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Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative dis-
eases in the world and the most common cause of dementia. In recent times,
accurate and early detection of AD plays a vital role in patient care and further
treatment. Lately, studies on AD diagnosis has attached a great significance
to artificial-based diagnostic algorithms. During this master thesis we explore
how deep learning models can handle neuroimages in order to identify and
predict the evolution of the disease. Different from the traditional machine
learning algorithms, deep learning does not require manually extracted fea-
tures but instead utilizes 3D image processing models to learn features for the
diagnosis and the prognosis of AD. The contribution of this work relies on a
more rigorous preprocessing phase involving skull-stripping and intensity nor-
malization of the medical images. The hippocampus, a brain area critical for
learning and memory, is especially affected at early stages of Alzheimer’s dis-
ease. In some parts of this work, It will be used as a region of interest for our
algorithms that will consist in convolutional neural networks, the typical image
classifier models, and vision transformers, a novel deep learning architecture.
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Chapter 1

Introduction

Inventors have long dreamed of creating machines that outperform humans in tasks whether
intellectual or manual. When programmable computers were first conceived, many people won-
dered if such machines might become intelligent. Nowadays, we look towards intelligent soft-
ware to automate routine labor, drive our cars, understand speech or images and make diagnosis
in medicine.

Machine learning techniques in the healthcare sector offer automated diagnosis tools that
support a doctor’s diagnosis and recommendations to a patient. Such systems must be designed
in close cooperation with medical professionals in order to validate the outcomes and have a
thorough understanding of the medical requirements.

Alzheimer’s disease is a complex brain disease still not completely understood. Indeed, still
many research questions related to this disease stay unresolved, e.g. the ability to predict if an
individual is likely to develop the disease or not several years later.

In this field, machine learning can help to analyse brain images and to build interpretable
diagnosis systems. Dealing with the extremely small size and high dimension of the datasets
that are frequently accessible in this domain presents a problem in the implementation of ma-
chine learning algorithms.

In this master thesis, we investigate the potential of deep learning methods, a particular
machine learning family, to help researchers using brain imaging to address issues concerning
Alzheimer’s disease.

This manuscript is divided into six chapters :

After this introduction, chapter two will provide the necessary medical background required
to understand this work. Explaining Alzheimer’s disease as well as describing neuroimaging
data.

Chapter 3 proposes an overview of the field of deep learning. It starts by explaining classical
supervised learning approach then gradually works its way up to explaining how state of the
art model works and how they can be used to deal with medical images. Finally it presents an
overview of the related work literature both in deep learning and in classical machine learning.
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Chapter 4 comprises the entire methodology carried out for this endeavour. At first, the
preprocessing pipeline will be carefully explained step by step. Then, the model architectures
used for inference will be described based on the knowledge acquired from the previous chapter.

Chapter 5 contains the experiment procedure conducted along this work. We will first
discuss the protocol on which empirical results were obtained, the evaluation metrics used to
assess them, then finally they will be reported and discussed.

Chapter 6 will end this master thesis by exploring the potential future of AI assisted diag-
nosis as well as its ethics before a final conclusion.
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Chapter 2

Neurodegenerative Disease

During this first chapter, we will go over the medical background necessary to understand
this work. We open this section with a brief description of Alzheimer’s disease then follow up
with the description of the medical tools available to assess it as well as a potential brain region
of interest that could be relevant for the diagnosis and finally talk about the large american
database ADNI.

2.1. Alzheimer Disease

Alzheimer’s disease (AD) is a neurodegenerative brain disorder in which neurons in specific
parts of the brain are irreparably lost as the disease progresses. Memory and behavioral prob-
lems result from the neural loss.

Because life expectancy in developed countries has been steadily rising over the past few
decades, this condition, which primarily affects elderly people, has become more and more
common. Although some researchs have been focusing on the creation of drugs postponing
the onset of specific symptoms, there is currently no drug to prevent the disease or stop its
progression. The neurodegenerative disorder is currently incurable.

A clinical testing procedure, created for the evaluation of cognitive deficits, is most fre-
quently used to diagnose patients (Kelley and Petersen, 2007). A consortium (the American
Psychiatric Association) has approved disease assessment and established a detailed list of re-
quirements to be met in order to be classified as a diseased person. These criteria specifically
address memory impairment and issues with executive processes (such as making plans, orga-
nizing activities, etc.). Clinical assessments such as the Clinical Dementia Rating scale (CDR)
and Mini-Mental State Examination (MMSE) provide an accurate numerical assessment of the
course of cognitive impairment.

Once an individual is suspected of Alzheimer’s disease, brain imaging is often used to figure
out whether disease progression has already caused brain damages. In fact, magnetic resonance
imaging (MRI) or positron emission tomography (PET) data clearly show the effects of the dis-
ease on the brain (Frisoni et al., 2010; Silverman et al., 2001).

Alzheimer’s disease shows different stages of evolution: the cognitively normal stage, the
mild cognitive impairment stage (MCI) and finally dementia. The MCI phase, transitional stage
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between normal aging and the preclinical phase of dementia, causes cognitive impairments with
minimal impact on instrumental activities of daily life (Petersen et al., 1999). The evolution of
the disease through these different stages is characterized by changes in biomarkers. Clinically
speaking, neuropsychological assessments will give different results depending on the time line.
Brain atrophy, a natural result of aging that is highlighted by magnetic resonance imaging, is
displayed much more severely in AD patients (Figure 2.1). On top of that, disease evolution will
cause hypometabolism in specific brain regions. These consequences of the disease will notably
be observable with FDG-PET images which provide information about functional deficiency in
addition to the anatomical information seen with structural MRI.

Thus, a significant scientific issue is to understand how MCI develops into the demented
stage. Treatments could be started sooner to prevent the onset of symptoms and to enable
the investigation of additional clinical trials to slow down the illness development if the disease
progression was anticipated from a prodromal stage.

Additionally, family members could be better prepared for the onset of the condition. Ma-
chine learning could assist in determining whether a patient with MCI was likely to experience
full-blown AD as a result of their deficiencies. The earlier a disease is identified, the sooner it
may be treated to slow or stop its course and the onset of symptoms.

Figure 2.1: MRI imaging sequence shows decreased gray matter volume in an AD
patient(right) compared to a healthy control (left) and intermediate grey matter decline in a

patient with MCI (middle). From (Chandra et al., 2019)

2.2. MRI scans

Magnetic resonance imaging (MRI) is one of the most commonly used imaging tool in neu-
rology and neurosurgery. MRI provides exquisite details of brain, spinal cord and vascular
anatomy, and has the advantage of being able to visualize anatomy in 3 dimensions (see Figure
2.2), for example along the axial (from top to down), sagittal (from side to side) and coronal
planes (from front to back). Not to mention that MRI procedures are not invasives.
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Figure 2.2: MRI planes for MRI head scan Axial (left) Coronal (middle) Sagittal (right). MR
scanner can generate three types of orientations of human head.

From (Padmanaban et al., 2020)

MRI is based on the principle of nuclear magnetic resonance, a property exhibited by some
nuclei which absorb and emit an electromagnetic radiation when they are under the influence
of a strong magnetic field. To drive the contrast in the acquired images, the sequence used to
generate image relies on two key parameters, namely the Repetition Time (TR) and the
Time to Echo (TE).

Two important tissue properties have their two distinct relaxation times, T1 and T2, which
can be used to contrast images. The time constant T1, also known as longitudinal relaxation
time, determines the rate at which excited protons return to equilibrium. It is an indicator of
how long it takes for spinning protons to return to their energy state equilibrium and regrow
longitudinal (i.e. along the the main field) magnetization.

The time constant T2, also known as transverse relaxation time, determines the rate at
which excited protons go out of phase with each other. It is a measure of the time taken for
spinning protons to loose phase coherence thus describing the disappearance of transversal (i.e.
perpendicular the the main field) magnetization.

T1- and T2-weighted scans are the most popular MRI sequences, where the T1 and T2
characteristics of tissue are primarily responsible for determining the contrast and brightness
in these images. Short TE and long TR timings are used to create T1-weighted images. On
the other hand, relatively longer TE and shorter TR periods are used to create T2-weighted
pictures. A third kind of MRI is the Fluid-Attenuated Inversion Recovery (FLAIR) MRI. This
type of scan is a special inversion recovery sequence with a long inversion time. This removes
signal from the cerebrospinal fluid (CSF) in the resulting images. Brain tissue on FLAIR im-
ages appears similar to T2 weighted images with grey matter brighter than white matter but
CSF is dark instead of bright. The three types of scans can be observed on Figure 2.3.
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Figure 2.3: Example of magnetic resonance imaging (MRI) T1-weighted (a), T2-weighted (b)
and FLAIR (c) axial images. From (Akinyemi et al., 2015).

