
http://lib.ulg.ac.be http://matheo.ulg.ac.be

Lightweight Middlebox TCP

Auteur : Gaillard, Romain

Promoteur(s) : Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité approfondie

Année académique : 2015-2016

URI/URL : http://hdl.handle.net/2268.2/1626

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Lightweight Middlebox TCP

Romain Gaillard
Supervisor: Prof. Laurent Mathy

Committee members: T. Barbette, Prof. B. Boigelot, Prof. G. Leduc

Master’s thesis submitted for the degree of

Msc in Computer Science

University of Liège

Faculty of Applied Sciences

Academic year 2015 - 2016

Abstract

Lightweight Middlebox TCP

Master’s thesis submitted for the degree of Msc in Computer Science

Author: Romain Gaillard

Supervisor: Prof. L. Mathy

Academic year 2015 - 2016

Nowadays, middleboxes are important actors of the Internet and they are used in
many contexts such as network address translation, firewalls, load balancers, and intru-
sion detection systems, among others. Consequently, their implementation can have a
great impact on the performance of networks and it is thus crucial to ensure that they
do not become bottlenecks.
The objective of this work is to develop a lightweight and middlebox-oriented TCP stack
that takes into account the specificities of the context in which middleboxes work in or-
der to provide them with the ability to inspect and modify the traffic, as well as inject
packets. All of this on the fly. This manuscript first describes the architecture of the
developed framework, listing its components and functionalities, and how to use them
to create middleboxes.
We then continue by providing information about the development and the design of
the framework, describing the underlying data structures. In addition, we detail the
algorithms at the heart of the TCP stack as well as the corresponding time complexities
and we explain why they are important to achieve our goals.
The results indicate that it is possible to use this framework to implement a middle-
box that performs deep packet inspection with a small and constant overhead. On the
other hand, when the middlebox starts modifying the flows, the overhead becomes lin-
ear regarding the size of the content. We show that the modularity of the framework
we developed allows the users to mitigate the induced overhead by selecting only the
features they need.
Finally, we list some elements that could not be implemented in this work, proposing
some improvements to the present work that could be made in the future in order to
extend it.

Acknowledgements

I would like to start by expressing my sincere gratitude to my super-
visors, Prof. Laurent Mathy and Tom Barbette. They spent much time
sharing their experience and counsels with me and they were always
available to assist me. I had the chance to work on a enthralling subject
in which they are very involved and this work would have definitely not
been possible without their help.

I also thank my friends and family for their support and their
interest, in particular Soraya for proofreading this document.

Contents

1 Introduction 6
1.1 Middleboxes . 6

1.1.1 Definition . 6
1.1.2 Usages and classification . 6
1.1.3 End-to-end principle . 8
1.1.4 Deep Packet Inspection . 8

1.2 Context of this work . 9
1.3 Goals . 9

2 Architecture 11
2.1 Frameworks used . 11

2.1.1 Netmap . 11
2.1.2 Click Modular Router . 12
2.1.3 FastClick . 13
2.1.4 MiddleClick . 14

2.2 Framework architecture . 15
2.3 List of components . 17

2.3.1 IPIn . 17
2.3.2 IPOut . 17
2.3.3 TCPIn . 17
2.3.4 TCPOut . 19
2.3.5 TCPReoder . 20
2.3.6 TCPRetransmitter . 23
2.3.7 HTTPIn . 25
2.3.8 HTTPOut . 25
2.3.9 InsultRemover . 25
2.3.10 PathMerger . 26
2.3.11 TCPMarkMSS . 27
2.3.12 Summary . 28

2.4 Stack functions . 28
2.4.1 Determine if a given packet is the last useful one for the current

layer . 29
2.4.2 Remove bytes . 30
2.4.3 Insert bytes . 30
2.4.4 Request more packets . 30

4

CONTENTS

2.4.5 Close the connection . 31

3 Development and design 32
3.1 Development methodology . 32
3.2 Data structures . 32

3.2.1 MemoryPool . 33
3.2.2 BufferPool . 34
3.2.3 Common TCP structure . 35
3.2.4 ModificationList . 35
3.2.5 Red-black trees . 38
3.2.6 ByteStreamMaintainer . 39
3.2.7 CircularBuffer . 43
3.2.8 FlowBuffer . 45
3.2.9 RetransmissionTiming . 46

3.3 More information about some framework elements 48
3.3.1 StackElement . 48
3.3.2 TCPReorder . 48
3.3.3 TCPRetransmitter . 55
3.3.4 TCPFragmenter . 57
3.3.5 PathMerger . 57
3.3.6 InsultRemover . 57

3.4 Multithreading . 57

4 Results 59

5 Future work 63

6 Conclusion 65

A Complete example of configuration 66

5

Chapter 1

Introduction

1.1 Middleboxes

1.1.1 Definition

A middlebox, as the name suggests, is a networking device located in the middle of a
connection that performs several functions on the traffic that passes through it. Such a
device can have various behaviours, for instance Network Address Translation (NAT),
traffic filtering, deep packet inspection (DPI) or security strengthening. A middlebox
often implements multiple of these features at the same time, being therefore a complex
network actor that can have a considerable influence on the traffic.

1.1.2 Usages and classification

As the definition of middleboxes is extremely wide, it includes a large number of net-
work protagonists with highly different purposes and behaviours. Therefore, classify-
ing middleboxes is not a straightforward process and it can be done in many different
ways. Here, we provide a non-exhaustive list of the goals that can be achieved by using
middleboxes, trying to classify them according to their behaviour regarding the traffic
that flows through them. The criterion we use to do so is the network layers impacted
by the middlebox. Middlebox are considered to act on the network layer and above [4],
and to have a more intrusive behaviour when a higher layer is involved in the functioning
of the middlebox.

Virtual Private Network

A Virtual Private Network (VPN) is, in short terms, a private network built upon a
public network. The point of using a public infrastructure such as the Internet, instead
of wiring a dedicated private network is generally to reduce costs and allow flexibility.
A VPN can be implemented with two middleboxes creating an IP tunnel, the first
one is located at the first edge of the private network. It encapsulates the traffic and
sends it to a second middlebox, located at the other end of the private network. This
second middlebox decapsulates the data it receives, and sends them to the destination
the client wanted to reach. Thanks to the encapsulation made by the middleboxes,
the VPN specificities are invisible for the endpoints. Everything is seen as if the two

6

CHAPTER 1. INTRODUCTION

subnetworks were directly connected. In this case, the middleboxes alter the third layer,
in order to provide the encapsulation mechanism.

Network Address Translator

A Network Address Translator (NAT) is a network device located at the edge of a local
network that makes the mapping between the private IP addresses used behind the
NAT with unique public addresses used outside of the NAT. One of the reasons why
they have become more and more used is to provide a solution to the massive growth of
the Internet and the exhaustion of the IPv4 address space. Indeed, it quickly became
obvious that providing a unique IP address to each host connected to the Internet would
require a bigger address space. NATs helped mitigate this problem by allowing to assign
one public IP address to an entire local network. Behind the NAT, the IP addresses
are private and do not need to be unique regarding other local networks, they are not
advertised outside of the local network. The middlebox implementing the NAT function
modifies the third layer, namely the network layer, to translate the IP addresses, and can
also impact the fourth layer (transport layer) to manipulate the port numbers[6][21][26].

Proxy

A proxy server is an intermediary between a client and the server it wants to reach.
In this configuration, instead of having two endpoints directly communicating as in the
normal case, we have a middle protagonist in the communication process, the proxy.
The latter is in charge of forwarding the client’s requests to the destination. For the
endpoint server, everything is seen as if the proxy server was the initiator of the requests;
it never communicates directly with the client, all the traffic passes through the proxy.
In fact, the proxy acts as a client for the server and as a server for the client[5].

There exist multiple kinds of proxies, often depending on the protocol they are
designed to manage. Those proxies can modify all the network layers, including the
application one, but there also exist more generic proxies such as SOCKS proxies that
leave the application layer unmodified and simply transfer its content.

Intrusion Detection System

An Intrusion Detection System (IDS) analyses the traffic that passes through it in order
to detect and prevent illicit activities. Its role is passive and it does not interfere with
the network activity. It rather detects specific patterns and signatures in the packets in
order to trigger alerts when a suspicious element is found so that countermeasures can
be set up. To perform the analysis, the IDS can monitor all the network layers, but in a
read-only fashion. On the other hand, Intrusions Prevention Systems (IPS) do not only
log and notify the suspicious content, they can also try to block them by modifying or
discarding the malicious packets.

Firewall

A firewall is a network device or program that monitors the traffic in order to determine
if it is permitted or not, according to a set of rules. A firewall therefore has a role of

7

CHAPTER 1. INTRODUCTION

classification regarding the traffic, determining if it belongs to the allowed or blocked
category. The set of rules can contain criteria based on the IP addresses of the source
and the destination, the protocols and the port numbers, for instance.

A firewall can be stateless, or stateful, in which case it has memory and can take a
decision based on previously seen packets and events. As an example, a stateful firewall
can determine if the three-way handshake has been performed before allowing other
TCP packets. In both cases, firewalls generally act on the first four layers, but more
advanced ones can also analyse the application layer in order to make better decisions.
For instance, to determine if the protocol used is indeed the expected one and if an
attacker does not try to use a forbidden protocol by hiding it. Such a firewall hence does
not only rely on the headers to make a decision and allows more fine-grained criteria.

1.1.3 End-to-end principle

The end-to-end principle is described by J. H. Saltzer et al. (1984)[20] as the ar-
gument supporting that the intelligence of the network should be implemented at its
endpoints. They state that implementing the various functions on the internal nodes
can be redundant and not efficient. Indeed, in many cases, the endpoints will still have
to implement the functions, which leads to redundancy. This results in higher costs and
lower performance.

Moreover, the internal nodes do not always have all the information needed to apply
the required functions in an efficient way and should thus leave the responsibility to the
endpoints, which are the main actors of the communication process. This principle has
been applied to the architecture of the Internet, assuming that "an end-to-end protocol
design should not rely on the maintenance of state (i.e. information about the state of
the end-to-end communication) inside the network" (Ben Carpenter, 1996)[3].

By definition, middleboxes contravene the end-to-end principle since they are provid-
ing functions in the middle of the network instead of leaving the responsibility of im-
plementing them to the endpoints. The implications and the interpretations of the
end-to-end principle have evolved over the years, as described by Kempf et al.[10] and
it is the subject of more and more pressures.

1.1.4 Deep Packet Inspection

Deep packet inspection (DPI) refers to an internal node of the network (as opposed to
endpoints) analysing the content of the packets going through it, including the payload
and not only the various headers necessary for the good forwarding of the packet. It
may be done for statistical purpose, eavesdropping, intrusion detection, filtering or even
for censorship reasons. Middleboxes that manipulate the application layer are said to
perform deep packet inspection. Obviously, performing DPI violates the end-to-end
principle as the intelligence of the network is not only located to the end nodes any
more.

Nowadays, DPI is a hot topic, mainly because it can have a huge impact on the
privacy and the Internet neutrality. As an example, some governments use it to prevent

8

CHAPTER 1. INTRODUCTION

people from accessing a list of websites. To do so, the TCP payload, corresponding to
the application layer content, is analysed, searching for sensitive keywords and in the
case of a match, the packet may be discarded or the connection closed without notifying
any of the protagonists[25]. However, DPI is a very broad technique that has many
applications and can be used in a large number of contexts, not only for controversial
reasons.

1.2 Context of this work

As the Internet grows, the amount of traffic that flows everyday becomes more and more
important, leading to the need to carefully design the actors involved in the network.
Avoiding congestion is thus of the highest importance, in particular at the dawn of
the Internet of things, which results in the exponential growth of the number of actors
exchanging data.

Nowadays, middleboxes play a central role regarding the Internet. They are in fact
necessary in many aspects. For instance, it is usual for big companies that receive a lot
of traffic to use load balancers to share the charge between multiple servers. It is also
common to use a cache system to reduce the number of heavy requests. In addition,
some Internet providers use several methods to decrease the bandwidth consumption,
including cache systems but also compression. Indeed, it is not uncommon, in particular
for mobile connections, to compress images included in web pages, reducing their size,
but generally also their quality at the same time. The argument given by the providers is
that, as the screen size is generally lower on mobile devices, reducing the quality should
not have an influence on the perceived quality of the image. These are a few examples of
the reasons why middleboxes not only have many theoretical applications, as described
in section 1.1.2 (Usages and classification), but are actually used to cope with the need
of higher and higher throughputs.

Those two observations highlight the fact that middleboxes are now important actors
of the Internet; their implementation has therefore a great impact on the performance of
networks. It is thus crucial to ensure that middleboxes do not become network bottle-
necks. Furthermore, as they are generally rather tools than actors that produce useful
content in a connection, it is reasonable to consider that they should not significantly de-
crease the performance of the connection. It may even be conceivable to use middleboxes
to improve overall performance in some cases.

1.3 Goals

The goal of this work is to develop a fast and easy-to-use TCP framework targeted to
developers so that they can create lightweight TCP middleboxes. This framework is
meant to handle the low-level problems in such a way that developers can focus on the
functionalities they need to implement instead of worrying about the performance of
the network management system, as well as the specificities of the lower layer protocols.
Moreover, the implementation of the TCP protocol must be lightweight and specifically
designed for middleboxes, allowing to inspect, modify the traffic and inject packets on

9

CHAPTER 1. INTRODUCTION

the fly, all of this seamlessly for the endpoints and by interfering as low as possible with
the TCP connection.

Using recent tools such as Netmap[18], this work must take advantage of dedic-
ated techniques, including zero-copy, kernel bypassing and packet batching to get the
maximum potential of the network. The expected result is to have an impact on the
performance as low as possible. Regarding its implementation, the focus has to be made
on providing a modular, flexible and lightweight tool that is able to handle some of the
challenges raised by the growing size and complexity of the Internet. The algorithms
and data structures used to achieve this goal are thus of the highest importance and
must be selected according to memory consumption as well as time efficiency criteria in
order to avoid bottlenecks. Thus, this work must also focus on giving arguments and
comparisons that lead to the final result, which will consist in a series of elements and
libraries compatible with an extended version of the Click Modular Router[14], a piece of
software that provides a convenient and flexible way to implement and configure router
functions. Using those elements, a developer will be able to create a configuration of
modules that manage the TCP stack and some well-known protocols such as HTTP.
Moreover, the various tools and libraries provided must allow to create custom elements
that implement behaviours corresponding to specific needs.

In addition to describing the implementation of the provided framework, this work
must also focus on giving clues and points of attention to extend it. Indeed, as we
have seen, middleboxes have a huge number of applications, in very distinct fields and,
moreover, the TCP protocol is vast and contains a broad number of mechanisms, options
and extensions that make it hard to integrate in an exhaustive way. Thus, we must
explore the possible improvements and weaknesses that could not be assessed during
the development of the presented framework, hoping to provide a good starting point
to the development of a more exhaustive tool and to describe the errors to avoid when
developing it.

10

Chapter 2

Architecture

In this chapter, we present the developed tool from a high level point of view, describing
its various components and their peculiarities.

2.1 Frameworks used

The developed program takes advantage of several pieces of software in order to achieve
its purpose. This section provides a short description of these tools, their contributions,
and how they are used in the context of this work.

2.1.1 Netmap

Netmap is a framework aimed at providing the best performance for fast packet I/O. It
was developed by Luigi Rizzo as a result of the observation that general purpose OSes
offer a network API that was designed to be generic, easy to use and adapted for all
situations, but with tradeoff considerations that are now 30 years old. At that time,
the link speed was also much slower than it is now and parallel processing was not
as important as it currently is[19]. Nowadays, the situation that led to the design of
such an API has changed and the tradeoffs that were relevant before are not necessarily
appropriate any more.

