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1
Introduction

Turbulence modeling has become an essential aspect of many engineering devices’ performances. In
combustion chambers, turbulence increases fuel/air mixing, reducing emissions; in wind turbine design,
the knowledge of the turbulence in the incoming flow and the blades’ boundary layer is essential to in-
crease their energy production. In nautical design, delaying the occurrence of turbulence in boundary
layers over the foil surfaces improve aerodynamic efficiency; in Formula 1 cars design, the generation
and control of turbulent flow features such as wakes and highly vortical structures are vital to increase
the car performance. There is, therefore, a significant demand for new techniques to simulate, predict,
and analyze turbulent flows. However, the representation of these turbulent motions is very challeng-
ing due to significant and irregular variations of the fluid velocity field both in position and time and
the additional practical needs of numerical stability and computational efficiency. Therefore, even the
most complicated models need radically simplifying assumptions about the structure of the underlying
turbulence.

In this context, Computational Fluid Dynamics (CFD) analyses have become an essential tool for
several practical and industrial problems. Analysis of turbulent flows using Direct Numerical Simulation
(DNS) and Large-Eddy Simulations (LES) started almost sixty years ago, with the pioneering work of
Smagorinksy in 1963 [39]. Over the past half-century, they have more and more supplemented exper-
imental measurements, fostered by continuous computer power growth. Nevertheless, the Raynolds
average Navier-Stokes (RANS) models are still the most widely used methods in academia and in-
dustry. These rely entirely on modeling assumptions to represent turbulent characteristics, leading to
lower computational requirements. Moreover, their solutions directly provide the mean flow, making
them computationally very tractable and appealing for engineering applications.

Although new and increasingly complex models are being developed [52, 28], most of the RANS
methods used in industrial and academic CFD solvers were formulated and published in the 1980s,
and 1990s [6, 51]. Surprisingly the hypothesis at the heart of these models dates a century before,
when J. Boussinesq postulated a linear relationship between Reynolds stresses and mean strain rate
tensors, twenty years before Reynolds stresses were even formulated [3]. The averaged equations
are then closed by defining a scalar constant, determining the proportionality between the two tensors,
with independent turbulent quantities, computed with additional transport equations. These closure
models are called Linear Eddy Viscosity Models (LEVM). It is essential to notice that Boussinesq’s
assumption is a strong hypothesis, which does not hold in many engineering-relevant flows, such as
those with curvature, impingement, and separation [4]. Even for simple shear flows, it cannot capture
the anisotropic nature of the Reynold stresses. Accuracy is, therefore, a critical aspect of LEVM.

A classical approach to predict these models’ success or failure has relied on domain expertise and
statistical data analysis, possibly switching to more sophisticated closures or high fidelity large-eddy
simulations. However, the recent dramatic improvement in modern machine learning (ML) strategies
has brought a fresh perspective to the problem. Several authors used ML to identify and model Reynold
stress tensor discrepancies between RANS simulation and high-fidelity data. Ling and Templeton [20]
compared support-vector machines, Adaboost decision trees, and random forests to classify and pre-
dict high-uncertainty regions in the Reynold stress tensor. Parish and Duraisany [12] used an ML frame-
work and field inversion to build corrective models based on inverse problems. Singh et al. [38] later
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used these models to develop a neural-network enhanced correction for the Spalart-Allmaras model.
Ling et al. [21] developed a deep neural network architecture to model the anisotropic Reynolds-stress
tensor, based on the tensor polynomial decomposition proposed by Pope [30]. This architecture’s novel
characteristic is that it incorporates a multiplicative layer to embed Galileian invariance in the tensor
predictions.

This work aims to study the accuracy of RANS simulations in the formation and evolution of a
wingtip vortex to identify potential approaches to improve Boussinesq’s hypothesis using an ML frame-
work. This flow type was chosen because of its modeling complexity and relevance in many practical
industrial applications. The development and interactions of the primary and secondary vortices gen-
erated by the wing cap, combined with the high curvature of the streamlines and the high velocity and
pressure gradients in all three directions, make it particularly challenging to model. Nevertheless, the
characterization of the vortical structures shed from lifting surfaces is of primary importance on wind
turbines, helicopter blades, propeller cavitation in ships, high-lift configurations of aircraft, and the high-
performance automotive industry [2, 34, 33].

This project’s initial objective was to compute and compare LES and RANS simulations of the three-
dimensional turbulent flow over a NACA-0012 half wing mounted at the wall to study the accuracy of
LEVM on wingtip vortex, and identify input and output variables to be used in an ML-based model.
However, due to the setup of the simulations and the computing time requirements, we failed to obtain
LES simulations of the full wing. Therefore, we decided to compare the results obtained with a Negative
Spalart-Allmaras [1] and a Menter’s Shear Stress Transport turbulent models [25] with the experimental
data proposed by Chow et al. [7] and the RANS simulations of Churchfield et al. [8] at a free stream
Reynolds number Re = 4.3 x 106 and Mach number M = 0.14. Furthermore, we studied the effects
of the Reynolds number performing the same simulations at Re = 1.2 x 106, comparing with the LES
results of Lombard et al. [23]. To solve the RANS equations, we use the open source software SU2
[43].

In Chap.2 we present a theoretical background of turbulence models, providing an overview of the
main challenges and differences between LES and RANS modeling. Chap.3 reports a description of
the flow investigated and the computational setup defined for the simulations. In Chap.4 we analyze the
results obtained with the RANS simulations by comparing them with the reference results. Moreover,
we present a qualitative overview of the instantaneous flow computed with implicit LES simulations on
the wing airfoil profile extruded in the third direction with periodic span-wise boundary conditions. The
latter can be helpful in the future development of the work to improve the mesh refinements. Chap.5 is
dedicated to discussing future work to enhance turbulence closure using supervised learning methods,
starting from what was observed in the results.



2
Theoretical background

Turbulence is one of the last unsolved problems of classical physics. Although it can be defined using
physical laws, its description is challenging due to its non-linear, multiscale, chaotic nature. Neverthe-
less, turbulence phenomena play key roles in many practical engineering problems. Engineers rely on
turbulence models to study these complex flows, tring to find the best compromise between an accurate
description of the physics and computational efficiency.

2.1. Turbulence models
In a continuum mechanic framework, the Navier-Stokes equations, complemented by the thermody-
namic equation for the fluid state and empirical laws for the diffusion coefficients dependency on the
other variables, represent a complete mathematical model to study turbulent flows. The solution is
obtained numerically using Partial Differential Equations (PDE) algorithms. A first intuitive approach is
directly applying those algorithms to the unsteady Navier-Stokes equations (DNS). However, one would
need to resolve all the physical flow’s space-time scales, equivalent to requiring the numerical result’s
space-time resolution scale to be as refined as the continuous problem one. This can be extremely
constrictive in the case of turbulence, characterized by scales of very different sizes. Researchers have
developed LES and RANS models to overcome this limit. These methods decrease the computational
cost by solving the equation at a coarser level of the fluid system description.

To better understand the multiscale nature of turbulence and the differences in DNS, LES, and
RANS models, we firstly review the basic concepts of Richardson’s energy cascade and Kolmogorov
hypotheses. In Richardson’s view, turbulence is considered a sea of eddies of different sizes. An
’eddie’ eludes a precise definition. It can be seen as a region of the flow of size l, characterized by a
turbulent motion, which is at least moderately coherent over this area. Besides having a characteristic
size, each eddie is associated with a velocity u(l) and a timescale τ(l).

A length l0, comparable to the flow scale L, characterize the eddies in the largest scales. Their
characteristic velocity u(l0) is in the order of the root mean square turbulence velocity fluctuations
u′ = ( 23k)

1/2, comparable to uL, the characteristic flow velocity. The Reynolds number of these eddies
is therefore comparable to the one of the flow (i.e., is large), so direct effects of the viscosity are negligi-
ble. Richardson theorizes that these large eddies, created by the mean flow, are unstable and break up
into smaller eddies, transferring their energy to them. Then the process continues until the Reynolds
number Re = u(l)l/ν is sufficiently small that the eddie motion is stable, and molecular viscosity effec-
tively dissipates the kinetic energy. Kolmogorov added to this theory, formulating hypotheses that help
quantify and characterize these different scales.

Local isotropy hypothesis: At sufficiently high Reynolds numbers, the small-scale turbulent
motions (η = l << l0) are statistically isotropic.
First similarity hypothesis: At sufficiently high Reynolds numbers, the statistic of small-scale
motions has a universal form that is uniquely determined by the molecular viscosity ν and the rate
of dissipation ϵ.
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2.1. Turbulence models 4

Second similarity hypothesis: At sufficiently high Reynolds numbers, the statistic of themotions
of the length scale l, with η << l << l0, have a universal form uniquely determined by the rate of
dissipation ϵ.

These hypotheses define three length scale ranges: an energy-containing range and a universal
equilibrium range, divided into an inertial sub-range (lDI < l < lEI ) and a dissipation range (l < lDI ).
The suffixes EI and DI stand for the demarkation between the energy range (E) and the inertial sub-
range (I) and between the inertial sub-range and the dissipation range (D). An illustration of these
different scales and the energy distribution within them is presented in Fig.2.1. The energy bulk is
contained in the larger eddies and is transferred to the smaller ones via the inertial sub-range. In the
smaller scales, all the directional bias of the larger scales is lost (local isotropy hypothesis). The length η,
the velocity uη and time τη, characterizing these scales, can be uniquely defined by the dissipation rate
ϵ and the molecular viscosity ν (first similarity hypothesis). In the inertial sub-range, the viscous effects
are negligible, and inertial effects determine the motions (second similarity hypothesis). A central point
in this formulation is that the rate of energy transfer T (l) to the smaller scales balances the dissipation
rate, i.e., T (l) ≈ ϵ. That is, the rate of transfer from the larger scales determines the constant rate of
energy transfer to the inertial sub-range, hence the dissipation rate. Or, from a modeling perspective, a
correct definition or modeling of the smaller scales is needed to correctly represent the larger structures
of turbulence, which are the ones of interest.

Energy-containing range Universal equilibrium range

Inertial sub-range Dissipation rangePProduction

Energy transfer

T (l)

Dissipation

Log(  )

L
og

( 
   

  )

Figure 2.1: Illustration of the energy spectrum for homogeneous isotropic turbulence at high Reynolds number. In the center of
the wave number range, the curve exhibit power-law behavior defined by the Kolmogorov -5/3 law, i.e., E(κ) = Cκϵ2/3κ−5/3,

where Cκ is a constant. Common values for lEI and lDI are L/6 and 60η, respectively.