Among T1-weighted MRI scans we will only focus on MPRAGE (Magnetisation Prepared
Rapid Gradient Echo) images. Fast gradient echoes are characterized by their rapid sampling
time, high signal intensity and image contrast while approaching steady state (the echo is
collected during the time when tissues are experiencing T1 relaxation).
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2.3. The ADNI database

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1, launched in 2003 as a public-
private partnership, is a multisite study that aims to improve clinical trials for the prevention
and treatment of Alzheimer’s disease (AD). It unites researchers around the globe with study
data as they work to define the progression of AD. Data from MRI and PET scans, genetic
testing, cognitive assessments, CSF and blood biomarkers, and other sources are gathered, ver-
ified, and used by ADNI researchers as disease predictors. Since its launch more than a decade
ago, the landmark public-private partnership has made major contributions to AD research,
enabling the sharing of data between researchers around the world.

2.4. The Hippocampus

The hippocampus is a small, curved formation in the brain that plays an important role
in the limbic system. The hippocampus is involved in three primary functions: the forma-
tion of new memories, learning, and emotions. The hippocampus is one of the brain areas
affected by Alzheimer’s disease. In the early stages of AD, the hippocampus shows rapid loss
of its tissue, which is associated with the functional disconnection with other parts of the brain.

Figure 2.5: Coronal image of the hippocampus (red circles) in a brain

1https://adni.loni.usc.edu/
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In the progression of AD, atrophy of medial temporal and hippocampal regions are the
structural markers in magnetic resonance imaging. However, even for an expert neuroradiol-
ogist, tracing the hippocampus and measuring its volume is a time consuming and extremely
challenging task. Accordingly, the development of reliable fully-automated algorithms is of
paramount importance.
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Chapter 3

Deep Learning

The number of applications using machine learning methods has increased steadily since
its inception in the 1960s. Today, the science of machine learning affects every aspect of our
life. In fact, it plays a role in how movies are recommended to us, how credit card theft is
found, how different persons are identified in pictures, and how marketing efforts are oriented.
The field of Statistics is constantly challenged by the problems that science and industry bring
to its door. With the evolution of computers and the information age, statistical problems
have exploded both in size and complexity. Vast amounts of data are being generated in many
fields, and the statistician’s job is to make sense of it all: extract important patterns/trends,
and understand what the data is telling us. We call this “data learning” or Artificial Intelligence.

Most learning problems can be roughly categorized as either supervised or unsupervised.
Indeed, computer scientists have still not been able to create an artificial general intelligence
(AGI) totally autonomous and capable of general intelligent action including abstract learning.

On the one hand, supervised learning is a machine learning approach that is defined by its
use of labelled datasets. These datasets are designed to train or “supervise” algorithms into
classifying data or predicting outcomes accurately. Using both the labels associated to the
inputs and the outputs, the model can measure its accuracy and learn over time.

On the other hand, unsupervised learning algorithms are not provided pre-assigned labels
or scores for the training data. They must then self-discover any naturally occurring patterns
in that training data set. This new family of machine learning methods includes among others:

• Clustering, where the algorithm tries to group its training examples into categories with
similar features.

• Principal component analysis, where the algorithm finds ways to compress the training
data set by identifying which features are most useful for discriminating between different
samples.

15



3.1. Supervised Learning

As we will be dealing with labeled dataset in this work, we found ourselves in a supervised
learning context. More formally, we are looking for a function f describing the relationship
between the values of m inputs (x1, x2, ..., xm) = x ∈ X , with X being the input space, and
the value of an output variable y ∈ Y , with Y the output space, such that:

f : X −→ Y

This function f will then be exploited to predict the output of previously unseen input data.
Most machine learning problems, whether in a supervised or unsupervised context, can essen-
tially be boiled down to the minimization of a mathematical function called the loss. The loss
function will essentially quantify how much the algorithm’s predictions are wrong compared to
the ground truth provided by the training dataset.

L(f(x), y)

Indeed, during the training phase of a particular algorithm, each of its prediction for a given
sample will be compared to the actual outcome of that sample. Every mistake will eventually
be sum up in the loss function. This yields the mathematical goal of the algorithm, minimizing
that function. Every model has parameters so the minimization is done by tuning, adjusting
those parameters accordingly to reach an optimum of the loss function.

In the case of a binary classification model, a common loss function is the binary cross
entropy.

L = y · log f(x) + (1− y) · log(1− f(x)) (3.1)

3.2. Deep Learning

A subset family of machine learning methods are based on artificial neural networks. Such
networks allow computer to learn from experience and understand the world in terms of a
hierarchy of concepts, with each concept defined through its relation to simpler ones. By
gathering knowledge from experience, this approach avoids the need for human operators to
formally specify all the knowledge that the computer needs. If we draw a graph showing how
simple concepts are built on top of each other in order to enable computers to learn more
complicated concepts, the graph will be deep with many layers. For this reason, this approach
is refer to as deep learning. In this section, the different model architectures are briefly explained
from the plain vanilla multi-layer perceptron to the convolutional neural network.
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3.2.1. Multi-layer perceptron

The intuitive idea behind deep learning models is that they are engineered systems inspired
by the biological brain and therefore are intended to be computational models of biological
learning, mimicking how learning happens or could happen in the brain. The quintessential deep
learning models are calledMultilayer Perceptron (MLPs) or feedforward neural network (see
Figure 3.1). Their goal, like any supervise learning algorithm, is to approximate some function
f ∗. For example, for a classifier, y = f ∗(x) maps an input x ∈ Rd where d is the dimension
of the input to a category y ∈ ∆C where C is the number of classes. A feedforward network
defines a mapping y = f(x;w,b) and learns the value of the parameters w and b, respectfully
weights and bias, that result in the best function approximation.

Figure 3.1: Multi-Layer Perceptron 1

Each neuron has its own weights w and bias b. If we take as example a neuron i from the
first hidden layer, its value will be computed as h(i) = σ(w1,ix + b1,i) where w1,i represent a
weight vector between the previous layer (the input) and the ith neuron, b1,i represent the bias
(a scalar value) associated with the ith neuron of the first hidden layer. While σ represents the
activation function.

3.2.2. Convolutional neural network

Convolutional networks (Bengio and Lecun, 1997), also known as CNNs, are a specialized
kind of neural network for processing data that has a known grid-like topology. This means
that these neural networks are equipped with inductive biases tailored for vision. In statistics
and machine learning, inductive biases refers to the set of assumptions that the algorithm or
model uses to predict outputs. In the case of CNN, those assumptions are ones such as in-
variance to translation which can be a useful property if we care more about whether some

1Credit: François Fleuret (https://fleuret.org/dlc/
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feature is present than exactly where it is. For instance, when determining whether an image
contains a face, we do not need to know the location of the eyes with pixel-perfect accuracy.
We just need to know that there is an eye on the left side of the face and an eye on the right.
Another relevant assumption is the hierarchical compositionality which express the idea that
each images is composed of smaller patterns that could be easier to spot. For example, an ”8”
is composed of two circles, one on the bottom and one on the top.

CNNs have been tremendously successful in practical applications. The name ”convolu-
tional neural network” indicates that the network employs a mathematical operation called
convolution which is a specialized kind of linear operation (see equation 3.2) .

(x⊛ u)[i] =
w−1∑
m=0

xm+ium (3.2)

1 dimensional convolution

Consider an input signal of width W with a kernel of smaller size w. Figure 3.2 illustrate
how Convolving this input with the kernel consists in repeating a dot product between the
kernel (green) and a vector of same length (gray) extracted from the input vector.

Figure 3.2: 1-dimensional convolution 2

One can notice two main results in this operation. First, the structure of the signal is
preserved: convolving a 1D signal with a 1D kernel produces a 1D output. Second, the resulting
tensor is smaller than the input.

2Credit: François Fleuret (https://fleuret.org/dlc/
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2 dimensional convolution

We are now dealing with an input of 3 dimensions C × H ×W . This could represent a 2
dimensional input with C channels such as RGB images. It could also be a 3 dimensionnal
input with 1 channel such as medical scan. The kernels applied to this input must have C
channels has well as the input signal. The green (red) output result from the convolution of
the green (red) kernel with the input signal.

Figure 3.3: 2 dimensional Convolution Layer with two kernels 3

Convolution leverages three important ideas that can help improve the performance of a
neural network:

• Sparse representation

• Parameter sharing

• Equivariant representation

On top of that, convolution provides a means for working with inputs of variable size.
Fully connected layers use matrix multiplication by a matrix of parameters with a different

parameter describing the interaction between each input unit and each output unit. This means
that every output unit interacts with every input unit. Convolutional networks, however, typ-
ically have sparse interactions.

3Credit: François Fleuret (https://fleuret.org/dlc/

19

https://fleuret.org/dlc/


This is accomplished by making the kernel smaller than the input. For example, when
processing an image, the input image might have thousands or millions of pixels, but we can
detect small, meaningful features such as edges with kernels that occupy only tens or hundreds
of pixels. This implies that we need to store fewer parameters, which both reduces the memory
needs of the model and enhance its statistical efficiency. It also means that computing the
output requires fewer operations. These improvements in efficiency are usually quite large. If
there are m inputs and n outputs, then matrix multiplication requires m× n parameters, and
the algorithms in practise have O(m×n) runtime. By limiting the number of connections each
outputs may have to k, then the sparsely connected approach requires only k × n parameters
and O(k × n) runtime.

