain angle of attack a and Thrust dT and Torque forces dQ are determined from the
velocity vy,.

By combining blade element theory and momentum theory, following assumptions has to be made

* Momentum increase in each of the annular streamtube is a result of thrust and torque forces
generated by the blade elements.

» Radial interaction effect between blade elements and annular streamtubes is neglected.

» The assumption of uniform velocity and loading over the actuator disk is no longer valid. How-
ever, by subdividing the actuator disk into smaller annuli, the assumption can still remain valid,
considering the individual annuli.

Therefore, in each of the individual annuli over the disk a constant loading is assumed. This assumption
enables an assessment of the radial distribution of the thrust and torque forces over the propeller blade.
Due to the two dimensional analysis of blade elements, the effects of vortices leaving the root and tip of
the propeller blade which induces a velocity fields, are not considered in the Blade Element Momentum
Theory. Therefore, Prandtl’s loss correction factor needs to be applied while using the BEM-model to
correct for the loss.

2.4. BEM model Implementation

In the current study, a classical and basic BEM model implementation has been used for prediction
of aerodynamic forces based on the works of Geng et al. [17] and Liu and He [18]. The classical
implementation of Blade element and Momentum Theory is provided in this section. It is important
to note that the primary objective of current thesis is not to develop a model for BEM and hence, the
basic BEM model is used for the present study. Hence, a classical and basic BEM model has been
implemented here, without the estimation of losses and correction method for the sweep in blades.
The present BEM model does not include secondary effects, such as induced flow fields on the propeller
due to the tip vortex and rotation in flow induced by angular acceleration due to propeller rotation. It also
assumes a breakdown for extreme conditions for example, when the flow on the blade is stalled. For
the simplicity of the model, XFoil convergence at low angle of attack is implemented for the evaluation of
Lift and Drag coefficients, in order to predict Thrust and Torque forces, and the lift and drag coefficients
at an angle of attack « is given by
C, = f(a,Re,Ma)

Cy = f(a,Re,Ma) (2:9)
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Figure 2.7: Blade section at a radius r

Blade Element Subdivision
Each of the propeller blade can be subdivided into a number of discrete sections. Each of the section
is analyzed independently, and it is affected by only axial and angular velocity and the induced flow
from the other section is neglected.
A section of a blade at radius r is shown in the figure 2.7.

The flow on the blade can considered to be consisting of the following:

* V, Axial flow velocity (Free stream velocity)
* 1, Angular flow velocity (Tangential velocity)
« 1, Effective Velocity

As the propeller blade is set at a pitch angle (8), the local velocity field will see an angle of attack,
a, which in turn will result in Lift and Drag that can be calculated using 2D airfoil properties. The thrust
and torque components are considered to be normal and parallel to the propeller disk, and can be
computed with the help of lift and drag forces.

Equation 2.10 gives relations from the velocity triangle in a 2D blade section of a propeller blade.

vy = /V3+V§

) (2.10)
¢—tan1<V2)

a=p-¢

Thrust and Torque per section can be related to the lift and drag forces, with the relations 2.11
1 2
dL = EpVeffClC

1
dp = Epngdec (2.11)
dT =dLcos¢ —dDsin¢
dQ = (dLsin¢ + dD cos ¢p)r
Total Thrust and Torque forces by the propeller of N blades can be given by equation 2.12

T =2 pVie (€, cos(9) ~ Co sin(@) N - dr

(2.12)

0 =%pV12C (Cp cos(¢) + C, sin(¢p)) N - dr
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Inflow Factors
The major complexity in the application of this theory arises in calculating the velocity components
of the streamtube near actuator disk. The axial component V;, can be considered roughly equal to
the freestream velocity (forward velocity of aircraft V) but, is increased by a factor due to contracting
streamtube. Tangential velocity V, can be roughly equal to blade’s rotating velocity (r), but is reduced
due to swirling nature of propeller. In order to evaluate V;, and V, correctly, axial momentum & angular
momentum needs to be balanced to predict the induced flow effects on the blade element.
Assumed velocities can be given by equation 2.13, where a represents the axial inflow factor and b is
the angular inflow or swirl factor.
Vo = Vio + aVi
(2.13)
V, = Qr —bQr
Angular and Axial Momentum Conservation
The principle of conservation of flow momentum can be applied in both axial and circumferential di-
rections. For the axial direction, the change in momentum along the streamtube starting upstream of
propeller disk, passing through the propeller section and exiting the stream tube, must be equal to the
thrust generated by the element. Neglecting the unsteady effects due to the propeller’s rotation, and
streamtube area equivalent to area of propeller disk swept, thrust can be given as
AT = Change in Momentum flow rate through tube at disk

= Mass flow rate in tube x Change in velocity along tube

AT =p - 2mr -dr - Vo X (Vs — V) (2.14)

Applying Bernoulli’s equation and conservation of momentum, from freestream to face disk and to
face disk to far downstream and balancing it with thrust, the exiting velocity from the streamtube can
be determined, and is given by:

Vs = Voo (1 + 2a) (2.15)

Substituting the exit velocity and inlet velocity into 2.14, Thrust can be given by

AT = 21trpV (1 + @) (Voo (1 + 2a) — V) - dr

2.16

=4nrpVo?(1 + a)a - dr (2.16)

Similarly, angular momentum can also be conserved, with the help of torque generated by the

blade element. AQ = Change in angular Momentum flow X r ; = Mass flow rate in tube x Change in
circumferential velocity x r

AQ = p.2rr.dr.Vy X (VQ( slipstream ) — Vi ( freestream )) xr (2.17)

Similar to the axial momentum, by conservation of angular momentum in the part from upstream to
the disk and disk to the far downstream, angular velocity is computed, and is given by:

VB( slipstream ) = 2bQr and Vﬂ(freestream) =0

AQ = 2nrpVe (1 + a)(2bQr)r.dr

2.1
= 413V (1 + a)bQ.dr (2.18)

Hence, now there is a system of non-linear equations 2.12, 2.13,2.16 and 2.18, containing four
primary unknowns T,Q,a and b. An iterative solution to this system of non linear equations, can be
provided to evaluate the properties.

Iterative Solution

To start the solution, some value of the inflow factor a and swirl factor b is assumed. This is used in
turn, to evaluate the flow angle of the blade and angle of attack of the airfoil from equation 2.13, and
later it is used in equation 2.12 to determine the Thrust and Torque by the blade elements. These
approximated values of Thrust and Torques are used again to find a improved estimates of the inflow
factors with the equation 2.16 and 2.18.

The process is iterated until the values of a and b converges with a certain specified tolerance, to
predict the correct torque and thrust forces.
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Figure 2.8: Flowchart for BEM model

Figure 2.8 gives a flowchart for the implementation of BEM model, which predicts the thrust and
torque of the propeller blade. Overall torque and thrust can be found by summing up the results of
all the radial blade elements. The performance indicators of the propeller blade can be evaluated
according to the equations 2.4 - 2.7.

2.5. Sweep in the propeller blades

Mid chord alignment is the offset between the mid chord point and the pitching axis at each blade
element as defined by Hanson [19]. Mid chord alignment is an important factor in the blade design as
it can improve the aero-acoustics as well as the aerodynamic performance of the propeller engine. It
is therefore, an important factor and needs to be defined in the propeller geometry. A fully dependent
design variable is the blade sweep angle y(r). The calculation of this parameter is important for the
structural model as well, as it has a great influence on the centrifugal moment of the propeller. The
blade sweep angle is defined as the angle between the mid chord of two adjacent blade elements, as
shown in equation 2.19.The relation between the mid-chord alignment and the blade sweep angle at a
blade element is illustrated in figure 2.9. In the given figure, the blade section is swept backwards with
respect to an adjacent blade section. It means that blade is swept backwards when it has a positive
MCA and a positive blade sweep.

Tig1 —T1i

MCAiy1 — MCA;
y; = tan* (L> (2.19)

Usually, in the case of aircraft wings, sweep is defined with the quarter chord sweep angle. In BEM
Theory by Gur and Rosen [21] the quarter chord sweep angle is used to determine the effect of blade
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Figure 2.9: Definition of mid chord alignment20

sweep on aerodynamic performance. However, here in this project, mid chord is used to define the
sweep as the leading edge and the trailing edge of the blade needs to be averaged. Burger [8] explains
in detail the importance of using the mid chord sweep instead of a quarter chord.

2.6. Propeller Structural Module

Designing a propeller for both high aerodynamics and aeroacoustic performance can be a tedious pro-
cess. The change in design can lead to lowering the noise emissions but also, the propulsor efficiency.
Hence, an optimization study needs to be done for the design of a propeller with high aerodynamic
and aeroacoustic performance. Such multidisciplinary studies were done earlier by.”'” However, after
having a closer look at the optimized blade, it was observed that blade is not feasible structurally. It
leads to high internal stresses, deformations and vibrations during the operation of propeller. There-
fore, a low fidelity structural model needs to be built and used in the optimization code, to find the blade
feasible to use in propeller.

2.6.1. Previous Structural Studies

In this section, previous studies related to structural modelling of propeller are discussed. As this model
needs to be used for the multidisciplinary propeller optimization, there is a focus on integration of the
aerodynamic and structural models, and evaluating the stresses at various sections of the blade.

The structural modeling of propellers dates back to the early 1900s, when the first flight was achieved
using propeller blades. In the first works of Weick [11], a steady rectilinear flight is considered, such that
the loads purely aerodynamic and centrifugal. The propeller blade is modeled as a cantilever beam, in
which the stress at any cross section depends on the loads on the blade from the section to the tip of
blade. The loading on the section were due to the aerodynamic and centrifugal forces and the bending
moments were evaluated, to compute the stresses at each sections. It is interesting to note that, the
stresses were generally over-predicted, as the propeller blades generally, got deflected and changed
their geometrical shapes. Due to this, there were changes in the stress values which were predicted in
the first works. Figure 2.10 depicts the affects of the deflection on the blade stresses computed using
cantilever beam theory.

With the introduction of new turbojet and turboprop engines later in the twentieth century, the em-
phasis shifted away from aircraft propellers. However, in the case of marine transport, the marine
propellers became more popular, there was a heavy focus on them. There is a strong connection be-
tween aircraft and marine propellers that dates back to the development of Blade element momentum
theory for marine propellers by Rankine in 1865. As a result, marine propeller models were also re-
searched and examined for structural modeling of blades. The structural model from Carlton [16] uses
Cantilever beam method, with the radial distribution of thrust and torque forces, as shown in the figure
2.11 by equivalent loads at center of action.

The bending moment due to hydrodynamic loads around the radius (1) are evaluated using the
thrust and torque forces, in which Fr and F, are integrated forms of thrust and torque forces with a
and b as there respective center of actions as shown in the figure 2.11. Through the centroid of the
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Figure 2.10: Maximum Tensile Stresses in the propeller blade, adapted from Weick [11]

Area of shaded diagram =
blade thrust Fr

N

Figure 2.11: Cantilever Beam Model, adapted from Carlton [16]
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Symbol Element type No. of
elements

L 3-dimensional hexahedra 70

A Superparametric thick shell 97

o 3-dimensional hexahedra 160

Ay Isoparametric shell 161

o 2-dimensional triangular plane 161

] 2-dimensional triangular plane 161

L 3-dimensional hexahedra 300
16
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Figure 2.12: Stress Distribution with chordwise coordinate at 30% of radial section, adapted from Carlton [16]

section, centrifugal loads are considered and centrifugal moments are evaluated. Hence, total moment
is evaluated due to combination of both hydrodynamic and centrifugal loads, and in turn, stresses in
the sections can be computed using the above moments. It is important to note that the shear and
torsional stresses are neglected in both of the above analysis.

With the advancements in the computer technology, intensive research efforts led to the development
of finite element theory using the shell theory?>2% and later using plate elements initially and then
more recently isoparametric and superparametric solid elements. The principal advantage of these
methods over cantilever beam methods is that they evaluate the stresses and strains over a much
greater region of the blade than can the simpler methods, assuming that it is possible to define the
aerodynamic blade loadings accurately.242% Furthermore, it can produce a stress criterion, to develop
blade stress distribution which can be correlated with the model and full scale measurement.

