
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Distributed Logging Transport for Unreliable and Lossy Networks

Auteur : Scheer, Egon

Promoteur(s) : Leduc, Guy; 12788

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/16294

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Distributed Logging Transport for
Unreliable and Lossy Networks

Egon Scheer
School of Engineering and Computer Science

University of Liège

A thesis submitted for the degree of
Master of Science in Computer Science with a professional focus on

"Computer systems security"

Supervised by Prof. G. Leduc & E. Tychon

Academic year 2021-2022

Acknowledgements

First of all, I would like to warmly thank my supervisors Professor Guy Leduc
and Emmanuel Tychon who made this work possible. Their guidance, advice, and
feedback have helped me tremendously throughout this year. I firmly believe that
this project would never have been what it is without their patience and availability.

I express my sincere gratitude to my friends and family for their continuously
provided encouragement, and especially Barry Sajid for his proofreading, advice,
and unconditional friendship while writing this paper.

I am also thankful to David Lang, Sr Security Engineer at SigFig, for his expertise
in the field of high performance logging and his detailed recommendations during
our email exchanges. Similarly, I would like to thank Rainer Gerhards, author
of the rsyslog engine, for his dedication and investment in the open-source syslog
community. His extensive research and reading on optimizing a syslog engine has
been an indispensable asset for this project.

For all those who helped me during this work, directly or indirectly, thank you.

Liège, 20th August 2022
Egon Scheer

Abstract

Message logging is the tool of choice to stay informed about the health of a machine
or application. These messages, called logs, are used for various purposes, including
system management, performance optimization, investigation of suspicious activities,
and more generally analysis and debugging. Operations that demand a level of
reliability at least equivalent to the emphasis placed on them during their use.
However, the syslog protocol was originally designed to work exclusively over UDP.
Traditional applications, which have not benefited from the a postorio additions
such as TCP, are forced to communicate over a network that is not suitable for
them (corrupted or lost messages, reordering, or unreachable server) and over which
they have no control. The objective of this work is to develop a resilient syslog relay
that will operate downstream of applications, collect their syslog messages and send
them to a central syslog server. Several mechanisms such as the use of the TCP
protocol and the retention of messages in case of connection loss guarantee reliability.
Topics related to message ordering and strategies in case of an overload are also
discussed and several approaches are presented to either mitigate or regulate their
impact. The implementation, in the form of a prototype, is deployed inside a router
running the Cisco IOx environment and features the modern syslog message engine,
rsyslog. The model is evaluated on the basis of its functionality and performance in
a test environment with network quality such as 3G cellular and EDGE. Several
configurations are proposed depending on the type of usage involved. Although
the solution does not cover all possible and imaginable problems, such as router
outages, the evaluations demonstrate the efficiency and scalability of the proposed
solution, which can for example easily handle several tens of thousands of messages
per second with a very low resource footprint.

Contents

List of Figures ix

List of Abbreviations xiii

1 Introduction 1
1.1 Purpose of the Research . 1
1.2 Constraints . 1
1.3 Methodology . 2

2 Background 3
2.1 What is Syslog? . 3

2.1.1 Daemons . 5
2.1.2 Message formats . 6
2.1.3 Protocols . 8

2.2 Related work . 13
2.2.1 Partially reliable delivery . 13
2.2.2 Syslog data . 13

3 Prototype 17
3.1 Architecture . 17

3.1.1 Hardware constraints . 17
3.1.2 Logging appliance . 18
3.1.3 Key objectives . 18
3.1.4 Protocols and formats used 22
3.1.5 High-level design . 23
3.1.6 Message flow . 25
3.1.7 Ordering messages . 32
3.1.8 Securing log forwarding . 34

3.2 Configuration . 35
3.2.1 Cisco IOx . 36
3.2.2 Docker . 39
3.2.3 Rsyslog . 41

3.3 Log analysis . 47

vii

viii Contents

4 Evaluation 51
4.1 Purpose . 51
4.2 Environment setup . 52

4.2.1 Testbed specifications . 55
4.2.2 Testbed parameters . 57

4.3 Functional tests . 58
4.3.1 Reliability . 58
4.3.2 Store and forward . 62
4.3.3 Chronological order . 65

4.4 Performance . 68
4.4.1 Cellular networks . 69
4.4.2 High-speed low-latency network 71
4.4.3 Queue build-up prediction 76
4.4.4 Results . 79

5 Conclusion 83
5.1 Challenges faced . 83
5.2 Future works . 84
5.3 Final words . 85

Appendices

A Project source code 89
A.1 Overview . 89
A.2 Structure . 89

References 91

List of Figures

2.1 Architecture of sysklogd logging utilities[6, p. 178]. 4
2.2 An example of an RFC 3164 format syslog message[14]. 6
2.3 An example of an RFC 5424 format syslog message[14]. 7
2.4 An practical example of a BEEP session with eight channels, allowing

eight separate syslog sessions[21]. 10
2.5 The content length density distribution[24]. 14
2.6 The normal and payload length cumulative distributions[24]. 14
2.7 The inter-arrival time density distribution for the whole sample[24]. 15
2.8 The exponential and inter-arrival time cumulative distributions[24]. 15

3.1 High-level architecture design for reliable syslog transport. 24
3.2 High-level architecture of rsyslog daemon inside IOx. 24
3.3 Generic model of data flow inside rsyslog engine. 25
3.4 Synchronous communication between a producer and a consumer. . 25
3.5 Decoupling system with a queue and optional storage. 25
3.6 Batch’s message processing state[31] 26
3.7 How data flow inside the router’s IOx application. 28
3.8 Dropping strategy that discards less important messages. 29
3.9 Interval (s) duration after x retries, with C = 1800, R = 30 31
3.10 The number of attempts made (y-axis) according to the downtime

duration (maximum 3,000 seconds, x-axis). 31
3.11 Applications management on Cisco IOx Local Manager. 36
3.12 Configuration menu of the syslog relay application on Cisco IOx

Local Manager. 37
3.13 Data directory of the syslog relay application on Cisco IOx Local

Manager, containing three .pem files 38
3.14 Qemu emulation workflow on an amd64 host machine. 40
3.15 The project’s Docker filesystem layers. Inspired from [43, p. 63]. . . 40
3.16 Syslog severity levels as defined by RFC 3164. 46
3.17 Loghub datasets details[47]. 47
3.18 Number of messages per day based on the Linux dataset. 48

4.1 Testing environment topology. 52

ix

x List of Figures

4.2 A 2-stage Markov chain that captures burst behaviour. 53
4.3 The token bucket algorithm which allows or denies messages depend-

ing on the levels of traffic required. 54
4.4 WANem software advanced configuration panel. 55
4.5 Relay’s messages flowchart, highlighting unreliable areas in bold and

the dropping strategy in dotted-line. 59
4.6 Central syslog server’s console after receiving 30,100 messages. . . . 60
4.7 Message generator’s console after sending 30,100 messages (300s

timeout). 60
4.8 The relay’s internal counters evolution over the 300s test and a rate

of 100 messages/s. 61
4.9 Cumulative sum of the relay’s input and output counters. Both have

a maximum value of 300,100 messages. 61
4.10 Simulation of the dropping strategy for 20 seconds with r = 5000,

d = 0.8, s = 45600, p = 0.5. We can see very well the staircase effect
induced by the dropping strategy (solid line). 63

4.11 The relay’s queue size evolution second by second, with the dropping
strategy threshold set to 80% of the queue. Same parameters as
FIGURE 4.11. 63

4.12 Number of reconnection attempts made during a downtime period of
more than 10 hours. Resume interval of 30 seconds with a ceiling of
1800 seconds. 64

4.13 Behaviour of the relay during a catch-up test. 100 messages are sent
every second for 60 seconds. After 120 seconds, the central server is
switched on. 65

4.14 The loggen script instantiating 10 devices, each in a thread with its
own (random) clock. 66

4.15 loggen script closing after sending 2,136 messages in 300 seconds. . 67
4.16 Audit of the two log files populated during the test on the chrono-

logical order. Both have the same configuration except for the time
requery which is 2 for the first file and 1 for the second. 67

4.17 Two tests with identical configuration except for the time requery
which is respectively 2 on the left and 1 on the right. Displays
the number of forwarded messages (cumulative sum) that requery 2
has over requery 1 (at equal time). On average, requery 2 is ∼ 4.6
messages ahead of requery 1 (a percentage lead of ∼ 0.2%). 68

4.20 Small profile internal counters under a 10MB/s burst. On average,
247,422 messages are sent to the server every 10 seconds. No messages
were dropped. 72

List of Figures xi

4.21 Number of recvmmsg() OS calls performed vs actual messages
received (one thread). Each call returns at least one message. Point
(A) denotes the event in which the queue size maximum capacity
was reached. Every 10 seconds, an average of 247,421 messages are
received and 225,101 calls are made. 73

4.22 logserver script receiving an average of 27,215 messages/s, for a
total of 10,886,549 messages. 73

4.23 logburst script which sent 11,570,815 messages in 300 seconds. . . 73
4.24 Every message received by the relay has been transmitted, totalling

10,886,549 messages. It can be observed that the forwarding process
induces almost no delay (overlap). 74

4.25 General information about the FastEthernet0/0/1 port where the
message generator is connected. Image taken during the burst from
the router’s web interface. The RX buffer is under heavy load (rxload
at 221/255 for an input rate at ∼ 35, 000 packets/s) but retains some
space. 74

4.26 Rsyslog’s threads under load (using ’H’ inside top command). . . . 75
4.28 Test performed to gather data on the evolution of the size of the

main queue as a function of the number of messages received. Note
that the number of messages received (dashed line) is an average
over 10 seconds. 77

4.29 A close up view of FIGURE 4.29, one can clearly see the periods of
burstiness followed by moments of stillness. The solid line represents
the main queue size containing very indicative episodes of burst
absorption with an escalation in size followed by a steep decline to
zero. 77

4.30 Quadratic regression curve based on the observed data (maximum
values only) from FIGURE 4.29. 78

4.31 Quadratic regression curve predicting values for a rate up to 100,000
messages/s. The horizontal lines represent the three resource profiles. 78

xii

List of Abbreviations

IOT Internet Of Things

IOx Cisco IOx is an application environment that combines Cisco
IOS and the Linux OS for highly secure networking.

ARM Advanced RISC Machines

MB MegaByte

MHz Megahertz

RAM Random-Access Memory

CPU Central Processing Unit

BSD The Berkeley Software Distribution is a discontinued operating
system based on Research Unix.

IETF Internet Engineering Task Force

UDP User Datagram Protocol

ISO International Organisation for Standardisation

RFC Request For Comment

CEE Common Event Expression

TLS Transport Layer Security

OSX OSX is a former name of Apple’s operating system macOS.

TCP Transmission Control Protocol

RELP Reliable Event Logging Protocol is a syslog protocol that provides
reliable delivery of event messages.

PRI The PRI is a priority value present in syslog messages and is
used to derive the facility and severity of the message.

MSG MSG refers to the part of a syslog message which contains
additional information about the process along with the actual
message.

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

xiii

xiv List of Abbreviations

UTF-8 Unicode Transformation Format–8-bit

DTLS Datagram Transport Layer Security

IP Internet Protocol

MTU Maximum Transmission Unit

BEEP The Blocks Extensible Exchange Protocol is a framework for
creating network application protocols.

ACK ACKnowledgement

SCTP Stream Control Transmission Protocol

PR-SCTP . . Partially Reliable-Stream Control Transmission Protocol

DDR4 Double Data Rate 4

GPLv3 GNU General Public License version 3

NTP Network Time Protocol

HTTP HyperText Transfer Protocol

CIA Confidentiality, Integrity, and Availability.

SSL Secure Sockets Layer

HTTPS Hypertext Transfer Protocol Secure

DHCP Dynamic Host Configuration Protocol

OS Operating System

KB KiloByte

OOM The Out-Of-Memory Killer is a Linux safeguard that helps the
system to remain stable by eliminating processes that consume
excessive memory resources.

LAN Local Area Network

WAN Wide Area Network

Mbit Megabit

Gbit Gigabit

VM Virtual Machine

USB Universal Serial Bus

GB GigaByte

NIC Network Interface Controller

ICMP Internet Control Message Protocol

List of Abbreviations xv

MTR Matt’s traceroute is a cross-platform network diagnostic tool.

OWD A One-Way Delay measures the amount of time it takes for a
packet to travel from source to destination across a network.

NAS Network-attached storage

RX The RX Buffer is a shared buffer between the device driver and
the network interface card.

xvi

1
Introduction

Contents
1.1 Purpose of the Research 1
1.2 Constraints . 1
1.3 Methodology . 2

1.1 Purpose of the Research
Some IoT networks are composed of edge gateways that are physically on the
move, such as in a vehicle or a shipping container. They might get disconnected
without warning, without any information as to what is happening when they
are disconnected. While most IoT applications are coping with this very well, on
the other side, traditional applications won’t and rely on Syslog protocol to send
logging messages to a central logging server. But that server might be out of reach
exactly when we need it the most. The purpose of this work is to develop a resilient
syslog server that will be running at the edge, collecting syslog messages from
applications and send them to a central syslog server. In case of disconnection
between the edge device and the central syslog server, syslog messages are stored
on the edge device until the connectivity is restored.

1.2 Constraints
The solution must run inside Cisco IOx environment, through a packaged applica-
tion embedding a Docker container on a Linux distribution. The router hosting

1

2 1.3. Methodology

the environment has a 700MHz Quad-Core ARM CPU and 862MB1 of RAM which
should not be fully consumed. It has no permanent storage, although a hard disk can
be installed at a later stage (with the exception of flash memory, but this cannot be
manipulated for regular use). In terms of implementation constraints, any proposed
solution must be completely transparent to the outside world. Indeed, the IoT
devices and the central log server running at the edge must operate as if there were no
intermediaries between them. In addition, the solution must be reliable, capable of
handling loss of connectivity, and preserve the order of messages as much as possible.

1.3 Methodology
The proposed approach is as follows: I will first discuss the syslog protocol, namely
how it was originally designed and for what purpose. I will then explain the different
variants that have been developed and the Internet standards that followed.
I will then show the different possible paths to the original problem, where it
stands in relation to the current available possibilities, what is feasible, and at
what cost. I will address the solution in an iterative way in order for the reader to
find at each step a compromise between the deployed service and its complexity.
Indeed, the very nature of the syslog protocol invites simplicity. It will therefore be
essential to know the added value that sophistication would bring to the problem,
in the light of the constraints defined above.
Finally, the solution is tested by comparing several standard profiles and find their
best parameters. This performance evaluation will take into account the nature
of the network and the capabilities of the IOT devices.

1The router actually has a total of 4GB of RAM but only 862MB of that memory is allocated
for IOx applications (which they must share).

2
Background

Contents
2.1 What is Syslog? . 3

2.1.1 Daemons . 5
2.1.2 Message formats . 6
2.1.3 Protocols . 8

2.2 Related work . 13
2.2.1 Partially reliable delivery 13
2.2.2 Syslog data . 13

2.1 What is Syslog?
In a computer science context, a log, or sometimes called an event, is defined by the
CEE Editorial Board as “[..] a single occurrence within an environment, usually
involving an attempted state change. An event usually includes a notion of time, the
occurrence, and any details the explicitly pertain to the event or environment that
may help explain or understand the event’s causes or effects”[1, p. 86]. Almost all
systems and applications generate log files. The advantages of logging are numerous,
including monitoring and troubleshooting. This is even more true when dealing
with lots of different kinds of message from a plethora of subsystems within each
system, because some of them might need administrator’s attention immediately
while others will simply need to be stored for future reference. Some will be
automatically processed, information extracted, and reported each month. Having
the logs centralized can provide a global picture of the health of the infrastructure,

3

4 2.1. What is Syslog?

but it can also allow, if necessary, for a sharp breakdown of a particular time frame.

First developed in the 1980s by Eric Allman[2] as part of the Sendmail[3, p. 18]
project and integrated into the Berkeley Software Distribution (BSD), Syslog
eventually became an unofficial standard format used by other, unrelated, programs.
First documented by IETF[4] in 2001 as a behaviour observation of the syslog
protocol, it has become since March 2009 the standard logging solution on Unix
and Linux systems[5].

During its long history, the term syslog has referred to several things, to the point of
sometimes being confused in the literature. Indeed, syslog is not a particular service
but more like a set of utilities, primarily consisting of a library and a daemon. The
syslog library provides interfaces for logging, and the syslog daemon gathers logs
and stores them as a file. The architecture is depicted on Figure 2.1.

Figure 2.1: Architecture of sysklogd logging utilities[6, p. 178].

The syslog library provides functions for user program to send log messages to
the syslog daemon[7], such as through a shell command interface[8] or a syslog
interface[9]. If the libc interface implementation is used, the syslog function sends
messages to /dev/log with the send or write system call, and the syslog daemon
gathers logs from /dev/log with the read system call[6, p. 178]. In user space, the
daemon[10] listens to a number of domain sockets, mainly /dev/log but others
can be configured such as the UDP port 514 for messages. It also fetches messages
from the kernel log daemon[11], which accumulates its own logs in a ring buffer.
It then writes these messages to some files in /log, or to named pipes, or sends
them to some remote hosts via the syslog protocol on UDP port 514, thanks to rules

2. Background 5

configured in /etc/syslog.conf[12].

Of course, this architecture only represents the foundations of syslog, namely what
it was when it was created. It has since birthed other daemons, such as rsyslog

or syslog-ng, to replace the ageing implementation. There have also been several
Request for Comments (RFCs) released over the past forty years that have guided,
if not always followed or implemented, syslog’s successors. An evolution which has,
for example, allowed the addition of a timezone within the message, but also the
implementation of the protocol within TLS.

I will therefore devote the remainder of this section to the classification of the different
existing implementations, for each syslog utility, by defining the features that are of
interest, and relevant, and that follow the initial constraints of the problem.