Parameter sharing refers to using the same parameter for more than one function in a
model. In a traditional neural net, each element of the weight matrix is used exactly once when
computing the output of a layer. In a convolutional neural net, each member of the kernel is
used at every position of the input, except perhaps some of the boundary pixels. The parameter
sharing used by the convolution operation means that rather than learning a separate set of
parameters for every location, we learn only one set.

Convolution has three additional parameters : padding, strides and dilation.

Padding

The padding which specified the size of a zeroed frame added around the input. It is useful
to control the spatial dimension of the feature map, for example to keep it constant across
layers (Figure 3.4).

Figure 3.4: Convolving a 3× 3 kernel over a 5× 5 input using half padding and unit strides 4

Strides

The stride specifies a step size when moving the kernel across the signal. It is useful to
reduce the spatial dimension of the feature map by a constant factor (Figure
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Figure 3.5: Convolving a 3× 3 kernel over a 5× 5 input using 2× 2 strides 5

Dilation

The dilation modulates the expansion of the filter without adding weights but by adding
rows and columns of zeros between coefficients. Having a dilation coefficient greater than one
increases the units receptive field size without increasing the number of parameters.

Figure 3.6: Convolving a 3× 3 kernel over a 7× 7 input with a dilation factor of 2 6

Pooling

A typical layer of convolutional network consists of three main stages :

• The layer performs several convolutions in parallel to produce a set of linear activations.

• Each linear activation is run through a nonlinear activation function, such as the rectified
linear activation function. This stage is sometimes called the detector stage.

• Finally, a pooling function is used to modify the output of the layer further.

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. For example, the max pooling (Zhou and Chellappa, 1988)
operation reports the maximum output within a rectangular neighborhood. There are other
popular pooling functions such as the average of a rectangle neighborhood or a weighted aver-
age based on the distance from the central pixel.

6Dumoulin and Visin (2016)
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Figure 3.7 shows an example of max-pooling in 1 dimension. In all cases, pooling helps
to make the representation approximately invariant to small translations of the input. Which
means that if the latter is translated by a small amount, the values of most of the pooled
outputs will not change. The use of pooling can be viewed as adding an infinitely strong prior
that the function the layer learns must be invariant to small translation. Just like the other
inductive bias, when this assumption is correct, it can greatly improve the statistical efficiency
of the network.

Figure 3.7: Example of max-pooling in 1 dimension with a kernel of size 2 7

7Credit: François Fleuret (https://fleuret.org/dlc/
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3.3. Context Attention

Natural language processing is an important sub-field of AI and has historically been tackled
with encoder-decoder based neural machine translation system. These systems used Recurrent
neural network (RNNs) to encode and decode the data. RNNs process an input sequence one
element at a time, maintaining in their hidden units a ‘state vector’ that implicitly contains
information about the history of all the past elements of the sequence.

In 2017, an article intitled ”Attention is all you need” (Vaswani et al., 2017) introduced a
new type of architecture containing only attention mechanisms : The Transformer. Their work
demonstrated that for translation tasks the Transformer could be trained significantly faster
than architectures based on recurrent or convolutional layers.

The following will explain the encoder and the decoder’s job sequentially. On a high level
the encoder maps an input sequence into an abstract continuous representation that holds all
the learned information regarding that input. The decoder then takes that continuous repre-
sentation and step by step generates a single output while also being fed the previous output.

3.3.1. The encoder

Input embedding

The first step of a transformer network is to feed our input into a word embedding layer
which can be thought of as a lookup table to grab a learned vector representation of each word.
Since neural networks learn with numbers, each word maps to a vector with continuous values
to represent that word. The dimension of the input vector is dmodel = 512.

Positional Encoding

Because a transformer encoder has no recurrence like recurrent neural networks, we must
inject some information about the relative or absolute position of the tokens in the sequence.
This is achieved by using positional encoding and adding it into the input embeddings. This
means the position embeddings vector and the input vectors must be of the same dimension.

PEpos,2i = sin
( pos

100002i/dmodel

)

PEpos,2i+1 = cos
( pos

100002i/dmodel

)
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Where pos is the position of the token in the sentence and i is the dimension index of the
encoding vector of dimension dmodel. This successfully gives the network information on the
position of each vector. The sin and cos were chosen because they have linear properties the
model can easily learn to attend to.

Figure 3.8: The Transformer

Multi-headed Attention

In the beginning of the encoder, multi-headed attention (Figure 3.9) applies a specific at-
tention mechanism called self attention which allows a model to associate each individual word
in the input to other words in the input. To achieve self attention we feed the input into three
distinct fully connected layers to create the query, key and values vectors.

The queries and keys undergoes a dot product multiplication to produce a score matrix
which determines how much focus should a word put on other words. Each word will have a
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score related for every other words. The higher the score the more the focus, this is how queries
are mapped to keys. Then the score gets scaled down by getting divided by

√
dk. This is to

allow for more stable gradients as multiplying values can have exploding effects. Next you take
the softmax of the scaled scores to get the attention weight which gives you probability values
between 0 and 1.

softmax(x)i =
exp(xi)∑
j exp(xj)

By doing the softmax the higher scores gets heightened and the lower scores are suppressed.
This allows the model to be more confident on which words to attend to. Then, the attention
weights gets multiplied by the value vector to get an output vector. The higher softmax scores
will keep the value of the words the model learned is more important. The lower scores will
drown out the irrelevant words.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

To make this multi-headed attention computation we need to split the queries, keys and
values into h vectors before applying self attention. Split vectors then goes to the same self
attention process individually. Each one is called a head. Each head produces an output vec-
tor which gets concatenate into a single vector before going through the final linear layer. In
theory, each head would learn something different therefore giving the encoder model more
representation power.

To sum it up, multi-headed attention is a module in the transformer network that computes
the attention weights for the input and produces an output vector with encoded information
on how each words should attend to all other words in the sequence.

Residual Connection, Layer Normalization & Pointwise Feed Forward

Next step, the multi-headed attention output vector is added to the original vector. This
is called a residual connection. The output of the residual connection goes through a layer
normalization before the normalized residual output gets fed into a point-wise feed-forward
network for further processing. The point-wise feed-forward networks are a couple of linear
layers with a Relu activation in between. This output is again added to the input of the feed-
forward network and further normalized.

The residual connections help the network train by allowing gradients to flow through
the network directly while the normalization layers are used to stabilize the network which
results in substantially producing the training time necessary. Finally the point-wise feed-
forward network is used to further process the attention output potentially giving it a richer
representation.
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Figure 3.9: Multi-headed attention

3.3.2. The decoder

The decoder’s job is to generate text sequences. The decoder has similar sub-layers as the
encoder : 2 multi-headed attention layers, a point-wise feed-forward layer with residual connec-
tion and layer normalization after each sub layers. The decoder ends with a linear layer that
acts like a classifier and a softmax to get the word probabilities.

The decoder is said to be autoregressive which specifies that the output variable depends
linearly on its own previous values. In this case, the decoder takes a list of previous outputs as
inputs as well as the encoder’s output that contains the attention information from the inputs.

Output embedding & positional encoding

The input goes to an embedding layer and a positional encoding layer to get positional
embeddings in the same way as the encoder.
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Masked Multi-headed attention

The positional embeddings gets fed into the first multi-headed attention layer which com-
putes the attention scores for the decoder’s input. However, the multi-headed attention layer
operates slightly differently than during the encoding process. Since the decoder is autore-
gressive and generates the sequence word by word, we need to prevent it from conditioning to
future tokens.

We need a method that prevents computing attention scores for future words, this method
is called masking. We must apply a look-ahead mask. This mask is added before calculating
the softmax and after scaling the scores. The mask consists in a matrix with the same size
as the attention scores filled with values of zeros and negative infinities. When adding this
mask to the scaled attention scores, we get a matrix of scores with the top right triangle filled
with negative infinities (see Figure 3.10). Taking the softmax of the masked scores the negative
infinities get zeroed out leaving a zero attention score for future tokens. This essentially tells
the model to put no focus on future words.

The output of the first multi headed attention is a masked output vector with information
on how the model should attend on the decoders inputs. For the second multi headed attention
layer, the encoder’s output are the queries and the keys and the first multi headed attention
layer outputs are the values. This process allows the decoder to decide which encoder’s input
is relevant to put focus on.

The output of the second multi headed attention goes through a point wise feed forward
layer for further processing. Then the output of the feed forward later goes through a final
linear layer that acts as a classifier. The classifier is as big as the number of classes we have.
For instance, if we gave 10, 000 classes for 10, 000 words, the output of that classifier will be
10, 000. The output of the classifier then gets fed into a softmax layer which produces proba-
bilities scores between 0 and 1 for each class. Taking the index of the highest probability score
and that equals our predicted word. The decoder then takes the output and adds it to the list
of decoder inputs before decoding again until an end token is predicted.