To illustrate the critical issues in resolving all the physical flow’s space-time scales, let us consider
statistically homogeneous and isotropic turbulence. For this type of flow, the Kolmogorov hypothesis
allows for a quantification of the ratio between the larger and the smaller scales:

L

η
= O

(
Re3/4

)
τL
τη

= O
(
Re1/2

) (2.1)
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Therefore for three-dimensional space, O
(
Re9/4

)
degrees of freedom are needed to represent all

the spatial flow scales. Even if the time ratio varies as O
(
Re1/2

)
, the use of an explicit time-integration

algorithm leads to a linear dependency of the time step to the mesh size. Therefore a Direct Numerical
Simulation would require solving the Navier-Stokes equations O

(
Re3

)
times to calculate the evolution

of the solution for a duration equal to the characteristic time of the most energetic scale. Aeronautical
applications usually deal with large Reynolds numbers (it can reach up to 108). Therefore the computa-
tional requirements would be greater than the resources currently available. To compute the solution,
more tractable models, obtained by introducing a coarser flow system description level, are defined.
Fig.2.2 illustrates an example of this concept. Large eddie simulations reduce the number of degrees
of freedom of the numerical solution by projecting the solution on an ad-hoc function basis and solving
only the low-frequency modes in space. Raynolds Average Navier Stokes models directly compute the
solution’s statistical average. Here the statistical character of the solution prevents a fine description
of physical mechanisms.

DNS LES RANS
Figure 2.2: Different levels of spatial description for a DNS, LES and RANS channel flow simulation. Adapted from [45].

As illustrated by the energy cascade concept, a dynamic coupling exists between all the scales
(mathematically represented by the non-linearity of the Navier-Stokes equation). Therefore, the cor-
rect representation of the solved scales is obtained only by correctly modeling the non-solved scales’
interactions by introducing statistical models that reflect the global or average actions. These will be
further discussed in Sec.2.1.1 and 2.1.3.

2.1.1. Large Eddie Simulations
LES formulation aims to reduce the computational cost by solving the equations in a coarser compu-
tational grid. As learned from the Kolmogorov theory, the larger energy-containing scales are directly
affected by the flow geometry and thus are the ones of interest. On the contrary, the smaller scales
have, to some extent, a universal character. When resolving in a coarser grid, the method cannot
describe the smaller turbulent motions (sub-grid scales). As a result, these will be cut off from the solu-
tion, as shown in Fig.2.3. To still solve the larger motions, the LES formulation must correctly represent
the interaction between the larger and smaller scales, which implies accurately expressing the energy
transfer rate at the inertial sub-range.

Because large-eddy simulation implies unresolved energy, two essential points must be considered.
The method must avoid non-linear aliasing (accurately representing energy transfer and destruction)
and correctly describe backscatter (inverse energy transfer from small to large scales). Two primary
ways are identified to address these criticalities: the explicit large eddie simulations approach and the
implicit approach.

In an explicit approach the velocityU(x, t) is decompose into the sum of a filtered (resolved) compo-
nent U(x, t) and a residual (sub-grid scale) component u′(x, t). The filtered velocity U(x, t) represent
the three dimensional and time-dependent motion of the large eddies, the new unknown. The equa-
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under-resolved sub-gridresolved

PHYSICAL SPACE FOURIER SPACE

Figure 2.3: Illustration of large eddie simulations resolved and cut-off scales in the physical and Fourier space. Three zones
can be defined: the resolved range, corresponding to the larger scales, an under-resolved or sacrificed range, and a sub-grid
range, corresponding to the smaller scales. The cut frequency demarcates the separation between the frequencies present in

the numerical solution and those that are not. For an LES solution, it is usually placed where the scales start to show
self-similarity (dissipation repeats itself at different scales).

tions for its evolution are derived from the Navier-Stokes equations through a filtering operation and
then are solved numerically. This operation can be defined in different ways depending on the model.
The most common is to express the low-pass filter as a convolution product. The derived equations
contain an un-closed term in the momentum equation: the sub-grid tensor (or residual stress tensor),
which arises from the non-linear term of the Navier-Stokes equations. The closure is obtained by intro-
ducing a model for it, which must provide turbulent synchronization (avoid aliasing) and catch the effect
of the smaller scales on the larger ones (backscatter). Because the equations are solved numerically,
alongside the modeling definition, one should consider the numerical method choice. There are two
viewpoints to this end: in one, the filter and model are identified independently of the numerical method,
which implies independently of the grid employed. Hence, the dispersion and dissipation errors of the
numerical method are supposed to be low enough to provide an accurate solution to the filtered equa-
tions. The alternative point of view is that modeling and numerical issues should be combined. In
practice, the two are interwoven to some extent.

In an implicit approach, no filtering is introduced. The unsteady Navier-Stokes equations are nu-
merically solved on a coarser grid by projecting the solution on an ad-hoc function basis. The solution
physics entirely depends on the numerical method. Its dissipation is directly used to model the sub-
grid dissipation rate, such that the model predicts an accurate rate of energy transfer. Therefore, the
dissipation and dispersion errors of the numerical method directly affect the energy spectrum and the
convective terms, respectively. For these reasons, the choice of the numerical scheme has significant
importance. Low-order schemes are usually inadequate due to high numerical dispersion and dissi-
pation. High-order schemes reduce the dissipation localizing it at higher frequencies of the energy
spectrum and decrease the numerical dispersion, accurately representing the turbulent convection.
The Discontinuous Galerkin method (DGM) is a well-suited candidate for developing an implicit LES
approach because they allow for higher order scheme formulation in a finite element framework.
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High-order scheme

Low-order scheme

Figure 2.4: Illustration of the energy spectrum modeled by different numerical schemes. Low-order schemes introduce
numerical dissipation at a broader range of frequencies, resulting in a non-physical description of the energy spectrum, thus of
the larger turbulent motions. Instead, high-order schemes accurately represent the inertial sub-range slope (directly linked to

the energy transfer and dissipation) by adding numerical dissipation only to the higher frequencies of the spectrum.

2.1.2. Discontinuous Galerkin Method
DGM is a finite element method (FEM), which uses a discontinuous interpolation combined with a
Galerkin variational formulation. Considering a general system of N coupled convection-diffusion-
source equations in conservative form, defined in a D dimensional domain Ω:

∂qm
∂t

+∇ · fm +∇ · dm + sm = 0, ∀qm ∈ U (2.2)

where the subscript index m = 1, ..., N corresponds to a variable, q represent the conserved variables,
f ∈ UN×D the convective flux vector, d ∈ UN×D the diffusive flux vector, and s ∈ UN the source
term. FEM is based upon a mesh (or grid), which approximates the domain Ω by a collection of simple
geometrical elements e:

lim
h→0

Ωh = Ω, Ωh = ∪ee (2.3)

where h is the characteristic mesh size. The solution space UN of Eq.2.2 is then approximated using
the grid as a support, such that:

lim
h→0

UN
h = UN (2.4)

where UN
h is called the trial space. The terms ũm of the solution state vector ũ ∈ UN are expressed as

the linear combination of shape functions ϕj , which constitute a suitable set of basis functions for Uh:

ũm ≈ um = umiϕi Uh = span {ϕj , j ∈ [0, U ]} (2.5)

The scalars umi represent the expansion weights associated with the variable m with respect to
the i-th shape function ϕi. In the trial space UN

h these basis are chosen as the columns of the matrix
ϕ = (ϕ11 ϕ12 ... ϕ1U ... ϕN1 ϕN2 ... ϕNU ). We can therefore rewrite the solution as:

u = umiϕmi. (2.6)
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Since the solution is approximated, Eq.2.2 can not be satisfied everywhere in the domain. There-
fore the equations are re-defined using the weak formulation as a Galerkin Variational problem, which
requires the equations residual to be orthogonal to all members v of a test space VN

e = UN
h .

L(u, v) =
∫
Ω

v

(
∂q

∂t
+∇ · f +∇ · d+ s

)
dV = 0, ∀v ∈ UN

h (2.7)

where the sum over the variable index m is implied and the test functions v can also be expressed as
linear combinations of the same basis used for u.

v = vmiϕmi (2.8)

Using this framework, Discontinuous Galerkin methods define Eq.2.7 by choosing as trial space
a broken vectorial space (often polynomial). Its elements consist of vectors of functions that are fully
regular within each mesh element but not necessarily continuous across elements. These guarantee
DGM greater freedom of shape function choice than the classical continuous FEM. The possibility
of being discontinuous across elements makes the shape function construction easy and flexible: any
shape function can be supported on a single element, and the interpolation can change from element to
element (usually the order). Another significant difference between the DG and continuous FEmethods
is the presence of additional terms in the Galerkin variational formulation, arising from the element
boundary fluxes. Using a Discontinuous Galerkin formulation Eq.2.7 is rewritten as follow:

∑
e

∫
e

v
∂q

∂t
dV +

∑
e

∫
e

∇v ·hdV +
∑
e

∫
e

vsdV +
∑
f

∫
f

γ
(
u+, u−; v+, v−;n

)
dS = 0, ∀v ∈ UN

h (2.9)

where f represent the element faces, h stand for f or g or their sum, n the normal direction to the
element boundary (for each element + symbol define the outward pointing normal, while - the opposite
direction), and γ is the interface flux. For consistency the latter should be chosen such that for a
continuous solution u+ = u− = (̃u), and h(u+) = h(u−), the following relation is satisfied:

γ
(
u+, u−; v+, v−;n

)
= JvK · h(ũ). (2.10)

where J·K define the jump operator JxK = x+n+ + x−n−.
Eq.2.9 provides a general derivation of the Discontinuous Galerkin formulation. The user have great

freedom in the flux function γ (u+, u−; v+, v−;n) choice. We will now give a brief overview of how this
term can be treated to assure stability in the case of convective and diffusive fluxes.

Considering the hyperbolic subsystem, DGM can be interpreted as an extension of first-order Finite
Volume Methods (FVM) to high-order [18]. FVM uses the integral form of the convection equations to
compute the cell average evolution of the conservative variables q̄i, for every mesh element i. The
flux balance of every element is then approximated as the sum of the interface fluxes to each of the j
neighbouring cell:

Vi
∂q̄i
∂t

+
∑

j∩i ̸=∅

∫
fij

f̂ · n dS (2.11)

where f̂ · n is the approximation of the numerical fluxes through the faces. Its computation depends
on two elements: the reconstruction and the flux function. The first defines how the solution at the
faces is extrapolated from the cell average q̄i, using the neighborhood average cell values q̄j . The
second specifies the flux estimation through the boundary from the two reconstructed state vectors on
either side of the face. An important observation is that the reconstruction step determines the order
of accuracy of the Finite Volume discretization. We can now see the Discontinuous Galerkin Methods
as an alternative way to increase the order of the method. Instead of reconstructing the solution at the
desired accuracy order from the cells averages, DGM increases the polynomial order in the elements.
Following this philosophy, it can be proven that the DG flux function γf of a hyperbolic problem can be
defined as follow:

γf
(
u+, u−; v+, v−;n

)
= JvK · n H

(
u+, u−,n

)
(2.12)
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whereH (u+, u−,n) is the Finite Volume flux function. Defined in this way, DGM inherits the consistency
and stability of FVM resulting from the choice of the interface flux H.