2.1.1 Daemons

A syslog daemon is a service that offers:

1. A recipient for syslog messages, collected through socket, kernel logs, or port
interface.

2. Writing to files, or not, thanks to configurable policies.

3. Message forwarding to the network or other destinations, traditionally via
UDP but not only.

The very first syslog daemon, conceptualized and created by Eric Allman in the
1980s and often referred to as sysklogd[7], is derived from the stock BSD sources
and has been used by most Linux distributions up until 20091. It is however still
maintained by some operating system such as latest BSDs and OSX. However, most
of them are not compliant with the latest RFC releases.

Alternatives to this daemon flourished in the early 2000s, including:
1For example, Ubuntu distribution used sysklog until the release of Ubuntu 9.10 which

introduced rsyslog for the very first time, see manifest at http://old-releases.ubuntu.com/
releases/. Debian distribution used it until the release of Debian GNU/Linux 5.0 which also
traded sysklog for rsyslog, see package at http://archive.debian.org/debian/dists/. On
the other hand, the famous Alpine Linux image still ships sysklog as default.

http://old-releases.ubuntu.com/releases/
http://old-releases.ubuntu.com/releases/
http://archive.debian.org/debian/dists/

6 2.1. What is Syslog?

• The syslog-ng project started in 1998 as an extension to the sysklogd
current implementation. While it offers most of rsyslog features, with the
exception of some being premium such as TLS, the few years’ lead it has had
over its competitor has given it greater maturity and a superior portability.

• The rsyslog project which began in 2004 when Rainer Gerhards, the primary
author, decided to fork the sysklod daemon and compete with the current
in-place alternative, syslog-ng. He said, “From day one, I thought about
creating something that in the long term can become a default syslogd [..]”[13].
It embeds the basic syslog protocol, with advanced filtering, network outage
management, support for the latest RFCs, timestamp with year, millisecond
granularity, timezone information, and other features such as TCP, TLS and
RELP.

• And others such as NXLog which supports all major operating system: Win-
dows, macOS, IBM, and more.

2.1.2 Message formats
The simplicity of syslog, or at least in its initial implementation, was mainly due
to its message format. There are currently two formats defined by the Internet
Society: the original BSD format, namely RFC 3164[4], and the new format that
provides a foundation that syslog extensions can build on, RFC 5424[5].

RFC 3164

This first Request for Comments, released in August 2001, laid down the first
guidelines for a logging protocol. It is, however, guidelines and not a standard2.
Indeed, as stated at the beginning of the document, “This memo provides information
for the Internet community. It does not specify an Internet standard of any kind.
[..]”[4]. As a result, there are nowadays several variants of the theoretical format,
most of which are of little or no consequence in terms of compatibility.
According to the RFC 3164, a message has the following format:

Figure 2.2: An example of an RFC 3164 format syslog message[14].
2Only a few RFCs are considered standards. RFCs are classified with regard to status within

the Internet standardization process (maturity, topic covered, ...): Informational, Experimental,
Best Current Practice, Internet Standard, Proposed Standard, or Historic.

2. Background 7

Quoting the RFC 3164, “The full format of a syslog message seen on the wire has
three discernable parts. The first part is called the PRI, the second part is the
HEADER, and the third part is the MSG. The total length of the packet must be 1024
bytes or less. There is no minimum length of the syslog message although sending
a syslog packet with no content is worthless and should not be transmitted.”[4].

• <34> is the priority number. It represents the facility number multiplied by 8
and then summed with the severity value. As such, the facility is numerically
coded with decimal values ranging from 0 to 23, and from 0 to 7 for the
severity possible values. Tables are visible in the RFC document[4].

• Oct 11 22:14:15 is the syslog timestamp. Notice that the format does not
allow for the year, the time-zone, and nor has millisecond precision.

• mymachine is the host name but the IPv4 address or the IPv6 address is also
accepted.

• su is the tag, this is usually the process name and process id between angle
brackets and must be of at most 32 characters.

• The remainder is the message content.

RFC 5424

RFC 5424[5] was released in March 2009 to primarily address the problems
encountered with the RFC 3164 guidelines. It is, unlike its predecessor, an Internet
standards track protocol. According to the authors of the document, it has been
written with the original design goals for traditional syslog in mind but with a solid
basis that “[the architecture] allows code to be written once for each syslog feature
rather than once for each transport.”[5]. Here is an example of such message:

Figure 2.3: An example of an RFC 5424 format syslog message[14].

The new format introduces versioning, an ISO-8601 timestamp[15], the use of dashes
to indicate missing features, a message id for fast filtering, a data structure that
contains key-value pairs, the encoding of the message’s content in UTF-8, and more.
However, this format is proving slow to take hold in the community and in companies,

8 2.1. What is Syslog?

although it was for example implemented in some versions of the BSDs, and in
rsyslog. Moreover, even if the daemons were to accept and comply with the norm
then other parties would have to follow and upgrade, which includes, for example:
the GLIBC logging interface, the relays that do potential filtering or load balancing
on it, the collectors if going through a network, the list is endless.
The old format is already well established and most of the new features offered were
already possible through the use of JSON in the syslog message or custom formatting,
as Cisco does, but at the expense of reducing the raw message content capacity.

Cisco approach

As introduced above, one way to avoid the information shortage in an RFC 3164’s
message is to use its content to redefine a new format. As such, the syslog
messages generated by Cisco IOS devices begin with a percent sign (%) and
use the following format[16, p. 184]:

%FACILITY-SEVERITY-MNEMONIC: Message-text

Note that while the severity value is the same as defined in RFC 3164, facility one
is Cisco specific and is only relevant within the message string. The mnemonic field
is a device-specific code that uniquely identifies the message. One can also add an
ISO-8601 timestamp by beginning the message with a special character (*), such as:

*Mar 6 22:48:34.452 UTC: %LINEPROTO-5-UPDOWN: Line protocol on
Interface Loopback0, changed state to up

The format slightly changes depending on the Cisco system[16, p. 185]: CatOS,
Cisco PIX Firewall, etc.

2.1.3 Protocols
One of the fundamental tenets of the syslog protocol and process, if not its flexibility,
is its simplicity. From the very beginning and even before it turned into a standard,
RFC 3164 already recommended3 the use of the UDP protocol because it was in
line with the lightweight approach that syslog advocated for. Indeed, in most cases,
no responding acknowledgement of receipt of the event is required or even desired.
It is in this regard that syslog has gained its popularity, to the point of having its
protocol standardized in 2009 as part of the RFC 5426[17].
But while this logic remained true for many years, the implementation of protocols to
address the lack of security that syslog exhibited gradually gave rise to standardized
extensions such as the use of TLS[18] or even DTLS[19].

3“Syslog uses the user datagram protocol (UDP) as its underlying transport layer mechanism.
The UDP port that has been assigned to syslog is 514.”[4].

2. Background 9

UDP

With RFC 3164 which described the syslog protocol as it was observed in existing
implementations, i.e. before 2001, the UDP transport was already specified.
But as reported in RFC 5426[17], such solution also comes with its drawbacks,
“Network administrators and architects should be aware of the significant reliability
and security issues of this transport, which stem from the use of UDP.”[17].
These include:

1. Absence of sender authentication and message forgery

2. No confidentiality

3. Replaying messages

4. Unreliable delivery, due to...

(a) No mechanism for lost datagrams

(b) Message corruption

(c) Congestion control

(d) Out of order

5. No message prioritization based on severity

6. Denial of service

As for the protocol specification, RFC 5426 only handles one syslog message at a time
but it can be truncated. The maximum size supported is that of UDP, namely 65535
bytes minus the UDP and IP headers. However, to mitigate packet fragmentation4

at the IP layer, UDP messages should be constrained by the Internet maximum
transmission unit (MTU) of 1500 bytes minus the UDP header. RFC 3164 defines
a protocol requirement of 1024 bytes, which practically all senders enforce (either
by dropping longer messages or splitting them into multiple conforming messages).

4Fragmentation is to be avoided if possible, namely because it waste resources at both sender
and receiver end, adds protocol overhead, and any fragment be lost/corrupted the whole datagrams
will need to be resent.

10 2.1. What is Syslog?

BEEP

In November 2001 the Internet Society published a standard, RFC 3195[20], that
describes how to realize the syslog protocol when reliable delivery is selected as a
required service. RFC 3195 offers multiplexing capabilities and multiple channels to
exchange on using the BEEP protocol framework. It allows for connection-oriented,
asynchronous interactions. Within BEEP, features such as message aggregation,
authentication, privacy, and reliability through retransmission are provided.

Figure 2.4: An practical example of a BEEP session with eight channels, allowing eight
separate syslog sessions[21].

BEEP as a transport protocol for syslog messages provides a configurable channel
as a separate session to the same host. For example, the design approach used by
Cisco and depicted on FIGURE 2.4 is to have as many severity levels as channels to
allow fined-tuned flow control: channel priorities, (relative) buffer allocations, and
so on.

However, due to the lack of demand, RFC 3195 has received little to no attention
in practice. The main functionalities that BEEP would have brought to syslog
and which is not possible with a plain TCP, i.e. a negotiation model to define
the requirements5 and multiple sessions to a single logging host, failed to seduce.
This is mostly due to the fact that RFC 3195 has considerable overhead and
lacks compatibility for updated IETF syslog standards such as missing RFC 3339
timestamps and references to the outdated RFC 3164 (which has since been published
as RFC 5424, but was not named at that time).

5Requirements can negotiate privacy, authenticity, but also transport protocol, and much more.

2. Background 11

TCP

As introduced in the SECTION 2.1.3, there are a variety of reasons why plain UDP
may not be the ideal choice for log messages. While the RFC 5424 describes the
format of a syslog message, it does not specify any transport layer protocol. It
is only in April 2012 and as part of the RFC 6587[22] that the IETF describes
what has been observed with legacy syslog over TCP. Indeed, as stated in the
document, it is nothing more than a description and not a standard: “There have
been many implementations and deployments of legacy syslog over TCP for many
years. That protocol has evolved without being standardised and has proven to be
quite interoperable in practice. This memo describes how TCP has been used as a
transport for syslog messages.”.

Despite several advantages such as error recovery and acknowledgement mechanism
to name a few, plain TCP syslog is not a reliable solution, or at least should not be
used if a highly reliable and tamper-proof logging system is required. Indeed, one
of the problem is the missing application level acknowledgment: the transport level
ACK is for use by TCP and it shall have no bearing on the application layer. For
example, TCP send() API returns success6 but actually buffers the message locally,
with an upper limit on the buffer size set to the negotiated congestion window,
and as such in the worst-case scenario there is no way for the application layer
to know if it succeeded or not until the keep-alive fires (which is of two hours for
Windows and Linux distributions), moment at which the application layer will most
likely have forgotten about the sent messages. The following are other examples
of problems that can occur after a call to send(): the receiver crashes before
receiving the packet, there is no guarantee that the application layer has received
the bytes, the network could be unreachable and cause a timeout after a long
period, it could receive some of the segments correctly and then encounter one of
the errors listed above, so on and so forth. These are rare, but not impossible, events.

TLS

Transport Layer Security (TLS) has been standardized in March 2009 in the
RFC 5425[18] to provide a secure connection for the transport of syslog messages
with, if required, sender’s authentication. Please note that while it offers hop-by-
hop security, it does not offer end-to-end security, nor does it authenticate the

6The success indicates that the data has been successfully copied into the TCP socket’s
outgoing-data-buffer.

12 2.1. What is Syslog?

communication (just the last sender). As such, if one uses a relay to transport
messages then they may have been originated from a malicious system, which placed
invalid hostnames and/or other content into it.

DTLS

The Datagram Transport Layer Security (DTLS) provides secure transport for
syslog messages in cases where a connectionless transport, such as UDP, is desired.
It is described in the RFC 6012[19]. DTLS features:

1. Confidentiality.

2. Integrity checking on a hop- by-hop basis.

3. Server or mutual authentication.

4. Cookie exchange to prevent DoS attacks.

5. A sequence number to counter replay attacks.

Likewise, the security considerations in SECTION 2.1.3 also apply here. Moreover,
such transport allows for messages to be lost or removed by an attacker without
the knowledge of the receiver. Please note that DTLS does not require (or provide)
reliability nor does it deliver data in-order.

REPL

As introduced in the SECTION 2.1.3, application layer reliability cannot be achieved
with plain TCP. Reliable Event Logging Protocol (RELP), developed in 2008 as
part of rsyslog toolkit, expands the syslog protocol’s capability to allow reliable
delivery of event messages. While it uses TCP for message transmission, it employs
a backchannel to relay information about messages processed by the receiver to the
sender. As a result, even if the connection is aborted, RELP will always be aware
of which messages have been successfully received.

Although RELP is not IETF defined, RFC 3195 syslog served as inspiration for it.
Sender and receiver negotiate session settings, such as the supported commands
or application level window size, during the first connection. Logs are transmitted
as commands, and after a command has been processed by the recipient, it is
acknowledged. Both the sender and the receiver can end a session. When a session
aborts, RELP records the transaction numbers for each command and negotiates

2. Background 13

which messages must be delivered again when the session is re-established.

As of now, the protocol has only been implemented in a few libraries like rsyslog

or logstash, which considerably reduces the choices for the central syslog server.

2.2 Related work

2.2.1 Partially reliable delivery

As put forward in the SECTION 2.1.3 and defended by Tsunoda et al[23], using
TCP to send syslog messages is only reliable while connected to the central server.
The authors also point out the drawbacks of TCP’s transmission control which
does not differentiate messages importance, thus enabling for example timeliness
retransmission for important logs. They propose an alternative version of TCP
which bounds the number of acknowledgments required to the log severity. Similarly,
Rajiullah et al.[24] suggest and assess the usage of PR-SCTP, an existing partial
reliability modification of the SCTP transport protocol, to provide priority to syslog
messages while balancing timeliness and reliability. This approach aligns with the
RFC 5424[5, p. 27] that states that when syslog messages need to be discarded,
message-prioritisation based on the severity values should be taken into account.

Although these approaches are not the current focus of the project, they highlight
the importance of compromise and show that "one size fits all" does not always work.

2.2.2 Syslog data

In M. Rajiullah et al. work[24], called Syslog Performance: Data Modelling and
Transport, the authors modelled syslog data using real traces from an operational
network. The model was used as input in their performance evaluation. Their
approach is a great asset to the project as it provides a methodology for extracting
patterns from syslog messages. As a result, it is possible to generate messages
that follow the derived distributions. The dataset used comes from a syslog server
located in the Computer Science Department network at Karlstad University,
in Sweden. It was a two-year sampling which started back in late 2008. The
authors have not officially stated the format of the messages, but it most likely
followed the RFC3164 format.

14 2.2. Related work

Message length distribution

The authors first determined the distribution of syslog message’s length. Most
captured messages were missing the priority and header, and as such only the
message’s payload was used to compute the distribution.

Figure 2.5: The content length density distribution[24].

The average header length and priority were empirically calculated through a one-
day capture. The authors concluded that the behaviour of FIGURE 2.5 followed the
normal distribution of N (71.5, 30.22). After adding the priority and header part
of 13.5 bytes, the message length distribution was N (85, 30.22). The FIGURE 2.6
below depicts their cumulative distribution and exposes their fitness.

Figure 2.6: The normal and payload length cumulative distributions[24].

2. Background 15

Inter-arrival time distribution

The inter-arrival time distribution, which describes the time between successive
messages entering the server, was determined using the same method. The one-
day sample was also analysed to ensure consistency. The distribution is shown
on FIGURE 2.7.

Figure 2.7: The inter-arrival time density distribution for the whole sample[24].

Based on the plot pattern, the authors concluded that the inter-arrival distribution
could be modelled using an exponential distribution of parameter λ = 1.361−1.
Their cumulative distributions were plotted to illustrate their fitness (as seen
in FIGURE 2.8).

Figure 2.8: The exponential and inter-arrival time cumulative distributions[24].

16 2.2. Related work

Important message distribution

Finally, they defined important messages as the one with severity values from 0 to
3 (emergency, alert, critical, and error) and found out that 7.6% of their sample
were important messages.

Message generator

Based on these results, the authors were able to develop a syslog message generating
application, which they exploited to fuel their experimental assessment.

It is important to mitigate such targeted and environment-specific results. It is
only representative of a particular situation and may introduce bias if used in
the wrong context. However, these results highlight a trend in syslog messages
and prove that they do follow distributions and can therefore, if given the proper
dataset, be generated automatically.

3
Prototype

Contents
3.1 Architecture . 17

3.1.1 Hardware constraints . 17
3.1.2 Logging appliance . 18
3.1.3 Key objectives . 18
3.1.4 Protocols and formats used 22
3.1.5 High-level design . 23
3.1.6 Message flow . 25
3.1.7 Ordering messages . 32
3.1.8 Securing log forwarding 34

3.2 Configuration . 35
3.2.1 Cisco IOx . 36
3.2.2 Docker . 39
3.2.3 Rsyslog . 41

3.3 Log analysis . 47

3.1 Architecture
3.1.1 Hardware constraints

As stated in the SECTION 1.2, the solution must be deployed as a Docker image
for it to be installed in the application environment Cisco IOx. The target IoT
platform which will host the container, the router IR1101, runs under the ARM 64-
bit (aarch64) architecture family and with minimalist capabilities[25] that must be
shared between all IOx applications: 1255 CPU units, 862MB of DDR4 memory, and

17

18 3.1. Architecture

701MB of flash storage memory. Although a storage method is natively proposed it
is not intended to be the de facto tool as any write to persistent storage causes flash
wear on the device. Very frequent operations may quickly degrade flash, rendering
the device non-functional. Moreover, it is crucial to constraint the resources that an
application can use because they are limited and shared with others already in place.
It is hence important to define an architecture that is capable of operating with
a minimal footprint in terms of RAM and computation units, but also capable of
working without having to rely on a storage area (accepting the loss of reliability
that this entails).