While using the finite element analysis, the choice of element is critical if valid results are to be
obtained. It is insufficient to arbitrarily use the formulations as with the various finite elements results
can vary marginally. A study on a marine propeller was performed in ITTC,? in which the results from
finite element computations from six organizations, using seven different finite element formulations
of the problem, were compared to experimental results at model scale. The propeller chosen for the
study was a 254 mm diameter, 72° biased skew design propeller C of taken from Carlton [26] as shown
in the figure 2.13 The model was subjected experimentally to point loading at 0.7R and 50% of chordal
location, and was instrumented with 4 sets of strain gauge at the root section of the blade on the
pressure side at 0.3R. Figure 2.12 demonstrates the results from the finite element formulations and
a comparison with the experimental study. A cantilever beam calculation for the same loading is also
shown, which corresponds to the highest stress obtained from the cantilever beam model at the same
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Figure 2.13: Different types of marine propeller used for FEM studies?®

radial section of the blade (0.3R). The figure 2.12 also demonstrates that the cantilever beam model,
underpredicts the magnitude of the loadings especially, in the root section of highly skewed blades.
The low-fidelity structural models have been heavily used in previous research for propeller design
optimizations. Sodja et al. [28] used a mathematical model based on extended - Blade Element mo-
mentum model for propeller aerodynamics and Euler-Bernoulli beam theory coupled with Saint-Venant
theory to account for bending and torsion, respectively. This results in a quick and robust propeller
analysis model capable of dealing with high aspect ratio propeller blade design for flexible blades. Al-
though, the structural model presented in nonlinear for the treatment of geometry of the blade axis, the
constitutive relations between stress and strains remains to be linear. This model thus, provides an
optimized geometry for the blade axis of propeller blades, which can have a much higher curvature as
compared to the linear geometry models. Maximum equivalent von-mises stress was considered as
the parameter of optimization in the propeller design algorithm, along with the blade deformations.
MacNeill [29] presented a propeller optimization study for Unmanned Aerial Vehicles (UAVs). The
blade element momentum theory model was used to predict propeller aerodynamics and evaluate
aerodynamic loadings, and a structural model was implemented as an integral part of the propeller
blade design optimization to ensure that each propeller blade can withstand the stresses from these
loadings. A three-dimensional Euler-Bernoulli beam theory and a finite element model were used to
create an accurate and efficient structural model. The propeller blade axis is discretized into a series
of spanwise elements by the finite element beam model, and the loads from the aerodynamic model
are imported on the aerodynamic centers of the propeller blade sections. At each blade section, a local
Cartesian coordinate system was established, areas and moments of inertia were calculated about
the principal axis, and a finite element model was used to determine final stresses and displacements
in the blades. To evaluate the torsional stresses, an equivalent rectangle method was used, which
considers an equivalent rectangle to that of an airfoil with the same cross section area and chord
length but new thickness depending on the airfoil’s area of cross section. Torsional stress is calculated
directly using the rectangle and torsional moments relations. Finally, the equivalent von-mises stress
is calculated using the finite element model's bending stresses and the rectangular approximations’
torsional stresses, and the maximum von-mises stress is calculated, and the maximum von-mises
stress is compared to allowable tensile stress and considered as a parameter for design optimization.
Based on these studies and low-fidelity models, a similar cantilever beam model for a swept blade
can be proposed, with the maximum von-mises stress used as a design optimization parameter. To
evaluate stress distribution over the blade, Euler-Bernoulli beam theory and Saint-Venant theory for
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torsion can be combined. For accurate stress distributions, a finite element model can be built to
discretize the partial differential equations from Saint-Venant theory and consequently, evaluating shear
stress. The structural model is proposed in the next chapter considers Sodja et al. [28] as the reference,
and a similar model for swept blades is proposed.



Structural Analysis of Propeller Blade

In this section, the structural modelling part will be introduced and explained for a propeller blade. As-
sumptions of the structural model are described in section 3.1. In the section 3.2, non-dimensionalization
of the airfoil is briefly explained to evaluate the structural properties, followed by a framework to evalu-
ate torsional shear stresses and Saint-Venant theory which is presented in the section 3.3. Finally the
cantilever beam model is presented in the section 3.4, with is used for the low-fidelity structural model.

Calculation of the stress in a propeller blade, due to the complex design of the blade is difficult
problem. A general blade can have a varying twist, airfoil profile, sweep in blade and distributed chord
length. Moreover, a distributed aerodynamic loads and centrifugal loads appear on the blade as it
rotates with high speeds.

In a general propeller blade, the three main types of loadings are :

1. Loads due to aerodynamic forces (Thrust and Torque Forces).
2. Loads due to centrifugal forces.
3. Loads due to gyroscopic and inertia forces due to unsteady motion.

In the analysis for a steady flight, the loadings are limited to only aerodynamic and centrifugal loads.
Loads due to gyroscopic and other inertia forces are small compared with the air and centrifugal loads,
and a propeller which is strong enough to endure the latter two types of loads for an indefinite period
of time is also strong enough to stand the slightly higher total loading during the relatively short periods
in which the gyroscopic and other inertia forces act."’

In the low fidelity structural modelling, Euler Bernoulli beam theory is used to predict the stress and
deformations along the blade. This needs to be further validated with a finite element analysis of the
blade which was done using ANSYS Static Structural Module to compare and contrast the results of
the low fidelity model.

3.1. Assumptions of the structural model

* For the structural model, a solid propeller blade composed of isotropic and homogeneous material
with constant density in all directions is assumed.

The structural analysis neglects centrifugal and aerodynamic twisting forces, implying that the
propeller is designed for steady rectilinear flight. The current analysis does not take gyroscopic
inertial loads or unsteady aerodynamic loads into account.

The resultant aerodynamic loading (thrust and torque) is computed from the low fidelity BEM
model, and these forces are assumed to be perpendicular to the propeller chord. Aerodynamic
and inertial loads are both considered static, resulting in constant stress over time.

* The Euler—Bernoulli beam theory is employed to account for the bending stress, and the Saint-
Venant principle is utilized to account for the torsional loads. This theory has proven to work for
aspect ratios of 10 or higher and has been previously used in blades design.282°
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+ Airfoils are stacked to form a propeller blade and twist along the Pitch Change Axis (PCA), which
is fed into the model as input. Airfoils are stacked with the centroid (Center of mass) in a straight
line for the current model of straight blades.

« It is assumed that the propeller blade does not experience significant deflections and that the
geometry of the blades does not alter significantly as the blade experience high stress.

» The investigation of an isolated propeller blade is assumed implying that the interactions between
multiple propeller blades are ignored, resulting in aerodynamic loads due to a single propeller
blade only.

Propeller blade considered in the current project can be thought of as a slender, pretwisted cantilever
beams of a variable cross section depending upon the airfoil profile and properties including twist, chord
and sweep angle of the blade. This is also assumed to be built out of a homogeneous and isotropic
elastic material. It was also assumed that the blade is in the undeformed state and the deformations
will not affect the stress significantly. All the stresses in the blade are expected within the elastic limit
of the material in all things.

3.2. Cross-sectional Mechanical Properties

Blade cross section is input given by the user specifying the NACA profile, or directly importing the airfoil
coordinates. The cross sections are also scaled uniformly in the size. In order to simplify and compute
the structural properties of the airfoil, a unit cross section of airfoil was introduced, and the airfoil chord
length was used as a normalization parameter. Non-Dimensional coordinates were introduced as 77 = %

and & = f which allows to compute the important cross sectional properties, namely, domain area,
principal moment of inertia, and torsional moment of inertia in non dimensional form.

The airfoil profile is taken as an input from XFoil software. Furthermore using the interpolation
function in MATLAB @, airfoil is broken down into 101 discrete points on X axis (7j axis) and 101 discrete
points corresponding to the pressure and suction surface each. Hence, the each airfoil profile is taken
as 201-sided polygon from the airfoil. The cross sectional properties are further calculated in non
dimensionalized coordinates as:

A:L dd; A= c2i (3.1)
i, = L 2di; 1=t (3.2)
i, = fA WA I =, (3.3)
I, = —4La d4; I, = c*l; (3.4)

1 is the Prandtl’s stress function, which is also calculated in the non dimensional form, which will be
explained in the next subsection.

3.3. Torsional Stress evaluation

Due to the presence of a several moments on each airfoil cross section, there is a also a moment
which provides a torsion to the airfoil. It is the component of the moment in the direction of blade axis,
which tries to "twist” the blade section. In the present work, two different approaches were presented
to determine the torsional stress in simply connected pre-twisted cantilever beam, which is subjected
to constant torque at particular section.

3.3.1. Rectangular Approximation of Airfoil

The calculation of shear stress present in a non symmetric propeller blade can be a tedious task, due
to complexities in the airfoil profile. In the first approach, for the simplicity in calculations, the blade
cross section is transformed into a rectangle of the equivalent geometric properties as shown in the
figure 3.1.
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Figure 3.1: Rectangle of equivalent geometric properties?®

The chord length of the cross section is kept constant while the thickness of the rectangular section
in found by keeping area as of airfoil cross section. The shear stress present in the rectangular cross
section due to a torque is given by:

VQshea'r
T=——o
It

Here, 7 is the shear stress in the cross-section at a point located a certain distance y’ from the
neutral axis. The stress is assumed to be constant across the width of cross section. Shear force
is represented by V, I represents the moment of inertia of the cross section about neutral axis and t
denotes the approximated thickness of cross-section. Q.. denotes the area-centroid shear term,
and is given by Qgneqr = y'A’ and A’ is the area of cross-section above or below where t is measured.
After solving the maximum shear stress due to torsion in a rectangular cross section is given by Roark
et al. [30]

(3.5)

2 3

3My t t t
1+ 0.6095; + 0.8865 (E) —1.8023 (E)

Tmax = NN [
c t
8()(3)
Here, T is the torsional moment applied to a cross-section. The maximum shear stress occurs at
the midpoint of the longer sides of the rectangle.

+0.9100 (;)4] (3.6)

3.3.2. Numerical Solution to Airfoil : Saint-Venant theory

The resistance of materials gives the theoretical relationships only for torsion of a symmetric sections
like rectangles, circles etc. But, for an aircraft, most of the structures are non symmetric including the
wing, fuselage, drift, spars, blades, blade of a helicopter, and others involving the field of mechanical
engineering.3!

For a general propeller blade, accurate approach to solve the torsional stress in the non-symmetric
airfoil cross section of the beam is to use the finite element method and discretize the airfoil to solve for
the stress function. In the present work a numerical calculation program was developed using in-build
MATLAB ®functions to discretize given NACA profiles. The boundary conditions is specified to be of
Dirichlet condition. Finite element analysis is complicated due to the problems in 2 dimensions are
described in the form of partial differential equations. The contour I of the domain Q in two dimensions
is in general a curve.32 The finite elements can have a simple geometric shapes that can be used as an
approximation to the data field in two dimensions, in general. Therefore, the airfoil geometry is meshed
into smaller geometric shapes and the approximations of the solution of partial differential equations
are seeked along with the approximation of the field given by a meshed finite element.

The opportunity to represent the geometry of the collective area by finite element method makes it valid
and a practical tool for solving boundary value problems.33 In the case of torsion of non symmetric cross
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Maximum Element size | 0.01
Minimum Element size | 0.005
Mesh Gradation 15
Geometric Order Quadratic

Table 3.1: Mesh Properties of the case example

section, the differential equation is a second order, linear and elliptic type with the boundary conditions
of the first order of Dirichlet in arbitrary planar domain. The partial differential equations are given by:

az¢+az¢— 260; =0 r 3.7

%2 W = ; = on (3.7)
ao [

Txz = E’Tyz = —E (38)

M, = chb(x,y)dxdy (3.9)

In order to find out the torsional stress, four unknowns ¢, 7,,,7,,,0 needs to be calculated using
the above equations. Subsequently, Prandtl introduced the concept of solving a problem of torsion
with the single unknown, called as Prandtl’s stress function ¢ (x, y). This function is differentiable and
associated to the torsional stresses directly with the equation 3.8. Itis assumed that the Prandtl’s stress
function is related to displacement by the relation 3.10.

d(x,y) =2G0u(x,y) (3.10)

After simplifying the equation 3.7 and 3.10, we have the following form of a partial differential equation
which is also known as Poisson’s equation 3.11.