For this reason, among others, it is now clear that the network API provided by the
OSes on our computers is not the most efficient to develop high throughput applications.
In the context of this work, where the goal is to have an impact on the performance
as low as possible, netmap helps by providing a framework that takes benefit of several
state-of-the-art techniques to provide high rate packet I/O.

Using Netmap instead of the classical kernel API allows to decrease the packet-
processing cost and to achieve better performance by taking advantage of many im-
provements such as zero-copy, I/O batching and kernel bypass[18][2]. In the context of
this work, this framework is used, via its integration in FastClick (c.f. section 2.1.3) as
a shortcut to send and receive raw packets with as small a cost as possible.

11

CHAPTER 2. ARCHITECTURE

2.1.2 Click Modular Router

Click is a modular software architecture that allows to create routers in a very convenient
and flexible way. A click router is based on a configuration file containing elements
that are linked together as a directed graph. The traffic flows from one or more entry
points (generally FromDevice elements) to one or more exit points (generally ToDevice
elements) and passes through various elements, following various paths according to how
elements process packets[14].

In the case of this framework aimed at developing middleboxes, Click is ideal as it
offers its flexibility to the users. Indeed, they can easily use the elements provided along
with this work to create chains of middleboxes that implement various functions, only
including the needed components so that it stays as lightweight as possible. Moreover,
it is easy to extend or create new elements on top of the others, so that developers
can create their very own ones to meet specific needs. Finally, the configuration files
used to create click routers are easily editable and a user can modify the parameters of
the elements in a short time, without needing to recompile them, which appears to be
very practical for debugging purpose in addition to provide a high adaptability to their
product.

Imagine that a developer has created an element that classify the traffic according to
some criteria (for instance, whether or not the payload contains specific keywords). Let
us assume that this element has two outputs: the first one corresponding to the traffic
that meets the criteria and the second output corresponds to the traffic that does not
meet them. If the developer is currently dropping all the traffic arriving on the second
output but wants to change it to send this traffic on a dedicated network card, he just
has to edit the configuration file in order to replace the Discard component, which is
a click built-in element that drops all the packets, by a ToDevice element. With this
simple example, we can see how powerful and modular Click is, and why it is the ideal
candidate for the implementation of our framework.

A very simple example of a configuration is depicted on figure 2.1. In this configura-
tion, every packet coming on the interface eth0 is sent to the element Strip, which is a
component that strips the number of bytes given as an argument from the beginning of
the packet. It is often used to get rid of the Ethernet header by configuring it to remove
14 bytes. Next, the packet is given to the CheckIPHeader element which performs
some tests on the packet in order to determine if its IP header is correct. This element
has one input and can have either one or two outputs. If only the first output is used,
packets with a valid IP header are sent on it and the others are discarded. If two outputs
are used, instead of being discarded, the packets with an invalid IP header are sent on
the second output. In this example, only the first input is used and it is connected to the
Print element that will display the message OK when it receives a packet, and transmit
it on its output. Finally, the packets arrive in the Discard element where they are
discarded. This configuration is translated straightforwardly into a click configuration
file as listing 2.1 shows.

12

CHAPTER 2. ARCHITECTURE

Figure 2.1: Simple example of Click configuration (adapted from the documentation[12])

1 FromDevice (eth0) �> Str ip (14) �> CheckIPHeader () �> Print (OK)
2 �> Discard () ;

Listing 2.1: Simple example of Click configuration file

A second example of configuration is showed on figure 2.2. It the the same as the
first example, except that the second output of CheckIPHeader is used and connected
to a Print element that displays the message NOK when it receives a packet. The
packets are, as in the first example, discarded after the Print elements. Once again, this
configuration is easily translated into a click configuration file, showed on listing 2.2.
Note that cip is just the name we chose to give to the instance of CheckIPHeader so
that we can configure its second output.

Figure 2.2: Second simple example of Click configuration (adapted from the document-
ation[12])

1 FromDevice (eth0) �> Str ip (14) �> cip : : CheckIPHeader () [0] �> Print (OK)
2 �> Discard () ;
3

4 c ip [1] �> Print (NOK) �> Discard () ;

Listing 2.2: Second simple example of Click configuration file

These two examples show how modular and easy to maintain a click configuration
is. It is indeed simple to modify or create new paths that the packets will follow. This
advantage is used in the context of this work as the final result is provided in the form
of click elements that can be used to create middleboxes.

2.1.3 FastClick

FastClick is an extended version of Click, developed at the University of Liege, which
integrates many improvements to increase the performance[2]. Here is a non-exhaustive
list of the improvements provided by FastClick that directly benefit to this work:

• Enhanced integration of Netmap: in the vanilla version of Click, Netmap is
polled in order to obtain an I/O batch of packets that will be sent, one by one, as

13

CHAPTER 2. ARCHITECTURE

a burst, to the click elements. After the burst, Click will reschedule this task and
repeat the process if there are packets available for I/O. FastClick improves this
behaviour by avoiding rescheduling the task if a full I/O batch is not available,
which allows to process bigger batches and therefore take better advantage of the
I/O batching mechanism[2].

• Zero copy: Taking advantage of the ability to swap Netmap’s buffers from the
receive and the transmit rings, FastClick gets rid of the necessity to copy the
content from the receive buffer to the structure Click uses to process the packets,
and at the end of the path, from this structure to the transmit buffer.

• Compute batching: In Click, along the path of elements, packets are passed one
by one from the output of an element to the input of the next one. FastClick modi-
fies this behaviour by introducing the mechanism of packet batches in Click. They
are represented by linked lists of packets and can have various sizes, depending on
the number of packets available when the batch is built. This allows each element
to process an entire batch of packets before passing it to the next element, instead
of processing packets one by one. The strong advantage of the packet batching im-
plementation provided by FastClick is that it is fully backward compatible with the
old Click’s elements. Thus, it is possible to benefit from the advantages of packet
batching by making elements compatible with this mechanism incrementally.

More information about FastClick and the various improvements it provides to Click
can be found in the paper Fast Userspace Packet Processing, written by Tom Barbette,
Cyril Soldani and Laurent Mathy[2].

2.1.4 MiddleClick

MiddleClick is a fork of FastClick, also developed at the University of Liege, aimed at
providing Click with flow management mechanisms. It is based on the observation that
even though some middleboxes such as NATs are packet oriented, most of the functions
achieved by middleboxes require to process flows and not only single packets. As an
example, a middlebox managing HTTP contents may have to process data split over
multiple packets, or process headers that require to have a view of the entire flow of
data in order to make a decision (such as Content-Length which requires to know the
size of the HTTP payload). Moreover, for frameworks that use raw packets and do not
rely on the operating system to handle flows, they need to manage the flow classification
by themselves. This may be problematic when middleboxes are pipelined because it
means that the flow classification is done multiple times. Therefore, Middleclick aims at
solving these problems and enhancing the support of middleboxes in Click.

Most importantly for this work, MiddleClick provides the router elements with the
ability to define per-flow memory chunks, called scratchpads. In concrete terms, this
means that when an element receives a packet (or a packet batch), it also receives a
pointer to the scratchpad belonging to the flow associated to the packet (or the packet
batch, since in MiddleClick, all the packets of a batch belong to the same flow). There-
fore, the elements do not have to take care about flow management as the memory they

14

CHAPTER 2. ARCHITECTURE

use is automatically associated to the flow; because this memory is not shared among
the flows, the elements have the impression to work on a single flow of data.

As an example, imagine we want to create an element that we will call TCPTime,
which, when the connection is closed, displays the time during which it was open. To do
so, we add in the scratchpad a timestamp field that we will initialize to the current time
when a SYN packet is received. Finally, when a FIN packet is received, we compute the
difference between the current time and the value of the timestamp in the scratchpad
and we display it. Doing this is enough to ensure that our component will be able to
perform this operation on any number of flow at the same time as MiddleClick will
always give the right scratchpad, along with the packets to process, to our element. As
you can see, TCPTime does not have to be aware of the flow mechanism, it just has to
work with the data contained in the per-flow memory area MiddleClick gives it.

An example of how this mechanism could be implemented in TCPTime is given
in pseudocode in listing 2.3. We can see that thanks to the mechanism of scratchpad
offered by MiddleClick, it is really easy and convenient to implement elements that work
seamlessly on flows.

1 Function ProcessPacket (packet , scratchpad)
2 i f CheckFlag (packet , SYN) then
3 scratchpad . timestamp = Now() ;
4 e l s e i f CheckFlag (packet , FIN) then
5 durat ion = Now() � scratchpad . timestamp ;
6 Display (" Duration o f the TCP connect ion : " + durat ion) ;
7 end i f

Listing 2.3: Pseudocode of the packet processing function in TCPTime

Therefore, all the elements provided with this work in order to achieve the expected
goals were developed to be integrated in MiddleClick and take advantage of its flow
management system.

2.2 Framework architecture

As stated in Chapter 1, this work is meant to provide developers with a fast and easy-
to-use TCP framework to create middleboxes. To achieve this purpose, it takes the
form of a set of MiddleClick elements, developed in C++, that will handle the network
management part of the middlebox system, allowing the developer to focus on the higher
level aspects of the implementation, without having to worry about the specificities of
the network. Note that in Click, elements receive raw packets, so it is the role of
the framework developed in the context of this master’s thesis to handle the network-
related content in order to let the middlebox developers focus on the useful content
of the packets. For this purpose, a lightweight implementation of a TCP/IP stack was
developed, specifically designed to be used within the context of middlebox development,
therefore trying to interfere as low as possible with the TCP connections.

Generally, the simplest way to implement a middlebox that will see all the traffic
that passes through it is to use a device with two interfaces, say eth0 and eth1. This

15

CHAPTER 2. ARCHITECTURE

device may be located at the edge of the network to ensure that all the traffic must go
through it in order to enter or exit the network. In this case, the middlebox receives
data on an interface, processes them, and puts them back on the other interface, and
vice versa for the other direction. The figure 2.3 shows an example of such a topology.
In this situation, the middlebox is completely invisible for the client and the server, it is
seen as a simple wire. Note that with this configuration, the interfaces of the middlebox
are configured in promiscuous mode to be able to intercept the frames intended for the
client or the server.

Figure 2.3: Example of a simple topology that can be used to implement a middlebox

Since the role of the elements of this framework is to carry out the functions of the
protocol stack for middlebox applications, a path of elements representing a middlebox
will be referred to as the middlebox stack. Once again, the advantage of having a TCP
stack in the form of Click elements allows for flexibility and modularity: developers can
choose not to use some functionalities by not using the corresponding elements, or they
can decide to perform some operations at precise points of the middlebox stack (or even
outside of the stack for some elements such as TCPReorder which can be used anywhere
in a configuration).

The figure 2.4 depicts a minimal example of a TCP stack instance. Note that for
simplicity purpose, the arguments used to configure the elements of the stack are not
shown on the diagram. Moreover, in a topology such as the one depicted on figure 2.3,
the left side of the configuration is ultimately connected to the interface eth0 while the
right side of the configuration is connected to the interface eth1. Therefore, the top
path manages packets coming on the interface eth0 and puts them back on the interface
eth1, while the bottom path manages packets flowing in the other direction. In such
a configuration, the two paths are the two directions of the TCP connections. For the
sake of convenience, the second path is often referred to as the return path of the first.
As you can see, the configuration depicted on this example does not do anything special
and does not implement middlebox functions, the packets just go through the middlebox
stack which leaves them intact.

Figure 2.4: Minimal example of a TCP stack instance. The arguments for the elements
of the stack are not shown for simplicity purpose

16

CHAPTER 2. ARCHITECTURE

To implement a specific middlebox function (for instance remove all the insults in
web pages) with the help of this framework, a developer has to create a new MiddleClick
element that inherits from StackElement, which is the abstract element developed in
the context of this work from which every element of the middlebox stack inherits. It
allows the newly created element to use specific functions of the stack (described in the
section 2.4) in order to insert or remove bytes in the flow, for instance. Moreover, at any
point of the stack, the developer can use a method called getPacketContent, defined in
StackElement, to obtain the current useful content of the packet. If this method is called
in a element located after a IPIn element, it will return the IP payload of the packet. If
it is called in an element located after TCPIn, it will return the TCP payload. Finally, if
it is called after an HTTPIn element, it will return the HTTP payload. This technique
is used to allow the elements to be agnostic of the protocols used by the lower layers
of the network. The developer will then create a Click configuration and put his or her
element in the middle of the middlebox stack (namely, between TCPIn and TCPOut in
the example depicted on figure 2.4).

2.3 List of components

This section presents and describes the framework elements developed in the context of
this work. A summary of their characteristics is provided at the end of the section, in
table 2.1.

2.3.1 IPIn

IPIn is the entry point of the stack for IP packets. All the IP packets must pass through
this element before their IP content is processed. This element has one input and one
output and does not take any argument for configuration.

When a packet goes through an IPIn element, it is annotated with the position of
the IP payload so that any further call to getPacketContent on this packet will return
the IP payload.

2.3.2 IPOut

The IPOut element is the twin of IPIn, it is the exit point for IP packets in the stack. All
packets that went through an IPIn element must go through an IPOut element before
they exit the middlebox stack. This element has one input and one output. It does not
take any argument.

IPOut recomputes the IP checksum of the packets to ensure that it is still correct
after the modifications that occurred during their path in the middlebox stack.

2.3.3 TCPIn

As for the IP protocol, there is an entry point for TCP packets in the middlebox stack
and it corresponds to the TCPIn element. It also has one input and one output but
takes three arguments:

17

CHAPTER 2. ARCHITECTURE

• FlowDirection (mandatory): ID of the direction of the flow (0 or 1). One
of the two paths must have the ID 0 and its return path the ID 1. For instance, in
the example given on figure 2.4, the top path could have the ID 0 and the bottom
path the ID 1 (or vice versa). It is used internally by the stack to be able to access
the structures shared by the two directions of the TCP connection.

• OutName (mandatory): The name of the TCPOut element associated to this
element (which is on the same path).

• ReturnName (mandatory): The name of the TCPIn element on the return
path.

Note that the arguments requiring the name of an element expect the name the user
gave it in the Click configuration file. Remember the example given in listing 2.2 where
we gave the name cip to the instance of CheckIPHeader to be able to configure its second
output.

As for the IPIn element, TCPIn annotates the packets to indicate the beginning of
their TCP payload so it can be accessed immediately by subsequent elements. It also
performs multiple operations on the incoming packets:

• It manages the TCP options to determine the maximum segment size (MSS) and
whether the window scale option is used, and if so, it records its value. It also
automatically removes the SACK-PERMITTED option if it finds it, because the
stack is not compatible with it. Therefore, by removing this option from the
header of SYN packets, it makes the receiver think that the other protagonist is
not compatible with selective acknowledgements. Thus, no one will use it because
both endpoints think that the other does not support it.

• It updates the ACK number of incoming packets, according to modifications done
by the other side of the connection. It also keeps up-to-date and computes the
various parameters of the TCP connection (congestion window size, sender’s win-
dow size, number of duplicate ACKs received, last ACK received, ...). Those
mechanisms will be described in more details in chapter 3.

• It processes the requests of the elements located downstream in the stack. As it
will be described in section 2.4, stack elements can issue requests (such as remove
bytes, insert bytes, close the connection, ...) that will go back up in the middlebox
stack until an element is able to achieve the requested operation or answer the
given question. TCPIn therefore handles the TCP-related requests.