Figure 3.10: A Look-Ahead Mask turns Multi-Head Attention into Masked Multi-Head
Attention 8

8Credit : https://www.revistek.com/posts/transformer-architecture
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3.4. Vision Transformer

Since its first appearance, the Transformer has become the model of choice for natural lan-
guage processing tasks. Thanks to its computational efficiency and scalability, it has become
possible to train models of unprecedented size (Brown et al., 2020).

Naive application of self-attention to images would require that each pixel attends to every
other pixel. With quadratic cost in the number of pixels, this does not scale to realistic input
sizes. In 2020, the Google research team introduced the Vision Transformer which interpret an
image as a sequence of 16 × 16 patches and process it by a standard Transformer encoder as
used in NLP (Dosovitskiy et al., 2020).

Figure 3.11: Architecture of the Vision Transformer (Dosovitskiy et al., 2020)

Inspired by the Transformer scaling successes in NLP, their work applied a standard trans-
former directly to images, with the fewest possible changes. To do so, the image is split into
fixed-size 2 dimensional patches. The transformer uses constant latent vector size D through
all of its layers, so the patches are flattened and mapped to D dimensions with a trainable
linear projection. This output of this projection is refered to as the patch embeddings.

Positional embeddings are added to the patch embeddings to retain positional information
using a standard learnable 1 dimensional position embeddings. The resulting sequence of em-
bedding vectors is fed as an input to a standard Transformer encoder. In order to perform
classification, we use the classic approach of adding an extra learnable ”classification token” to
the sequence, whose state at the output of the transformer encoder serves as the image repre-
sentation. Let z0L be the classification token at the output of transformer encoder repeated L
times. Both during pre-training and fine-tuning, a classification head is attached to z0L. This
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classification head is implemented by a MLP with one hidden layer at pre-training time and by
a single linear layer at fine-tuning time.

Just like the one described in subsection 3.3.1, the transformer encoder in ViT consists of
alternating layers of multihead self attention and MLP blocks. Layer normalization is applied
before every block, and residual connections after each block. The MLP contains two layers
with a GELU activation function.
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3.5. Related Work

3.5.1. Classical Machine Learning

One of the most popular machine learning algorithms used in the neuroimaging field is the
Support Vector Machines (SVM) (Hearst et al., 1998). For a binary classifier, SVM will map
training examples to points in space so as to maximise the width of the gap between the two
categories. Indeed, this intuitive method has proven to be very useful when dealing with prob-
lems with high dimension and small sample. The Random Forests method (Breiman, 2001) is
another technique renowned for its state-of-the-art results on machine learning problems with
huge dimension-sample ratios and has also provided good results (Wehenkel et al., 2018).

(a) SVM (b) Random Forest

Figure 3.12: Machine learning in neuroimaging (Yin et al., 2020)

Decision Tree is one of the most powerful and popular tool for classification and prediction.
A Decision tree is a flowchart-like tree structure, where each internal node denotes a test on
an feature, each branch represents an outcome of the test, and each leaf node, called terminal
node, holds a class label. Random forest, like its name implies, consists of a large number of
individual decision trees that operate as an ensemble. Each individual tree in the random forest
spits out a class prediction and the class with the most votes becomes our model’s prediction.
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A classification framework can consist of other elements in addition to the classification
algorithm as an entity:

• feature extraction

• feature selection

• dimensionality reduction

Classical methods based on feature vectors directly extracted from the neuroimages are
called voxel-as-feature (VAF) based methods. Due to the large number of brain voxels recov-
ered from a single neuroimage (between 50, 000 and 300, 000 features) and the small number of
samples (from 50 to a few hundreds), classifiers based on neuroimages frequently require one
or more feature reduction approaches. Since there are so few instances and numerous potential
explanatory variables, a machine learning system will find it challenging, as efficient as it could
be, to reliably identify highly discriminative features. For MRI images, there is no point in
working directly with voxels and thus feature extraction is necessary. For instance, information
about regional volumes and shapes or tissue densities can be computed from the MRI. Brain
atrophy is thus estimated with density maps of grey matter, which are provided by voxel-based
morphometry methods (Ashburner and Friston, 2000). Classifiers can thus be learnt either
using the map as a whole or by performing feature selection.

To avoid a feature selection procedure, some works directly select brain regions which were
identified in previous literature as relevant for the disease, like the hippocampus for Alzheimer
disease. However, this prevents the discovery of new regions of interest. We may categorize
feature selection procedures into three main groups : the wrapper methods, the filter methods
and the embedded methods.

Wrapper methods require a lot of computer power because they calculate classifier accuracy
for all possible (or many) feature subsets. With the quantity of variables in neuroimaging data,
this is not feasible. Filter methods can immediately highlight features that have no connec-
tion to the output by using a correlation criterion or another equivalent measure. Embedded
methods include in their machine learning algorithm a feature selection process, like LASSO
or CART decision tree (Tibshirani, 2011; Leo Breiman, 1984).

Some unsupervised learning techniques are sometimes used in machine learning with neu-
roimaging such as Principle component analysis or partial least square. However these feature
reduction methods reduce the interpretability of the classifier.
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3.5.2. Deep Learning

Deep learning has lately gained popularity and proven to be an effective technique in the
field of medical imaging, thanks to the quick advancement of computer science and the accu-
mulation of clinical data. The general applications of deep learning in medical imaging are
mainly feature extraction, image classification, object detection, segmentation and registration
(Litjens et al., 2017).

Several deep learning approaches have recently been proposed as diagnostic aids for Alzheimer’s
disease, assisting doctors in making informed medical decision. A simple search for ”Alzheimer’s
disease” and ”deep learning” on the website PubMed9, which is a free resource supporting the
search and retrieval of biomedical and life sciences, tells us that an approximate 667 different
papers have been release with those keywords (See Figure 3.13).

Figure 3.13: Evolution of articles involving ”Alzheimer’s disease” and ”Deep learning” on
PubMed along the years.

In the rest of this section we present a subset of the studies that are closely related to this
work. The articles discussed are listed along with their respective method and accuracy on Ta-
ble 3.1 Those studies operated on several databases, some of them with different annotations.
In the following, Normal control (NC) and healthy control (HC) both refers to a patient not
suffering from dementia.

Lu et al. (2018) proposed a novel multimodal deep neural network with a multistage tech-
nique to identify people with dementia. This method provides 82.4% accuracy in Mild Cognitive
Impairment (MCI) prediction and those patients later exposed to Alzheimer’s disease in three

9https://www.ncbi.nlm.nih.gov/
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years. The model achieves a sensitivity of 94.23 % for the Alzheimer’s disease class and an
accuracy of 86.3 % for the non-demented class.

Gupta et al. (2019) proposed a diagnosis method for the classification of AD using the ADNI
and National Research Center for Dementia (NRCD) dataset by combined features from corti-
cal, subcortical, and hippocampus region from MRI images which achieve the better accuracy
of 96.42% for classification of AD vs Healthy Control (HC).

Ahmed et al. (2019) proposed the ensemble CNN model for feature extractor and SoftMax
classifier to diagnose AD diagnosis. This model prevents overfitting and achieves an accuracy
of 90.05% by using the left and right hippocampus area in MRI images.

Basher et al. (2021) came up with a method to localize the target regions from large MRI
volume to automate the process. Based on the left and right hippocampi, the method achieves
the accuracies of 94.82% and 94.02%.

Nawaz et al. (2020) presented a pretrained Alexnet model to classify the stages of AD to
address the class imbalance model. The pretrained model is used as the feature extractor and
classified using Support Vector Machine (SVM), K-nearest neighbour (KNN) and Random For-
est (RF) with the highest accuracy of 99.21%.

Ieracitano et al. (2018) propose a data-driven method for distinguishing subjects with AD,
MCI, and HC by analyzing non-invasive recordings of EEG. The Power Spectral Density of the
EEG traces of 19 channels reflects their corresponding spectral profiles in 2D Grayscale images.
Then the CNN model is used to classify the binary class and multiclass from the 2D images
with an accuracy of 89.8% and 83.3%, respectively.

Jain et al. (2019) uses a pretrained VGG16 model for feature extraction, which uses a
FreeSurfer for pre-processing, selecting MRI slices using Entropy and classification using trans-
fer learning named PFSECTL mathematical model. The researchers were able to achieve
95.73% accuracy for classifying Normal Control (NC), Early MCI (EMCI), and Late MCI
(LMCI) using the ADNI database.

Mehmood et al. (2021) uses tissue segmentation to extract Grey Matter (GM) from each
subject. The model attains the classification accuracy of 98.73% for AD vs NC and 83.72% for
EMCI vs LMCI patients.

Shi et al. (2018) proposed deep polynomial network which performs well for both small and
large dataset to diagnose AD. The model achieves an accuracy of 55.34% for both binary and
multi-classification using the ADNI dataset.

Liu et al. (2019) proposed Siamese neural networks to investigate the discriminative capac-
ity of whole-brain volumetric asymmetry. The team used the MRI Cloud process to create
low-dimensional volumetric features for pre-defined atlas brain structures, as well as a unique
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non-linear kernel method to normalize features and eliminate batch effects across datasets and
populations. The networks achieve a balanced accuracy of 92.72% for the classification of MCI
and AD using the ADNI dataset.