Ou % _ sy r 311
oz Tz = b u= on (3.11)
Also,
Tr _ 0% Tyz ) 0U

GO~ “ox' 6o~ "oy (3.12)

M

6= oL
¢ (3.13)

Iy = 4J-u(x,y)dxdy

Where, I, is the torsional moment of inertia of the cross section (Polar Moment of Inertia), M, is the
torsional moment at the cross section, G denoting the Shear Modulus of rigidity of the material of blade.
The above partial differential equation is solved in a Partial Differential Equation toolbox in MATLAB ©.
It is done so by first importing the airfoil profile from XFoil. The PDE modeler of the toolbox plots the
airfoil profile naming the edges and the plane in the airfoil. A particular NACA airfoil is thus imported
in the PDE modeler using a decsg function and from the PDE modeler, it is exported to the PDE
model program with the help of geometryFromEdges function in MATLAB ®figure 3.2a. Boundary
conditions are given to the PDE solver, using the applyBoundaryCondition function in MATLAB®,
and the coefficients are specified according to the differential equations and are given in the table 3.3.
Mesh elements are generated in the generateMesh function and the maximum size of the element is
specified using the 'nmax’ variable. Other parameters for the mesh is included in the table 3.1. Finally,
the numerical solution is obtained by the solvepde function in MATLAB®and is solved to find out
torsional stress 7., and t,,,. Important parameters for the solver are included in the table 3.2
A case example of a NACA2412 airfoil is given in the following figure, where the solution for Prandtl
function u is plotted in the figure 3.2c and 3.3c.

With the help of the Prandtl function solved numerically using the inbuilt MATLAB ®functions, tor-
sional moment of inertia of any airfoil can be evaluated, by integrating the displacement function u(x, y)
over the surface of the airfoil as in the equation 3.13.
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(a) Geometry in the PDE modeler with planes and edges

(b) Meshing using the in-built MATLAB ®function

(c) Prandtl function solution to PDE

Figure 3.2: Case Example: NACA 2412
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(a) Geometry in the PDE modeler with planes and edges

-03 b

(b) Meshing using the in-built MATLAB ®function

(c) Prandtl function solution to PDE

Figure 3.3: Case Example: NACA 2440
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Absolute Tolerance | 1e-6
Relative Tolerance 1e-3
Residual Tolerance | 1e-4
Maximum Iterations | 25

Minimum Step 1.5259e-05
Residual Norm o)
Max Shift 100

Table 3.2: Solver Properties for the case example

"oio|al3
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Table 3.3: Coefficients for the Poisson’s Equation

3.4. Cantilever Beam Model
Most important task in the structural modeling is computation of the moments and internal stresses
from the aerodynamic and centrifugal loadings of the blade.

3.4.1. Aerodynamic Moments
The aerodynamic forces, namely Thrust(T) and Torque forces(Q) are obtained from the Blade Element
Momentum code from the last section and were imported to the structural module. Elemental Thrust
(%) and Torque (‘;—S) are computed for each each cross section and is imported in the structural part
of the code. These loadings were assumed to be acting on the center of pressure of airfoil section. In
order to obtain the stresses, it is important to find the center of pressure of each airfoil section.
Center of pressure is defined as a point on the airfoil section where the resultant moment due to aero-
dynamic forces is zero, hence, center of pressure is not necessarily located at the Quarter chord of the
airfoil section. Figure 3.4 explains the difference more clearly between quarter chord and the center of
pressure of the airfoil.

Center of pressure can be computed using the definition and following relations for a given airfoil.

Mip=—2N'+ M, 61

= —xgcN'

B L

T 1/2poVES

B D

T 1/2p,V3S
M

= 1/2p,V3Sc

G

Cp (3.15)

Cm

Aerodynamic
Center

Figure 3.4: Location of Center of Pressure34
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Here, N’ is the vertical forces acting on the airfoil and M, is the Moment at the quarter chord of
the airfoil section. It is to be noted that for a small angle of attack «, N’ can be approximated by:

N' = Lcos(a) + Dsin(a) (3.16)

Simplifying all the above equations, location of Center of Pressure (x.,) can be evaluated by the
following:

X = 1 _ Cm,c/4
p 4 Cjcos(a) + Cy4 sin(a)
Where, « is the angle of attack of airfoil, C; and C, representing the lift and drag coefficients at
particular cross section and Gy, ;4 denoting the moment coefficient at quarter chord. It is to be noted
that the x., denotes the distance from the leading edge of the airfoil along the chord, hence, in the
code, center of pressure was computed by dividing chord into the ratio of x% and 1— ’%.
Moment due to aerodynamic forces at a particular section r, can be computed using the following
equation.

(3.17)

R
W= [ (i~ Tocer) x (4 F5) (3.18)
To

Here, 7, is the radial vector from the center of the propeller blade to the center of pressure of cross
section at radius r, 7., denotes the radial vector from the center of propeller blade to the geometric
center of the cross section at which aerodynamic moments needs to be evaluated. The total amount
of aerodynamic moment acting at the cross section at r is sum of all the moments acting on the blade
from cross-section radius r, to tip radii R, hence is given by equation 3.18. It is further illustrated in
detail in figure 3.5, where the aerodynamic center is represented by a triangle and the centroid by a
star. The first airfoil section is used as a reference in this image, and the 7, .., is calculated as a vector
from the origin to the centroid of the reference section. Later, the vectors 7, and 7, emanating from
the origin to the centroid and aerodynamic centers are assessed.

3.4.2. Centrifugal Moment

The centrifugal forces (F;) is a major source of the moments especially in the case of swept propeller
blades. Due to a high rotational speeds, the centrifugal forces can be extremely high which can cause
catastrophic results, if not taken account of. In order to compute the centrifugal forces at a certain cross
section ry, firstly, it is necessary to evaluate contribution of centrifugal force at each of blade section.
Centrifugal force at a certain section at radial distance r is given by:

dF, = pAw?rdr (3.19)
Where, p denoting the density of the blade material, A representing the area of cross section of the
blade, w denoting the rotational speed and r radial distance of the section from the center of propeller.
The centrifugal force is assumed to be acting on the centroid of the airfoil (geometric center) as it is
taken as a force acting on a point mass accumulated at the center. Moreover, as there is a direct axial
stress in the beam due to the centrifugal loads, the total centrifugal force needs to computed at each
section and is evaluated by integrating the above equation.
R
F, = J pAw?rdr (3.20)
To
Furthermore, in order to compute the centrifugal moment (M, ) at a particular cross section ry, all the
centrifugal forces needs to be integrated from a radius r, to tip radii R. Moreover, centrifugal moment
needs to be defined about the centroid of the airfoil section and later, added to the aerodynamic moment
to evaluate the total moment. Hence, the centrifugal moment is given by the equation 3.21.
R
M= | (F—#)xdF

To

R
Vi = [ (oo = Toeen) x (pAw?rar;)
T

0

(3.21)
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Figure 3.5: lllustration of the radial vectors originating from aerodynamic and centrifugal forces

Where, 7., denotes the vector from the center of propeller blade to a centroid of radial section of
the blade and 7; c.,, denoting the vector to the centroid of the radial section where stress needs to be
computed. It is explained more clearly with the help of figure 3.5.

3.4.3. Estimation of Stress
Total moment is the sum of centrifugal moment and aerodynamic moment, and is added vectorially as
the moments have three different components along the X,Y, Z directions. The total moment due to all
forces are given by:
Ma = Mz = Mg (3.22)
M = M; + M,
Where, M represents the total moment acting at a section of the propeller blade. Hereatfter, it is
important to note that each section of the blade is stacked along the pitch change axis with a certain
pitch angle. Hence, each section of the blade has its own neutral axis which is assumed to be parallel
to the chord of airfoil, and is passing through the center of airfoil section. To evaluate the stress and
deformations on the blade, the moment M is decomposed into the Local Coordinate System where the
three components are along the blade axis { and two principal axis across cross section namely, ¢ and
n. Figure 3.6 gives an example for a Local Coordinate System at particular radial section r with ¢ axis
being parallel to the chord and n axis perpendicular to the chord in the plane of cross section. It is
important to note that the origin in the Local coordinate System is at the centroid of the airfoil section,
which is also taken as a reference point to evaluate the moments due to loadings.
Unit vectors along the local axis are given by equation 3.23:

eg = [0,cos(B), sin(B)]
& = [0,cos(B +/2), sin(B + pi/2)] (3.23)
e =g xeg =[1,0,0]
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40

Suction side

Pressure Side

e *  Center of airfoil
e Aerodynamic Centre
_ Mid Chord Alignment
*  Centre of Pressure

- Pitching Axis

Figure 3.6: Local Coordinate System at radial section r

Where, B denotes the pitch angle of the airfoil section at certain radius. Consequently, the moments
can be decomposed into three components along the blade axis, and two principal axes of the cross
section:

Mg=M-8; My=M-é; M, =M- & (3.24)

Deformations and the stresses in the blades are composed of two mutually dependent processes,
namely bending and torsion. Bending stresses are treated according to the Euler-Bernoulli theory,
taken into account large deflections. While the torsional stresses are accounted by applying the Saint-
Venant theory of Torsion, neglecting warping effects. All the cross sections along the blade are solid,
and as a result, warping of the cross sections along the blade is neglected in the calculation of stress.28

Using the above moments in LCS, the axial and shear stresses can be computed. In a beam
subjected to a moment M in direction perpendicular to the cross section is

_ My’

7=

where, y' is the distance of the point where stress is evaluated from the centroid of the cross section,
and I denoting the moment of inertia of the beam in direction of loading. Sum of axial stress is due to
two bending moments (M; and M, ) and also, direct centrifugal force (F;) causing an axial stress. Axial
stress thus, can be given by the equation 3.25

gofe M My, (3.25)

Surprisingly, it is important to note that the axial stress due to M; and stress due to M, are of
opposite signs. It can be explained with the help of figure 3.7. There are two bending moments acting
along n axis and & axis on the section. To explain the signs, it is necessary to have a look at the first
quadrant (7 > 0 and ¢ > 0). In this section, a positive moment in n axis (M,)) produces a compressible
stress in the first quadrant. Similarly, a positive moment in ¢ axis (M;) produces a tensile stress in the
first quadrant. Hence, for the first quadrant as, the tensile stress is taken to be positive, the stress
corresponding to M; has a positive sign, while stress corresponding to M,, has a negative sign.

A torsional moment along the blade axis (M;) give rise to the shear stresses, which is also important
to resolve. Amount of shear stresses is although lower in general, as the torsional moment occurs due
to the aerodynamic forces only. However, shear stress can still increase the von-Mises stress along
the blade and is necessary to resolve. The shear stress due to a torsional moment is give by equation
3.26.
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Figure 3.7: Hub section (r = 0.2R) in Local Coordinate System (LCS)

2M;
It

From equation 3.12 and 3.26, the shear stress components can be given as

T=

[Vul (3.26)

ZM{ Jdu

Txz = 5 32

I, 0x
 amou (3.27)

vz = Iy dy

The terms g—z and g—; were computed in the previous subsection, by discretizing poisson’s equation
on the given airfoil section. As there are high number of mesh elements across the airfolil, it is not
possible to find the terms Z_Z and g—’y‘ along the boundary of the airfoll, it is easier to evaluate maximum

Vu in each section, and replace in the 3.27, to compute the maximum shear stress along the section.
It is important to note that, all the moment of inertia (I) and area terms (4) are the ones from airfoil of
a chord length ¢, instead of the normalized coordinate terms.