Even if historically Discontinuous Galerkin Methods dealt with hyperbolic problems only, several
discontinuous finite element formulations were developed for elliptic problems. These methods are
also now considered DGM. One can distinguish two classes of methods: the Interior Penality Methods
(IPM) and the Lifting Methods. The first can be seen as a generalization of classical continuous finite
element methods. The interface fluxes here are defined using a generalization of the boundary penalty
methods. An additional penalty term (marked in green), penalizing the difference between the desired
solution and the current one, is added to the variational formulation for each element separately to
impose continuity of the solution u across the domain:

∑
f

∫
f

γd
(
u+, u−; v+, v−;n

)
dS =

∑
f

σf

∫
f

JvK · JuK dS
+
∑
f

∫
f

JvK · {{D · ∇u}} dS

+
∑
f

θ

∫
f

JuK{{D · ∇v}} dS

(2.13)

where σf is to be chosen such that the positive contribution of the penalty term dominates the boundary
flux term (in red), retained for consistency. Therefore to maintain coercivity, σf has to be larger than a
locally defined critical value σc. The blue term is added in variation of the classical formulation, if θ = 1
we obtain a symmetric boundary penalty method (the symmetry of the bilinear form a(u, v) is lost in the
classical formulation where θ = 0). If θ = −1, the boundary flux no longer impacts coercivity, and σf ,
in theory, does not have a critical value (it should only be greater than zero). The underlying principles
and stability analyses of the Interior Penality Methods are quite close to the standard FEM. The Lifting
Methods use an auxiliary variational problem to obtain an estimate of the solution gradient, which is
then used in a second step to discretize the elliptic equations.

2.1.3. Reynolds Average Navier-Stokes equations
RANS formulation decreases the computational cost of the simulation by introducing statistical models
to compute the statistical solution average directly. The user can solve the modeled equations on a
coarser grid than the one used for DNS or LES computations, significantly reducing the processing time.
However, the statistical character of the solution implies that all the frequencies of the turbulence energy
spectrum are modeled, which prevents a fine description of the turbulence physical mechanisms.

The modeled equations are derived from the conservative form of the Navier-Stokes equations
through a Reynolds decomposition and averaging. The velocity vector is expressed as the sum of two
contributions: the mean velocity U field and an instantaneous fluctuation u′ field:

u = U + u′. (2.14)

Then the governing equations are rewritten through an averaging operation (usually an average
ensemble [29]). Considering an incompressible flow as an example, one would have:

∇ ·U = 0 (2.15)

D̄Uj

D̄t
= ν∇2Uj −

∂
⟨
u′ju

′
i

⟩
∂xi

− 1

ρ

∂ ⟨p⟩
∂xj

(2.16)

where ρ is the flow density, ν the viscosity, p the pressure, ⟨·⟩ express the averaging operation, and
D̄(·)/D̄t is the mean substantial derivative, which expresses the rate of change following a point moving
with the local mean velocity U :

D̄ (·)
D̄t

=
∂ (·)
∂t

+U · ∇ (·) . (2.17)
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A consequence of the continuity equation (Eq.2.15) is that ∇ ·u′ = 0. Therefore both U and u′ are
solenoidal fields.

For a general three-dimensional flow, Eq.2.15 and 2.16 are a set of four independent equations
governing the mean velocity field. However, these equations contain more than four unknowns. The
velocity covariances

⟨
u′iu

′
j

⟩
of Eq.2.16 are un-closed terms, which appear from the averaging operation

of the Navier-Stokes equations due to the non-linear convection term. These new unknowns take the
name of Reynolds stresses. Making an analogy with the viscous stresses, they can be interpreted as
apparent stresses arising from momentum transfer by the fluctuating velocity field. They also charac-
terize the different behavior of the instantaneous velocity field u to its average U . Before analyzing the
Reynolds stress models proposed to close the equations, we briefly review the properties of

⟨
u′iu

′
j

⟩
.

The Reynolds stresses are the components of a second-order tensor, which is symmetric positive
semi-definite. Its diagonal components ⟨u′iu′i⟩ are normal stresses, while the off-diagonal components
are shear stresses. The distinction between these two terms is dependent on the coordinate system
choice. An intrinsic tensor decomposition can be made using isotropic and anisotropic stresses. By
defining the isotropic component as 2

3kδij , the deviatoric part is defined as follows:

rij =
⟨
u′iu

′
j

⟩
− 2

3
kδij (2.18)

where δij is the Kronecker delta, and k is the turbulent kinetic energy, defined to be half the trace of
the Reynold stress tensor k = 1/2 ⟨u′iu′i⟩. An important point in this decomposition is that only the
anisotropic component aij effectively transports momentum.⟨

u′iu
′
j

⟩
= aij +

2

3
kδij . (2.19)

Eq.2.15 and 2.16 can be closed by introducing a model that relates the Reynolds stress tensor to
averaged quantities. The main closure, used in most of the RANS methods in industrial and academic
CFD solvers, is the turbulent-viscosity hypothesis, or Boussinesq’s hypothesis, after Joseph Boussi-
nesq. He proposed it in 1872 during the French Academy of Sciences meeting (the interested reader
can find the meeting report in [3]). According to this hypothesis, the deviatoric Reynold stress R is pro-
portional to the mean rate of strain of the fluid S (symmetric part of the mean velocity gradient tensor)
through a scalar quantity νT , called turbulent viscosity:

⟨
u′iu

′
j

⟩
− 2

3
kδij = −νT

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(2.20)

where sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
. Eq.2.20 allows to reduce the number of unknowns in Eq.2.15 and 2.16,

the 9 unknown components of the Reynolds stresses are replaced by one scalar unknown νT (x, t).
The closure is finally obtained with an additional transport equation for the evolution of turbulence
quantities. As example, two-equation models (such as k − ε [6] and k − ω [51]) express the turbulent
viscosity as a combination of two turbulent quantities (k and ε or the specific dissipation rate ω) for
which additional transport equations are defined. Empirically defined model constants allow for tuning
the models for different cases. Instead, one equation models (such as Spalart-Allmaras (SA) [41])
provides an equation for the evolution of one quantity, in the case of the SA model, ñu, which is then
linked to the effective viscosity νeff (x, t) = ν+ νT (x, t) with a non linear functional relationship. These
models are called Linear Eddy Viscosity Models (LEVM), due to the linear relation imposed by Eq.2.20.

A major advantage of the turbulent-viscosity hypothesis is that by replacing Eq.2.20 in Eq.2.16 one
obtains the Reynolds equations in the same form as the Navier Stokes equations:

D̄Uj

D̄t
=

∂

∂xj

[
νeff

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
− 1

ρ

∂

∂xj

(
⟨p⟩+ 2

3
ρk

)
(2.21)

where νeff is the effective viscosity, and ⟨p⟩ + 2/3ρk is the modified mean pressure field. Although it
provides a convenient closure to the Reynolds equations, the accuracy of Boussinesq’s hypothesis is
poor for many flows.

The turbulent-viscosity hypothesis can be divided in two parts: an intrinsic assumption and a spe-
cific assumption [31]. The first implies that at each point and time, the Reynolds stress anisotropy
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components rij are determined by the mean velocity gradients ∂Ui/∂xj . Therefore, the local mean ve-
locity gradients characterize the history of mean distortion to which the turbulence has been subjected,
assuming the non-local transport process small in comparison. However, in many flows persisting
anisotropies can be found in regions where the local mean strain rate components are zeros. These
anisotropies exist because of the prior straining history to which the turbulence has been subjected,
and the non-local transport process is not negligible in these cases. The specific assumption is that
the Reynolds stress anisotropy tensor rij is linearly related to the mean rate of strain tensor sij via the
scalar quantity νT . This hypothesis is violated even for simple flows (such as shear flows). However,
the failure of the linear assumption for many flows of engineering interest (such as boundary layers,
shear flows, and jets) does not have important consequences for the final mean flow solution. Yet even
for these flows, the predictions of second order moments (Reynolds stresses, kinetic energy, dissipa-
tion) are not satisfactory. Moreover, in many configurations of engineering relevance (complex flows
having high mixing rates, recirculation regions, stagnation lines) the predictions of these models can
be wrong even for first moments.

To overcome the isotropic viscosity hypothesis limitations, corrections were developed for the ex-
isting LEVM models, such as the SA-RC [36] and SST-RC [40] models which attempt to account for
rotation and curvature effects. An alternative is provide by Non-Linear Eddie Viscosity Models (NLEVM),
such as [27, 42]. Another example is given by invariant theory, since the work of Pope [30], it is rec-
ognized that it can be used in the framework of turbulence modeling to improve the effective-viscosity
hypothesis. In this schemes, the Reynolds stress tensor anisotropic component is developed into a
tensor polynomial composed of no more than ten basis tensors:

R =

10∑
i=1

λiT i (2.22)

where ai are flow scalar invariants and the tensorial basis T i can be expressed as products of the
mean strain tensor S and the mean vorticity tensor W . The advantage of these formulations is that
the whole velocity-gradient tensor now affects the predicted Reynolds stresses, as a consequence the
influence of the streamline curvature on R is embedded in the model. However, the model still implies
the intrinsic assumption. Its accuracy is therefore limited to flows where the non-local transport process
can be neglected. Non-local models that take into account the prior straining history of turbulence have
been proposed to overcome this limitation, for example, the Lag-RST model [28].



3
Flow Description and Computational

Setup
This work studies a three-dimensional turbulent flow over a NACA-0012 half wing mounted at the wall,
with a rounded end cap and trailing edge. Two flow conditions were investigated: Re = 4.3 x 106

and Re = 1.2 x 106. The Reynolds number refers to the free stream conditions, and it was defined
as Re = U∞c/ν, where U∞ is the unperturbed free stream velocity, c the chord length, and ν the
kinematic viscosity. The flow is characterized by a high three-dimensional flow caused by the pressure
difference that is established between the pressure and suction side of the wing. The latter generates
flow whipping around the tip, and the surface streamlines deviate outboard on the pressure side and
inboard on the suction side.

At the wing cap, the flow separates and roll-up into a vortex, fed by the boundary layer vorticity
close to the tip. As the vortex moves downstream, it rolls up more and more of the wing wake until its
circulation is nominally equal to that of the wing. Grow [16] reports that 90% of the circulation enters
the tip vortex within one chord of the trailing edge. Several authors report the presence of secondary
and tertiary vortices, which, as they become wrapped up into the primary vortex, cause a rapid change
of direction of the vortex core [7, 46, 13, 15]. This behavior is reported in the literature as ”vortex kink”.
The vortex centerline undergoes a sudden spanwise cross-flow acceleration at the beginning of the
kink, and at its end, it resumes its original direction. The wing cap shape is reported to influence the
vortices location and the number of vortices forming [46]. Guini [13, 15] and Guini & Benard [14] report
that a ’more’ axisymmetric vortex sheds from a rounded wingtip with stronger vorticity within its core
compared to a square-tip wing.

