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Abstract

In Wallonia, the regional forest resources are estimated from field methods that may present
biases for estimating fast-growing forest species area like poplars, thus requiring support
from remote sensing-based solutions.

The objectives of this master thesis concern the mapping and characterization of the poplar
resource in the province of Hainaut. Specifically, it investigates (i) the potential of S2 super-
resolution images (Latte and Lejeune, 2020) and (ii) the use of orthoimages through a deep
learning-based approach to map the poplar resource, followed by (iii) the ability of an aerial
photogrammetry CHM to characterize the latter.

The used methods are divided into two approaches: classification of super-resolved
Sentinel-2 images using Random Forest algorithm (Breiman, 2001), semantic segmentation
of orthoimages through a Deep Layer Aggregation (Yu et al., 2018) Neural Network. Both
approaches involve 5 steps: data preparation, supervised learning, map production, height
classification and accuracy assessment.

The results for the first approach map, with a F1-score of 0.923, is limited in detecting
young poplar plantations and overestimates the poplar resource. Then, the second approach
produced a map presenting great potential to detect poplar trees with an average accuracy of
1 m between the position of correctly predicted and observed poplars, but still contains many
False Negatives, resulting in a F1-score of 0.653. Finally, poplar resource characterization
shows for the first and second approach a respective ratio of properly identified height classes
of 50% and 69%, these results are contrasted by poor ground truth data and a convincing
visual assessment.

To conclude, the super-resolution of Sentinel-2 images seems to bring a higher accuracy
compared to the poplar resource map made on Sentinel-2 images by (Bolyn, Latte, Colson,
et al., 2020). Furthermore, a potential to map the poplar resource from orthoimages using a
deep learning-based approach has been highlighted in this project, despite a low accuracy
to be the subject of a management tool at this time. Lastly, although contrasting results,
it would seem that aerial photogrammetry Canopy Height Model could be appropriate to
characterize the poplar resource in this project, but would require field validation.

Keywords — Forest mapping, Forest characterization, Poplar resource, Random Forests, Deep
Learning, Deep Layer Aggregation, Sentinel-2 super-resolution images, Orthoimages, Aerial pho-
togrammetric canopy height model.



Résumé

En Wallonie, les ressources forestières régionales sont estimées à partir de méthodes de
terrain qui peuvent comporter des lacunes dans l’estimation de la superficie des espèces
forestières à croissance rapide telles que les peupliers, nécessitant de ce fait le soutien de
méthodes basées sur la télédétection.

Ce mémoire de master a pour objectif la cartographie et la caractérisation de la ressource
en peupliers dans la province du Hainaut. Plus précisément, il est étudié (i) le potentiel
des images à super-résolution Sentinel-2 et (ii) l’utilisation d’ortho-images par une approche
basée sur l’apprentissage profond pour cartographier la ressource populicole, puis (iii) la
capacité d’un modèle numérique de hauteur de la canopée par photogrammétrie aérienne à
caractériser cette dernière.

Les méthodes utilisées sont divisées en deux approches : classification d’images Sentinel-
2 super-résolues (Latte and Lejeune, 2020) au moyen de l’algorithme de Forêt d’arbres de
décision (Breiman, 2001), segmentation sémantique d’ortho-images par l’intermédiaire d’un
réseau neuronal d’agrégation de couches profondes (Yu et al., 2018). Les deux approches im-
pliquent 5 étapes : préparation des données, apprentissage supervisé, production de cartes,
classification en hauteur et évaluation de la précision.

Les résultats de la carte issue de la première approche, avec un score-F1 de 0,923, est
limitée dans la détection des jeunes plantations de peupliers et surestime la ressource en
peupliers. Ensuite, la deuxième approche a produit une carte présentant un grand potentiel
de détection des peupliers avec une précision moyenne de 1 m entre la position des peupliers
correctement prédits et observés, mais contient encore beaucoup de faux négatifs, ce qui
donne un score F1 de 0,653. Enfin, la caractérisation de la ressource en peupliers montre
pour la première et la seconde approche un ratio respectif de classes de hauteur correctement
identifiées de 50% et 69%, ces résultats sont contrastés par des données de terrain discutable
et une évaluation visuelle convaincante.

En conclusion, l’amélioration de la super-résolution d’image Sentinelle-2 semble apporter
une plus grande précision par rapport à la carte de la ressource en peupliers réalisée par
(Bolyn, Latte, Colson, et al., 2020). Par ailleurs, un potentiel pour cartographier la ressource
en peuplier à partir d’ortho-images en utilisant une approche basée sur l’apprentissage
profond a été mis en évidence dans ce projet, malgré une faible précision pour faire l’objet
d’un outil de gestion à l’heure actuelle. Finalement, bien que les résultats soient contrastés,
il semblerait qu’un modèle numérique de hauteur par photogrammétrie aérienne pourrait
être appropriée pour caractériser la ressource en peuplier dans ce projet, mais nécessiterait
une validation sur le terrain.

Mots-clés — Cartographie forestière, Caractérisation forestière, Ressource en peuplier, Forêt d’arbres
de décision, Apprentissage profond, Agrégation de couches profondes, Images Sentinel-2 à super-
résolution, Orthoimages, Modèle numérique de hauteur par photogrammétrie aérienne
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Glossary

Big data are digital data sets too large and complex to be conventionally exploited. This
term became popular with the rise of the Internet and mobile technologies, allowing the
centralization and massive storage of data, as well as the proliferation of data collection.
This concept is inherently linked to data mining. III

Canopy Height Model is a landscape element height resulting from the subtraction of a Dig-
ital Surface Model (DSM) and a Digital Terrain Model (DTM). The former includes the
height of both landscape elements and terrain and the latter only the terrain. iii

Data mining means the analysis of data in order to make it useful. This concept is useful for
many sectors as well as for science and engineering, especially for revealing patterns,
correlations, anomalies, statistical information and predictions of useful data. Various
techniques and technologies surround data mining, such as data warehousing, data
preparation, statistical software, Artificial intelligence (AI). v

Image interpretation is a data collection process that involves image observation to charac-
terize a landscape. In a Geographic Information System (GIS), a regular grid of points
is distributed over the area of interest, and each point is assigned a class (e.g., for-
est, grassland, agricultural, or urban area), in order to quantify the distribution of the
different classes in that area.. 10, 14, 21, 24, 25, 29–31

Orthoimage is an "orthorectified" aerial or satellite image, in other words, the image geome-
tries have been corrected and harmonized. Indeed, depending on the position and shape
of the sensor, the altitude of the platform on which the sensor is placed, as well as the
relief, the image contains a series of irregularities that require processing to allow a
regular mosaic of images and comparison between different dates. 4, 5, 7, 9–11, 13, 14,
18, 19, 21, 24, 26, 37–40

Poplar plantation is a component of the poplar resource that comes from plantations. The
Food and Agriculture Organization (FAO) defines forest plantations as forest areas re-
sulting from planted trees, with an even-aged and regularly spaced structure and com-
posed of one or two species. The purpose of forest plantations is mainly economic, so
they are managed for wood production (FAO, 2020b). 2, 6, 8, 11, 18, 30, 31, 34, 36,
38–40

Poplar resource is defined in the context of this master’s thesis as all wooded areas of more
than 3 m in height, whose canopy composition is at least 80% poplar and whose ground
cover is at least 100 m2 or consists of a group of at least 5 stems spaced from 6 m to
10 m apart. Thus, in relation to the FAO definitions of woodland and forest area, the
poplar resource can be located both inside and outside forests. This definition does not
include aspens, as single trees are not considered (FAO, 2020b). v, 2, 3, 5, 7, 8, 11, 14,
18, 19, 24–26, 28–31, 34, 37–40

v



List of Terms

Remote sensing refers to all remote data acquisition techniques on an object, including op-
tical or height data. In earth observation, the sensor is placed on a platform that can
be either an Unmanned Aerial Vehicle (UAV), an airplane, or a satellite, each of which
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1 Introduction

1.1 Research context

1.1.1 State of the poplar resource

Planted Forests: poplars

Forests have a clear key function in biodiversity, wood and food production, carbon se-
questration and fixation, human well-being and many other ecosystem services. Yet, despite
a slowdown in the rate of net forest loss due to reduced deforestation in some countries and
natural forest expansion or afforestation in others, net forest loss remains significant, with
an estimated loss of 10 million hectares per year between 2015 and 2020 (FAO, 2020b).