Wang et al. (2019) presented AD and MCI using a 3D ensemble model convolutional net-
works. 3D-DenseNets optimized by using a probability-based fusion approach. The model
achieves the classification accuracy of 97.52% using the ADNI dataset.

K et al. (2019) uses the grey wolf optimization technique with a decision tree, KNN, and
CNN model to diagnose AD and achieve a 96.23 % accuracy.

Janghel and Rathore (2021) proposed a pretrained VGG16 to extract the features of AD
from the ADNI database. For classification, they used SVM, Linear Discriminate, K means
clustering and decision tree algorithm. They reach a 99.95% accuracy in functional MRI images
and an average accuracy of 73.46 % for the PET images.

Ge et al. (2019) proposed a 3D multiscale deep learning architecture to learn AD features.
On a subject segregated random brain scan-partitioned dataset, the system achieved a test
accuracy of about 93.53%, with an average accuracy of 87.24 %.

Bi and Wang (2019) presented a Spike Convolutional Deep Boltzmann Machine model for
early AD detection with hybrid feature maps and a multi-task learning technique to prevent
overfitting. Sarraf et al. (2016) presented a deep learning pipeline where the CNN model is
trained with many training images to perform feature classification on the scale and shift-
invariant processes. The model achieves 94.32% and 97.88% for functional MRI and MRI
images.

Afzal et al. (2019) address the class imbalance problem in detection of AD by data aug-
mentation framework and achieves the classification accuracy of 98.41% in a single view and
95.11% in 3D view of OASIS dataset.
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Table 3.1: Overview of the literature survey

Ref Method Classes Accuracy
(%)

(Lu et al., 2018)
Multiscale

deep learning
Binary class
(AD vs HC)

82.4

(Gupta et al., 2019)
Combined feature

technique
Binary class
(AD vs HC)

96.42

(Ahmed et al., 2019) Ensemble model
Binary class
(AD vs HC)

94.03

(Ieracitano et al., 2018) 2D CNN
Binary class
(AD vs HC)

89.08

(Jain et al., 2019) CNN
Three class

(NC, EMCI, LMCI)
95.73

(Mehmood et al., 2021) Transfer Learning
Binary class
(AD vs HC)

98.73

(Shi et al., 2018)
Deep polynomial

network
Binary class
(AD vs HC)

55.34

(Liu et al., 2019) Siamese network
Binary class
(MCI vs AD)

94.03

(Wang et al., 2019) 3D CNN
Binary class
(AD vs HC)

89.08

(Ge et al., 2019) 3D CNN
Binary class
(AD vs HC)

98.73

(Afzal et al., 2019) 3D View model
Binary class
(AD vs HC)

55.34
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Chapter 4

Methodology

This chapter consists in analysing and detailing the different steps undertaken empirically
for this work. First we will talk about the preprocessing pipeline and how an MRI file straight
out of ADNI is transformed in order to fit as an input for our networks. Then, we will introduce
those networks : A small CNN, a large CNN and a Vision Transformer. We will describe their
architecture as well as their implementation 1.

4.1. Preprocessing

Data preprocessing transforms the data into a format that can be processed in data mining,
machine learning, and other data science tasks more quickly and efficiently. To ensure reliable
findings, the techniques are typically applied at the very beginning of the machine learning and
AI development pipeline.

The most effective way to display data for machine learning and deep learning algorithms is
to highlight the key information needed to solve a problem. Data transformation, data reduc-
tion, feature selection, and feature scaling techniques used in feature engineering help reorganize
raw data into a format suitable for specific kinds of algorithms. This can considerably lower
the processing power and time needed to train a new machine learning algorithm or perform
an inference against it.

Table 4.1: Demographic details of my own ADNI dataset (µ is for mean and σ
is for standard deviation)

Sex Age

Diagnosis # M F µ σ Range

Alzheimer Disease (AD) 322 163 159 75.62 7.84 55− 91
Cognitively Normal (CN) 616 301 315 78.28 4.86 70− 94
Mild cognitive impairment (MCI) 589 402 186 75.73 7.51 56− 90

1All the codes produced for this work are available in this Github
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For this work, the data that will be exploited will consist in only T1-weighted MP-RAGE
MRI scans of men and women of different diagnosis. Table 4.1 contains all the data used for
this work. Looking closely at this table, one can realize that it does not necessarily represent a
good sample of a population. For instance several studies found that women were more likely
to develop any dementia as well as Alzheimer disease (Beam et al., 2018). This pattern is
consistent with women’s survival to older ages compared to men. However, table 4.1 displays a
larger number of men both in Alzheimer diagnosis and in mild cognitive impairment. Another
important risk factor for Alzheimer’s disease is advanced age (Guerreiro and Bras, 2015). Once
again our sample does not reflect this correlation since cognitively unimpaired patients are older
in this case. This will, however, not impact our inference models since none of those pieces of
information are fed into them, only the MRI scan is relevant.

As described in section 2, MCI is an heterogeneous group and it can be furthermore classified
according to its various clinical outcomes. In this work, we decided to partition MCI into two
categories : progressive MCI (pMCI) and stable MCI (sMCI). Those groups are retrospective
diagnostic terms based on the clinical follow-up according to the DSM-5 criteria (American
Psychiatric Association, 2013). The term pMCI, refers to MCI patients who develop dementia
in a 36-month follow-up, while sMCI is assigned to MCI patients who do not convert to a
dementia stage. Distinguishing between pMCI and sMCI plays an important role in the early
diagnosis of dementia, which can assist clinicians in proposing effective therapeutic interventions
for the disease process. Figure 4.1 shows the number of patients at each follow up visit collected
by ADNI.

Figure 4.1: Participant visit distribution of MCI patients from ADNI

During each of the processing phase, one has to realize that every choice made will eventually
result in a loss of information relative to the original raw data. It is the practitioner’s job
to evaluate the benefit risk balance of abandoning some information, which according to his
hypothesis might be of few relevance, in order to save computing power, resources and time.
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All the medical images for this work were downloaded in the NIfTI format (Neuroimaging
Informatics Technology Initiative). 2 SimpleITK was used for transforming the .nii images
provided by ADNI into numpy arrays. In order to understand the data preparation steps, let
us follow patient number 24602 throughout his preprocessing pipeline.

Figure 4.2: Sagittal view of an ADNI patient
Original size : (256, 256, 180) voxels

This image has a resolution of (256, 256, 180) This means it has 65, 536 voxels for each one
of the 180 sagittal slices, cf. Figure 4.2, and a total input of 11, 796, 480 pixels for this single
image. This is of course way too big to be digested by a neural network.

The original neuroimages downloaded from ADNI were in wildly different shape but fell into
the same order of magnitude as Figure 4.2. The main goal of condensing information along the
preprocessing step was to resize the images in order for them to be inputs for our networks.
Both networks, either CNN based or transformer based, will have a small and a little instance.

4.1.1. Spatial normalization

The goal of the spatial normalization preprocessing phase is to make the spatial structure
of each image in the collection as similar as possible. The original ADNI scans had a wide
range of shapes, and several sets from the database had been preprocessed earlier using various
methods. Images had to be resampled to a standard isotropic resolution as a result.

Thus, in a first step, images were resampled to an isotropic resolution of 1 mm, meaning
that every voxel would represent 1 mm3 of space in the “real” world. Human brains differ in size

2https://nifti.nimh.nih.gov/
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and shape, and one of the main goal of spatial normalization is to deform human brain scans
so one location in one subject’s brain scan corresponds to approximately the same location in
another subject’s brain scan.

(a) Voxel size = 1mm (b) Voxel size = 2mm

Figure 4.3: Sagittal cut of a resampled MRI for different isotropic spacing
Grid sizes : (a) (240, 240, 216) and (b) (120, 120, 108)

On Figure 4.3 the patient have been resampled with two different isotropic sizes. In terms
of content, one can see the the brains looks exactly the same. However, the 2 mm resampling
has a resolution half as good as the 1 mm. Meaning that relevant information might have been
lost. The upside of having a stronger resampling size resides in the size of the image. Indeed,
Figure 4.3 (b) is twice smaller than Figure 4.3 (a). The resampling were done with the sitk

tool from the SimpleITK library, an open-source multi-dimensional image analysis in Python.
This data processing step was carried out in almost every work when dealing with neuroimages.
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4.1.2. Skull-stripping

After spatial normalization, a skull-stripping step has been carried out to remove from the
images anything outside the intracranial volume and keep only the relevant brain information
to help us with the diagnosis. Skull stripping is the most important preprocessing step as it
defines which voxels will be available for further processing.

Finding the right value for the primary hyper-parameter, the fractional intensity threshold,
was crucial in this situation. In essence, this hyper-parameter assesses how aggressively the
algorithm removes visual elements that do not correspond to brain tissue. A very small value
would leave some irrelevant information in the image making the segmented brain larger, while
a very big value would remove some brain tissue and make the segmented brain smaller.