3.1.2 Logging appliance
SECTION 3.1.1 introduced an important aspect of the hardware limitations of the
gateway, and as such, calls for its intelligent use. The Docker container is therefore
based on what the market has best to offer in terms of distribution compactness:
Alpine Linux.

Inside the container operates the rsyslog daemon, whose main job is to relay
messages. It implements the basic syslog protocol and extends it with filtering,
queued operations, different input/output modules, TCP for transport, and all this
through a flexible configuration system and external plugins. The major motivation
for the adoption of rsyslog, and not for one of the alternatives mentioned in SECTION
2.1.1 or even for the creation of an engine from scratch, is largely due to its maturity.
The daemon is packaged on most architectures, including ARM, and is available
as part of Alpine Linux packages[26]. Moreover, it is licensed under GPLv3[27]
which means that while the rsyslog as a whole cannot be used in a commercial
product, the rsyslog runtime can. It is an open-source solution with over 20 years
of exposure and practical use. It supports a wide range of message formats (even
those that deviate from standards), every conceivable type of input and output,
and in general offers features that will allow the project to scale with future needs:
more reliability, compression, redundancy, and more.

3.1.3 Key objectives
Before the design of the architecture can be discussed, the key objectives of the
solution must first be defined with consideration of the environment in which it will
be deployed (and the load it will be under). It is not expected to have a system
that can receive a massive amount of messages with outstanding performance, but
rather a solution that is tailored to the reality of its users: IoT devices on the
edge of the network operating on old technologies.

3. Prototype 19

Transparency

IoT devices on the edge of the network must operate as if the gateway was not
there. Their sole purpose is to deliver their messages in the legacy syslog (RFC 3164
et al.) format using UDP. The gateway silently processes them and relays them
to a centralized syslog server, with a suited protocol and standardized formatting
(RFC 5424). Moreover, IoT devices that do not need network access beyond the
local network can be insulated from the outside for extra security.

Reliability

To ensure reliability, it is first necessary to identify all the points of failure. To
lose a syslog message sent from an IoT device, assuming there is a relay and a
central server, at least one of these four points must fail:

1. During the message’s transportation

A. from the device to the relay

B. from the relay to the central syslog server

2. During the handling of the message

A. inside the gateway

B. inside the central syslog server

Please note that while confidentiality, integrity, and availability of data is not the
main concern in the architecture, it is still discussed here and, if possible without
spending much cost, enforced.

From the device to the relay (1.A), if we assume that both are on a sufficiently
guarded private network then the setup can be considered reasonably secure by
simply using UDP protocol. Moreover, supposing that the IoT devices and the relay
are close-by, then a best-effort network is viable and will not impact much of the
reliability. It is in any case acceptable because IoTs are, in this context, considered
black boxes and cannot be expected nor requested to provide more than what they
can, namely legacy UDP syslog.

Inside the gateway itself (2.A), there is room for failure and loss of messages as the
gateway capacity is finite and if reached, due to whatever reasons, choices will have
to be made about which messages to keep and which to discard. Policies and rules,

20 3.1. Architecture

in the case of such events, need to be installed and discussed. The issue of message
persistence is discussed in the section Store and forward (3.1.3).

During the relaying of the message (1.B) from the gateway to the central syslog
server the distance can be great and the loss of connectivity is not negligible. Due
to the nature of the network being unreliable and lossy, no assumptions can be
made on the authenticity of the message and the author, the proof of arrival, its
confidentiality, etc., and as such UDP is not an option. TCP should be enforced and
if possible, enhanced with TLS as the price to pay for the security gain is minimal
(SECTION 3.1.8). Moreover, in case of connectivity loss a mechanism should be set
up to store logs during downtime.

Finally the central syslog server (2.B) can also be a point of failure, as explained in
the SECTION 2.1.3, due to the very nature of TCP and the lack of an application
layer acknowledgment. Indeed, the TCP send buffer of the relay can contain at
any time from around 25 to 850 messages1. If the relay receives the error status,
the application has no clue of which messages were lost and which made it. If
such reliability is needed, a protocol such as RELP should be used between the
relay and the central syslog server.

Store and forward

As explained in the Enterprise Integration Patterns book by Gregor Hohpe[29,
p. 124], guaranteed delivery cannot be achieved without a mechanism to store the
message and to retry delivery until the receiver becomes available. This is called
store and forward.

In case of a connectivity loss between the gateway and the central syslog server, a
store and forward mechanism should be installed. But whose job is it to keep the
messages, and what happens if at some points there is no one to fulfil it? While the
flash memory is not an option, messages can be queued directly on the DRAM of
the gateway, up until a limit. A threshold can also be set to smoothen messages
burst by discarding queued logs below a specified severity.

If available, messages can be stored on a hard disk or even directly queued in it.
Messages will remain even if the system crashes. However, persistence increases

1Supposing a syslog message size of 150 bytes and a write buffer ranging from 4KB to 128KB,
as stated in the TCP manual[28].

3. Prototype 21

reliability, but at the expense of performance. Additionally, the local disk drive might
not be built to keep this much data under burst-traffic circumstances, which are
more likely to occur during network outages due to the nature of the environment2.
This remains a solution, if not the only one, which guarantees a high level of
reliability in the event of a lengthy network outage, an unreachable server, but also
if the router crashes3.

Finally, as noted by G. Hophe[29, p. 125], reliability in computer systems is
never a 100% value and the cost to move from 99.9% to 99.99% is more-likely
not worth the investment.

Chronological order

By default rsyslog uses multiple threads to process messages, each claiming a batch
of messages through a lock mechanism, which means that thread1 will probably be
still processing its batch {m0..m99} when thread2 sends its first messages of its batch
{m100..m199}. Furthermore, if a connection failure occurs between the remote syslog
server and a relay there is no mechanism on the server-side to ensure that when the
connection is re-established old messages will be piped in chronological order.
Trying to guarantee in-order delivery is probably bound to fail at some point, but
that doesn’t mean that the order itself cannot be guaranteed at all. It is indeed
always possible to index server logs based on the timestamp, supposing that the
expected message is missing, it will eventually be inserted in the correct4 time slot.
Server pipeline such as logstash proposes such capabilities.
However, to ensure the accuracy of the time-stamping of messages, several mech-
anisms are necessary:

1. The gateway must have set a proper timezone and be bound to a pool zone
through the NTP protocol5. This provides highly accurate time and ensures
that all relays are synchronized, and thus time can be safely use as a means
of comparison.

2If the central server cannot be reached, e.g. due to a loss of cellular connection, it is likely
that IOTs will generate a large amount of logs due to one or more of their services being down.

3Provided that the messages are already on the disk or that the router shutdowns gracefully.
Please note that messages that are being processed before or after the queue will still be lost.

4Correct from the point of view of the relay, not necessarily the IOT devices.
5An NTP update still propagates inside a Docker container as it uses the same clock as the

host, and it cannot change it.

22 3.1. Architecture

2. Using the RFC 5424 message format, the timestamp field is a formalized
timestamp derived from RFC 3339[15] and includes the year and milliseconds
with respect to the timezone.

3. When relaying IoT devices’ messages, outgoing timestamps should be those
of the gateway internal clock, e.g. at the time of reception. It is not wise
to use the timestamps of the devices directly, considering that they are in
constant movement and therefore their timezones can change over time, the
IoT might not have a clock synchronization and will most likely provide a
wrong timestamp. Moreover, legacy syslog messages sent from those devices
lack of time precision (milliseconds and timezone is missing). It is nevertheless
worth adding it as an extra piece of information in case of conflict or to
reconstruct the timeline of messages from the same device, appended for
example inside the structured-data6 proposed by RFC 5424.

3.1.4 Protocols and formats used

At this point, it is beneficial to discuss the protocols and formats that will be
deployed. Indeed, SECTION 2.1.3 and 2.1.2 show the wide range of flavours that
currently exist for syslog. Although some reasoning over which protocols and
formats to use has already been formulated in SECTION 3.1.3, it is interesting to
compare them within the practical constraints and feasibility of the project.

First, regarding the protocols, as explained in SECTION 3.1.3 and 3.1.3, IOT devices
on the edge of the network are considered as black boxes and will only provide
legacy logs in UDP. The flexibility remains in the transport of the message between
the relay and the central syslog server. Due to the lossy nature of the network, most
likely a cellular one, it is not possible to guarantee the transmission of messages.
Since this requirement is fundamental, UDP is not acceptable (and so is DTLS).
TCP on the other hand provides reliability, congestion management, and ordered
data transmission. Since the router will not have to handle hundreds of thousands
of logs per second[30, p. 331], this protocol is suitable. The RELP protocol
could have been a solution, but the absence of standardization and the scarcity
of implementation in other syslog products greatly limits the possibilities on the
central server side. Similarly, BEEP could have been a candidate but as discussed
in SECTION 2.1.3, the protocol has considerable overhead and lacks compatibility

6The structured data is a named list of key-value pairs for easy parsing and searching, storing
for example meta-information about the syslog message or application-specific information.

3. Prototype 23

with recent RFCs. Finally, not to decouple the reasoning, the discussion on why

TCP has been enhanced with TLS is available in SECTION 3.1.8.

Concerning the syslog formats, the input messages sent from the IOTs are in a

format that cannot be changed, namely RFC 31647. On the output side, in order to

manage ISO timestamps and key-value structure, the forwarded message follows the

RFC 5424 template. This format is also the only one to provide the host in its header.

Indeed the RFC 3164 does not specify one and it was therefore customary[30, p. 130]

for the receiver to take the host from the socket, which in a NATed environment

can only hold the mangled NAT address. The socket approach is even more flawed

here since the host is the relay (the router) and not the message’s instigator.

3.1.5 High-level design

Now that we have formalized the objectives and requirements of the project,

we can design the architecture of the solution. One can reasonably divide this

architecture into two parts:

1. The old style section, which still uses syslog over UDP, mainly the local private

network composed of IoT devices.

2. The enterprise portion, i.e. where traffic may be passing through the internet,

will use the new syslog architecture based on TLS.

The gateway will benefit from clock synchronization via the NTP protocol and,

if present, will be able to take advantage of a storage system to retain logs. The

architecture design is depicted on FIGURE 3.1.

7Syslog has been around since the 1980s and has long acted as the de facto logging standard
without any authoritative written specification. Released in 2001, the RFC 3164 regroups the
best behaviours regarding 20 years of legacy log formatting, but does not enforce any. As such,
vendors who already had deployed their own variations are reluctant to any change. Parsing those
logs is a tedious task.

24 3.1. Architecture

Figure 3.1: High-level architecture design for reliable syslog transport.

Inside the IOx application runs the rsyslog engine which is responsible for the
reliable forwarding. As shown in FIGURE 3.2, the core engine receives input from
an UDP port, processes it, and outputs it via TLS to a remote system.

Figure 3.2: High-level architecture of rsyslog daemon inside IOx.

Within this core, syslog messages are first parsed into name-value pairs so that
they are no longer handled in string format in further processing. Parsers also
populate useful properties such as time-related information. A rule that includes
a filter and one or more actions to be taken when the filter evaluates to true is
bound to the message. For each action, and using the message’s key-value pairs,
an output string is created through the formatter which uses a specific template
(e.g. the RFC 5424 format). Such architecture has no direct relationship between
input and output strings and as such is able to take formats on the ingress and
process them in new ways while retaining compatibility.

3. Prototype 25

3.1.6 Message flow
Message flow or how system log or event messages are transported inside the relay
from one end to the other is the central process of the project. The architecture of
data flow within the rsyslog engine will therefore be thoroughly examined in this
section. While SECTION 3.1.5 enlighten the key concepts that articulate the engine,
here we will see what components connect them and their roles in the flow.

Rsyslog approach

As depicted on FIGURE 3.3, a typical syslog message passes through multiple stages
inside the rsyslog engine. When messages enter the engine through input modules,
they are first preprocessed before being added to the main queue, pulled off by worker
threads, filtered, and then added to one or more action queues. Those queues also
have workers which pull off messages and deliver them to the proper output module.

Figure 3.3: Generic model of data flow inside rsyslog engine.

Each input runs on at least one thread depending on the module (e.g. UDP, TCP,
local files, ...). The main message queue decouples the input from the rest of the
process. In fact, all queues inside rsyslog follow that paradigm. The FIGURE 3.5
illustrates the effectiveness of such mechanism.

Figure 3.4: Synchronous communication between a producer and a consumer.

Figure 3.5: Decoupling system with a queue and optional storage.

26 3.1. Architecture

With tight coupling, as visible on FIGURE 3.4, producers are unable to submit their
logs if the central server is unavailable; as a result, they must either ignore the
message or hold onto it while they wait for the connection to be restored. On the
other hand, a decoupled architecture allows messages to be stored in a memory
queue and, when possible, ingested by consumer(s). Additionally, messages can be
re-enqueued after an outage until the connection is re-established.

A batch is a collection of messages that can be processed. It is the processing unit
of rsyslog. Dequeuing several messages at once from a queue and sending them to
the lower action layer is done using batches. If a queue has less messages than what
is necessary to produce a batch, whatever it currently has is taken and forms the
batch. As a result, a batch might include as little as one message. The FIGURE 3.6
showcases the different processing states a message inside a batch can be in.

Figure 3.6: Batch’s message processing state[31]

All queues inside rsyslog can be kept in memory, written to disk, or a combination
of both. The main queue has a pool of worker threads, based on the configuration
and traffic volume, whose job is to pull data from the queue and run it through
the parser engine. If the queue is a disk, meaning that it buffers directly in the
hard drive, then no memory is used. Messages are stored in chunks, receiving its
individual file so that processed data can be deleted and free for other uses. On the
other hand, if an in-memory queue is used then enqueued data elements are held in
memory. It is also possible to use a mix of both approaches, which allows to take

3. Prototype 27

advantage of the reliability of disk and the responsiveness of RAM: when the high
watermark level triggers, messages that would previously go to the memory are
written to the disk until the level drops to the low watermark. In case ressources
are reaching their limit, a dropping strategy can be configured such that when the
queue reaches a specific mark, it will begin rejecting8 logs with less than a given
severity, until it falls below the mark.

The main queue’s workers pull messages and run them through the parser to extract
syslog message’s properties9 and then through the filter engine which evaluates the
message against all rules10, one after the other, until it matches one. The message is
then enqueued to each action’s queue contained in that rule. As previously stated,
such queues also decouple and have their own worker thread(s).

Finally, messages are dequeued from their action queues using their associated worker
threads. Those messages are ran through their action processor (e.g. processes the
template11 to create the plugin calling parameters) and forwarded to the proper
output plugin.

This approach is particularly suitable for log processing which requires modular
design. Examples of such functionalities offering this modularity include, but
are not limited to, the following:

• Possibility to ingest several inputs: from the kernel, systemd log, via TCP,
UDP, RELP, text files, HTTP, unix socket, and many others. The same goes
for output modules.

• Actions can be grouped and triggered iteratively or based on conditional,
depending on particular properties value or simply to switch to a redundant
server for example.

• Parser can be chained to handle multiple formats simultaneously (e.g. RFC
3164 and Cisco IOS).

8Please note that both freshly incoming and previously queued low-priority messages are
discarded.

9Properties are data items which are used in templates and conditional statements. They are
mostly variables derived from the original message, but can also be engine related or user-defined.

10A rule consists of a filter and one or more actions to be performed when the filter evaluates to
true. Filtering can be done based on the message’s properties. Note that if a message matches
with no rule, it is thrown away.

11Templates alter and format the rsyslog output which enable users to define whatever format
they may choose.

28 3.1. Architecture

• Decoupling via message queues allows scaling according to hardware and
specifications through configuration adjustments: queue size, number of
worker threads, batch size, and several others.

Implementation

In the specific context of log messages forwarding, the data flow can be modelled
as shown on FIGURE 3.7.

Figure 3.7: How data flow inside the router’s IOx application.

The input module listens for UDP syslog messages on a specific port and are
extracted by batch (using recvmmsg() call) thanks to the pool of worker threads
bound to that input12. These messages are first preprocessed to extract key
information such as its severity value and then pushed inside the main queue.
Dedicated worker threads pull off messages from that queue and run them through
the parser which ensures that messages are in the RFC 3164 format before extracting
key information as properties. Messages are pulled by batch to minimize lock
acquisitions[32, p. 168]. While this strategy does not preserve order, as pointed out
in SECTION 3.1.3, it is possible to rearrange them eventually.

A dropping strategy is configured to ensure (partial) reliability when the main
queue hits its maximum capacity.

12If needed, additional threads (with respect to number of cores) can be added to improve speed
and reduce message loss[30, p. 168].

3. Prototype 29

Figure 3.8: Dropping strategy that discards less important messages.

The queue stores a discard mark level that, if reached, instructs it to dump incoming
and already enqueued logs below a specified severity s. This mechanism stops when
dropping below the discard mark level. Messages with severity s or greater are
sheltered until the queue completely fills up with severity s or plus messages, at
which point all incoming logs will be discarded until room is made in the queue.
Please note that the severity’s value actually decrease as message are more important
(0 is emergency and 7 is debug), therefore from a numerical standpoint it is messages
with value equal or greater than the specified severity that will be discarded.

If referring to SECTION 3.1.6, main queue’s workers should enqueue parsed messages
into the action (called here forward) queue. However, in this situation there is no
added value in having an extra queue. Indeed, action queues are most useful when
there are several of them and they have to perform long tasks (e.g. transmitting
logs or writing to a database) in parallel. Without them, the main queue would
block13 at the slightest wait or failure, until it succeeds or timeouts. In our case,
only one action is deployed and thus does not require a queue14.