Part of the solution to this problem, while taking into account the growing demand and
consumption of wood products (FAO, 2021), can be found in planted forests. Indeed, the
global potential production of industrial wood from planted forests was estimated at 1.2 bil-
lion m3 in 2005, or about 2/3 of the total wood production that year (Carle and Holmgren,
2008). The potential production must be related to the area of planted forests. In fact, in
2020, 7% of the 4.06 billion hectares of forests in the world were planted, 45% of which were
for production purposes, while the rest of the planted forests were not intensively managed
(FAO, 2020a; Carle and Holmgren, 2008).

The high yield of woody biomass production from planted forests arises from the use of
Short Rotation Woody Crops (SRWCs) based on fast-growing forest species such as poplars
(Populus sp.), willows (Salix sp.), eucalyptus (Eucalyptus sp.), pines (Pinus sp.) among others
(Zalesny Jr et al., 2019). The importance of poplar to satisfy a global demand for woody
biomass was recognized at the end of the Second World War, which led to the creation of
the International Poplar Commission (IPC) under the auspices of the Food and Agriculture
Organization (FAO) (Hamrouni Berkaoui, 2021). Belgium is one of the 38 member countries
constituting the IPC. Research in Sweden has shown that the stem-wood production yield
of poplar plantations reaches 25 to 30 m3ha−1year−1 for a rotation period of 15 to 20 years
(Adler et al., 2021).

The genus Populus

Poplars, of the genus Populus of the family Salicaceae1, are divided taxonomically into
6 sections: Abaso (Mexican poplar), Aigeiros (Cottonwoods and black poplar), Leucoides
(Swamp poplars), Populus (White poplars and aspens), Tacamahaca (Balsam poplars), Tu-
ranga (Arid and tropical poplars). These trees are medium and large size, with simple de-
ciduous leaves and alternate phyllotaxis. This is a dioecious species, with separate floral
and vegetative buds. They are dioecious species, having bracted flowers borne by catkins,

1family of dicotyledonous plants, which counts, with the Salix genus (willows, sallows and osiers), about 400 to
500 species
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1 Introduction

with separate floral and vegetative buds and tiny seeds attached to a cottony coma. Some
characteristics enable to distinguish in more detail the different sections of the genus Popu-
lus (FAO-CABI, 2014). The wood of low density, soft, creamy white, with an uniform texture
and diffuse pores, is versatile and traditionally used for peeling (light packaging or plywood),
sawing (pallets and packaging boxes), pulpwood or energy wood (Peuplier 2022).

The natural range of poplars covers a large majority of the northern hemisphere, within
the latitudinal and latitudinal limits of tree growth. In addition, the genus Populus has been
widely planted in the world2. Hence, his presence in the southern hemisphere can be noted
(FAO-CABI, 2014). Poplars are pioneer species of disturbed areas, characterized by a rapid
growth rate and short life span compared to other species, due to hosting many diseases and
pests. Some species of poplars from North America, Europe or Asia can reach a diameter
exceeding 3 m and a height of 45 m (FAO-CABI, 2014). As interspecific and intraspecific
hybridization is naturally common in the Populus genus section, the potential was quickly
exploited by cloning in commercial cultivation (FAO-CABI, 2014). This practice increased
sharply after the sequencing of the P. trichocarpa genome in 2004, it was the first tree and
the third plant sequenced (Tuskan et al., 2006).

Poplars in Wallonia

Wallonia, like the rest of Belgium and France, naturally has three species of poplars,
black poplar (P. nigra)3, white poplar (P. alba)4 and aspen (P. tremula)5. Poplar planta-
tions are based on cultivars resulting from the crossing of North American (P.trichocarpa
and P.deltoïdes), European (P.nigra) and Asian (P.maximowiczii) species, based on criterias
such as the adaptation to soil characteristics, resistance to diseases and abiotic factors and
growth (Carah Asbl, 2018).

In 2021, the poplar area has slightly decreased from 9,650 ha in 2008 to 7,700 ha, cor-
responding to 2% of the productive forest area of Wallonia (Alderweireld et al., 2015). The
poplar resource is not insignificant, accounting for 7.7% of the annual hardwood harvest
volume in the region (Office économique wallon du bois, 2021). In 2008, the structure of
poplar stands was 45% even-aged, 41% coppice, and the remainder two-story stands, with a
relatively good balance of area by age class, although a slowdown in planting can be observed
(Alderweireld et al., 2015). In Wallonia in 2021, the forest area was allocated as follows: 51%
by private and 49% by public. This trend was not observed for the poplar resource, which
was held 86% by private owners and 14% by public owners. It is also the only decapitalized
hardwood species with a standing volume of 1,687,355 m3 and a harvesting rate is 117% of
the annual increase in volume (Office économique wallon du bois, 2021).

The advantages of poplars are economic, because with little work (planting, training prun-
ing, pruning and a few visits) and a short rotation of about 20 years, the owner can expect a
net income of 3400C to 6800C/ha excluding taxes (Office économique wallon du bois, 2021).
In addition, the development of methods for adding value to hardwoods, particularly by heat
treatment, allows poplar to have new uses in addition to the conventional ones mentioned in

2thanks to its rapid growth rate and ease of genetic manipulation
3associated with alluvial valleys
4common in the Mediterranean valleys and found in the rest of France and in Belgium
5present in the majority of forest areas
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Section 1.1.1, such as siding (FAO, 2020a). The benefits of poplars are also environmental, as
they capture nitrates and phosphorus upstream of alluvial areas, and diversify the landscape
in agricultural areas, thus the fauna and flora (Interreg : Forêt-Pro-Bos, 2020). Furthermore,
the plantation of poplars is regulated by Walloon legislation to limit potential negative effects
on the environment (Dumont, 2018). Finally, poplars are part of the landscape, especially
along the canals and on the edge of the meadows in the province of Hainaut, which gives
them a social value (Interreg : Forêt-Pro-Bos, 2020).

1.1.2 National forest inventory

Regional Forest Inventory

Reliable data are essential for coherent decision-making, including national forest policy
or forest resource management. The primary large-scale data sources are national Forest
Inventory (FI) and forest condition monitoring networks (Travaglini et al., 2013). In Belgium,
the FI is the responsibility of the 3 regions (Wallonia, Flanders and Brussels), the modern
Walloon Region Forest Inventory (WFI) results from a harmonization of the methods carried
out in 1994, but remains in constant evolution to integrate new variables related to biodiver-
sity, damage monitoring or forest certification monitoring (Rondeux et al., 2016). The latter is
based on a single-phase systematic sampling of approximately 11,000 sampling points com-
posed of several concentric plots depending on the nature of the data collected (Alderweireld
et al., 2015).

Evolution in needs

National FI can provide accurate and comprehensive estimates, but collecting forest data
over large areas can be time-consuming and costly. In addition, the variables involved in FIs
must meet evolving needs related to the multifunctionality of forests, from Forest Cover (FC)
and productive function of forests to forest health, biodiversity, protective function of forests,
social services, carbon balance, land use, biomass for energy, water supply, and so on (Koch,
Dees, et al., 2008). Demand for large-scale forest data will continue to grow, for decision-
making at the European Union level, or for reporting related to international agreements
and activities under the Paris Agreement, the Convention on Biological Diversity (CBD) and
the United Nations Framework Convention on Climate Change (UNFCCC 2015) (Vauhkonen
et al., 2019). Fortunately, large-scale field inventories can be supported by the increasing
acquisition of remote sensing data and the evolution of methods. This will be further detailed
later in Section 1.2.1.

1.1.3 Unclear estimated poplar area

In connection with the concerns raised in Section 1.1.2, national or regional FIs might be
inappropriate for some species, particularly for fast-growing species used for SRWC. Indeed,
these species exhibit rapid change in standing volume and may also occur outside forests
as defined by FAO (2020b). Uncertainty in the poplar resource area estimates reported in
Section 1.1.1 is related to the fact that they are based on two data sources: the WFI and the
Department of Nature and Forests (DNF) GIS data, which do not take into account the two
aforementioned elements related to SRWC.

3
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1.2 Mapping and characterization of the forest resource using remote
sensing

In this section, the focus is on reviewing remote sensing data and state-of-the-art predictive
methods suitable for use in this project, the literature search was therefore limited to large-
scale applications.