Updating the sequence and ACK numbers of the packets according to the modifica-
tions performed by the middlebox elements is crucial. The figure 2.5 depicts an example
of data insertion and how the receiver perceives it. In this situation, an element of the
middlebox stack adds 100 bytes in the packet x. We can see on receiver’s view (b) that
if the middlebox does not update the sequence number of the packet x+ 1, the receiver
perceives the first 100 bytes of the second packet as overlapping with the end of the first
packet. On the other hand, if the middlebox updates the sequence number of the packet

18

CHAPTER 2. ARCHITECTURE

x+1 according to the modification (receiver’s view (a)), the receiver will not notice this
modification. Note that when a modification is done in a packet with a sequence num-
ber equal to x, every packet with a sequence number > x must be updated accordingly.
Thus, for a given packet, we have to apply to its sequence number the result of all the
modifications done in the flow before this point.

Updating the ACK number must also be done. In the example shown on figure 2.5,
the receiver would send an ACK with a value of 2700. Obviously, this number must be
modified to 2600 because the sender is not aware of the data added in the flow by the
middlebox. This will be done by the TCPIn element located on the return path. In
summary, the TCP stack must always perform the mapping between the original flow,
which is the data sent by the source, and the modified flow which is the data as they
are received by the destination. This mapping must be done in both directions of the
connection. Remember that the TCP stack of the middlebox is invisible for the two
endpoints of the connection; there is no such thing as a TCP connection between the
endpoints and the middlebox. Instead, there is one TCP connection between the two
protagonists, and the TCP stack of the middlebox works on the existing flow, ensuring
that both endpoints continue to work and do not notice the modifications performed on
the flow.

Figure 2.5: Points of view of the sender and the receiver when the middlebox adds 100
bytes of data in the packet x. The view (a) corresponds to the case in which the middle-
box updates the sequence number of the next packet according to the modification. The
view (b) corresponds to the case in which the middlebox does not update the sequence
number of the next packet.

2.3.4 TCPOut

The TCPOut element is used as the exit point for TCP packets in the stack. It has
one input and can have one or two outputs. The first output is the normal path for the
packets of the stack and the second one, if used, allows the TCP stack to craft and send
packets back to the source. It is used for instance to acknowledge a given packet. In
this case, the TCP stack crafts the ACK corresponding to the given packet and sends
it on its second output. Thus, the source of the given packet will immediately receive

19

CHAPTER 2. ARCHITECTURE

the ACK. It is also used when a stack element makes a request to close the connection,
in which case a FIN or RST packet (depending on the parameters of the request) is
crafted and sent to the source. The figure 2.6 illustrates how this second output is used.
Note that this second output is required in most of the configurations; the criteria will
be listed in the section 2.4. Regarding its configuration, TCPOut does not allow any
argument.

Figure 2.6: Illustration of the usage of TCPOut’s second output

The role of TCPOut is to update the sequence number of packets according to
previous modifications done in the flow, before the packets are sent to the destination. It
also detects packets whose entire TCP content has been removed by previous elements,
in which case it sends an ACK to the source for the initial content and discards the
packet. This is required as, otherwise, the destination would receive an empty packet
that it would consider as a simple acknowledgement. It would therefore not send an
acknowledgement to the source in which packet we could update the ACK number as
we usually do to make the source believe that the destination received the data it sent.
TCPOut also recomputes the TCP checksum of the packets and contributes to keep the
metadata about the TCP connections up-to-date.

2.3.5 TCPReoder

As the name suggests, TCPReorder reorders the TCP packets. It has one input and
can have either one or two outputs. As we may expect, the reordered packets exit the
element on the first output. Depending on whether the second output is used or not,
TCPReorder handles retransmission differently. First of all, it is important to notice
that retransmitted packets cannot simply go through the middlebox stack as they would
be processed again, which requires useless computations, but also because it could leave
the elements in an inconsistent state (they are supposed to receive ordered packets and
therefore to see the data stream moving forward). Therefore, if the second output is used,
retransmissions are sent on it. On the other hand, if it is not used, the retransmissions
are discarded. The figure 2.7 shows how to use TCPReorder.

20

CHAPTER 2. ARCHITECTURE

Figure 2.7: Usage of TCPReorder. The second output is optional and may be used to
process the retransmissions.

TCPReorder can take up to two arguments:

• FlowDirection (mandatory): ID of the direction of the flow (0 or 1)

• MergeSort (optional): A boolean used to disable the merge sort version of
the reordering algorithm. Default value: true. This will be explained in more
details in chapter 3.

The TCP reordering mechanism is a critical component regarding the network man-
agement of middleboxes. Reordering packets is indeed necessary in many applications,
depending on their needs. The following list provides the criteria that require to process
the packets in order.

1. The application modifies the stream by adding or removing data

If the application needs to add or remove data in the stream, the packets must
be ordered. Indeed, when the size of a packet is modified because some bytes are
inserted or deleted, the middlebox has to modify accordingly the sequence number
of all the packets with a greater sequence number than the offset at which the
modification occurs, in addition to update the corresponding acknowledgements
on the return path. If this is not the case, the recipient will see a gap in the
case of a deletion, and what is assumed to be a retransmission in the case of an
insertion. Obviously, the middlebox can only perform this operation if the packets
whose sequence number must be updated are processed after the modification
occurs. Thus, a packet can never be the subject of a modification that consists
in an addition or a deletion of bytes if some packets that come after it in the
stream order have already been transmitted. For this reason, the packets have to
be reordered before they are processed by the middlebox to ensure that it never
happens.

2. The application searches for patterns that could be split over multiple
packets

Most of the time, an application searching for patterns in a stream will have to
do it over multiple packets. For instance, the end of a packet can contain a part

21

CHAPTER 2. ARCHITECTURE

of the pattern and the following packet the rest of it. This is very common with
the HTTP protocol for instance, where pages are returned over several packets. If
the packet containing the end of the pattern is processed first, the application will
probably not be able to detect it, unless it uses dedicated algorithms to perform
this task. But still, waiting for the next packet and ensuring that it is the one that
comes just before in the stream order is not a straightforward task. It should not
be done by the application as it requires to manipulate the TCP header, which
has already been processed by a dedicated component. An example of this case is
depicted on figure 2.8.

Figure 2.8: Example of a pattern split over two packets. Here, the middlebox searches for
the word astronomical that begins at the end of the packet x and ends at the beginning
of the packet x+ 1. Only the payloads are represented.

3. The application uses a protocol that requires it

A third possibility takes place when an application uses a protocol that requires
to process the packets in order. Imagine a middlebox that analyses the HTTP
headers in order to determine if the request has to be blocked or not. In this
case, the HTTP protocol specifies that the headers will be at the very beginning
of the request, just after the start line (which can be a request line or a status
line)[7]. Ensuring that the packets arrive in the right order is thus very important
because, in this way, the application can check the first packets only, without
potentially buffering the packets that do not come in order, which would make the
implementation much more complex. Some protocols may also require to know
the content of the previous packets in order to be able to make a decision for a
given packet. For instance an application could want to remove or replace the
occurrences of a given word if this word already appeared a given number of times
in the past.

According to those 3 criteria, we can see that most of the applications will require
to get the packets in order. The reordering component is thus of the highest importance
in this framework and must therefore be as efficient as possible. A bad implementation
could have a large impact on the performance of the whole system.

Even though we have seen that the applications will generally meet one of the three
criteria and thus use the TCP reordering feature, we decided to implement it as a

22

CHAPTER 2. ARCHITECTURE

separate Click element instead of automatically reordering the packets in TCPIn, the
component of the middlebox framework that manages incoming TCP connections. This
is, once more, for modularity purpose. Indeed, the user may want to reorder the TCP
packets before the traffic enters the middlebox stack, if the router configuration includes
other features. Moreover, the user may decide to process the packets unordered to
increase the efficiency of the middlebox if he or she knows that the application will not
meet one of the three above criteria.

2.3.6 TCPRetransmitter

The TCPRetransmitter element is the part of the stack that manages retransmissions,
data buffering and ensures congestion and flow control. It has two inputs: the first one is
for the packets that were processed by the middlebox stack and the second is for retrans-
mitted packets, generally provided by the second output of TCPReorder. On its unique
output will exit all the TCP packets, retransmissions or not. Note that the mechanisms
implemented by TCPRetransmitter are not directly integrated to TCPOut for modular-
ity purpose. Indeed, managing retransmissions is not mandatory if the user knows that
packets will only be read and never modified, and if the packets do not necessarily need
to be in order before entering the middlebox stack. Therefore, one can choose not to
use this component, and this is the reason why TCPOut and TCPRetransmitter are two
separate elements.

This element may be configured using one argument:

• InitialBufferSize (optional): Initial size of the circular buffers used to store
the data waiting to be acknowledged. Note that it is only the initial size of the
buffers, they will automatically grow, if needed, to adapt to the amount of data in
flight. Default value: 65535 bytes.

On the figure 2.9, you can see an example of usage of TCPRetransmitter. The second
output of TCPReorder is connected to the second input of TCPRetransmitter to be able
to handle retransmissions.

Figure 2.9: Example of usage of TCPRetransmitter.

When packets have been processed by the elements of the middlebox stack, they
arrive on the first input of TCPRetransmitter. The content of the packets is then stored
in a buffer, and the packets are transmitted to their destination. If a packet loss occurs
between the middlebox and the destination, the sender will never receive the corres-
ponding ACK and will retransmit the packets. This retransmission will be detected by

23

CHAPTER 2. ARCHITECTURE

TCPReorder, which will put the retransmitted packets on the second input of TCPRe-
transmitter. The latter will analyse the sequence number of the retransmitted packet, as
well as its length, and perform a mapping to determine to which data it corresponds into
the flow modified by the middlebox stack. It will then retransmit it from the buffer. It
is thus important to notice that the size of the content retransmitted to the destination
is not necessarily the size of the content retransmitted by the sender. Indeed, as an ex-
ample, imagine that the content of the packet retransmitted by the sender corresponds
to content removed from the flow by the middlebox stack. In this case, when performing
the mapping from the initial flow (as seen by the sender) to the modified flow (as seen by
the receiver), TCPRetransmitter will notice that there is in fact nothing to retransmit.
Actually, this example is a special case in which TCPRetransmitter will need to send an
ACK for the retransmitted content to the sender, or it will continue to retransmit the
same content forever as we are not retransmitting anything to the destination that will
therefore not send an ACK by itself.

Another problem that TCPRetransmitter must handle is that when an element of
the middlebox stack puts packets in a buffer and therefore uses the requestMorePackets
request, the TCP stack sends an ACK to the source to ensure it continues to send
packets. The consequence is that the data we just acknowledged is now under our
responsibility. Indeed, the source thinks that the destination correctly received the data
and will therefore never retransmit them, even if the data get lost between the middlebox
and the destination. Thus, TCPRetransmitter has in its buffer data that it must take
care of and ensure it is correctly received by the destination. To handle this problem,
TCPRetransmitter implements the TCP retransmission mechanisms for the data under
its responsibility. To do this, it follows the guidelines provided by the standards of
the TCP protocol[8][17][9] and implements a retransmission timer. TCPRetransmitter
constantly computes the round-trip time (RTT), according to Karn’s algorithm, between
the middlebox and the destination to determine the retransmission timeout. When the
timer fires, TCPRetransmitter considers that the data between the middlebox and the
destination were lost and it resends them.

The last issue that TCPRetransmitter handles is once again related to packet buf-
fering. We have seen that, when an element puts packets in a buffer, the TCP stack
becomes responsible for the data in question. The problem occurs when an element
flushes its buffer and releases the packets in the middlebox for further processing. All
these packets will actually arrive at the end of the TCP stack at the same moment, all
at once. When possible, the TCP stack of the middlebox lets the two endpoints manage
the connection as much as possible, but in this case, it has to implement the flow and
congestion control mechanisms of TCP to avoid sending a large amount of data on the
network, without ensuring that it does neither exceed the receiver’s window size nor
congestion the network. As an example, imagine the case of an element that needs to
put in a buffer the whole content of a web page before making a decision. When the end
of the web page is received, it will release its entire content as a burst. Thus, TCPRe-
transmitter implements TCP Tahoe, including the slow start algorithm, to ensure flow
and congestion control to the data it is responsible for. On the other hand, for the data
that it is not responsible for, TCPRetransmitter lets the source manage the transmission
rate and does not interfere with it.

24

CHAPTER 2. ARCHITECTURE

2.3.7 HTTPIn

Creating an HTTP stack was not really in the scope of this work, but an elementary one
has nonetheless been developed to be able to test the TCP/IP stack in real conditions.
Hence, the HTTPIn element is the entry point of HTTP packets in the middlebox stack.
Regarding its configuration, it is very simple: it has one input, one output and does not
take any argument.

The role of HTTPIn is, as it is the case for IPIn and TCPIn, to annotate the
packets to indicate the beginning of their payload, which is located after the HTTP
headers. HTTPIn also modifies the HTTP versions in requests to set it to HTTP 1.0 as
it is not compatible with the mechanisms implemented in further HTTP versions, such
as chunked transfer encoding. It also removes the Accept-Encoding header to ensure
that the server will not reply with encoded data, in order to compress them for instance.
Finally, HTTPIn gets the value of the Content-Length header so that it can determine
when the entire web page has been received.

The limitation of the HTTP stack implemented in the context of this work is that
all the headers must be included in the same packet in order for HTTPIn to be able
process them, which is fortunately the case most of the time.

2.3.8 HTTPOut

HTTPOut is the exit point of HTTP packets in the middlebox stack. It has one input
and one output. It does not take any argument and its role is to modify the Content-
Length header so that it corresponds to the new length of the content, after it has been
processed by the middlebox. This allows the receiver to be able to process the HTTP
content properly. An example of the usage of HTTPIn and HTTPOut is shown on the
figure 2.10.

Figure 2.10: Example of usage of HTTPIn and HTTPOut.

2.3.9 InsultRemover

InsultRemover is an example of an element that would be developed by a user of this
framework. Its role is to remove insults from web pages, or to block the web pages
returned by the server by replacing the requested page by an error message, if it contains
an insult. It is provided with this framework to show the developers how to use the
framework to implement the middlebox functions they want.

This element has one input and one output. It can take the following argument:

25

CHAPTER 2. ARCHITECTURE

• CloseConnection (optional): This argument is used to indicate the beha-
viour to engage in when an insult is found in a web page. By default, InsultRemover
removes the insults in the web pages before sending them to the destination. If
this parameter is enabled, the content of the web pages is replaced by an error
message, informing the user that the web page has been blocked. In this case, the
connection is closed after this message has been sent.

Thanks to the protocol stack provided by the developed framework, InsultRemover
is totally agnostic of the network protocols used to carry out the content it analyses.
It simply checks the content of the web pages and asks the protocol stack to remove
or insert data at given positions, as though it was manipulating a string. It is the role
of the stack to take care of problems like updating the checksums, taking care of the
acknowledgement and sequence numbers, ensuring that it does not send too much data
for the network, and so on. Therefore, developing an element such as InsultRemover
becomes straightforward and does not require more efforts than if it was developed in a
classic environment using the kernel stack. In other words, we can say that developing a
middlebox function with this framework does not require any knowledge of the TCP/IP
protocols, and the elements such as InsultRemover should work out of the box with a
different stack that uses for instance UDP and provides elements such as UDPIn and
UDPOut. The figure 2.11 depicts an example of the usage of InsultRemover in the
middlebox stack. Note that in this example, InsultRemover has been put only on the
path taken by the packets sent by the web server, not the path followed by the request
emitted by the client. If the user knows that web pages can be returned on both paths,
he or she can put an InsultRemover on the other path too.