Although there is only one queue, it is reasonable to ask where to place it. It was
decided to position the queue as close to the UDP input as possible in order to
minimize losses. Furthermore, if messages have to be removed from the queue

13As there is no decoupling, the main queue’s workers are both producer and consumer (i.e.
fully synchronised).

14The forward queue is set to "direct" which tells the driver to forward messages to the action
processor without queueing.

30 3.1. Architecture

due to the dropping strategy, they will not have consumed any CPU resources yet.
However, those very arguments might be viewed as a disadvantage because when the
central server is not accessible the engine remains idle (except for receiving/dropping
messages) whereas it could be parsing and filtering messages. Depending on the
resource or performance needs, this can be seen as a gain or a loss. Given the
limited characteristics of the router, resources are prioritized.

Workers from the main queue, given a batch of parsed messages, passes them through
the forward action which builds the output string using the RFC 5424 template and
a custom structured-data. The following is a valid example of such syslog message:

<165>1 2003-10-11T22:14:15.003Z mymachine.example.com evntslog -

ID47 [timereported="Oct 11 22:14:15"] BOMAn application event log

entry...

The use of an extra variable, i.e. timereported15, can diminish the message ordering
problem16 for the central syslog server. Indeed, as discussed in the SECTION 3.1.3,
several steps in the data flow do not preserve the order: IOTs sending logs through
UDP or workers pulling concurrently and in batch to name a few. Unfortunately,
IOT devices provide messages with poor timestamps: no year, no timezone, and no
millisecond precision. It is hence impossible with that value alone to order messages
coming from several devices with desynchronized clocks.

The timestamp set when constructing the output string, called timegenerated17,
takes advantage of the high resolution (RFC 3339) and timezone of the router, itself
relying on the NTP protocol. This property is initialized when the message object
is received by the workers at the UDP input18.

15Property that contains the timestamp from the original message. Resolution depends on what
was provided in the message (in most cases, only seconds).

16Programs and subsystems employ log services, as indicated in [33], for recovery, audit trails,
and for performance monitoring. Logs become valuable when they can be placed on a timeline,
but this is impossible without a mechanism to order them.

17Property that contains the timestamp when the message was received. Always in high
resolution. It has the value "2003-10-11T22:14:15.003Z" on the message’s example.

18The assignation is visible in rsyslog source code’s file plugins/imudp/imudp.c:559. For
performance reasons[32, p. 6], the syscall time() is queried only every n messages, presuming
that n is small enough such that time() would most likely return the same value even if queried
for each message (time() offers millisecond precision).

3. Prototype 31

Based on these two properties, it is possible to order the messages with some
degree of confidence. This ordering process, performed on the central syslog server,
is detailed below in SECTION 3.1.7.
Finally, the output module forwards output strings to the central syslog server using
TLS (see SECTION 3.1.8 for details). If not reachable, the worker in charge of the
message periodically attempts to restore the connection. This period is used to avoid
using too many resources for retries. The interval grows linearly with the number
of retries x, the resume interval R (in seconds), and features an upper limit C:

0 20 40 60 80 100
50

100

150

200

250

300

x

f
(x

)

min{C, (x
10 + 1) × R}

Figure 3.9: Interval (s) duration after x retries, with C = 1800, R = 30

The bottom graph (FIGURE 3.10) shows all reconnection attempts during a downtime
period of maximum 3,000 seconds.

Figure 3.10: The number of attempts made (y-axis) according to the downtime duration
(maximum 3,000 seconds, x-axis).

32 3.1. Architecture

Cisco queuing methods

Someone might reasonably think that the queueing mechanism implemented in the
message flow (see SECTION 3.1.6) is nothing more than a less efficient duplicate of
the existing queueing system in Cisco routers. A router does, indeed, have an input
queue for each interface where incoming packets are stored while they wait to be
processed by the Routing Processor19 (RP). The maximum number of packets that
may be placed on each input queue is indicated by its size. Additional arriving
packets are dropped by the interface after the input queue is full. The maximum
queue value can be increased by using the "hold-queue <value> in" command for
each interface (between 0 and 4096 packets).

Not only it is more efficient, but it also works even if the server is unavailable since
messages are either halted in the router’s queue or in the worker threads’ batch.
However, the issue is that this queue cannot not provide message timestamping
as they arrive, nor can it remove them based on their severity. Furthermore, if
storing messages on a disk is considered desirable (now or in the future), then it
is necessary to go through a rsyslog engine’s queue. Finally, although this is not
really a reason but more of a user experience concern, it could be argued that
requiring manual configuration on the router negates the plug and play feature of
IOx applications. On the other hand, if one accepts that modifications can be made
to the router, it may be worthwhile investigating and discussing other means of
enhancing the router’s performance. Examples of performance improvements are
given by K. Dooley et al. in their book Cisco IOS Cookbook[34, p. 456].

3.1.7 Ordering messages

The idea to use Lamport’s logical clocks[33] to reliably provide a temporal partial
order is tempting. A Lamport logical clock is a numerical counter value maintained
by each process that increments before each local event. Considering two events A

and B from the same process, Lamport defines the "happened before" relation
(→) which states that:

A → B, if A happened before B; A → B and B → C, then A → C

19The routing processor performs the route processing and maintain/distribute routing tables.

3. Prototype 33

Lamport also provides means to order events between processes but that requires
additional synchronization20 which cannot be achieved here. Nevertheless, this
relation still offers ordering for a process. Based on the logical clock definition from
above, such value could be the device’s local time and the increment the elapsed
time since the last event.

As of now, with the available information and constraints, the ordering strategy
(at the central server) works as follows:

1. Ordering between IOTs is performed through the timegenerated property.
Please note this only provide a nearly-sorted sequence due to the many causes
for out-of-service delivery (such as multiple paths on the a network, parallel
processing, etc.) on the ingress and the non-existing order management in
UDP.

2. Ordering between events of an IOT is performed through the timereported
property.

To further elaborate on point (1.), even if the propagation delay was the only
source of disorder between messages, a mechanism would still be needed to calculate
it. Since the relay cannot exchange with the transmitter (no round-trip time for
example), the only usable measurement is called the One-Way Delay (OWD) and
depicts the delay that a data packet suffers in the trip from source to destination. If
the source and destination clock are synchronized, the measurement is trivial. In the
present case, they are not. This problem is well-known in the scientific literature and
is one of the most important parameters for evaluating performance measurement in
computer networks[36]. However, as stated by L. De Vito et al. in [36], “[..] OWD
measurements are not possible without synchronization, i.e., OWD cannot accurately
be obtained because the end system clocks are not synchronized with each other”.
Even if an estimate were possible, it would necessarily be calculated on the basis of
the timestamp provided by the sender and the receiver. The accuracy of this delay
would therefore be equal to the lowest precision between the sender’s and receiver’s
clock, in this case in seconds. Given the initial assumptions in SECTION 3.1.3—that
the devices and the relay are close enough for message loss to be negligible in
UDP—it is reasonable to assume that this delay will be no more than one second.

20When two events take place in separate processes without exchanging messages (directly or
indirectly), then the two processes are concurrent, meaning that the ordering of the two events
cannot be determined[35, p. 369].

34 3.1. Architecture

Hence the contradiction.

An even stronger assumption would be that there is no delay or that it is constant
and equal for all devices. This would imply that the messages arrive in order in
the relay. As pointed out in SECTION 3.1.3, the order is preserved if there is only
one thread that dequeues the UDP reception buffer. The stamping precision, as
explained in the SECTION 3.1.6 and in [32, p. 6], is defined by the syscall time()
and is called once every n messages. The lower the n, the lower the performance.
If set to 1 or close to it, then it is reasonable to expect that the timegenerated
property preserves the global order of messages.

Alternatively, M. Weidlich et al. have proposed[37] to solve the partial order of
the logs using a behavioural model. By drawing probabilistic conclusions from
the execution of other processes, these behavioural models allow the resolution of
incomplete orders. However, as stated by the authors, these methods are inapplicable
to logs with high variety and uncertainty. Moreover, the execution time can soar
and at times reach several hours for a few tens of thousands of logs.

3.1.8 Securing log forwarding

The study of system and device event log is a frequent duty for a network, systems,
or security administrator. This operation might be performed to reconstruct a
timeline, to diagnose the state of a network, determine if a system or network
intrusion happened, or simply to monitor network devices. Actions that require
total trust in the messages. However, it is easy to convince oneself that logs sent
over the internet do not satisfy the CIA triad21. Indeed, syslog messages can travel
over unsecured networks and/or through untrusted intermediaries. The primary
threats, depicted in [18], are the following:

• Masquerading by means of unauthorized senders forwarding to a legitimate
receiver.

• Modification through man-in-the-middle attack.

• Disclosure by examining the content of syslog messages.
21The CIA triad stand for Confidentiality, Integrity, and Availability, and provides a model for

the development of security policies and procedures.

3. Prototype 35

The age of syslog far precedes the desire to secure the web, considering for example
the release of SSL in 1995 and the change to HTTPS for Gmail in 2010[38,
p. 82], that’s more than a 20 years gap. Since then, the syslog working group
has been pushing to catch up[39, p. 6], with as most notable release the RFC
5425[18] which describes the use of Transport Layer Security (TLS) to provide
a secure connection for the transport of syslog messages. It counters the above
threats through, respectively, confidentiality, integrity-checking, and server/mutual
authentication. Please note that it does not provide end-to-end security, and it
does not authenticate the message itself (just the last sender, i.e. the relay).

Encrypted channel introduces additional computational costs, most notably the
asymmetric encryption and the TLS handshake[38, p. 82], but is realistically
manageable as it counts for less than a few percent overhead[38, p. 82][40]. In
worst case scenario, considering an average syslog message of 250 bytes, a batch
containing a single message, and that the total overhead of the encrypted data is
about 40 bytes[41], the overhead is 16%. This situation, however, does not reflect
reality because messages are transmitted as a group[30, p. 100]. Furthermore, it
makes little difference for the bandwidth if only a few messages must be transmitted.
Let us consider a TCP maximum segment size of 1460 bytes, then the overhead is:

40
1460−40 = 2.81%

As a result, periods of interest such as a burst or recovery are guaranteed to go
below that percentage since the MSS is more likely to be met.

Finally, trusted certificates are generated upstream and distributed to the relay and
central server manually. As a result, private keys must be adequately safeguarded
and inaccessible to third parties.

3.2 Configuration
Now that the different technologies have been presented, the key functionalities
determined, and a high-level architecture modelled, this section will discuss the
solution implementation, namely the configuration. Indeed, the implementation
of the solution mainly concerns the configuration of the rsyslog daemon and the
installation of its dependencies, all of which must run inside a deployable application
on the Cisco IR1101 router.

36 3.2. Configuration

3.2.1 Cisco IOx

A gateway fulfils several roles, including managing traffic and the devices that
connect to it, but here it is mainly the functionality of the IR1101 router to host
IOx applications that interests us. It is indeed through this mechanism that the
syslog relay is deployed.

The IOx architecture of IR1101 uses a virtual machine and containers to run
applications. The deployment and lifecycle control of the applications are performed
via the router’s local web management interface, as depicted on FIGURE 3.11.

In practical terms, an IOx application is an integrated Docker image in the form of a
package, compressed via the ioxclient utility by means of a descriptor containing
the requirements and metadata about the application: CPU architecture, network
interface used, opened ports, resources needed, and more.

Figure 3.11: Applications management on Cisco IOx Local Manager.

When an application is added to the host system (in a compressed format), its
lifecycle can be manipulated. Activating an app reserves the required but not yet
used CPU and memory resources at the host, as well as an IP address obtained from
an IOx-specific DHCP pool. Starting an application allows it to make use of the
allocated resources. One can also stop or delete a container, the former retaining
resources and the latter not. It is also possible to update the application, preserve

3. Prototype 37

resources such as the assigned IP address but also the application data.

To provide a seamless user experience during deployment and maintenance, several

environment variables have been placed in the rsyslog configuration files and can

be manipulated directly from the local manager as shown in FIGURE 3.12. It is

possible for example to switch to debug mode, to change the IP address of the

central server, and more. However, the modifications will only be effective after the

application has been restarted, because the entry point is in fact a shell wrapper

that retrieves the configuration, parse it, load the environment variables, and then

returns the hand to the rsyslog engine.

Figure 3.12: Configuration menu of the syslog relay application on Cisco IOx Local
Manager.

Similarly, the certificates needed to open a TLS session with the central syslog

server are to be uploaded to the IOx platform (see FIGURE 3.13). This way, it

is possible to update the client keys and/or the authority certificate at any time.

Note that the name of the files can be changed from the configuration to match

their relative path (is verified by the wrapper).

38 3.2. Configuration

Figure 3.13: Data directory of the syslog relay application on Cisco IOx Local Manager,
containing three .pem files

As outlined in the SECTION 3.1.1, the target router, IR1101, has minimalist (and
shared) capabilities: 1255 CPU units, 862MB of DDR4 memory, and 701MB of flash
storage memory. It is impossible at this stage to define a typical resource profile,
mainly because the environment is not (yet) determined. Depending on the number
of connected IOT devices, the message rate, size, frequency, but also the desired
lifetime of the logs in case of internet outage, or even the speed of the forwarding
process. Nonetheless, it is possible to define a series of standard resource profiles
that would cover most of the needs in terms of functionality and performance. The
approach follows Cisco’s recommendation for resource allocation[42].

Table 3.1: The 3 standard resource profiles

Memory (MB) CPU (units)
Small 64 200
Medium 128 400
Large 256 600

Depending on the profile, it will be possible to determine a set of parameters
that best optimize the resources. Please note that the CPU units allocated to an
application is the minimum guaranteed. However, memory is a hard limit and going
beyond will result in a kill signal to the application[42].

Regarding the persistent storage, which is of no use for the application, it is set
to its default value of 10 MB. As a note, Cisco advises limiting storage resources
per application to about 20 MB[25] to minimize flash wear on the router.

3. Prototype 39

3.2.2 Docker
Docker is an engine that automates application deployment into containers[43]. Its
tooling and ecosystem can be used to develop applications for IOx, as seen in the
previous section. Relying on such environment is key for reusability, portability,
and scalability.

For ease of comprehension, the Docker image configuration is provided below:
1➊ FROM mult iarch /qemu−user−s t a t i c : aarch64 as qemu
2➋ FROM arm64v8/ a lp i n e : l a t e s t
3
4 ARG CONFIG_FILE
5 ARG EXTRA_CONFIG_FILE
6
7 MAINTAINER Egon Scheer <e . scheer@student . u l i e g e . be>
8 LABEL Desc r ip t i on="Reliable␣syslog␣relay␣for␣IOx"
9

10 COPY −−from=qemu / usr / bin /qemu−aarch64−s t a t i c / usr / bin
11
12 RUN echo "http://dl−cdn . alpinelinux . org/alpine/edge/main" \
13 >> / etc /apk/ r e p o s i t o r i e s
14
15➌ RUN apk −−no−cache update \
16 && apk add −−no−cache −−purge −uU \
17 bash \
18 l o g r o t a t e \
19 r s y s l o g \
20 r sy s l og −t l s \
21 r sy s l og −mmnormalize \
22 r sy s l og −e l a s t i c s e a r c h \
23 tzdata \
24 && rm −r f / var / cache /apk/∗ /tmp/∗
25
26 ENV TZ=UTC
27
28 COPY ${CONFIG_FILE} / etc / r s y s l o g . conf
29 COPY ${EXTRA_CONFIG_FILE} / etc / r s y s l o g . conf . d/
30
31 VOLUME ["/var/ l ib/rsyslog "]
32
33 COPY s t a r t . sh /
34
35➍ ENTRYPOINT [" ./ start . sh"]

Listing 3.1: Project’s Dockerfile

40 3.2. Configuration

One of the main constraints for running an application in IOx is that the architecture
of the docker image must be identical to that of the router, in this case aarch64.
Moreover, Docker only supports building for the host platform. To ease such
limitation, the Dockerfile’s base image ➊ is set to the emulator and virtualizer
qemu which emulates the machine’s processor and enables it to run a variety
of guest operating systems.

Figure 3.14: Qemu emulation workflow on an amd64 host machine.

To lessen the memory footprint of the Docker image, the minimal docker image based
on Alpine Linux ➋ is set on top of qemu. This mechanism is called a multi-stage
build and allows docker images to be layered on top of one another. The one below is
referred to as the parent image and the bottom one is called the base image[43, p. 62].

Figure 3.15: The project’s Docker filesystem layers. Inspired from [43, p. 63].

To run rsyslog under the Alpine distribution fort arm64, the daemon itself has to
be compiled and packaged ➌ under this same architecture. Fortunately, the rsyslog
engine and a large majority of its plugins are available, up to date, and installable

3. Prototype 41

from the Alpine Linux package manager[26].

At last, the container entry point is bound to the wrapper shell ➍ presented
in SECTION 3.2.2.

3.2.3 Rsyslog
Instead of recapping the implementation’s in-depth explanation from SECTION 3.1.6,
this section will focus on the configuration of rsyslog and the tuning of its parameters.
The rsyslog daemon is configured trough scripts called RainerScript[30, p. 31].
RainerScript is a programming language used to process network events and set
event processors. For more information, the complete language manual is available
here [30, p. 31].