1.2.1 Remote sensing data

Remote sensing for local monitoring of forest resources using aerial imagery dates back
to the middle of the 20th century, followed by the dispatch in the 1970s of the first earth
observation satellites6 (Boyd and Danson, 2005). In the 1990s, an acceleration in the number
of spatial programs for the EO occurred, in line with the awareness of the global changes
(Hamrouni Berkaoui, 2021). The supply satellite images for EO has been widely diversified
by a series of commercial programs, such as the French SPOT, the American Ikonos-2 and
QuickBird, WolrdView and Pleiades (Hamrouni Berkaoui, 2021). Nevertheless, as mentioned
in Section 1.1.2, an ever-increasing need for large-scale data processing was slowed by the
cost of accessing commercial data. As a result, massive public and private investments have
enabled the launch of free access programs, including the Copernicus land monitoring service
(CLMS) (Copernicus, 2022). The CLMS, initiated by the European funding, cover all subjects
related to remote sensing for EO. These services are based on the European satellites SPOT,
PROBA-V and Sentinel (Ponomarenko and Zelentsov, 2021). The Sentinel satellite (ESA,
2022b) constellation has been deployed for the Copernicus program, two of which are of
interest for forest resource monitoring, the Sentinel-1 and Sentinel-2 (S2) satellites. The
former offering Synthetic-aperture radar (SAR) height data with a resolution of 5 m and the
latter multispectral optical images.

The advantage of satellite images is that they have a high spectral resolution, generally
multiband (about ten bands) to hyperspectral (hundreds of bands), a low revisit time and a
large coverage of the scene (ESA, 2022a). These advantages may nevertheless be subject to
certain limitations, such as low spatial resolution or dependence on cloud cover requiring
complex image processing like image fusion through neural networks for satellite image fu-
sion (Latte and Lejeune, 2020) or time series processing by domain adaptation (Hamrouni
Berkaoui, 2021).

The Walloon region provides another type of valuable data source for large-scale mapping
and characterization of the forest resource, namely orthoimages (PSW, 2022b) and Light
Detection And Ranging (LIDAR) point clouds (PSW, 2022a). Unlike optical satellite images,
orthoimages are characterized by a high spatial resolution (25 cm). They are acquired in the
absence of cloud cover, but they have 4 bands (Red, Green, Blue (RGB) and Near-infrared
(NIR)) and a revisit time of one year, which means that images from a given year may be out-
side of the growing season. Regarding the height data, aerial Canopy Height Models (CHMs),
whether derived from a combination of the Digital Terrain Model (DTM) (from LIDAR) and
Digital Surface Model (DSM) (from Digital Aerial Photogrammetry (DAP)) or from a full LIDAR
CHM, have a higher spatial resolution than Sentinel-1 data. Nevertheless, a significant dif-
ference is observed between the two aerial height images. The LIDAR data with an average

6spatial Earth Observation (EO) Landsat program from National Aeronautics and Space Administration (NASA).
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resolution of 0.8pts/m2 are direct measurements of height while the second obtained by cross-
ing orthoimages creating a 3D relief, the latter is therefore less accurate. However, the high
cost of LIDAR data acquisition reduces the temporal resolution, the last acquisition under
this project took place between 2013 and 2014. In contrast, height data from the combi-
nation with photogrammetric Canopy Height Model (pCHM) has been produced for several
years, including 2018 and 2019.

1.2.2 Artificial intelligence in remote sensing

Remote sensing involves many sciences, specifically physics, statistics, computer science
and Artificial intelligence (AI). The latter is essential for forest resource map production, as
predictive models are based on the learning domain (see Appendix A) of AI, and the tasks
solved by these models applied to remote sensing data are derived from Computer Vision
(CV) domain (see Appendix B) of AI.

As explained in Appendix A, the learning domain of AI is based on Machine Learning (ML),
whereby the machine learns to solve a task for which it has not been explicitly configured.
To map forest resources, supervised learning is required to tell the machine the labels to
be predicted and the variables characterizing them. There are several algorithms commonly
used for classification of remote sensing data, such as Support Vector Machines (SVMs),
Naïıve Bayes classifier, k-nearest neighbor classifier, remote sensing, as cited in (Kishore et
al., 2016; C. Zhang et al., 2017).

Deep Learning (DL) is a subset of ML that differs in its automation. Namely, it does not
require feature extraction before performing classification (Sandhya Devi, Vijay Kumar, and
Sivakumar, 2021) and the learning process is iterative and nonlinear. Convolutional Neural
Networks (CNNs) transform data by applying a convolutional filter. They are particularly
well suited for multiband image processing and have been a game changer for the use of
DL in CV (L. Zhang, L. Zhang, and Du, 2016). Among other CNN architectures, we can
mention AlexNet, VGG, ResNet for image classification and U-Net, Deep Layer Aggregation
(DLA), FastFCN, DeepLab, Mask R-CNN for object segmentation, as cited in (Ma et al., 2019;
Wu, Q. Liu, and X. Liu, 2019).

Tasks involved in remote sensing data are divided into image preprocessing, change detec-
tion, accuracy assessment, and classification (Ma et al., 2019). The former includes image
fusion, image registration and object segmentation, while the latter includes land cover and
land use classification, scene classification and object recognition.

1.3 Remote sensing in support of the poplar resource inventory

Various research studies have been conducted for large-scale poplar resource mapping,
mainly using ML approaches applied to satellite images. Highly accurate results were ob-
tained for the mapping of hybrid poplar (P. deltoides) plantations in Sakary, Turkey, by us-
ing three algorithms: Random Forests (RFs), support vector machines (SVMs) and Adaboost
(AdaB) applied to S2 images (Ozturk and Colkesen, 2020). In the same region, Kavzoglu,
Tonbul, and Colkesen (2021) then performed a statistical comparison of atmospheric correc-
tion methods to increase the accuracy of poplar resource mapping. Another study conducted
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in Tehran to map poplar plantations from S2 images by using an SVM algorithm has also
obtained convincing results.

In Northern Italy, a study of the impact of spatial resolution for the mapping of poplar
plantations was conducted between S2 images and aerial images from Unmanned Aerial
Vehicle (UAV); the accuracy of the mapping was increased with the resolution (Chianucci et
al., 2020), but the second data source does not allow a large-scale application.

Nearer to Wallonia, a complex S2 image processing approach for large-scale poplar grove
mapping in France using ML classification has also shown good results which can be used by
professionals in the sector (Hamrouni Berkaoui, 2021). In Wallonia, a mapping of the poplar
FC by a ML approach has shown the interest of S2 images for forest mapping (Bolyn, Latte,
Colson, et al., 2020).

A DL approach (fully connected neural network) compared to a more conventional ML ap-
proach (logistic regression) for the classification of poplar plantations in northern Italy re-
vealed a superior potential for Deep Neural Networks (DNNs) (D’Amico et al., 2021). This was
particularly true with the occurrence of non-linear patterns observed in massive datasets and
the processing of massive data (D’Amico et al., 2021). A large-scale tree recognition method
using a DNN U-Net architecture applied to very high resolution satellite images (GeoEye-1,
0.46 m/pixel and RGB images) to perform semantic segmentation was found to be effective
in both detecting and differentiating Mongolian poplar (Populus suaveolens) and evergreen
conifers (Abies holophylla , Pinus koraiensis) in the Primorsky region of the Russian Far East
(Korznikov et al., 2021).
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1.4 Research positioning

Poplars are important species for global and regional matters. In Wallonia, it is assumed
that there is an inaccuracy in the estimation of the area of this resource. To overcome this
uncertainty, remote sensing data are available within this Belgian region, namely: satellite
and aerial images. Characterizing the predicted surfaces then provides a further insight into
this woody resource.

1.4.1 Problematic and research questions

The problematic of this master’s thesis concerns the study of different remote sensing data
to support the inventory of the poplar resource in Wallonia. This problematic is divided into
three main research questions:

• Using feature extraction developed by Hamrouni Berkaoui (2021) and Sentinel-2 super-
resolution images by Latte and Lejeune (2020); can a finer spatial resolution of satellite
images significantly improve the accuracy of poplar resource mapping?

• Could neural networks be used to map the poplar resource from another source of large-
scale remote sensing data, namely orthoimages ? The last characterized by a lower
spectral resolution but a high spatial resolution compared to the above-mentioned S2
super-resolution images.