RANS simulations were conducted using the finite volume open source software SU2 to study the
flow. Furthermore, implicit LES computations were carried out on 10% of the wing span using the
Discontinuous Galerkin software ARGO. The latter was considered to be located far from the wingtip,
and from the wind tunnel wall where the wing is mounted, so periodic boundary conditions could be
used.

3.1. Computational domain
The rectangular half-wing numerically investigated has a NACA-0012 profile, with a rounded wing cap
and trailing edge. Its aspect ratio is AR = 0.75, and it is mounted midway up a wall at its quarter chord,
pitched up by 10°.

The computational domain, shown in Fig.3.1, is based on the test section of the low-speed wind
tunnel used by Chow, located in the Fluid Mechanics Laboratory of NASA Ames Research Center. The
numerical test case exactly represents the experimental cross-section 0.66 c x 1 c, where c is the airfoil
chord. At the same time, it uses a greater stream-wise domain extent L to assure that the computed
solution is free of boundary effects. L was selected such that the domain mimic Churchfield’s one for
the RANS computations and that of Lombard for the LES simulations.

The reference frame used in the simulations is a Cartesian coordinate system (x, y, z). Its origin
is located at the wing trailing edge. The x axis is aligned with the stream-wise direction, the z axis is
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Test case L l1 l2

Chow et al. 1.813 c 0.396 c 1.417 c

Churchfield et al. 5.5 c 2.5 c 3 c

Lombard et al. 10 c 3 c 7 c

RANS SU2 5.5 c 2.5 c 3 c

LES ARGO 10 c 3 c 7 c

Table 3.1: Stream-wise domain extent L for different test cases. The values l1 and l2 correspond to the distance of the wing
quarter cord to the inflow and outflow boundary, respectively.

directed towards the wing tip, and y is directed orthogonal to form a right-handed coordinate system,
as shown in Fig.3.1.

In his paper, Chow warns against significant inviscid effects (mirror effects) linked to the proximity
of the walls, which most likely influence both the primary and secondary vortices. Lombard also noted
that the significant blockage created by the wing is likely to cause an absolute perceived angle of attack
around 2° higher than the one imposed by the geometry. The numerical simulations do not reproduce
the boundary layer tripping mechanism used in the experimental setup of Chow. Moreover, the wind
tunnel sections upstream and downstream of the test section and the influence of the probes presence
are not modeled. McAlister and Takahashi [24] report that the tripping of the boundary layer near the
leading edge increases the vortex’s diameter by 30%. Moreover, it decreases the inboard movement
of the primary vortex along the span.

10°

0.75 c
0.33 c

1 c

0.66 c

L
c

z

x
y

Figure 3.1: Simulations computational domain. The flow is aligned with the x-axis. The lengths l1 and l2 are the distance of
the wing quarter cord to the inflow and outflow boundary, respectively. The lengths L, l1 and l2 changes in relation to the test

case considered (see Tab.3.1).
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Test case Inflow turbulence Tunnel walls Outflow
Chow et al. I < 15% no slip -

Churchfield et al. I = 0.1% no slip Constant mass flow rate

Lombard et al. Not modeled free slip Dong et al. outflow BC [11]

RANS SU2 I = 0.1% free slip Characteristics-based Riemann BC [49]

LES ARGO Not modeled free slip Mesh coarsening

Table 3.2: Principal boundary conditions differences for the numerical and experimental setups. I = u′/U is the turbulence
intensity, where u′ is the root-mean-square of the turbulent velocity fluctuations and U is the mean flow velocity.

3.2. Boundary conditions
Tab. 3.2 reports the principal differences in the boundary conditions (BC) used by each setup. Special
attention is given to the outflow boundary condition choice due to the presence of the low-pressure
vortex core. Indeed if a constant pressure outflow boundary is used, the vortex, generated at the
wingtip and convected downstream out of the domain, would encounter large pressure gradients. It
should also be noted that only the numerical simulation of Churchfield et al. models the wind tunnel
boundary layer. The choice of using free slip boundary conditions in the other computation is justified
by the primary vortex location, which is sufficiently far from the walls so that the interaction with the
latter is much weaker than the one with the wing surface via the secondary structures. The inviscid
interaction between the vortex and the wind tunnel wall is assumed to be similar to the experimental
one. The specific boundary and initial conditions used for the numerical simulations are reported in the
following sections.

3.2.1. RANS boundary conditions
For the test case run at Re = 4.3 x 106, the free stream conditions were chosen in order to match those
of Chow’s experiment: Re = 4.6x106 andM = 0.15. One should notice that Chow’s reference location,
x = −1.1344c, y = 0.3423c and z = 0.0969, is just upstream of the suction side of the wing. Here the
flow has accelerated more than the one at the inflow location. Hence a lower free stream computational
Reynolds and Mach number should be used to match the same conditions. Consequently they are set
to Re = 4.3 x 106 and M = 0.14. The free stream Prandtl number is Pr = ν/α = 0.72, where α is the
thermal diffusivity. An adiabatic, viscous wall condition is imposed at the wing surface, while a free slip
condition is used for the tunnel walls.

A characteristics-based Riemann boundary condition proposed by Vitale et al. [49] is imposed at
the outflow. This boundary condition automatically detects inflow/outflow boundaries for hyperbolic
systems, following the approach proposed by Guardone, Isola and Quaranta [17]. Then using an
eigenvalue analysis, the right number of enforceable unknowns is determined, and the variables that
can be specified at the boundary are automatically selected. Only the variables transported from the
boundaries towards the interior are enforced, while the remaining variables are extrapolated from the
internal solution. On the SU2 suite, the Riemann boundarymarker requires setting the total temperature
and pressure at the inflow and the static pressure at the outflow. They were chosen to obtain the desired
free stream Mach number. The total conditions are P0 = 170891Pa and T0 = 298K, while the static
pressure is P = 168399Pa.

The lower Reynolds simulation uses the same boundary conditions of the previous case, only chang-
ing the free stream conditions to match those of Lombard, while preserving the same mass flow of the
Chow experiment. The Reynolds and Mach numbers are Re = 1.2 x 106 andM = 0.1.

3.2.2. LES boundary and initial conditions
The LES boundary conditions were set to match the Reynolds and Mach number used by Lombard,
Re = 1.2x106 andM = 0.1. The free stream Prandtl number is Pr = 0.72. At the inflow total conditions
are imposed, P0 = 101325Pa and T0 = 288.15K, while at the outflow we impose a static pressure,
P = 100277Pa. To avoid large pressure gradients at the outflow, a longer stream-wise domain extent
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is used, combined with a coarser mesh toward the outlet. Since ARGO is an implicit method, coarsening
the mesh is equal to adding dissipation at that location, as seen in Sec.2.1.1. Therefore the vortex is
disrupted before arriving at the outflow boundary. An adiabatic viscous wall condition is imposed at the
wing surface, while a free slip condition is used for the tunnel walls.

The flow is impulsively started from U∞ = 17m/s throughout the domain, except at the no-slip
boundaries. Then it gradually increase to U∞ = 34m/s. The initial pressure and temperature are
P = 101325Pa and T = 288.15K.

3.3. Numerical schemes
3.3.1. SU2 solver
The SU2 RANS compressible solver was used for the LEVM computations. Two turbulence models
were investigated, the Negative Spalart-Allmaras and the Menter’s Shear Stress Transport model. The
first is a variation of the standard one equation model developed to address issues with under-resolved
grids and non-physical transient states. It is recommended because it is formulated to be passive to
the original SA model in a well-resolved flow field but has a more robust numerical behavior. The SST
model instead is a two-equation model that combines k− omega and K − epsilon, using the first in the
inner region of the boundary layer and switching to the second in the free shear flow.

The following set-up was used for both turbulence models and Reynolds numbers investigated.
The implementation parameters are reported in Tab.3.3. The free-stream values, defined in Sec.3.2.1,
are not only used as boundary conditions but also for flow initialization and non-dimensionalization.
The flow physical definition is based on the free-stream description, combined with an ideal gas and
constant viscosity assumptions.

The convective fluxes through the faces of the dual-grid control volumes are discretized using a
central scheme: the Jameson-Schmidt-Turkel (JST) method with matrix dissipation. In this approach,
the classical JST implementation’s second and fourth-order dissipation coefficients (β and η) are scaled
by the flux Jacobian with the minimum eigenvalue limited by the entropy fix coefficient ψ. We chose
this alternative formulation because it gives better viscous drag predictions on low-Re meshes than the
classic one. Tab.3.3 reports the list of parameters used in the computation.

Even if we perform a steady computation, we need to define a time discretization scheme since
the solver uses a pseudo-time iteration. Therefore, we used an Euler implicit approach. The option
”central jacobian fix factor” a is also used to improve the numerical properties of the Jacobian matrix
in the implicit time marching formulation so that higher Courant–Friedrichs–Lewy (CFL) values can be
used. CFL adaptation is employed to accelerate convergence to a steady state. Within this procedure,
the CFL is initialized at a value CFL0, then its value at each iteration is determined based on the residual
value at the current enew and previous eold iterations, as CFL = CFL · (enew − eold)

b. The value of b is
chosen depending on whether enew is greater or lower than eold, increasing it by factor up or decreasing
it by factor down.

3.3.2. ARGO solver
The flow properties were modeled in the LES computation using an ideal gas and a constant viscosity
assumption. The initial pressure and temperature defined in Sec.3.2.2 were used to non-dimensionalize
the unsteady Navier-Stokes equations. The convective flux (Eq.2.10), coming from the Discontinuous
Galerkin formulation, is defined using a Simple Low Dissipation Advection Upstream Splitting method
(SLAU), which essentially solves a Riemann problem at the elements’ interfaces. The diffusive terms
(Eq.2.13) are instead discretized using a Symmetric Interior Penalty method for Discontinuous Galerkin
(SIPDG). We use the nodal shape function defined by third-order Lagrange interpolants to discretize the
solution. The control points used are equispaced. The simulation parameters are reported in Tab.3.4.

The solution’s temporal evolution is discretized using a backward difference formula: BDF2. To save
computational resources, we only compute the Jacobian matrix every five time steps, freezing it for the
others. The choice of the time step ∆t was dictated by stability and computational cost requirements.
The value used in the computation corresponds to a through-flow time every 104 iterations, where the
through-flow time ∆tTF = c/U∞ is defined as the time required by a flow particle to cross the wing
chord.

The non-linear system of partial differential equations is then solved using a Newton-GMRES ap-
proachwith a line implicit preconditioner, whereGMRES stands for generalizedminimal residual method.
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Parameter Value
β 0.5

η 0.02

ψ 0.01

a 8.0

factor up 2.0

factor down 0.1

CFL0 2.5

Table 3.3: List of parameters used in the SU2 solver.