Finding the perfect fractional intensity threshold for the whole dataset would not be possible
because not all MRI data is acquired and preprocessed in the same manner before being put in
the ADNI database. At the same time, keeping things straightforward was important to this
endeavor. This threshold must lie between 0 and 1 and thus 10 values between that interval
were considered. Each sample were then displayed as a sagittal view of the middle plane in
order to visually assess the skull stripping performance. The threshold of 0.5 was chosen since
it was able to maintain the right balance for the majority of MRI. On top of that, this value
was advocated by the the FSL BET (Smith, 2002) community. Figure 4.4 show the performance
of the skull stripping method on patient 24602.

Figure 4.4: Sagittal cut of a skull-stripped image of a 2mm isotropic resampled MRI scan.
Size : (120, 120, 108)

the FSL BET tools implemented into Python by the Nipype (Gorgolewski K, 2011) (Neu-
roimaging in Python Pipelines and Interfaces) library were used. Although FSL BET by itself

40



works as a command line tool for UNIX systems, Nipype methods allow to execute it from a
Python environment.

4.1.3. Cropping or padding

Finally, the last step is to make the size of the image ’digestible’ for our neural networks.
From Figure 4.4 one can still observe a big part of masked out image which is obviously irrelevant
for the diagnosis of patient 24602. This part was carried out by sequentially performing two
transformations: trimming then cropping or padding.

Trimming consists in finding the best fitting 3-dimensional bounding box that contains the
whole brain while being the most compact. A trim function was implemented with two argu-
ments : The original image and a mask to apply on it. Since the values of black pixels are null
the mask was set to be different than 0.

From that point on, we will need to crop or pad the result into a fixed dimension size
depending on the network. The big networks take as input images of sizes (128, 128, 96) while
the small networks will deal with (96, 96, 48).

Figure 4.5: Sagittal cut of a cropped image from a 2mm isotropic resampled MRI scan.
Final size : (96, 96, 48)

From Figure 4.5, one can see that the information is much more condensed comparing to
Figure 4.2.
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4.1.4. Intensity normalization

This final preprocessing phase was optional and its effect on performance will be studied
and discussed during the results. The pixels in the neuroimages have a lot of different values
ranging from 0 to 255. Several packages propose various methods to normalize the intensity
of several modalities of magnetic resonance images whether it is T1-weighted, T2-weighted, or
FLAIR. Among those individual normalization processes we find the fuzzy C-means (FCM)
tissue-based normalization method 3.

FCM-based normalization uses fuzzy c-means to calculate a white matter (WM) mask of
the image I. This WM mask is then used to normalize the entire image to the mean of the
WM. The procedure is as follows : Let W ⊂ B be the WM mask for the image I, i.e., W is the
set of indices corresponding to the location of the WM in the image I. Then the WM mean is
µfcm = 1

|W |
∑

w∈W I(w) and the FCM-based normalized image is

Ifcm(x) =
c1 · I(x)
µfcm

(4.1)

where c1 ∈ R>0 is a constant that determines the WM mean after normalization. In this
experiment, we use three-class fuzzy c-means to get a segmentation of the WM over the brain
mask B for the T1-w image and we arbitrarily set c1 = 1 (Reinhold et al., 2019).

4.2. Datasets

For the rest of this work, we will be dealing with three distinct datasets, each of them being
differently preprocessed. In order not to be confused for the following we will assign names to
each one.

• HighRes Full will correspond to a 1 mm isotropic resampled dataset of MRI scans con-
taining the entire skull-stripped brain (size : (128, 128, 96)).

• HighRes ROI will correspond to a 1 mm isotropic resampled dataset of MRI scans cropped
to a Region Of Interest focus on the Hippocampus (size : (96, 96, 48)).

• LowRes will correspond to a 2 mm isotropic resampled dataset of MRI scans containing
the entire skull-striped brain (size : (128, 128, 96)).

3https://github.com/jcreinhold/intensity-normalization
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In order to obtain the HighRes ROI dataset, the images were trimmed and then cropped,
just like explained in subsection 4.1.3. The cropping resulted in a 3 dimensional centered cube
of the brain images. On Figure 4.6, one can clearly notice the hippocampus (see section 2.4 for
a comparison).

Figure 4.6: Coronal image of the Region of interest (red rectangle) focus on the Hippocampus

In every datasets, one can find ’AD, ’CN’ and ’MCI’ samples directly from the labels of
ADNI. the ’MCI’ images were then subdivided into two groups : progressive and stable like
explained during section 4.1. This will enable a third classification task during experiments.
There were 108 pMCI and 481 sMCI which means this classification will be the most imbalanced
of the entire work.
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4.3. Architectures and implementation details

At this point, the images are up and ready to be given as inputs into our networks. On
the one hand, the big networks will be dealing with images of size (128, 128, 96) from HighRes
Full. On the other hand, the small networks will perform on inputs of size (96, 96, 48). Those
images can either be a from the HighRes Roi or the LowRes dataset.

Before going into the networks, all the input images will be standardized. Meaning con-
stant of normalization such as the means and the standard deviation were computed on the
training dataset and will be used to normalized each image. Indeed, computing the means and
standard deviation across the entire dataset would have produce over-optimistic results. Let p
be a random pixel from an image, µp be the mean value of this pixel along all the images in
the training set and σp be its standard deviation. The standardized pixel p∗ would have the
value :

p∗ =
p− µp

σp

(4.2)

All the networks described here under were implemented using the PyTorch library (Paszke
et al., 2017). The training procedures were carried out on the Alan GPU cluster at the Uni-
versity of Liège using several GPUs and CPUs.

4.3.1. CNN based models

This first network will take as input a full brain MRI scan which has been resampled to an
isotropic size of 1 mm. To accelerate the training process and to avoid local minima, we used
an ADAM optimizer (Kingma and Ba, 2014) to train.

Figure 4.7 displays the big Convolutionnal neural network dealing with MRI scans of shape
(128, 128, 96). Each block consists of a sequence of convolutional layers which are followed by a
max-pooling layer. The same kernel size (3× 3× 3) is applied over all convolutional layers. We
also used a padding size of 1 to keep the size of the output after each convolutional layer. A max-
pooling of size (2×2×2) with strides of 2 is also applied to halve the resolution after each block.

BigCNN is composed of 8 convolutional layers, 5 max-pooling layers, and 4 fully connected
layers. Therefore, the number of layers having tunable parameters is 12 (8 convolutional layers
and 4 fully connected layers). The number of filters in the first block is 32, then this number is
doubled in the later blocks until it reaches 512. This model is finished by four fully connected
hidden layers and one output layer. The four fully connected layers go from 12288 to 10 grad-
ually. The output layer consists of 1 neuron since this is a binary classification.
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Figure 4.7: Convolutionnal Neural Network for a full brain scan

The last output neuron should represent the probability of the input being an MRI scan of
an AD patient. However in this case the number in the last output neuron is not a probability
lying between 0 and 1 but a logit. This decision was made in order to use the Binary Cross
entropy with logit loss function from torch 4 which is a version more numerically stable than
using a plain Sigmoid followed by a BCELoss. Since the operations are combined into one layer,
the implementation take advantage of the log-sum-exp trick for numerical stability.

Figure 4.8 displays the smaller convolutional neural network. Another difference between
them is the initial size of the output dimension of the convolution. In Figure 4.7 it is set at 32
while in Figure 4.8 it is set at 16.

4https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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Figure 4.8: Small Convolutionnal Neural Network

4.3.2. Transformer based model

After the success of the Vision Transformer (ViT) in computer vision tasks (Dosovitskiy
et al., 2020), such as demonstrating state of the art performance in image classification by large
scale pre-training and fine tuning of a pure transformer, transformer based models have gained
traction outside of the NLP framework.

The implementation we propose is inspired by the UNETR (Hatamizadeh et al., 2021), A
vision transformer capable of dealing with 3 dimensional images such as MRI scans (see Figure
4.9). Their model was used for semantic segmentation of volumetric medical images. The
transformer encoder was proposed to increase the model’s capability for learning long-range
dependencies and effectively capturing global contextual representation at multiple scales.

Just like in natural language processing, the transformer operate on 1 dimensional sequence
of input embeddings. Similarly, we create a 1 dimensional sequence of a 3 dimensional input
volume by dividing it into flattened uniform non-overlapping cubic patches. Subsequently, we
use a linear layer to project the patches into a K dimensional embedding space, which remains
constant throughout the transformer layers. In order to preserve the spatial information of the
extracted patches, a 1 dimensional learning is added to the projected patch embedding.

46



Figure 4.9: Architecture of the UNETR

In this instance, the 3D patches resolution is (16, 16, 16) and the embedding size K is set
to 768. The dimension of the feedforward layer is 3072 and there are a total of 12 attention
heads. Only the input dimensions will change from the large ViT to the small ViT, the patch
sizes will remain the same.
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Chapter 5

Experiments

The generalization performance of a learning method relates to its prediction capability on
independent unseen data. Assessment of this performance is extremely important in practise,
since it guides the choice of learning method or model and gives us a qualitative measure of
the ultimately chosen model. On top of that, a protocol must be carefully established in order
to ensure the performances are relevant. In this chapter, protocol and evaluation metrics are
discussed before reporting and discussing the final results.

