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Abstract

Antiferroelectric (AFE) materials have been of interest in the application of high-energy-density
capacitors and strain-induced actuators. However, there are only a few identified AFE materials,
most belong to oxide perovskites, such as PbZrO3, PbHfO3, and NaNbO3. We rationalize the
limited number by providing their restricted criteria. The ground state of an AFE is nonpolar
and experiences a phase transition to a symmetry-related polar phase under a sufficiently large
electric field. To exhibit the phase transition, the energy of the polar phase should be close to the
nonpolar ground state and their energy barrier should be flat enough. For the nonpolar perovskites,
it is commonplace that the high energy barrier hinders the AFE characteristic. The purpose of
the thesis is to understand the microscopic origin of the flat energy barrier in the prototypical
AFE material, PbZrO3. We make this by comparing PbZrO3 to CaTiO3 in the second-principles
models since these two materials share similar structures at high temperatures. We identify that
the difference in atomic interactions, Pb-O in PbZrO3 and Ca-O in CaTiO3, is crucial for the
energy barrier between the nonpolar ground states and the polar phases. Additionally, by tuning
the coefficients, we reproduce the nonpolar-polar phase transition path of PbZrO3 on the CaTiO3

second-principles model. The Pb-O interactions cannot be reproduced by the hydrostatic pressure
in CaTiO3.
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Chapter 1

Introduction

Perovskite, originally defined as minerals of CaTiO3 (CTO), was named after a Russian min-
eralogist, Lev Perovski. Since the description of CTO crystal structure in the early 20th century,
the definition of perovskite gradually extended to a group of compounds, which share the same
high-symmetry crystal structure with CTO at high temperature. Thus, the chemical formula of
perovskites is written in the same form, ABX3, where A and B are cations, such as barium, cal-
cium, and lead ions, and X is an anion, such as oxygen and sulfur. Here, we will focus on the oxide
perovskites with X = O. It is customary to demonstrate the unit cell of the high-symmetry phase
in cubic, as illustrated in Figure 1.1. In the cell, cation A and B are respectively located at the
corner and in the middle of the cell, while anions are situated at the center of six faces, forming
an octahedral oxygen cage around a B cation.

Figure 1.1: Ionic configuration of perovskite materials in cubic phase. The pink, blue, and gray dots
are representative of A, B, and X ions. X ions around B ions form a regular octahedron, whose faces are
colored in gray.

During the decrease in temperature, the ionic configuration of perovskites can deviate slightly
from the cubic phase, resulting in low-symmetry condensed phases. Goldschmidt tolerance factor
is a well-known index to predict the distortion pattern of condensed phases from the cubic one [1].
It is a static argument that measures the stability of ions, in comparison with the compact cubic
structure by the equation,

t =
(rA + rX)√
2(rB + rX)

, (1.1)

where r denotes the radius of the free ion in the subscripts. The factor
√

2 is the ideal ratio of
A-X to B-X bond length in the cubic phase. A compact ideal perovskite possesses a tolerance

1



2 CHAPTER 1. INTRODUCTION

factor 1. When t < 1, A-ion is smaller than that in the ideal perovskite; the distortion is mostly
dominated by oxygen cage rotation (Figure 1.2 (a)) with minute A-ion distortion (Figure 1.2 (b)),
such as CTO (t ≈ 0.97) and SrZrO3 (t ≈ 0.95) [2]. When t > 1, it turns that B-ion is smaller
than the ideal case. Thus, the distortion is mostly dominated by B-ion displacement (Figure 1.2
(c)), for example, BaTiO3 (t ≈ 1.07) and PbTiO3 (t ≈ 1.02) [2]. However, the tolerance factor
does not provide the information about the inter-cell correlation of distortion. The magnitude and
direction of cation distortion might be different in the adjacent cells, while along the rotation axis
of the oxygen cage, there is freedom for adjacent layers to rotate different degree. Therefore, the
rich distortion freedom in the perovskites leads to a wide range of condensed phases.

x

y

z

(a) (b) (c)

Figure 1.2: Schematic representations of distortion pattern (a) A-ion distortion (b) B-ion distortion (c)
oxygen cage rotation in a single lattice layer (001), according to the prediction of Goldschmidt tolerance
factor. The multiple arrows indicate the uncertainty of direction.

The diverse distortion pattern of perovskites results in their versatile electric properties and en-
suing applications. Hence, they have attracted intensive research in the experimental and theoret-
ical aspects in recent decades [3]. According to the behavior of the material property, polarization
P, with respect to an external electric field E, we can classify perovskites into four kinds: paraelec-
tric (PE), ferroelectric (FE), antiferroelectric (AFE), and antiferrodistortive (AFD). Figure 1.3 (a)
illustrates the distinct S-shape P-E curve of PE perovskites. At 0-field, the PE materials possess a
net-zero value of polarization. When providing a small electric field, the polarization climb along
the steep slope until a critical electric field. At a higher electric field, the increase in the electric
field only induces a minute change change in polarization. Most cubic perovskites at high temper-
atures belong to this category. FE perovskites exhibit spontaneous polarization at 0-field. There
are two or more possible directions for spontaneous polarization and can be switched from one to
another by an external electric field. They feature a polarization hysteresis loop with respect to
the electric field, as illustrated in Figure 1.3 (b). FE perovskite was firstly discovered in BaTiO3.
Subsequently, PbTiO3 and KNbO3 are also identified as FE materials. Despite the great number
of non-perovskite FE materials, the industry mainly relies on the FE oxides in the application of
data storage, sensors, etc [4]. Consequently, we display the typical double hysteresis loop of AFE
perovskites in Figure 1.3 (c). They manifest zero polarization at 0-field. With the application
of an external electric field, the polarization increases linearly with a gradual slope. Around the
forward cohesive field EF , the polarization surges due to the onset of spontaneous polarization in
materials. After that, AFE materials present the linear response at larger field. When we start to
decrease the electric field, the polarization drops dramatically around the backward cohesive field
EB (EB < EF ), since the spontaneous polarization vanishes. Therefore, AFE materials manifest
a double hysteresis loop. The first AFE material, PbZrO3 (PZO) was reported by Shirane et
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al. [5]. Following the discovery of PZO, several AFE perovskites are identified in the consequent
years, including PbHfO3 and NaNbO3. The last category, AFD, only shows a linear response of
polarization with respect to an external electric field, as shown in Figure 1.3 (d). In practice, A
large number of perovskites belongs to this category, including CTO, SrZrO3, and SrTiO3 [6].

(a)

E

P

(b)

E

P

(c)

E

P

(d)

E

P

Figure 1.3: Schematic representation of (a) S curve in PE materials, (b) (single) hysteresis loop in FE
materials, (c) double hysteresis loop in AFE materials, and (d) linear relation in AFD materials. The
shaded area, U =

∫
E · dP, is the recoverable energy density stored in these four materials under an

electric field.

The scientific intent for AFE materials is due to their application in high-energy-density capac-
itors [7]. We demonstrate the energy storage U of these four materials by the shaded area in the
Figure 1.3. As shown in these figures, AFE materials show higher energy density storage under
an electric field and are more competent for high-energy capacitors. Unfortunately, compared to
other categories, only a limited number of AFE materials are identified, among them mostly are
perovskites. Therefore, studying the underlying principles for AFE perovskites becomes essential
to search for new AFE perovskites.

Since the discovery of FE materials, several theories have developed to describe its mecha-
nism and to predict the material properties [4]. In the early stages, the most successful Landau-
Ginzburg-Devonshire (LGD) model expands the energy on a polynomial function in respect of
macroscopic thermodynamic properties. Here, we give the simplest example of LGD model for FE
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materials, which expands free energy to 4th order regarding the polarization along the z-axis,

G(Pz, T ) = G0 + α(T )P 2
z + βP 4

z − Ez · Pz. (1.2)

The coefficients of the expansion model were determined by contemporary experimental results.
With the obtained coefficients, the model was able to predict the spontaneous polarization at arbi-
trary temperature. Consequently, Cochran introduced microscopic expansion parameters, normal
modes, in LGD model. Normal modes are a set of mutually-orthogonal atomic displacements,
which are well-compatible with the atomic distortion in perovskites. Starting from 1990s, first-
principles calculation, referring to the computation of material properties from the knowledge of
basic physics quantities and theories, became widespread due to the revolution of computational
power. Hence, some static properties are predictable by computational simulation. Nonetheless,
the size of simulation systems is still limited in a few hundred atoms and the timescale in a few
picoseconds (10−12 s). It brings difficulties to describe the lattice dynamics at a finite tempera-
ture, such as the polarization in FE and AFE materials. One developing solution is to build the
connection between LGD model and first-principles calculation. The LGD model is expanded with
respect to lattice degrees of freedom, and the coefficients are determined by fitting the results of
first-principles calculations. It releases a part of the computational burden and keeps the compu-
tational prediction power without the involvement of empirical results, hence, receives its name,
second-principles method (SP method). So far, the second-principles model for FE materials, PTO
and STO [8], and for an AFD material, CTO [9], has been established and describe well the behav-
ior at finite temperature. These models are validated to predict the phase transition temperature
and equilibrium structure of metastable phases in respect of temperature.

Among a large number of perovskites, CTO has a similar tolerance factor as the prototyp-
ical AFE material PZO does. They possess nonpolar ground states with different space group
symmetry; PZO is Pbam, while CTO is Pnma. Besides, as the temperature increases from their
ground state, their phase transition behavior displays a large difference in the temperature range
and in intermediate phases. Finally, under an application of electric field, PZO manifests a double
hysteresis loop of polarization, classifying it as AFE materials; CTO shows a linear response of
polarization. Hence, CTO is classified as an AFD material.

It is questionable why PZO is AFE while CTO is not, in consideration of their structural
similarity in the cubic phase. It is also attractive to investigate if CTO can be made AFE under
appropriate external constraints. These are the questions we want to address in the present work
relying on SP modeling.

This work is organized as follows. In chapter 2, we stepwise introduce the building block
of SP model in theoretical and computational aspects. All of them are based on the modern
strategy to solve the Schrödinger equation. Chapter 3 explicitly elucidates the distortion patterns
of perovskites from the microscopic perspective. We relate them to the polarization behavior in
materials and deduce the clear criteria of AFE materials. Consequently, we address these criteria
on concerned materials, PZO and CTO, in chapter 4, and rationalize their ground state difference.
In chapter 5, we attempt to identify the essential terms in CTO SP model to make it an AFE
energy landscape by imposing some external constraints. Finally, we summarize this thesis in
chapter 6.



Chapter 2

From First- to Second-principles
Modelling

Generally, first-principles calculations refer to the computation at a quantum level; namely, ob-
taining the energy and material properties by solving Schrödinger equation. The modern strategies
to conduct first-principles calculations is too time-consuming to describe the full energy landscape.
SP model tackles this problem by expressing the energy landscape in a polynomial function. The
coefficients are derived by first-principles techniques, including density functional theory (DFT)
and density functional perturbation theory (DFPT). Hence, it preserves the predicting capability of
first-principles calculations, and can easily deal with lattice dynamics. In this chapter, we demon-
strate the theoretical scheme to establish an SP model based on first-principles calculations [8],
the algorithm in the software package Abinit and Multibinit, and computational parameters.

2.1 Generalities

In quantum mechanics, we describe substance with particle wave functions Ψ(r,R, t), which
can be obtained by solving Schrödinger equation,

ĤΨ(r,R, t) = ih̄
∂

∂t
Ψ(r,R, t), (2.1)

where the variables r, R, and t respectively represent the coordinates of electrons, the coordinates
of nuclei, and the time. The square of a wave function is the physical quantity, possibility density
function. Therefore, the wave function shall obey the constrain,

⟨Ψ|Ψ⟩ = 1. (2.2)

In the stationary condition, the Hamiltonian operator Ĥ is independent on the time variable.
Hence, it allows the separation of spatial and temporal variables to decompose the Schrödinger
equation. With the solution of the temporal Schrödinger equation, the full wave function is written
as

Ψ(r,R, t) = ψ(r,R)exp(−iEt
h̄

). (2.3)

The spatial wave function ψ(r,R) is then solved by the stationary Schrödinger equation,

Ĥ(r,R)ψ(r,R) = Eψ(r,R), (2.4)

5
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in which the Hamiltonian operator in the simplest case is written as,

Ĥ(r,R) = −1

2

∑
i

∇2
i −

∑
I

1

2MI

∇2
I +

1

2

∑
i ̸=j

1

|ri − rj|
+

1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
−
∑
i,I

ZI

|ri −RI |
, (2.5)

The terms individually denote the kinetic energy of electrons, the kinetic energy of nuclei, Coulomb
repulsion energy between electrons, Coulomb repulsion energy between nuclei, and Coulomb at-
traction between electrons and nuclei. Accordingly, we write out the individual terms of the
Hamiltonian operator in the following form,

Ĥ(r,R) = T̂e(r) + T̂N(R) + V̂ee(r) + V̂NN(R) + V̂eN(r,R). (2.6)

The stationary Schrödinger equation is not analytically solvable for many-body systems. With
the adoption of the Born-Oppenheimer approximation, we decompose the Schrödinger equation
into electric and nuclei ones [10]. It supposes the instantaneous optimization of electron coordinates
with respect to ionic configurations due to their large mass difference. Therefore, the spatial wave
function is reformulated as the product of the nuclei and electron wave function

ψ(r,R) = ψe(r;R)ψN(R). (2.7)

After substituting the reformulated wave function into Schrödinger equation, and approximat-
ing that the electronic wave function changes slowly with respect to the nuclei coordinates, the
Schrödinger equation decomposes into{

Ĥeψe(r;R) = Ee(R)ψe(r;R)

ĤNψN(R) = EψN(R)
, (2.8)

where electron and nuclei Hamiltonian operators are{
Ĥe(r,R) = T̂e(r) + V̂ee(r) + V̂NN(R) + V̂eN(r,R) = T̂e(r) + V̂ee(r) + V̂ext(r;R)

ĤN(R) = T̂N(R) + Ee(R)
. (2.9)

Compared to the energy in the electronic Schrödinger equation, only the kinetic energy of nuclei
is added to the total energy. Hence, supposing the freezing nuclei motion in a given configuration,
the electron energy with respect to ionic configuration, Ee(R), constructs the Born-Oppenheimer
potential energy surface (PES). At 0K, the ground state of the system is located at the minimum
of PES (neglecting quantum fluctuation), while the energy of the system fluctuated on the PES at
finite temperature due to nuclei vibration. Therefore, we focus on solving the electronic Schrödinger
equation in the first-principles calculations. Nowadays, many softwares conducting first-principles
calculations follow Kohn-Sham’s formalism of density functional theory (DFT) [11]. It uses an
ionic configuration and the hypothetical electron density to construct a non-interacting fictitious
system and derive the electronic energy and wave function. Nonetheless, it requires first-principles
calculations on numerous ionic configurations to set up a good description of PES, which is time-
consuming.