• Can the high-quality photogrammetric Canopy Height Model (Michez et al., 2020) be
used to characterize the poplar resource in the absence of available Light Detection And
Ranging (LIDAR) data?

1.4.2 Objectives and approaches

The objectives of this master’s thesis are to develop and compare two methods for mapping
and characterizing the poplar resource on a regional scale, in the Province of Hainaut, part
of the Walloon Region. The two approaches to meet these objectives are the following:

• A Machine Learning-based approach consisting of a pixel-based supervised classifica-
tion of Sentinel-2 super-resolution images with a spatial resolution of 2.5 m and a
spectral resolution of 10 bands.

• A Deep Learning-based approach, using orthoimage (Red, Green, Blue and Near-
infrared) with a spatial resolution of 25 cm.
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2 Material and Methods

2.1 Study area

Covering an area of 381,350 ha, the province of Hainaut was chosen to develop and com-
pare two mapping and characterization methods of the poplar resource. Firstly, because
this Belgian province, part of the Walloon Region, has a forest history closely linked to the
poplar species. Secondly, the province of Hainaut has the largest area in 2008 with 5,400 ha,
which corresponds to 55% of the region’s poplar area and 10.2% of the province’s total FC,
even though it is the second smallest province in Wallonia according to the forest area and
the FC rate1 (Alderweireld et al., 2015). The Walloon poplar area has evolved between 2008
and 2021 from 9,800 ha to 7,700 ha (Office économique wallon du bois, 2021), but the trend
mentioned above is still relevant. In fact, it is confirmed by both the DNF of the Public Service
of Wallonia (PSW) GIS data with 318.3 ha of poplar plantations within the public productive
forest area2 in Wallonia in 2021, of which 56.5% are located in the province of Hainaut, and
by observing the map of forest stands in Wallonia by remote sensing (Bolyn, Latte, Colson,
et al., 2020).

Poplars are present in all natural regions of Wallonia, but are generally associated to agri-
cultural landscapes with rich soils and good water supply (Interreg : Forêt-Pro-Bos, 2020);
these conditions are found in the bioclimatic zones of the "Scaldian plains and valleys",
"Hesbino-Brabançon" and "Sambre-et-Meuse and Condroz”. The first, shown in red in Figure
1, covering the western and northern part of the province of Hainaut, is the most suitable for
this tree species, thus explaining its abundance in this province.

2.2 Material

2.2.1 Remotely sensed data

Satellite images

Super-resolved satellite images were used in this master’s thesis. These images were pro-
duced by fusing S2 and PlanetScope (PS) images through a method involving a CNN model
based on residual learning, proposed by Latte and Lejeune (2020).

Funded by the European Copernicus project, the satellite images from the S2 constellation
have a spatial resolution of 10 m, 20 m and 60 m, a spectral resolution of 13 bands across
the visible, NIR and Short-Wave Infrared (SWIR) wavelengths and a temporal resolution of
5 days, (see ESA, 2022c). The PS constellation provides images with a pixel size of 3 m
including 4 bands (RGB and NIR), acquired daily thanks to more than 180 nano-satellites,

113.9% of the area of the province is covered by forests, which is 53,150 ha, including 46,000 ha of productive
forests

240% of the productive forest area of the province of Hainaut is public and 60% private
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Figure 1: Bioclimatic map of Wallonia from the PSW (see Van-Der-Perre et al., 2015), with the
administrative limits of the province of Hainaut in black, bounding the study area.

property of the private American company Planet Labs, (see Planet Labs PBC, 2021). The
super-resolution images return the 10 bands from the 10 m and 10 m resolution S2 images,
but with an enhanced pixel size at 2.5 m. These bands are listed in table 1.

Unfortunately, the above processing to super-resolve S2 images at a specific date includes
gaps in the data corresponding to clouds and shadows. To address this, a multi-date mosaic
of super-resolved images was produced over the 2018 growing season, based on a weighted
average of pixels per date, for which the weighting is relative to the peak date of the growing
season; the further away from that date, the lower the weighting assigned to pixels.

Aerial images

Another source of data comes from aerial images, namely a set of orthoimage covering
Wallonia at different years, belonging to the PSW and freely available (see PSW, 2022b). The
suitable aerial images for this study are those of the years 2016, 2018, 2019, 2020 and
2021; the others are either too old or acquired outside the plant growth period. It should
be noted that the 2019 orthoimage was acquired on the most suitable dates for the growing
season within the study area, from June 2, 2019 to August 24, 2019. These optical data
with a spatial resolution of 25 cm and a spectral resolution of 4 bands (RGB and NIR) are
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complemented by a DSM from DAP. A pCHM was then obtained by combining these DAP with
the DTM from 2014 LIDAR using the approach developed by Michez et al. (2020).

Table 1: Spectral bands of the super-resolved Sentinel-2 images.

Band
name

Band
ID

Central
wavelength

(nm)

Bandwidth
(nm)

Blue B02 490 66
Green B03 560 36
Red B04 665 31
VRE B05 705 16
VRE B06 740 15
VRE B07 783 20
NIR B08 842 106
VRE B08A 865 22
SWIR B11 1,610 93
SWIR B12 2,190 180

2.2.2 Reference dataset

The reference dataset consists of a set of points and polygons. The first composed of
25,951 point-marked poplars was generated from data collection within reference sampling
unit, using Geographic Information System (GIS) tools by surveying the 2019 orthoimage.
The second comes from previously produced points and the 2021 DNF GIS data. The latter
is used by the forestry administration of the Walloon Region to prepare forest management
plans and organize current management tasks (Crutzen, 2017). Two classes were considered
in the DNF GIS data to form the reference polygons, "poplars" and "others"; the first one
includes plots containing only poplars and the second one all other plots without poplars.

The area covered by the reference polygons is 269 ha for the "poplar" label (146 ha obtained
from poplar pointing and 123 ha from the DNF GIS data) and 15,638 ha for the "other" label
from the DNF GIS data.

2.2.3 Other datasets

An additional dataset was made from an image interpretation step performed on the whole
woody mask applied to the province of Hainaut. The latter was produced by the mapping of
trees outside of forests using height data from aerial LIDAR (see Bolyn, Latte, Fourbisseur,
et al., 2020). The woody mask includes all wooded vegetation in the landscape, which after
intersection with the 2018 CHM (cf., section 2.2.1) whose spatial resolution has been reduced
to 2.5 m, have a minimum height of 3 m and a minimum area of 6.25 m2, corresponding to
the area of one pixel. Thus, with a density of one point per square of 500 m side, 2,705
points in the 65,595 ha of the woody mask were assigned to the poplar or other class based
on image interpretation of the 2018 orthoimage.

Finally, another dataset came from the plots of the Walloon regional forest inventory. Based
on a proportion of poplar in the basal area of forest trees greater than or equal to 80%, plots
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inventoried over the period 2014-2022 and a visual validation of the plots with respect to the
2019 orthoimage; 24 circular plots of 18 m radius were selected in the province of Hainaut.
These data are supplemented by field measurements of the total height of some of the trees
surveyed in the circular plots, and by point marking of all visually detectable trees from the
2019 orthoimage, for a total of 421 trees.

2.2.4 Hardware and software

The project ran on two different computers both with window 10 64 bits as explorer.
Central Processing Unit (CPU) and Graphics Processing Unit (GPU) were respectively In-
tel®Core™with 20 cores for the first machine and 12 cores for the second and 64 GB of
RAM for the first and 32 GB of RAM for the second. The DL and prediction by the neural
network model was fully coded in R with four main packages: stars (Pebesma, Sumner, et al.,
2022), sf (Pebesma, Bivand, Racine, et al., 2022), torch (Falbel, Luraschi, et al., 2022) and
torchvision (Falbel, Regouby, and RStudio, 2022) by Nicolas Latte and executed on the first
machine, the other processing was executed on the second machine and used the R pack-
ages: stars(Pebesma, Sumner, et al., 2022), raster (Hijmans et al., 2022), sf(Pebesma, Bivand,
Racine, et al., 2022), sp (Pebesma, Bivand, Rowlingson, et al., 2018), randomForest (Cutler
and Wiener, 2022), caret (Kuhn [aut et al., 2022) and in command line within R the Orfeo
ToolBox (OTB) and Geospatial Data Abstraction Library (GDAL/ORG) software. Finally, data
collection and GIS processing were performed using Qgis software.