Again, for ease of comprehension, rsyslog’s main configuration is given below:
1 # INCLUDES
2 include (
3 f i l e ="/ e t c / r s y s l o g . conf . d /∗ . conf "
4 mode=" op t i ona l "
5)
6
7 # MODULES
8 module(
9 load="imudp "

10➊ threads =‘echo $UDP_THREADS‘
11➋ timeRequery=‘echo $UDP_TIME_REQUERY‘
12➌ batchS ize =‘echo $UDP_BATCH_SIZE‘
13)
14
15 # LISTENER
16 input (type="imudp " port ="514" ruleset="sendRemote ")
17
18 # DEFAULT RULE
19 global (
20 workDirectory ="/var / l i b / r s y s l o g "
21 DefaultNetstreamDriver=" g t l s "
22 DefaultNetstreamDriverCAFile=‘echo $CA_CERT_FILE‘
23 Defau l tNets t reamDriverCertF i l e =‘echo $CLIENT_CERT_FILE‘
24 DefaultNetstreamDriverKeyFi le =‘echo $CLIENT_KEY_FILE‘
25)
26
27 # TEMPLATE
28 template (

42 3.2. Configuration

29 name="metadata_syslog "
30 type=" s t r i n g "
31 s t r i n g="<%PRI%>1 [. .] %t imereported %] %msg%\n"
32)
33
34 # MAIN MESSAGE QUEUE
35 main_queue(
36➍ queue . type=‘echo $QUEUE_TYPE‘
37➎ queue . s i z e =‘echo $QUEUE_SIZE‘
38➏ queue . workerThreads=‘echo $QUEUE_WORKER_THREADS‘
39➐ queue . dequeueBatchSize=‘echo $QUEUE_DEQ_BATCH_SIZE‘
40➑ queue . discardMark=‘echo $QUEUE_DISCARD_MARK‘
41➒ queue . d i s c a r d S e v e r i t y =‘echo $QUEUE_DISCARD_SEVERITY‘
42)
43
44 # FORWARDING RULE
45 ruleset (name="sendRemote " par s e r =[" r s y s l o g . r f c3164 "]) {
46 action (
47 queue . type=" d i r e c t "
48 name="send_remote "
49 type="omfwd"
50 template="metadata_syslog "
51 t a r g e t =‘echo $REMOTE_HOST‘
52 port =‘echo $REMOTE_PORT‘
53 pro to co l ="tcp "
54 action . resumeRetryCount="−1"
55 StreamDriver=" g t l s "
56 StreamDriverMode ="1"
57 StreamDriverAuthMode="x509/name"
58 StreamDriverPermittedPeers =‘echo $PERMITTED_PEERS‘
59)
60 }

Listing 3.2: Rsyslog main configuration file rsyslog.conf

The configuration is self-explanatory and does not require any particular comment.
The remainder of this section will thus be dedicated to identifying, defining,
discussing, and finally assigning a value or at least bounding the parameters.
The parameters of interest are considered to be the set of variables that influence
the performance or the policies (e.g. dropping strategy) on the syslog relay. The
remaining parameters are for basic configuration and can be adjusted in the IOx
local manager (see SECTION 3.2.1).

Firstly, the parameters related to the UDP input. It is possible to operate on

3. Prototype 43

three parameters: the number of threads ➊, the rate at which the time is obtained
➋, and the size of a batch ➌.

1. The number of worker threads to process incoming messages might be
needed for high throughput. UDP is connectionless and tend not to be
as multithreaded as TCP servers[44, p. 423]. Because the OS’ receive buffer
is finite, threading can help improve performance and reduce message loss. It
should be noted that when there are too many threads, performance might
decrease.

The documentation advises[30, p. 156] to set the value up to the number of
cores22 and has a hard upper limit at 32. We will thus consider the interval
[1, 4].

2. Obtains the precise time only once every n-times. Because the kernel frequently
returns the same time23 twice when there has been no optimization[30, p. 167],
the value is thus set to 2. The higher the value, the less accurate the
timestamping becomes. As a reminder, this parameter is intrinsically linked
to the precision of the timegenerated field (see SECTION 3.1.6), and thus so
is the order of the messages.

3. The maximum number of UDP messages that can be obtained with a single
OS call. A reasonably large batch size can lower system overhead and boost
performance for systems with heavy UDP traffic. This option should not be
used excessively, though. The manual advises against setting it higher than
128[30, p. 168]. The default value is 32. As a result, the interval [32; 128]
will be considered.

Next is the primary message queue which accepts 6 parameters: the type of queue
used ➍, the queue size ➎, the number of worker threads ➏, the size for batch
dequeueing ➐, the discard threshold ➑, and the discard severity ➒.

4. The type of queue that will be used. It can either be a fixed array or a linked
list. In the first data structure, pointers to queue entries are stored in a
fixed, preallocated array. The pointer array is fairly compact on its own (the

22The IR1101 datasheet does not provide the number of cores, but running the command "show
process CPU platform sorted" on the router showcases 4.

23Rainer Gerhards notes in [32, p. 6] that he frequently acquired the same timestamp for a
relatively large group of messages: depending on message sizes, he may see this for several hundred
messages.

44 3.2. Configuration

majority of the space is taken up by the messages). A fixed array provides
the highest run-time performance since it requires the fewest CPU cycles.

The second data structure is the polar opposite as every housekeeping structure
is allocated dynamically. However, this guarantees that memory is only
allocated when it is required, albeit adding some burden to runtime processing.
Linked list are desirable for queues that face occasional message bursts.

To ensure the lowest possible memory footprint and in view of the relay’s
environment, the queue type is set to linked list.

5. The maximum number of messages in the queue. The value is expressed in
terms of message and not memory size. The size of a message is determined
mostly by its content and originator. Most messages should not take up more
than 1KB of memory[30, p. 65]. Please keep in mind that each queue entry
has an overhead of 8 bytes on 64bit systems. The documentation states that
the queue size must be between 100 and 500,000[30, p. 65]. Considering a
coefficient α of the RAM, dedicated to the good functioning of the rsyslog
engine, p the resource profile used (pmem in bytes), and 1KB per message, the
queue can reasonably contain:

Qmax(α, p) = (1−α)×pmem

1000 (in messages)

Table 3.2: Maximum number of messages in queue with α = 0.25.

Queue size
Small 48,000
Medium 96,000
Large 192,000

The wrapper shell (see SECTION 3.2.2) ensures that the queue size can be
allocated without exceeding the resources defined in the IOx application.
For example, it is not possible to request a queue of 50,000 messages when
there is only 32MB of allocated memory24. This is necessary because the
IOx mechanism (which is actually relayed to Docker using cgroup) deployed
to control memory consumption is an Out-Of-Memory killer [45][42]: a last
chance mechanism that is built into the Linux kernel in case of memory
overflow and that kills the process at will. Following the example, if one
considers a constant burst of more than 32MB, the engine will try to increase

24Assuming that a message takes 1KB of memory, and not considering the cost of the engine
for its own use, it would require at least 50MB of memory.

3. Prototype 45

its queue but will be punished each time by the OOM (killed). Knowing that
the engine startup can take several seconds25, it is likely that it will loop
on its startup without ever processing the slightest message. Unfortunately,
rsyslog does not provide a feature to define a consumption limit. However, in
the present situation, memory usage is mainly driven by the size of the queue.
It is therefore essential to verify that it is within the margins of the available
resources.

6. The maximum number of worker threads that can be run in parallel. Worker
threads are started and stopped on an as-needed basis. Assuming that at
time t there are k threads, a new threadk+1 will spawn if the current queue
size reaches Qmax

k
messages or more[30, p. 229]. As a reminder, worker threads

parse messages, build the output string, and forward them (please refer to
SECTION 3.1.6 for more details).

As the specification does not provide a bound for the maximum amount of
workers, the parameter will be set in the interval [1; ?].

7. The maximum batch size for dequeue operations. Larger batch sizes yield
better results as it decreases locking calls. Depending on the current queue
size, a batch might hold fewer messages (the parameter only defines the
upper-bound). Using batching, the main memory might have more messages
than the expected Qmax. Indeed, if the queue is full when a worker pulls a
batch of messages (length B), the UDP input may completely refill the queue
before the worker finishes its tasks, causing the RAM to contain Qmax + B

messages. In worst-case scenario, considering k workers and a maximum batch
size B, the maximum queue size becomes:

Qmax(α, k, B, p) = (1−α)×pmem

1000 − k × B

Assuming that a coefficient γ of Qmax is allocated to batches, we can derive
Bmax:

Bmax(α, γ, k, p) = γ×Qmax(α,p)
k

(in messages)

8. The point at which rsyslog starts discarding less significant messages (defined
by the parameter ➒). Its value is expressed in number of messages and is
bounded[30] by the interval [0.8 × Qmax;Qmax]. This parameter does not
influence performance, it simply allows messages to be prioritized in case of a
full queue. This value is set to the minimum, 0.8 × Qmax.

25Due to the structure allocation, connection with the central server, and more.

46 3.2. Configuration

Table 3.3: Maximum batch size for dequeue with α = 0.25, γ = 0.05.

Queue size Batch size
Small 45,600 2400 × k−1

Medium 91,200 4800 × k−1

Large 182,400 9600 × k−1

9. The Syslog severity level that defines the less significant messages. This
parameter is left to the discretion of the user (editable in the IOx configuration).
By default, it is set to 4.

Figure 3.16: Syslog severity levels as defined by RFC 3164.

When the threshold of the parameter ➑ is reached, all incoming and queued
messages with a severity equal to or greater (numerically speaking) than
indicated are discarded.

The two tables below summarize the possible values of the parameters (by profile,
see TABLE 3.1), respectively those fixed and those dependent on other parameters
and subject to an interval:

UDP input Main message queue
Time requery Type Discard mark Discard sev.

All profiles 2 linkedlist 0.8 Qmax 4

Table 3.4: Values of the different fixed parameters.

UDP input Main message queue
Threads Batch size Queue size Worker threads Deq. batch size

Small [1; 4] [32; 128] 45600 k ∈ [1; ?] 2400 k−1

Medium [1; 4] [32; 128] 91200 k ∈ [1; ?] 4800 k−1

Large [1; 4] [32; 128] 182400 k ∈ [1; ?] 9600 k−1

Table 3.5: Values of the different dependent parameters with α = 0.25, γ = 0.05.

3. Prototype 47

3.3 Log analysis
Following the analysis carried out by Rajiullah et al.[24] on the syslog messages of
one of their servers in their university department, it seems relevant to transpose
their approach to this situation. Unfortunately there is no public dataset at this
stage that is specific to the syslog messages of one (or more) IOT devices26. It is
therefore difficult to derive their characteristics, especially as they are extremely
sensitive to the environment. Indeed, let us take for example Loghub[47] which
is a large collection of publicly available system log datasets. One can see on
FIGURE 3.17 that, depending on the type of system, the quantity of messages for
the same duration varies enormously. Moreover, even within the same system
there can be a huge disparity.

Figure 3.17: Loghub datasets details[47].

For example, looking at the Linux OS logs[47], which contain 264 days and more
than 25,000 messages, we observe after parsing that the average message size is 92
bytes, its content is 70 bytes and the inter-arrival time is 1250 seconds (∼ 21 min.).

26Although there seems to be a huge interest[46] and popularization in IOT datasets, especially
for risk and attack assessment, there are none that focus on the syslog messages they produce.

48 3.3. Log analysis

Unfortunately, there is no information on the priority of messages. While the first
two data points are consistent with the Rajiullah et al. study, the inter-arrival time
is much larger than its counterpart (which was ∼ 1.5s). The reason for this is simple:
the data retrieved by the study[24] was from a server and not a source. Indeed,
the more senders there are, the shorter the interval between any two messages. To
support this argument, let us analyse together the Linux operating system dataset
(from Loghub’s collection) which in view of its metrics could be transposed to an
IOT device behaviour. By plotting the number of messages per day, as depicted
in FIGURE 3.18, it becomes clear that the messages from the Linux machine are
actually generated in groups and not in a constant fashion.

Figure 3.18: Number of messages per day based on the Linux dataset.

By fluctuating the minimum interval between two groups, which was previously
arbitrarily set at one day, the ideal interval can be established: that is, the one that
gathers the most messages per group, that separates the groups as good as possible
in terms of time space, and that within its group has a low message inter-arrival.
FIGURE 3.19 outlines these criteria.

The ideal grouping interval region seems to be between 15 minutes and two hours.
Above these values the inter-arrival within the groups explodes and those below
shred the grouping. As such, the one-hour interval seems to be a good compromise
between size and sparseness. Indeed, the average number of logs in a group is 27,
the average interval between two groups is 32,442 seconds (∼ 9 hours), and the
average inter-arrival between two messages is 57 seconds.

3. Prototype 49

(a) Number of groups formed
(b) Average number of messages inside a
group

(c) Average interval between groups
(d) Average messages inter-arrival inside
groups

Figure 3.19: Metrics (y axis) derived from the different ways of bundling messages into
groups according to the minimum elapsed time required between two consecutive groups
(x axis).

This set of metrics is valuable because another way of looking at groups is to
consider them as burst periods, which can be used to model a bursty traffic using
Markov chain (to name one). Moreover, this analysis shows the importance of
a dataset, understanding its origin, and especially its suitability in the context
to which it will be applied.

50

In theory, theory and practice are the same. In
practice, they are not.

— Benjamin Brewster [48, p. 202]

4
Evaluation

Contents
4.1 Purpose . 51
4.2 Environment setup . 52

4.2.1 Testbed specifications 55
4.2.2 Testbed parameters . 57

4.3 Functional tests . 58
4.3.1 Reliability . 58
4.3.2 Store and forward . 62
4.3.3 Chronological order . 65

4.4 Performance . 68
4.4.1 Cellular networks . 69
4.4.2 High-speed low-latency network 71
4.4.3 Queue build-up prediction 76
4.4.4 Results . 79

4.1 Purpose

This chapter is dedicated to defining and creating ways to ensure that the solution
meets its design, behaves as intended, and how well it does so. The idea behind
this evaluation is to answer two main questions:

1. Does the implementation follow the key objectives of the project?

2. How well does it perform?

51

52 4.2. Environment setup

The former question will be answered by a set of scenarios aimed at undermining
the key objectives. The latter will be evaluated by operating on a set of variables—
the network state, message behaviour, implementation configuration, and many
others—for 3 standard profiles to determine their respective performance.

4.2 Environment setup
An environment that is both cohesive and, most importantly, practical is required
to conduct these tests correctly. Something that is replicable for the readers.
It should ideally be portable and independent of any operating system. The
testbed is presented below.

Figure 4.1: Testing environment topology.

This approach closely follows the architecture designed in SECTION 3.1.5, but with
some slight additions and simplifications where possible. In terms of simplifications,
the main ones are:

1. The central syslog server implementation (called logserver) must not be the
bottleneck and therefore only does the bare minimum: no format checking and
minimal parsing. Only statistics (internal counters) are returned periodically
to be informed about the current state of the server. This shortcut offers a
way to compete with enterprise configurations that can handle huge amounts
of messages.

4. Evaluation 53

2. The procedure for sending logs from IOT devices is greatly simplified. Given
that the messages arrive in UDP, and therefore no connection or response
is required, and that no disparity is made on the basis of the emitter, it is
reasonable to think that sending from a single source or from several does
not change much1 in this test environment. This solution makes it easy to
increase the number of devices but also to decouple on the other LAN ports
of the Cisco router if the 100Mbit/s limit is reached.

Two modes are available for message generation. The first (called loggen)
follows the distributions and probabilities detailed in SECTION 3.3 to generate
messages for n devices. Each device has its own clock (randomizable). A
sequence number (atomic variable) is affixed to the messages to trace them
and record the order. The seed for randomness is configurable. The generator
can be set to bursty mode which simulates standby periods followed by bursts
(as discussed in SECTION 3.3). It follows a two-state Markov model as shown
on the figure below, with p = 57

32444 ≈ 0.00175 and q = 1
27 ≈ 0.037

Figure 4.2: A 2-stage Markov chain that captures burst behaviour.

The second mode (called logburst), provides a volume of messages (custom
size) per second for just-in-time testing. To ensure the highest throughput,
the message is already pre-built and encoded, and does not vary for the whole
burst duration (configurable). If necessary (has a rate loss), it is possible to
insert the sequence number and/or generate important messages (with a given
probability, but assignment is deterministic). The token bucket algorithm,
visible below, is employed to ensure that message transmissions conform to
defined limits on bandwidth and burstiness.

1As long as the source is capable of providing the equivalent in terms of message rate for n
devices.

54 4.2. Environment setup

Figure 4.3: The token bucket algorithm which allows or denies messages depending on
the levels of traffic required.

As for the additions made to the original architecture, mainly to improve the quality
of the evaluation, the following can be noted:

1. While the two main actors of the evaluation—the message generator and the
server— will provide valuable measurements, it is not possible at this stage to
know the state of the relay which would be detrimental for the performance
phase. Fortunately, rsyslog provides a module to periodically dump the
internal counters. It is sufficient to provide an HTTP endpoint to feed it
with the data. For simplicity, the server is powered by the Elasticsearch[49]
engine, in combination with the Kibana[50] visual engine, in order to remotely
manipulate2 the metrics through a web interface. The service runs in a Docker
container. The module can be activated via the configuration. By default,
the interval between two reports is 10 seconds.

2. For these tests to be meaningful, it is necessary to have an emulation of the
Wide Area Network (WAN) as close as possible to reality: network delay,
packet loss, packet corruption, disconnections, packet re-ordering, jitter, etc.
To this end, a controller is positioned between the Cisco router and the modem

2The tool will be used to reconstruct events, isolate tests and quickly iterate on the data to
find interesting graphs. Once done, these are converted to .csv and processed by a script using
the matplotlib library to produce quality renderings.

4. Evaluation 55

to simulate specific link qualities. It is powered by WANem[51] (Wan Area
Network EMulation), a software running on Knoppix[52], a Debian-based
Linux distribution. It can be executed from a bootable USB stick or inside
a VM. After configuring the interfaces to be bridged and assigning an IP to
the bridge, it is possible to interact with the software remotely from a web
interface as illustrated on FIGURE 4.4. Note that rules can be restricted to a
specific flow only, e.g. based on the source or destination IP address.

Figure 4.4: WANem software advanced configuration panel.