To circumvent the cumbersome calculations, SP model expands the PES by a Taylor-like poly-
nomial function at a reference structure (RS) with respect to lattice degrees of freedom λ (system-
atical ways to describe ionic configuration R in periodic system),

E(λ) = ERS +
∂E

∂λ

∣∣∣∣
RS

λ+
1

2

∂2E

∂λ2

∣∣∣∣
RS

λ2 +
1

6

∂3E

∂λ3

∣∣∣∣
RS

λ3 + · · · , (2.10)
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and determine the coefficients from a limited set of first-principles data.
Throughout this work, we use the CTO SP model in the reference paper [9], whose construction

follows the algorithm presented in the reference paper [8]. The 0th-ordered coefficient, the energy
of the reference structure, is directly determined by first-principles calculations. To reduce the
terms in the PES model, a typical choice of a RS is an energy local minimum or a saddle point,
where the first derivative of energy vanishes. When the material property of a (meta) stable phase
is of interest, the phase is chosen as the RS. On the other hand, when the space group symmetry of
the (meta) stable phases belongs to the subgroup of a higher one, it is convenient to set the high-
symmetry structure as the RS. The high symmetry structure would be located at a saddle point
on the PES, and we can use the RS as the benchmark to compare the stability of phases. Based
on the electronic wave function and energy of RS, the coefficients of harmonic terms are obtained
by density functional perturbation theory (DFPT) [12]. Finally, the anharmonic coefficients are
fitted by the results of first-principles calculations on several ionic configurations. According to
the approach to obtain the coefficients, we can divide the SP model into three parts,

E(λ) =

DFT︷︸︸︷
ERS +

DFPT︷ ︸︸ ︷
Ehar(λ) +

fitting︷ ︸︸ ︷
EAnh(λ) . (2.11)

Our second-principles model uses the software package Abinit to perform the first-principles
calculations, and construct harmonic coefficients through the algorithm of DFPT. Besides, they
also use Abinit to produce the first-principles data for the training set, a collection of ionic
configurations to fit the anharmonic coefficients. The computed results are lateral fitted by the
software package Multibinit.

2.2 Perturbation parameters

The common perturbation parameters λ include homogeneous strains, which describe the shape
change in the unit cell, and atomic displacements in the relative coordinate of the unit cell, and
electric field. We define the structural parameters (strains and atomic displacements) in a periodic
system through the deviation of the atomic position from the reference structure. At the reference
structure, the atomic position vector is given by

rai = Ra + τ i, (2.12)

where Ra denotes the vector of the lattice point a with respect to the origin, while τ i denotes
the position of atom i inside a unit cell with respect to the lattice point. At a perturbed ionic
configuration, the atomic position vector relative to the reference structure is given by a matrix
M and an atomic displacement vector uai,

r′ai = Mrai + uai = (ηinh + ηh)(Ra + τ i) + ui (2.13)

The matrix M is composed of inhomogeneous strain ηinh and homogeneous strain ηh. They are
respectively responsible for the rigid rotation and shape deformation of lattice grid. Figure 2.1
illustrates the individual contributions from the reference structure to the perturbed one. The rigid
rotation of the lattice grid does not lead to an energy difference, the shape deformation causes
the change in the bond length and therefore the energy. In the following content, we take the
homogeneous strain as the perturbation, and the subscript h would be dropped.
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Ra

τ i

(a)

O

ηinhRa

ηinhτ i

(b)

O

MRa

Mτ i

(c)

O

MRa

Mτ i

ui

(d)

O

Figure 2.1: Atomic position vector evolution from (a) reference structure. The stepwise involvement of
(b) inhomogeneous strain ηinh, (c) homogeneous strain ηh, and (d) atomic displacement u result in the
final atomic position vector in the distorted structure. The block with solid line is the unit cell, while the
block with dashed line is the one in the previous step.

Conjugating coefficients. The lower-order derivatives of the energy with respect to these param-
eters correspond to a range of physical quantities. The first-order energy derivative with respect
to u, η, and ξ corresponds to force Fi, stress σ, and polarization P, while the second-order energy
derivative with respect to those parameters results in interatomic force constant matrix K, elastic
modulus matrix c, and low-frequency dielectric permittivity tensor ε∞. The mixed first-order en-
ergy derivative with respect to u and η is defined as the strain-phonon coupling coefficient matrix
Λ, while that with respect to u and ξ is Born effective charge Z∗, and that with respect to η and
ξ is the piezoelectric tensor d. Table 2.1 summarizes these physical quantities and their related
perturbation parameters.

Table 2.1: Physical meanings of the energy derivatives in the lower order

1st 2nd
u η ξ

u F K Λ Z∗

η σ Λ c d
ξ P Z∗ d ε∞

Base transformation of atomic perturbations. In most condensed phases of perovskites,
the atomic perturbations manifest a periodicity, and the position of atom i in each cell forms the
points on a periodic function. Hence, we can use the wave-vector-characterized perturbations,
λ = δeiq·r, to describe the atomic perturbations. We express the conjugating harmonic coefficient
with a tilde, K̃(q), in order to distinguish it from that of atomic displacements. Here, q denotes
the wave vector of the perturbations. Its inverse implies the number of cubic cells to construct
the supercell to describe the full perturbation pattern. Among the q-points, we call those corre-
sponding to the small supercell ”high-symmetry q-points”, and give them symbolic Greek letters.
We list the high-symmetry q-points of cubic perovskites, which are used in this work, in Table
2.2. We can take a step further to combine several atomic distortion waves at a given q-point
to a set of phonon modes, whose conjugated coefficients are the eigenvalues of K̃(q), so that the
interaction between two phonon modes vanishes. Figure 2.2 depicts these three kinds of bases
in a two-atomic lattice model in a 2 × 1 × 1 supercell. The atomic can only distort along the
z-axis. These bases are individually sufficient to construct any atomic distortion in the z direction
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Table 2.2: Greek notation, reciprocal coordinates, and distortion periodicity of high-symmetry q-points
in cubic perovskite

letter qx qy qz supercell (respect to cubic cell)
Γ 0 0 0 1 × 1 × 1
X 0 0 1/2 1 × 1 × 2
M 0 1/2 1/2 1 × 2 × 2
R 1/2 1/2 1/2 2 × 2 × 2
Σ 0 1/4 1/4 1 × 4 × 4
S 1/2 1/4 1/4 2 × 4 × 4

in the supercell. To be general, all the phonon modes in the reciprocal space can construct any
atomic perturbations in the real space. Our second-principles model uses the first basis for atomic
perturbation parameters. The wave-vector-characterized perturbation is used for computational
calculation, while phonon modes basis is for the curvature analysis of PES.

(a)

(b)

(c)

Figure 2.2: Three atomic distortion bases, including (a) Single atomic displacement, (b) wave-vector-
characterized displacement, and (c) phonon modes, for the two-atomic model in a 2×1×1 supercell. The
atoms are located at (0.5,0.3) and (0.5,0.7), whose positions at coordinate y are labelled by the dashed
lines.

2.3 Density functional theory

Among the method to approach the solution of the electronic Schrödinger equation, DFT has
achieved the most successful results so far. The term, density functional, denotes that the variable
of the Schrödinger equation adopts the electron density ρ(r) instead of the electronic coordinates
r. It reduces the dimension of the Schrödinger equation from 3Nel to 3. The modern formalism of
density functional theory has been established for over half of a century[13]. In 1964, Hohenberg
and Kohn showed the one-to-one correspondence between external potential Vext and ground state
electron density ρGS(r) [14]. It indicates the ground state can be derived by minimizing the energy
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functional,

E[ρ(r), Vext(r)] = ⟨ψ|Ĥ|ψ⟩ =

∫
Vext(r)ρ(r)dr + ⟨ψ|T̂ + V̂ee|ψ⟩ (2.14)

In 1965, Kohn and Sham formulated a good approximation of the second term in energy functional.
They set up a fictitious system, where the non-interaction fermions move in an effective potential
Veff . Due to its non-interaction feature, the Schrödinger equation can be formulated as a single-
particle partial differential equation, which is called the Kohn-Sham equation,

f̂KSϕ = ϵϕ, (2.15)

where

f̂KS = −1

2
∇2

i + Veff [ρ(r)] = −1

2
∇2

i +

∫
ρ(r′)

|r− r′|
dr′ + VXC [ρ(r)]. (2.16)

The obtained eigenfunctions are named Kohn-Sham orbitals. The non-interaction fermions fill in
these orbitals from the bottom of the energy level. With the adoption of the fictitious system, the
energy functional becomes,

E[ρ(r), Vext(r)] =

∫
Vext(r)ρ(r)dr +

∑
i

⟨ϕi|T̂ |ϕi⟩ +
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
dr′dr + EXC [ρ(r)]. (2.17)

The physical meanings of the first three terms in energy functional are the interaction between
electrons and external fields, the fictitious kinetic energy, and the classical Coulombic repulsion
between electrons. The final term, exchange-correlation energy functional includes the correction
of the kinetic energy and captures all quantum effects, which lack analogy in classical physics.
The DFT accuracy relies on the analytical form of exchange-correlation energy functional, which
is divided into two main categories: local density approximation (LDA) and generalized gradient
approximation (GGA). LDA expands the energy functional only on electron density ρ(r), while
GGA expands it on both electron density and gradient of electron density |∇ρ(r)|. The equation
2.17 adopts the formalism of LDA. For the sake of accuracy, the parameters in exchange-correlation
energy functional varies with systems so that we need to specify the name of functional, usually
its inventor. Our model uses the GGA exchange-correlation energy functional with the Wu-Cohen
parameterization, which is implemented in the package Abinit [9].

Computational parameters. In the real computation, the Kohn-Sham orbitals are expanded
on a set of orthogonal basis. The common orthogonal bases are atomic orbitals and plane waves.
The former is frequently used in more localized systems, such as molecules, while the latter is more
useful in periodic systems. Our second-principle model was based on the first principle calculation
by the package Abinit, which takes the plane waves as the basis set. The Kohn-Sham orbitals are
written as

ϕ(r) =

∫
cqe

iq·rdq =
∑
m

∫
B.Z.

ck,me
i(k+Gm)·rdk, (2.18)

where Gm is the reciprocal lattice point, and k is the vector in the first Brillouin zone. To limit
the number of plane waves, we set an upper bound, energy cutoff Ecut. For h̄q > Ecut, we set the
coefficients as zero. Inside the energy cutoff, we simplify the integral by the summation over a
k-point grid.

ϕ(r) =
∑
m

∫
B.Z

ck,me
i(k+Gm)·rdk →

∑
k,m

ck,me
i(k+Gm)·r (2.19)
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Figure 2.3: The blue markers label the wave vectors of plane wave basis set (a) in the complete set and
(b) in the real computation, with 4× 4 k-point grid and a Ecut = 1.5 [Bohr−1].

Hence, the optimization of energy functional turns to tune a limit number of coefficients ck,m.
Before initiating a first-principles calculation, a convergence test on the density of the k-point grid
and the value of energy cutoff is necessary to check the sufficiency of coefficients in this material.
Our CTO model used a 8 × 8 × 8 k-point grid and an energy cut, Ecut = 40 [Hartree] (≈ 1090
[eV]), in first-principles calculations.

2.4 Harmonic coefficients

2.4.1 Density functional perturbation theory

Theoretically, perturbation theory can determine all the coefficients in the polynomial function
of PES from the solution of the Schrödinger equation at a RS [12]. It expands the Hamiltonian
operator, eigenvalues, and eigenfunctions on Taylor’s series with respect to a time-independent
perturbation parameter λ at RS,

Ĥ(λ) = Ĥ(0) + Ĥ(1)λ+ Ĥ(2)λ2 + ...

|Ψn(λ)⟩ = |Ψ(0)
n ⟩ + |Ψ(1)

n ⟩λ+ |Ψ(2)
n ⟩λ2 + ...

En(λ) = E
(0)
n + E

(1)
n λ+ E

(2)
n λ2 + ...

(2.20)

The superscript d denotes a dth-order correction, while the energy corrections are the coefficients
in the second-principles model. We insert equation 2.20 into the electronic Schrödinger equation
(equation 2.8) and the constraints of the wave function (equation 2.2), they are decomposed into
sets of equations due to the arbitrariness of λ.

λ0 : {Ĥ(0) − E
(0)
n } |Ψ(0)

n ⟩ = 0

λ1 : {Ĥ(0) − E
(0)
n } |Ψ(1)

n ⟩ + {Ĥ(1) − E
(1)
n } |Ψ(0)

n ⟩ = 0

λ2 : {Ĥ(2) − E
(2)
n } |Ψ(0)

n ⟩ + {Ĥ(1) − E
(1)
n } |Ψ(1)

n ⟩ + {Ĥ(0) − E
(0)
n } |Ψ(2)

n ⟩ = 0
...

. (2.21)
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λ0 : ⟨Ψ(0)

n |Ψ(0)
n ⟩ = 1

λ1 : ⟨Ψ(0)
n |Ψ(1)

n ⟩ + ⟨Ψ(1)
n |Ψ(0)

n ⟩ = 0

λ2 : ⟨Ψ(0)
n |Ψ(2)

n ⟩ + ⟨Ψ(1)
n |Ψ(1)

n ⟩ + ⟨Ψ(2)
n |Ψ(0)

n ⟩ = 0
...

. (2.22)

We can derive the energy correction of concerned-order i by inserting the correction of the wave
function ⟨Ψ(i−d)| in the set of equations 2.21 and summing over these equations. We take the
2nd-order energy correction for example,

0 = ⟨Ψ(2)
n |{Ĥ(0) − E

(0)
n }|Ψ(0)

n ⟩
+ ⟨Ψ(1)

n |{Ĥ(1) − E
(1)
n }|Ψ(0)

n ⟩ + ⟨Ψ(1)
n |{Ĥ(0) − E

(0)
n }|Ψ(1)

n ⟩
+ ⟨Ψ(0)

n |{Ĥ(2) − E
(2)
n }|Ψ(0)

n ⟩ + ⟨Ψ(0)
n |{Ĥ(1) − E

(1)
n }|Ψ(1)

n ⟩ + ⟨Ψ(0)
n |{Ĥ(0) − E

(0)
n }|Ψ(2)

n ⟩
.

(2.23)
In the above equation, the summation of terms in each row and each column is zero. We eliminate
the first row and the last column from the equation. In the remaining terms, we can further simplify
the equation by introducing equation 2.22. Finally, we derive the 2nd-order energy correction,

E(2)
n = ⟨Ψ(1)

n |{Ĥ(0) − E(0)
n }|Ψ(1)

n ⟩ + ⟨Ψ(1)
n |Ĥ(1)|Ψ(0)

n ⟩ + ⟨Ψ(0)
n |Ĥ(1)|Ψ(1)

n ⟩ + ⟨Ψ(0)
n |Ĥ(2)|Ψ(0)

n ⟩ . (2.24)

Following the scheme, the corrections of energy and wave function are known to n-th order, we
can compute the (2n+1)th-order correction of energy. It’s the ”2n+1” theorem in perturbation
theory. Since the derivation of energy correction terms follows the DFT strategy, we name the
full method density functional perturbation theory. With the coefficients obtained by DFPT, the
accuracy of PES is not assured to be higher as we truncated the energy correction at a higher order.
Additionally, it is time-consuming to compute high-order energy corrections. Therefore, we only
keep the result of DFPT to the harmonic level, which has corresponding physical quantities. For
the high-order terms, we derive the coefficient by fitting the first-principles results, which assure a
higher accuracy compared to DFPT.

In Abinit, it is optional to derive harmonic coefficients by DFPT during the first-principles
calculations. Abinit uses the wave-vector-characterized perturbations, λ1 = δiαe

iq·r and λ2 =
δjβe

iq·r, to compute the energy correction terms, instead of atomic displacements [15, 16]. To
distinguish them from the atomic displacements, we use the tilde to specify the energy correction
of wave-vector characterized perturbations, Ẽ

(2)
ijαβ(q). We drop the band subscript n, since we only

concern the lowest energy band. The term is linked with the harmonic coefficient with a factor of
2,

K̃ijαβ(q) = 2Ẽ
(2)
ijαβ(q). (2.25)

Consequently, we demonstrate the strategy to transform the harmonic coefficients of wave-vector-
characterized perturbations into those of atomic displacements and phonon modes.