2.3 Methods

Two approaches, each based on a different type of remote sensing data, have been de-
veloped to fulfill the research objectives related to large-scale mapping and characterization
of the poplar resource. The first, a classification-based approach, implements a machine
learning algorithm for pixel-based classification of the poplar resource from satellite images.
The second is a semantic segmentation-based approach from aerial images using a DL al-
gorithm followed by a Spatial Analysis (SA) of poplar plantation patterns. Both approaches
are divided into 5 steps: data preparation, supervised learning, map production, resource
characterization by height classification and accuracy assessment. It is important to note
that the map production step by the semantic segmentation approach uses at some point
a map produced in the classification approach. The process flowchart of the methodologies
from data preparation to height classification is shown in Figure 2, and the evaluation of the
results in Table 7.

2.3.1 Data preparation

Satellite images

The classification-based approach was performed on the 2018 S2 super-resolved images
(cf., Section 2.2.1), within the woody mask (cf., Section 2.2.3 ). The features extracted
from these remote sensing data are based on the spectral indices selected in the thesis of
Hamrouni Berkaoui (2021) concerning the automation of the poplar resource mapping in
France, they are listed in Table 2. All variables (bands from the S2 super-resolved images
and feature extraction) were standardized, i.e., centered and reduced using the mean and
standard deviation computed over all these variables, in order to limit troubles due to range
differences.

11



2 Material and Methods

Figure 2: Process flowchart of the methods used for the mapping and characterization of the
poplar resource in the province of Hainaut using remote sensing data, from data
preparation to height classification.
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Table 2: List of spectral indices extracted from super-resolved Sentinel-2 images, with their
respective formulas and references.

Indice Formula Reference

Normalised Difference Vegetation Index NDV I = B08−B04
B08+B04 ((Rouse et al., 1974)

Simple ratio Moisture Index MSI = B11
B08 (Hunt and Rock, 1989)

Simple ratio Disease Water Index 4 DSWI4 =
B03
B04 (Apan et al., 2003)

Normalised Pigment Chlorophyll ratio Index NPCRI = B04−B02
B04+B02 (Peñuelas et al., 1994)

Normalised Burned Ratio Index NBRI = B08−B12
B08+B12 (Key and Benson, 2006)

Shortwave Infrared Water Stress Index SIWSI = B08A−B11
B08A+B11 (Fensholt and Sandholt, 2003)

Anthocyanin Reflectance Index ARI = 1
B03 − 1

B05 (Gitelson, Merzlyak, and Chivkunova, 2001)
Soil Adjusted Vegetation Index OSAV I = (1+0.16)∗(B08−B04)

(B08+B04+0.16) (Rondeaux, Steven, and Baret, 1996)
Leaf Chlorophyll Index LCI = B08−B05

B08+B04 (Datt, 1999)
Modified Chlorophyll Absorption in Reflectance Index MCARI = (B05−B04)− 0.2 ∗ (B05−B03) ∗ (B05

B04) (Apan et al., 2003)
Red edge Index 2 Red edge 2 = B05−B04

B05+B04 (Cloutis, 1996)
SWIR ratio SWIR ratio = B12

B11 (Guerschman et al., 2009)
Poplar Index 1 PI1 = B11−B12 (Hamrouni Berkaoui, 2021)
Poplar Index 2 PI2 = B05− (B11 +B12) (Hamrouni Berkaoui, 2021)
Poplar Index 3 PI3 =

B05−(B11+B12)
B05+(B11+B12 (Hamrouni Berkaoui, 2021)

Poplar Index 4 PI4 = B11 +B12 (Hamrouni Berkaoui, 2021)

Reference polygon dataset

In order to train and test the ML algorithm, the reference polygon dataset (cf., Section 2.2.2)
was divided into a training and test dataset, from which the sample selection of pixels was
performed. First, the reference polygon dataset was divided into classes (poplar and other),
with approximately 80% of the geometry area intended for the training dataset and the rest
for the test dataset. This first process prevents the influence of neighboring pixels, called
spatial autocorrection, by splitting the reference dataset based on polygons [(Karasiak et al.,
2019), as cited in Hamrouni Berkaoui (2021)]. In this way, training pixels come from training
polygons, as well as test pixels come from test polygons. Then, the pixel sampling strategy
consisted of selecting the same number of pixels for each class by limiting the number of
pixels to the class containing the least number of pixels, here the poplar label. The number
of pixels sampled for the classification is shown in Table 3.

Table 3: Number of sampled pixels for classification training and test.
Label Number of polygons Available pixels Kept pixels

Training
Others 5800 18,761,415 341,727
Poplar 164 341,727 341,727

Test
Others 1933 6,260,266 89,093
Poplar 54 89,093 89,093

Aerial images

The aerial images used for the semantic segmentation-based approach were the 2019 or-
thoimages (cf., Section 2.2.1) cropped to the study area. Since feature extraction is per-
formed automatically by the DL algorithm, data preparation was only limited to standardiza-
tion as in Section 2.3.1. Nevertheless, to avoid the consider potential outliers, the minimum
and maximum values considered for standardization were respectively the 1st and 99th quan-
tile.
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2 Material and Methods

Reference point dataset

As explained in Section 2.3.1, sample selection was done by point group within the refer-
ence point dataset (cf., Section 2.2.2) to minimize spatial autocorrection. Indeed, the image
interpretation process used to build the reference point dataset was done by sampling unit
represented by polygons, the splitting of this reference dataset was done at the level of these
polygons. The splitting consisted of approximately 80% of the geometric area for the training
dataset and the rest for the test one. The number of reference points is shown in Table 4.
The training point dataset was then rasterized, i.e., a raster based on the 2019 orthoimages
was built with a value of 1 for the pixels intersected by the points of reference, the rest was
assigned a value of zero. It is important to underline that the effective area considered in the
sample unit for learning is actually an area after applying a negative buffer of the patch size,
in order to prevent the kernel bypassed areas outside the sample unit.

Table 4: Number of sampled points for neural network training and test.

No. of points Proportion of points (%)

Reference dataset 25,951 100
Training dataset 20,912 80.6

Test dataset 5,039 19.4

2.3.2 Supervised learning

Supervised learning for classification was performed by a RF algorithm while for semantic
segmentation by a DLA architecture.

Random Forests

The RF algorithm is a ML based classifier widely used for FC type prediction (Kishore et al.,
2016). This algorithm was preferred to others such as the Support Vector Machine (SVM),
the Naïve Bayes classifier or k-nearest neighbors, because it has the best robustness to noise
and less sensitive to overfitting (Sjöqvist, 2017; Sjöqvist, Längkvist, and Javed, 2020). In
addition to the above-mentioned criteria, Hamrouni Berkaoui (2021) selected this algorithm
for large-scale mapping of the poplar resource in France, due to a lower processing time
than other algorithms, performance little influenced by spatial or temporal scale with
the same hyperparameters, and a more reliable evaluation observed when test samples are
independent from the training ones.

RFs proposed by Breiman (2001) is an ensemble supervised learning model, composed of
decision trees for classification and regression. Decision tree training is based on an ensem-
ble method called "bagging" or "bootstrap aggregation" which involves randomly sampling
data from the training dataset to train the decision trees, then the final model is obtained
by aggregating all these independent predictive models (see Figure 3). For lower correlation
between decision trees, the RF algorithm additionally uses a feature randomness method by
randomly sampling a number of features (variables) to train the classification model.
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2 Material and Methods

Figure 3: Illustration of the structure of a random forest algorithm and a decision tree.

The three main hyperparameters to set before training the RFs are: the maximum number
of trees in the forest, the minimum node size for a split and the number of features tested
at each node, which have been set with the following values, respectively 100, 25 and 12.
These values were tuned using the R packages "randomForest" and "caret", training was then
performed using the Shark Random Forests classification algorithm within OTB. The latter
includes another hyperparameter to set the fraction of the training dataset for the calculation
of the out of the bag (OOB) value which is a type of RF cross-validation method. The default
value of 0.66 was kept, meaning that 0.66% of each bootstrap at the origin of the decision
trees are used for performance evaluation and selection of variables of interest. However,
the OOB technique is different from conventional validation method as the pixels used for
validation in a decision tree can be randomly selected in another decision tree for training.