With the help of von - Mises equivalent stress (o,,), which can be used as a parameter in the optimiza-

tion is obtained by the relation 3.28.
Oeq = /UZ +3(t%; + 132) (3.28)

It is important to note that the presented structural model has a non-linear geometry along the blade
axis, however, the constitutive relations between stress and strains remains linear. The nonlinear geo-
metric model was chosen as it gives an advantage to work for an optimized blade axis. As the optimized
blade axis is not known, it can have a high sweep angles and curvature, hence, Blade axis can assume
any arbitrary shape given with sweep angles and can be later, utilized in the optimization.
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(a) Solution of % on the airfoil

(b) Solution of % on the airfoil

Figure 3.8: Solution of Vu on the airfoil section



Model Verification and Validations

A verification and validation routine is carried out in order to make the model reliable and to instill some
confidence in the results. Firstly, in the section 4.1, the new geometry of the given propeller is presented.
Secondly, in section 4.2, CFD results from the propeller blade are discussed and the simulation setup
for structural simulation is presented. Finally in the section 4.3, the low fidelity structural model is
verified by quantitative comparison with the high fidelity results from FEM. With these validation and
verification steps, the results in chapter 5 can be used to draw conclusions of this study.

4.1. Propeller Blade Geometry

The selection of the propeller used for verification is critical for the outcomes of the verification process.
The propeller used as a baseline in this study is the TUD-XPROP, also known as XPROP (figure 4.1).
CFD and experimental results are available for this particular propeller, allowing the validation and
verification of the numerical models used, and thereby results can be assessed with confidence.

The diameter of XPROP is 0.4064 m, and the number of blade is varying from 3 to 6, depending
upon whether the propeller is used in a regenerative or a propulsive mode. Although the aeroacoustic
effects are more pronounced with a larger number of blades, a 6-bladed propeller is used in the aircraft
optimization study. However, for the current validations, a three-bladed propeller is used because it
can be used in both the regenerative and propulsive cases, and validations can be performed for both.
The propeller pitch setting can be changed manually, which changes the geometry of the propeller
blade. For the reference case, the pitch setting was taken to be 20 ° which can be changed depending
upon the propulsive or regenerative case. This implies that at the reference radius r/R,, = 0.7 (at non
dimensional radius = 0.7) pitch setting of the propeller blade is set to 20 °. For numerical analysis, the
blades are divided into 25 uniformly distributed cross sections across the blade. Each of these XPROP-
blade cross sectional shapes is depicted in the Appendix A. Figure 4.2 depicts the radial distributions
of twist and chord for a single XPROP blade. XPROP can be classified as a straight-bladed propeller
since no blade sweep was present in the design.

From the standpoint of structures, it is important to note that a portion of the propeller blade is
located in the spinner of the blade model, as shown in the figure 4.3. This is significant because the
low fidelity model is designed for an isolated blade, and since the initial two airfoil sections are located
inside the geometry’s spinner, they will not be able to produce any thrust or torque in the high fidelity
simulation. Indeed, this can result in minor differences between the high and low fidelity results. In
order to ameliorate differences, the loads are extracted from high fidelity CFD simulations and are
imported to the low fidelity simulation, such that both the models have same aerodynamic loads. The
airfoil geometries corresponding to all 25 radial stations are imported into the program to build the low
fidelity model for XPROP. After providing a chord distribution, the program evaluates important centers
including centroid, center of pressure, pitch twist axis, and aerodynamic centers. Each airfoil geometry
is then twisted and rotated with the pitch angle shown in the figure 4.2. All the centers, for rotated axis
can be directly computed by multiplying the rotational matrix with the coordinates of the centers.

33
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(a) TUD XPROP-3 Propeller (b) TUD XPROP-6 Propeller

Figure 4.1: Propeller Models'*
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Figure 4.3: CAD Geometry of XPROP propeller

Operating Condition | Propulsive | Regenerative
Advance Ratio (J) 1.2 1.9

Velocity (v) 30 30

Pitch Angle (B,) 30 30

Blade Count (B) 3 3

Table 4.1: XPROP: Operating conditions for propulsive and regenerative mode

A general rotational matrix, at a radial station with pitch angle 6 can be given:

cos(f) —sin(8)

R(®) = [ sin(8)  cos(8) 1)

And, the new coordinates of the centers and airfoil profile is evaluated using equation 4.2

x" | [ cos®) -sin@ | [ x
[ y' ]_[ sin(d) cos(8) |’ |y ] (4-2)

Neutral axis of the section is assumed to be parallel to the chord and passing through the centroid
of airfoil section. The moment of inertia is computed in the program, about the centroid using a non
dimensionalized airfoil section, as explained in the chapter 3. Figure 4.4 depicts a XPROP blade
designed for the low fidelity code using the given radial airfoil sections, with reference pitch setting
Bo =20°.

Varying the reference pitch angle f, can cause the propeller to switch from propulsive to regener-
ative mode. In the propulsive mode, the thrust and torque produced by the propeller are positive as
an amount of forward force is required to propel the airplane. While in regenerative mode, a negative
thrust and torque are produced, which can assist the aircraft in slowing down and generating energy
by producing negative torque that can be stored. The table 4.1 shows the XPROP blade operating
conditions for the propulsive and regenerative cases for current validations. It is important to note that
for the validations, the same pitch angle is considered for both modes in order to obtain a contrast
between two cases with the same geometry.

The XPROP propeller blade modeled by the low fidelity model for reference pitch angle 20 ° is given
in the figure 4.5. When operated at ] = 1.2, this blade is in propulsive mode, but when operated at ] =
1.9, itis in regenerative mode.

4.2. High Fidelity Simulation Setup

In this section, the high fidelity simulation setup is described. For this case, one way coupling method
is used for aerodynamic simulations and structural simulation is performed. This means that the
CFD simulation of XPROP was performed using ANSYS ®Fluent 2019 R3 to import the aerodynamic
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Figure 4.4: XPROP blade from the low fidelity model g, =20°

Figure 4.5: XPROP blade from the low fidelity model 8, =30°
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Figure 4.6: Numerical Domain and Boundary Conditions '

loads and later, these loads were imported to the structural simulations in Static Structural Module of
ANSYS®Mechanical 2019 R3.

4.2.1. CFD Simulations
CFD simulations are required for obtaining the aerodynamic results for the propeller. These simulations
were provided from Goyal et al. [14] and were imported to the ANSYS Workbench ©.

The RANS equations for compressible flow were solved using ANSYS ®Fluent 2019 R3 which is a
commercial, unstructured, finite volume, cell-centered solver. Uniform inflow conditions were examined
with the simulations solving for a single bladed wedge domain in steady manner using a multi reference
frame approach. Figure 4.6 depicts the numerical domain and the boundary conditions used for the
both, regenerative and propulsive mode. The height of domain in vicinity of the propeller blade is 1.5R,
and the total height of the domain is 10R.

Wedge angle is set to 120°, so as the analysis can be done for a single blade. It was also made
sure that the boundaries of the domain are sufficiently far away to keep the influence of the boundary
conditions on the flow properties near the propeller blade minimum.'235 Pressure inlet, pressure outlet,
pressure far field boundary conditions were used in combination with a conformal periodic boundary
condition for the side boundaries.' The propeller blade and spinner was modeled as no slip walls, while
the nacelle was modeled as moving wall, to keep it stationary in the absolute frame. The turbulence
modeling was based on the Spalart-Allmaras method®® with a modification proposed by Dacles-Mariani
et al. [37].

Grid generation was accomplished with the aid of ANSYS meshing. Triangular wall mesh was used
adjacent to no slip wall regions, along with layers of semi-structured prismatic and tetrahedral elements.
To reduce the total number of elements, an unstructured hexagonal mesh was created in the slipstream
and upstream of the propeller. The first-layer thickness of the inflation layers was adjusted to maintain
the y* < 1required by the Spalart-Allmaras turbulence model. The grid density in the entire domain
was controlled by no-slip wall refinement and domain volume refinement. The grid dependence study is
presented in detail in Goyal et al. [14], while in the present study the domain and simulation is imported
for computing the aerodynamic loads on the propeller blade.

The pressure distribution and wall shear stress distribution over the propeller blade for the propulsive
mode and regenerative mode case are depicted in 4.7 and 4.8 respectively. Pressure distribution results
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Figure 4.7: CFD Results for XPROP in propulsive regime J = 1.2

can be directly imported into FEM simulations and coupled with structural simulations. Wall shear is,
however, ignored in FEM simulations because it is not possible to directly import the wall shear stresses
to the structural simulations. Shear stress, on the other hand, is essential for determining aerodynamic
loads, which are later fed into the low fidelity model to calculate thrust and torque forces. As a result,
these findings are critical for the structural model.

4.2.2. Structural Simulation - FEM

The structural simulations were carried out in the Static Structural module of ANSYS®Mechanical 2019
R3. These simulations were performed on the isolated propeller blade in order to make a clear com-
parison with low fidelity results, which can only be performed on the isolated blade and not on the
entire XPROP geometry. The geometry of the entire propeller is imported, and all bodies other than
the single blade are suppressed to create a single bladed geometry. Because the pressure field only
corresponds to a portion of the blade, from the spinner to the tip of the blade. A face split command
was used to divide the blade faces of XPROP into two parts, one inside the spinner and one outside
the spinner. This is depicted in the figure 4.9a.

Following that, a material is chosen and assigned to the propeller blade; for the current study, default
material 'Structural Steel’ was assigned as the material to the propeller; the structural steel’s properties
are listed below in the table. 4.2.

The boundary conditions are then described in the analysis. A rotational velocity is given around
the XPROP’s center (at 0.16R distance from the blade’s hub). The rotational velocity is estimated using
the flight's advance ratio and airspeed. The hub section is fixed to resemble a Cantilever beam, and
pressure loadings are imported from CFD simulations and applied to the corresponding suction side,
pressure side, trailing edge, and blade tip. It should be noted that the pressure is applied to the portion
of the blade that lies outside of the spinner geometry for which pressure fields are available. To import
the pressure loads, a profile preserving mapping and triangulation method of weighing is used and
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Figure 4.8: CFD Results for XPROP in Regenerative regime (J = 1.9)

(b) Boundary Conditions for Structural simulations

(a) Isolated propeller blade geometry

Figure 4.9: Imported Loads on the propeller blade

Property Value
Young’s Modulus (Pa) 2e+11
Poisson’s Ratio (-) 0.30000
Bulk Modulus (Pa) 1.6667e+11
Shear Modulus (Pa) 7.6923e+10
Isotropic Secant Coefficient of Thermal Expansion | 1.2e-05
Compressive Ultimate Strength (Pa) 0
Compressive Yield Strength (Pa) 2.5e+08
Ultimate Strength (Pa) 4.6e+08
Tensile Yield Strength (Pa) 2.5e+08

Table 4.2: Material Properties of Structural Steel, ANSYS ®
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(a) Imported loads - Pressure Side

(b) Imported Loads - Suction Side

Figure 4.10: Imported Loads on the propeller blade J = 1.2

is given to the nodes of the FEM mesh. Because the pressure field is applied to the surface of the
propeller blade, the surface transfer type setting is used. The boundary conditions are shown in the
figure 4.9b. Imported Pressure loads on the blade are demonstrated in the figure 4.10. A mesh can be
very important in the pressure loadings because the pressure loads are imported and interpolated on
the nodes of the FEM mesh from the CFD mesh. As a result, a finer mesh on the pressure and suction
sides is required.

FEM Mesh is an important consideration when validating results. As shown earlier in the figure
2.12, the element type and meshing method used can have a significant impact on the result. For
the finite element analysis of the propeller blade, an unstructured mesh is required due to the twisted
geometry of the blade and the airfoil's non-uniform cross section. The mesh was generated using
the 'sweep method’ which can easily maintain a high solver accuracy while reducing mesh cell counts
significantly. The sweep method generates an initial mesh on the source surface, in this case the hub,
using the local sizing method. The mesh is then swept from the source through the body, with an
incremental distance or number of divisions specified as input. The source surface mesh is chosen as
quadrilateral surface elements, resulting in a hexahedral volumetric mesh. A triangular surface element
can also be chosen, resulting in a tetrahedral mesh in the volume. A quadrilateral surface mesh was
chosen for more accurate results and was 'swept’ from the hub surface to the tip of the blade. For
the surface mesh, a ’quadratic’ element order was used to encompass the midside nodes and capture
the pressure on the blade surface precisely. Figure 4.11 shows a quadrilateral hub surface mesh with
the quadratic element order, which was used in the sweep method to generate the mesh. A mesh
independence study was performed by varying the element size on pressure, suction side and the
fixed hub of the blade.