2.4.2 Coefficients in the basis of atomic displacements

We derive the IFC matrix by inverse Fourier transformation of wave-vector-characteristic har-
monic coefficients [16]. Practically, the integral is by a summation on a l ×m× n q-point grid,

Kijαβ(0, b) =
(2π)3

Ω0

∫
BZ

K̃ijαβ(q)eiq·Radq → Kijαβ(0, b) =
(2π)3

Ω0

∑
q∈grid

K̃ijαβ(q)eiq·Ra . (2.26)
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The discreteness of inverse Fourier transform approximates the IFCs in the l×m×n supercell, and
considers the IFC vanishes outside the supercell. Nonetheless, the dipole-dipole interaction between
local dipole moments results in the slow decay of IFC regarding the distance. The long-range IFCs
are underestimated. We deal with the issue by taking dipole-dipole interaction separately. We
write out the dipole-dipole interaction in analytic form both real and reciprocal space. For the
IFC in the supercell, we subtract the effect of dipole-dipole interaction to get the short-range
interactions in the reciprocal space,

K̃SR
ijαβ(q) = K̃ijαβ(q) − K̃DD

ijαβ(q). (2.27)

Subsequently, we make a Fourier summation of short-range interactions,

KSR
ijαβ(0,b) =

∑
q∈grid

K̃SR
ijαβ(q)eiq·Ra . (2.28)

Finally, we add the dipole-dipole interaction in the real space,

Kijαβ(0,b) = KSR
ijαβ(0,b) +KDD

ijαβ(0,b). (2.29)

Note that we directly take the dipole-dipole interaction for IFCs outside the supercell. Our SP
model adopts the atomic displacement for the perturbation parameters so that they are the har-
monic coefficients appear in the model.

2.4.3 Coefficients in the basis of phonon modes

We obtain the harmonic coefficients for phonon modes by solving the eigenvalue equation,∑
jβ

K̃ijαβ(q)ηn(q) = Λn(q)ηn(q), (2.30)

where the indices of eigenvectors iα are replaced with the notation of phonon modes, n, which
arranges in the order of eigenvalues from the small value. With the adoption of the phonon modes
basis, the mixed first-derivative of energy with respect to phonon modes vanishes,

E = ERS +
1

2

∑
abijαβ

Kabijαβuaiαubjβ → E = ERS +
1

2

∑
q

∑
n

Λn(q)η2n(q). (2.31)

In fact, the eigenvalues Λn,iα are correlated with physical values due to the relationship between
IFCs and atomic force,

Faiα = −
∑
bjβ

Kabijαβubjβ = Mi
∂2uai
∂t2

. (2.32)

We make a Fourier transformation on both sides of the equation,

Mi(iωn(q))2ηn(q) = −
∑
n

K̃ijαβηn(q), (2.33)

where ω(q) is the frequency of wave transportation. By eliminating the negative sign on both sides
of the equation, we obtain the eigenvalue

Λn(q) = Miωn(q)2. (2.34)
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We can take one step further to let the reciprocal IFC to absorb the effect of atomic mass. This
matrix is called a dynamical matrix with the notation D̃ijαβ. Consequently, we derive the eigen-
values and eigenvectors of the dynamical matrix.

ωn(q)2 γn(q)︸ ︷︷ ︸
√
Miηn

=
∑
n

D̃ijαβ︸ ︷︷ ︸
K̃ijαβ/

√
MiMj

γn(q)︸ ︷︷ ︸√
Mjηn

. (2.35)

We write the energy function with respect to the eigenvectors of the dynamical matrix,

E = ERS +
1

2

∑
q

∑
n

ω2
n(q)γn(q). (2.36)

The square of eigenfrequency, ω2
n(q), indicates the curvature of energy landscape with respect to an

eigenvector of a phonon mode. Phonon modes with negative curvature (ω2 < 0) are unstable or soft
since the reference structure is located at an unstable equilibrium point along the phonon mode
distortion (dashed red curve in Figure 2.4). Conversely, phonon modes with positive curvature
(ω2 > 0) are stable (dashed blue curve in Figure 2.4).

γn

E

ω2 > 0

ω2 < 0

Figure 2.4: The solid curves are the energy landscape along the eigenvector of two phonon modes at the
harmonic level. The blue solid curve corresponds to the stable phonon modes with positive curvature, so
that the distortion is unfavorable, while the red solid curve corresponds to the unstable phonon modes with
negative curvature so that the distortion is favorable. The dashed curves are the full energy landscapes,
which consider anharmonic effects.

In the end, we clarify the terminology relating to phonon modes for the following context. Gen-
erally, we refer to a certain phonon mode by its symbolic Greek letter (when at high-symmetry
q-point) and the subscript n (the one in the equation 2.30), such as Γ1. Due to the symmetry,
there might be some degenerate phonon modes, whose eigenfrequencies are the same. We refer to
a collection of degenerate phonon modes by putting multiple subscripts, for example, Γ1,2,3. As for
eigenvalues and eigenvectors of IFC in reciprocal lattice and dynamical matrix, we denote ηn(q)
as (phonon) eigendisplacement, γn(q) as phonon modes, and ωn(q) as eigenfrequencies or phonon
frequencies.

Phonon dispersion curve. To visualize all unstable phonon modes, we plot phonon frequencies
regarding q-points on a phonon dispersion curve. We label the imaginary phonon frequencies (its
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square corresponds to the negative coefficient) in the negative direction on the phonon dispersion
curve. Practically, we compute the phonon frequencies on the discrete q-points and interpolate
the discrete phonon frequencies in the same notation of phonon modes to form the phonon band
structure. In this work, we plot the phonon dispersion curve on 2 × 2 × 2 q-points grid.

2.5 Anharmonic coefficients fitting

In the previous section, we have shown that the truncation order of DFPT causes a problem
in the accuracy of PES. Hence, instead of using the anharmonic coefficients from DFPT, our SP
model fits these coefficients from the first-principles energy data of a set of ionic configuration,
which we refer to a training set. According to the associated parameters, the anharmonic part can
be further divided into three parts: anharmonic phonon, anharmonic strain, and their mixture, as
written in the following,

EAnh(u,η) = Ep
Anh(u) + Es

Anh(η) + Esp
Anh(u,η). (2.37)

We list the terms in these parts to the third order,

Ep
Anh(u) =

1

6

∑
ijkαβγ

∂3E

∂uiα∂ujβ∂ukγ

∣∣∣∣
RS

uiαujβukγ + ... =
1

6

∑
ijkαβγ

K
(3)
ijkαβγuiαujβukγ + ... (2.38)

Es
Anh(η) =

1

6

∑
abc

∂3E

∂ηa∂ηb∂ηc

∣∣∣∣
RS

ηaηbηc + ... =
1

6

∑
abc

C
(3)
abcηaηbηc + ... (2.39)

Esp
Anh(u,η) = 1

6

∑
aijαβ

∂3E
∂ηa∂uiα∂ujβ

∣∣∣
RS
ηauiαujβ

+1
6

∑
abiα

∂3E
∂ηa∂ηb∂uiα

∣∣∣
RS
ηaηbuiα + ...

= 1
6

∑
aijαβ Λ

(1,2)
aiαjβηauiαujβ + 1

6

∑
ab

∑
iα Λ

(2,1)
abiαηaηbuiα + ...

(2.40)

We label the indices of the unit cell as the letters starting from a, while the letters starting from
i denotes the indices of an atom and the lower case Greek letters are directional indices.

The coefficients, the energy derivative with respect to atomic displacement, are not mutually
independent. They abide by translational invariance. That is, the material properties, such as
energy and forces on atoms, are invariant with the rigid translation. This constraint leads to the
dependence between energy derivatives, the so-called acoustic sum rules (ASRs),∑

i

K
(n)
ijk...αβγ... = 0. (2.41)

The construction of anharmonic terms shall include this constraint by adjusting on-site force
constant. For example, in the harmonic level, we set the self-force constant

K
(2)
iiαβ = −

∑
j ̸=i

K
(2)
ijαβ. (2.42)

The fitting process on the higher order coefficients becomes complicated when imposing the ASRs
[8]. Alternatively, our model uses the atomic displacement difference as the perturbation, which
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automatically satisfies ASRs. Accordingly, the anharmonic phonon and the anharmonic mixture
parts become,

Ep(u) =
1

6

∑
ijklmnαβγ

K̃
(3)
ijklmnαβγ(uiα − ujα)(ukβ − ulβ)(umγ − unγ) + ... (2.43)

Esp
Anh(u,η) = 1

6

∑
a

∑
ijαβ Λ̃

(1,2)
aijklαβηa(uiα − ujα)(ukβ − ulα)

+1
6

∑
ab

∑
ijα Λ̃

(1,2)
abiαηaηb(uiα − ujα) + ...

(2.44)

The tilde notation distinguishes the coefficients of atomic displacement differences from those of
atomic displacements.

Symmetry considerations. In consideration of RS, some perturbations are symmetry equiva-

ionic conf.

E

data
bounded

unbounded

Figure 2.5: A cross-section of PES, whose energy curve is fitted by the results of first-principles calcu-
lations (black dot). The blue fitting curve is bounded, and the red curve is unbounded on the right end.

lent through point-symmetry operations. We can group these terms into symmetry-adapted terms
(SATs), and reduce the independent terms in the model. We present the brief strategy that the
software Multibinit finds SATs. First, we define the set of point-symmetry operations of RS. We
apply a general symmetry operation {S|t}, which includes a rotation matrix S and translational
vector t, on each atom in RS. The symmetry operation is classified as point-symmetry operations
of RS, when it satisfies

{S|t}(Ra + τ i) = R′
a + τ ′

i = Rb + τ j. (2.45)

It implies that for each atom i in cell a, the symmetry operation brings it to a new position, where
there was an atom in the same species before the symmetry operation. Multibinit iteratively
applies the point-symmetry operations of RS to each term, build the group of SATs, and choose
the representative anharmonic coefficients for each SAT. Then, it adopts the revised Escorihuela-
Sayalero’s algorithm to filter the most important SATs and fit their values [17].

At the end, some high-order terms with positive coefficients are added to the model, since the
negative coefficients at the truncated order lead to the physically-incorrect unbounded PES, as
illustrated in the red lines of Figure 2.5. In our CTO model, the first-principles model data are
fitted on the 4th-order polynomial function, and 60 SATs are chosen. The other 300 terms in the
6th- or 8th-order are used to bound the PES.
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2.6 Conclusions

We summarize the progress of the SP model establishment and involving techniques in Figure
2.6. The Born-Oppenheimer approximation separates the electron and nuclei coordinates freedom,
and split the system into electric and nuclei ones. SP model is the polynomial expansion of electric
energy at a stationary ionic configuration. We use Kohn-Sham’s formalism of DFT to compute
the energy of RS, and apply it in the scope of DFPT to get harmonic coefficients, such as elastic
constant and Born-effective charge. As for IFCs, the software package use wave-vector perturbation
to derive the IFCs in reciprocal space. We can obtain IFCs through the Fourier summation on
a q-point grid. On the other hand, the eigenvalues and eigenvectors of the IFC in reciprocal
space build the phonon modes in the phonon dispersion curve, which is useful to identify local
minima on the PES. The establishment of a training set is based on the knowledge of these local
minima. Finally, we utilize DFT to compute the energy of the training set, and fit the anharmonic
coefficients.

Born-Oppenheimer approximation

Second-principles model
E = ERS + Ehar + Eanh

reference structureharmonic coefficients anharmonic coefficients

DFT
R → En(R), ϕn(r;R)

DFPT
δeiq·r → K̃ij

training set

phonon dispersion curve
K̃ → D̃

ω(q)η(q) = D̃η(q)

Figure 2.6: Flow chart of SP model establishment



18 CHAPTER 2. FROM FIRST- TO SECOND-PRINCIPLES MODELLING



Chapter 3

Structures and Properties of Perovskites

In this chapter, we aim to associate the polarization behavior of perovskites with (i) their
distortion patterns and (ii) the energy landscape, especially for the concerned property, AFE. We
start by summarizing distortion patterns of typical soft phonon modes and providing the definition
of AFE the in early stage. Subsequently, we bring the concept of soft phonon modes into AFE
and give it an explicit definition.

3.1 Usual phonon instabilities

Through the relative size of ions, the Goldschmidt tolerance factor predicts the local atomic
distortions in perovskites; however, it does not provide global information about the periodicity
of distortion patterns. Nowadays, the prediction of atomic distortions relies on phonon analysis
around a RS. The sign of conjugated eigenvalues (ω2) determines the stability of phonon modes,
while the q-point describes the periodicity of distortion patterns. We summarize the distortion
patterns of some typical soft phonon modes at high-symmetry q-points around the cubic phase
and list their resulting phases by space group symmetry in Table 3.1. To explain the patterns
generically, we define the unstable cation (A or B) through the Goldschmidt tolerance factor. For
t < 1, unstable cation is A cation; for t > 1, it is B cation.

At Γ-point, the typical unstable phonon modes, Γ1,2,3, are three-fold degenerated due to the
symmetry of the cubic phase. These phonon modes are dominated by the displacement of unstable
cation against oxygen anions and are periodic in 1×1×1 supercell. We plot the eigendisplacement
of Γ1 for unstable A and B cations in Figure 3.1 (a) and (b). We simplify the distortion pattern
of unstable cations (while oxygen moves in the opposite direction) by an arrow representation.
Following this simplification, both Figure 3.1 (a) and (b) are represented in figure 3.1 (c). The
combination of these degenerate modes at Γ results in distortion directions along [001] (Figure 3.1
(c)), [011] (Figure 3.1 (d)), and [111]. They separately condense the cubic phase to low-symmetry
phases with the space group symmetry P4mm, Amm2, and R3m.

AtX-point, the typical softest phonon modes, X1,2 are two-fold degenerate, whose characterized
wave propagates along [100]. They correspond to the transverse anti-parallel distortion of unstable
cation along [010] and [001], as shown in Figure 3.2 (a) and (b). The single mode and their linear
combination lead to two distorted directions along [001] and [011], respectively resulting in Pmma
and Cmmm phases.

At M-point, the typical unstable phonon mode, M1 corresponds to the in-phase oxygen cage
rotations, which in the adjacent layer rotate in the same magnitude and the same direction (Figure

19
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Table 3.1: Space group symmetry of condensed phases, involved unstable phonon modes, and distortion
pattern.

Phases Soft phonon modes polar antipolar Oxygen
P4mm Γ1 [100]
Amm2 Γ1 + Γ2 [110]
R3m Γ1 + Γ2 + Γ3 [111]
Pmma X1 [100]
Cmcm X1 +X2 [110]
P4mbm M1 a0a0c+

Cmmm M2 [100]
Pmma M2 +M3 [110]
P4nmm M4 [001]
I4mcm R1 a0c−c−

Imma R1 +R2 a0c−c−

R3̄c R1 +R2 +R3 a−a−a−

I4/mmm R4 [100]
Imma R4 +R5 [110]
R3m R4 +R5 +R6 [111]
Pnma M1+R1+R2 a+c−c−

R3c Γ1 + Γ2 + Γ3 +R1 +R2 +R3 [111] a−a−a−

(a) (b)
(c) (d)

Figure 3.1: The eigendisplacement of single phonon mode at Γ-point for (a) unstable cation A (t < 1)
and (b) cation B (t > 1) in the cubic cell. Schematic representation of distortion pattern in combination
of phonon modes (c) Γ1 and (d) Γ1 + Γ2.

x

y

z

(a)

x x

(b) (c) (d)

x

x

(e)

Figure 3.2: Displacement pattern of unstable ion against oxygen in the single layer of (001) plane for
the phonon mode (a) X1, (b) X2, (c) M2, (d) M3, and (e) M4. Dots are symbolic of the arrows pointing
out of the plane, and the crosses are of arrows into the plane.
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3.3). Therefore, the distortion pattern can be described in a 2 × 2 × 1 supercell, which constructs
P4mbm phase from the cubic phase. The degenerate second unstable phonon modes, M2,3 are
made of anti-parallel distortion of unstable cation along two propagated directions [100] and [010],
leading to the distortion in a 2 × 2 × 1 supercell. Hence, the distortion along [100] and [010]
are symmetry-equivalent. The single mode and the combination of these two modes bring the
distortion along [100] and [110] directions, as shown in figure 3.2 (c) and (d). These two distortion
pattern brings the cubic phase to Cmmm and Pmma phase. The M4 mode also corresponds to
the wave-characterized perturbation of unstable cation propagating along [100] and [110]. Their
common transverse distortion along [001] results in the phase P4nmm. The distortion pattern is
illustrated in figure 3.2 (e).