Parameter Value
max (nNL) 5

Non-linear tolerance 10−4

max (nL) 30

GMRES tolerance 10−2

Krylov subspace size 30

∆t 3 x 10−6 s

∆tTF 2.9 x 10−2 s

Table 3.4: List of parameters used in the ARGO
solver. Where max (nNL) is the maximum number
of iterations of the non-linear solver required to
reach the tolerance within a time step. While

max (nL) is the maximum number of iterations of
the GMRES scheme to reach convergence.

In the latter, the solution of the linear system generated by one step of the Newton algorithm is ap-
proximated by the vector in a Krylov subspace with minimal residual. As done for the time marching
scheme, the Jacobian matrix, coming from the Newton scheme, is only computed every five steps to
save computational resources. The integrals computed within each element are approximated with a
seventh-order Gauss-Legendre quadrature rule. The quadrature order is increased to eleven in regions
with high gradients.

3.4. Mesh generation
3.4.1. RANS mesh
The numerical grid used to compute the RANS simulations is a linear straight-sided grid created with
the commercial mesh generator ANSYS ICEM. This software provides a robust and intuitive approach,
which offers high control on the definition of the elements. The mesh was used for both turbulence
models and Reynolds numbers investigated.

In ICEM, the grid generation is based on the domain division in ”blocks”. Two blocks were placed
around the wing to have more control over the wingtip mesh, one that encloses the wing cap and the
other in the remaining part. During the mesh convergence study, it was observed that a higher grid
density is required in the wing tip and the region close to it on the wing suction side to catch the physics
of the vortex forming there correctly. Therefore the span-wise element spacing is reduced from 0.01 at
the root to 0.0035 where the wing tip starts its revolution. The wing tip grid spacing is 0.005. To model
their curvature correctly, the element spacing is also reduced in the stream-wise grid from 0.01 to 0.0025
at the leading and trailing edge regions. The placement of the first grid cells close to the wing surface
is such that it satisfies y+ < 1, where y+ = u∗n/ν, with n the direction normal to the surface, and
u∗ =

√
τw/ρ the friction velocity (τw is the wall shear stress). When marching grids out from a surface

to create a volume, stretching ratios are equal to 1.05 and 1.1. A larger stretching ratio of about 1.5 is
used only at the inflow boundary. Tab.3.5 reports the total number of grid points used at the principal
mesh locations.

The mesh convergence study is presented in Fig.3.2. The study was conducted on the wing surface,
and vortex centerline means quantities will be compared to the literature references in the results, Sec.4.
The degrees of freedom of the mesh used in the study are reported in Tab.3.6. The final mesh chosen
is ”mesh 6”.

It should be observed that the mesh used in the present study has 4.03 x 106 degrees of freedom,
while the grid used by Churchfield is composed of 70% more: 13.8 x 106. We observe that the use
of viscous tunnel walls boundary conditions in the computations of Churchfield requires satisfying the
requirement y+ < 1 at every wall, which implies a higher number of grid points to be used than the
case with inviscid boundary conditions. Therefore we observe that despite the significant difference
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Location Grid points number
Stream-wise grid line wake 300

Span-wise grid line wake 115

Stream-wise grid line wing 120

Span-wise grid line wing 65

Leading edge 28

Trailing edge 28

Wing-tip revolution 78

Table 3.5: Number of grid points of the final mesh used for the RANS
computations (”mesh 6” of Tab.3.6).

Mesh DOF
mesh 1 0.79 x 106

mesh 2 0.95 x 106

mesh 3 1.14 x 106

mesh 4 2.7 x 106

mesh 5 3.2 x 106

mesh 6 4.03 x 106

mesh 7 4.7 x 106

Table 3.6: Grids degrees of freedom used for the
convergence study.

in the total number of degrees of freedom of the grid, the refinement of the present study on the wing
surface and the vortex location meshes is comparable to that used by Churchfield. We also observe
that the refinement and the total number of degrees of freedom used in the present study are similar
to the one recommended by other authors to obtain grid-independent behavior [26, 9].

3.4.2. LES mesh
When computing high-order simulations, an accurate representation of the domain geometry is essen-
tial to reproduce the physics that forms near the boundaries. To define the numerical grid for the LES
computations, we have relied upon the open source mesh generator GMSH, which supports high-order
elements. Fig.3.4 presents an overview of the unstructured mesh generated.

The mesh was created by defining a two-dimensional mesh, which was then extruded in the span
direction so that periodic boundary conditions could be imposed at the left and right walls. The boundary
layer region presents a structured mesh with curved elements describing the wing geometry. A fast
curving algorithm was used to optimize the high-order element creation. The first cell spacing to the
wing surface is 5e− 5, then the grid spacing is increased with a stretching ratio of 1.1, and the distance
between the first and last cell of the ”boundary layer mesh” was set to 0.05. The element spacing in the
span-wise grid line is 0.004, while the stream-wise direction is 0.005. The spacing is set at the leading
and trailing edge to one grid point every 10°. For this surface discretization we have x+ = 200 and
y+ = 2.5 on average, where x+ = u∗s/ν, with s the direction tangential to the surface, and y+ defined
as explained in the RANS mesh. An overview of the x+ and y+ distribution over the airfoil can be
observed in Fig.3.5. Although we recognize that this value of x+ is not optimal, the mesh was not
further refined due to computational cost limitations.

The maximum element size in the ”boundary layer” mesh and the highly refined grid around the
airfoil is 0.01. The mesh is progressively coarsened toward the tunnel walls and, after 1.25 chord
lengths going to the outlet. The size of the coarser elements at the inflow and outflow is 0.11. We
observe that the mesh was generated without prior knowledge of the flow. After observing the results,
it should be noticed that the extension of the highly refined region around the airfoil can be decreased
to add more resolution in the tangential airfoil direction and therefore decrease x+ without additional
computational costs.

The boundary layer mesh is composed of 285984 hexahedra, while the rest of the mesh is formed
by 480654 prisms. Running the computations with third-order polynomials, the total degrees of freedom
are 37.5 million.
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Figure 3.2: Mesh convergence study. (a) Static pressure coefficient distribution along the wing chord at z/c = −0.065; (b)
Static pressure coefficient distribution along the wing chord at z/c = −0.023; (c) Static pressure coefficient evolution along the

vortex centerline; (d) Axial velocity evolution along the vortex centerline; (e) Vortex centerline position in the x-y plane; (f)
Vortex centerline position on the x-z plane. The static pressure coefficient is defined as cp = (P − Pref )/(0.5ρU

2
ref ). The

reference quantities are considered at x = −1.1344c, y = 0.3423c and z = 0.0969 (same reference location as Chow and
Churchfield). The reference frame is shown in Fig.3.1
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(a)Wing and left plane mesh.

(b) Stream-wise plane cut at the wing mid chord.

(c)Wing surface mesh.

Figure 3.3: Overview of the mesh generated with ICEM.
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(a) Span-wise plane cut.

(b)Wing surface mesh.

Figure 3.4: Overview of the unstructured higher-order mesh generated with GMSH.

x+ y+

Figure 3.5: Surface distribution of x+ and y+.



4
Results and discussion

4.1. Wing surface
4.1.1. Skin friction field
When studying complex three-dimensional flows, the skin friction field visualization allows inferring
distinct topological features of the near-wall flow [22]. Fig.4.1 and 4.2 show the wing surface skin
friction lines obtained with the SA-NEG turbulence model. No apparent differences are observed in the
SST model results. From Fig.4.1 we can observe the highly three-dimensional nature of the flow near
the wing cap. Due to the span-wise pressure gradient (Fig.4.7) generated by the wing tip leakage, the
flow streamlines deviate outboard on the pressure side and inboard on the suction side. The skin friction
lines mirror this behavior. Away from the tip, instead, the skin friction lines are quite two-dimensional.

On the suction side, after about 55% of the chord near the wing cap, there is a region of skin friction
lines that are skewed outboard converging to the same line. Fig.4.2 clearly shows two converging lines,
one in the wing cap and one in the suction side at the beginning of the wing tip revolution, separated
by a diverging line. No singular points are observed in the skin friction line topology. As observed by
many authors in numerical simulations and experiments [47, 5, 37, 10], skin friction lines converging to,
or diverging from, a line is an on-wall signature of three-dimensional flow separation (line convergence)
and reattachment (line divergence).

In contrast to what Prandtl [32] showed for a two-dimensional steady flow 1, the presence of singular
points is not a necessary condition for separation in three-dimensional flows. Only the existence of a
converging line is required. The separation mechanism of three-dimensional flows along a converging
line that does not emanate from a saddle point is reported in the literature as ”open” separation [50],
by contrast to the ”closed” type postulated by Lighthill [19]. It is also called a local separation line
because it does not lead to a global separation, characterized by a zone of stagnant fluid or reversed
stream-wise flow, but only to the local departure of the shear layer from the surface. By looking at
Fig. 4.3, 4.4, and 4.5 we can observe the open separation mechanism. The shear layer departs from
the surface at the first converging line in the wing tip and wraps up to feed a vortical structure. The
divergent line instead corresponds to a region of flow reattachment. Two vortices can be observed,
a primary one above the wing and a secondary smaller vortex placed underneath the first shifted to
the left. They can be distinguished by the presence of a saddle point in the cross-flow velocity, which
can be better seen in Fig.4.16. Their interactions and influence are hard to infer. As we move from
x/c = −0.2 (Fig.4.3) to x/c = −0.125 (Fig.4.4) we observe that the first vortex size has increased and
its core has moved upward. By looking at the velocity on the XY plane (Fig.4.5), we observe that the
second converging line is a signature of flow departure from the surface, which moves upward to the
primary vortex location.

The surface oil flow visualization of Chow reports a highly similar flow topology. The main difference
is observed at the wing root. At this location, the experimental results show skin friction lines slightly
moved outboard due to a horseshoe vortex generated by the wing junction with the viscous wall.

1For two-dimensional flows, Prandtl showed that separation from a no-slip boundary takes place at isolated points where the
wall shear stress vanishes.

21
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(a) Suction side

(b) Pressure side

Figure 4.1: Skin friction lines on the wing surface, colored by the skin friction coefficient cf = τw/(0.5ρUref). Where τw is the
wall shear stress. The lines were obtained using the line integral convolution (LIC) vector field visualization in the open source

software Paraview.
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4.1.2. Pressure field
The surface pressure results corroborate the flow features inferred from the skin friction field visual-
ization. The span-wise pressure gradient generated by the finite wing that causes the streamlines
deviation can be observed in the static pressure coefficient contours in Fig.4.7, where Cp = (P −
Pref )/(0.5 ρU

2
ref ). The suction side is more excited by the wing tip flow leakage. The stagnation line

is nearly straight for most of the span on the pressure side, while it significantly reduces on the suction
side near the wing cap region (as can also be observed in Fig.4.10a). The minimum pressure coeffi-
cient is Cp_min = −2.9, which is 9.8% lower than the one reported by Chow. Away from the wing tip,
the flow approaches two-dimensional behavior in both the pressure and suction sides. On the latter,
we observe a favorable pressure gradient on the x-direction for about 60% of the chord. This result is
in good agreement with what was observed by Chow.