Mesh Independence Study

In the mesh study, the mesh was refined systematically on both the source surface mesh (Hub), which
will be referred to as zone 1, and the pressure side, suction side, and tip of the blade, which will be
referred to as zone 2. To compare different meshes, the element type and order on the surface mesh
are also changed. The element size was varied in zone 1 from 3mm to 0.5mm, and in zone 2 from
4 mm to 0.8 mm. The number of elements and thus computational time increases significantly as the
mesh element size decreases. A maximum stress value [MPa] was used as a mesh study convergence
parameter for local convergence in the higher stress region. The total potential energy or total strain
energy was used as a convergence parameter for global convergence. A mesh with triangular target
surface elements in linear order was also compared to the other meshes for comparison and contrast.
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Figure 4.11: Hub Surface mesh

Surface Mesh Type

Mesh Number | Size : Zone 1 | Size: Zone 2 | Element number | CPU Time | Maximum Stress | TPE Element Order | Element Type
Mesh 1 3 mm 4 mm 2200 4203 s 16.558 MPa | 0.0023082 J | Quadratic Quadrilateral
Mesh 2 3 mm 3 mm 2900 5.656 s 16.604 MPa | 0.0023098 J | Quadratic Quadrilateral
Mesh 3 2mm 3 mm 5394 9.375s 16.616 MPa 0.002311 J | Quadratic Quadrilateral
Mesh 4 1.5 mm 2 mm 13674 23.484 s 16.57 MPa | 0.0023095 J | Quadratic Quadrilateral
Mesh 5 1 mm 1 mm 55900 78.766 s 16.632 MPa | 0.0023125 J | Quadratic Quadrilateral
Mesh 6 0.5 mm 0.8 mm 257140 | 366.938 s 16.634 MPa | 0.0023126 J | Quadratic Quadrilateral
Mesh 7 1 mm 1 mm 55900 22.703 s 16.598 MPa | 0.0023008 J | Linear Quadrilateral
Mesh 8 1 mm 1 mm 95976 20.562 s 16.169 MPa | 0.0022933 J | Linear Triangular

Table 4.3: Mesh Independence Study

All mesh study results are presented in the table 4.3. It is worth noting that convergence parameters
change significantly when the mesh is changed to linear element order; this is possibly due to the
inability of pressure field interpolation on the linear nodes (FEM mesh with less mid nodes unable to
interpolate pressure field).

Mesh Convergence parameters are plotted further in the figure 4.12. The meshes with the linear
element order, are observed from the figure 4.12b and 4.12a to become an outliers, as the parameters
tends to deviate from the other mesh results. From the remaining meshes, mesh with 55900 elements
tends to be converged, and the total potential energy and maximum stress parameters tends to be
converged thereafter. It is evident from figure 4.12c that computational time increases largely, if the
mesh is refined more. Hence, the mesh with 55900 elements corresponding to Mesh 5 from the table
4.3 is chosen for the further analysis.

The figure 4.13 depicts a final converged mesh for both propulsive and regenerative regimes. It
is also worth noting that the mesh is automatically coarser near the hub surface because no pressure
fields are imported near the hub, whereas it becomes denser in regions away from the hub. This is a
meshing feature of the Sweep function, and the software automatically meshes the blade accordingly.

4.3. Low Fidelity Model Verification

In this section, the structural predictions by FEM and low fidelity methods are compared to analyze their
reliability in the propulsive and the regenerative regimes. Flowchart in figure 4.14 explains the process
of validations of the low fidelity structural code.

For the validations, BEM model with higher accuracy is available, therefore, for the aerodynamic
loadings in the low fidelity structural model, data from corrected BEM model was imported. Moreover,
the aerodynamic loadings were also computed by post processing the CFD simulations in Tecplot ®and
compared with the given data before being imported to Low fidelity model to compare differences.
Python scripts for post processing of CFD results are provided in Appendix E. It should be noted that
CFD data includes the effects of wall shear stress, which cannot be imported into ANSYS ®High Fidelity
FEM simulations. As a result, two cases—one with Pressure and Wall Shear included and another with
just Pressure field—were evaluated in post-processing CFD simulations. The comparison between the
low fidelity BEM findings and the post-processed CFD findings for the XPROP in the propulsive regime
is shown in the figure 4.15. It is clear that wall shear has a negligible effect on the aerodynamic loads
and can be disregarded. The structural model was validated using CFD data without wall shear in order
to estimate aerodynamic loads, which are exactly the same loads that were applied to the high fidelity
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Figure 4.14: Validation Process for the low fidelity structural model

simulations. Similar results for the propeller in the regenerative regime were also achieved, proving
that a low fidelity BEM model is effective and produces same results.

4.3.1. Propulsive Regime

Both the numerical methods are compared and contrast for the propulsive regime, at v = 30m/s, 8, =
30° and an advance ratio ] = 1.2

It should be noted that blade profile in low-fidelity model is the exactly opposite of high-fidelity model,
hence is a mirror image as seen in the figures. The structural results of high and low fidelity models
are examined and compared. To begin the comparison, only centrifugal loading were compared, as
shown in the figure 4.16. It is evident from the figure, that the low fidelity results matches closely, with
FEM simulations with the maximum stress of 11.26 MPa occurring at 40% radial section. It is important
to highlight that, in contrast to FEM results, the low fidelity model is unable to correctly depict contours
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(a) High Fidelity Centrifugal Loading - Pressure Side (b) Low Fidelity Centrifugal Loading - Pressure Side

(c) High Fidelity Centrifugal Loading - Suction Side (d) Low Fidelity Centrifugal Loading - Suction Side

Figure 4.16: Equivalent von-Mises Stress in Propulsive Regime: Centrifugal Loadings

due to its inability to interpolate stress between two radial sections.

The following analysis evaluated purely aerodynamic loadings without centrifugal loads, as illus-
trated in the figure 4.16. It was discovered that the low fidelity model correctly predicts maximum
stresses with an error of less than 2 percent. The maximum von-Mises stress in the blade determined
using FEM was found out to be 6.21 MPa, compared to 6.1 MPa in the low fidelity model. The low
fidelity model captures the trends fairly well, as shown by the contours in 4.16.

Finally, both aerodynamic and centrifugal loads were combined to replicate pragmatic propeller
blade loads, and both models were compared. The acquired results are presented in the figure 4.18,
which indicates a comparable pattern between two models. The low fidelity model underpredicts the
von-Mises stresses by roughly 2 percent when compared to the FEM model, owing to small variations
in the aerodynamic and centrifugal stress. It reliably predicts the general stress distribution trends yet
again with maximum stress varies from 16.28 MPa in the low fidelity model to 16.63 MPa in the FEM
model. These variances are primarily caused by the following factors:

1. The cantilever beam model is unable to appropriately estimate the stress distribution. In the low
fidelity model, aerodynamic load is assumed to be a point load, whereas in high fidelity simula-
tions, aerodynamic force is dispersed throughout the propeller blade.

2. The current model does not account for changes in propeller stress caused by deflections. The
propeller blade could deflect from its original shape as stress increases, resulting in a change in
bending moments that is not considered in the low-level model. This effect is more pronounced
when extremely high stress is present (as in swept blades), resulting in high deflections.

4.3.2. Regenerative Mode
Similar to Propulsive case, a validation was done for the regenerative case as well. Regenerative
regime was operated at at v = 30 m/s, B, = 30° and an advance ratio 1.9.

The stress distribution in the regeneration regimes was also investigated first, only with centrifugal
loads, as shown in the figure 4.19. It was verified that the low fidelity model accurately estimated the
stresses caused by centrifugal loads. The maximum von-Mises stress of 4.49 MPa was recorded at
40 percent of radial section, which corresponds to 4.72 MPa in high fidelity calculations. It should be
highlighted that the low fidelity model, due to its inability to interpolate across radial sections, is unable
to match the contours but provides an exceptionally near estimate of the stresses.
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(a) High Fidelity Aerodynamic Loading - Pressure Side  (0) Low Fidelity Aerodynamic Loading - Pressure Side

(c) High Fidelity Aerodynamic Loading - Suction Side (d) Low Fidelity Aerodynamic Loading - Suction Side

Figure 4.17: Equivalent von-Mises Stress in Propulsive Regime: Aerodynamic Loading

(a) High Fidelity Combined Loading - Pressure Side (b) Low Fidelity Combined Loading - Pressure Side

(c) High Fidelity Combined Loading - Suction Side (d) Low Fidelity Combined Loading - Suction Side

Figure 4.18: Equivalent von-Mises Stress in Propulsive Regime: Combined Loading
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(a) High Fidelity Centrifugal Loading - Pressure Side (b) Low Fidelity Centrifugal Loading - Pressure Side

(c) High Fidelity Centrifugal Loading - Suction Side (d) Low Fidelity Centrifugal Loading - Suction Side

Figure 4.19: Equivalent von-Mises Stress in Regenerative Regime: Centrifugal Loadings

Regime Loading Maximum Stress : High Fidelity | Maximum Stress : Low Fidelity | Error Margin
Centrifugal Loads only 11.87 MPa 11.26 MPa 5.139%
Propulsive Mode | Aerodynamic Loads only | 6.21 MPa 6.1 MPa 1.77%
Combined Loads 16.632 MPa 16.28 MPa 2.11%
Centrifugal Loads only 4.72 MPa 4.49 MPa 4.87%
Regenerative Mode | Aerodynamic Loads only | 2.74 MPa 2.89 MPa -5.47%
Combined Loads 7.15 MPa 7.31 MPa -2.18%

Table 4.4: Comparison of High-fidelity and low-fidelity maximum stresses

The stress distribution due to purely aerodynamic loads was then investigated in the following analy-
sis. The results are illustrated in figure 4.20, where it is observed that the low fidelity model appropriately
quantifies the stress distributions, but over predicts the maxima by 5 percent. Low fidelity model repli-
cates the main trends of stress distribution, the maximum von-Mises stress in the low fidelity model
differs from 2.89 MPa in the low fidelity model to 2.74 MPa in the high fidelity simulations.

Finally, to replicate propeller blade loads, both aerodynamic and centrifugal loads were combined,
and both models were compared. The obtained results are shown in the figure 4.21, which shows
a similar pattern between two models. Due to small differences in the aerodynamic and centrifugal
stress distribution, the low fidelity model overpredicts the von-Mises stresses by approximately 2.3
percent when compared to the FEM model. It predicts the basic stress distribution trends once more,
however the maximum stress changes from 7.31 MPa in the low fidelity model to 7.15 MPa in the high
fidelity FEM model.

Table 4.4 displays the comparison of high-fidelity and low-fidelity model in a tabular form.

Following validations from the straight blade regenerative and propulsive regimes, it is reasonable
to conclude that the low-fidelity model is accurate enough to capture major trends in stress distribution.
It offers a robust, fast and precise structural tool to produce stress distributions, which can be easily
employed in the aerodynamics and aeroacoustics framework to perform the design optimizations.
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(a) High Fidelity Aerodynamic Loading - Pressure Side  (0) Low Fidelity Aerodynamic Loading - Pressure Side

(c) High Fidelity Aerodynamic Loading - Suction Side (d) Low Fidelity Aerodynamic Loading - Suction Side

Figure 4.20: Equivalent von-Mises Stress in Regenerative Regime: Aerodynamic Loading

(a) High Fidelity Combined Loading - Pressure Side (b) Low Fidelity Combined Loading - Pressure Side

(c) High Fidelity Combined Loading - Suction Side (d) Low Fidelity Combined Loading - Suction Side

Figure 4.21: Equivalent von-Mises Stress in Regenerative Regime: Combined Loading






Sensitivity Study of Structural
Performance

The numerical findings of the low fidelity model are presented in this chapter, and the variation of stress
distribution with various physical parameters is investigated. Based on these findings, the numerical
model is further consolidated by comprehending the physics underlying the structural analysis of a
propeller blade. The advance ratio (J) was altered and investigated in the section 5.1, the reference
propeller pitch(8,) was varied in the section 5.2, and the influence of sweep (y,) on structural stress
was investigated in the section 5.3.