At R-point, the typical unstable phonon mode, R1,2,3 is three-fold degenerate. They correspond
to the anti-phase oxygen cage rotations, which in the adjacent layer rotate in the same magnitude
but in the opposite direction. Figure 3.3 depicts the one with the rotation axis along the z
direction. By combining these three modes, the oxygen cage rotation with the rotation axis along
[100], [110], and [111] brings the cubic phase to lower symmetry structure, I4mcm, Imma, and
R3̄c. The second lowest phonon modes at R-point, R4,5,6, are also three-fold degenerate. They are
in charge of the anti-parallel arrangement of unstable cations along [100], [010], and [001]. The
combination of these three modes results in the anti-parallel distortion along [001], [011], and [111]
directions, which respectively result in the phase I4/mmm, Imma, and R3m.

x

y

z

(a) (b)

Figure 3.3: Schematic representation of (a) in-phase (a0a0c+) (b) anti-phase (a0a0c−) oxygen cage
rotation from the top view.

It is necessary to classify the terminology to describe these common distortion patterns in both
the literature and our work. In the perovskites, the distortion of charged components creates local
dipole moments. For the phonon modes at Γ-point, the local dipole moments are aligned in the
same direction. Hence, the phonon modes and the correlated phases are polar. As for the phonon
modes at other q-points, the local dipole moments are compensated in the supercell; hence, the
phonon modes and corresponding phases are antipolar or nonpolar. Intriguingly, most literature
regards the anti-parallel distortions of unstable cations as antipolar, while the oxygen cage rotation
as nonpolar. In fact, it is not formally correct since oxygen also carries a charge so that oxygen
rotation produces an antipolar lattice of dipoles as well. Still, we will stick here with the usual
conventions. We describe the distortion pattern of unstable cations by marking it as (anti-) polar
with its direction, while we use Glazer’s notation to express the oxygen cage rotation pattern
in the form of a+,−,0b+,−,0c+,−,0. The letters indicate the magnitude of rotation with respect to
the rotation axis x, y, and z. The superscript +, −, and 0 are respectively symbolic of in-phase,



22 CHAPTER 3. STRUCTURES AND PROPERTIES OF PEROVSKITES

anti-phase, and no rotation. For example, we label the phonon mode M1, in-phase oxygen cage
rotation, in a0a0c+, and the phonon mode R1, anti-phase oxygen cage rotation, in a0a0c−.

Besides, it is likely that (meta) stable phases are made of two or more phonon modes at different
q-points. For example, Pnma phase is made of in-phase oxygen cage rotation distortion around
one direction and out-phase oxygen cage rotation distortion around the other two directions. R3c
phase is formed by involving polar distortion along [111] direction and anti-phase rotation a−a−a−.

3.2 Antiferroelectricity

Before the discovery of AFE materials, AFE was already a concept inspired by antiferromag-
netic (AFM) materials, whose magnetization M shows a double hysteresis loop with respect to
a magnetic field H. AFM materials also manifest an abnormal magnetic susceptibility at the
phase transition between paramagnetic and AFM phases. The magnetic susceptibility χ of AFM
materials was formulated in the Curie-Weiss law,

χ(T ) = C/(T + θ), (3.1)

where C and θ are material-dependent constants. Around 1950, it was shown that the dielectric
susceptibility of SrTiO3 follows the form of equation 3.1. For that reason, scientists guessed the
existence of AFE materials, which manifests a double hysteresis loop of polarization with respect
to an electric field (Figure 1.3 (c)).

Accordingly, Kittel proposed the first theoretical model for AFE materials in 1951 [18], which
is widely acknowledged to pinpoint the beginning of AFE history. The model follows the scheme
of FE, ferromagnetic (FM), and AFM materials.

From the microscopic perspective, the onset of magnetization is attributed to local magnetic
moments, which originate from the intrinsic spin and orbital motion of electrons. The local mag-
netic moments are randomly oriented in a paramagnetic phase at high temperatures. As the tem-
perature decreases until the Curie temperature Tc,the paramagnetic phase experiences a ”disorder-
order” transition to a magnetically-ordered phase, since some alignment of local dipole moments
becomes energetic favorable. For FM materials, the alignment pattern is parallel (first row in
Table 3.4); for AFM materials it is anti-parallel (second row in Table 3.4). In FM materials, the
aligned direction of local magnetic moments is switchable between two or more energy-equivalent
states at 0-field through an external magnetic field. In AFM materials, the external field favors the
parallel alignment of local magnetic moments; hence, at a critical field, the anti-parallel alignment
is switched to the parallel alignment.

On the other hand, polarization is the summation of local dipole moments, which result from
the displacement of positive and negative charge mass center. It is subtle to define local dipole
moments in the periodic system. In conventions, we define them from a displacive picture in the
cubic cell, as shown in section 3.1. At high temperatures, the cubic perovskite might result from
randomly-oscillated atoms around the cubic configuration or an average structure of some distorted
phases. In the former case, there is no local dipole moment and experiences a displacive phase
transition during cooling. In the latter case, there are some randomly oriented local dipole moments
in the cubic phase. As the temperature decreases until the critical temperature, it experiences a
disorder-order transition. In both cases, the decrease in temperature leads to the onset of local
dipole moments. In the first discovered FE perovskite, BaTiO3, the local dipoles behave as the
local magnetic dipole moments in FM materials (third row in Figure 3.4). Thus, Kittel set a
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two-sublattice model, whose local dipole moments orientation follows the local magnetic moment
pattern in AFM materials (fourth row in Figure 3.4).
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Figure 3.4: Schematic representation of local magnetic/dipole moments pattern in two sublattice model
for (a) FM, (b) AFM, (c) FE, and (d) AFE materials at 0-field and a sufficiently large field.

Kittel established the LGD-like energy function with respect to the local dipole moment in the
sublattice a and b,

G(Pa, Pb, T ) = G0 + α(P 2
a + P 2

b ) + α′PaPb + β(P 4
a + P 4

b ) + γ(P 6
a + P 6

b ) − (Pa + Pb)E,

where the harmonic coefficient is temperature-dependent, α = α′

2
+ λ(T − Tc) so that local dipole

moments (Pa and Pb) vanish above Curie temperature Tc. From the energy model, predict the
dielectric behavior of AFE materials through the definition of dielectric susceptibility,

χ =
dP

dE

∣∣∣∣
E=0

. (3.2)

The model was against the hypothesis of the dielectric susceptibility of AFE materials and deduced
another equation form of their dielectric susceptibility from his model. Here, we only provide the



24 CHAPTER 3. STRUCTURES AND PROPERTIES OF PEROVSKITES

descriptive results. At the Curie temperature, the dielectric susceptibility of AFE material in
Kittel’s model is not anomalously large as FE materials. In the second-order transition case,
where β > 0 and γ > 0, the dielectric constant is continuous; as for the first-order case, where
β < 0 and γ > 0, it is discontinuous.

Soon after the publication of Kittel’s paper, Shirane reported PZO as the first discovered AFE
material [5]. They observed the abnormal dielectric constant from 227◦C to Curie temperature
(233◦C) under a large external electric field (23-30 [kV/cm]). The observation was rationalized by
the double hysteresis curve with respect to an electric field, suggesting the AFE characteristic of
PZO. Immediately after that, Sawaguchi, Maniwa, and Hoshino reported the crystal structure of
PZO by x-ray analysis, revealing the antipolar arrangement of lead ions [19].

Macroscopically, the double hysteresis relationship between polarization and the electric field is
insufficient to assess the AFE character. FE materials can indeed exhibit the same characteristic
under specific conditions [7]. First, there are many defects pinning the local dipole in FE materials,
which hinder their alignment; hence, no polarization is observed at 0-field. A large electric field can
overcome the pinning force, and the material becomes polarized. Second, a double hysteresis loop
can also be observed in the short temperature range above PE-FE phase transition temperature.
In this case, the ground state is the high-symmetry paraelectric phase. It is switchable to the
polar phase under an electric field. The related research lays down a two-fold definition of AFE
materials in the phenomenological perspective in Lines and Glass’s book [20]: AFE materials
manifest dielectric anomaly around the PE-AFE phase transition temperature, and transform
from a nonpolar into a polar phase under a sufficiently large electric field.

Nonetheless, the connection block between the macroscopic phenomena and microscopic model
is ambiguous due to the subtle behavior of local dipole moments in AFE oxides. Do the local dipole
moments really ”switch” under an electric field? We can visualize the dipole moment by phonon
analysis [21]. We decompose the structural difference between a condensed phase and the cubic
phase into strains and several phonon modes. The condensed phases involved with polar modes
(Γ-point) are polar, while the others are nonpolar phases. For the polar modes, the ions displace
in the same direction in the adjacent cell, forming the parallel alignment of local dipole moments,
hence, producing a spontaneous polarization. For nonpolar modes, the distortion pattern has a
period larger than the primitive cubic phase. The wave-like local dipole moments cancel mutually,
resulting in a net-zero polarization. Note that it is possible that a polar phase is composed of both
polar and nonpolar modes. In this perspective, Kittel’s model for AFE materials is a specific case
at the nonpolar mode, X.

The classification of condensed phase, polar and nonpolar ground states, is necessary but not
sufficient to classify FE and AFE materials.

For FE materials, there should be one or more symmetry-related variants of the polar ground
state. It is possible to switch from one to another by an electric field. We display the relation of
hysteresis loop (macroscopic phenomenon) and energy landscape along a polar mode (microscopic
view) in Figure 3.5 (a) and (b). Suppose there are two local minima corresponding symmetry-
related variants and the initial orientation is set as the negative direction (blue dot). At 0-field
(blue curve), the two variants possess the same energy since they can transform into each other
by a symmetry operation. The application of an electric field changes the curve by a linear term,
∆G = −P · E. A minute field along the positive direction favors the other symmetry-related
variant. However, it does not switch to the other one until the cohesive field Ecr due to the
energy barrier. Around the cohesive field, the barrier becomes flat enough to allow the switch
from negative to positive orientation (red curve). Hence, the polarization changes notably (red
point). Conversely, the application of electric field in the negative direction induces the switch
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from positive to negative orientation around the cohesive field −Ecr due to the energy barrier as
well (green dot).
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E = 0

E = Ecr

E = −Ecr

Figure 3.5: (a) Single hysteresis loop of polarization with respect to the electric field in FE materials.
(b) Energy landscape along the eigenvector of polar phonon modes at electric field labeled with color in
(a). The blue dot and curve indicate the 0-field, red ones are for the positive cohesive field and green ones
are for the negative cohesive field.
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Figure 3.6: (a) Double hysteresis loop of polarization with respect to the electric field in AFE materials.
(b) Energy landscape at electric field labeled with color in (a). The positive x-axis is along the distortion
toward a polar phase, the negative x-axis is along the distortion of the nonpolar ground state. The solid
lines are along the ground state-reference structure-polar path (path 1), while the dashed lines are along
the lowest energy path (path 2).

For AFE materials, there should be one or more metastable polar phases deviated from the
same paraelectric phase (in perovskite it is the cubic phase), and a sufficiently large electric field can
induce the nonpolar-polar phase transition. We display how this criterion leads to the characterized
double hysteresis loop in Figure 3.6. Figure 3.6 (a) illustrates the energy landscape with respect
to the electric field. The x-axis in the negative direction denotes the distortion along nonpolar
modes, along which it arrives at the ground state at the energy minimum. The x-axis in positive



26 CHAPTER 3. STRUCTURES AND PROPERTIES OF PEROVSKITES

direction points toward the configuration of a symmetry-related polar phase, which involves polar
modes and probability nonpolar modes. At 0-field, the nonpolar ground state possesses lower
energy than the polar phase (blue curve). The applied electric field lowers the energy of the polar
phase by G = −P · E, but does not change the energy of nonpolar phase. Above E = E0, the
polar phase becomes more stable, but it requires a larger electric field to induce the nonpolar-polar
phase transition due to the energy barrier. We define the electric field at the nonpolar-polar phase
transition as the forward cohesive field EF (red curve). Conversely, the reversed polar-nonpolar
phase transition is observed around the backward cohesive field EB (green curve). Similarly, EB

is smaller E0 due to the energy barrier. Hence, the energy barrier between nonpolar and polar
phases brings the double hysteresis characteristics.

Most perovskites do satisfy the first and second criteria, but not the third one since the critical
cohesive fields usually exceed the breakdown electric field of the materials. To make critical fields
in the workable range, the energy of a polar phase should be comparable with the ground state,
and the energy barrier between the ground state and the polar phase should be low enough to
allow the phase transition. The restricted energetic criteria of the energy landscape result in a
small number of AFE materials. For the other nonpolar materials, their P-E curves behave as
AFE materials at a small field; it’s a linear response, hence, they are AFD materials.

3.3 Conclusions

Through the phonon analysis, we can classify condensed phases of perovskites into polar or
nonpolar ones. Accordingly, we lay down explicit criteria for AFE perovskites. (i) The ground
state is nonpolar. (ii) There are polar metastable phases, which are composed of more than one
phonon modes at Γ-point and probably other phonon modes around cubic structure. The energy
of polar phase is comparable to the ground state. (iii) The energy barrier between nonpolar and
polar phases is flat enough to allow the phase transition. We will examine these criteria on PZO
and CTO in the following chapter.



Chapter 4

Comparison of PbZrO3 and CaTiO3

The structures of PZO and CTO are similar at high temperatures. They are in the cubic
phase and possess close Goldschmidt tolerance factors, which measure the compactness of a cubic
perovskite. As the cooling of the temperature, they experience phase transition to the different
ground states and exhibit other metastable phases. We make a careful analysis of their respective
phonon dispersion curves and energy landscape. We also compare their IFC in real space to track
the possible origin of their distinct behavior at the harmonic level.

4.1 Lead zirconate

The most widely accepted ground state of PZO at 0K is described by a 40-atom unit cell,
whose group symmetry is Pbam. It deviates from the cubic phase by the unit cell distortion to
the orthorhombic one and involves the phonon modes at R, Σ, and S-points. Respectively, they
account for 59.7%, 36%, and 4.1% of atomic distortion. Σ-mode is in charge of the antipolar
motion of Pb ions along [110], while R mode is indicative of the oxygen cage rotation a−a−c0. S
mode oxygen rotation around the x-axis, with the 90◦ phase shift between adjacent layers [22].
We use a (b1 = a1 − a2, b2 = 2a1 + 2a2, b3 = 2a3) supercell to describe the periodicity of Pbam
phase, where (a1, a2, a3) are unit vectors of pseudo-cubic phase. Interestingly, the combination of
R and Σ modes is sufficient to reach the Pbam ground state, while the S-mode appears as trilinear
coupling term γΣγRγS.