5.1. Protocol

Any machine learning procedure will require tuning of hyperparameters. This tuning must
be carefully undertaken in order not to ”cheat” and therefore bias the results. The protocol for
this work will follow the standard training - validation - test framework (Figure 5.1).

Figure 5.1: Classical machine learning protocol

The dataset for each classification will be separated into three parts : Training (70%), vali-
dation (15%) and Testing (15%). Across those three distinct datasets, each class will have the
same proportion. Figure 2.4 informs us that there are roughly twice as much healthy patients
(CN) than patient with Alzheimer’s disease (AD). This means that each dataset will contain
this ratio. To tackle the issue of unbalanced classification we add a weight w to the loss func-
tion, therefore penalizing more the error made on the minority class. Equation 3.1 from section
3 then becomes:

L = w · y · log f(x) + (1− y) · log(1− f(x)) (5.1)
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The value of the weight w is initialized as the ratio between the two class. This means a
prediction of 0 made by the model of a sample labeled 1 will be twice as penalized. This will
be also enforce on the other classifications depending on the ratio between the majority and
minority class.

To better visualize and capture the effects of hyperparameters, the training loss and the
validation loss will be plotted side by side. When overfitting starts to occur, i.e. when the model
becomes too familiar with training data and therefore is doing a worst job at generalizing, the
model is saved. The latter will then perform on the testing set and the final evaluation metric
will be reported.

5.2. Evaluation metrics

Let us denote P the total number of samples belonging to the positive class and N the
total number of samples belonging to the negative class, TP the total number of true positives
detected by the method and TN the total number of true negatives detected by the method.
Results of a classification method can be summarized in a contingency table, or confusion ma-
trix (see Table 5.1).

Table 5.1: Confusion Matrix

Predicted Class

Actual Class Positive Negative Total
Positive True Positive False Negative P
Negative False Positive True Negative N

From those values one can derivate numerous ratios and metrics each evaluating in a dif-
ferent way a classification model performance. The first one will be the accuracy which is the
rate of samples that have been correctly classified, i.e.

Accuracy =
TP + TN

P + N

While the accuracy might be the most intuitive evaluation metric anyone can think of, in
a context of an unbalanced dataset it could be misleading. Consider a case where the model
always predicts 0, the accuracy will be of the proportion of negative samples (in our case 66%).
We may have to look for different metrics in that case. The precision is the proportion of
positive samples correctly classified among all the samples that have been classified as positive.
The recall (also called true positive rate or sensitivity) is the rate of positive samples that
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have been correctly classified while the specificity (or true negative rate) is the rate of negative
samples that have been correctly classified.

Recall =
TP

P
=

TP

TP + FN

Specificity =
TN

N
=

TN

TN + FP

Precision =
TP

TP + FP

Each of those metrics have their advantages and disadvantages. Determining our goals,
in terms of which error metric to use, is a necessary first step because our error metric will
guide all our future actions and decisions. Those metrics will all tell a different story about the
performance of our model when taken individually, perhaps we need them to work in pairs.

5.2.1. Receiver Operating Characteristic

The receiver operating characteristic curve (ROC) is a commonly used summary for assess-
ing the tradeoff between sensitivity and specificity. It is a plot of the sensitivity versus the
false positive rate (1 - specificity) as we vary the parameters of a classification rule. In our case
the parameter will be the classification treshold. The overall assessment of the model is then
carried out by calculating the area under the curve (AUC).

Similarly to the accuracy, the ROC curve is usually more relevant when dealing with bal-
anced dataset. Another curve which is mostly used in imbalanced framework and particularly
in medical context classification, meaning the positive label refers to an illness or disease, is the
precision-recall curve (PR-curve).

To evaluate our networks, we will use three different metrics specifically chosen to entirely
grasp the performance as relevant as possible. The first one will be the accuracy and the second
one will be the area under a precision recall curve. Given that the former is a straightforward
ratio and the latter is a closer look at the positive predictions we would like to have some
information about the negative prediction as well. The third metric will then be the specificity.

1Sofaer, H.R., Hoeting, J.A. Jarnevich, C.S. (2019)
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Figure 5.2: Comparison between the ROC and the Precision-Recall Curve 1

5.2.2. Hyperparameters tuning

Every deep learning models come with several hyperparameters that control many aspects
of the algorithm’s behavior. Some of these hyperparameters affect the time and memory cost of
running the algorithm. Some of these hyperparameters affect the quality of the model recovered
by the training process and its ability to infer correct results when deployed on new inputs.
Several tuning tools are available in deep learning libraries in order to visualize and quantify
the effect of hyperparameters whether together or individually. In this work the tensorboard
visualization kit implemented by tensorflow was used 2.

Each hyperparameter were chosen according to the framework described in section 5.1.
Meaning their respective tuning were done in order to stabilize and optimize the performance
in the training and validation process only. The first one is the batch size, i.e. the size of
each batch of data going through the network during the training process before readjusting
the weights with gradient descent. In this work, it was important to have large batches for
two reasons. First, the training loss had a more stable convergence with a lower computing
time and cost. Second, while larger batches might raise problems in generalizing to new data,
in this case the generalization was actually improved in regards to smaller batches. A final
key point concerning batch size is the fact that they must be as close as a whole divisor of
the training set size for them to be equal along the entire training set. If not, this will cause
problems by assigning a greater influence on the last smaller batch and possibly damage the
learning process. Depending on the classifications the batch size were between 85 and 103.

2https://www.tensorflow.org/tensorboard/
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The next hyperparameter is the learning rate γ. An improper learning rate, whether too
high or too low, will result in a model with low effective capacity. Maintaining the same learn-
ing rate during the entire training process did not stabilize well. In order to take advantage of
a relatively large γ in the start of the training and smaller ones at the end, we used scheduling
to avoid sudden jumps if a local minima is reached. A scheduler is able to anneal the learning
rate over time in different manners. In our case, the step decay method was used meaning γ
was reduced by some constant factor every few steps. After considerations, the learning rate
was initialized at 10−4 and is reduced by half every 100 steps. Note that the step in this case
do not correspond the the epochs but the total number of batches that went into the network.

For the convolutionnal networks, an important hyperparameter is the kernel width. In-
creasing the kernel size increases the number of parameters in the model therefore its capacity.
However a wider kernel causes a narrower output dimension, which will in contrast reduce model
capacity unless we use implicit zero padding to reduce this effect. Wider kernel require more
memory for parameter storage and increase runtime, but a narrower output reduces memory
cost. As explained during subsection 4.3.1, the kernel is of size (3 × 3 × 3) which is often a
popular choice among practitioner.

5.3. Results and discussion

On Figure 5.4 is plotted the evolution of the loss value for the training and the validation set
in respect to the steps. Indeed, the training loss is plotted after each batch while the validation
loss after each epoch. We notice a nice convergence in regards to the training loss as well as for
the validation. The accuracy and the specificity are expressed in % while the AUCpr simply
represents an area between 0 and 13. During the discussions, we will refer ’AD’ and ’pMCI’ as
the true samples given that they represent the worst case of the disease and they belong to the
minority class. While ’CN’, ’MCI’ and ’sMCI’ will be refered to as false samples.

As a baseline comparison we tested the 3D CNN model of Huang et al. (2019) on our
unpreprocessed data 4. This model was chosen because they also focused on a Hippocampus
ROI with ADNI data, their model contained 3D CNN and finally they were one of the few to
test pMCI vs sMCI.

Table 5.2: Overall Results on MRI scans from the LowRes dataset

AD vs CN AD vs MCI pMCI vs sMCI

acc AUCpr spec acc AUCpr spec acc AUCpr spec

Huang et al. (2019) 87.32 86.27 92.16 80.29 75.85 84.62 82.02 51.16 86.84

3will be multiplied by 100 for convenience
4Since they were dealing with ROI, the only difference was that they did not work with intensity normalized

images (see section 4.1.4)
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Table 5.3: Overall Results on MRI scans from the HighRes database

AD vs CN AD vs MCI

acc AUCpr spec acc AUCpr spec

ROI 94.53 98.08 95.4 85.27 89.83 82.80
3D CNN

Full Brain 87.86 92.94 90 85.29 87.52 88.50

ROI 79.69 68.28 85.71 71.87 60.24 89.41
Vision Transformer

Full Brain 75.54 68.69 76.59 74.26 63.30 81.82

Baseline versus our work

Our preprocessing as well as our custom 3D CNN seem to have better results than the
baseline in general in identifying AD using a region of interest. For the first classification (AD
vs CN) our model scored 94.53 in accuracy compared to 87.32 for the baseline. On Figure 5.3
there is the evolution of the validation accuracy for this classification, not to be mistaken with
the testing accuracy listed in the tables. It also important to notice that the AUCpr is more
than 10 points higher meaning our model is very good as distinguishing samples with dementia.
The last metric also shows that healthy patients were well classified in both case with a slight
advantage for our model (92.16 for them and 95.4 for us).