5.1. Varying Advance Ratio

To begin, the propeller’s advance ratio was varied and stress distribution over the blade was examined.
This is done while maintaining a constant airspeed, implying that the rotational velocity of the propeller
was altered. The table 5.1 shows various operating locations with varying rotational velocity. The
rotational velocity (w) of the propeller changes as the advance ratio (J) is altered, causing the centrifugal
loads to vary. Furthermore, changing the rotational speed alters the tangential velocity at each radial
section (V;) of the propeller, which changes the angle of attack (a) and hence the aerodynamic loadings
of the propeller. Therefore, as a result of the change in propeller advance ratio, both the aerodynamic
and centrifugal load changes, resulting in a change in von-Mises stress and deflections in the propeller
blade. It is important to keep in mind that the blade is chosen to be XPROP with reference blade pitch
Bo was setto 30°.

It is expected that when the advance ratio decreases, the centrifugal loads and, consequently, the
centrifugal moment and von-Mises stress across the blade will increase. For the detailed comparison
the three cases with ] = 0.6, J = 0.9 and J = 1.2 are discussed in detail. It is worth mentioning
that direct moments due to centrifugal forces (M), Thrust Forces (M) and the torque forces (M) are
termed as Global Moments, whilst the moments corresponding to the local axis in rotated frame M,,
Mg and M, are termed as Local Moments. The maximum von-Mises stress along the radial stations
with varying advance ratios is depicted in Figure 5.1. The von-Mises stress decreases with increasing

Advance Ratio (J) | Propeller (RPM) | Airspeed (m/s)
0.6 7382 30
0.7 6327 30
0.8 5536 30
0.9 4921 30
1 4429 30
1.1 4026 30
1.2 3691 30

Table 5.1: Operating points with varied advance ratio

49
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Figure 5.1: Variation of maximum von-Mises stress with varying advance ratios
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Figure 5.2: Varying aerodynamic loading with advance ratio

advance ratio and is proportional to the square of rotational velocity (w), similar to the centrifugal loads.

It is observed that with increase in advance ratio, the thrust coefficient decreases, as the rotational
speed of propeller blade decreases, which ultimately leads to reduction in elemental thrust and torque
forces. This is depicted in the figure 5.2a, where thrust coefficient (C;) is plotted at varying advance
ratios (J). Elemental Thrust forces are also plotted at each section of the blade, and is displayed in
the figure 5.2b. Therefore, with increase in advance ratio, both aerodynamic and centrifugal loads
decreases, which results in lower von-Mises stress on the propeller blade.

5.1.1. Global and Local Bending Moments

All the advance ratios ranging from J = 0.6 to ] = 1.2, falls into the category of propulsive regime. This
is evident from the figure 5.2a, where the thrust coefficients are illustrated, as the thrust coefficients of
all the regimes is positive, propeller is operating in propulsive regime. With increase in advance ratio
of propeller, rotational velocity of the propeller decreases. This causes weaker centrifugal forces and,
as a result, decreased von-Mises stress.

The aerodynamic moments diminishes from the hub part of the blade to the tip and become zero
at the tip, while the centrifugal moments remains zero. This occurs because the airfoils are stacked
with their centroid along the same axis, resulting in a zero moment about the neutral axis (passing
through the centroid). With increase in advance ratio, rotational velocity decreases, which in turn,
also reduces inflow velocity at every radial section. This results to decrease in lift and drag at the
airfoil sections, which ultimately leads to reducing the aerodynamic forces and aerodynamic bending
moments namely; thrust and torque moments as shown in the figure 5.3c for a higher advance ratio of
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Figure 5.3: Variation of Global Moments for varying advance ratios

J = 1.2. The variation of global moments are illustrated in the figure 5.3, and variation of local moments
in the local Cartesian system is given in the figure 5.4. It is to be noted that local moments, remains in
the negative direction with magnitude diminishing towards the tip of blade. The torsional moments are
also shown, however the magnitude of the torsional moment remains low in all the cases, and it do not
produces significant shear stresses.

5.1.2. Stress Distribution at hub

Figure 5.6 depicts the variation of von-Mises stress on the propeller hub section with varying advance
ratios. It is interesting to note that the pressure side of the propeller blade has larger stresses than the
suction side, which is explained by the negative local moments (see figure 5.4). On the suction side,
due to the negative local bending moments stress are compressive in nature, while on the pressure
side stresses are tensile. Along with these two kinds of stress, the direct centrifugal stress also acts
on the propeller which is tensile in nature. This results in adding bending stress on suction side and
subtracting bending stresses on pressure side to the direct centrifugal stress. As the advance ratio
is increased, difference between stress at suction side and pressure side reduces to lower values,
implying that the bending moments are decreased, and results in lower bending moment stresses. It
is also evident from the figure 5.6 that direct centrifugal stress dominates over the bending moment
stresses in all these cases, as the overall stress remains tensile in nature. Therefore, it can be said
that the centrifugal loads dominates over the aerodynamic forces in this case.

5.1.3. Stress distribution on propeller blades
The stress distribution across the blade are depicted in the figure 5.7.

For the case of lower advance ratio of | = 0.6, maximum von-Mises stress of 96 MPa occurs on the
pressure side of the blade at around 40 % of the radial section, which diminishes as the radius increases
towards the tip of blade as seen in the figure 5.7a. On the suction side, the stress are significantly lower
than the pressure side, however, at the trailing edge von-Mises stress increase to higher values due to
the aerodynamic moments. The suction side remains with low stress as the centrifugal tensile stresses
are neutralized with the compressive stresses due to bending moments as displayed in the figure 5.7b.

As the advance ratio is increased to /] = 0.9, maximum von-Mises stress decreases to 38 MPa,
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Figure 5.4: Variation of Local Bending Moments for varying advance ratios
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Figure 5.6: Variation of the von-Mises stress in Local axis with varying advance ratios J

occurring on the pressure side (figure 5.7c), at similar radial section and diminishing towards the tip
of blade. Suction side of blade is displayed in the figure 5.7d, which remains fairly uniform with lower
stresses, in the center and a stress concentration zone on the trailing edge around 40 % of the radial
section.

For further higher advance ratio J = 1.2, maximum von-Mises stress decreases to 17 MPa. Similar
to the other two cases, maximum stress occurs on the pressure side as well (figure 5.7¢), at a radial
section of 40 % and stress diminishing towards the tip of blade. However, it is interesting to observe the
suction side in figure 5.7f, where the stress varies from trailing edge to leading edge. With a decrease
in rotational velocity, the centrifugal stress decreases. Aerodynamic bending moments nullifies the
centrifugal stresses and thus suction side remains fairly uniform, with a slight increase in stresses near
the trailing and leading edge of the blade.

Appendix B includes the propeller blade stress contours for all advance ratios ranging from 0.6 to
1.2.

5.2. Varying Reference Pitch Angle

In order to have a closer look at the variation of aerodynamic loads while maintaining the centrifugal load
constant, the reference propeller pitch (8,) sensitivity study needs to be done. At a constant advance
ratio, as the propeller pitch is varied, the angle of attack at propeller sections varies, which results in
varied aerodynamic performance and loads. Hence, the reference pitch of the propeller is modified as
the next parameter.

The propeller reference pitch B, is defined at a radial section of 70 percent, and same twist angle is
given to the blade as last case, which results in varying the angle of attack a at all the radial sections.
This is accomplished while maintaining constant airspeed 30 m/s at an advanced ratio of 1.2. This
particular advance ratio was chosen so that the propeller blade can be in propulsive or regenerative
regime depending upon the reference propeller pitch. Thus with a constant advance ratio, and varying
propeller pitch, centrifugal stresses remain constant while aerodynamic loads change, resulting in a
change in von-Mises stress and propeller blade deflections. The reference propeller pitch varies from
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(a) von-Mises stress distribution Pressure Side - J = 0.6 (b) von-Mises stress distribution Suction Side - J = 0.6

(c) von-Mises stress distribution Pressure Side - J = 0.9 (d) von-Mises stress distribution Suction Side - J = 0.9

(e) von-Mises stress distribution Pressure Side - J = 1.2 (f) von-Mises stress distribution Suction Side - J = 1.2

Figure 5.7: Stress Distribution on the propeller blade with varying advance ratios J
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Figure 5.9: Varying aerodynamic loading with propeller pitch

o = 15° to 30°. The figure 5.8 depicts the variation of maximum von-Mises stresses over the radial
sections with change in reference pitch. Interestingly, when the reference pitch is increased from 15°
to 25°, the von-Mises stress decreases initially, but as the reference pitch is increased further from 25°
to 30°, the maximum stress grows. The aerodynamic loads from the BEM model shows that for lower
pitch angles (8, = 15° and 25°), elemental thrust at radial sections is negative, resulting in negative
thrust and torques in the lower pitch angles, implying that the propeller is operating in the regenerative
regime.

Variation of the Thrust Coefficient (C;) with reference propeller pitch (8,) is depicted in the figure
5.93a, it is evident that with increase in propeller pitch, the thrust coefficient increases, and it becomes
positive at propeller pitch of 25° and higher, implying that propeller is operating in propulsive regime
after 25° propeller pitch. It is also observed in the figure 5.9b, where the elemental thrust is plotted
with radial sections at varying propeller pitch. It is evident from the figure that propeller pitch g, = 25°
to 30°, provides positive elemental thrust forces, implying propulsive regime.

In order to understand the flow physics and structural stresses, the three cases with pitch 15°,22.5°
and 30° are discussed in detail in the following sections. The case of pitch 15° falls into regenerative
regime while 30 ° propeller pitch case falls into propulsive regime.

5.2.1. Global and Local Bending Moments

In this section, variation of the global and local moments for varying propeller pitch is discussed. The
global moments in all three cases follows a similar pattern as of varying advance ratios and are depicted
in the figure 5.10. Global moments diminishes towards the tip of the blade. As the propeller pitch
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Figure 5.10: Variation of Global bending moments with propeller pitch

increases, the global moment decreases first for the case of B, =22.5°, but later increase, with increase
in propeller pitch (for the case of g, = 30°). This is due to the magnitude of overall aerodynamic loads,
as the propeller pitch is increased from 15° to 22.5°, thrust magnitude decreases (see figure 5.9b)
and later increases for the case of 30°. As the propeller starts to operate from regenerative regime
to propulsive regime, magnitude aerodynamic loads on the propeller decreases as it reaches around
Cy = 0, and then increases for propulsive regime.

Figure 5.11 displays the variation of local bending moments with increase in propeller pitch. It is
observed again, that the local moments in magnitude diminished towards the tip of the blade. It is very
interesting to observe that sign of the local bending moments is positive in first two cases of 8, = 15°
and B, = 22.5°, while bending moment becomes negative in the other case. This is directly an effect
of the directions of aerodynamic loads. In the first two cases, the propeller is operating in regenerative
regime generating negative thrust, while in the last case the propeller is operating the propulsive regime
and producing a positive thrust, resulting in change in signs of local bending moments.

5.2.2. Stress Distribution at Hub

The variation of stress at the hub section is shown in the figure 5.12. In contrast to the advance
ratio investigations, propeller is operating in regenerative regime in first two cases of propeller pitch
investigations. Due to which, the sign of local moment changes to positive, implying that the bending
moments results in producing tensile stresses on suction side and compressive stresses on pressure
side, which causes the hub stress to ‘flip’ upside down as compared to the cases in advance ratio
studies. This is depicted in the figure 5.12a and 5.12b. In the last case, the propeller is operating in
the propulsive regime and the local bending moments are negative, resulting in the tensile stress on
pressure side and compressive stress on suction side, and the hub stress distribution is similar as in
the case of advance ratio sensitivity studies as seen in the figure 5.12c.