Fig.4.8 gives a better view of the static pressure coefficient distribution along the wing cap. In the
initial portion of the wing tip, far from the separation lines seen in the skin friction results, the surface
pressures taper off to gradually equalize themselves at the wing tip. Instead, on the suction side in
the lower rear part of the wing tip, the presence of the primary vortex causes a suction peak, colored
in green in Fig.4.8. The vortex and its core can be clearly identified in the streamlines visualization
in Fig.4.9. Recalling Fig.4.3 and 4.4, we observe that this suction region is located next to the upper
open separation line and corresponds to highly skewed outboard skin friction lines. Given that the
primary vortex is rotating in a clockwise direction, we can assume that the vortex is inducing a cross-
flow velocity component on the surface that contributes to the surface streamlines deviation. The latter,
in turn, causes a tangential velocity and pressure decrease on the surface and, therefore, the suction
peak. A larger suction region is observed in the lower rear part of the wing tip next to the tip separation
line. Recalling Fig.4.2, we notice that this region corresponds to highly curved skin friction lines caused
by flow whipping around the tip. These two suction regions are also observed in the experimental
results of Chow.

A significant difference between the SA-NEG (Fig.4.7a) and SST (Fig.4.7c) turbulence models re-
sults is the stream-wise extension of the suction region below the primary vortex. The SST model
predicts a more extended region, which implies an earlier formation of the vortex.

By looking at the cross-flow Cp distribution in the cut plane located at x/c = −0.35 (Fig.4.10e) and
at x/c = −0.125 (Fig.4.10e) we observe two suction peaks. The higher one is associated with the
secondary vortex outboard the wing tip, while the other is with the primary vortex above the suction
side. At x/c = −0.35, the two models predict the same higher peak, while the SST model gives a higher
prediction for the second one. At x/c = −0.125, the two models predict a similar lower peak, while the
maximum peak is higher in the SA-NEG prediction. The surface region (peak width) interested by the
two Cp minima in the two predictions is comparable. The same figure also presents the skin friction
cross-flow profiles predicted at the same locations of the pressure distribution. Associated with the
pressure peaks of x/c = −0.35 and x/c = −0.125, we observe an increase of the Cf magnitude. No
peak is observed at x/c = −0.9. At x/c = −0.35 the two lines crosses between −0.10 < z/c < −0.15,
indicating the start of separation. At x/c = −0.125 the same point is located further from the wing tip
between −0.15 < z/c < −0.20. The effects of the Reynolds number at the same span-wise locations
can be observed in Fig.??. The main difference are observed at x/c = −0.35, where the two models
at lower Reynolds predict higher skin friction magnitude peaks. At x/c = −0.125, a lower distance is
observed between the skin friction profiles of the two flow conditions. At the same location we observe
lower suction peaks for Re = 1.2 x 106.

Skin friction and static pressure peaks are also observed along the middle of the wing tip in Fig.4.6.
The static pressure coefficient steadily rises between −0.8 < x/c < −0.5, then a suction peak is
observed between −0.3 < x/c < −0.1. At the same location, a skin friction coefficient increase is
observed. In both cases, the predictions of the SA model are higher. Going to lower Reynolds, we
observe lower suction peaks and a slightly higher skin friction coefficient distribution. The peaks of the
latter are shifted to the left, indicating a small movement of the converging line.

The effects of the primary vortex on the surface pressure and skin friction distributions can also
be observed in Fig.4.12a,b,c,d. The latter presents the stream-wise Cf and Cp profiles predicted by
the two turbulence models, taken at z/c = −0.065 and z/c = −0.023. The pressure coefficient re-
sults are compared to the experimental results of Chow, shown in black squares, and the numerical
simulations of Churchfield, shown in dotted lines. The latter are obtained using SA and SST models
with rotations/curvature corrections (SA-RC and SST-RC). At z/c = −0.065, located next to the suction



4.1. Wing surface 28

1.0 0.8 0.6 0.4 0.2 0.0
x/c

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

C
p

SA-NEG | Re = 4.6E6
SA-NEG | Re = 1.2E6
SST | Re = 1.2E6
SST | Re = 1.2E6

(a)

1.0 0.8 0.6 0.4 0.2 0.0
x/c

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

C
f

(b)

Figure 4.6: Static pressure and skin friction coefficient distribution along the wing tip centerline.

region below the primary vortex, a pressure drop is noted between −0.2 < x/c < 0. The SA-NEG
and SST predictions are in good agreement with the experimental and numerical results, only slightly
under-predicting the pressure drop. More pronounced differences between the models are observed
at z/c = −0.0235, located in the suction region core. Here the leading edge suction peak reduction
is correctly caught by all the models, while the pressure drop, now interesting −0.4 < x/c < 0, is
under-predicted by the SA-NEG and SST models. We observe that the SST prediction is closer to the
experimental results and similar to the SA-RC one of Churchfield. Instead, the SA-NEG model predicts
a narrower and higher peak. Looking at the skin friction distribution, both models predicts separation
between −0.8 < x/c < −0.6 for both span locations. An increase in the coefficient magnitude is noted
in the same location of the suction peak. As for the Cp distribution more marked differences in Cf

magnitude are observed at z/c = −0.0235. Here the SST model predicts a higher skin friction peek
between −0.5 < x/c < 0.

The effects of the Reynolds number on the two stream-wise skin friction and pressure profiles are
shown in Fig.4.12e,f,g,h. At z/c = 0.625 no evident differences are observed. At z/c = 0.675, going
to a lower Reynolds number, both models show a decrease in the pressure drop magnitude. The
decrease is more pronounced in the SST predictions. By comparing with the results of Lombard, we
observe that the implicit LES profiles are shifted upwards with respect to the SA-NEG and SST profiles
at both locations. A possible explanation for this might be a different reference location to define the
pressure coefficient. While we use the same reference location of Chow, x = −1.1344c, y = 0.3423c
and z = 0.0969, Lombard provides no information on the reference used. We also observe that at z/c =
0.675, the LES computations predict a higher magnitude of the pressure drop caused by the primary
vortex. Regarding the skin friction distribution, the profiles are shifted upwards at lower Reynolds. The
separation location is still predicted between −0.8 < x/c < −0.6, and a slightly higher skin friction peak
is observed at z/c = −0.065 between −0.4 < x/c < 0.

The total lift and drag of the wing, obtained by numerically integrating the surface pressure, are
reported in Tab.4.1. We observe that the CL and CD prediction of the various simulations are compa-
rable, with an 11% increase in the drag coefficient going to lower Reynolds simulations. The maximum
difference in the lift coefficient concerning the experimental results of Chow is 11.7%. We observe
that the difference may be linked to the inviscid condition used for the tunnel wall at which the wing
is attached. In the experimental results, a horseshoe vortex is observed at this location, which is not
represented by the numerical simulations.
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(a) (b)

(c) (d)

Figure 4.7: Surface static pressure coefficient contours. (a) Suction side SA-NEG model. (b) Pressure side SA-NEG model.
(c) Suction side SST model. (d) Pressure side SST model.
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Test Case Reynolds Number CL CD

SA-NEG 4.6 x 106 0.559 0.051

SST 4.6 x 106 0.57 0.052

SA-NEG 1.2 x 106 0.569 0.057

SST 1.2 x 106 0.569 0.057

Chow et al. 4.6 x 106 0.51 -

Table 4.1: Total lift and drag of the wing as predicted by the numerical simulations and experiment. Churchfield and Lombard
simulations do not compare in the table because they do not provide any values for these quantities. Chow only provides an

estimation of the CL.

Figure 4.8: Surface static pressure coefficient.



4.2. Vortex formation and propagation 31

Figure 4.9: Vortex visualization using three-dimensional streamlines extracted from the velocity field. The streamlines are
colored by the normalized helicity, defined as inner dot product of velocity and vorticity vectors, H = (U · ω)/(|U ||ω|). This

physically represents the angle between the velocity and vorticity fields, and it helps to visualize the vortex core (characterized
by the alignment of the two vectors). In this case, one can notice that the vortex core, in dark blue, is placed on the lower rear

part of the wing tip directly above the suction side.

4.2. Vortex formation and propagation
As gathered by the results of Sec.4.1, the flow over the wingtip develops into a highly skewed three-
dimensional boundary layer that rolls up and detaches into a rapidly rotating vortex. As reported by
Chow, the vortex core is characterized by an increasing low-pressure region that gradually accelerates
the fluids entering into a jet-like behavior. A turbulence model is supposed to accurately predict the
boundary layer roll-up on the wing surface and the vortex evolution in the near field downstream.

A typical way to analyze the performance of the RANSmodels in this context is to study the evolution
of the mean quantities along the vortex centerline. However, we first need to define how the latter is
identified.

4.2.1. Vortex centerline identification
Although the notion of vortex is widely used in fluid dynamics, no definitive and unambiguous definition
exists to describe it. As an example, vortices are often identified as regions of high vorticity. However,
no universal threshold exists over which vorticity is considered high. Moreover, vorticity may also be
high in flows where no vortices are present, as in parallel shear flows. Therefore it is not surprising that
the three literature references define the vortex centerline in different ways.

Chow identifies the vortex center as the point of local minimum cross-flow velocity. The centerline is
then defined by considering several cutting planes with a stream-wise normal direction and computing
the vortex center for each. The union of the different centers defines the centerline segments. Lombard
uses the same method to determine the centerline. However, the vortex center is identified as the point
of local pressure minimum. Instead, Churchfield favors an automated algorithm based on the velocity
gradient tensor eigen-analyses. The algorithm is fully described in [44]. It firstly identifies throughout
the mesh regions of swirling flow, characterized by a pair of complex eigenvalues and a real one. To
compute the eigenvalues of the tensor, all the mesh elements are broken into tetrahedra (if not already
of this element type) since they have precisely the correct amount of grid points to compute a unique
velocity gradient tensor (constant over the entire element). If swirling, the direction orthogonal to the
spiral plane, associated with the real eigenvalue, is used as the swirl axis. This direction is subtracted
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Figure 4.10: Cross-flow skin friction coefficient magnitude Cf and static pressure coefficient Cp distribution at three
stream-wise locations.