Behind the curtain, WANem uses the tc[53] utility to configure the kernel
packet scheduler. It is important to have an intermediary who sits between
the two networks so that it can shape traffic going to the relay as well as out
to the central syslog server. Moreover, as stated in [54], it is easier to create
traffic control rules for traffic flowing out of an interface because one can
control when the system sends data, whereas controlling when one receives
data requires the creation of a second intermediate queue to buffer incoming
data (much slower).

4.2.1 Testbed specifications
To achieve a maximum transparency in this testbed, and thus minimize environment
bias, the specifics of the software, hardware, and network used are listed in
TABLES 4.1 and 4.2.
As far as the network is concerned, all the links in the testbed are Ethernet
connections, either via an on-board port, USB 3.0 or a NIC card, all of which

56 4.2. Environment setup

Table 4.1: Software specifications.

Specifications Comments
Message generator and Python 3 Dep. in requirements.txt.
central syslog server
Cisco router Cisco IOS XE 17.8.1 /
Rsyslog engine v.8.2206.0-r0 Compiled under aarch64.
WANem v.3.0 beta 2 From bootable usb.
Elasticsearch & Kibana v.8.3.3 /

Table 4.2: Hardware specifications.

Specifications
Cisco router 1 1Gbit WAN and 4 100Mbit LAN, spec. details here 3.1.1.
Modem router Bbox 3v+ with a 400MHz Dual Core, 256MB of RAM, and

has 1 1Gbit WAN and 4 1Gbit LAN (see [55]).
Message generator Intel Core i5-7200U 2.5GHz, 8GB DDR4 2133MHz, and has

1 USB3 Gbit ethernet port. Linux distribution.
Traffic controller Intel Core i7-2600 3.4GHz, 8GB DDR3 1333MHz, and has

2 1Gbit ethernet port. Linux distribution.
Central syslog server AMD Ryzen 5 3600 (6-Core) 3.59 GHz, 16GB DDR4 2400
and statistics server MHz, and has 1 1Gbit Ethernet port. Linux distribution.

Due to a lack of available machines for this testbed, the
internal statistics server runs inside a bridged VM with
6144 GB of RAM and 2 core allocated.

guarantee a 1Gbit/s downstream rate. However, in order to certify the quality of
the network and establish practical bandwidth limits, multiple measurements were
taken using iperf3[56] and My Traceroute[57] (MTR) tools.

A first measurement was made between the message generator and the IOx
application3 in UDP, via the "iperf3 -u -c <IP> -b 200M" command, and shows
an average bitrate of 95.6 Mbit/s. The script (logburst) inside the message
generator can produce an average of 310,000 messages/s (of 256 bytes each), which
is equivalent to 793.6 Mbit/s and is well beyond the link limit. With the sequence
number affixed, this drops to 270,000 messages/s or 691.2Mbit/s.

The second test was performed between the IOx application and the central syslog
server, firstly to determine the link capacity (via iperf3 in TCP), which provided an
average bitrate of 240 Mbit/s. This is far from the theoretical bandwidth, probably

3Tests involving interacting with the IOx application shell are done in ssh and then via the
"app-hosting connect app <app-name> session" command to connect to the container.

4. Evaluation 57

due to the traffic controller (and the modem router) posted between the two, but
still more than sufficient for the testbed (cellular edge or 3G networks). Another
measurement was conducted, again between the same machines, but this time to
check that the controller is functional. We set the maximum bandwidth to 1Mbit/s,
the loss rate to 1%, and a delay of 250ms. The iperf3 tool (in TCP mode) showed
us that the average bitrate is 950 Kbit/s. Using MTR, which combines traceroute
and ping4 tool, it indicated after a thousand ICMP messages a loss rate of 1.1%
and an average delay of 250ms. This confirms the proper functioning of the traffic
controller. Note that this verification will be carried out before each test (functional
or performance) to ensure the correctness of the environment.

4.2.2 Testbed parameters
This section contains the set of parameters that will be varied throughout the
evaluation. The engine variables, as discussed in SECTION 3.2.3, are a prime
example. Below is a list of these interaction levers:

1. The quality of the network is one of the most influential parameters in the
evaluation and should be as close to reality as possible. Given that in practice
the router will rely on a cellular network to access the Internet, we will borrow
the values from the WebRTC5 project’s source code to simulate an EDGE and
3G network. The numbers below were initially collected from Google data[58].

Table 4.3: Four configurations containing the characteristics of a network connection.

Rec. bandwidth Send bandwidth Delay Packet loss
3G, Average Case 780Kbit/s 330Kbit/s 100ms 0%
Edge, Average Case 240Kbit/s 200Kbit/s 400ms 0%
3G, Lossy Network 780Kbit/s 330Kbit/s 100ms 1%
Edge, Lossy Network 240Kbit/s 200Kbit/s 400ms 1%

2. Three resource profiles have been defined in SECTION 3.2.1. They are parame-
ters that determine the share of resources allocated to the IOx application
(CPU, RAM, and storage). They will be used in the performance tests as a
baseline to categorize three types of usage. After the evaluation, each profile
will have an ideal set of parameters associated with it.

4MTR relies on Internet Control Message Protocol (ICMP) "Time Exceeded" and "Echo Reply"
messages to compute network metrics.

5WebRTC (Web Real-Time Communication) is an open-source API used in various web browsers
to enable real-time communication. Its usefulness in this context is that it offers different profiles
to simulate a network (is featured in Google Chrome’s developer tools, Firefox’s inspector, etc.).

58 4.3. Functional tests

3. The message generator can also be seen as a parameter, mainly to alternate

between the realistic (loggen) mode and the burst (logburst).

4. And last but not least, the parameters of the rsyslog engine, presented in

details in SECTION 3.2.3.

4.3 Functional tests

This section is dedicated to the assessment of the key objectives defined in SECTION

3.1.3. Despite the fact that these criteria were used to guide the implementation

decisions, it still is necessary to confirm that they are upheld in actual usage.

4.3.1 Reliability

As highlighted many times—see SECTION 2.1.3 2.1.3 3.1.3, the relay is not a hundred

percent reliable because a variety of situations do not guarantee reliability for the

messages: abrupt crash of the router, use of the UDP transport protocol by

the senders, loss of connection with the relay, absence of acknowledgment on the

application layer, hardware limitation of the router, and many others. In the present

context, a few mechanisms exist to mitigate these issues: pipeline all queues to a

permanent storage, dump messages to a Network Attached Storage (NAS) during

downtime, use an application layer protocol such as RELP instead of TCP, or even

additional central syslog server(s) for failover. The FIGURE 4.5 below highlights

these areas of unreliability (in bold). Note that the (abrupt) shutdown of the server

is not depicted because otherwise the whole flow would simply be unreliable (except

for the main queue that could be spared if piping through the disk).

4. Evaluation 59

Figure 4.5: Relay’s messages flowchart, highlighting unreliable areas in bold and the
dropping strategy in dotted-line.

Dotted-lines illustrates the dropping strategy in place to optimize (the limited)
space in the event of a burst: the important messages are given precedence and
others are discarded. This behaviour is recommended[5, p. 27] by the RFC 5424
standard and its effectiveness is discussed in the following section (see 4.3.2).

Although these areas of unreliability cannot be ignored, they represent a minimal
disruption to the daily message traffic and transmission process. The example
below demonstrates the proper functioning of the relay. Messages are generated
using the logburst script with the small resource profile and the lossy 3G network
configuration. At this point, it is impossible to determine the ideal parameters,
thus we will arbitrary choose the minimum values of TABLE 3.5. The script is set to
100 messages/s (of size 256 bytes) and with sequence number affixed to messages. I
would like to remind readers that the aim here is not to highlight performance but
simply to showcase the reliability of the system.

In order to demonstrate reliability, the generator affixes sequence numbers to
messages which enables the server to identify any loss. Running the test for 300
seconds showed no loss as visible on FIGURES 4.6 and 4.7.

60 4.3. Functional tests

Figure 4.6: Central syslog server’s console after receiving 30,100 messages.

Figure 4.7: Message generator’s console after sending 30,100 messages (300s timeout).

The internals of the relay is outlined below. As one can see on FIGURE 4.8 no
messages were lost nor dropped. As a reminder, the forwarding action (the solid
line on the figure), explained in detail in SECTION 3.1.6, takes care of pulling the
messages from the main queue, parsing them and transforming them into formatted
strings, then sending them to the TCP layer. For the curious readers, you can
also see the effect of a single thread on the size of the main queue (one producer
for one consumer), it almost never has time to fill. A queue size close to zero
indicates that the flow is tense and fast (no busy waiting).

4. Evaluation 61

Figure 4.8: The relay’s internal counters evolution over the 300s test and a rate of 100
messages/s.

The second graph (FIGURE 4.9) highlights the cumulative sum of the input6 and
output7 counters which as expected add up to 300,100 messages.

Figure 4.9: Cumulative sum of the relay’s input and output counters. Both have a
maximum value of 300,100 messages.

Although this experience is a tad meagre, the remaining set of tests will also serve
as evidence of the correctness of the reliability process.

6The number of messages pulled from the UDP buffer by recvmmsg()[59], which supports
multiple datagrams per syscall, and submitted to the main queue.

7The number of messages pulled and processed by the forwarding action.

62 4.3. Functional tests

4.3.2 Store and forward

As mentioned above, guaranteeing reliability is a challenging task, but it is still

possible to be competitive, within the limits of the available (hardware) resources,

in transmitting messages to the destination. Without going into detail8, the idea

behind store and forward is to use the available memory resources to store as many

messages as possible when the server is unreachable. Coupled with the above is

a dropping strategy to maximize the quality9 of the information stored. We will

first test the dropping mechanism and then the management of the relay during a

downtime. The configuration of the testbed is identical to that of SECTION 4.3.1.

If we define r as the number of messages sent per second, t as the time in seconds,

d as the discard mark between 0 and 1, s as the maximum queue capacity, and

finally p as the probability of having an important message, then the size of the

queue at time t necessarily follows this equation:

Q(r, t, d, s, p) = min{rt, ds} + min{max{rt − ds, 0} × p, (1 − d)s} (4.1)

Based on this, we can define the number of messages discarded at time t:

D(r, t, d, s, p) =

0 if Q(..) ≤ ds,

rp if ds < Q(..) < s,

r otherwise.
(4.2)

From 4.1 and 4.2, a simulation of the dropping strategy is drawn:

8The options have been developed extensively in SECTION 3.1.3.
9Quality in the sense of message importance, defined by the priority of the message, or more

precisely the severity it contains. The closer it gets to 0, the more its value as information
increases.

4. Evaluation 63

Figure 4.10: Simulation of the dropping strategy for 20 seconds with r = 5000, d = 0.8,
s = 45600, p = 0.5. We can see very well the staircase effect induced by the dropping
strategy (solid line).

With this in mind, a test with the same parameters as in FIGURE 4.10 and a
probability of important10 a message of 0.5 was launched. To maximize the accuracy
of the statistics counters, the interval between two reports has been set to 1 second.

Figure 4.11: The relay’s queue size evolution second by second, with the dropping
strategy threshold set to 80% of the queue. Same parameters as FIGURE 4.11.

Unfortunately, as can be seen in FIGURE 4.11, the dropping strategy does not behave
as it should. The first indication of a malfunction is the absence of the staircase

10The queue size will never exceed 80% if no important message arrives.

64 4.3. Functional tests

effect that should normally occur between seconds 7 and 11, but the primary
evidence is that the queue never reaches 45,600 messages while important messages
are continuously sent (and received). Everything suggests11 that this problem is not
related to the implementation but to rsyslog’s engine itself. Several avenues such as
changing the version of the engine, using a different message generator, analysing
the messages at the router entrance and in the application, or downgrading to a
minimalist configuration did not bear fruit. An issue has been opened on the rsyslog
Github with the tracker ID #496012. The upside is that this feature is a strategy
and only influences the "quality" of the messages stored in the queue. Indeed, this
mechanism is independent of all other relay functionality and can be activated or
deactivated at any time. Please note that from now on and until the end of this
paper, tests will be performed without the dropping strategy.

On the other hand, the downtime is flawlessly13 managed as indicated by this graph
showing the reconnection attempts to the central syslog server. Timestamps are
based on the logs provided by the IOx application during a downtime of ∼ 10 hours:

Figure 4.12: Number of reconnection attempts made during a downtime period of more
than 10 hours. Resume interval of 30 seconds with a ceiling of 1800 seconds.

11Although the rsyslog engine parses the messages perfectly, the dropping mechanism considers
that each message is of severity 7 and can therefore be dismissed (whereas the discard severity
in the configuration of the IOx application has been set at 4). In addition to not being able to
differentiate messages, the direct consequence is that the queue never fills up completely.

12See https://github.com/rsyslog/rsyslog/issues/4960 to find out more about the issue’s
current status.

13Follows the line shown in FIGURE 3.9 with C = 1800, R = 30.

https://github.com/rsyslog/rsyslog/issues/4960

4. Evaluation 65

Finally, a test is conducted to assess the message recovery after a period of downtime.
Messages are generated using the logburst script with the small resource profile
and the lossy 3G network configuration. The central syslog server is shut down,
100 messages are sent for 60 seconds, followed by 120 seconds of waiting before the
server is turned back on. The result graph can be visualized in FIGURE 4.13.

Figure 4.13: Behaviour of the relay during a catch-up test. 100 messages are sent every
second for 60 seconds. After 120 seconds, the central server is switched on.

As expected, the relay behaved correctly and retained all 6,09914 messages sent
during the outage, then successfully transmitted them upon reconnection to the
central syslog server.

4.3.3 Chronological order

The problem of chronological order was studied in detail in SECTION 3.1.7 and
highlighted the limitations of "orderability" arising from the poor accuracy of the
timestamp contained in incoming messages. If it had been possible to obtain the
time of creation of the messages to the thousandth of a second15, it would have been
conceivable to estimate[60] the internal clock of the devices using the time of arrival
in the relay and the message’s delay. Various methods exist to estimate the one-way
delay but they all require[36] a reply from the IOT device. The simplest[36] would
be for example to send an ICMP message of type "Echo Reply"[61] message (but
requires TCP/UDP port 7 open).

14Normally there should only be 6,000 messages but the message generator consumed an extra
second before stopping.

15Without this piece of information, any attempt to "synchronize" with the IOT device’s clock
will have a margin of error of up to one second.

66 4.3. Functional tests

However, if we assume that the devices are close enough to the relay and on a
simple local network with few connections–no router, middle-box, or switch in-
between—then there is little to no risk of packet reordering. Consequently, even
if the order is not guaranteed within the relay during message forwarding, they
will have been timestamped on arrival in the UDP input and can be placed back
into the timeline accordingly (on the central server). The timestamp of the original
message is also retained to reconstruct the time-frame of a single device accurately.
Both paradigms are demonstrated below.

The testbed configuration is identical to the previous ones apart from the message
generator mode which changes. For this test we will use the loggen generator to
simulate 10 independent IOT devices with each its own clock. For a minimum of
throughput in a short period of time, we will use the distributions from SECTION

2.2.2. The generator assigns a unique (shared) sequence number to each message
sent, allowing us to compare the true order with the one derived from our approach.

For readers who wish to recreate the sample, the seed used is 123456789. Note

that to avoid parallelism randomness, sub-seeds are derived automatically for each

device. We used the --store parameter of logserver to save received logs on a
file and assess them a posteriori. The duration of the test is 300 seconds.

Figure 4.14: The loggen script instantiating 10 devices, each in a thread with its own
(random) clock.

4. Evaluation 67

Figure 4.15: loggen script closing after sending 2,136 messages in 300 seconds.

FIGURES 4.14 and 4.15 showcase the 10 devices internal counters over time. Al-
together, 2,136 messages were sent, which gives a little over 7 messages/s. The
collected logs were analysed in a tiny script to ensure that the order given by
the timestamp affixed to the relay (called timegenerated) is the true order. As
expected from the ideal environment in which the messages were generated—a
direct Ethernet connection to the router, the messages are correctly sorted based
on the timestamp. However, 6 of them could not be classified because they were
identical. Bearing in mind that the time requery16 of our configuration is 2, the
experiment was repeated with the minimal value proposed by the engine: 1. The
results are summarized on FIGURE 4.16.

Figure 4.16: Audit of the two log files populated during the test on the chronological
order. Both have the same configuration except for the time requery which is 2 for the
first file and 1 for the second.

16Time requery is one of rsyslog’s parameters. A requery of n means that once every n messages
a time() syscall is issued. Details can be found here in SECTION 3.1.6.

68 4.4. Performance

Using a time requery of 1 we managed to reduce collisions by 500%17. In some
cases, the use of the local timestamp (called timereported) of the IOT device can
be used as a confirmation or untying when two messages are very closely-related.
Assuming a chain of messages following each other by a few thousandths of a
second, a valid indicator of the quality of the order of this chain would be that
all messages belonging to the same device follow the same order as given by the
timereported. In the example above this situation never occurred (the collisions
came from different devices).

Finally, although performance is not the subject of this section, the bottom graph
provides some insights on the state of the relay for the two time requery values.
Unfortunately, the few messages sent are not enough to highlight its computing
footprint. In fact, as stated in the documentation[32, p. 6], it would take several
hundred messages per second to see a significant difference.

Figure 4.17: Two tests with identical configuration except for the time requery which is
respectively 2 on the left and 1 on the right. Displays the number of forwarded messages
(cumulative sum) that requery 2 has over requery 1 (at equal time). On average, requery
2 is ∼ 4.6 messages ahead of requery 1 (a percentage lead of ∼ 0.2%).

4.4 Performance
In this section, we will evaluate the performance of the implementation. As presented
in SECTION 3.2.1, the evaluation will be based on three resource profiles that define
three different types of usage. This approach follows Cisco’s recommendations[42]

17Given the sample size, this should be treated with caution.