Recently, the 40-atoms ground state of PZO became controversial in some papers. J. S. Baker
et al. [23] plotted the phonon dispersion curve of PZO around Pbam structure and found an
unstable mode at Z-point (0, 0, 1
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)-point in cubic perovskite. By introducing these phonon modes in the

structure relaxation, they arrived at an 80-atoms ground state with space group symmetry Pnam,
whose energy is 1 [meV/f.u.] lower than the Pbam one. Hugo Armberri et al. [24] built a 30-
atom phase with group symmetry Ima2, which is the simplest ferrielectric phase compatible with
large instability at R-point in cubic PZO. By involving zero-point energies (the quantum vibration
energy of ions at 0K), they reported this phase as the ground state of PZO from 0 to around 200
K. So far, these two proposed ground states are not experimentally observed. In the Pnam case,
the authors ascribed it to the small distinction between Pbam and Pnam phases, which might be
experimentally indistinguishable. Nonetheless, they did not rule out the possibility that Pnam is
the artificial theoretical ground state due to the inadequate approximation in computations. In
the Ima2 case, the authors argued that the phase transformation from AFE to the ferrielectric

27
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phase is hindered by the low kinetic energy around transition temperature. Hence, we still take
40-atom AFE phase as the ground state in this work.

We make the phonon analysis around the cubic PZO structure. The first-principles calculations
give us the length of the PZO unit cell in the cubic phase, 7.82 [Bohr]. We illustrate the phonon
dispersion curve around the cubic phase in Figure 4.1. The cubic PZO displays the instabilities
at all high-symmetry q-points, Γ, X, M , and R. Along the path passing through high-symmetry
points, the most unstable phonon modes form a relatively flat band. The phonon modes at M and
R show the strongest instabilities (ω ≈ 177.9i and 183.6i cm−1) 1, which corresponds to in-phase
rotation and anti-phase rotation distortions. Apart from the lowest band, PZO also exhibits other
unstable modes at M and at R points. We combine the wide variety of unstable phonon modes to
form the potential phases in local minima on PES, which are listed in Table 3.1.

Figure 4.1: Phonon dispersion curve ω(q) of PZO. The imaginary eigenfrequencies are plotted in the
negative direction.

We perform the first-principles calculations to find the energy minimum by involving unstable
phonon modes in the cubic phase. The structural relaxation does not only find the optimized
ionic configuration but also optimizes the shape of the unit cell. We record the energy gains of
each phase with respect to the cubic phase in Figure 4.2, in the order of their magnitude. The
phase R3c, involving polar and oxygen cage rotation distortion, shows close energy gains as the
ground state does. The energy difference between Pbam and R3c phase is less than 1 [meV/f.u.]
(∆EPbam ≈ −286.47 and ∆ER3c ≈ −285.72 [meV/f.u.]). It satisfies the first energy criterion for
the AFE characteristic to manifest nonpolar-polar phase transition. Overall, PZO manifests quite
close energy gains in the phases associated with the most unstable modes at Γ, M , and R-points.
Although configuration path on PES remains veiled during nonpolar-polar phase transition, it
gives the hint that the phase transition involves a series hopping between these local minima,

1Phonon frequencies are reported in cm−1 which is not a priori appropriate but conventional in the field. It
corresponds to the wavelength of the photon of the same energy. Using hf = hc/λ we get 1 [cm−1] = 0.299 [THz].
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instead of overcoming the big obstacle at the cubic phase.

Figure 4.2: Energy gains of (meta) stable phases in PZO with respect to the cubic phase. The phases
are in the order of magnitude of energy gain.

We turn to investigate the behavior of PZO in finite temperatures. PZO displays the cubic
phase at high temperature and experiences phase transformation to the Pbam ground state at
Tc = 505K. Rather than a displacive transition, the PE-AFE phase transition is in line with
disorder-order one; namely, the cubic phase is an average structure of low-symmetry phases in
some temperature regions above Tc [25]. There are some disputes over intermediate phases between
PE and AFE phases. Bin Xu et al. suggested R3c and some average structures between R3c and
Pbam phase as the candidates of intermediate phases through a theoretical study [25]. It is in
agreement with some previous papers, which reported polar rhombohedral phase around Tc in the
experiments.

Intensive studies have been done to search for the physical mechanism at the PE-AFE phase
transition. Unlike the proper phase transition in FE materials, such as BaTiO3, whose PE-FE
phase transition is driven by the soft phonon mode at Γ-point, PZO does not show soft nonpolar
phonon modes in the vicinity below Tc in the experiment [26] and computational study [25].
Although the existing effective Hamiltonian models address the critical role of unstable phonon
modes at R and Σ-points, and their coupling effect [27, 28], these models fail to predict the
phase transition temperature and do not suffice to explain the driven force of the PE-AFE phase
transition. Therefore, some works proposed the missing terms in the effective Hamiltonian model
that trigger the improper PE-AFE phase transition in PZO. Tagantsev et al. reported the polar soft
mode as the driven force of the PE-AFE phase transition. The flexoelectric coupling (∇η·P−∇P ·η)
transforms the polar soft mode into the instability of nonpolar modes [26]. This mechanism has
been questioned due to its small coefficient obtained in the later paper [25]. Jorge Íñiguez et
al. concluded that the trilinear coupling (γRγΣγS) makes Pbam phase win over other competing
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phases and bring the onset of multi-modes at phase transition temperature [29]. In the recent work,
Shapovalov and M. Stengel firstly endow the simple description of the unstable phonon mode at
the S-point [22]. Following the strategy of flexoelectric coupling construction in the ref [26], they
built the rotopolar coupling term (ϕy(ϕx∇xPy−Py∇xϕx)), where ϕx, ϕy, and P respectively denote
the amplitude of deviation regarding to 90◦-phase oxygen cage rotation, anti-phase oxygen cage
rotation, and local polarization. By transforming these order parameters into the unstable phonon
modes, the rotopolar coupling term recovers the trilinear term in the ref [29].

4.2 Calcium titanate

The ground state of CTO is described by a 20-atom unit cell, which possesses the space group
symmetry Pnma. With the pseudo-cubic axis (a1, a2, a3), we describe its periodicity in a (c1 = 2a1,
c2 = 2a2, c3 = 2a3) supercell. Its distortion from the cubic phase is dominated by phonon mode at
R, M , and X-points, which are responsible for 60.4%, 28.3%, and 11% of distortion. The R-mode
is in charge of the anti-phase oxygen cage rotation a−a−c0, the M -mode accounts for the in-phase
oxygen cage rotation a0a0a+, and the X-mode captures the antipolar motion of Ca ion along [110]
direction. Amazingly, the combination of R and M modes is sufficient to reach the Pnma ground
state while the X mode is a secondary mode resulting from a trilinear coupling γRγMγX .

We make the phonon analysis on cubic CTO. From the first-principles calculations, we deduce
the relaxed unit cell length of CTO in the cubic phase, 7.25 [Bohr]. We plot the phonon dispersion
curve around the cubic structure in Figure 4.3. In contrast to PZO, CTO possesses less unstable
modes, which are distributed at Γ, M , and R points. The most unstable mode appears at M and
R points (ω ≈ 198.2i and 209.2i cm−1). Except for the degenerate unstable modes in the lowest
band, CTO does not show other instabilities.

Figure 4.3: Phonon dispersion curve ω(q) of CTO. The imaginary eigenfrequencies are plotted in the
negative direction.
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Starting from the cubic phase distorted by unstable phonon modes, we do structural relaxations
on the CTO SP model to find local minima on PES. We plot the energy gains of (meta) stable
phases with respect to the cubic phase in Figure 4.4, in the same order as in Figure 4.2. CTO
is short of instability in X1,2, M2,3, M4, and R4,5,6 modes. Therefore, the corresponding local
minima disappear on the PES of CTO. The relaxation of these phases brings the structure back
to the stationary configuration, usually the cubic phase, Pm3̄m. Consequently, they manifest zero
energy gain in the bar chart. Besides, the energy gains of pure polar phases are notably small
compared to other phases. In contrast, the polar phase R3c, coupled with oxygen cage rotation,
shows comparable energy to the ground state of CTO (∆EPnma ≈ −376.73 and ∆ER3c ≈ −351.02
[meV/f.u.]). Therefore, CTO satisfies the second AFE criterion. For that reason, we ascribe the
lack of AFE characteristic in CTO to the third criterion, the energy barrier between nonpolar and
polar phases. It can be rationalized by the abrupt local minima distribution on the CTO energy
landscape.

Figure 4.4: Energy gains of (meta) stable phases in CTO with respect to the cubic phase. The phases
are in the order of magnitude of energy gain of PZO.

The phase transition behavior of the CTO at higher temperatures is more complicated than
that of PZO, and its intermediate states are contentious. Experimentally, the recent papers re-
ported that CTO undergoes a phase transition from Pnma (a−a−c+) to I4mcm (a0a0c−) around
1512K, and to cubic phase around 1636K [30, 31]. Although some previous works reported an
orthogonal intermediate state, Cmcm (antipolar [110]), between Pnma and I4mcm phases in the
region approximately between 1400-1500K, the theoretical phonon analysis at 0K disagrees this
observation [32]. Cmcm can be obtained from the phonon displacement in combination of the
degenerate X1 and X2 modes. To the best of our knowledge, no temperature evolution of CTO
phonon dispersion curve have been reported to analyze their stability. Nonetheless, from the CTO
phonon dispersion curve at 0K (figure 4.3), these modes possess positive eigenfrequencies, hence
are stable at 0K. These modes probably become unstable during the increase in temperature,



32 CHAPTER 4. COMPARISON OF PBZRO3 AND CATIO3

but the Cmcm phase is unlikely to be more energetically favorable than other phases, which is
correlated with unstable modes at 0K.

The application of pressure on the CTO also leads to the phase transformation from the equi-
librium ground state Pnma. Under the homogeneous pressure, it is observed experimentally that
Pnma phase remains in the ground state up to 55-60 [GPa] [33]. Theoretically, the result of
first-principles calculation agrees with the experimental observation, and further predicts a phase
transition to Cmcm phase at 65 [GPa] [34]. The phase transition of CTO regarding to epitaxial
strain has also been investigated through first-principles calculation [35, 36]. These works predicted
the phase transformation to FE states both in textile (≈ 1.5 [GPa]) and compressed epitaxial strain
(≈ −3 [GPa]), both of which are verified experimentally [37, 38].

4.3 Comparisons

In section 4.1 and 4.2, we examine separately the properties of PZO and CTO. First, both
PZO and CTO exhibit a nonpolar ground state, but with different space group symmetries, Pbam
and Pnma. Second, a high-symmetry-related polar phase, R3c, has an energy slightly larger than
the ground states of two materials. It is difficult to examine the third criterion since it requires a
full investigation of all possible paths for the phase transition. Nonetheless, from the result, PZO
is AFE, and CTO is AFD. Thus, we can rationalize that the energy barrier is flat between Pbam
and R3c phases in PZO, while in CTO it is large between Pnma and R3c phases. The energy
barrier prevents the manifestation of the nonpolar-polar phase transition in the CTO.

But what is the microscopic origin of the flat energy barrier between Pbam and R3c phases?
We can find some clues from the phonon analysis at RS and from the distribution of local minima
on PES (energy gains of the metastable phases). In the phonon analysis, we should note that it
is inadequate to compare directly the eigenfrequencies directly since the basis of phonon modes
includes atomic mass. We generalize the unit by adopting the CTO mass in PZO phonon modes.
It changes the magnitude of eigenfrequencies by MPZOω

2
n(q) = MCTOω

2
n,new(q), but does not

change their signs. We plot the new phonon dispersion curve ωn,new(q) for PZO, which we refer to
PZO (CTO) phonon dispersion curve in the following context. We compare the phonon dispersion
curves of CTO (black dashed lines) and PZO (CTO) (red solid lines) in Figure 4.5.

PZO (CTO) and CTO show great similarities in the flat branch between the strong unstable
modes, M1 and R1. The difference in unstable curves mainly appears at the antipolar modes
(X1,2,M2,3,M4, R4,5,6). They are all stable in CTO, while are unstable in PZO. Besides, the
polar modes (Γ1,2,3) are more stable on PZO (CTO) phonon dispersion curve (ωPZO,Γ ≈ 187.3i
and ωCTO,Γ ≈ 139.1i cm−1). Consequently, we compare the energy gains of Pbam phases and
metastable phases in a 2×2×2 supercell in PZO and CTO (Figure 4.2 and 4.4). During the phase
transition from cubic to P4mm phase, CTO only gains around 90 [meV/f.u.], which is smaller
than half of the energy gains in PZO. The other two polar phases, Amm2 and R3m, show even
much larger differences in energy gains between these two materials. On the other hand, PZO
manifests (meta) stable phases related to the unstable antipolar modes, which are stable in CTO.
By comparing their eigenfrequencies at RS in the generalized basis and the local minima on PES,
we point out the importance of unstable antipolar modes and sufficiently stable polar modes for
AFE energy landscape.

Compared to the phonon frequencies, IFCs in real space, have a more intuitive physical mean-
ing. IFC is often analogized to the opposite of the stiffness of a fictitious linear spring between
atoms since its relation to force on an atom, Fi = −Fj = −Kijuj, follows the format of Hooke’s law,
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Figure 4.5: Solid: phonon dispersion curve of PZO with the mass of CTO. Dashed: phonon dispersion
curve of CTO.

Fi = kxi. The sign of IFCs provides a direct perspective of the stability of interatomic distance.
The negative IFCs correspond to the normal spring. The spring tends to recover under stretch
or compression; namely, the atomic pairs are against atomic displacements (Figure 4.6 (a)). The
positive IFCs correspond to fictitious springs, which are inclined to stretch or compress themselves
to relax the stored energy. Hence, the atomic displacement of the atomic pairs is energy favorable.
We introduce two common distortions of atomic pairs. When α = β is parallel to the interatomic
bond, the chain of atomic pairs forms a longitudinal distortion wave. (Figure 4.6 (b)). When
α = β is perpendicular to the interatomic bond, the chain of atomic pairs forms a transverse
distortion wave (Figure 4.6 (c)). Besides, we can classify the distortions of atomic pairs into polar
or nonpolar. If the two atoms are the same species, the distortion is antipolar. Otherwise, it is
polar.

So far, we have a comprehensive description of the CTO energy landscape in the SP model,
i.e. we know all the essential IFCs, but which IFCs lead to the unstable antipolar mode and the
relatively stable polar modes in PZO? We attempt to identify them by making a direct comparison
in IFCs.

(a) (b) (c)

Figure 4.6: Distortion pattern predicted by the single value of IFC, such as (a) stable chain (b) unstable
chain along the longitudinal direction, and (c) unstable chain along the transverse direction.
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We firstly compare our IFCs to the previous works [39, 40] in Table 4.1 and 4.2. The relative
positions of labeled atoms are illustrated in Figure 4.7. In the PZO literature (first column of
two tables), the researchers used an LDA exchange-correlation energy functional with Perdew-
Punger parametrization. The plane wave is expanded on a 4× 4× 4 k-point grid within an energy
cutoff of 850 [eV] [39]. In the CTO literature (third column of two tables), the researchers used
the same exchange-correlation energy functional as our model (GGA PBEsol) in first-principles
calculations, and expanded the plane wave of cubic structure on 6 × 6 × 6 with energy converging
to 0.5 [meV] (the energy cutoff is not explicitly specified) [40]. Table 4.1 records the IFCs in the
basis of local coordinates for symmetric IFCs. Here, the local coordinates denote the mutually
orthogonal eigenvectors of symmetric IFC. The first unit vector is along the longitudinal direction
of the interatomic bond, while the other two unit vector points toward the transverse directions.
We label the longitudinal IFC in the parallel notation, ∥, and the other two IFCs the perpendicular
notation, ⊥, with subscripts 1 and 2. For ∥1=∥2, we drop the subscripts. Table 4.2 records the
IFCs in the basis of Cartesian coordinates for non-symmetric IFCs. As shown in the first and the
second column in the two tables, our PZO IFCs differ from the previous work surprisingly only by 1
to 2% despite of the large difference in exchange-correlation energy functional. On the other hand,
the CTO IFCs of the model manifest close values to the literature, since there is only a minute
difference in the k-point grid density and energy cutoff. This confirms that IFCs are quantities
that can be robustly obtained so that comparison from one material to another is meaningful.

x

y

z

A1
A2

O1

O2

B1 B2

Figure 4.7: Schematic representation of relative atomic positions for Table 4.1 and 4.2.