4.2. Vortex formation and propagation 33

0.60.50.40.30.20.10.00.1
z/c

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C
p

SA-NEG | Re = 4.6E6
SA-NEG | Re = 1.2E6
SST | Re = 4.6E6
SST | Re = 1.2E6

(a) x/c = −0.9

0.60.50.40.30.20.10.00.1
z/c

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

C
f

(b) x/c = −0.9

0.250.200.150.100.050.000.050.10
z/c

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C
p

(c) x/c = −0.35

0.250.200.150.100.050.000.050.10
z/c

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

C
f

(d) x/c = −0.35

0.250.200.150.100.050.000.050.10
z/c

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C
p

(e) x/c = −0.125

0.250.200.150.100.050.000.050.10
z/c

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

C
f

(f) x/c = −0.125

Figure 4.11: Cross-flow skin friction coefficient magnitude Cf and static pressure coefficient Cp distribution at three
stream-wise locations for different Reynolds.
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Figure 4.12: Stream-wise skin friction coefficient magnitude Cf and static pressure coefficient Cp distributions at two
span-wise locations. (a), (b) compares the pressure profiles with the reference results of Churchfield and Chow. (e), (f), (g), (h)

compares with simulations done at lower Reynolds number and with the reference results of Lombard.
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from the nodal velocities, and if the resulting reduced velocities are equal to zero in the element face,
the latter is marked. With two or more marked faces on the element, the vortex centerline has pierced
the cell. These lines are then collocated and drawn to display the core segments. The algorithm is
implemented in the visualization software Paraview by an external plugin called ”VCG vortex centerline”,
which can be found in [48].

Although automated, Churchfield centerline identification still requires manual tuning and adjust-
ments since regions of swirling flow can also be detected in secondary vortices and in the formation of
boundary layers. Instead, the methods used by Chow and Churchfield may be sensible to the cutting
plane choice. In particular, we observe that two choices can be made: use planes with normal direc-
tion aligned to the stream flow (vertical planes) or aligned to the wing mean chord (orthogonal planes),
which in this case is inclined by 10°. To define the best method to use, we analyzed the sensitivity to
the plane choice of the pressure minimum method in Fig.4.13a and 4.13b and cross-flow minimum in
Fig.4.13c and 4.13d, with respect to the centerline position prediction. Then in Fig.4.13e and 4.13f we
compare their results (found using vertical planes) with the ones obtained using the VCG plugin. While
the minimum pressure method is independent of the plane choice, the cross-flow technique provides
different predictions between −0.4 < x/c < −0.1, depending on the plane inclination. The minimum
pressure centerline identification results are also comparable to the ones of the VCG algorithm. The
method used by Lombard seems to be the best choice since few manual adjustments are required in
this test case, and the results do not depend on the choice of vertical or orthogonal planes. Therefore,
we adopted the same centerline identification procedure to study the mean quantities evolution along
the vortex core.

4.2.2. Vortex centerline mean quantities evolution
Fig.4.14 reports the evolution of the principal mean quantities along the vortex centerline. Fig.4.14a,b,c,d
compares the results of the SA-NEG and SST models against the reference results of Chow and
Churchfield.

All themodels give centerline location predictions in good agreement with the experimental results of
Chow, with a maximum discrepancy on the y location between 0 < x/c < 0.2. In particular, we observe
that the SST model performs better in the y-position prediction than the same model with rotation
corrections. While the SA model span-wise centerline location is the closer to the experimental results,
with the SST model that predicts a more straight movement of the core. The SST prediction of the static
pressure coefficient is close to the experiment between−0.3 < x/c < −0.1, then between 0 < x/c < 0.6
it predicts a repressurization of the vortex core, which is in disagreement with the experimental results.
A similar behavior is also observed in the SA-NEG model and in the u/Uref plot, where both models
predict a sharp decrease of the axial velocity after x/c = −0.1. The distance between the models and
the experimental results is connected to the Boussinesq hypothesis. As shown in the viscosity ratio
distribution νT /ν in Fig.4.15, the region downstream the wing is dominated by the eddie viscosity, which
acts as an additional viscosity diffusing the mean quantities.

A similar behavior is observed in the u/Uref . Both models predict a sharp decrease after x/c = −0.1,
which disagreeswith the experimental results. The results obtained at a lower Reynolds, Fig.4.14e,f,g,h,
show similar behavior. The centerline position prediction is very similar to the higher Reynolds one.
However, we observe that the results of Lombard predict a slightly lower vertical center position. The
static pressure coefficient and axial velocity evolution is comparable to the one obtained at higher
Reynolds, with the curves slightly shifted downwards (in the Cp plot) and upward (in the u/Uref plot)
after x/c = −0.1.

Fig.4.15 also shows the distributions of the total pressure coefficient and the adimensional Reynolds
stress norm. Where the first is defined as:

Cp0 =
P0 − P0ref

0.5 ρref Uref
(4.1)

with P0 = P (1+ γ−1
2 M2)

γ
γ−1 the total pressure, and the Reynolds stress norm distribution is defined

as:

∥
⟨
u′iu

′
j

⟩
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⟩
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Figure 4.13: Centerline position prediction for different identification methodologies.
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with
⟨
u′iu

′
j

⟩
defined using the Boussinesq hypothesis. The norm is then adimensionalised by the

square of the reference velocity. We observe that total pressure losses characterize the core vortex
region over the wing. Then downstream, the wing Cp0

tends to rise gradually due to the increasing
importance of the eddie viscosity. The latter causes momentum transfer from the exterior streamwise
flow to the vortex core, reducing the gradients in this region. Downstream the wing, we also observe
a decrease in the Reynolds stress norm. We observe that the very low values of the latter in the
central vortex region are connected to the symmetries in the stress pattern, which can be better seen
in Fig.4.22.

4.2.3. Vortex development in the near wake
From the skin friction field visualization, we observed that the RANS models correctly reproduce the
main topological flow feature over the surface, notably the open-separation and the primary and sec-
ondary vortex formation. Fig.4.16 gives a better view of the vortical structures predicted by the SA-NEG
model. Two vortices can be clearly observed, separated by the saddle point. The stream-wise vortic-
ity visualization is particularly interesting. We can clearly observe the shear layer departure from the
surface toward the vortical structures.

As seen in the previous section, the RANS models also give centerline location predictions in good
agreement with the experimental results of Chow. It is now interesting to compare the vortex shape
predicted by the RANSwith the experimental and numerical reference data. The cross-flow field stream-
lines predicted by the SA-NEGmodel at x/c = −0.115 (Fig.4.16) are in good agreement with the results
of Lombard, shown in Fig.4.17, which, however, predict a more isotropic round shape of the vortex. We
observe that the shape of the experimentally obtained vortex is closer to the one of the RANS compu-
tations. However, the experiment streamlines do not show the secondary vortex. One explanation is
the probe spacing, which is not refined enough to be able to represent the secondary structures.

More similar to the reference results (Fig.4.19) are the cross-flow streamlines computed at x/c =
0.452. Here, the experimental results of Chow report a kink of the vortex, which is believed to be
caused by the presence of a secondary vortex orbiting around the primary one. The evidence of this
secondary vortex can be seen in both cross-flow fields of Chow and Lombard as flat spots in the
cross-flow streamlines. The latter are spot between 0.01 < y/c < 0.07 and 0.03 < z/c < 0.06 in the
experimental results and 0.06 < y/c < 0.1, 0.03 < z/c < 0.06 in the LES simulations. These flat
spots can also be seen in the SA-NEG predictions between 0.04 < y/c < 0.07, 0.03 < z/c < 0.06.
More interestingly, looking at the stream-wise vorticity distribution in Fig.4.20, one can notice a weaker,
counter rotating vortex associated with the region interested by the vortex kink.

Similar cross-flow field visualizations were obtained for the SST model. They are not shown for
brevity.

4.3. Reynolds stress evolution in the near wake vortex
In his paper, Chow used three hot-wire anemometers to measure turbulent fluctuation in the flow field
over the wing and downstream. He reported significant levels of all three anisotropic Reynolds stress
components in the vortex andmisalignment with their corresponding strain rate components. The offset
of the two tensors is observed to be more pronounced with the downstream distance.

By comparing the Reynolds shear stresses predicted by the SST model at x/c = 0.452 in Fig.4.22
with Chow’s experimental results, shown in Fig.4.21, we clearly observe that, in the RANS simulations,
⟨u′v′⟩, ⟨u′w′⟩ and ⟨v′w′⟩ align themselves with the corresponding mean strain rate, completely loosing
the misalignment observed in the experiment. However, we observe that the linear eddie viscosity
model predicts the same two-lobe pattern of ⟨u′v′⟩, ⟨u′w′⟩ and four leaf pattern of ⟨v′w′⟩. Similar results
were obtained from the SA-NEG model. No further analyses were possible due to the absence of
additional data, given the experimental results. We further observe that, in his work, Churchfield also
reports a failure of the misalignment prediction of the SA and SST model with rotation correction.
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Figure 4.14: Flow means quantities evolution along the cortex centerline. In (d) and (h), the continuous black line illustrates
the wing position.
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Figure 4.16: Cross-flow field streamlines at x/c = −0.115 obtained using line integral convolution visualization in Paraview,
colored by the adimensional axial velocity u/Uref on top, and the stream-wise vorticity vector component ωx =
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on the bottom.
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Figure 4.17: Cross-flow field streamlines at x/c = −0.115 computed by Chow in (a) and Lombard in (b), taken from [23]. The
axes were translated to coincide with the ones used in the present work.
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Figure 4.18: Cross-flow field streamlines at x/c = 0.450 obtained using line integral convolution visualization in Paraview,
colored by the adimensional axial velocity u/Uref .
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Figure 4.19: Cross-flow field streamlines at x/c = 0.450 computed by Chow in (a) and Lombard in (b), taken from [23]. The
axes were translated to coincide with the ones used in the present work.
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Figure 4.20: Cross-flow field streamlines at x/c = 0.450, colored by the the stream-wise vorticity vector component
ωx =

(
∂uz
∂y

− ∂uy
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)
. To better visualize the vortex kink, (b) shows a close-up of (a) near the primary vortex.
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Figure 4.21: Reynolds shear stresses and mean strain rates measured by Chow at x/c = 0.452, taken from [7].

y/
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Figure 4.22: Reynolds shear stresses predicted by the SST model at x/c = 0.452.
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Figure 4.23: Instantaneous Mach number visualization on the domain periodic boundary at t = 0.074s.

4.4. LES computations
In this section, we will give a qualitative overview of the instantaneous flow surrounding the extruded
airfoil, which will be helpful in the future development of the work. Due to the high computational
requirements, it was not possible to have a steady-state simulation to analyze in the present work.
Fig.4.23, 4.24 and 4.25 presents the results obtained. After 265 hours of computations, using 1152
CPUs in parallel, we were only able to simulate 0.074s of flow evolution, corresponding approximately
to two through-flow times (time required by the flow to cross one chord length). We observe that the
transient solution, coming from the flow initialization, is still present in the domain, only at one chord
length distance from the airfoil.