Deep Layer Aggregation

The DNN architecture tested before considering DLA was U-Net (Ronneberger, Fischer, and
Brox, 2015), U-Net++ (Z. Zhou et al., 2020) and U-Net3+ (H. Huang et al., 2020). In fact,
state-of-the-art results were observed in medical imaging but also for weed detection from
crops (Rakhmatulin, Kamilaris, and Andreasen, 2021) or FC prediction (Bragagnolo, Silva,
and Grzybowski, 2021; Giesen, 2022). Nevertheless, due to a high processing time to con-
verge, which negatively affects the accuracy of the results, they were not kept. Therefore, a
lighter detection architecture had to be considered for poplar detection, based on semantic
segmentation and object-as-point detection method to limit the processing time compared
to those producing a bounding box. X. Zhou, D. Wang, and Krähenbühl (2019) proposed
a keypoint based approach for object detection named CenterNet, exhibiting higher speed
than YOLOv3 with accuracy levels at Faster-RCNN-FPN. Four architectures were used as the
backbone of the model: ResNet-18, ResNet101, DLA-34 and Hourglass-104. DLA-34 offered
the best speed/accuracy trade-off. The performance evaluation was measured using the MS
COCO dataset (Lin, Maire, et al., 2015). This trend has been confirmed by further research
conducted on the CenterNet model (Xu, 2021; Zhao and Yan, 2021). The architecture has
also been used and modified outside of the CenterNet model to perform CV tasks with ac-
curacy equivalent to VGGNet, ResNet, and DenseNet-based architectures deployed on low
performance devices such as a drone or laptop (F.-T. Wang et al., 2021).
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For the reasons mentioned above, we chose the DLA-34 architecture based on DLA struc-
ture proposed by Yu et al. (2018). The goal of the study was to better fuse semantic and
spatial information for recognition and localization tasks. Two DLA structures were then
proposed (see Figure 4): iterative deep aggregation (IDA) focuses on merging resolutions and
scales, and hierarchical deep aggregation (HDA) focuses on merging features from all modules
and channels. The former is inspired by Feature pyramid networks (FPNs) proposed by Lin,
Dollár, et al. (2017), while the latter is inspired by Densely connected networks (DenseNets)
proposed by (G. Huang et al., 2018). IDAs differs from linear aggregation as in Fully Convolu-
tional Networks (FCNs) proposed by Shelhamer, Long, and Darrell (2016), FPNs, and U-Nets
by starting at the smallest and shallowest scale and then iteratively merges the larger and
deeper scales. The study concludes that DLAs offer improved performance, parameter count,
and memory utilization in comparison with competing architectures. The DLA34 network
consists of basic blocks with 16, 32, 64, 128, 256, and 512 channels for stages 1 to 6 and an
aggregation depth of 1, 2, 2, and 1 for stages 3 to 6.

Figure 4: Illustration of the architecture of a DLA neural network with Hierarchical Deep
Aggregation (HDA) and Iterative Deep Aggregation (IDA), from Yu et al. (2018).

The CNNs in this project used batch normalization layers and the Rectified Linear Unit
(ReLU) activation function (see, Appendix A). The patch size was a 512 pixel square, the mini-
batch size was 2 patches and the batch size was 2 mini-batches, the limit imposed by the GPU
required the use of mini-batches in order to constitute a sufficient batch size for the descent
gradient to converge to the global minimum without considering the local minimum. The loss
function considered by gradient descent is a mean square error (MSE), whose equation is:

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 (2.1)

where n is the number of pixels contained in a minibatch, yi is the vector of observed values
and ỹi is the vector of predicted values, the error being the difference between these last two.
The training rate was constant at 0.0001, the maximum number of epochs was 1,000(cf.,
Appendix X). Then, during the neural network training, data augmentation was performed
by vertical and horizontal flip.
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2.3.3 Map production

Classification-based approach

The classification model resulting from supervised learning by the RF algorithm produces
a raster composed of a binary classification per pixel (other or poplar) with a confidence score
per pixel corresponding to the proportion of votes for the majority class. Hence, the classified
pixel values range from 0 to 1, respectively a large number of votes for the "other" class and
a large number of votes for the "poplar" class.

In order to complete the map production, for a classification confidence score threshold
chosen at 0.8, regularization was applied with a kernel radius of 22 pixels and an isolation
threshold of 20 pixels, followed by sieving with a threshold of 80 pixels, i.e. a minimum area
of 5 a.

Semantic Segmentation-based approach

The semantic segmentation was produced from the neural network prediction, resulting
in a raster composed of a dense prediction of the "poplar" label for each pixel. The dense
prediction task refers in CV to the prediction of a label for each pixel in the image (Sercu and
Goel, 2016). The resulting raster from the semantic segmentation can then be understood as
a density or heat map (Seddati et al., 2017; Zhao and Yan, 2021) with a pixel value ranging
from 0 to 1, increasing progressively the closer the pixel is to the center of a poplar tree. The
density prediction from the neural network was smoothed using a 2d Gaussian filter, whose
equation is:

G2D(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.2)

where the value of sigma (σ) was 1.5 and the window size was 11 defining x and y.

Post-processing of this semantic segmentation for poplar detection for map production
involved point generation, point sorting, point grouping, and a threshold on the number of
points per group.

First, vector points marking the position of poplars were generated by applying a local
maximum detection algorithm, with a minimum dense prediction value of 0.3 and a minimum
distance between points of 4 m as parameters.

Then, the sorting and grouping of points aims to drastically reduce the number of False
Positives (FPs). This was done by first extracting the following maximum values in a 2 m
buffer for each point: the confidence score of the classification (cf., Section 2.3.5), the dense
prediction score by the neural network model, and the height (2019 pCHM).

The point sorting was done at the level of a partition in 3,257 tiles of the province of Hainaut
for a width of 1,254 m and a height of 1,027 m each; a variable was added to the points which
is the average confidence score for the points of the tile. Based on this average confidence
score per tile, different confidence scores and dense prediction scores were used to retain
points (see Table 5). This method was necessary to not consider all the province of Hainaut
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in a homogeneous way, by being less strict in retaining points in areas with the highest
probability of poplars.

Table 5: Confidence score (c) and dense prediction score (d) used to retain a point according
to the average confidence score value per tile (a).

For an average confidence score Values used to retain a point

a < 0.1 (c ≥ 0.9 & d ≥ 0.6)
0.1 ≤ a < 0.4 (c ≥ 0.9 & d ≥ 0.5)
0.4 ≤ a < 0.65 (c ≥ 0.8 & d ≥ 0.4)
0.65 ≤ a < 0.85 (c ≥ 0.7 & d ≥ 0.35)

a ≥ 0.85 (c ≥ 0.9 & d ≥ 0.4)

An algorithm originally designed by Bolyn, Lejeune, et al. (2019) and Bolyn, Latte, Fourbis-
seur, et al. (2020) was used for point grouping. The idea is to use the spatial characteristic
of poplar plantations for a second point sorting. Points with a maximum distance of 10 m
from each other and a maximum height difference of 8 m were considered to be part of the
same group (a poplar plantation), thus eliminating isolated points or points with no spatial
proximity (x, y, z) to these neighbors.

Finally, a minimum number of trees per group had to be considered to eliminate isolated
groups too small to constitute a poplar plantation. However, aligned plantations, which are
more difficult to identify, generally group fewer points, so in order not to eliminate them, it
was necessary to differentiate the alignment and checkerboard spatial patterns. On the basis
of polygons built from groups of points, two elements were considered, a ratio between the
surface intersected by the polygon with a 5 m buffer around the boundaries of the cadastral
parcels of the province of Hainaut and the total surface of the polygon as well as a ratio
between the quartile 2 and 4 of a distance vector measured between the boundaries of the
polygons. Indeed, alignment patterns are found along cadastral parcel boundaries and are
characterized by a small distance ratio separating the internal boundaries of the polygon.
Alignment patterns considered with a ratio based on cadastral boundaries of 0.6 and 0.15
based on internal distance consist of groups of at least 5 points while checkerboard patterns
have at least 10 points.

2.3.4 Height classification

A height classification was used to characterize the poplar resource. By taking into account
the growth of the forest species and in line with a study on the delineation of stand units
(Koch, Straub, et al., 2009), the height classes listed in Table 6 were established. These
height classes were informatively associated with a stand development stage based on the
Koch, Straub, et al. (2009) and Kimmins (2003) work.