Figure 2.11: Example of InsultRemover usage.

2.3.10 PathMerger

In a Click configuration, it is possible to use built-in elements such as Classifier to allow
packets to take different paths according to some criteria. For instance, it is possible
to create two paths for the packets and make them follow the one corresponding to the
protocol they use. In the middlebox stack, when an element issues a stack request such
as request more packets, insert bytes, and so on, the request is transmitted upstream to
the previous element on the path and it continues to be relayed element by element until
someone is able to handle it. In the case of a request such as request more packets, it
will be handled by the TCPIn upstream, for instance. The problem when there exists
multiple paths in the middlebox stack occurs when the paths are merged, generally at
the end of the stack. In this case, the element located after the merge does not know,

26

CHAPTER 2. ARCHITECTURE

when it receives a request for a packet, to which upstream element it must transmit
it, as it has no means to know from which element a given packet came from. This is
problematic as some requests must handled by the elements located on the path from
which the packet comes from. As an example, imagine that the stack contains a path for
HTTP packets and a path for another TCP protocol. Those two paths lead to the same
TCPOut element. If an element after TCPOut issues a request for an HTTP packet
that must be handled by HTTPIn, how does TCPOut know to which element it must
transmit the request, as there are two possibilities?

To solve this problem, a special element called PathMerger has been created. It has
two inputs, the two paths to merge, and one output, the merged path. When it receives
a packet, it keeps track of which of the two elements connected to it sends the packet.
Therefore, when it receives a request for a given packet, it is able to determine from
which element it came from and to transmit the request to it. Pathmerger does not
accept any argument.

Figure 2.12: Example of PathMerger usage.

2.3.11 TCPMarkMSS

When an element of the middlebox stack adds content into a packet, it may happen that
the packet becomes bigger than the MTU or that its payload is bigger than the MSS
of the flow. For simplicity purpose, it was decided to use a built-in Click element called
TCPFragmenter to ensure that it does not happen. TCPFragmenter is an element
that can be configured with the MTU and which will split TCP packets bigger than
this value into multiple packets. It is also possible to annotate packets with a given
value that will be used by TCPFragmenter to determine if the packet must be split.
Therefore, TCPMarkMSS was created to annotate the packets with the MSS of the flow
so that TCPFragmenter can use both this value and the MTU to determine if it must
split the packets. The figure 2.13 depicts an example of usage of TCPMarkMSS and
TCPFragmenter to ensure the size of the packets complies with the MTU and the MSS.

TCPMarkMSS has one input and one output. It can take up to three arguments:

• FlowDirection (mandatory): ID of the direction of the flow (0 or 1)

• Annotation (mandatory): Offset of the annotation used to mark the MSS.
In Click, each packet contains an annotation area that can be used by elements
to associate information to a packet. The same offset must be used to configure
TCPFragmenter

27

CHAPTER 2. ARCHITECTURE

• Offset (optional): Offset to apply to the MSS before setting its value into the
annotations of the packet. Can be positive or negative. Default value: 0.

Figure 2.13: Example of the usage of TCPMarkMSS and TCPFragmenter together to
ensure the size of the packets complies with the MTU and the MSS.

2.3.12 Summary

Table 2.1 provides a summary of the main characteristics of the components of the
framework.

Name Inputs Outputs Arguments Short description
IPIn 1 1 0 Entry point of IP packets in the

stack
IPOut 1 1 0 Exit point of IP packets in the

stack
TCPIn 1 1 3 Entry point of TCP packets in

the stack
TCPOut 1 1 or 2 0 Exit point of TCP packets in the

stack
TCPReorder 1 1 or 2 From 1 to 2 Reorders TCP packets
TCPRetransmitter 2 1 From 0 to 1 Manages TCP retransmissions

and manual transmissions
HTTPIn 1 1 0 Entry point of HTTP packets in

the stack
HTTPOut 1 1 0 Exit point of HTTP packets in

the stack
InsultRemover 1 1 From 0 to 1 Blocks insults in web pages
TCPMarkMSS 1 1 From 2 to 3 Annotates TCP packets with the

MSS of the flow
PathMerger 2 1 0 Merges two paths in the middle-

box stack

Table 2.1: Summary of the main characteristics of the elements provided by the frame-
work

2.4 Stack functions

We have seen previously that elements of the middlebox stack can issue requests that
will be propagated upstream until an element is able to handle it. This mechanism is

28

CHAPTER 2. ARCHITECTURE

very powerful in the context of a modular stack such as the one developed for this thesis.
Indeed, the elements issuing the requests do not need to know anything about the lower
layer protocols or the context in which they are used. They simply send the request
agnostically of their environment, and they know that it will be handled somehow, in
the right way. A good example for this point is the request used to determine if a given
packet is the last useful for the current protocol.

2.4.1 Determine if a given packet is the last useful one for the current
layer

Elements of the middlebox stack can determine, thanks to this request, if a given packet
will be the last containing useful information for the current layer. When an element
puts packets in a buffer to be able to make a decision when it has received the full
content, it needs to know when to flush the buffer, otherwise packets would stay forever
in it, never reaching their destination. For this purpose, when elements receive a packet,
they can issue the request called isLastUsefulPacket to determine if this packet is the
last packet containing useful data for the current layer. As an example, HTTPOut puts
every packet in a buffer until it has received the full web page. Once it has been done, it
computes the new size of the HTTP payload to set the Content-Length header. Thanks
to this request, HTTPOut can determine, when it receives a packet, if it has now received
the full web page, and act accordingly.

In the current set of elements provided along with this work, there are two elements
able to answer this request: TCPIn and HTTPIn. The first one to receive the request
will answer it, and this answer will thus depend on the location of the element issuing
the request. Indeed, we have seen that the request will be relayed upstream element
by element, so if the element issuing the request is located between an HTTPIn and an
HTTPOut element, we know that the request will be transmitted to HTTPIn before
TCPIn, and therefore, the request will be handled by the former. On the other hand,
if the element is located in a path that does not imply the HTTP protocol, or if it is
located before an HTTPIn element, the request will be handled by the TCPIn element
of the path.

Here is how the request is handled, depending on the element receiving it:

• TCPIn: To determine if a packet is the last one to contain useful content for the
TCP protocol, TCPIn simply checks whether the packet has the FIN or RST flags
enabled.

• HTTPIn: When it receives the packet containing the headers, HTTPIn determines
the value of Content-Length. It then uses a counter called contentSeen which is
incremented, for every packet, by the size of the HTTP content in the packet.
When the counter reaches the value retrieved in the Content-Length header, it
annotates the packet to indicate that it is the last one containing HTTP content.
Therefore, when it receives a request, HTTPIn simply checks if the given packet
has the corresponding annotation.

29

CHAPTER 2. ARCHITECTURE

2.4.2 Remove bytes

When an element wants to remove bytes in a packet, it must issue the removeBytes
method and provide it with the starting position and the number of bytes to remove.
Note that an element gives a position relative to the content it sees. For instance, for
InsultRemover, the position 0 corresponds to the first byte of the HTTP payload in the
packet. As always, the elements are totally agnostic of lower layers and therefore do not
see the content related to those protocols. This request is always handled by TCPIn
which will map the position given by the element that issued the request into a position
in the TCP payload and remove the requested bytes from the packet. TCPIn handles all
the operations needed to achieve the request and keeps track of the modification in the
flow to be able to map further sequence and acknowledgement numbers, as we have seen
previously. After the request is complete, the element that issued the request gets the
given packet back, modified in such a way that the requested content has been removed.

Note that using this request in a middlebox stack requires to use the second output
of TCPOut as it may have to send acknowledgements to the source for the removed
content, in particular if the entire content of the packet is removed during its processing.

2.4.3 Insert bytes

In addition to removing bytes in a packet, it is also possible for elements to perform
the opposite operation and add bytes. This can be done via the addBytes request, by
providing it with the packet in question, the number of bytes to add, and the position
where to add them. The result of this request is very similar to the one obtained by
removing bytes, except that here, the packet is returned with the added bytes initialized
to 0, and the element issuing the request can set their content afterwards.

Once again, TCPIn will handle the request and keep track of the modification in the
flow to be able to process further sequence and acknowledgement numbers.

2.4.4 Request more packets

As discussed previously, if an element adds a packet in a buffer instead of sending it
immediately to the next element, it is supposed to issue a requestMorePackets request.
Indeed, if it was not the case, as the packet would not be sent to the destination, the
sender would not receive the corresponding acknowledgement. The consequence is that
it would not send any further packets but instead, it would retransmit the buffered
packet, thinking it has been lost.

When it receives a requestMorePackets request, TCPIn sends an acknowledgement
for the given packet to the source. To achieve this, it crafts a packet with an acknow-
ledgement number equal to the sequence number of the packet added to the length of
its initial payload and sends it via the second output of TCPOut. Therefore, to use this
request, user must have configured the second output of the latter element.

We have seen that performing such an operation implies that the TCP stack of the
middlebox becomes responsible for the data in question, in particular ensuring that those

30

CHAPTER 2. ARCHITECTURE

data will be received by the destination (and therefore it must manage their retransmis-
sion if the data get lost) and guaranteeing that they will be transmitted according to
the flow and congestion management standards of TCP when the buffers will be flushed
by the concerned elements.

2.4.5 Close the connection

Finally, the last request that can be used by the elements of the stack is called clo-
seConnection. As the name suggests, it closes the TCP connection and prevents any
further packet from reaching the destination.

This request can be configured via two boolean values, namely bothSides and graceful.
If bothSides is set to false, only the path on which the element issuing the request is
will be closed. On the other hand, if it is set to true, the connection will also be closed
for the return path. The second parameter, graceful, indicates the method that must be
used by the TCP stack to close the connection. If it is set to true, FIN packets will be
used and if it is set to false, RST packets will be used instead.

Once the connection has been closed, the TCP stack automatically acknowledges
any packet coming from the sender of the closed path and discards it, so that it is not
sent to the destination for which the connection is considered to be closed. Therefore, if
only one path is closed, the source continues to send data, thinking that the destination
is still listening.

Note that using this request requires to configure the second output of TCPOut.

31

Chapter 3

Development and design

This chapter focuses on the design and the development of the framework, including the
data structures and some elements presented in the chapter Architecture.

3.1 Development methodology

To achieve the various goals of this work and ensure that everything works as expected
during the development, the methodology was a key point. To carry out this project,
we used a constructive approach. The first step consisted in familiarizing with Click,
developing the most basic elements, with the most basic features, not taking advantage
of advanced techniques such as packet batching. This is noteworthy as it appears that
some of the algorithms used when processing one packet at a time may not always be
the most efficient when processing batches of packets.

A good example of this arose when creating the TCPReorder element. Fortunately,
this constructive approach, although it sometimes required to be careful and have a
critical thinking, never required to rethink from scratch what had been done before.
Retrospectively, this approach helped a lot and was quite fitted to achieve the goals.
Indeed, it turned out to be extremely helpful to implement, one by one, the required
features of the TCP protocol. Some of the network specificities can be challenging to deal
with and considering difficulties one at a time helped to stay focused on them. Moreover,
it allowed to define and reach multiple milestones during the development and to test
the current state of the framework on real traffic, and hence avoiding regressions.

3.2 Data structures

To achieve the goal of developing a fast and lightweight middlebox TCP framework,
it is mandatory to carefully select and implement the data structures that will be at
the heart of the system. In order to achieve the best performance, the time and space
complexities were essential criteria to take into account during the development. In this
section we describe the most important data structures and we justify the choices we
made.

32

CHAPTER 3. DEVELOPMENT AND DESIGN

3.2.1 MemoryPool

Most of the data structures used by the elements of the framework need to allocate
memory to store information about the packets and the flows, and to release this memory
once they do not need it any more. Therefore, an efficient memory management is of the
highest importance. In order to be as efficient as possible, a middlebox cannot simply
request memory with a mere malloc each time it needs to store information, which
can happen for every packet. Indeed, a heavy usage of malloc and free would create a
bottleneck and slow down the packet processing system, resulting in a degradation of
the performance which will thus have an impact on the traffic.

To be able to fulfill the need of a fast memory allocation mechanism, a common
approach is to use memory pools. This data structure actually provides a space-time
tradeoff. When the structure is created, memory for a given number of fixed-size elements
is preallocated in order to be available immediately when requested. When the memory
is not needed any more, instead of freeing it, the memory pool just adds it back in the
list of free memory chunks so that it is available for a further request. If the need of
memory is greater than the expected one and no more memory chunks are available to
fulfill a request, the memory pool exceptionally performs a new memory allocation so
that the pool grows.

In the context of this work, we implemented a generic memory pool mechanism that
can handle any data type. The main concerns regarding its design were to ensure that
its performance was as good as possible, obviously, but we also wanted to reduce the
impact of the space-time trade-off by limiting its space footprint. To do so, we chose a
very simple design:

1. The memory chunks are linked together as in a linked list. The pool stores a
pointer to the first element of the list

2. When the pool is created, a given number (specified as a parameter) of chunks
are allocated and added to the list

3. When a chunk is requested, the head of the list is returned if it exists (otherwise,
a new memory chunk is allocated) and removed from the list

4. When a chunk is released, it is added at the beginning of the list.

To minimize the memory consumption, each node of the list is represented as a union
between a pointer to the next node and the element. Thanks to the union, the
node only uses the memory corresponding to its biggest member, which is almost always
the element it stores in this case. Thus, the list only uses memory corresponding to its
elements and does not induce any overhead. The union is perfectly suited here because
either the node is in the list and thus we only need memory for the pointer to the next
element, or the element is used by the application after it requested it and therefore, the
pointer to the next element is irrelevant. In fact, the only additional memory needed
is the pointer to the head of the list, stored by the memory pool, which makes it very
efficient in terms of memory consumption.

33

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.1: Representation of a node in the memory pool. A node is the union between
a pointer to the next node and the element it stores, meaning that its size is equal to
its biggest member.

Regarding the time complexity, the data structure is also as efficient as it can be.
Indeed, requesting a memory chunk is O(1) and thus performed in a constant time. Most
of the time, the pool will not be empty and there will be no need to allocate memory.
In this case, the methods only manipulate pointers to return the current head of the list
and set the new one. Moreover, putting an element back in the list if it is not used any
more is also O(1). Here, the structure just adds the elements it gets back to the front
of the list, which is done by modifying two pointers.

Note that this implementation of MemoryPool requires the support of C++11 since
the pools can store complex objects. Indeed, the support of unrestricted unions that
can contain non-static members with non-trivial constructor and destructor is only there
since C++11 [23].

3.2.2 BufferPool

One limitation of the MemoryPool data structure is that it is limited to fixed-size memory
chunks, and that this size must be known at compile time. This allows to use concepts
such as the union to provide a very convenient interface to use them. However, some-
times, the limitations engendered are not compatible with the requested usage. For
instance, the buffers used by TCPRetransmitter must grow if they become too small to
store all the data in flight. Moreover, their initial size should be configurable by using
an argument. This is typically an example of an usage that cannot be achieved via the
MemoryPool data structure. As a consequence, BufferPool was developed. It allows to
create a pool of buffers that can be resized at any moment and whose initial size may
be configured at run time.

To implement resizeable memory chunks, BufferPool uses Vector [13], a container
quite similar to the one provided by the C++ Standard Template Library (STL). This
container is growable and uses a contiguous memory area to store its content. Therefore,
it can be used as a buffer that can be resized.

The interface provided by BufferPool is very similar to the one offered by Memory-
Pool, except that since it cannot benefit from the union mechanism as the size of the
elements it stores is not fixed, it cannot directly return a pointer to the memory chunk
when the user requests it. Instead, it returns a BufferPoolNode element that can be

34

CHAPTER 3. DEVELOPMENT AND DESIGN

used to access the buffer. Additionally, when users want to put the buffer back into the
pool, they must provide the BufferPoolNode they obtained.