Table 4.2: Non-symmetric IFC matrices in Cartesian coordinates. The source in the four columns are
ref [39], our PZO model, ref [40], and our CTO model [9]. The IFC with negative corresponds to normal
spring.

PZO[39] PZO CTO[40] CTO
O1 −O2 +0.0038 0 0 +0.00373 0 0 +0.0057 0 0 +0.00571 0 0

0 -0.0065 -0.0110 0 -0.00628 -0.01068 0 -0.0120 -0.0322 0 -0.01170 -0.03221
0 -0.0229 -0.0065 0 -0.02258 -0.00628 0 -0.0177 -0.0120 0 -0.01752 -0.01170

Now, we compare the IFCs for atomic pairs, whose interatomic distance is not larger than the
length of the unit cell.

First, we discuss polar atomic pairs. In both PZO and CTO, the IFC of A1 − O1 is positive
at longitudinal distortion, while negative at transverse directions. Hence, the ionic chain A-O-A
(for example, along [110]) tends to form a short-long bond arrangement (Figure 4.6 (b)). On the
other hand, the IFCs of B1 −O1 in both cases are negative in all directions. Thus, the ionic chain
B-O-B (for example, along [100]) is inclined to remain at the original position (Figure 4.6 (b)).
The tendency of adjustment in the interatomic distance is in agreement with the prediction of the
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Table 4.1: Diagonalized terms in symmetric IFCs [Hartree/bohr2 between labeled atomic pairs in local
coordinates. The relative position between atoms is plotted in figure 4.7. ∥ and ⊥ individually indicate
the longitudinal and transverse direction with respect to the interatomic bond. The first and second
columns are PZO IFCs, respectively from the ref [39] and our model. The third and fourth columns are
CTO ones from ref [40] and our model. The IFCs with negative correspond to normal springs.

PZO[39] PZO CTO[40] CTO
A1 −O1 ∥ +0.0139 +0.01222 +0.0108 +0.01083

⊥1 N/D -0.00512 -0.0055 -0.00568
⊥2(zz) -0.0103 -0.01026 -0.0116 -0.01151

B1 −O1 ∥ -0.0687 -0.05550 -0.0382 -0.03821
⊥ -0.0100 -0.01064 -0.0184 -0.01879

A1 −B1 ∥ -0.0271 -0.02674 -0.0266 -0.02697
⊥ +0.0145 +0.01430 +0.0150 +0.01493

A1 − A2 ∥ -0.0094 -0.00922 -0.0085 -0.00829
⊥ +0.0056 +0.00543 +0.0040 +0.00379

B1 −B2 ∥ -0.0499 -0.04972 -0.0788 -0.07910
⊥ +0.0054 +0.00535 +0.0084 +0.00988

Goldschmidt tolerance factor that A-atom is the unstable cation. Furthermore, it can be proved
by directly investigating the eigendisplacements of the unstable phonon mode Γ1 in both materials.
As shown in Table 4.3, the unstable eigendisplacements at Γ in both materials are dominated by
A-ion motion. In PZO, the longitudinal and transverse spring between A1−O1 is softer than CTO
by approximately 10%, but only the longitudinal one exhibits instability. It is congruent with
more unstable polar phonon modes in PZO. As for B1 −O1 IFCs, they are stable in all directions
for PZO and CTO, but their magnitudes show a large difference in the two materials. For the
longitudinal direction, B1 − O1 spring of PZO is 45% stiffer, while for the transverse direction, it
is 43% softer.

Table 4.3: Eigendisplacement (in relative coordinates) of Γ1 in PZO and CTO

PZO CTO
x y z x y z

A 0 0 +0.5054 0 0 +0.5948
B 0 0 -0.1741 0 0 +0.2182
O1 0 0 -0.5719 0 0 -0.5055
O2 0 0 -0.5719 0 0 -0.5055
O3 0 0 -0.2596 0 0 -0.3077

Then, we discuss the antipolar atomic pairs. In PZO and CTO, IFCs of A1 − A2 are negative
in the longitudinal direction and positive in the transverse directions. The ionic chain A-A-A (for
example, along [100]) tends to form a transverse wave, as shown in Figure 4.6 (c). IFCs of B1−B2

display the same trend as those of A1 −A2. The transverse springs between A1 −A2 are softer in
PZO by 43%, while between B1 −B2 they are more compliable in CTO by 45%. Nonetheless, the
B1 − B2 distortion might be suppressed by the strong stability of another nearest B − B atomic
pair (for example, bond along [010]) in the longitudinal direction. In contrast, the longitudinal
interaction between nearest A−A is much smaller. From the beforehand study in phonon stability,
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we speculate that it suppresses the antipolar distortion of A1 − A2 in CTO, while it is not the
case in PZO. Nonetheless, it is difficult to deduce in which range of values the stable IFCs in the
longitudinal direction eliminates the instability in transverse directions.

Consequently, we investigate the oxygen cage rotation in IFCs. In Cartesian coordinates, the
non-symmetric O1 −O2 IFC matrix is divided into a 2× 2 matrix, which is responsible for oxygen
displacement in the plane (1,0,0), and a 1×1 matrix, which is in charge of the transverse distortion
along the z-axis. The terms in the 2 × 2 matrix are negative, implying that oxygen atoms show
a tendency to maintain their distance. This observation is in line with the common distortion
pattern, oxygen cage rotation since O1 − O2 distance does not change during the cage rotation.
On the other hand, the O1 − O2 IFC is positive along the transverse direction [100], implying its
possibility to form polar or antipolar distortion, as shown in figure 4.6 (c).

Finally, we look into the on-site force constants at the harmonic level, whose definition is
given in equation 2.42. On-site force constant measures the stability of isolated atomic motion
against other atoms. Their values are given in table 4.4. We should note that the sign of on-site
force constant gives the opposite indication of IFCs. Here, the positive IFCS are stable, while
the negative are unstable. As shown in table 4.4, the on-site force constants are all positive.
Hence, isolated atomic distortions are energy unfavorable, and atomic displacement coupling in
the adjacent cells (such as A-O-A polar chain) is required for structure instabilities. It is worth
noting that the on-site force constant of the A atom in both materials, is much smaller than that
of the B atom. It is in line with the tolerance factor, that A atom is less stable due to its relatively
small size in the cubic phase.

Table 4.4: On-site force constant, positive = stable

PZO[39] PZO CTO[40] CTO
A (xx=yy=zz) +0.0129 +0.01653 +0.0269 +0.02689
B (xx=yy=zz) +0.2302 +0.20730 +0.2236 +0.22432
O (xx=yy) +0.0166 +0.02034 +0.0432 +0.04340
O (zz) +0.2758 +0.24597 +0.2624 +0.26331

Overall, the sign of all IFCs are the same in PZO and CTO, indicating that they show similar
stability from the local perspective. There are notable differences in magnitudes of some IFCs, but
it is complicated to conclude from the comparison, which one is critical. The underlying reason is
that, unlike phonon modes, IFCs correspond to pairs of atomic distortion. The atomic distortion
of a single atom is correlated to a large amount of IFCs. They might mutually compensate so
that it is inappropriate to ascribe certain polar/nonpolar distortions to a few anomalous IFCs. In
opposite, we should project the effect of each IFCs on the basis of phonon modes.

4.4 Conclusions

In this chapter, we have compared structural and energetic information about PZO and CTO,
including the ground state, metastable phases, and the phase transition during variations in tem-
perature. Correspondingly, we show that these two materials satisfy the first two AFE criteria.
The ground state of PZO and CTO are nonpolar, with the different space group symmetries, Pbam
and Pnma. Besides, the energy of the polar phase R3c is close to the energies of the ground states
in both materials. Nonetheless, we have known empirically that PZO is an AFE material, while
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CTO is not. Hence, we speculate the energy barrier between Pbam and R3c in PZO is low, and
between Pnma and R3c is high in CTO. We compare the phonon instabilities and the energies of
local minima in two materials.

It is questionable which factors are related to the height of the energy barrier. From the
comparison of phonon instabilities and energy of metastable phases, we deduce that the unstable
antipolar and sufficiently unstable polar modes are essential for the low energy barrier between
Pbam and R3c phases. Nonetheless, we cannot find some decisive parameters in the SP model by
a direct comparison in coefficients.
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Chapter 5

Can we make Calcium Titanate
Antiferroelectric?

We have revealed the underlying reasons that hinder CTO an AFE material. The large energy
barrier hinders the phase transition between Pnma and R3c phases. From the phonon analysis
and investigation of the energy of metastable phases, we identify that polar/antipolar phonon
modes and phases are crucial for the flat energy barrier between Pbam and R3c phases in PZO.
Accordingly, we want to take a step further, identifying which terms in the CTO SP model are
essential for the onset of the low energy path between Pbam and R3c phases. In other words,
can we realize this phase transition path in CTO? We cannot reach a content conclusion from a
direct comparison of the IFCs in the previous chapter. In this chapter, alternatively, we modify
the coefficients in CTO SP model to imitate the PZO energy landscape. We examine the similarity
of the modified CTO SP model and PZO energy landscape by three indices, (i) the ground state
Pbam, (ii) the comparable phonon instabilities at high-symmetry q-points, and (iii) the similar
energy gains of local minima.

5.1 Modification of interatomic force constants

In this section, we investigate the effect of individual IFCs on phonon instability. Our intention
here is to identify the critical IFCs to produce a similar energy curve at RS on the CTO energy
landscape. Hence, we modify a single IFC and compare the phonon dispersion curve of the modified
CTO SP model with the PZO (CTO) phonon dispersion curve (red lines in Figure 4.5).

Initially, we eliminate the possibility that long-range IFCs, which is directly obtained by dipole-
dipole interactions (Kijαβ = KDD

ijαβ), play crucial roles in phonon instabilities. We replace the Born
effective charge and optical dielectric constant of CTO with those of PZO, and plot the resulting
phonon dispersion curve in the solid curves of Figure 5.1. In comparison to the CTO (dashed
curves), they only make an observable effect on the highest band and do not affect the stability
of the unstable modes. Therefore, we can ascribe the phonon dispersion curve difference between
CTO and PZO to IFCs in a short distance.

Now, we turn to observe the influence of individual IFCs on phonon instabilities, especially
for those whose interatomic distance of atomic pairs is shorter than the length of the cubic unit
cell. We tune IFCs in Cartesian coordinates by multiplying a positive factor f , in order to avoid
changing the type of interatomic springs. During the modification of coefficients, we ”strengthen”
the interaction by multiplying a factor f > 1 and ”weaken” the interaction by multiplying a factor

39



40 CHAPTER 5. CAN WE MAKE CALCIUM TITANATE ANTIFERROELECTRIC?

Figure 5.1: Phonon dispersion curve of the modified CTO model, with all harmonic coefficients replaced
by those of PZO except for IFCs.

f < 1.
Firstly, we investigate the change in the phonon dispersion curve by tuning the interaction

between the nearest B-O atomic pairs. Since their bond is parallel to one unit vector of Cartesian
coordinates, the IFC in Cartesian coordinates is the same as in local coordinates. Figure 5.2
(a) and (b) respectively illustrate the modified phonon dispersion curve whose longitudinal term
is multiplied by a factor of 0.7 and the transverse term by a factor of 0.85. Compared with the
original IFCs (dashed lines), the weakening of B-O longitudinal interaction enhances the instability
of the following modes: Γ1,2,3, X3,4, M2,3, and M4 modes. On the other hand, the weakening in
the transverse interaction increases the overall instabilities in the lowest band and in the phonon
modes M2,3. However, it does not relatively enhance the polar instability with respect to oxygen
cage rotation modes. Besides, the modification on the two IFCs in the nearest B-O does not
change the eigenfrequencies in the antipolar modes at R4,5,6. Hence, it is impossible to approach
the phonon instabilities in PZO (CTO) by exclusively tuning the B-O interaction.

Table 5.1: Symmetric IFC matrices in Cartesian coordinates. The IFC with negative corresponds to
normal spring.

PZO CTO
A1 −O1 +0.00355 +0.00867 0 +0.00258 +0.00826 0

+0.00867 +0.00355 0 +0.00826 +0.00258 0
0 0 -0.01026 0 0 -0.01151

A1 −B1 +0.00062 -0.01368 -0.01368 +0.00097 -0.01397 -0.01397
-0.01368 +0.00062 -0.01368 -0.01397 +0.00097 -0.01397
-0.01368 -0.01368 +0.00062 -0.01397 -0.01397 +0.00097
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Figure 5.2: Solid lines: phonon dispersion curve of the modified CTO model with adjustment on nearest
B-O interaction, (a) (left) f(∥)=0.7 (b) (right) f(⊥)=0.85. Dashed lines: CTO phonon dispersion curve.

Figure 5.3: Solid lines: Phonon dispersion curve of the modified CTO model with adjustment on nearest
A-O interaction, (a) (left top) f(∥d)=1.4, (b) (right top) f(∥od)=1.3, (c) (left bottom) f(⊥)=0.8, (d) (right
bottom) f(∥od)=1.6 and f(⊥)=0.65. Dashed lines: (a) to (c) CTO phonon dispersion curve, (d) PZO
phonon dispersion curve in CTO mass basis (the same as figure 4.5).
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Consequently, we study the change in the phonon dispersion curve by modifying the nearest
A-O interactions. The local coordinates of A-O IFCs is not the same as Cartesian coordinates;
hence, we write the symmetric matrix in the first row of Table 5.1. There are three independent
terms in IFC matrix in Cartesian coordinates, the parallel diagonal term (∥d), the parallel off-
diagonal term (∥od), and the perpendicular term (⊥ = ⊥2). They are related to the IFCS in local
coordinates by {

∥d= 1
2
(∥ +⊥1)

∥od= 1
2
(∥ −⊥1)

. (5.1)

Figure 5.3 (a), (b), and (c) displays the individual effect of these three terms on the phonon disper-
sion curve. The strengthening of parallel diagonal interactions enhances the overall instability in
the lowest band. Besides, it notably increases the instability of the antipolar modes X1,2, M2,3, M4

and R4,5,6. The strengthening of parallel off-diagonal interactions increases the instability mainly
at M2,3 and R4,5,6, while the eigenfrequencies of phonon modes at the lowest band are fixed. The
weakening of perpendicular interactions strengthens the instabilities of all antipolar modes, X1,2,
M2,3, M4, and R4,5,6. In addition, it pins the phonon modes corresponding to oxygen cage rotation,
and increases the polar instability at the lowest band. Amazingly, the weakening of perpendicular
interactions in the nearest A-O bond distorts the energy landscape in our targeted direction. To
adjust the magnitude to the right order, we modify the perpendicular term with an adjustment
on the off-diagonal parallel term. The combination reproduces the similar phonon instability of
PZO in the modified CTO SP model. (Figure 5.3 (d)). Hence, we believe that the A-O harmonic
interaction is critical for the difference between CTO and PZO energy landscape at the harmonic
level.

For the IFCs, whose interatomic distance is not smaller than
√

3/2 (relative coordinates, dis-
tance between the nearest A-B atomic pairs), tuning of phonon dispersion curve manifests small
effects in contrast to A-O and B-O interaction.