In areas classified as poplar by the classification-based approach, the height data from the
photogrammetry applied to the 2018 orthoimage was low-pass filtered (average filter) with a
square kernel of 15 pixels on each side and then classified according to the height classes
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Table 6: Height classes (h) for characterization of poplar resource related to stand develop-
ment stage.

Development stage Height class

Sapling 3 ≤ h < 8m
Pole 8 ≤ h < 16m

Mature trees 16 ≤ h < 24m
Old trees 24m ≥ h

above. Before being polygonized, the height class raster was post-processed by regulariza-
tion and sieving3. Regarding the data from the semantic segmentation-based approach, the
average height of the points per group was classified by height classes. As a reminder, the
height per point is derived from an extraction of the maximum height value provided by the
2019 pCHM4, within a 2 m buffer around the point (see Section 2.3.3). The observed height
class per sample plot of the WFI is the average of the dominant heights measured in the field
within the plots.

2.3.5 Accuracy assessment

The results of the two approaches to mapping and characterizing the poplar resource in
the province of Hainaut, as well as the methods and datasets used to evaluate them, are
summarized in Table 7. These methods (confusion matrix, proportion of labels, false positives
and ratio of properly labeled height classes) are detailed below, with respect to the datasets
mentioned in Table 7, described in the Sections 2.2.2 and 2.2.3.

Table 7: Overview of the data produced by the two approaches for the mapping and charac-
terization of the poplar resource int the province of Hainaut, with the method and
dataset used to evaluate these results.

Approach Output data Evaluation method Dataset

Classification-based

Confidence score map
Confusion matrix Test polygons

Proportion of labels
Image interpretation points

WFI plots

Post-processed map
Confusion matrix Test polygons

Proportion of labels
Image interpretation points

WFI plots
Height class map Ratio of properly labelled height classes WFI plots

Semantic
segmentation-based

Dense prediction score map
Confusion matrix Test points + WFI plots

False positives DNF GIS field

Post-processed map
Confusion matrix Test points + WFI plots

False positives DNF GIS field
Hausdorff Distance Test points + WFI plots

Height class map Ratio of properly labelled height classes WFI plots

Confusion matrix

As the name suggests, this evaluation method is based on a confusion matrix. In the
case of binary classification or object detection according to the approach considered in this

3a threshold below which a group of pixels is not taken into account
4combination of DTM from the 2014 LIDAR and a DAP applied to the 2019 orthoimage
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project, the latter allows identifying correct predictions from erroneous ones. Table 8 shows
a confusion matrix for a binary classification per pixel.

Table 8: Composition of a confusion matrix for a binary classification, according to the pre-
dicted class for each pixel compared to the observed one, 4 classification results are
obtained: True Positive (TP), False Positive (FP), True Negative (TN) and False Nega-
tive (FN).

Produced labels
Other Poplar

Reference labels
Other

True Negative False Positive
(TN) (FP)

Poplar
False Negative True Positive

(FN) (TP)

For the classification-based approach, the confusion matrices are derived from the pixels
produced and observed in the test polygon dataset. Confusion matrices for the semantic
segmentation-based approach are obtained from an Intersection over Union (IoU) between
points in the test point dataset combined with those in the WFI sample plots and those
predicted. Before combining the two databases mentioned above, two WFI plots located
on the training point dataset were removed, leaving 22 plots containing 399 points, for a
combined database of 5,437 points (5,038 + 399). The IoU (see Figure 5), is used to allow
the computation of evaluation metrics for object detection by a bounding box. The observed
points and those predicted by the segmentation-based approach were then surrounded by
a circular buffer of 3 m radius, this buffer acting as a bounding box. A True Positive (TP)
class was assigned to a predicted bonding box, if the ratio of the area intersected with the
observed bonding box to the area of the union of these two bonding boxes was at least 0.3.
The points observed in the semantic segmentation approach considered as positive differ from
the background of the image which is then negative, this background not being predicted;
the confusion matrix of this approach does not contain True Negatives (TNs).

Figure 5: Equation of the Intersection over Union (IoU) between a predicted point and an
observed point respectively bounded by a bounding box A and B.

The evaluation metrics computed on the basis of the above-mentioned confusion matrices
are shown in Table 9. Regarding the "poplar" label, precision is the ratio of correct predic-
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tions to the total number of predictions, recall is similar but considers the total number of
observations as divisor, F1-score is the harmonic mean between precision and recall. Finally,
the kappa refers to Cohen’s kappa, indicating how much better the classification is than a
simple random classification based on the frequency of each class. It is important to note
that the latter includes TNs in its equation. This evaluation metric can therefore only be
applied to the confusion matrix of the classification-based approach, because the semantic
segmentation-based approach does not contain TNs.

Table 9: Evaluation metrics with the defining equation used in this project, where k is the
confidence score threshold, pop refers to the poplar label, po is the observed agree-
ment, pe is the expected agreement, TP , FP , TN , and FN are the number of True
Positive, False Positive, True Negative, and False Negative respectively from the con-
fusion matrix.

Evaluation metric Formula Evaluation metric Formula

Kappa κ = po−pe
1−pe

Precision Ppop(τ) =
TP

TP+FP

F1-score F1pop(τ) =
2∗Ppop(τ)∗Rpop(τ)
Ppop(τ)+Rpop(τ)

Recall Rpop(τ) =
TP

TP+FN

N = TP + FP + TN + FN

po =
TP + TN

N

pe =

(
TP + FP

N
∗ TP + FN

N

)
+

(
TN + FP

N
∗ TN + FN

N

)

Proportion of labels

The distribution between "poplar" and "other" labels within the woody mask was measured
by an image interpretation step, a set of points evenly spread over the mask were interpreted
from the 2018 orthoimage (see, Section 2.2.1). Then, the values of the classification confi-
dence score map and the map resulting from the post-processing of the latter were extracted
at the points used for image interpretation. By this way, it is possible to compare the distri-
bution of labeled points by the image interpretation with the predictions of the classification-
based approach. The area per label is obtained by interpolating the proportion of labels in
the woody mask and the area of the latter.

The proportion of labels was also observed in the WFI sample plots, where all pixels are
assumed to be classified with a "poplar" label. To make the evaluation objective and inde-
pendent, two WFI plots intersecting the training polygon dataset were removed, so that in the
remaining 22 plots.
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False Positives

To better evaluate changes in the number of FPs between the dense prediction score map
and the post-processed map from the semantic segmentation-based approach, the predicted
points in the province of Hainaut were intersected with the DNF GIS data. These data had
been used to supplement the reference polygon dataset used by the classification-based ap-
proach (see Section 2.2.3). Only DNF GIS data excluding any poplar presence were used,
for an area of 15,628 ha. Therefore, the predictions from the semantic segmentation-based
approach intersected with these data are FPs.

Hausdorff Distance

To quantify the location error of the points marked as detected poplars, the Hausdorff
distance (Nutanong, Jacox, and Samet, 2011; Ribera et al., 2019) was applied between the
TPs produced and those predicted observed. This distance is the average of the nearest
distances measured between the predictions and the observations mentioned above. Obser-
vations come from the test point dataset combined with the WFI WFI sample plot database,
the latter containing 399 points after removing those crossing the training point dataset.

Ratio of properly labelled height classes

A ratio of properly labeled height classes was calculated from the height class maps (cf.,
Section 2.3.4) and the average dominant tree heights measured within the WFI sample plots.
This ratio is therefore calculated on a pixel basis for the classification-based approach and
on a poplar (point) basis for the semantic segmentation-based approach. For the second
approach, only the correct predictions, i.e. the TPs are compared with the respective obser-
vation.
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3.1 Classification-based approach

3.1.1 Confidence score map

The confidence score map from the supervised pixel-based classification within the woody
mask is a raster consisting of pixels with a spatial resolution of 2.5 m with values ranging
from 0.00 to 1.00. A value close to zero indicates a large number of votes for the other class
and vice versa for the poplar class.

However, in order to evaluate the distribution of predicted labels as well as their relative
confidence score within the test polygon dataset, Figure 6 shows the percentage of confidence
scores. Each label ranked from 50 to 100, from a low number of votes to a high number of
votes for the majority class. It can be observed that the balanced distribution of the two labels
in the test polygon dataset seems to be satisfied, with a majority of high confidence scores.
The evaluation metrics that will be mentioned later will help to confirm this trend or not, as
well as to verify if the predictions are reliable.