As it is the case for memory pools, BufferPool avoids allocating new memory each
time a memory chunk is needed. It only needs to perform such an operation if the pool
of buffers is empty or if a buffer is resized with a size greater than the capacity of the
underlying Vector.

Requesting a buffer from the pool and putting it back is, like for the memory pools,
an operation with a time complexity of O(1). Resizing a buffer corresponds to a linear
time complexity regarding the difference between the old size and the new one.

3.2.3 Common TCP structure

We have seen previously that when a modification is done in the flow, not only the
sequence number of the subsequent packets coming on the same direction will have to
be modified, but also the acknowledgements coming back on the return path. This
implies that the two directions of a TCP connection have to exchange data. Actually,
the two sides of the connection exchange many pieces of information, for instance the
maximum segment sizes, the congestion window sizes, the round-trip-times, and so on.
In MiddleClick, two TCP packets are considered to belong to the same flow if they share
the same (ip_source, ip_destination, port_source, port_destination) tuple. Therefore,
the two sides of a connection do not share the same scratchpad as they are considered
to be two distinct flows. As a consequence, a common memory area in which they can
exchange information had to be created.

When TCPIn receives a SYN packet, it allocates memory (via a dedicated memory
pool) for a common structure corresponding to this TCP connection. It then puts
a pointer to this structure in a hashtable with the tuple (ip_source, ip_destination,
port_source, port_destination) as a key. Finally, it sets in the scratchpad given by
MiddleClick, which corresponds to the flow, the pointer to the common TCP structure.
In this way, it will be able to access the common structure in the future just by using
the pointer in the scratchpad. On the other hand, when it receives a SYNACK packet,
TCPIn asks the TCPIn element on the return path to get a pointer to the common
memory, as it knows that it was created when it received the SYN packet. To do so, it
requests to TCPIn the common structure corresponding to the tuple (ip_destination,
ip_source, port_destination, port_source). Finally, it also sets a pointer to this
structure in its own scratchpad. As a consequence, after the three-way handshake, the
two scratchpads corresponding to the two directions of the connection have a direct
pointer to the shared structure.

3.2.4 ModificationList

As already mentioned, the TCP stack must update the acknowledgement and sequence
numbers according to the modifications performed in the flows. For this purpose, a
data structure that stores the modifications performed in each packet has been created.
Its role is to keep track of the modifications in such a way that each element of the
middlebox stack can perform modifications agnostically of what has been done before.

35

CHAPTER 3. DEVELOPMENT AND DESIGN

Such a data structure is not straightforward to set up because the underlying algorithms
had to be developed specifically in the context of this work.

Figure 3.2: Example of the mapping between an original flow and the corresponding
modified flow. The mapping can be done in the two directions in order to map both
the sequence and the acknowledgement numbers. Red cells correspond to data removed
from the original flow and green cells correspond to data added in the modified flow.

The figure 3.2 shows an example in which the following modifications are done to
the original flow by the elements in the middlebox stack:

1. 3 bytes are removed at the position 2 via a removeBytes(2, 3) request, removing
cde from the flow .

2. 5 bytes are inserted at the position 6 via an insertBytes(6, 5) request, adding yyyyy
in the flow.

As you can see, the new bytes are inserted at the position 6, which corresponds to
the position in the modified flow, not the original flow. This is due to the fact that
an element is working on a flow that may have been modified previously, and it thus
manipulates the positions relatively to the current state of the flow. The positions given
in the requests therefore depend on the order in which the modifications are performed.
If the modifications had been done in the reverse order, the request corresponding to
the insertion would have been insertBytes(9, 5) instead, and the request corresponding
to the deletion would have stayed the same as these positions are not affected by the

36

CHAPTER 3. DEVELOPMENT AND DESIGN

insertion. Note that both orders result in the exact same modified flow. This is the role
of ModificationList to take into account such a specificity and to allow the elements to
perform the modifications in any order, sometimes performing an operation that overlaps
another one done previously.

You can also see that for a flow, there are in fact two types of mapping, one for the
sequence numbers (from the original flow to the modified flow) and one for the acknow-
ledgement numbers (from the modified flow to the original flow). Remember that the
sender sees the original flow and therefore sends packet with sequence numbers relative
to it while the receiver sees the modified flow and sends packets with acknowledgement
numbers relative to the latter.

Another important point depicted on the figure 3.2 is that, in this case, to map a
sequence number, the positions corresponding to the removed bytes are all mapped to
the position 2, corresponding to f. Indeed, if the sender starts a retransmission with
a sequence number equals to, for instance, 3, therefore trying to retransmit data from
d, the mapped retransmission will start at f. This is because the beginning of the
retransmission corresponds to removed data. On the other hand, when mapping an
acknowledgement number, all the added data point to j in the original flow. This is due
to the fact that if the destination has correctly received data between i and the last y,
the sender must start retransmitting from j. Note that it will be the responsibility of
TCPRentransmitter to ensure that yyyyy is retransmitted if necessary.

ModificationList uses a linked list of modifications, represented by a position (the
position at which the modification occurred) and an offset that corresponds to the num-
ber of bytes modified. This offset is negative if bytes are removed and positive if bytes
are added. Because the requests to perform a modification in a flow use positions rel-
ative to the current state of the flow, it is required to convert them first into positions
based on the same reference. For this purpose, all the positions are first converted into
positions in the original flow before being added to the modification list. To achieve this
goal, the modification list is browsed and the offsets are applied to the position given
in the request. As soon as the positions in the modification list become greater than
the position we are computing, we stop because, since the list is sorted according to the
positions, we know that further modifications do not have an influence on the position
we are processing. The new modification is then added at the current place in the list,
so that it stays sorted according to the positions of the modifications.

After adding a new modification in the list, the final step consists in merging nodes
that represent overlapping deletions. The figure 3.3 depicts an example of such a situ-
ation. To achieve this goal, the algorithm inspects every node representing a deletion
and checks if the next node in the list is also a deletion. If it is the case, it checks the
offset of the first of the two deletions to determine if there is an overlap with the second
modification. In such a case, the node corresponding to the second deletion is removed
from the list and its offset is added to the one of the first deletion in order to combine
their effects.

37

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.3: Example of two successive deletions that lead to a merge because they overlap

Regarding the complexities, adding a new modification in the list requires to browse
it in order to compute the value of the position relatively to the initial flow and to put
the new node to the right place. Therefore the time complexity is linear with respect to
the number of modifications in the list. And because a modification list is associated to
a packet, the time complexity to add a new modification is therefore O(n) where n is
the number of modifications in the packet.

The modification lists are created and managed by TCPIn that handles the requests
used to modify the content of the packets.

3.2.5 Red-black trees

In the context of this work, a red-black tree implementation was needed in order to
be able to develop data structures with the best time complexities. It was therefore
decided to adapt the implementation of Emin Martinian[15] to fit the needs of the
current framework. For this purpose, the latter implementation was modified in order to
enhance the red-black trees with the concept of red-black tree manager. This mechanism
allows to associate an instance of a red-black tree to a red-black tree manager that will
take care of the memory used by the tree as well as the comparisons between the keys.
Consequently, it allows to have a very generic implementation that can be adapted to

38

CHAPTER 3. DEVELOPMENT AND DESIGN

every situation. As an example of the benefits it brings to this work, the red-black tree
managers used for the implementation of the various data structures of this framework
manage the memory used by the trees they are associated to by using memory pools.

In addition to the mechanism of red-black tree manager, several operations described
in table 3.1 were added to the initial implementation.

Operation Time complexity
Obtain the node with the greatest key less or equal to the given
value

O(log(n))

Find the minimum O(log(n))
Find the maximum O(log(n))
Prune the tree and remove nodes with a key less than a given
threshold

O(k ⇤ log(n))

Table 3.1: Operations added to the RBT implementation. Regarding the time complex-
ities, n corresponds to the number of nodes in the tree and k corresponds to the number
of nodes to remove

3.2.6 ByteStreamMaintainer

As we have seen previously, ModificationList stores the modifications performed on a
packet, but it does not provide a straightforward way to perform a mapping on a sequence
or an acknowledgement number. The role of ByteStreamMaintainer is to provide an
interface that allows to perform such a mapping immediately and straightforwardly. For
this purpose, it uses two red-black trees, one for the mapping of sequence numbers and
the other for the mapping of acknowledgement numbers.

The keys of the nodes in the red-black tree used for the mapping of the sequence
numbers are positions relative to the original flow, as the goal is to map a sequence
number sent by the source to a sequence number that will be understood by the des-
tination. Therefore, it maps a position from the original flow into a position in the
modified flow. On the other hand, it is quite the opposite for acknowledgement numbers
and the positions are relative to the modified flow. Regarding the value stored in the
nodes of these trees, it is the cumulative offset of the modifications, so that we do
not need to browse the entire tree to determine the offset to apply to our sequence or
acknowledgement number.

As a matter of fact, when a packet is ready to exit the TCP stack (in TCPOut), the
modifications listed in its ModificationList are committed to the ByteStreamMaintainer
of the flow. We do that because we know that the content of the packet will not be
modified any more and thus its ModificationList contains the final list of modifications
for this packet. Working directly in the trees when a modification is performed would
be possible but much more complex since the problems such as overlapping modifica-
tions and offset updating are easier to handle in a linked list. Moreover, it would not
improve the linear time complexity provided by ModificationList as adding a modifica-
tion in the trees would require to browse the nodes with a greater position to update
the value of their cumulative offset, which also corresponds to a linear time complexity.
In fact, it is even better to work first in ModificationList as the associated complexity

39

CHAPTER 3. DEVELOPMENT AND DESIGN

is linear regarding the number of modifications in the corresponding packet while with
ByteStreamMaintainer, it is linear regarding the number of modifications in the whole
flow. Note that working directly in the trees also requires to modify both of them when
a modification is done in the flow. On the other hand, using ByteStreamMaintainer to
perform the mapping allows to benefit from the O(log(n)) time complexity of the search
operation in red-black trees. The solution that consists in storing the modifications in
a structure that allows to manipulate them easily and to move them in a second one
that allows a straightforward mapping afterwards is therefore ideal and allows to have
simpler algorithms without impacting the performance.

Commit the modifications of a packet in the trees

As said previously, the ModificationList of a packet is committed into the ByteStream-
Maintainer of the flow once it is about to exit the middlebox stack. Here is the algorithm
used to add the modifications into the tree used to map sequence numbers:

1. The cumulative offset corresponding to the greatest key in the tree is retrieved.
Because we process the packets in order, we know that this cumulative offset is
the result of all the modifications performed in the flow before this packet.

2. For each modification in the list:

(a) We add its offset to the cumulative offset
(b) We create a new node in the tree with the key "position in the original flow"

and we set its value to the current value of the cumulative offset. As the
modification list stores positions relative to the original flow, we do not have
to perform any modification on it.

On the other hand, here is the algorithm used to add the modifications in the tree
used to map the acknowledgement numbers:

1. As for the sequence tree, the cumulative offset corresponding to the greatest key
in the tree is retrieved. The only difference is that this time, we take the opposite
of this value. Indeed, the offsets stored by the acknowledgement tree have the
opposite value of the ones stored by the sequence tree. This is because each tree
stores the same operations but in the reverse direction (adding data in the modified
flow is perceived as if we removed these data in the original flow, from the point of
view of the modified flow). Therefore, taking the opposite value of the cumulative
offset in the the acknowledgement tree corresponds to taking the raw value of the
cumulative offset in the sequence tree. As a consequence, both algorithms start
with the same value for the cumulative offset.

2. For each modification in the list:

(a) We add its offset to the cumulative offset
(b) We map the position stored in the modification list into a position relative to

the modified flow by applying to it the current value of the cumulative offset

40

CHAPTER 3. DEVELOPMENT AND DESIGN

(c) We create a new node in the tree with the key "position in the modified flow"
and we set its value to the opposite of the current cumulative offset (to cancel
the effects of the operation performed at the first step that reversed the sign
of the cumulative offset).

The difference between the two trees is therefore that they use keys with positions
relative to the flow they map. The sequence tree uses positions relative to the ori-
ginal flow while the acknowledgement tree uses positions relative to the modified flow.
Additionally, their nodes store the same values, but they are of opposite sign.

On figure 3.4, you can see the result, along with the corresponding ModificationList,
after the following operations are performed on a packet:

1. Remove defg

2. Add yyy before j

3. Remove lm

Figure 3.4: Example of three modifications in a packet and the resulting Modifica-
tionList. Red cells correspond to data removed from the initial flow and green cells
correspond to data added in the modified flow.

Assuming that this packet is the first in the flow, the figure 3.5 shows the sequence
and acknowledgement trees after the corresponding ModificationList is committed. Note
that committing a ModificationList in the corresponding tree has a time complexity of
O(k ⇤ log(n+ k)) where k is the number of modifications in the list and n is the number
of nodes in the tree before the commit.

41

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.5: Sequence and acknowledgement trees resulting from the modifications shown
on figure 3.4, assuming that the modified packet was the first in the flow.

Perform the mapping

To map a sequence or an acknowledgement number, the following algorithm is used:

1. The node with the greatest key less or equal to the given number is retrieved in
the corresponding tree.

2. The offset associated to the node is applied to the given sequence or acknowledge-
ment number

3. We then ensure that the computed number is not below the threshold obtained
via the predecessor, for this purpose we perform the following operations:

(a) The predecessor of the retrieved node is obtained
(b) Its offset is applied to the key of the node we obtained in the first step. If

the value we computed at step 3 is less than this threshold, we modify it to
be equal to this bound.

4. Finally, we return the computed value

Checking that the computed value is not below the threshold obtained by adding the key
of the node to the offset of its predecessor is used to manage the deletions. Remember
that all the positions inside a deletion in the original flow (or an insertion in the modified
flow) are mapped to the position just after it. Note that if a node is not found in the
tree, is it considered to have the key 0 and the offset 0. The time complexity of the
mapping is O(log(n)), where n is the number of nodes in the tree.

Here are some examples of mappings performed on the flows depicted on figure 3.4
and whose trees are shown on figure 3.5:

• If we want to map b from the original flow to the modified flow, we take its position,
2, and we search the corresponding node in the sequence tree. It does not exist so
the corresponding offset is 0 and the position thus stays 2, which also corresponds
to b in the modified flow

42

CHAPTER 3. DEVELOPMENT AND DESIGN

• To map e (position 4) from the original flow to the modified one, we take the node
with the key 3 and we apply its offset (�4) to the position. We obtain 0. However,
when we take the corresponding predecessor (which does not exist, so the key and
the offset are considered to have the value 0), and we add its offset to the key of
the node we first retrieved, we obtain 3 + 0 = 3, therefore, the mapped position is
3, which indeed corresponds to h, the character after the deletion.

• To map the first y of the modified flow, which has the position 5, we take the
node with the key 5 in the acknowledgement tree. We obtain 5 + 1 = 6, but the
predecessor gives a threshold of 5 + 4 = 9, so the mapping corresponds to j, the
first character after the insertion

• Finally, to map o from the modified flow to the original one, we add its position
to the offset in the node with the key 10 and we obtain 11 + 3 = 14. Here, the
threshold obtained via the predecessor is 11 and has therefore no influence. The
position 14 in the original flow does indeed correspond to o.

Prune the trees

When acknowledgements are received, the trees are pruned in order to improve the
performance of the search operation. We can do this because we know that we will not
have to perform mapping on acknowledged data.