We look into the effect of the nearest A-B interaction on the phonon dispersion curve. The
nearest A-B bond does not aligne with Cartesian coordinates, hence, we make a basis transfor-
mation on the IFCs to Cartesian coordinates. In the Cartesian coordinates, the nearest A-B IFC
matrix contains two independent terms, diagonal (∥d) and off-diagonal (∥od), as shown in the sec-
ond row of Table 5.1. The strengthening of diagonal interaction increases the instabilities in the
antipolar phonon modes, X1,2, M2,3, M4, and R4,5,6 (Figure 5.4 (a)). The trend is similar to the
weakening of the A-O perpendicular interaction. However, to tune the eigenfrequencies by the
same magnitude, it requires a quite large factor (larger than 3), which is unlikely achievable by
replacing atoms. Figure 5.4 (b) illustrates phonon instabilities with strengthening in off-diagonal
interaction by a factor of 1.2. It enhances the instability of M2,3, and remarkably the second lowest
phonon mode at q = (0.25, 0.25, 0.25).

Finally, we investigate the influence of the nearest A-A interactions on the phonon dispersion
curve. Their local coordinates are the same as the Cartesian ones. In Figure 5.4 (c), we demonstrate
the phonon dispersion curve, whose A-A longitudinal interaction is strengthened by a factor of 1.1.
It enhances the instabilities at M2,3 and R4,5,6. On the other hand, the weakening of transverse
interaction displays a similar trend to the strengthening of longitudinal interaction.

Overall, tuning nearest A-B and A-A interactions only favors the antipolar phonon modes, but
not polar modes. Hence, these interactions might be the seasoning for the realization of PZO
energy landscape. They are not crucial, but may improve the similarity between the modified
CTO model and the PZO energy landscape.

So far, we have shown that tuning IFCs of CTO in the short distance, and especially the near-
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Figure 5.4: Solid lines: phonon dispersion curve of the modified CTO model with adjustment on nearest
A-B interaction, (a) (left top) f(∥d)=1.4, (b) (right top) f(∥od)=1.2, and on nearest A-A interaction (c)
(left bottom) f(∥d)=1.1, (d) (right bottom) f(⊥)=0.8. Dashed lines: CTO phonon dispersion curve.



44 CHAPTER 5. CAN WE MAKE CALCIUM TITANATE ANTIFERROELECTRIC?

Figure 5.5: Energy gains of metastable phases on different PES. Bar chart: the combination of the
anharmonic parts of CTO and the harmonic parts of PZO. Blue dots: CTO SP model. Green crosses:
PZO by DFT relaxation.

est A-O interactions, is likely to imitate the PZO energy landscape at the harmonic level. Now,
it is necessary to examine if harmonic correction is sufficient to reproduce the energy gains of
metastable phases. Here, we use an extreme case by replacing all IFCs in CTO with PZO ones, so
that the energy landscape is the same as PZO one at the harmonic level. We refer to this energy
landscape as CTO(Anh)+PZO(Ha) model in the following context. On the CTO(Anh)+PZO(Ha)
model, we do the structure relaxation on the potential metastable phases, which are predicted by
soft modes. The bar chart in Figure 5.5 demonstrates the energy gains of these phases. We also
mark the energy gains on the original CTO model with blue dots, and those by first-principles cal-
culations of PZO with green crosses. In comparison to the energy gains of CTO, there are several
notable points on this modified model. First, we are able to relax Pbam phase, implying that it
becomes a local minimum on this PES. Furthermore, Pbam becomes the ground state. Second, the
harmonic correction dramatically increases the stability of pure polar phases, especially Amm2.
Besides, it decreases the stability of pure oxygen rotation phases by 100 [meV]. Third, due to the
onset of several unstable modes in the modified model, some metastable phases, corresponding
to the pure antipolar modes, appear on the PES. Nonetheless, compared to PZO, the modified
PES is still rugged, since some phases show anomalously low energy, including the ground state
Pbam, polar phases R3c, Amm2, P4mm, and CTO ground state Pnma. We deduce that the
harmonic correction is insufficient to describe the difference between PZO and CTO energy land-
scape. Nonetheless, we can conclude that A-O interaction is critical to imitate the PZO energy
landscape at the harmonic level.
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5.2 Anharmonic modification

In the harmonic correction, we have concluded that (i) A-O harmonic interaction dominates
the difference in phonon instabilities of CTO and PZO, and that (ii) tuning harmonic parameters
is insufficient for CTO to imitate the PZO energy landscape. The artificial CTO(Anh) + PZO(Ha)
model results in some anomalous stable phases. Therefore, we turn to search for crucial interactions
from a large number of anharmonic coefficients to eliminate the excess energy from these phases.
The crucial interaction can be one of two kinds: the interaction contributes excess negative energy
or insufficient positive energy. We illustrate the first case in the green curves of Figure 5.6 (a).
The green solid line is the cross-section of the model, while the green dashed line is the negative
contribution of a single term. We can improve the energy landscape by reducing its magnitude
(from the green to the blue dashed one), and the energy gains of local minima will be reduced
(blue solid line). We display the second case in the green curves of Figure 5.6 (b). The green
solid curve is the total energy curve before modification, while the green dashed line is the positive
contribution from a single term. We can reduce the stability of local minima by increasing the
magnitude of this coefficient (from green to blue dashed line).

(a)

η

G

(b)

η

G

Figure 5.6: Schematic representation for decreasing the energy gains of local minima. (a) Decrease the
magnitude of negative coefficients. (b) Increase the magnitude of positive coefficients.

Since the anharmonic interactions lack intuitive physical meanings, we use a direct strategy
to predict potential crucial interactions. We list the energy contribution of each anharmonic
term in every metastable phase, and arrange them in the order of magnitude in Table 5.2, with the
separation of negative and positive contributions. For the sake of simplicity, we label the coefficients
with their indices; the full description of SATs and their values in the original model can be referred
in Table A.1. Consequently, we find the intersection between those phases showing abnormal
instability. In the first case, the most potential candidates are the 10th and 15th anharmonic
terms. They dominate negative energy contributions of polar phases, including R3c, R3m, Amm2,
and P4mm, in large proportion. Nonetheless, these terms do not account for a large proportion of
negative energy contribution in the ground state phases, Pbam and Pnma. Hence, we speculate
that the reduction in this terms does not improve much the energy gains of Pbam and Pnma phases.
We examine our hypothesis by reducing the 10th anharmonic terms by multiplying a factor 1/2
in Figure ??. Compared to the CTO(Anh)+PZO(Ha) model (mark with downward triangles),
the term decreases the energy gains of polar phases, especially P4mm and R3c. Nonetheless,
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Table 5.2: The anharmonic terms with the most significant energy contribution in each phase.

CTO+PZO pure PZO
phases positive negative positive negative
Pbam 29, 3, 38 39, 30, 28 1, 31, 21 9, 5, 47
R3c 21, 3, 11 18, 10, 15 1, 21, 31 28, 16, 53
R3m 9, 3, 11 10, 15, 7 3, 1, 25 16, 11, 8
Pnma 21, 3, 9 22, 14, 18 1, 21, 31 14, 9, 26
Imma 9, 11, 3 10, 15, 18 31, 21, 27 26, 9, 5
Amm2 11, 3, 8 10, 15, 6 1, 3, 25 11, 16, 8
R-3c 2, 9, 38 12, 1, 45 27, 3, 31 9, 5, 2

P4mm 3, 11, 8 10, 15, 6 1, 25, 46 11, 44, 2
I4mcm 2, 38, 25 12, 1, 23 31, 21, 1 9, 5, 8

P4/mbm 2, 38, 25 12, 1, 23 31, 21, 1 9, 5, 8
Cmmm 11, 9, 26 10, 15, 6 26, 19, 3 7, 20, 9
Pmma 11, 9, 26 15, 10, 7 26, 3, 1 7, 20, 11
R-3m 11, 9, 26 10, 15, 7 26, 3, 30 16, 7, 20
Cmcm 11, 9, 3 10, 15, 7 3, 1, 25 16, 28, 10
I4mmm 11, 8, 3 10, 15, 6 26, 19, 43 16, 7, 20
P4nmm 11, 8, 3 10, 15, 6 1, 38, 25 16, 4, 8

it also reduces the stability of R3m phase, which is already at an adequate energy level in the
CTO(Anh)+PZO(Ha) model. Furthermore, the energy gain of Pbam is still significantly large.
Hence, a decrease in these terms is not a good choice for imitating the PZO energy landscape.

In the second case, the first column of Table 5.2 shows that the third term plays an important
role in anharmonic positive energy contribution of our targeted phases. We examine the effect of
this term on the energy gains of metastable phases by multiplying a factor of 1.5. The result is
presented in Figure 5.8. In comparison to the CTO(Anh)+PZO(Ha) model, the trend of energy
gains is much smoother except for the phase Amm2. Besides, the increase in the 3rd term also
reduce the energy gains of R3m. It is ambiguous to conclude if this term is crucial. It might play
the crucial role, when the combination of multiple interactions is critical for imitating PZO energy
landscape.

It is also likely that the term concerning positive energy does not exist in our CTO model. As
a reminder, we dropped the unimportant anharmonic terms (there are millions of them) during
the establishment of the model, and remained only 60 important terms in the CTO model. Among
the dropped terms, there might be some crucial terms for realizing the AFE energy landscape in
PZO. Nevertheless, to identify the important terms from them is undoubted looking for a needle
in a haystack. Hence, we draw support from an establishing PZO second-principles model.

The PZO SP model is well-established at the harmonic level, but not at the anharmonic level.
We obtain the energy gains of the metastable phases through the structural relaxation on the PZO
SP model. As shown in Figure A.1, this model cannot predict the correct ground state of PZO,
Pbam, but the local minima on PES are close to the values from first-principles calculations. We
list their anharmonic coefficients in Table A.2.

According to PZO phonon dispersion curve, we identify metastable phases and calculate the
corresponding energy on the establishing PZO SP model. We list the most important anharmonic
terms of these metastable phases in the third and fourth column of Table 5.2. According to the
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Figure 5.7: Energy gains of metastable phases on different PES. Bar chart: CTO(Anh) + PZO(Ha)
model with the 10th anharmonic coefficient multiplied by a factor 1/2. Green crosses: PZO by DFT
relaxation. Gray inverted triangle: CTO+PZO SP model.

Figure 5.8: Energy gains of metastable phases on different PES. Bar chart: CTO(Anh) + PZO(Ha)
model with the 3rd anharmonic coefficient multiplied by a factor 2. Green crosses: PZO by DFT relax-
ation. Gray inverted triangle: CTO+PZO SP model.
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Figure 5.9: Energy gains of metastable phases on different PES. Bar chart: CTO(Anh) + PZO(Ha)
model in addition of 1st term in PZO SP model. Blue dots: CTO SP model. Green crosses: PZO by
DFT relaxation.
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Figure 5.10: Cross section of different PES along the path between RS and relaxed P4mm phase. Blue:
CTO SP model. Light gray: CTO+PZO SP model. Dark gray: mCTO+PZO SP model.
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table, we might identify the potential missing term in our CTO model to imitate the energy
landscape of PZO. We find that the first term (Pby −O1y)

4, which corresponds to an anharmonic
interaction between A-O, contributes a large proportion in most phases, and this term does not
appear in our CTO model. Hence, we investigate the effect of this term by adding it to the
CTO(Anh) + PZO(Ha) model. We plot the energy gains of each phase with respect to that
of the cubic phase in Figure 5.9. Intriguingly, this additional term results in a similar trend of
energy gains with the PZO. It reduces the stability of all metastable phases, particularly in those
anomalously unstable phases in CTO(Anh)+PZO(Ha) model. Although there are still some peaks
in the figure, we can infer that the 1st anharmonic term in the PZO model, (Pby−O1y)

4, is crucial
for imitating the PZO energy landscape. This is interesting that as at the harmonic level, the key
difference between PZO and CTO appears located in the A-O interactions.

In Figure 5.10, we visualize the energy landscape between reference structure and relaxed
P4mm phase in the three models, the original CTO mode, CTO(Anh)+PZO(Ha) model, and the
CTO(Anh)+PZO(Ha) model with the addition of 1st term in PZO model (referred as mCTO+PZO
in the legend). Following the stepwise modification, the polar phase becomes anomalously stable
at harmonic correction and is regulated by the additional positive term, (Pby −O1y)

4.

5.3 Role of hydrostatic pressure

In the section 5.1 and 5.2, we have concluded that the atomic interactions between nearest lead
and oxygen atom plays an important rule in the low energy path between Pbam and R3c phases.
Instead of atomic replacement, can we tune the Ca-O interactions into Pb-O interactions in a
practical way? Here, we make an examination of the effect of the negative pressure (homogeneous
tensile stress).

First, we do a symmetry-constrained relaxation to derive the equilibrium cubic structure at a
specific pressure P. Then, we compare the CTO SP model at P [atm] with PZO again through
phonon dispersion curve and energy gains of local minima. Here, we report the effect of pressure
by taking P = −10 [atm] (tensile stress) for example. Figure 5.11 illustrates the phonon dispersion
curves in the red solid lines. In compare to the phonon dispersion curve at P = 0 [atm] (black
dashed lines), the polar phonon modes Γ1,2,3, the antipolar phonon modes X1,2 and M2,3 become
more unstable. Besides. The instability of phonon modes, which accounts for the oxygen cage
rotation, M1 and R1,2,3, becomes less unstable, while the antipolar modes R4,5,6 remain the same
stability.

Under a constant pressure, the equilibrium structure is located at the minimum of Gibbs free
energy. Hence, the energy gains of metastable phases should take the change in cell volume ∆V
from the cubic phase into account.

∆G(u,η, P ) = ∆E(u,η) + P · ∆V (η), (5.2)

Figure 5.12 demonstrates the energy gains of metastable phases at P = −10 [atm]. We fail to
relax the Pbam structure, which implies there is no local minima in Pbam symmetry. Besides,
all polar phases become more stable, including the pure polar phases, and the one combined with
oxygen cage rotation R3c. Indeed, as the tensile pressure exceeds approximately P = −4 [atm],
the ground state of CTO becomes polar phase R3c. At P = 0− 4 [atm], the local minima are still
too rugged for phase transition between Pbam and R3c. Pbam is even not a ground state or local
minimum! At P > 4 [atm], the ground state becomes polar. Thus, we conclude it is impossible to
make CTO an AFE material only through the negative pressure.
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Figure 5.11: Phonon dispersion curve around CTO relaxed cubic phase at P = 0 (dashed) and at
P = −10 [atm] (solid).

Figure 5.12: Energy gains of metastable phases with respect to relaxed cubic phase of CTO at P = −10
[atm]. The blue dots are at P = 0 [atm].
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5.4 Conclusions

In the harmonic and anharmonic parts of the CTO model, we individually identify the crucial
interactions that distinguish the energy landscape of CTO and PZO. At the harmonic level, we
produce similar phonon instabilities in CTO model by tuning the nearest A-O interactions. At
the anharmonic level, the addition of 1st term in PZO model to the CTO(Anh)+PZO(Ha) leads
to the comparable energy gains of metastable phases with the PZO ones. It is exhilarating that
the 1st term in the establishing PZO model, (Ay − O1y)

4, also corresponds to A-O interactions.
Hence, we conclude that the Pb-O bond is a crucial ingredient for the emergence of AFE in PZO.
We have examined if a homogeneous negative pressure is able to imitate the Pb-O bond in CTO,
but we prove that it is not a feasible approach.
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Chapter 6

Conclusions

There are two correlated purposes of this thesis. First is to reveal critical interactions, which
make PZO an AFE material, while CTO is an AFD material. Second is to realize the nonpolar-
polar phase transition path in PZO on a modified CTO SP model. We choose these two materials
to understand AFE characteristics since they manifest similar structures at high temperatures.
Nonetheless, PZO condenses to an AFE material, while CTO is an AFD material at low temper-
atures. Hence, it is noteworthy to reveal the microscopic origin of their difference in the electric
property.