5.2.3. Stress distribution on propeller blades
The stress distribution across the blade are depicted in the figure 5.13.

For the case of lower propeller pitch of 8, = 15°, maximum von-Mises stress of 18 MPa occurs
on the suction side of the blade at around 40 % of the radial section, which diminishes as the radius
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increases towards the tip of blade as seen in the figure 5.13b. On the pressure side, the stress is
significantly lower than the suction side and remains fairly uniform along the surface. The pressure
side remains with low stress as the centrifugal tensile stresses are neutralized with the compressive
stresses due to bending moments as seen in the figure 5.13a.

As the propeller pitch is increased to B, = 22.5 °, maximum von-Mises stress decreases to 13.5 MPa,
occurring on the suction side as well (figure 5.13d), at similar radial section and diminishing towards the
tip of blade. Pressure side of blade is seen in the figure 5.13d, which remains fairly uniform with lower
stresses, in the center, but still an increase in stress as compared to previous case can be observed
on suction side.

For further higher propeller pitch 8, = 30 °, maximum von-Mises stress rises to 17 MPa as the pro-
peller changes its regime to propulsive. Unlike other two cases, maximum stress occurs on the pressure
side (figure 5.13e), at a radial section of 40 % and stress diminishing towards the tip. It is interesting
to observe the suction side as well in figure 5.13f, where the stress varies from trailing edge to leading
edge, however slight rise and a stress concentration zone near the trailing edge is also observed. Aero-
dynamic moments are higher than the previous case, resulting in the compressive stress on suction
side, which are neutralized by the direct centrifugal tensile stress.

Overall stress remains tensile in nature as no 'neutral’ axis is observed of zero stress, and therefore,
the centrifugal direct stresses (tensile) dominates over the bending stresses (compressive on one side
and tensile on other) due to aerodynamic loads. This implies that propeller in these cases were also
dominated by the centrifugal loads.

Appendix C contains the propeller blade stress contours for all reference pitch angle ranging from
15° to 30°.

5.3. Varying Sweep Angle

The sweep is implemented on the propeller blades to achieve a better aeroacoustic performance. Be-
fore employing a low-fidelity model into a design optimization, it is crucial to ensure that it is functioning
satisfactorily for the swept propeller blades. Therefore, sweep of the blade y, is varied in the final part
of the analysis, and the effect on the von-Mises stresses is observed. Comparison is done while main-
taining the propeller’s operating conditions; the advance ratio J is set to 1.2, the reference pitch is set
to 30°, and the airspeed is set to 30 m/s. The sweep at the tip of the blade (y,) varies from 0° to 25°.
It is important to note that the correct aerodynamic loads for the swept blades from the low fidelity
model was not available; thus, aerodynamic loads corresponding to straight blades are used to evalu-
ate stress which were distributed over the radial sections at certain sweep. As a result, the main goal of
this section is to predict correct trends with a higher sweep in the blade rather than exact stress values.

(r)—ﬁ 3 r—R 2_ r—R 3 (5.1)
Y =751\°\r, R Ry —R '

The centroid of each radial section is now present at a specified offset from the reference section,
given by MCA from the equation 2.19, and do not lie on the same axis, which signifies that as the
sweep angle grows, a centrifugal bending moment that was not present in any of the previously stated
examples would develop. Sweep distribution of blade is defined according to the equation 5.1, where
¥, is the value of sweep at the propeller tip, R is the tip radius, Ry being the hub radius and r being the
section where sweep is distributed.

As the sweep angle of the blade increases, the centrifugal bending moments also increase, leading
to increased von-Mises stress along the blade. Aerodynamic bending moments also varies by a small
fraction, as the location of aerodynamic centers changes, resulting in a small change in aerodynamic
moments. However, this change is significantly small as compared to the centrifugal bending moments,
as the aerodynamic loads are smaller.

Variation of the maximum von-Mises stress along the radial sections with a varied sweep angles is
displayed in the figure 5.14. It can be seen that for a highly swept blade, the maximum stress reaches
a high value up to 160 MPa, which can be detrimental to the propeller blade and result in a massive
disaster for the aircraft. It is critical to keep the stress within a certain range to avoid structural failure
of the propeller blade. It should also be noted that these stresses correspond to the blade having
structural steel as the propeller material, which is not typical. The use of a lower density material, such
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(a) von-Mises stress distribution Pressure Side - 8, = 15° (b) von-Mises stress distribution Suction Side - §, = 15°

(c) von-Mises stress distribution Pressure Side - 8, = 22.5° (d) von-Mises stress distribution Suction Side - 8, =22.5°

(e) von-Mises stress distribution Pressure Side - g, = 30° (f) von-Mises stress distribution Suction Side - §, = 30°

Figure 5.13: Stress Distribution on the propeller blade with varying propeller pitch B,
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Figure 5.15: Variation of Global Moments with varied sweep y,

as titanium, aluminum or carbon fiber, can significantly reduce structural stress up to 30 percent of
these values.

In order to understand the flow physics and structural stresses, the cases with sweep of 10° and
20° are discussed in detail in the following sections.

5.3.1. Global and Local Moments

The figures 5.15 and 5.16 show how the Global and Local moments vary with varying sweep. The pres-
ence of centrifugal bending moments, which dominate over aerodynamic moments, is clearly visible in
both the cases. The centrifugal moments decrease as the offset between the later airfoil sections and
the reference station decreases, as does the centrifugal force acting on the later radial stations. It can
be observed that the centrifugal bending moments increases with increase in sweep angle, while the
aerodynamic bending moments remains the same as there is no change in the aerodynamic loads. It
is evident that centrifugal bending moments dominates over the aerodynamic moments.

Similar to previous cases in propulsive regime, the local moments are negative as seen in figure
5.16; however, the magnitude of the moments is extremely large because the centrifugal moments are
higher. It is also observed that in this case, even the torsional moment (shown in green in the plot) can
produce a slight higher stress of up to 0.6 MPa.

The figure 5.17 depicts the variation of stress along the hub section with varied sweep. Itis observed
that the pressure side has higher stresses due to negative local moments, whereas the suction side
stress drops to almost zero at 60 percent chordwise distance from the leading edge in the case of y, =
10° and at 70 percent chordwise distance from the leading edge in the case of y, = 20°. This implies
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Figure 5.17: Variation of the hub von-Mises stress in Local axis with sweep

the presence of very high compressive bending stresses, which cancel out the direct centrifugal tensile
stress and cause the stress to become zero. The von-Mises stresses on the suction side increase and
then decrease, resulting in a local maxima on the suction side. This is because compressive bending
stresses dominates over direct centrifugal tensile stresses, and overall stress becomes compressive
(negative), as was seen earlier in the case of skewed marine propeller in the figure 2.12; however, in
the figure 5.17a the von-Mises stresses are plotted, which changes the sign and plots the magnitude
according to the equation 3.28. With an increase in sweep to y, = 20 °, profile stress remains relatively
similar to the previous case, with amplified stresses on the hub section reaching up to 24 MPa. This is
direct result of higher bending moments present in the case of y, = 20°, which results in increase in
von-Mises stresses.

The von-Mises stress contour plots are depicted in 5.18. For the case of y, = 10 °, maximum stress
of 62 MPa is observed on the pressure side of the blade at 40 percent of the radial section. A very
high variation of stress on the suction side confirms the presence of a significant amount of bending
moment stress in the case. A ’neutral axis’ with almost negligible stress is present on the suction side at
60 percent of the chordwise coordinate, which explains why stress is compressive before 60 percent
of the chordwise coordinate and tensile after. A stress concentration zone forms at 40 percent of the
blade, corresponding to the local maximum caused by compressive stresses.

In case of y, = 20°, maximum stress of 115 MPa is observed on the suction side of the blade at
40 percent of the radial section. A 'neutral axis’ with almost negligible stress is present on the suction
side at 70 percent of the chordwise coordinate, which explains why stress is compressive before 70
percent of the chordwise coordinate and tensile thereafter. It is worth noting that the maximum von-
Mises stress occurs on the suction side of the blade, at 40 percent of the radial section and 30 percent
of the chordwise coordinate, which is in a zone dominated by compressive stresses. As a result, it
is concluded that bending moments for the present case are so large that the maximum stress in the
blade is compressive rather than tensile, and occurs on the suction side of the blade.

It has been established from the results with varying physical parameters that the structural model
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(a) von-Mises stress distribution Pressure Side -y, = 10° (b) von-Mises stress distribution Suction Side - y, = 10°

(c) von-Mises stress distribution Pressure Side - y, = 20° (d) von-Mises stress distribution Suction Side - y, = 20°

Figure 5.18: Stress Distribution on the propeller blade with varying sweep

works well with different blade geometries: varying airfoil profile, sweep, and chord of propeller. It
is important to note that validation for the swept blades was not performed due to limited resources
and time constraints, but varying sweep angles predict uniform trends, indicating that the model works
satisfactorily for the swept blades. To be on the safe side, it is recommended to validate the case
of swept propeller blades. Appendix D contains the propeller blade stress contours for sweep angle
ranging 0° to 25°.



Conclusions

Based on the thesis findings, main goals are accomplished and the conclusions are drawn. In this
chapter, the conclusions and recommendations for the future studies are presented in the section 6.1
and 6.2 respectively.

6.1. Conclusions

The main goal of the thesis was to quantify the stress on the propeller blade for a general airfoil with
varying planform chord, twist, and sweep distribution in order to investigate the structural strength of
the propeller. In comparison to a high fidelity FEM model, which can take several minutes, a low
fidelity structural model is developed that provides the stress distribution along the propeller in a limited
computational time and power (30 s). A mathematical model was proposed for the analysis and design
of general propeller blades, which takes the aerodynamic loads from the low fidelity BEM model as
input and provides the stress distribution on the blade as output. To account for bending and torsional
deformations of the blade, the model is based on Euler-Bernoulli beam theory and Saint-Venant torsion
theory respectively. The model treats aerodynamic and inertial loads as static loads. The proposed
model can be easily integrated and coupled into the framework of aerodynamics and aeroacoustics,
and thus, can be used in the optimization studies to generate optimal propeller blade.

A thorough validation and verification process is carried out, and the low fidelity structural results
are compared with high fidelity simulations in order to build some confidence in the low fidelity re-
sults. Fluid structure interaction simulations were performed using the one-way coupling method, in
which the pressure was imported from the CFD simulations (ANSYS®Fluent) to the FEM simulations
(ANSYS®Mechanical). First, the aerodynamic loads from the low fidelity model are evaluated against
aerodynamic loads from CFD simulations after post processing. Finally, the structural stresses from
low level model and high fidelity FEM simulations are compared. The TUD-XPROP propeller blade was
validated in both propulsive and regenerative regimes. Comparisons reveal that the low fidelity model
predicts correct trends, underestimating maximum equivalent stresses by 2 percent in the propulsive
case and overestimating the maximum equivalent stress by 2.5 percent in regenerative case. It was
critical to observe that the model adequately predicts stress due to both inertial loads, and aerodynamic
loads.

A sensitivity analysis is also carried out to explore the impact of blade sweep, propeller pitch, and
advance ratio on the structural characteristics of isolated propeller blades using a low fidelity struc-
tural model. According to the findings of these investigations, as advance ratios grows, the equivalent
maximum stress drops. This is a direct outcome of inertial loads, since as advance ratio increases,
rotational speed decreases, resulting in lower inertial and aerodynamic loads. It was observed that
the centrifugal loads dominates over the aerodynamic loads, at all advance ratios ranging from J =
0.6 to 1.2. Additionally, the pitch of the propeller was changed; as the reference pitch angle rises, the
maximum stress on the blade first decreases, then tends to rise afterward. This is because aerody-
namic loads have changed; at lower pitch angles, the majority of radial stations have a negative angle
of attack and are thus operating in a regenerative regime, which causes the maximum stress to initially
decrease as pitch rises. The regime changes from regenerative to propulsive as the pitch angles rise,
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increasing the angle of attacks at the radial stations as well. This shift in regime causes a change in the
direction of aerodynamic loads, raising the maximum stress in the propeller. The impact of the sweep
on the propeller blade is later examined. Maximum stresses rise with an increase in sweep angle. The
presence of large centrifugal bending moments explains this, which results in high compressible stress
on the suction side and high tensile stress on the pressure side. It was concluded that in all the cases
observed in the sensitivity study, centrifugal loads dominates over the aerodynamic loads.