Figure 5.3: Evolution of the validation accuracy for the 3D CNN on the HighRes Roi database

Looking at the second classification (AD vs MCI) we also see stronger results both in accu-
racy and AUCpr in our benefit, 85.27 versus 80.29 in accuracy and 89.83 versus 75.85 in AUCpr.
Their model achieved a higher specificity (84.62) than ours (82.8). This could come from the
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fact that they do not use a weight for positive samples (minority class) in their loss function
which could explain why we have better prediction concerning true samples (with AUCpr) but
we have similar or sometimes worse predictions concerning false samples. The precision-recall
curves for the first two classifications can be observed on Figure 5.5.

Table 5.4: Results for the third classification for the HighRes
dataset

pMCI vs sMCI

acc AUCpr spec

ROI 85.39 70.80 97.06
3D CNN

Full Brain 75 53.27 98.48

ROI 82.02 41.19 95.83
Vision Transformer

Full Brain 87.34 47.25 95.31

Finally for the third classification (Table 5.4), we are glad to see that our CNN model
performs better in accuracy (85.39 against 82.02) in AUCpr (70.80 against 51.16) and in speci-
ficity (97.06 against 86.84). The rest of the results are not very good for one main reason :
the AUCpr. Indeed, one might believe that the performance of the vision transformer and the
CNN on the HighRes ROI database are more or less similar (only a 3% difference between
the accuracies and less than 2% difference between specificity) however the AUCpr drops from
70.80 for CNNs to 41.19 for ViT. This means the ViT is doing a very bad job at identifying
true samples. In fact, when given a true sample, the ViT will be more wrong then right. When
taking a closer look at the test results we see that out of the 88 samples used to test the model,
17 were pMCI. Only 4 of them were correctly classified. This is the main reason why AUCpr

is a very important metric when dealing with relevant minority class. The ROC curve, which
covers both classes, would have told a completely different story.

HighRes versus LowRes

On Table 5.5 are displayed the performance of the models on LowRes dataset. The effect on
the metrics are clear. Indeed, resampling to a lower resolution implied loosing perhaps relevant
information on the MRI scans. If we must compare them to Table 5.3, one must keep in mind
that the LowRes dataset contains whole brain scan of dimensions (96, 96, 48). We will then
compare them to Full brain results of HighRes.
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Figure 5.4: Evolution of the loss curve for the training (blue) and validation (orange) of the
CNN on the HighRes Full brain dataset

The classification of AD vs MCI was really affected by the stronger resampling. Dropping
from 87.52 to 61.38 in AUCpr and 85.29 to 71.53 in accuracy. It is important to notice that
the metrics concerning the AD vs CN classification are not far from each other. It could be
interesting to also crop a region of interest focus on the hippocampus for this dataset. The
data will be way smaller and therefore we might need less parameters and computing power to
achieve similar results as Table 5.3.

Table 5.5: Overall Results on MRI scans from the LowRes dataset

AD vs CN AD vs MCI pMCI vs sMCI

acc AUCpr spec acc AUCpr spec acc AUCpr spec

3D CNN 88.57 87.60 96.63 71.53 61.38 86.17 80.88 77.61 100

ViT 77.14 77.49 88.24 71.32 64.04 77.27 75 41.74 92

Roi versus Full brain

In two of of three classifications, the region of interest appears to have a more discrimina-
tive power than a full brain scan. This confirms that the hippocampus is in fact a brain region
strongly affected by the disease. It is especially the case for the AD vs CN task where the full
scan is automatically beaten by the ROI (In HighRes, 94.53 to 87.86 for CNNs, 79.69 to 75.54
for vision transformer).

However, it is interesting to see that for the AD vs MCI classification task the networks
have the same kind of performance whether they are dealing with full brain scan or ROIs. This
could be a consequence of the fact that the hippocampus is more vulnerable at the early stages
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(a) AD vs CN (b) AD vs MCI

Figure 5.5: Precision-recall curves of the baseline (purple) and our own CNN (green) along
with their respective AUC

of AD, therefore it may not have a sufficient discriminative power between advanced stages of
congnitive impairment.

CNN versus Vision transformer

Without any surprises, the CNN outperforms the ViT in every classification tasks. A very
good result from ViT was on the HighRes ROI database reaching an accuracy of 79.69, a AUCpr

of 68.28 and a specificity of 85.71. Another fine result was on the LowRes dataset where the
ViT had a 77.14 accuracy, a 77.49 AUCpr (the highest for the ViT) and a 88.24 specificity (also
its highest).

In the LowRes dataset, the difference between the two models in the AD vs MCI task is
not big. The accuracies are less than 1% from each other, the ViT has a higher AUCpr (64.04)
then CNN (61.38) but the CNN has a higher specificity (86.17) than ViT (77.27).

During training, the vision transformer converged faster than the CNN. However, its gen-
eralization abilities were not as great.

A word on specificity for the third classification

The framework of the last classification operates with more than 4 times more false samples
than true samples. As we discussed some models have a hard time predicting true samples but
most of them can recognize false ones. This is why the specificity for the pMCI vs sMCI task
is never lower than 95 (even reaching 100 in the LowRes dataset), but in this context it is not
very relevant.
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Chapter 6

Conclusion and future perspective

To finalize this work, we discuss the prospective and limitations of machine learning and
medical diagnosis for the near future as well as the ethics of such work.

6.1. The future of AI assisted diagnosis

In natural language processing, researchers run and test their findings on an unified and
agreed upon corpus called Workshop on Statistical Machine Translation (WMT). The latter is
a machine translation dataset composed from a collection of various sources, including news
commentaries and parliament proceedings. The corpus file has around 4M sentences. With
the same evaluation metrics, i.e. BLEU scores or sacreBLEU scores, practitioners can easily
assess the performance of their models or algorithms in fair comparison to other work. This
drives research centers to pursue the perhaps new state-of-the-art result in a worldwide frame
of reference. Whether it is in translation between english and german 1 or english and french 2

(see Figure 6.1)

Figure 6.1: Machine Translation on WMT2014 English-French

1https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german
2https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-french
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Even if the NLP framework is inherently different from a medical binary classification frame-
work, one can still argue that such unified frame of reference does not exist in medical contexts.
There are plenty of databases available such as ADNI, AlzBiomarker 3 or OASIS 4 but none of
them offers a huge uniform dataset of brain images.

Deep learning models operate best when given the maximum amount of data. While the
ADNI database is one of the most significant in its field, the total amount of Alzheimer patients
(see Figure 2.4) is astonishingly low. Especially considering the fact that an estimated 6.5 mil-
lion Americans age 65 and older are currently living with the disease as of today (Alzheimers
Dement, 2022). This number could grow to 13.8 million by 2060 barring the development of
medical breakthroughs to prevent, slow or cure AD.

The distinction between stable and progressive MCI had already been made several times
and have been the target of a lot of classification models. But not nearly as much as the
more classical ’CN vs AD’ or ’MCI vs AD’ tasks. However as discussed in subsection 2.1 the
importance in terms of medical relevance between them is clear. The main reason of this issue
stems from the fact that the ’sMCI vs pMCI’ dataset has to be handmade by the practitioner
whereas dementia and healthy control are hardcoded labels in every neurodegenerative diseases
database.

6.2. Ethics

Maybe someday, a model will be capable of predicting with impeccable accuracy the pro-
gression and possibly the potential state of patients in months to come way before medical staff
can. With the right data and the right algorithm, this future might be closer than we think.
Indeed, machine learning is rapidly expending and already taking over parts of our lives at a
pace nobody can fully grasp. It is only a matter of time before diagnostic and prognostic are
handed over to machines. While this prospect sounds utopian and safe, one must remember
that the privacy of one’s data have never been so important. The data flood in which we
are currently drowning leverages the best machine assisted prediction while, at the same time,
exposing information with a never seen before transparency. A world where an employer is
capable of finding out which of his employees will develop dementia or any kind of illness is not
a sane world.

3https://www.alzforum.org/alzbiomarker
4https://www.oasis-brains.org/
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6.3. Conclusion

During this master thesis, we investigated the potential of some deep learning models to as-
sess and predict Alzheimer’s disease. With a different, more elaborated, preprocessing pipeline
than most studies we were able to achieve strong classification results. Using a 3D convolu-
tionnal neural network, we were able to reach 94.53% in identifying patients with Alzheimer’s
disease on a region of interest focused on the hippocampus and 85.39% in predicting patients
who might develop dementia within 36 months. Both of those results are higher than the
reference model. Experiments were also carried out on the entire brain image, mild cognitive
impairment patients and on a lower resolution database with interesting outcomes. To the best
of our knowledge this was the first time a Vision Transformer was applied to a MRI classifica-
tion framework and while it cannot yet compete with the state if the art CNN architecture it
shows some promising results.
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