More information on ByteStreamMaintainer

In addition to perform the mapping of sequence and acknowledgement numbers, Byte-
StreamMaintainer also stores information about the corresponding direction of the TCP
connection. Among others, it stores information such as the value of the last ACK
received, the last ACK sent, the size of the sender’s window, the size of the congestion
window, the number of duplicate ACKs received, and so on.

One ByteStreamMaintainer for each side of the connection is put in the common
TCP structure, so that each side can access the ByteStreamMaintainer of the other
side. This is used, for instance, when an acknowledgement is received: the ACK number
is modified using the ByteStreamMaintainer of the other direction (because this is the
one containing the information about the modifications performed on the other flow).

3.2.7 CircularBuffer

CircularBuffer is a data structure used to buffer data so that they can be retrieved later.
The table 3.2 shows its interface.

Operation Time complexity
Add data at the end of the buffer O(n)
Remove data at the beginning of the buffer O(n)
Get data O(n)

Table 3.2: Operations provided by CircularBuffer. Regarding the time complexities, n
refers to the length of the data, not the size of the entire structure.

43

CHAPTER 3. DEVELOPMENT AND DESIGN

We can see that the time complexities of these operations do not depend on the size of
the data stored in the buffer, only on the size of the data we want to add/remove/retrieve.
Note that even though the get data operation allows for random access in the buffer,
it does not apply to the two other operations. This could be the case but, because
CircularBuffer is only used in a context in which the data we want to add will be
located at the end of the buffer and the data we want to remove at its beginning, it was
decided not to provide such an interface as it would be useless.

To store the data, CircularBuffer uses an array of contiguous memory and two point-
ers. One pointer is called start and indicates the beginning of the data in the array and
the other pointer is called end. The size of the circular buffer corresponds to the length
of the data it stores (therefore the number of bytes between start and end) while its
capacity is the size of the underlying array, thus, the length of the data it can store.
Note that "circular" in the name of the data structure refers to the fact that data may
wrap to the beginning of the array if needed. In this case, end will point to a lower
index than start.

The peculiarity of CircularBuffer is that it uses a memory chunk obtained via Buf-
ferPool, and as you may remember, these buffers can grow if needed. Therefore, if the
capacity of CircularBuffer becomes too small to store new data, it will increase the size
of its buffer and therefore its own capacity.

When the size of the underlying buffer is increased, CircularBuffer faces two cases:

1. In the best case, the data stored in the array did not wrap and end points to a
greater index than start. In this case, increasing the size of the buffer will not
affect the data in the buffer, as depicted on figure 3.6.

2. However, if the data wrapped, end points to a lower index of the array than start
and increasing the size of the buffer will therefore break the logic of the circular
array as the new slots for data will be inserted between the start and end pointers,
as depicted on figure 3.7. The solution is to move the data that were between the
start pointer and the previous end of the array to the right, by an offset equals to
the number of slots inserted in the array, so that the data stay at the end of the
array, as previously, and the wrapping logic remains correct.

Figure 3.6: Best case obtained when the capacity of the circular buffer is increased

44

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.7: Case where increasing the capacity of the buffer leads to the need of fixing
it. The cells in red are the added slots in the buffer and we can see that because they
are after the start pointer, they are considered to be part of the data currently stored.

An important thing to notice is that increasing the size of the buffer may be costly
and is not expected to be needed under normal conditions. The user of this data structure
has to carefully select the initial capacity of the buffer used by CircularBuffer in order
to avoid this situation as much as possible.

3.2.8 FlowBuffer

As the elements of a Click configuration manipulate packets, it is not convenient for them
to perform some operations such as searching a specific pattern in the flow. Indeed, this
pattern could be split over multiple packets, as we have seen on figure 2.8. The role of
FlowBuffer is to provide the elements of the middlebox stack with a way to put packets
in a buffer, and perform operations on it as if it were a continuous flow.

The table 3.3 lists the operations that can be performed on the content stored by
FlowBuffer.

Operation Time complexity
Search a pattern O(n ⇤ k)
Replace a pattern O(n ⇤ k)
Remove a pattern O(n ⇤ k)

Table 3.3: Operations provided by FlowBuffer. All of them can work on patterns split
over multiple packets. Regarding the time complexities, n corresponds to the number of
bytes of payload in the buffer and k the size of the pattern.

FlowBuffer stores the packets as a linked list. To be able to fulfill its role that consists

45

CHAPTER 3. DEVELOPMENT AND DESIGN

in manipulating the packets as a continuous flow, a special iterator for this linked list has
been developed. At any moment, this iterator points to a given byte of the content of a
packet. When the iterator is increased, it either moves to the next byte of the content
of the same packet, or to the first byte of the content of the next packet if it reached
the end of the first one. Therefore, it is possible to rebuild the flow by increasing the
iterator and dereferencing it to get the byte it points to until we reach the end of the
last packet. This is exactly what the operations provided by FlowBuffer do. They loop
on the iterator to search the given pattern as if they were manipulating contiguous data.
The abstraction provided by this iterator allows to browse the flow seamlessly.

Note that the operations replace and remove automatically insert or remove content
in the right packets to achieve their purpose. Moreover, all the operations return three
different kinds of feedback:

1. The pattern has been found (and removed or replaced if it applies)

2. The pattern has not been found but it appears that the content at the end of the
last packet of the buffer may be the beginning of the pattern. Therefore, adding
the next packet in the buffer is required in order to be able to make a decision
about the pattern

3. The pattern has not been found and cannot appear in the packets of the buffer.
Therefore, the latter can be flushed.

3.2.9 RetransmissionTiming

RetransmissionTiming is the helper class used by TCPRetransmitter to manage the
timings related to the retransmissions. There is one RetransmissionTiming for each side
of the connection and both of them are stored in the common TCP structure. Among
other tasks, RetransmissionTiming manages the retransmission timer. For this purpose,
it constantly performs measures of the RTT between the middlebox and the destination.
It then uses this value to compute the retransmission timeout that corresponds to the
time after which a transmission from the middlebox to the destination will be considered
as lost. Remember that because the middlebox has to acknowledge data when the
elements buffer packets, it becomes responsible for these data and must ensure that
they are correctly received by the destination.

The figure 3.8 depicts an example of a scenario in which the middlebox computes the
two RTTs it uses. Here, Endpoint 1 starts by sending a packet containing one byte of
payload to endpoint 2. When the packet is about to exit the middlebox, the latter detects
that it contains data and stores the timestamp at which the packet exits the middlebox.
Once the corresponding acknowledgement is received, RetransmissionTiming is informed
by the return path and computes the elapsed time to obtain the RTT between the
middlebox and Endpoint 2. In this scenario, the packet acknowledging the data sent
by Endpoint 1 also contains one byte of payload. Therefore, the RetransmissionTiming
of the second side of the connection will record the time at which the packet exits the
middlebox so that when the corresponding acknowledgement is received, it can deduce
the RTT between the middlebox and Endpoint 1. Note that RetransmissionTiming uses

46

CHAPTER 3. DEVELOPMENT AND DESIGN

Karn’s algorithm to compute the RTTs and therefore ignores the retransmissions to
avoid ambiguities.

Figure 3.8: Example of RTT measurement by the middlebox. In this situation, Endpoint
1 sends one byte of data to Endpoint2 and Endpoint2 sends in turn the acknowledgement
along with 1 byte of data to Endpoint 1. The middlebox measures the RTT between
itself and each endpoint.

To compute the retransmission timeout from the corresponding RTT, each Re-
transmissionTiming complies with the RFC2988 (‘Computing TCP’s Retransmission
Timer’)[17]. This means that the following set of rules is used:

• Before the first measure of the round-trip time, the retransmission timeout is
initialized to 3 seconds

• After the first measure of the RTT, the following computations are done:

smoothedRTT = measuredRTT

variationRTT =
measuredRTT

2
retransmissionT imeOut = smoothedRTT +max(G,K ⇥ variationRTT)

Where G is the clock granularity (in seconds) and K is set to 4.

47

CHAPTER 3. DEVELOPMENT AND DESIGN

• After each subsequent measure of the RTT, the values are updated as follows:

variationRTT = (1� �)⇥ variationRTT

+ � ⇥ |smoothedRTT �measuredRTT |

smoothedRTT = (1� ↵)⇥ smoothedRTT

+ ↵⇥measuredRTT

retransmissionT imeOut = smoothedRTT +max(G,K ⇥ variationRTT)

Where K and G have the same values as before. Additionally, ↵ is set to 1
8 and �

is set to 1
4 , as suggested in ‘Congestion avoidance and control’ [9].

• When the retransmission timer expires, the retransmission timeout is doubled be-
fore the timer is restarted

• The value of retransmission timeout is never below 1 second and never above 1
minute.

3.3 More information about some framework elements

In this section, we focus on important aspects of the implementation of some elements
provided with this framework for which additional explanations are relevant.

3.3.1 StackElement

StackElement is the abstract element from which the components of the middlebox stack
must inherit in order to use the stack interface. It allows to use the requests described
in the section Stack functions as well as methods such as getPacketContent in order to
have a direct access to the content corresponding to the current layer of the protocol
stack. It also provides the method processPacket that can be overridden by the elements
to implement the behaviour to engage in when a packet is received. Its advantage is that
it works seamlessly with batching, so that elements that do not need to manage packet
batches in a specific way do not have to change anything in order to be compatible with
batching. On the other hand, if an element needs to implement batching in a different
way, more complex than just repeating the same process on all the packets of the batch,
it is still possible to do it.

3.3.2 TCPReorder

One interesting thing to notice regarding the implementation of the TCPReorder element
is that making it compatible with packet batching, after implementing a first version
that received one packet at a time, was not as straightforward as we might have thought.
Indeed, the simple approach that consists in taking an element that works with one
packet at a time and loops to process all the packets making up the batch may not be
the most efficient in all cases.

48

CHAPTER 3. DEVELOPMENT AND DESIGN

First implementation

The first implementation of TCPReorder was done without taking advantage of the
packet batching improvement provided by Middleclick in order to have a first working
draft. This element works with a linked list of packets, sorted according to their sequence
number, waiting to be sent to the destination. The list can contain gaps, meaning that
packets with a sequence number smaller than some of the list are yet to be received.
TCPReorder also keeps track of the sequence number of the next expected packet, in
order to determine whether an incoming packet arrives in order or not.

When a packet is received, the following algorithm is performed:

1. The packet is analysed in order to determine if it is the first one of the flow in this
direction. To do so, the TCP flags are checked to see if the SYN flag has been
set. If it is the case, the variable containing the sequence number of the expected
packet is initialized to the sequence number of the current packet, the first of the
flow in this direction.

2. The sequence number of the packet is checked to determine if it has already been
transmitted before. If it is a retransmission, the packet is either dropped or sent
on the second output of the element. To determine whether a packet has already
been transmitted before, its sequence number is compared to the expected one. If
it is smaller, it is considered as a retransmission.

3. Next, the packet is added in the list of waiting packets at the right position,
ensuring that the list remains sorted

4. Then, the list of waiting packets is browsed. For each packet, there are two pos-
sibilities:

• The current element of the list is not the expected packet. Because retrans-
mission are not allowed, it can only mean that we are still waiting for a packet
with a smaller sequence number, it is therefore not useful to continue brows-
ing the list as it is sorted and other packets will necessarily have a greater
sequence number. In this case, we have to wait for the expected packet to
arrive.

• The current element of the list is the expected one. In this case, we update the
variable containing the sequence number of the expected packet, we remove
the current element from the list and send it to the next Click element for
processing. In this case, the exploration of the list continues until a gap is
found.

The algorithm is described on figure 3.9.

Making the element compatible with packet batching

The straightforward solution to take into account packet batching consists in repeating
the first part of the process (from receiving a packet to adding it at the right position in

49

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.9: Algorithm used by the first implementation of TCPReorder, processing one
packet at a time instead of batches.

50

CHAPTER 3. DEVELOPMENT AND DESIGN

the list of waiting packets) for every packet in the batch. The next part of the process,
exploring the list of waiting packets to send them in order, stays the same. This solution,
which consists in repeating the first implementation of the algorithm on every packet
of the batch, is easy and fast to implement. Moreover, it is most of the time perfectly
suitable to use it to make an element compatible with packet batching. However, we
will see that, in this case, this approach is not necessarily the most efficient and thus
requires to perform some analyses in order to determine when it is suited or not.

If we take a closer look at this version of the algorithm, we can see that we are
sorting a list of packets, according to their sequence number. The packets are sorted as
in the insertion sort algorithm: for each packet to add, we browse the list until we find
a packet with a sequence number greater than the one of the packet we want to add.
Since the list is sorted, we have found the position of the packet to add. These steps are
then repeated for every packet in the batch in order to add them at the right position
in the list. This algorithm is depicted on figure 3.10. Because this approach is the one
used by the well-known sorting algorithm insertion sort, we know that we will have a
quadratic time complexity. Let us analyse it in more details:

• Time complexity: The time complexity of this approach is O(k ⇤ (n + k)).
Indeed, for each packet of the batch (of size k), we browse the list of waiting
packets (starting at n elements and growing when we add elements from the batch,
therefore bounded by n+ k) to determine where to add it. This time complexity
is indeed quadratic, as we expected.

• Worst case: The worst case occurs when the list of waiting packets has to be
explored entirely to add a packet from the batch. This occurs when the sequence
number of the packet we want to add is the largest in the waiting list. This is
due to the fact that this list is sorted in increasing order. Thus, when the packets
arrive in order, the algorithm needs to check all the elements in the waiting list to
add the packets. However, if the packets arrive in order, the list is flushed after
each batch as the packets are sent to the destination, meaning that, when the next
batch is processed, the list of waiting packets will be empty. In this case, since
the packets in the batch are in order and added one after the other in the waiting
list, each one added at the end, the time complexity is O(k2). This is not the
worst case, it is even better than the average one, O(k ⇤ (n + k)). To be in the
worst possible conditions, we have to avoid the advantage given by the fact that
packets arrive in order: the waiting list is flushed after each batch. The worst case
therefore occurs when the packets arrive in order, but, occasionally, a packet is
lost. In this configuration, after a packet has been lost, the packets continue to
arrive in order and they are added at the end of the list of waiting packets, which is
not flushed between each batch. The awaiting packets will indeed be sent when the
lost packet will be retransmitted. In this configuration, we have an O(k ⇤ (n+ k))
time bound, which gives the worst case complexity.

• Best case: We have seen that, when packets arrive in order, we have the strong
advantage that the list of waiting packets is reset between each batch. This gives
a clue to determine the best conditions for this algorithm. We also have seen that,

51

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.10: First version of the algorithm that integrates packet batching in TCPRe-
order. The new elements are in yellow.

52

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.11: Example of situation that leads to the best case for the first version of the
algorithm that includes packet batching in TCPReorder

in this case, because the batch is sorted in increasing order, each element is added
at the end of the list of waiting packets, which requires to explore it entirely for
each packet of the batch. We can improve this situation if each batch is sorted in
reverse order. Indeed, the list of waiting packets will not have to be explored in
this case because every packet of the batch will be added at its beginning. Thus,
we can see that the best situation occurs when the packets globally arrive in order
so that the list is flushed after each batch, but each batch is in reverse order so
that the packets are added at the beginning of the list. In those conditions, we
obtain an O(k) time complexity. An example of a situation that leads to this case
is depicted on figure 3.11

This average time complexity is not the best we can obtain regarding sorting al-
gorithms. Indeed, we know that there exist algorithms able to sort a linked list with
an O(n ⇤ log(n)) time bound. Thus, it may be worth considering an alternative to this
approach that involves a better sorting algorithm and determine if we can improve the
performance.