4. Evaluation 69

for creating IOx applications and allows a set of resources to be encapsulated under a
unique name that is consistent across other IOx platforms (hence the term CPU unit).
The assessment of the profiles is based on the following procedure: we will start with
the most restrictive profile, assess it and identify its limits. If necessary, we will move
on to the next profile to alleviate potential resource drain. The network emulation
will be conducted by means of the two lossy configurations: EDGE and 3G cellular
networks. All tests are performed in a flow-through fashion from the logburst script
up to the router’s LAN port hardware limit of 100Mbit/s (∼ 40,000 messages/s).

4.4.1 Cellular networks
The small profile is the first to be assessed. It sets the CPU resources to 200
units and the RAM to 64MB. We start with the minimum configuration, which
is detailed on TABLE 4.4.

UDP input Main message queue
Threads Batch size Queue size Worker threads Deq. batch size

Small 1 32 45600 1 2400

Table 4.4: Starting parameters for the small profile.

EDGE cellular network

Let us arbitrarily choose the weakest network configuration, which is EDGE in
lossy. This specifies a sending bandwidth of 200Kbit/s, 400ms delay, and 1% loss.
From this limit, a first 300 seconds test is carried out with a message rate close to
the bandwidth. Considering an average size of 256 bytes per messages, that is 100
messages/s. The results, visible on FIGURE 4.18, reveal that the configuration is
more than adequate. Indeed, on (c) we can notice that in terms of efficiency two
syscalls (left y-axis) are executed for only one message received (right y-axis), hence
one can be convinced that at least one syscall out of two is empty. In reality there
are many more "empty"—or nearly so—calls because in an ideal18 situation, given
that recvmmsg()[59] batches by means of 32 messages, there would be only one call
for 32 messages. We can also observe on (d) that the input’s worker thread, which
pushes messages to the main queue (the dashed line), is perfectly synchronized
(staggered) with the one that processes and sends the messages (the solid line). The
queue size filled to a maximum of 6% of its capacity. Of the 30,100 messages sent,
all were collected by the server. Its average receive rate was ∼ 90 messages/s.

18This ideal scenario is also an "alarming" indicator that the OS buffer is under heavy stress
(contains at least 32 messages on each call) and might very well be saturated (meaning messages
are dropped).

70 4.4. Performance

(a) logburst script running for 300 sec-
onds with a message rate of 100 messages/s.
In total 30,100 messages were sent.

(b) The 30,100 messages were successfully
received and processed without noticeable
delay (the surfaces overlap perfectly).

(c) Number of recvmmsg() OS calls per-
formed vs actual messages received, single-
threaded). At least one out of every two
calls was empty.

(d) Small profile internal counters with a
minimalist configuration. The maximum
size reached by the queue is 2,735 (∼ 6%)
and the average 757 (∼ 1.5%).

Figure 4.18: Small profile performance test with a minimalist configuration on a lossy
EDGE cellular network.

3G cellular network

Using the same configuration but this time with the 3G lossy network, which reflects
a link capable of 330Kbit/s upstream, 100ms delay, and 1% loss, we encoded the
logburst rate set to 175 messages/s (256 bytes per messages) and executed the
test for another 300 seconds. The experience is equivalent (see FIGURE 4.19), if not
better. Indeed, the 300ms reduction in delay has a direct impact on the queue (see
dashed line on (d)) which is almost always empty. This effectively suggests that
the sampling done every 10 seconds is not short enough to capture the producing
consuming process (except for the very first time). This is a strong evidence of a
steady flow. On the server side, an average rate of 160 messages/s is reached, very
close to the theoretical limit.

The surprising behaviour of this configuration is in fact totally sensible. One could
indeed imagine that increasing the number of threads would only have a positive
impact, and that having only one is a waste of the available cores. In this context,
these are more likely to damage performance (on the ingress and egress). Indeed,

4. Evaluation 71

(a) logburst script running for 300 sec-
onds with a message rate of 175 messages/s.
In total 52,674 messages were sent.

(b) The 52,674 messages were successfully
received and processed. No noticeable
delays (the two areas perfectly overlaps).

(c) Number of recvmmsg() OS calls per-
formed vs actual messages received (one
thread). At least one out of every two calls
was empty.

(d) Small profile internal counters with a
minimalist configuration. The maximum
size reached by the queue is 1,084 (∼ 2.5%)
and the average 30 (∼ 0.05%).

Figure 4.19: Small profile performance test with a minimalist configuration on a lossy
3G cellular network.

raising the number of threads can be detrimental because they are all fighting for
the same resource: messages. The overhead of threads fighting for the lock on the
queue slows down everyone and forces small batch sizes19. Deciding on the size of a
batch is a question of balancing overhead versus throughput. In a way, they follow
the same philosophy as the one applied to jumbo frames[62]. There are benefits
from the upsizing but it is not linear: we are damping20 the per-batch overhead
across more messages.

4.4.2 High-speed low-latency network

Before losing the reader in further explanation, I propose to test this configuration
foot to the floor, i.e. in continuous burst of 100Mbit/s, to review the maximum

19When a thread requests a batch, whether it is in the syscall recvmmsg() scenario or the main
queue, it will respond with the appropriate request or whatever it has on hand (meaning less).

20Halved going from 1 to 2 as the overhead per message is 50%, even less going 2 to 3 as the
overhead is 33%, 4 = 25%, 5 = 20%, 6 = 16%, etc.

72 4.4. Performance

capacity and performance of this configuration. After a small blank test, the
interface seems to accept only 10MB/s, or more or less 39,000 messages/s (for
a message size of 256 bytes). The restriction imposed by the traffic controller
has of course been deactivated.

Figure 4.20: Small profile internal counters under a 10MB/s burst. On average, 247,422
messages are sent to the server every 10 seconds. No messages were dropped.

FIGURE 4.20 illustrates the state of the relay during this benchmark. The main
queue size reached the maximum value of 45,600 once, visible on the figure as point
(A), and contains on average 8,727 messages (∼ 19%). Once again one can see the
producing (dashed line) consuming (solid line) effect which happens almost always
before the main queue is full and is indicative of a process that can cope with the
burst. Although no messages were discarded (dotted line), it is possible that at
that moment (A) when the queue was full, messages could not be retrieved by the
input thread: the queue being full, the upstream process can do nothing but wait
for space to be made (potentially leaving room for losses).

However, the following FIGURE 4.21 supports that calls to the RX buffer per batch
return messages each time as the line of received messages (dotted line) encloses the
line of OS calls (solid line). If the OS buffer was overloaded then for n recvmmsg()

calls there would be around 32 × n messages received by the relay. In the present
case there is never more than a factor of 2.

4. Evaluation 73

Figure 4.21: Number of recvmmsg() OS calls performed vs actual messages received
(one thread). Each call returns at least one message. Point (A) denotes the event in which
the queue size maximum capacity was reached. Every 10 seconds, an average of 247,421
messages are received and 225,101 calls are made.

Admittedly, the above-mentioned inference was correct. Indeed, despite the
performance of this configuration continues to surprise, this time it was unable
to retrieve all the messages sent. As visible on the FIGURE 4.22 and 4.23, the
generator indicates that 11,570,815 messages were passed on, but the server reports
only 10,886,549 messages.

Figure 4.22: logserver script receiving an average of 27,215 messages/s, for a total of
10,886,549 messages.

Figure 4.23: logburst script which sent 11,570,815 messages in 300 seconds.

74 4.4. Performance

That’s 684,226 messages missing, i.e. a net loss of ∼ 6%. The internal counters of
the rsyslog engine do not indicate any loss due to a full queue (see FIGURE 4.24).
The router’s Fast-Ethernet port also reports no loss (FIGURE 4.25). If it wasn’t
for the previous analysis done on the input (FIGURE 4.21), we could think that
the ingress is having difficulties in absorbing the burst.

Figure 4.24: Every message received by the relay has been transmitted, totalling
10,886,549 messages. It can be observed that the forwarding process induces almost no
delay (overlap).

Figure 4.25: General information about the FastEthernet0/0/1 port where the message
generator is connected. Image taken during the burst from the router’s web interface.
The RX buffer is under heavy load (rxload at 221/255 for an input rate at ∼ 35, 000
packets/s) but retains some space.

4. Evaluation 75

While it is tempting to increase the number of threads, after checking the load on
the CPU (via the top command), we notice that only 11% is used for the input
worker thread and 17% for the main queue’s worker. It is therefore irrelevant
to decouple their workload.

Figure 4.26: Rsyslog’s threads under load (using ’H’ inside top command).

Although the number of input messages collected appears to be higher, as one can
observe from FIGURE 4.27, increasing the size of the input batches does not decrease
the loss of messages (the server was able to collect 10,845,940 and 10,943,053
respectively). Compared to FIGURE 4.21, the average ratio of messages per call went
from 1.01 to 1.16 for a batch of 64 messages and 1.27 for a batch of 128 messages.
This empirical evidence confirms our intuition about the factor linking the number
of messages received and the number of OS calls: if it is not at least close to 32,
then increasing the batch size on the ingress will have no effect.

(a) Number of OS calls performed vs mes-
sages received (one thread). Bach size of 64.
Every 10 seconds, an average of 318,998
messages are received and 275,352 OS calls
are made.

(b) Number of OS calls performed vs mes-
sages received (one thread). Bach size
of 128. Every 10 seconds, an average of
307,210 messages are received and 242,432
OS calls are made.

Figure 4.27: Rsyslog’s input thread pulling messages from the RX buffer by batch
of 64 and 128. Dotted lines represent messages received and solid lines the number of
recvmmsg() calls.

As a last resort, perhaps the batching on the main queue side is too large and it
spends some of its time waiting for TCP to deliver its messages. By reducing its

76 4.4. Performance

size, we would maximize the parallel efficiency: while TCP is busy, the worker
thread is too. After a test with a batch size of 1200, then another of 600, we
obtained respectively 11,247,432 and 11,335,718 messages (only a 2% loss). This
is 4% less compared to the previous configuration. We also notice that the main
queue’s thread reaches the 20% CPU usage (3% increase from previous setup),
demonstrating once more that the threads were not at fault by accepting additional
workloads.

At this point it seems relevant to me to upgrade to the medium profile, firstly
because the current configuration seems to be showing its limits and increasing the
queue size will inevitably relieve the data flow, but also because the small profile in
the last tests used between 25 and 30 percent of the CPU, i.e. between 300 and
350 CPU units. This is only possible because Cisco IOx allows an application to
consume more CPU resources than those reserved for its launch as long as no one
else claims them. It is thus preferable to pre-allocate them to ensure consistent
performance.

Unsurprisingly, with the basic configuration and a batching for the main queue of
1200, the medium profile enables the relay to receive and transmit all messages
generated. This cap also announces the limit of the testbed, or at least my hardware
limit. It is obvious that adding more message generators on the other LAN ports
will require configuration changes. The general approach would be to vary the
batches (input and output) and only consider adding additional threads if it is
found that a thread is reaching (or approaching) 100% of the CPU.

4.4.3 Queue build-up prediction

As a final step in this profiling, we can try to predict the message throughput that
we are able to support infinitely (sustain mode) without any queue build-up. For
this purpose, the logburst script has been improved to allow the rate to grow over
time (configurable). A rest period has also been introduced to ensure that the relay
queue is empty before moving to the next higher rate. The test was performed on a
512MB configuration (i.e. a capacity of 384,000 messages) to avoid any flattening
of a potential peak, for 3,600 seconds with a burst period of 60 seconds and a quiet
period of 30s, and a maximum rate of 39,000 messages/s. There are thus 40 periods
and a difference of 975 messages between each. FIGURE 4.28 highlights this test.

4. Evaluation 77

Figure 4.28: Test performed to gather data on the evolution of the size of the main
queue as a function of the number of messages received. Note that the number of messages
received (dashed line) is an average over 10 seconds.

The 40 periods are highlighted on this figure as summits of the dashed line and
with the size of the queue increasing inside (solid line). The FIGURE 4.29 showcases
a close-up view of a few periods.

Figure 4.29: A close up view of FIGURE 4.29, one can clearly see the periods of burstiness
followed by moments of stillness. The solid line represents the main queue size containing
very indicative episodes of burst absorption with an escalation in size followed by a steep
decline to zero.

A mathematical regression method is used to establish a relationship between
the number of messages received and the queue size. The data retrieved above

78 4.4. Performance

are first parsed to isolate the dominant values, i.e. the maximum queue sizes
encountered, then plotted for analysis. From the said graph, a trend close to
a quadratic function can be identified. Using the sklearn[63] library available
in Python, it is possible to create a polynomial regression model (of the second
degree, using the LinearRegression and PolynomialFeatures class) and use it
to predict values that we do not possess. The scatter plot and the regression
curve can be viewed in FIGURE 4.29.

Figure 4.30: Quadratic regression curve based on the observed data (maximum values
only) from FIGURE 4.29.

From this regression curve, it is possible to predict the behaviour of the queue
for higher values. FIGURE 4.31 summarizes the possible values for a rate up to
100,000 messages/s.

Figure 4.31: Quadratic regression curve predicting values for a rate up to 100,000
messages/s. The horizontal lines represent the three resource profiles.

4. Evaluation 79

Before using these predictions as a reliable source of information, I think it is
important to point out a few factors that were overlooked during this test. Firstly,
the use of maximum values is probably a bit extreme in the sense that a weaker
queue could also absorb the start of a burst but more slowly. Secondly, this test
reflects a particular configuration which is probably not adequate past certain
limits. Conversely, one could also reasonably assume that the current settings
are ideal for any implementation below or equal to a message rate of 10 MB/s
(39,000 messages) as we have tested it. Therefore, any tendency put forward by
this configuration would reflect an idyllic prediction that may not be achievable in
practice (for example, because thread decoupling is not linear and generates losses).

4.4.4 Results

The results of this profiling phase highlight the performance achievable on the
basis of a minimalist configuration. In the end, the medium and large profile were
(almost) not necessary. However, performance has little or no influence in the
current context, firstly because message flow is limited by the quality of the network
used, and secondly because in the end if the server is not reachable it is the RAM
that will determine the reliability of the configuration. Without access to a disk,
the number of messages that the relay can ingest is known in advance. For the sake
of argument, let us review how much downtime (depending on the message rate)
each profile can absorb. The results are depicted on FIGURE 4.32. If, for example,
one wishes to preserve messages for 5 minutes in the small profile, at most 152
messages can be absorbed per second.

Using this principle in reverse, it is also possible to measure the time it takes to com-
pletely discharge (recover) the queue when the connection is recovered (TABLE 4.5).

Table 4.5: Time in seconds needed to completely empty the queue per profile (message
size of 256 bytes).

Edge network 3G network
Small ∼ 470s ∼ 283s
Medium ∼ 940s ∼ 566s
Large ∼ 1,880s ∼ 1,133s

It should also be noted that the time requery, after evaluation, showed no weakness
in terms of performance when switching from 2 to 1. The CPU usage did not
exceed 20% and all messages sent were transmitted to the syslog server. However,

80 4.4. Performance

(a) 64MB configuration (45,600 message
queue). For a downtime of 5 minutes
the rate must not be greater than 152
messages/s.

(b) 128MB configuration (91,200 message
queue). For a downtime of 5 minutes
the rate must not be greater than 305
messages/s.

(c) 256MB configuration (182,400 message
queue). For a downtime of 5 minutes
the rate must not be greater than 610
messages/s.

(d) 512MB configuration (364,800 message
queue). For a downtime of 5 minutes
the rate must not be greater than 1220
messages/s.

Figure 4.32: Maximum manageable lossless downtime based on the number of messages
received per second. The average message size used is 256 bytes. This calculation does
not include worker thread(s) internal buffer.

be aware that the paper written by R. Geirhald, "Going up from 40K messages
per second to 250K"[32], stresses the importance of this parameter which was one
of the main causes of the slowdown of the rsyslog engine during the v4 improvements.

In the end, the basic configuration on the smallest profile passed the evaluation
with flying colours. The parameters used seem to be the most appropriate for
the present context and environment. The medium and large profile can therefore
be modelled on the small one, with a correct adjustment21 of the queue size and

21I believe it is still crucial to keep 25% of the memory allocated by IOx as a safety margin for
the rsyslog engine in order to prevent any OOM killer. See TABLE 3.2 for details.

4. Evaluation 81

possibly the batch size or the number of threads if performance requires it. Please
note that the configuration and parameters are not static and can be adjusted as
desired22 from the IOx web interface.

22Depending on the usage, the maximum downtime, the recovery speed, the other applications
present in the IOx environment, and an infinity of other reasons.

82

5
Conclusion

Contents
5.1 Challenges faced . 83
5.2 Future works . 84
5.3 Final words . 85

5.1 Challenges faced
During the realization of this project, several challenges of different sizes have
been overcome. The first challenge was to find scientific reading about syslog, the
protocol and what is currently considered the state-of-the-art. It is hard not to link
the lack of literature to the very state and evolution of syslog as a standard that
has always been rooted in its foundations, inflexible. Similarly, while datasets about
IOTs are getting more and more interest, when creating tools to generate relevant
syslog messages I could only find few if any samples about device or application
logs. Regarding the implementation itself, I’ll mainly note the "nested layer" effect
that Cisco IOx introduced: building an aarch64 application on which the rsyslog
engine must be available, inserting it in a minimalist qemu emulatable container for
compilation, packaging it for the IOx environment, and finally creating a "link" to
drive the first layer (i.e. rsyslog) from the router’s user interface. All these layers
proved to be a difficulty during diagnostics, especially to identify the why and how
(like the OOM killer to name one). Lastly, I would note the challenge of setting
up a test environment that included many different actors, each influencing the
network in some way, but all working towards the same goal.

83

84 5.2. Future works

5.2 Future works
In the current state of the solution there is substantial room for improvement.
These are detailed below.