Nevertheless, the flow around the airfoil appears well established, with a Kármán vortex street
clearly visible downstream of the airfoil. The pressure and velocity gradients around the airfoil appear
to be entirely included in the structured boundary layer mesh. The boundary layer grows going toward
the trailing edge. However, no severe separation is observed. Considering the span-wise velocity and
vorticity components on the surface, shown in Fig.4.26 we observe that the boundary layer transition on
the suction side occurs very close to the leading edge, while no transition is observed on the pressure
side.

The flow visualization suggests that the highly refined unstructured mesh region around the airfoil
could be reduced to the vortex region shedding from the trailing edge. This would allow to increase
the number of elements in the structured boundary layer mesh, reducing x+, without increasing the
computational cost. Additionally, the computational domain length could be reduced by introducing a
sink term at the outflow to prevent instabilities. This would also save computational resources and
discharge the transient solution more rapidly.
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Figure 4.24: Instantaneous pressure gradients visualization on the domain periodic boundary at t = 0.074s.

Figure 4.25: Instantaneous velocity gradients visualization on the domain periodic boundary at t = 0.074s.

(a) Span-wise velocity component uz .
(b) Span-wise vorticity component ωz .

Figure 4.26: Span-wise velocity and vorticity components on the extruded airfoil surface at t = 0.074s.



5
Further discussion and future work

indications
Although we could not fulfill the project’s initial objective, failing to compute the entire wing’s LES simula-
tion, we still can provide indications of possible future work based on the comparison with the reference
experimental and numerical data.

Key points must be addressed to improve the turbulence closure using amachine learning approach.
First, one should define the ”learning strategy” to use. During the learning process, the algorithm
determines how to define the model that best approximates the given inputs’ output. By looking at the
previous work in the literature, we observe that the most common approach used is supervised learning
[20, 38, 12, 21]. In this kind of machine learning, we start from a labeled learning sample (a data set)
and define a specific loss function, an objective function measuring the distance between the predicted
output and the desired one. The algorithm will adjust the internal model parameters so that the final
function minimizes the loss over the known data. Of course, the data set and loss function choices will
influence the outcome.

Although databases of experimental measurements and DNS data are readily available, they are
only restricted to simple cases which have only limited relevance in more complex problems. Therefore,
future work should focus on determining the flow conditions of interest to define the data set. We
observe that for the flow studied in the present paper, one could consider a database containing different
airfoils and flow configurations. In the RANS results, we observed that the Raynolds number influences
the surface’s suction and skin friction coefficient peaks. Having a data set composed of only one flow
condition would lead to ”overfitting”, whichmeans that the learnedmodel will be able tominimize the loss
function in the training data set, but it will give a high error on unseen data. Besides outlining different
flow conditions, model evaluation criteria and error metrics should be defined during the calibration
process to avoid model overfitting.

Another point to consider when defining the data set would be the data-model consistency. Suppose
machine learning is applied directly to the data. The difference between the learning environment (high
fidelity data composing the data set) and the model environment may cause a consistency problem.
DNS and LES data may be the best choice in this context since they allow high control of the setup and
boundary conditions definition. For example, they may enable excluding possible vortex-tunnel wall
interactions and the influence of the probes used to measure the data in the experiments. However,
the main drawback of these numerical simulations is their computational cost, posing limitations in the
Reynolds number.

Having created a data set, the next step is defining the loss function parameters. The first point is
that the more parameters the loss function needs, the more data are required in the training process.
Thus themorememory the data set would require. The comparison between the RANS simulations and
the experimental data of Chow showed that Linear Eddie Viscosity models could correctly characterize
the wing surface flow and the vortical structures’ topology. However, they fail to predict the evolution of
the mean quantities on the vortex core. The main limitations of the models are the diffusive effect of the
turbulent viscosity in the vortex region and the models’ specific assumption, which assumes a linear
relationship between the Reynold stress tensor and the mean strain rate. Focusing on improving the
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Figure 5.1: Schematic of tensor basis neural network proposed by Ling et al., taken from [20].

capabilities of the turbulence closure on the predictions of persisting non-local anisotropies, given that
the invariant tensor components are known from high fidelity simulations, one could use the indicator
proposed by Schmitt [35] as a loss function prameter:

ρRS =
|R : S|
∥R∥∥S∥

(5.1)

where S is the symmetric part of the velocity gradient tensor andR are the Reynolds stresses. It should
be observed that ρRS is a measure of the alignment between the two tensors and takes continuous
values between 0 and 1. Another possible loss function parameter to use in the training process is the
turbulent viscosity ratio. Evidently, a combination of the two loss functions can also be used.

The last points to discuss are the model we would like to improve and the machine learning archi-
tecture. Looking at the literature, we observe that an active area of research involves deep learning
methods. These are representation-learning methods with multiple levels of representation, obtained
by composing simple but non-linear modules that each transform the representation at one level. The
main advantage of the technique is the possibility to define complex non-linear parametric models giv-
ing high freedom in the definition of the neural network’s internal parameters.

In the literature, deep learning methods are implemented following two main approaches. The first
is to focus on specific closure components and introduce correction terms that can be learned from the
data. For example, Singh and Duraisamy [38] used field inversion in simple neural network architecture
to build corrective terms for the Spalart Allmaras model. A spatially varying term β(x) is introduced as
a multiplier of the production term in the SA equation. The authors observe that the introduction of
β(x) changes the entire balance between the production and dissipation of turbulent kinetic energy,
directly affecting the eddie viscosity prediction. The neural network is defined using β as the model to
learn. Following this philosophy, future work could focus on how inverse modeling can improve non-
local models, as the Lag-RST model proposed by Olsen and Coakley [28]. The latter takes a baseline
two-equation model (as Wilcox’s k − ω) and couples it with a third relaxation equation modeling the
non-equilibrium effects of the eddie viscosity. In this context, inverse modeling could be used to infer
the spatial distribution of model discrepancies and then use deep learning to reconstruct the relaxation
equation. The definition of the inverse problem and input features are critical points in this formulation
and possible sources of errors.

A second approach is using neural networks to improve Non-Linear Eddie Viscosity models. In
this context, we observe that deep learning allows to directly tailor the neural network architecture to
satisfy physical and mathematical constraints. As example, Ling et al. [21] developed a deep neural
network architecture (Fig.5.1) based on the tensor polynomial decomposition proposed by Pope [30].
The main advantage of this framework is that it directly incorporates Galilean invariance into the tensor
predictions. The model would, however, still imply the Boussinesq hypothesis’s intrinsic assumption.
Therefore, the future work should first analyze the influence of the non-local transport process in the
vortex region, which was not possible in the present work.



6
Conclusion

Computations of a wingtip vortex flow were conducted using the open source software SU2 to analyze
the accuracy of two Linear Eddie Viscosity turbulence models: the Negative Spalart-Allmaras and the
Menter’s Shear Stress Transport models. The geometry selected for the study is a NACA-0012 half
wing mounted at the wall, with a rounded end cap and trailing edge, inclined by 10° at its quarter chord.
Two flow conditions were investigated: Re = 4.3 x 106 and Re = 1.2 x 106. The computed flow is
compared against the experimental data proposed by Chow et al. [7] and the RANS simulations of
Churchfield et al. [8] for the first Reynolds number and against the implicit LES simulations predictions
of Lombard et al. [23] for the second.

It was found that the Linear Eddie Viscosity models can predict the flow’s main topological features.
Both SA-NEG and SST models predict the wing tip open separation after about 55% of the chord, as
reported in Chow’s experiments. Moreover, the visualization of the cross-flow lines combined with the
skin friction field clearly shows the presence of two interacting vortical structures in the experimental
data. A second vortex is also observed in the cross-flow field downstream of the wing at x/c = 0.450,
where it causes a deviation of the streamlines, often reported in the literature as vortex ”kink”.

The presence of the two vortices is associated with two suction regions on the wing surface. Using
span-wise cuts, we highlighted the suction and skin friction magnitude peaks related to the two vortices.
A higher pressure drop was noted in the wing tip region. Both models predict a surface static pressure
distribution in good agreement with the one observed by Chow, with amaximum lift coefficient difference
of 11.7% observed in the SA-NEG results. It was also noted that the SST prediction of static pressure
profile in the suction region under the vortex at z/c = −0.023 is closer to that of the experiment. At
lower Reynolds, a clear difference is observed between the RANS and reference LES predictions. The
static pressure profile predicted by the first shows a lower peak of the suction region below the primary
vortex at z/c = −0.023, while in the seconds, we observe a sharp higher suction peak.

The models’ vortex centerline location predictions show good agreement with the experimental
results. Notably, we observe that the y and z centerline positions computed by the standard SST
model are closer to the reference data than the one calculated by Churchfield, using the same model
with rotation corrections. However, a substantial discrepancy is observed between the mean quantities
evolution in the vortex core computed by the SA-NEG and SST models and the one measured in the
experiment. It was noted that this divergence between the numerical simulations and the experimental
results is connected to the eddie viscosity, which is three orders of magnitude higher than the physical
one in the vortex region and causes a diffusion of the mean quantities. Another consequence of the
turbulence viscosity ratio increase is a reduction of the Reynolds stress magnitude downstream of the
wing. The SA-NEG and SST models cannot reproduce misalignment with their corresponding strain
rate components observed in the experiment.

Although we could not fulfill the project’s initial objective, failing to compute the LES simulation of the
entire wing, we could still provide indications on possible future work based on comparing the RANS
results with the reference experimental and numerical data.

The results show that the Linear Eddie Viscosity models can correctly characterize the flow on the
wing surface and the topology of the vortical structures. However, they fail to predict the evolution
of the mean quantities on the vortex core. Future work should therefore consider implementing deep
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learning strategies to build improved turbulence closure models. Notably, we observed that the tensor
basis neural network proposed by Ling et al. [20] could allow the construction of a physical informed
architecture that directly embeds the influence of the streamline curvature on the Reynolds stress tensor.
Another approach is using the field inversion technique proposed by Parish and Duraisany [12] to infer
the spatial distribution of model discrepancies and then use deep learning to reconstruct the relaxation
equation of the Lag-RST model [28].

We observed that both suggested approaches are supervised learning methods. Therefore, before
considering the implementation of these two deep learning strategies, one should define the data set
on which the model is trained and the loss function to minimize. Regarding the high fidelity data, future
work should focus on DNS and LES simulation, which allow a high control of the setup. The data set
should be constructed considering different flow conditions (angle of attack, Reynolds number) and
different airfoil shapes. The first step in this way would be continuing the present work by improving the
LES mesh to increase the boundary layer grid definition and obtain a three-dimensional computation
around the wing. Comparing the LEVM results against the reference data, we noted that the main
limitations of the models are the diffusive effect of the turbulent viscosity in the vortex region and the
models’ specific assumption. Therefore, possible loss function parameters that can be used are the
indicator proposed by Schmitt [35], measuring the alignment between the Reynolds stress and the
mean strain rate tensors, and the turbulent viscosity ratio.
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