6.2. Recommendations
Based on the thesis findings, several recommendations for the future studies are made:

* It may be of interest to check the results for the sweep with correct aerodynamic loads from the low
level model and a higher fidelity model using CFD-FEM coupled simulations, which was not pos-
sible due to the time constraints of the current project. Finally, an experimental validation would
be more useful in establishing a pathway from numerical analysis to final functional prototype.

» This research was carried out for steady rectilinear flight in cruising conditions with constant aero-
dynamic loads. Before developing a prototype, it is critical to evaluate both the instationary loads
in a general flight and the effects of aerodynamic loads during climb and descent operations,
where the aircraft operates at non-zero angle of attack.

Another aspect is during a curved flight path, as the external gyroscopic inertial loads can be
present, which has been neglected in the present study. These are time varying sinusoidal loads
that can be detrimental for the propeller at very high rotational velocities, which only occurs in the
curved flight path.

The current model did not take the dynamics and aeroelastic stability of the blade into account.
Unsteady phenomena such as flight flutter and static divergence must be investigated since they
may be detrimental for flight. Along with these analyses, free vibration investigations can be
carried out. A separate time domain analysis is required for these studies, which can be performed
in the unsteady analysis of the propeller.

» To determine the life cycle of the propeller blades, fatigue investigations must be done. It has been
shown in prior examples that a propeller can fail due to fatigue even when there is no irregularity or
extreme vibration in flight, as in the case of Muhammad et al. [38]. This is due to fatigue induced
after a number of cycles of use, which eventually led to crack initiation and propeller blade failure

+ To obtain a propeller blade geometry with optimal aerodynamic and aeroacoustic performance,
the proposed structural model must be implemented and combined with an aerodynamic and
aeroacoustic framework. Optimization studies must be carried out in order to determine the opti-
mal propeller blade geometry that can withstand aerodynamic and inertial loads.
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A. Blade Cross sections
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Figure A.1: Blade cross sections at 25 radial sections of XPROP propeller (untwisted)
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B. Sensitivity Results Contour plots: Advance Ratio

(a) Pressure Side : ] = 0.6

(b) Suction Side : ] = 0.6

Figure B.1: von-Mises stress contours with J = 0.6

(a) Pressure Side : ] = 0.7

(b) Suction Side : J = 0.7

Figure B.2: von-Mises stress contours with J = 0.7
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(a) Pressure Side : ] = 0.8

(b) Suction Side : J = 0.8

Figure B.3: von-Mises stress contours with J = 0.8

(a) Pressure Side : J = 0.9

(b) Suction Side : J = 0.9

Figure B.4: von-Mises stress contours with J = 0.9
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B. Sensitivity Results Contour plots: Advance Ratio

(a) Pressure Side : ] = 1.0

(b) Suction Side : J = 1.0

Figure B.5: von-Mises stress contours with J = 1.0

(a) Pressure Side : J = 1.1

(b) Suction Side : J = 1.1

Figure B.6: von-Mises stress contours with J = 1.1
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(a) Pressure Side : J = 1.2

(b) Suction Side : J = 1.2

Figure B.7: von-Mises stress contours with J = 1.2
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C. Sensitivity Results Contour plots: Propeller Pitch

(a) Pressure Side : B, = 15

(b) Suction Side : 8, = 15

Figure C.1: von-Mises stress contours with 8, = 15

(a) Pressure Side : 8, = 17.5

(b) Suction Side : B, = 17.5

Figure C.2: von-Mises stress contours with 8, = 17.5
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(a) Pressure Side : B, = 20

(b) Suction Side : g, = 20

Figure C.3: von-Mises stress contours with J = 20

(a) Pressure Side : 8, = 22.5

(b) Suction Side : 8, = 22.5

Figure C.4: von-Mises stress contours with 8, = 22.5
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C. Sensitivity Results Contour plots: Propeller Pitch

(a) Pressure Side : B, = 25

(b) Suction Side : 8, = 25

Figure C.5: von-Mises stress contours with 8, = 25

(a) Pressure Side : B, = 27.5

(b) Suction Side : B, = 27.5

Figure C.6: von-Mises stress contours with 8, = 27.5
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(a) Pressure Side : B, = 30

(b) Suction Side : 8, = 30

Figure C.7: von-Mises stress contours with 8, = 30
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D. Sensitivity Results Contour plots: Blade Sweep

(a) Pressure Side : y, =0

(b) Suction Side : y, =0

Figure D.1: von-Mises stress contours with y, = 0

(a) Pressure Side : y, =5

(b) Suction Side : ¥, =5

Figure D.2: von-Mises stress contours with y, = 5
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(a) Pressure Side : y, = 10

(b) Suction Side : y, = 10

Figure D.3: von-Mises stress contours with y, = 10

(a) Pressure Side : y, = 15

(b) Suction Side : y, = 15

Figure D.4: von-Mises stress contours with y, = 15
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D. Sensitivity Results Contour plots: Blade Sweep

(a) Pressure Side : y, = 20

(b) Suction Side : y, = 20

Figure D.5: von-Mises stress contours with y, = 20

(a) Pressure Side : y, = 25

(b) Suction Side : y, = 25

Figure D.6: von-Mises stress contours with y, = 25



Post Processing Python Script with
TecPlot ®

B G G T g o
## Author — Jatinder Goyal (j.goyal@tudelft.nl)
S S
import pandas as pd

import tecplot as tp

from pylab import *

from tecplot.constant import *

from scipy.integrate import simps

HHHHHH I R R R R R A R R
def ActiveFieldMap (str):

rg = tp.active_frame (). plot (). num_fieldmaps

fdMaps = tuple(range(rg))

bladeSurface = [tp.active_frame (). dataset.zone(name) for name in [str]]

tp.active_frame (). plot (). fieldmaps (fdMaps).show = False

tp.active_frame (). plot (). fieldmaps(bladeSurface).show = True

tp . macro . execute_command( '$! RedrawAll ")

tp.active_frame (). plot().view.psi =0

tp.active_frame (). plot().view.theta = 0

tp . macro . execute_command( '$! RedrawAll ")

tp.active_frame (). plot ().view.fit_data(consider_blanking=True)

# End Macro.
# Uncomment the following line to connect to a running instance of Tecplot 360:

tp .session.connect ()
Rp = 0.2032 # propeller Radius[m]

# J = np.array([0.60,0.75,1.10,1.20,1.40,1.90]) #AdvanceRatio

# pitch = np.array([15,15,15,30,30,30]) # pitch angle [deg]

#V = np.array([30,30,30,30,30,30]) # freestream velocity [m/s]
# B = np.array([3,3,3,3,3,3]) #No. of blades [-]

J = np.array([1.20])
pitch = np.array([30])
V = np.array ([30])

®
noi

np.array ([3])
min_rR = 0.195
max_rR = 0.999
rR_n = 24
outputFile = ’../DataOutput/ ThrustTorque_perBlade_J{:.2 f}V{}B{} pitch {}.csv’
casFile = " ../J{:.2f}_V{}B{} pitch {}/J{:.2f}_V{}B{} pitch{}-2.cas’
datFile = '../J{:.2f}_V{}B{}pitch {}/J{:.2f}_V{}B{} pitch{}-2-10000.dat’

for j in range(len(J)):
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E. Post Processing Python Script with TecPlot ®

## Load CFD Data

tp.data.load_fluent(case_filenames=[casFile.format(J[j], V[j], B[j], pitch[j], J[jl, VIjl,

BLil, pitch[iD)],

B[jl, pitch[i)],

data_filenames=[datFile.format(J[j], V[j]l, B[j], pitch[j], J[j]., VIil,

append=False)

## Define variables needed for post-processing

tp .data.operate.execute_equation(equation="{{R}}=11{: f} ' .format(Rp),
value_location=ValuelLocation.Nodal)

tp.data.operate.execute_equation(equation="{x/R<sub>p</sub>}1={X}/{R} ",
value_location=ValueLocation.Nodal)

tp .data.operate.execute_equation(equation="{y/R<sub>p</sub>}=l{Y}/{R} ",
value_location=ValuelLocation.Nodal)

tp .data.operate.execute_equation(equation="{z/R<sub>p</sub>}1=r{Z}/{R} ",
value_location=ValuelLocation.Nodal)

# Assign Non-dimensionalised coordinate system

tpplot = tp.active_frame (). plot()

tpplot.axes.x_axis.variable = tp.active_frame (). dataset.variable ("x/R<sub>p</sub>")
tpplot.axes.y_axis.variable tp.active_frame (). dataset.variable ("y/R<sub>p</sub>")
tpplot.axes.z_axis.variable tp.active_frame (). dataset.variable ("z/R<sub>p</sub>")
tpplot.view.magnification = 0.9

tp . macro . execute_command ( '$! RedrawAll ")

## Select Active domains for the slicing
ActiveFieldMap ( 'blade_pressure ')
sliceP = []
for y in np.linspace(min_rR, max_rR, rR_n):
slice = tp.data.extract.extract_slice(
origin=(0, y, 0),
normal=(0, 1, 0),
source=tp.constant. SliceSource . SurfaceZones,
dataset=tp.active_frame (). dataset)

slice .name = ’blade_P:0r/R={}".format(y)
sliceP .append(slice)

HHH R R R R R R
ActiveFieldMap ('blade_suction’)
sliceS = []
for y in np.linspace(min_rR, max_rR, rR_n):
slice = tp.data.extract.extract_slice(

origin=(0, y, 0),

normal=(0, 1, 0),

source=tp.constant. SliceSource . SurfaceZones,

dataset=tp.active_frame (). dataset)

slice.name = ’blade_S:[r/R={}".format(y)
sliceS .append(slice)
B G g s 2 i
ActiveFieldMap ('blade_te ")
sliceT = []
for y in np.linspace(min_rR, max_rR, rR_n):
slice = tp.data.extract.extract_slice(
origin=(0, y, 0),
normal=(0, 1, 0),
source=tp.constant. SliceSource . SurfaceZones,
dataset=tp.active_frame (). dataset)

slice .name = ’'blade_TE:[ir/R={}".format(y)
sliceT .append(slice)

thrust [1

torque [1

R =]

for y in range(len(sliceP)):
# for y in [40]:

x_P = sliceP[y].values(’X’).as_numpy_array ()
idx_P = np.argsort(x_P)
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x_P = x_P[idx_P]
z_P = sliceP[y].values(’Z’).as_numpy_array ()[idx_P]
y_P = sliceP[y].values(’'y/R<sub>p</sub>’).as_numpy_array ()[idx_P]
P_P = sliceP[y].values(’Pressure’).as_numpy_array ()[idx_P]
ST_P = sliceP[y].values(’WallliShear(i1Stress ’).as_numpy_array ()[idx_P]
z_S = sliceS[y].values(’Z’).as_numpy_array ()
idx_S = np.argsort(z_S)
z_S = z_S[idx_S]
x_S = sliceS[y].values(’X’).as_numpy_array ()[idx_S]
P_S = sliceS[y].values(’'Pressure’).as_numpy_array ()[idx_S]
ST_S = sliceS|[y].values(’WalllShear(IStress’).as_numpy_array ()[idx_S]
x_T = sliceT[y].values(’X’).as_numpy_array()
z T = sliceT[y].values(’Z’).as_numpy_array ()
P_T = sliceT[y].values(’Pressure’).as_numpy_array()
ST_T = sliceT[y].values(’WallllShear(IStress ’).as_numpy_array ()
T = simps(P_P,z_P) - simps(P_S,z_S) - simps(P_T,z_T)
- simps(ST_P,x P) - simps(ST_S,x_S)- simps(ST_T,x_T)
Q = (simps(P_P,x_P) - simps(P_S,x_S) - simps(P_T,x_T)

+ simps(ST_P, z_P) + simps(ST_S, z_S) + simps(ST_T,z_T))*xy_P[1]*Rp
thrust.append(T)
torque .append(Q)
rR.append(y_P[1])

df = pd.DataFrame(data={"r_R”: rR, "T”: thrust, "Q": torque})
df.to_csv(outputFile.format(J[j], V[j], B[j], pitch[j]), sep=", ,index=False)