1. It seems interesting to me to improve the verbosity of the relay’s health status.
Currently it is possible to retrieve internal counters using Elasticsearch but
this solution is not adapted to a realistic environment, it would be preferable to
log the information in the data flow itself. Deleted messages and connectivity
loss are prime examples of metrics to be reported to the central server. Along
the same lines, it might be relevant to transmit the router’s internal logs.

2. User (administration) experience was a valuable aspect of this project. The
configuration from the local manager of the router is sufficiently verbose to
provide debugging mechanisms, for example. As features are added, it may
be worthwhile to customize them for the administrator and thus avoid having
to repackage the application at each change.

3. Several optimizations are possible concerning the relay’s message flow. I am
thinking in particular of the compression of messages which could be initiated
when the server is not reachable, thus considerably increasing the capacity of
the queue. The rsyslog engine offers native compression solutions. Similarly, it
is also possible to configure additional central servers in the event that the first
one is unreachable (failover). Finally, if many log messages are multi-line then
the plain TCP syslog framing can be switched to a character other than the
LF (’\n’) frame delimiter, thus avoiding unnecessary message fragmentation.
For example, in RFC5425[18] the size of the message is included in a header
that precedes each frame.

4. It is possible to configure queues such that they only dequeue (process)
messages at specific times. When there is a constrained amount of bandwidth
on the network path to the central server, for example, this is handy for
transferring the majority of messages only during off-peak hours.

5. Regarding alternative protocols, it is worth noting the use of PR-SCTP to
exploit the priority properties of syslog messages during loss recovery. The
authors of [24] also report that PR-SCTP performs better than TCP in
terms of average message transfer delay. The RELP protocol also offers some
interesting functionalities, mainly the acknowledgement on the application
layer through the use of a backchannel[30, p. 160].

5. Conclusion 85

6. Although the aspect of persistent storage has been discussed several times in
this work, it has never been implemented. The rsyslog engine offers a variety
of features related to data persistence, such as piping queues to a disk or the
assisted mode to leverage the burst period occupying all the memory space.
This over-reliability is discussed in detail in the paper written by R. Gerhards,
"Rsyslog Design and Internals"[31].

5.3 Final words
In this paper, we have defined, designed, and implemented a reliable and efficient
solution to overcome the shortcomings introduced by the use of the UDP transport
protocol. In particular, we have enabled devices connected to the relay to transmit
their messages in a reliable, partially ordered, and confidential manner, regardless of
the state and quality of the network used. Beyond the key objectives, the solution
offers more than reasonable performances for a low resource consumption. Its
portability and configurability allows it to be easily ported to other incubators using
the IOx environment.

Regarding the test environment, we were able to deploy the relay in real conditions
and evaluate excellent behaviour in cellular networks but also high speed low latency
networks. The whole ecosystem—the message generators, the central server, the
statistics collector, the certificate generator, the application itself, and many other
tools—is available for the reader to quickly iterate on a custom configuration. This
foundation makes future research and improvement much more accessible.

86

Appendices

87

A
Project source code

Contents
A.1 Overview . 89
A.2 Structure . 89

A.1 Overview
In agreement with my industrial supervisor, Emmanuel Tychon, the whole project
and the scripts used during the work are publicly available in the following Github
repository: https://github.com/e-scheer/syslog-relay.

The IOx application, the message generators, the central server, the statistics
collector, and many other files are accessible from this link and are organized in
separate folders to facilitate your search. The source code, configurations, and
scripts are commented in detail for the more curious reader.

A.2 Structure
The structure of the repository is divided into five parts. These are detailed below:

1. The generation of certificates using the certtool tool. Note that the CA is
also generated and its certificate self-signed. Also, the configuration values
such as the common name are used to authenticate the client and the server,
thus be careful when setting them up.

89

https://github.com/e-scheer/syslog-relay

90 A.2. Structure

2. All I/O scripts related, including the central syslog server and the message
generators used for the evaluation of the implementation. Their functionalities
are explained in detail in the directory (see README.md).

3. The IOx application itself, containing the Docker configuration files and the
rsyslog engine. Its packaging is automated via the build.sh script.

4. The statistics collector as a service including two dockerized servers: Elastic-
search and Kibana.

5. All the remaining scripts such as those used for the analysis of the Linux
dataset or to certify the order of the received messages. There are also
command lines and notes related to the proper implementation of a testbed.

References

[1] A. Chuvakin, K. Schmidt, and C. Phillips. Logging and Log Management: The
Authoritative Guide to Understanding the Concepts Surrounding Logging and Log
Management. Elsevier Science, 2012. url:
https://books.google.be/books?id=Rf8M%5C_X%5C_YTUoC.

[2] Eric Allman. INTERNET HALL of FAME INNOVATOR. Online; accessed
November 18, 2021. 2014. url:
https://www.internethalloffame.org/inductees/eric-allman.

[3] Bryan Costales and Eric Allman. Sendmail, 3rd Edition. 3rd ed. O’Reilly Media,
Inc, 2002.

[4] C. Lonvick. The BSD Syslog Protocol. RFC 3164. RFC Editor, Aug. 2001.
[5] R. Gerhards. The Syslog Protocol. RFC 5424. RFC Editor, Mar. 2009. url:

http://www.rfc-editor.org/rfc/rfc5424.txt.
[6] A Min Tjoa et al. Availability, Reliability and Security for Business, Enterprise

and Health Information Systems : IFIP WG 8.4/8.9 International Cross Domain
Conference and Workshop, ARES 2011, Vienna, Austria, August 22-26, 2011.
Proceedings. Jan. 2011.

[7] sysklogd(8) Linux User’s Manual.
[8] logger(1) Linux User’s Manual.
[9] syslog(3) Linux User’s Manual.

[10] syslogd(8) Linux User’s Manual.
[11] klogd(8) Linux User’s Manual.
[12] syslog.conf(5) Linux User’s Manual.
[13] Rainer Gerhards. Why does the world need another syslogd? Online; accessed

November 30, 2021. 2007. url: https://rainer.gerhards.net/2007/08/why-
doesworld-need-another-syslogd.html.

[14] Larene Le Gassick. Analyze syslog messages with Seq. Online; accessed December
02, 2021. 2020. url: https://blog.datalust.co/seq-input-syslog/#rfc3164.

[15] G. Klyne and C. Newman. Date and Time on the Internet: Timestamps. RFC 3339.
RFC Editor, July 2002.

[16] Anand Deveriya. Network administrators survival guide. 1st ed. Indianapolis: Cisco
Press, 2006.

[17] A. Okmianski. Transmission of Syslog Messages over UDP. RFC 5426. RFC
Editor, Mar. 2009.

91

https://books.google.be/books?id=Rf8M%5C_X%5C_YTUoC
https://www.internethalloffame.org/inductees/eric-allman
http://www.rfc-editor.org/rfc/rfc5424.txt
https://rainer.gerhards.net/2007/08/why-doesworld-need-another-syslogd.html
https://rainer.gerhards.net/2007/08/why-doesworld-need-another-syslogd.html
https://blog.datalust.co/seq-input-syslog/#rfc3164

92 References

[18] F. Miao, Y. Ma, and J. Salowey. Transport Layer Security (TLS) Transport
Mapping for Syslog. RFC 5425. RFC Editor, Mar. 2009.

[19] J. Salowey et al. Datagram Transport Layer Security (DTLS) Transport Mapping
for Syslog. RFC 6012. RFC Editor, Oct. 2010.

[20] D. New and M. Rose. Reliable Delivery for syslog. RFC 3195. RFC Editor, Nov.
2001.

[21] Embedded syslog manager configuration guide, cisco IOS release 15s - reliable
delivery and filtering for syslog. Online; accessed December 07, 2021. Sept. 2017.
url: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/esm/configuration/15-s/esm-15-s-book/reliable-del-
filter.html.

[22] R. Gerhards and C. Lonvick. Transmission of Syslog Messages over TCP. RFC
6587. RFC Editor, Apr. 2012.

[23] Hiroshi Tsunoda et al. “A Prioritized Retransmission Mechanism for Reliable and
Efficient Delivery of Syslog Messages”. In: Proceedings of the 2009 Seventh Annual
Communication Networks and Services Research Conference. CNSR ’09. USA:
IEEE Computer Society, 2009, pp. 158–165. url:
https://doi.org/10.1109/CNSR.2009.33.

[24] Mohammad Rajiullah et al. “Syslog performance: Data modeling and transport”.
In: 2011 Third International Workshop on Security and Communication Networks
(IWSCN). 2011, pp. 31–37.

[25] DevNet Cisco. Platform Support Matrix - IOx - Document. Online; accessed March
04, 2021. url:
https://developer.cisco.com/docs/iox/#!platform-support-matrix.

[26] Alpine Linux Development Team. Alpine linux packages. Online; accessed March
24, 2021. url: https://pkgs.alpinelinux.org/packages?name=rsyslog*
&branch=edge&repo=&arch=aarch64.

[27] Rainer Gerhards. Rsyslog will remain GPLv3 licensed. Online; accessed March 06,
2022. Jan. 2012. url: https://rainer.gerhards.net/2012/01/rsyslog-will-
remain-gplv3-licensed.html.

[28] tcp(7) Linux User’s Manual. Mar. 2021.
[29] G. Hohpe and B.A. WOOLF. Enterprise Integration Patterns: Designing, Building,

and Deploying Messaging Solutions. The Addison-Wesley Signature Series. Prentice
Hall, 2004. url: http://books.google.com.au/books?id=dH9zp14-1KYC.

[30] Rainer Gerhards. Rsyslog Documentation. Version 8.26.0. Online; accessed July 11,
2022. 2017. url:
https://readthedocs.org/projects/rsyslog/downloads/pdf/stable/.

[31] Rainer Gerhards. Rsyslog Design and Internals. Tech. rep. Dec. 2009. url:
https://download.rsyslog.com/design.pdf.

[32] Rainer Gerhards. “Rsyslog: going up from 40K messages per second to 250K”. In:
(Sept. 2010).

[33] Roberto Gomez, Jorge Herrerias, and Erika Mata. “Using Lamport’s Logical
Clocks to Consolidate Log Files from Different Sources”. In: vol. 3908. Apr. 2006,
pp. 126–133.

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/esm/configuration/15-s/esm-15-s-book/reliable-del-filter.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/esm/configuration/15-s/esm-15-s-book/reliable-del-filter.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/esm/configuration/15-s/esm-15-s-book/reliable-del-filter.html
https://doi.org/10.1109/CNSR.2009.33
https://developer.cisco.com/docs/iox/#!platform-support-matrix
https://pkgs.alpinelinux.org/packages?name=rsyslog*&branch=edge&repo=&arch=aarch64
https://pkgs.alpinelinux.org/packages?name=rsyslog*&branch=edge&repo=&arch=aarch64
https://rainer.gerhards.net/2012/01/rsyslog-will-remain-gplv3-licensed.html
https://rainer.gerhards.net/2012/01/rsyslog-will-remain-gplv3-licensed.html
http://books.google.com.au/books?id=dH9zp14-1KYC
https://readthedocs.org/projects/rsyslog/downloads/pdf/stable/
https://download.rsyslog.com/design.pdf

References 93

[34] K. Dooley and I.J. Brown. Cisco IOS Cookbook. Cookbook Series. O’Reilly Media,
Incorporated, 2007. url: https://books.google.be/books?id=w-1SAAAAMAAJ.

[35] A.S. Tanenbaum and M. van Steen. Distributed Systems. CreateSpace Independent
Publishing Platform, 2017. url:
https://books.google.be/books?id=c77GAQAACAAJ.

[36] Luca De Vito, Sergio Rapuano, and Laura Tomaciello. “One-Way Delay
Measurement: State of the Art”. In: IEEE Transactions on Instrumentation and
Measurement 57.12 (2008), pp. 2742–2750.

[37] Han van der Aa, Henrik Leopold, and Matthias Weidlich. “Partial Order Resolution
of Event Logs for Process Conformance Checking”. In: CoRR abs/2007.02416
(2020). arXiv: 2007.02416. url: https://arxiv.org/abs/2007.02416.

[38] I. Grigorik. High Performance Browser Networking: What Every Web Developer
Should Know about Networking and Web Performance. O’Reilly Media, 2013. url:
https://books.google.be/books?id=KfW-AAAAQBAJ.

[39] Kenneth Nawyn. “A Security Analysis of System Event Logging with Syslog”. In:
(Jan. 2003).

[40] Performance Guideline for syslog-ng Premium Edition 6 LTS. One Identity
Support. Online; accessed July 12, 2022. June 2019. url:
https://support.oneidentity.com/fr-fr/technical-documents/syslog-ng-
premium-edition/6.0.20/performance-guideline-for-syslog-ng-premium-
edition-6-lts.

[41] Nasko Oskov. TLS overhead. Online; accessed July 5, 2022. Mar. 2010. url:
http://netsekure.org/2010/03/tls-overhead/.

[42] DevNet Cisco. Application Resource Profiles - IOx - Document. Online; accessed
July 20, 2022. url: https://developer.cisco.com/docs/iox/#!application-
resource-profiles/resource-profiles.

[43] J. Turnbull. The Docker Book: Containerization Is the New Virtualization. James
Turnbull, 2014. url: https://books.google.be/books?id=4xQKBAAAQBAJ.

[44] E.R. Harold. Java Network Programming: Developing Networked Applications.
O’Reilly Media, 2013. url:
https://books.google.com.om/books?id=LXsgAQAAQBAJ.

[45] Runtime options with memory, cpus, and gpus. Online; accessed August 4, 2022.
Aug. 2022. url:
https://docs.docker.com/config/containers/resource_constraints/.

[46] Online; accessed August 6, 2022. url:
https://kwseow.github.io/#iot-datasets.

[47] Shilin He et al. Loghub: A Large Collection of System Log Datasets towards
Automated Log Analytics. 2020. url: https://arxiv.org/abs/2008.06448.

[48] Yale University. The Yale Literary Magazine. vol. 47. Herrick & Noyes, 1882. url:
https://books.google.be/books?id=iJ9MAAAAMAAJ.

[49] Elasticsearch: The Official Distributed Search & Analytics engine. url:
https://www.elastic.co/elasticsearch/.

https://books.google.be/books?id=w-1SAAAAMAAJ
https://books.google.be/books?id=c77GAQAACAAJ
https://arxiv.org/abs/2007.02416
https://arxiv.org/abs/2007.02416
https://books.google.be/books?id=KfW-AAAAQBAJ
https://support.oneidentity.com/fr-fr/technical-documents/syslog-ng-premium-edition/6.0.20/performance-guideline-for-syslog-ng-premium-edition-6-lts
https://support.oneidentity.com/fr-fr/technical-documents/syslog-ng-premium-edition/6.0.20/performance-guideline-for-syslog-ng-premium-edition-6-lts
https://support.oneidentity.com/fr-fr/technical-documents/syslog-ng-premium-edition/6.0.20/performance-guideline-for-syslog-ng-premium-edition-6-lts
http://netsekure.org/2010/03/tls-overhead/
https://developer.cisco.com/docs/iox/#!application-resource-profiles/resource-profiles
https://developer.cisco.com/docs/iox/#!application-resource-profiles/resource-profiles
https://books.google.be/books?id=4xQKBAAAQBAJ
https://books.google.com.om/books?id=LXsgAQAAQBAJ
https://docs.docker.com/config/containers/resource_constraints/
https://kwseow.github.io/#iot-datasets
https://arxiv.org/abs/2008.06448
https://books.google.be/books?id=iJ9MAAAAMAAJ
https://www.elastic.co/elasticsearch/

94 References

[50] Kibana: Explore, visualize, Discover Data. url:
https://www.elastic.co/kibana/.

[51] Hemanta Kumar Kalita and Manoj Nambiar. “Designing WANem : A Wide Area
Network emulator tool”. In: Feb. 2011, pp. 1–4.

[52] Knoppix linux live CD. url: http://www.knoppix.org/.
[53] tc(8) Linux User’s Manual.
[54] Traffic control. Online; accessed August 6, 2022. Dec. 2014. url:

https://www.funtoo.org/Traffic_Control.
[55] Astel SPRL Grégoire Bourguignon. Belgacom dévoile la nouvelle B-box 3. Mar.

2013. url:
https://www.astel.be/info/belgacom-devoile-la-nouvelle-b-box-3_4271.

[56] Vivien GUEANT. Iperf - The ultimate speed test tool for TCP, UDP and SCTP.
url: https://iperf.fr/.

[57] BitWizard. My Traceroute (MTR). July 2020. url:
https://www.bitwizard.nl/mtr/.

[58] Script for constraining traffic on the local machine - external/webrtc - git at google.
Online; accessed August 10, 2022. url:
https://chromium.googlesource.com/external/webrtc/+/refs/heads/
master/tools_webrtc/network_emulator/emulate.py.

[59] recvmmsg(2) Linux User’s Manual.
[60] Dongkeun Kim and Jai-Yong Lee. “One-way delay estimation without clock

sychronization”. In: Ieice Electronic Express 4 (Dec. 2007), pp. 717–723.
[61] J. Postel. Internet Control Message Protocol. STD 5. RFC Editor, Sept. 1981. url:

http://www.rfc-editor.org/rfc/rfc792.txt.
[62] Shaneel Narayan and Raymond Lutui. “Network Performance Evaluation of Jumbo

Frames on a Network”. In: Dec. 2013, pp. 69–72.
[63] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

https://www.elastic.co/kibana/
http://www.knoppix.org/
https://www.funtoo.org/Traffic_Control
https://www.astel.be/info/belgacom-devoile-la-nouvelle-b-box-3_4271
https://iperf.fr/
https://www.bitwizard.nl/mtr/
https://chromium.googlesource.com/external/webrtc/+/refs/heads/master/tools_webrtc/network_emulator/emulate.py
https://chromium.googlesource.com/external/webrtc/+/refs/heads/master/tools_webrtc/network_emulator/emulate.py
http://www.rfc-editor.org/rfc/rfc792.txt