When it comes to sorting linked list, a reasonable choice is to perform a merge sort. It
is indeed possible to implement this algorithm in-place, using only a small and constant
extra space. Moreover, merge sort has a time complexity of O(n ⇤ log(n)), even in the
worst case. Thus, it was decided to implement it to improve the performance as it
provides excellent space and time bounds. The implementation is based on the work of
Simon Tatham[22].

The new version of the algorithm therefore simply adds each packet of the batch at
the beginning of the list of waiting packets, which is an O(1) operation, and, at the end,
sorts the list using merge sort, which is O((n+ k) ⇤ log(n+ k)) as we are sorting a list of
n elements to which we just added k new elements. This algorithm is depicted on figure
3.12.

Finally, as depicted on figure 3.13, the merge sort version of the algorithm quickly
becomes better as the values of k and n increase and it thus provides good performance

53

CHAPTER 3. DEVELOPMENT AND DESIGN

Figure 3.12: Second version of the algorithm that integrates packet batching in TCPRe-
order. The modified elements are in green.

54

CHAPTER 3. DEVELOPMENT AND DESIGN

improvements compared to the naive approach. Note that, as stated in chapter Architec-
ture, the users of the framework can still decide to use the first version of the algorithm
by disabling the MERGESORT parameter during the configuration of TCPReorder,
depending on their needs.

0 10 20 30 40 50

0

10

20

30

40

50

k

n
Inequalityplotof k (n + k) > (n + k) log2 (n + k)

Figure 3.13: Inequality plot of k ⇤ (n + k) > (n + k) ⇤ log2(n + k). The blue area
corresponds to the values for which the merge sort has a theoretical advantage over the
naive approach.

3.3.3 TCPRetransmitter

When data have been processed and arrive on the first input of TCPRetransmitter, the
first step consists in putting them at end of the circular buffer (remember that packets
arrive in order if we are in such a situation). Additionally, if we are responsible for these
data, meaning that the middlebox has sent an acknowledgement for them, we perform
the following operations:

1. We determine if we can send them right now by comparing the amount of data in
flight with the size of the congestion window and the receiver’s window size.

2. If we can send data, we start the retransmission timer, if it was not yet running,
and we send them to the destination.

Then, when an acknowledgement is received, we apply this procedure:

1. We check if the acknowledgement is related to data we are responsible for. In such
a case, there are two possibilities:

55

CHAPTER 3. DEVELOPMENT AND DESIGN

• All the data in flight we are responsible for have been acknowledged, in which
case we stop the retransmission timer

• Or, it acknowledged only a part of these data. In this case, we restart the
retransmission timer.

2. The acknowledged data are removed from the circular buffer

3. If there are data in the buffer waiting to be transmitted, we determine which
amount of them we can send regarding the data in flight, the congestion window,
and the receiver’s window size.

Another interesting point regarding the implementation of TCPRetransmitter is how
it manages the size of the congestion window. As stated in chapter 2, an implementation
of TCP Tahoe has been developed in TCPRetransmitter to ensure that it will not con-
gestion the network when the elements in the middlebox stack flush the entire content
of a buffer. The following set of rules is therefore used to avoid such an issue and to
implement the Slow Start algorithm[1]:

1. The initial value of the congestion window (also called hereafter cwnd) is set to
one MSS

2. The initial value of the slow start threshold, called ssthrehold is set to 65535 bytes
(as recommended in ‘TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms’ [24])

3. Each time an acknowledgement for new data is received, there are two possibilities:

(a) The size of the congestion window is less than sshthreshold : we are in slow
start mode. In this case, we increase the size of the congestion window by
one MSS

(b) The size of the congestion window is greater than or equal to sshthreshold.
In this case, we are in congestion avoidance mode. Here, the new size of the
congestion window becomes: cwnd = cwnd+MSS ⇥ MSS

cwnd

4. When the retransmission timer fires, the values are updated as follows:

(a) ssthreshold = cwnd
2

(b) cwnd = MSS

Moreover, the fast retransmit mechanism of TCP Tahoe is implemented in such a
way that when 3 duplicate ACKs are received, we do not wait for the retransmission
timer to fire and we start to retransmit immediately.

Finally, when packets arrive on its second input, TCPRetransmitter maps the se-
quence number of the packet retransmitted by the sender to determine where to start
the retransmission in the modified flow. It also computes the sum of the initial sequence
number and the size of the retransmitted TCP payload to determine the end of the
retransmission in the original flow. Once again, TCPRetransmitter maps this position
to know where to stop the retransmission in the modified flow. If it appears that there
are indeed data to retransmit, they are obtained from the circular buffer according to
what has been computed.

56

CHAPTER 3. DEVELOPMENT AND DESIGN

3.3.4 TCPFragmenter

As stated previously, TCPFragmenter allows to ensure that packets going out of the
middlebox stack do not have a size that exceeds the MTU or the MSS. It is a built-in
element and it was therefore not developed in the context of this work. However, it
has been modified in order to be compatible with packet batching so that the entire
path used by the middlebox is compatible with this mechanism, which improves the
performance of the system.

3.3.5 PathMerger

To remember from which input a packet came from, PathMerger uses a hashtable. The
key corresponds to the sequence number of the packet and the value stored is the index
of the input. When the packet is about to exit the middlebox and we are therefore sure
that no further requests will be made for it, PathMerger receives a last special request
for this packet that will remove the entry in the hashtable in order to save memory.

3.3.6 InsultRemover

To be able to process the content of a web page as a flow and to get rid of the problems
related to patterns split across multiple packets, InsultRemover uses FlowBuffer. When
a new packet arrives, it is put in the buffer. Then, for each insult, the method used to
remove a pattern in the buffer is called until the insult cannot be found any more. If
the feedback obtained for every insult indicates that it is impossible for the last packet
to contain the beginning of an insult, the buffer is flushed. Moreover, InsultRemover
performs a request to determine if the current packet is the last one containing HTTP
content and if it is the case, it flushes the buffer. On the other hand, if the current
packet is not the last one and at least one feedback indicates that an insult may start at
the end of the last packet, the buffer is not flushed right now and we will wait the next
one to make a decision.

This element has been developed to test and show the features of the TCP/IP stack
provided with this work. It is for instance able to prevent users from accessing web pages
containing insults by replacing their content with an error message, as stated in chapter 2.
Therefore, the focus has not been made on the efficiency in priority and InsultRemover
actually achieves terrible performance. It indeed uses the remove in flow method of
FlowBuffer for each insult and loops until it is not in the flow any more. As a result,
the time complexity is quartic regarding the length of the flow, the length of the insults,
the number of different insults and the number of their occurrences. This behaviour has
to be improved by using algorithms such as Knuth–Morris–Pratt [11] before the element
is used in real conditions.

3.4 Multithreading

To improve the performance of the framework, it has been developed to be compatible
with the multithreading system of Click.

57

CHAPTER 3. DEVELOPMENT AND DESIGN

In MiddleClick, all the packets coming from the same flow, therefore the same dir-
ection of the TCP connection, are managed by the same thread. Thus, it means that a
scratchpad corresponding to a flow cannot be accessed by multiple threads at the same
time. As a consequence, all the data specific to the scratchpads, not shared among the
two sides of the connection, are automatically thread-safe. However, the common TCP
structure can be accessed by both threads at the same time and it therefore requires to
feature a mutual exclusion mechanism. For this purpose, this common structure also
contains a reentrant spinlock that must be acquired before accessing the shared data.

In addition, some elements such as TCPIn contain data that are not flow-specific,
for instance, the memory pools for the modification lists of the packets. These pools can
be accessed by any flow as they are associated to an instance of TCPIn, not a flow. This
allows to have only one memory pool for all the flows going through a given element.
To ensure that those pools are thread-safe, it was decided to make them local to the
threads. Consequently, each instance of TCPIn has x instances of the memory pool for
the modifications lists, where x is the number of threads in use. To achieve this, it uses
the per_thread template of MiddleClick that allows to have an instance of a variable
per thread. Note that the same principle applies for all the memory pools used by the
components of this framework.

Finally, the last structure that required some extra precautions is the hashtable
described in the section 3.2.3 (Common TCP Structure), because it stores the common
structure for each connection and they will try to access it concurrently during their
three-way handshake. To ensure the mutual exclusion on this data structure, a reentrant
spinlock is used.

58

Chapter 4

Results

The first interesting result regarding this work is that it successfully achieves its purpose.
It is indeed able to modify the flows on the fly and none of the endpoints notice the
modifications performed by the middlebox. Indeed, both of them act as though the
flows were not modified. The TCP/IP stack makes all the adjustments needed in order
to ensure that the connection still works in spite of the alterations. When using an
element such as InsultRemover, the client is not aware that some content was removed
from the web page it received. Additionally, the server does not know that the client
received a modified version of the web page it sent.

Besides, in order to assess the impact of the developed framework on the performance
of the TCP connections, it was decided to measure the completion times of fixed-size
flows under multiple conditions. To do so, six web pages containing random data were
created. Each web page has a fixed content size so that we have pages of 1 kB, 10 kB,
50 kB, 100 kB, 150 kB, and 200 kB. These values have been selected because it appears
that a large majority of the TCP flows are short, with a size of about a few kilobytes
only[16]. Using the topology presented on figure 2.3, an Apache server and wget as a
client, we measure the mean completion time of the flows under the following conditions:

• First, the completion times are measured without the middlebox to have a point
of comparison

• Next, a middlebox containing only the basic elements related to the developed
TCP/IP stack is used. The content of the payload is not modified and the stack
only performs the basic operations (determining the parameters of the connection,
recomputing the checksums, removing the SACK-permitted option, ...). The ele-
ments used are the ones depicted on figure 2.4 (namely IPIn, TCPIn, TCPOut,
and IPOut).

• The third test includes the same elements, but TCPReorder is added.

• For the fourth test case, an element removing all the occurrences of the character
’a’ in the flow, as well as TCPRetransmitter, are added. In this configuration, the
stack has to take into account the fact that the content of the flow is modified and
to perform the corresponding mappings. The content removed by the middlebox
for these tests represents approximately 2% of the initial content of the flows. Note

59

CHAPTER 4. RESULTS

that the elements of the HTTP stack are not used here as they would buffer the
packets to determine the final Content-Length. This configuration corresponds to
the one a middlebox could use in real conditions, provided that it works directly
on the TCP payloads.

• The last test uses the configuration shown on figure 2.10, namely the TCP/IP stack
elements, including TCPReorder and TCPRetransmitter, along with the HTTP
stack elements. Here the HTTP payload is not modified but the HTTP stack
performs the usual modifications on the headers so that the flows are nonetheless
modified. In this configuration, the stack becomes responsible for the content of
the flows when it receives it as the HTTP stack buffers the packets.

The results are listed in table 4.1 and the corresponding chart is depicted on figure
4.1. Note that the mean completion times have been computed on 30 samples for
each case. The first thing we can notice is that, in every case, using the middlebox
increases the completion time. Therefore, it cannot be used as a mean to improve the
performance. However, we also see that when we use the TCP/IP stack alone, or even
with the reordering component, the overhead is rather limited and does not seem to
increase according to the size of the flow. This is in itself a good result as in such a
configuration, an element of the middlebox stack can read the content of the flow and
make decisions such as closing the connection if some criteria are met. Thus, this result
corresponds to real applications.

Without
middlebox

TCP/IP
stack

TCP/IP
stack reordering Remove all ’a’s HTTP stack

1 kB 1.6 ms 1.7 ms 1.75 ms 1.8 ms 1.9 ms
10 kB 2.7 ms 3 ms 3.2 ms 3.6 ms 3.9 ms
50 kB 6 ms 6.3 ms 6.8 ms 7.4 ms 8.2 ms
100 kB 12.5 ms 12.8 ms 13.4 ms 15 ms 15.5 ms
150 kB 18 ms 18.8 ms 19.3 ms 22 ms 23 ms
200 kB 23.9 ms 24.2 ms 24.6 ms 28 ms 30 ms

Table 4.1: Impact of the elements of the framework on the mean completion time of the
flows. The rows represent the flow sizes (in kilobytes) and the columns the operations
performed on the flows.

On the other hand, the tests featuring the HTTP stack induced the greatest over-
head. Here, the packets are modified by the stack to ensure that the HTTP headers
comply with what the HTTP stack expects. Moreover, the whole content of the TCP
payload is buffered in HTTPOut so that when the entire page has been processed, it
is able to compute the new Content-Length. In such a case, the TCP/IP stack acts as
an intermediary between the two endpoints: it acknowledges the data it receives and
ensures that the destination correctly receives them. The fact that, in this configuration,
the middlebox plays the role of a complete actor explains why it provides the biggest
overhead.

Finally, the most interesting case is the one in which we modify the content of the flow
seamlessly for both endpoints, but without buffering the packets like the HTTP stack

60

CHAPTER 4. RESULTS

Figure 4.1: Chart depicting the impact of the framework elements on the completion
time of the flows.

Figure 4.2: Chart depicting the impact of removing content in larger flows on their
completion time.

61

CHAPTER 4. RESULTS

does. It indeed provides the most significant results for the majority of the applications
as HTTP is an exception regarding the fact that it must first buffer the entire content
before being able to finish processing it. In the configuration of this test case, the entire
content is analysed and approximately 2% is modified by the middlebox. Regarding the
times listed in table 4.1, the average overhead induced on the completion time is 21%,
with respect to the situation in which the middlebox is not used. This seems rather
high. However, in the topology used for the tests, the round-trip time between the two
endpoints is very small and the percentage of the overhead induced by the middlebox
is therefore higher than in a topology where the network delay contributes for a bigger
part of the completion time. Moreover, the overhead induced by this configuration seems
to grow linearly with respect to the flow sizes. It is confirmed by the figure 4.2 which
depicts the impact of such a configuration on larger flows. This is the expected result.
Indeed, remember that in this test configuration, we remove a fixed percentage of the
flow (approximately 2%), therefore, the amount of data removed by the middlebox also
grows linearly with respect to the size of the flows.

These results show that the modularity of the implemented TCP/IP stack allows the
users to select only the features they need for their application, avoiding the overhead
induced by other elements. However, there is clearly still room for improvement, in
particular in the case where the HTTP stack is used. Some hints about the improvements
that could be made will be given in the next chapter.

62

Chapter 5

Future work

Since this work and MiddleClick were developed in parallel, the presented framework
was in fact developed within FastClick, planning to eventually integrate it into Middle-
Click, when both would be ready. However, at the end of this project, it appeared that
Middleclick was not yet stable enough and that it would not be possible to make the
integration in time for the submission of this work. Therefore, as it currently runs into
FastClick, which does not provide the expected flow management system, it can only be
used with one flow at a time since every packet received is considered to be part of the
same flow. Note that this limitation will automatically disappear when the integration is
done. The first perspective of improvement would therefore be to finalise the integration
into Middleclick when it becomes possible.

Moreover, there are several points that can be explored to improve the framework
developed in the context of this work:

• The TCP stack currently does not support the SACK-permitted option. As de-
scribed previously, it automatically disables it for connections going through the
middlebox so that it is not a real a problem, but implementing this option would
improve the performance of the system by avoiding unneeded retransmissions.

• The HTTP stack provided with this work in order to be able to test elements such
as InsultRemover is rather basic and could be improved to take into account some
of the new mechanisms of HTTP 2.

• It could be possible to improve the performance of the TCP stack by using tech-
niques such as gathering the acknowledgements together, in particular when an
element puts the packets in a buffer. This would limit the amount of data sent on
the network.