We make the analysis by tuning the coefficients of the CTO SP model. A SP model expands
PES by a polynomial function at an RS with respect to lattice degree of freedom. For that reason,
the calculation of energy on SP models is much faster than that through first-principles calculations.
Besides, the coefficients in SP models are correlated with physical meaning; therefore, it is useful to
track the essential interactions. According to the approach to deriving the coefficients, the energy
function is divided into three parts: (i) energy of reference structure, (ii) harmonic contributions,
and (iii) anharmonic contributions. The energy of reference structure is obtained by first-principles
calculations. Based on the energy and the wave functions of the RS, we derive the harmonic
coefficients by DFPT. Finally, the anharmonic coefficients are obtained by data fitting on a set of
training set. Since these processes are related to first-principles calculations, SP models preserve
its predicting power.

We start our analysis by elucidating three AFE criteria from the microscopic perspective and
examining them on PZO and CTO. First, an AFE material manifests a nonpolar ground state.
PZO is Pbam and CTO is Pnma at low temperatures; therefore, both of them meet this criterion.
Second, there is a polar phase, whose energy is close to the ground state. PZO and CTO satisfy
the criteria. Both of them possess a polar phase, R3c, whose energy is near to their ground states.
Finally, the energy barrier between nonpolar and polar phases is flat enough to allow the phase
transition at a sufficiently large electric field. Since PZO and CTO are respectively identified as
an AFE and an AFD, we could speculate that PZO meets this criterion, while CTO does not.
Therefore, we target to uncover the terms in the SP model responsible for the energy barrier
difference.

By comparing the curvature at the harmonic level and the energy of local minima, we deduce
that in reciprocal space, the unstable antipolar and polar phonon modes are responsible for the low
barrier between Pbam and R3c phases in PZO. In real space, Pb-O interactions play important
roles in AFE characteristics in PZO. With adjustment of the Ca-O harmonic and anharmonic
interactions, we can reproduce the phase transition path between Pbam and R3c phases in CTO.
Finally, we investigate if hydrostatic pressure can be a practical way to simulate Pb-O interactions
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between calcium and oxygen atoms in CTO, but we find it an unfeasible method.
For the following research, we expect to use molecular dynamics to explore the nonpolar-polar

phase transition path on a more complete PZO SP model. Accordingly, we can obtain the physical
value of the energy barrier, and track the change in energy barrier as we tune the CTO model.
Besides, it is noteworthy to follow the same scheme to compare CTO with another AFE material,
PbHfO3, whose tolerance factor (t=0.974) is close to CTO as well, and examine if Pb-O interactions
are crucial for their difference. If so, we may lay down the critical role of Pb-O interactions in
AFE materials.
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Appendix A

Anharmonic coefficients

Table A.1: Anharmonic terms of CTO model, the vectors indicate the position of unit cell. If it is
not labeled, the position of unit cell is [000].

Index Representative SATs Values
1 (Cax −O1x)1(Cax −O1x[1̄00])1(η1)

1 -1.372E-02
2 (Cax −O1x)2(Cay −O2y)

1(Cax −O1x[1̄00])1 6.907E-04
3 (Cax −O1x)2(Cax −O3x[1̄1̄0])2 6.297E-04
4 (Cay −O1y)

2(η2)
1 -8.680E-03

5 (Cax −O1x)1(Cax − Tix[001̄])1(η1)
1 6.193E-03

6 (Cax −O1x)2(Cax −O3x[1̄1̄0])1(Cax − Tix[1̄1̄1̄])1 -1.985E-04
7 (Cax −O1x)1(Caz − Tiz[1̄1̄0])1(η5)

1 -8.483E-03
8 (Cax −O1x)1(Cax −O2x)1(Cax −O2x[01̄0])1(Cax −O2x[01̄1̄])1 4.865E-04
9 (Cax −O1x)2(Caz −O1z)

2 2.307E-03
10 (Cax −O1x)1(Cax − Tix)1(Cax −O2x[01̄1̄])2 -8.472E-04
11 (Cax −O1x)1(Cax −O2x)1(Cax − Tix[01̄1̄])1(Cax − Tix[1̄1̄1̄])1 1.256E-03
12 (Cax −O1x)1(Cay −O2y)

1(η1)
1 -1.100E-02

13 (Cax −O1x)1(Cay −O2y)
1(Cax −O3x)1(Cax −O1x[1̄01̄])1 -1.020E-04

14 (Cax −O1x)1(Caz −O1z)
1(Caz − Tiz[001̄])1 1.636E-03

15 (Cax −O1x)1(Cax −O2x)1(Cax −O2x[001̄])1(Cax − Tix[1̄1̄0])1 -8.134E-04
16 (Cax −O1x)1(Cay −O2y)

1(Cay −O3y)
1(Caz −O1z[00 − 1])1 -4.939E-04

17 (Cax −O1x)1(Cax − Tix)1(Cay − Tiy[1̄01̄])1(η1)
1 -1.622E-02

18 (Cax −O1x)1(Cax −O2x)2(Cay −O2y)
1 1.495E-03

19 (Cax −O1x)1(Cax − Tix)1(Cax −O2x)1(Cay −O2y)
1 -1.191E-05

20 (Cax −O1x)1(Cay −O2y)
1(Cay − Tiy)

2 9.245E-05
21 (Cax −O1x)2(Cax −O2x)1(Cay −O2y)

1 -1.121E-03
22 (Cax −O1x)1(Caz −O2z)

1(Cay −O3y)
1 -1.574E-03

23 (Cax −O1x)1(Cax −O1x[001̄])1(η1)
1 -1.075E-03

24 (Cax −O1x)1(Cay − Tiy[1̄00])1(Cax − Tix[1̄1̄1̄])1(η3)
1 -2.701E-02

25 (Cax −O1x)2(η1)
1 -2.600E-03

26 (Cax −O1x)2(Caz −O1z)
1(Cax −O1x[1̄01̄])1 1.139E-03

27 (Cax −O1x)1(Cay −O3y)
1(Caz − Tiz)

1 9.489E-04
28 (Cay −O1y)

2(Cay − Tiy)
1 2.872E-02

Continued on next page
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Table A.1: Anharmonic terms of CTO model, the vectors indicate the position of unit cell. If it is
not labeled, the position of unit cell is [000]. (Continued)

29 (Cay −O1y)
1(Cay − Tiy)

2 -2.813E-02
30 (Cax − Tix)3 8.566E-03
31 (Tix −O1x)2(Tiy − Tiy[010])1 3.706E-03
32 (Tix −O1x)1(Tix −O2x)2(Tix −O2x[100])1 6.911E-03
33 (Tiy −O1y)

2(η2)
1 -4.047E-01

34 (Tix −O1x)1(Tiy −O2y)
1(Tix −O2x[100])1(Tiy −O1y[010])1 1.269E-02

35 (Tix −O1x)1(Tix − Tix[010])1(η1)
1 1.602E-02

36 (Tix −O1x)1(Tiy −O1y)
1(Tix − Tix[100])1 -8.588E-04

37 (Tix −O1x)2(Tiy −O1y)
2 -1.274E-02

38 (Tix −O1x)3(Tiy −O2y)
1 -9.896E-04

39 (Tix −O1x)2(Tiy −O2y)
1(Tiy − Tiy[010])1 -3.613E-03

40 (Tix −O1x)2(Tiz −O3z)
1 2.721E-03

41 (Tix −O1x)2(Tix −O2x)1 2.188E-03
42 (Tix −O1x)2(Tiz −O1z)

1(Tiy −O3y)
1 -8.673E-04

43 (Cax − Tix)2(Cay − Tiy)
1 1.456E-03

44 (Cax − Tix)1(Cay − Tiy)
1(Caz − Tiz)

1 5.780E-03
45 (Tix −O1x)2(η3)

1 -7.652E-04
46 (Tiy −O1y)

1(Tiy −O1y[010])1(η2)
1 8.356E-02

47 (Tix −O1x)1(Tiz −O1z)
1(η5)

1 -1.645E-03
48 (Tiy −O1y)

1(Tix −O2x)1(η1)
1 -2.145E-01

49 (Tix −O1x)1(Tix −O1x[010])1(Tiy −O1y[010])1 -1.102E-02
50 (Tix −O1x)1(Tix −O3x)1(η4)

1 2.562E-03
51 (Tix −O1x)1(Tiz −O2z)

1(Tiz −O1z[010])1(η1)
1 7.238E-03

52 (Tix −O1x)1(Tix −O1x[010])1(Tiy −O1y[010])2 4.931E-03
53 (Tix −O1x)2(Tiy −O2y)

1(eta3)
1 1.017E-01

54 (Tix −O1x)1(Tix −O2x)1(Tiy −O2y)
1 -2.932E-03

55 (Tix −O1x)1(Tix −O3x)1(Tiz − Tiz[001])1 2.730E-03
56 (Tix −O1x)1(Tix −O3x)1(Tiz −O3z)

1 -3.607E-03
57 (Tix −O1x)2(Tiy −O3y)

1 -1.068E-03
58 (Tiy −O1y)

4 1.440E-02
59 (Tix −O1x)2(Tiy −O1y)

1(Tiy −O3y)
1 2.724E-03

60 (Tix −O1x)2(Tix −O2x)1(Tix −O1x[010])1 1.104E-03

Table A.2: Anharmonic terms of PZO model, the vectors indicate the position of unit cell. If it is
not labeled, the position of unit cell is [000].

Index Representative SATs Values
1 (Pby −O1y)

4 3.430E-02
2 (Pby −O1y)

1(Pby −O1y[01̄0])1(η2)
1 -4.447E-03

3 (Pby −O1y)
2(Pbz −O1z)

2 1.697E-04
4 (Pbx − Zrx)1(Pbx − Pbx[010])1(η2)

1 -1.791E-03
5 (Zry −O1y)

1(Zry −O1y[100])1(η2)
1 -0.297E-02

Continued on next page
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Table A.2: Anharmonic terms of PZO model, the vectors indicate the position of unit cell. If it is
not labeled, the position of unit cell is [000]. (Continued)

6 (O1z −O2z)
2(O1z −O1z[001])2 1.576E-05

7 (Pbx −O1x)1(Pbx −O2x)2(Pbz −O2z)
1 -4.832E-04

8 (Pby −O1y)
2(η3)

1 -4.274E-03
9 (Zry −O1y)

2(η1)
1 3.851E-02

10 (Pby −O1y)
1(Pbz −O1z)

1(η4)
1 -4.481E-03

11 (Pbx −O1x)1(Pbx −O2x[1̄01̄])1(η1)
1 -3.847E-03

12 (Pbx −O1x)1(Pby − Zry[1̄01̄])1(Pbz − Zrz[1̄01̄])1 2.577E-03
13 (Pby −O1y)

2(O1z −O2z)
1(O1z −O1z[010])1 1.048E-04

14 (Pby −O1y)
1(Pbz −O1z)

1(Pbz − Zrz[1̄01̄])1 1.071E-03
15 (Pby −O1y)

2(Pbx − Zrx)1(Pbz −O2z[1̄01̄])1 3.445E-04
16 (Pbx − Zrx)1(Pbx − Zrx[00 − 1])1(η2)

1 -3.004E-02
17 (Pbx −O1x)1(Pbx − Zrx[1̄01̄])1(Pby − Zry[1̄01̄])1 1.793E-03
18 (Pbx −O1x)1(Zrx −O1x)1(η1)

1 -6.679E-03
19 (Pby −O1y)

1(Pbz −O1z[00 − 1])1(Pbz − Pbz[001])2 4.079E-04
20 (Pbx − Pbx[100])1(Pbx − Pbx[010])1(η2)

1 -3.921E-03
21 (Pby −O1y)

2(O1x −O2x)2 2.729E-04
22 (Zrx −O1x)1(Zrz −O2z)

2 3.736E-03
23 (Pby −O1y)

1(Pbx −O2x)1(Pbx −O3x[1̄1̄0])1 3.138E-05
24 (Zry −O1y)

1(O1x −O2x[1̄10])1(η6)
1 1.181E-02

25 (Pby−O1y)
1(Pby−O1y[001̄)1(Pby−O1y[01̄0])1(Pby−O1y[01̄1̄])1 7.036E-04

26 (Pby −O1y)
3(Pbz −O1z)

1 1.811E-03
27 (O1x −O2x)1(O1z −O2z)

2(O1y −O1y[001])1 1.405E-04
28 (Pby −O1y)

1(Pbz − Zrz)
1(η4)

1 -2.068E-03
29 (Pby −O1y)

2(Pbx − Zrx)1(Pbz −O1z)
1 3.479E-04

30 (Pby −O1y)
2(Pbz − Zrz[1̄1̄1̄])1(Pbz − Pbz[001̄])1 1.763E-04

31 (Zry −O1y)
2(Zrx −O2x)2 1.329E-03

32 (O1z −O2z)
2(O1y −O1y[010])1 2.222E-04

33 (Pby −O1y)
1(Pbz −O1z[001̄])1(η2)

1 9.590E-03
34 (Pby −O1y)

1(Pby − Zry[1̄1̄1̄])1(η2)
1 -8.041E-04

35 (Pbx −O1x)1(Pbx −O2x)1(Pby −O1y[01̄0])1(Pbx −O2x[1̄01̄])1 5.209E-05
36 (Zrx −O1x)1(Zry −O1y)

1(Zrx −O2x)1 -2.705E-03
37 (Pby −O1y)

1(Pbx −O2x)1(Pby − Pby[010])1(η3)
1 5.398E-03

38 (Pbx − Zrx)1(Pbx − Zrx[1̄1̄1̄])1(η2)
1 1.932E-02

39 (Zry −O1y)
2(O1x −O1x[100])2 -6.723E-03

40 (Pbx − Zrx)3 -8.861E-04
41 (Pby −O1y)

2(Pbz −O2z)
1(η4)

1 -3.024E-03
42 (Zrx −O1x)1(O1x −O2x)1(O1z −O2z)

2 7.976E-04
43 (Pby −O1y)

2(Pby − Pby[010])2 9.056E-05
44 (Zrx −O1x)2(η1)

1 -1.337E-01
45 (Pby −O1y)

2(Pbz −O2z)
1 7.507E-05

46 (Zry −O1y)
2(Zry −O3y)

2 9.738E-04
47 (Zry −O1y)

2(Zrx −O2x)1(Zrx − Zrx[1̄00])1 -2.757E-03
48 (Pbx −O1x)1(Pby −O1y)

1(Pbx −O2x)1(Pbx − Zrx[001̄])1 -3.633E-04

Continued on next page
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Table A.2: Anharmonic terms of PZO model, the vectors indicate the position of unit cell. If it is
not labeled, the position of unit cell is [000]. (Continued)

49 (Pbx − Zrx)1(Pbx − Zrx[1̄00])1(η1)
1 1.445E-02

50 (Pby −O1y)
1(Pbx − Zrx)1(Pbz −O2z[1̄01̄])1 7.662E-05

51 (Pby −O1y)
4(Pbz −O1z)

2 5.598E-05
52 (Pbx −O1x)2(Pbx −O2x[1̄01̄])2(η1)

2 1.577E-02
53 (Pbx −O1x)2(Pbx − Zrx[1̄01̄])2(Pby − Zry[1̄01̄])2 -4.831E-04
54 (Pbx −O1x)2(Pbx − Zrx[1̄01̄])2(Pby − Zry[1̄01̄])4 7.833E-04
55 (Pby −O1y)

2(Pbx −O2x)2(Pby − Pby[010])2 -3.415E-05
56 (Pby −O1y)

2(Pbz −O2z[1̄01̄])2(Pby − Pby[001])2 -1.789E-05

Figure A.1: Energy gains of (meta) stable phases on the establishing PZO SP model. The ground state
is inaccurately at R3c phase, but the energy gains are close to the first-principles calculations (green
crosses).