• It is possible to improve the multithreading implementation by using finer-grained
mutual exclusions or lock-free data structures, especially on the common TCP
structure shared by both directions of the connection.

Moreover, TCP is a very complex protocol that features a large number of mechan-
isms. It is therefore really difficult to ensure that everything works as expected in all
situations, and that every corner case has been taken into account. This is especially

63

CHAPTER 5. FUTURE WORK

true in the context of this work in which we have to manipulate the flows on the fly,
being ignored by the endpoints which will therefore not comply with what we expect.
Some network protagonists may indeed have exotic behaviours and thus be challenging
to predict. In addition, some data structures and the corresponding algorithms had to
be developed especially in the context of this work, such as the mapping mechanism
performed by ByteStreamMaintainer. As a consequence, it is very difficult to assess the
stability of such a large piece of work during its development. Ideally, the framework
should be tested extensively, in real life conditions, to ensure that all the corner cases
have been taken into account and to be able to adapt some mechanisms according to
the results.

Finally, it would be interesting to assess the performance of the framework once it
has been integrated to Middleclick. This would allow to determine its efficiency when a
large number of flows are processed at the same time by the middlebox and to determine
its impact on the global throughput.

64

Chapter 6

Conclusion

In this thesis, we started by introducing the concept of middlebox, providing examples
and classifying them according to the layers they impact. We then explained why devel-
oping a lightweight TCP framework specifically designed for middleboxes is important
regarding their peculiarities and the fact that they must have an impact on the perform-
ance of the network which is as low as possible.

For this purpose, we presented the framework developed in the context of this thesis
which consists in a set of elements that can be used in Middleclick, the enhanced version
of the Click modular router aimed at providing it flow management mechanisms. These
elements can be used by developers to handle the network management part of their
middlebox so that they can focus on implementing the higher level functionalities. As
this framework has been developed specifically to take into account the specificities of
middleboxes, the implemented TCP/IP stack allows to modify flows on the fly, seamlessly
for the two endpoints of the connection.

We saw that a middlebox becomes responsible for the data it acknowledges, which
occurs when packets are buffered to delay their processing. As a consequence, an im-
plementation of TCP Tahoe was developed to ensure that the stack complies with the
congestion and flow control mechanisms of TCP. We also described how the TCP/IP
stack manages the retransmissions of the data it is responsible for, according to the
standards of TCP. The various data structures developed to be able to perform the
mapping between the original flow and the one resulting of the modifications made by
the middlebox have been described, trying to justify the choices we made by providing
an analysis of their time complexities.

The results showed that it is possible to use this framework to implement a middlebox
that performs deep packet inspection with a limited and constant overhead. However, a
larger additional cost is induced when the middlebox modifies the content of the flows.
Even though this overhead seems to be linear according to the size of the content mod-
ified, there is still room for improvements regarding the performance of the framework.

We finally proposed some improvements that could be made in the future to extend
the present work. Although the framework achieves its goals, the TCP protocol is vast
and there are always new features that can be added or handled in a better way.

65

Appendix A

Complete example of configuration

The listing A.1 shows an example of a complete Click configuration that can be used to
create a middlebox with the elements provided in this framework.

1 // Le f t s i d e o f the connect ion
2 de f i n e ($ le f tMac 0 8 : 0 0 : 2 7 : db : 8 3 : 1 6)
3 ip INLef t : : IPIn () ;
4 // 0 i s the id o f the f low d i r e c t i o n
5 tcpINLeft : : TCPIn(0 , tcpOUTLeft , tcpINRight) ;
6 httpINLeft : : HTTPIn() ;
7 ipOUTLeft : : IPOut () ;
8 tcpOUTLeft : : TCPOut() ;
9 httpOUTLeft : : HTTPOut() ;

10 // 0 i s the id o f the f low d i r e c t i o n
11 r e o rd e rLe f t : : TCPReorder (0) ;
12 r e t r an sm i t t e rL e f t : : TCPRetransmitter () ;
13

14 // Right s i d e o f the connect ion
15 de f i n e ($rightMac 0 8 : 0 0 : 2 7 : 2 7 : b5 : 9 a)
16 ipINRight : : IPIn () ;
17 // 1 i s the id o f the f low d i r e c t i o n
18 tcpINRight : : TCPIn(1 , tcpOUTRight , tcpINLeft) ;
19 httpINRight : : HTTPIn() ;
20 ipOUTRight : : IPOut () ;
21 tcpOUTRight : : TCPOut() ;
22 httpOUTRight : : HTTPOut() ;
23 // 1 i s the id o f the f low d i r e c t i o n
24 reorderRight : : TCPReorder (1) ;
25 r e t ransmi t t e rR ight : : TCPRetransmitter () ;
26

27 // Le f t path
28 i nLe f t : : FromNetmapDevice (netmap : eth0 , PROMISC true) �> Str ip (14)
29 �> chIPLeft : : CheckIPHeader () [0]
30 �> chTCPLeft : : I P C l a s s i f i e r (ip proto tcp , �) [0]
31 �> ipINLef t �> reo rd e rLe f t [0] �> tcpINLeft
32 �> httpINLeft �> httpOUTLeft �> tcpOUTLeft
33 �> [0] r e t r an sm i t t e rL e f t �> ipOUTLeft
34 �> TCPMarkMSS(0 , 24 , OFFSET 40)
35 �> TCPFragmenter (MTU 1500 , MTU_ANNO 24)
36 �> EtherEncap (0 x800 , $leftMac , $rightMac)
37 �> outLe f t : : ToNetmapDevice (netmap : eth1) ;

66

APPENDIX A. COMPLETE EXAMPLE OF CONFIGURATION

38

39 // Right path
40 inRight : : FromNetmapDevice (netmap : eth1 , PROMISC true) �> Str ip (14)
41 �> chIPRight : : CheckIPHeader () [0]
42 �> chTCPRight : : I P C l a s s i f i e r (ip proto tcp , �) [0]
43 �> ipINRight �> reorderRight [0] �> tcpINRight
44 �> httpINRight �> InsultRemover ()
45 �> httpOUTRight �> tcpOUTRight [0]
46 �> [0] r e t ran smi t t e rR ight �> ipOUTRight
47 �> TCPMarkMSS(1 , 24 , OFFSET 40)
48 �> TCPFragmenter (MTU 1500 , MTU_ANNO 24)
49 �> EtherEncap (0 x800 , $rightMac , $ le f tMac)
50 �> outRight : : ToNetmapDevice (netmap : eth0) ;
51

52 // Retransmiss ions detec ted by TCPReorder go to TCPRetransmitter
53 r e o rd e rLe f t [1] �> [1] r e t r an sm i t t e rL e f t ;
54 reorderRight [1] �> [1] r e t ran smi t t e rR ight ;
55

56 // Le f t path f o r generated packets that go back to the source
57 e th e rLe f t : : EtherEncap (0 x800 , $rightMac , $ le f tMac) ;
58 tcpOUTLeft [1] �> ethe rLe f t �> ToNetmapDevice (netmap : eth0) ;
59

60 // Right path f o r generated packets that go back to the source
61 etherRight : : EtherEncap (0 x800 , $leftMac , $rightMac) ;
62 tcpOUTRight [1] �> etherRight �> ToNetmapDevice (netmap : eth1) ;
63

64 // Non�TCP packets bypass the middlebox
65 bpLeft : : Unstr ip (14) �> outLe f t
66 bpRight : : Unstr ip (14) �> outRight ;
67

68 chIPLeft [1] �> bpLeft ;
69 chIPRight [1] �> bpRight ;
70 chTCPLeft [1] �> bpLeft ;
71 chTCPRight [1] �> bpRight ;

Listing A.1: Complete example of Click configuration that can be used to create a
middlebox

67

List of Figures

2.1 Simple example of Click configuration 13
2.2 Second simple example of Click configuration 13
2.3 Example of a simple topology that can be used to implement a middlebox 16
2.4 Minimal example of a TCP stack instance 16
2.5 Points of view of the sender and the receiver when the middlebox adds

data in a packet . 19
2.6 Illustration of the usage of TCPOut’s second output 20
2.7 Usage of TCPReorder . 21
2.8 Example of a pattern split over two packets 22
2.9 Example of usage of TCPRetransmitter. 23
2.10 Example of usage of HTTPIn and HTTPOut. 25
2.11 Example of InsultRemover usage. 26
2.12 Example of PathMerger usage. 27
2.13 Example of the usage of TCPMarkMSS and TCPFragmenter 28

3.1 Representation of a node in the memory pool 34
3.2 Example of the mapping between an original flow and the corresponding

modified flow . 36
3.3 Example of two successive deletions that lead to a merge because they

overlap . 38
3.4 Example of modifications in a packet and the resulting ModificationList 41
3.5 Trees resulting from the modifications shown on figure 3.4 42
3.6 Best case obtained when the capacity of the circular buffer is increased . 44
3.7 Case where increasing the capacity of the buffer leads to the need of fixing it 45
3.8 Example of RTT measurement by the middlebox 47
3.9 Algorithm used by the first implementation of TCPReorder 50
3.10 First version of the algorithm that integrates packet batching in TCPRe-

order . 52
3.11 Example of situation that leads to the best case for the first version of

the algorithm that includes packet batching in TCPReorder 53
3.12 Second version of the algorithm that integrates packet batching in TCP-

Reorder . 54
3.13 Inequality plot of the complexities of the two approaches for implementing

batching in TCPReorder . 55

68

4.1 Impact of the elements of the framework on the completion time of the
flows . 61

4.2 Impact of removing content in larger flows on their completion time . . . 61

List of Tables

2.1 Summary of the main characteristics of the elements provided by the
framework . 28

3.1 Operations added to the RBT implementation 39
3.2 Operations provided by CircularBuffer 43
3.3 Operations provided by FlowBuffer . 45

4.1 Impact of the elements of the framework on the mean completion time of
the flows . 60

Listings

2.1 Simple example of Click configuration file 13
2.2 Second simple example of Click configuration file 13
2.3 Pseudocode of the packet processing function in TCPTime 15
A.1 Complete example of Click configuration that can be used to create a

middlebox . 66

69

Bibliography

[1] M. Allman, Paxson V. and Stevens W. TCP Congestion Control. RFC 2581. IETF,
Apr. 1999, pp. 1–14. url: https://tools.ietf.org/html/rfc2581.

[2] Tom Barbette, Cyril Soldani and Laurent Mathy. ‘Fast Userspace Packet Pro-
cessing’. In: Proceedings of the Eleventh ACM/IEEE Symposium on Architectures
for Networking and Communications Systems. ANCS ’15. Oakland, California,
USA: IEEE Computer Society, 2015, pp. 5–16. isbn: 978-1-4673-6632-8. url:
http://dl.acm.org/citation.cfm?id=2772722.2772727.

[3] B. Carpenter. Architectural Principles of the Internet. RFC 1958. RFC Editor,
June 1996, pp. 1–8. url: http://www.rfc-editor.org/rfc/rfc1958.txt.

[4] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234. RFC
Editor, Feb. 2002, pp. 1–27. url: http://www.rfc-editor.org/rfc/rfc3234.
txt.

[5] Benoit Donnet. ‘Introduction to Computer Security – Chapter 2: Proxy’. 2015.
url: http://www.montefiore.ulg.ac.be/~bdonnet/info0045/files/slides/
Network_Chap2.pdf (visited on 28/03/2016).

[6] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC
1631. RFC Editor, May 1994, pp. 1–10. url: http://www.rfc-editor.org/rfc/
rfc1631.txt.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. RFC Editor, June 1999,
pp. 1–176. url: http://www.rfc-editor.org/rfc/rfc2616.txt.

[8] Internet Engineering Task Force. Requirements for Internet Hosts – Communica-
tion Layers. RFC 1122. IETF, Oct. 1989, pp. 1–112. url: https://www.ietf.
org/rfc/rfc1122.txt.

[9] Van Jacobson. ‘Congestion avoidance and control’. In: ACM SIGCOMM computer
communication review. Vol. 18. 4. ACM. 1988, pp. 314–329.

[10] J. Kempf and R. Austein. The Rise of the Middle and the Future of End-to-End:
Reflections on the Evolution of the Internet Architecture. RFC 3724. RFC Editor,
Mar. 2004, pp. 1–14. url: http://www.rfc-editor.org/rfc/rfc3724.txt.

[11] Donald E Knuth, James H Morris Jr and Vaughan R Pratt. ‘Fast pattern matching
in strings’. In: SIAM journal on computing 6.2 (1977), pp. 323–350.

[12] Eddie Kohler et al. ‘Click: Example Configurations’. 2008. url: http://www.

read.cs.ucla.edu/click/examples (visited on 29/07/2016).

70

BIBLIOGRAPHY

[13] Eddie Kohler et al. ‘Vector< T > Class Template Reference’. 2011. url: http:
//www.read.cs.ucla.edu/click/doxygen/class_vector.html (visited on
05/07/2016).

[14] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti and M. Frans Kaashoek.
‘The Click Modular Router’. In: ACM Trans. Comput. Syst. 18.3 (Aug. 2000),
pp. 263–297. issn: 0734-2071. doi: 10.1145/354871.354874. url: http://doi.
acm.org/10.1145/354871.354874.

[15] Emin Martinian. ‘Red-Black Tree C Code’. 2005. url: http://web.mit.edu/
~emin/Desktop/ref_to_emin/www.old/source_code/red_black_tree/index.

html (visited on 15/04/2016).
[16] Marco Mellia, Hui Zhang and Ion Stoica. ‘TCP model for short lived flows’. In:

IEEE Communications Letters 6.2 (2002), pp. 85–87.
[17] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC 2988.

IETF, Nov. 2000, pp. 1–8. url: https://www.ietf.org/rfc/rfc2988.txt.
[18] Luigi Rizzo. ‘netmap: A Novel Framework for Fast Packet I/O’. In: 21st USENIX

Security Symposium (USENIX Security 12). Bellevue, WA: USENIX Association,
Aug. 2012, pp. 101–112. isbn: 978-931971-93-5. url: https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/rizzo.

[19] Luigi Rizzo. ‘Revisiting Network I/O APIs: The Netmap Framework’. In: Queue
10.1 (Jan. 2012), 30:30–30:39. issn: 1542-7730. doi: 10.1145/2090147.2103536.
url: http://doi.acm.org/10.1145/2090147.2103536.

[20] J. H. Saltzer, D. P. Reed and D. D. Clark. ‘End-to-end Arguments in System
Design’. In: ACM Trans. Comput. Syst. 2.4 (Nov. 1984), pp. 277–288. issn: 0734-
2071. doi: 10.1145/357401.357402. url: http://doi.acm.org/10.1145/

357401.357402.
[21] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology

and Considerations. RFC 2663. RFC Editor, Aug. 1999, pp. 1–30. url: http:
//www.rfc-editor.org/rfc/rfc2663.txt.

[22] Simon Tatham. ‘Mergesort For Linked Lists’. 2001. url: http : / / www .

chiark . greenend . org . uk / ~sgtatham / algorithms / listsort . html (visited
on 20/07/2016).

[23] Union declaration - cppreference.com. url: http://en.cppreference.com/w/
cpp/language/union (visited on 05/08/2016).

[24] Stevens W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. RFC 2001. IETF, Jan. 1997, pp. 1–6. url: https://tools.
ietf.org/html/rfc2001.

[25] Ben Wagner. Deep Packet Inspection and Internet Censorship: International Con-
vergence on an ’Integrated Technology of Control’. 23rd June 2009. url: http:
//ssrn.com/abstract=2621410.

[26] Lixia Zhang. ‘A retrospective view of network address translation’. In: IEEE Net-
work 22.5 (2008), pp. 8–12.

71