Figure 6: Histogram of the number of pixels per confidence score (proportion of votes for the
majority class) in the test polygon dataset from pixel-based supervised classification
of super-resolved Sentinel-2 images using the Random Forest algorithm.

The evaluation metrics of the confusion matrix obtained based on a threshold (from 0.50
to 1.00 with an interval of 0.05) applied to the classification confidence score of the 178,186
pixels (2*89,093 pixels) in the test polygon dataset are shown in Figure 7. The performance of
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the kappa and F1-score remain stable but decrease slightly until a threshold on the classifi-
cation confidence score of 0.80 is reached. Beyond the mentioned threshold, the performance
drops. Indeed, the F1-score being the harmonic mean of precision and recall for the poplar
label; increasing the threshold slightly improves the former but significantly deteriorates the
latter. In other words, increasing the threshold has no significant impact on the number of
FPs but significantly increases the number of False Negatives (FNs).

Figure 7: Evaluation metrics computed from the confusion matrix in the test polygon dataset,
based on a threshold applied to the classification confidence score. The evaluation
metric in A is the Cohen’s kappa, then respectively from B to D the F1-score, Preci-
sion, and Recall for the predicted labels as poplar.

Based on the 2,705 points used for image interpretation, the distribution between the two
classes derived from the observation (reference) and the values derived from the confidence
score are presented in Table 10. The area of the poplar resource observed by interpretation
of the 2018 orthoimage, is 5,900 ha. The predicted areas of the poplar resource based on the
confidence score map decrease when the threshold increases. Finally, a threshold between
0.90 and 0.95 should be considered to tend towards the observed surface.

Table 10: Estimation of the area (in ha) per label from the points used for image interpretation
n and extraction of the confidence score map values at these points for confidence
score thresholds ranging from 0.50 to 1,00 with an interval of 0.05. The estimated
areas per label are obtained by extrapolating the proportion occupied per label from
the 65,595 ha of the woody mask.

Label

Estimated area (ha) and
proportion (%) of pixel per label in the image interpretation points

Reference
Confidence level of the classification

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 100

Other
59,702 42,485 44,110 45,783 47,335 49,299 50,973 53,373 55,507 57,835 60,551 64,504
(91.02) (64.77) (67.25) (69.80) (72.16) (75.16) (77.71) (81.37) (84.62) (88.17) (92.31) (98.34)

Poplar
5,893 23,110 21,485 19,812 18,260 16,296 14,622 12,222 10,088 7,760 5,044 1,091
(8.98) (35.23) (32.75) (30.20) (27.84) (24.84) (22.29) (18.63) (15.38) (11.83) (7.69) (1.66)
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The distribution of labels within the 24 WFI sample plots of 24,429 m2 is detailed in Ta-
ble 11. For a reference distribution of 100% for the label "poplar", the distribution for this
label was maximal for the threshold of 0.50.

Table 11: Proportion of pixels (in %) by predicted labels in Walloon Region Forest Inventory
sample plots database, according to thresholds on the classification confidence
score ranging from 0.50 to 1.00 with an interval of 0.05.

Label
Proportion (%) of pixels per label in the Walloon region Forest Inventory plots

Reference
Confidence level of the classification

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 100
Other 0 19.93 21.26 22.46 23.94 25.65 27.29 29.36 31.76 35.55 42.18 78.33
Poplar 100 80.07 78.74 77.54 76.06 74.35 72.71 70.64 68.24 64.45 57.82 21.67

3.1.2 Post-processed map

Following the assessment of the above classification confidence score map, a threshold
of 0.80 was selected for the post-processing step. Indeed, this threshold was the optimal
balance between a high kappa, a high F1-score, while being close to the reference poplar
area indicated by the image interpretation. This should not be too high to remain close to
the reference distribution within the WFI plots. The cover occupied by the poplar resource
estimated by the classification-based approach in the province of Hainaut is 10,201 ha (cf.,
Appendix C.1).

The evaluation metrics computed from the post-processed confidence score map with a
0.80 threshold are: kappa=0.856, F1-score=0.923, precision=0.987 and recall=0.867. An
improvement of these evaluation metrics is thus observed, for the same confidence score
threshold before post-treatment the kappa was 0.758 and the F1-score 0.867. The estimated
area for the "poplar" label from the image interpretationpoints was 10,236 ha, with a dis-
tribution of 83.52% for the "other" label and 16.48% for the "poplar" label. A decrease of
1,986 ha was observed after post-treatment, but the poplar resource remains overestimated
compared to the reference area. Finally, the distribution of the "poplar" label within the WFI
plots was 83.52%, increased by 11.80% compared to the non-post-processed map.
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3.1.3 Height class map

The mapping of the poplar resource was followed by a characterization through classifying
it into height classes, the results obtained are presented in Figure 8.

Figure 8: Histogram of the occupied area by height class in the poplar resource area es-
timated by the post-processed map in the classification-based approach. The
height classes from 1 to 4 correspond respectively to the stand development stages:
Sapling, Pole, Mature Trees and Old trees.

Within the WFI plots, the ratio of properly labeled height classes was only 50.4%. The
number of pixels per predicted and observed height class is indicated in Table 12. Because of
FN and the absence of field-measured height, 19 were considered, for a total of 14,325 pixels.

Table 12: Number of predicted and observed pixels by height class in the Walloon Region
Forest Inventory sample plots.

Height class No. of predicted pixels No. of observed pixels
1 374 0
2 5152 2962
3 2562 4180
4 6237 7183

3.2 Semantic Segmentation-based approach

3.2.1 Dense prediction score map

The dense prediction score map is a vector layer of points obtained from the semantic
segmentation of the 2019 orthoimage. This map is composed of a set of 1,548,152 points
which mark the position of poplars.
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3 Results

Within the test sample units and the WFI sample plots, the evaluation metrics computed
from the confusion matrices obtained from the 5,437 (5,038 + 399) points is shown in
Figure 9. The decrease in these values suggests that increasing the threshold eliminates
many TPs and thus strongly alters the evaluation metrics. This finding motivated the post-
processing according to the method proposed in Section 2.3.3.

Figure 9: Evaluation metrics computed from the test point dataset merged with the Walloon
Region Forest Inventory sample plots, based on a threshold applied to the dense
prediction score. The evaluation metrics from A to C, respectively, are F1-score,
precision and recall for labels predicted as poplar.

3.2.2 Post-processed map

The first sort applied to the dense prediction score reduced the number of points by 44.68%,
i.e., obtaining a vector layer of 856,469 points. Full post-processing returns 11,595 point
groups, for a total of 527,528 polars, which represents a 65.93% decrease in the number of
points compared to the dense prediction score map. The evaluation metrics for these results
are 0.653, 0.776, and 0.564 for F1-score, precision, and recall, respectively. However, a lower
recall indicates that some of the TPs have also been removed.

In light of these results, post-processing using the confidence score and dense prediction
score and followed by a point SA; significantly reduced the number of points while maintain-
ing a stable F1-score, thus helping to eliminate a significant number of FPs.

To better measure the significance of the number of removed FPs, intersected points be-
tween the two maps and the 15,628 ha of poplar-free areas from the DNF GIS data was
considered. An evolution of the number of points from 98,058 to 18,189 was observed, i.e. a
reduction of 81.45% of the number of FPs.

Finally, the Hausdorff distance measured between the post-processed map and the test
point dataset merged with the WFI plots is 1.06 m. This measurement indicates that the
location of TPs provides an excellent accuracy for forestry use.
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3 Results

3.2.3 Height class map

The height class map from the semantic segmentation-based approach, shown in Figure 10,
highlights a significant imbalance between classes, especially for the height class one, the
sapling development stage.

Figure 10: Histogram of the number of poplars by height class among the poplar resource es-
timated by the post-processed map of the semantic segmentation-based approach.
Height classes 1 to 4 correspond respectively to the stand development stages:
Sapling, Pole, Mature Trees and Old trees.

The ratio of properly labeled height classes among the 204 poplars successfully detecting
the reference one (i.e. TPs) in 20 WFI plots was 0.6863. As explained in Section 3.1.3, not all
plots were considered due to missing height measurement or TPs.

Table 13: Number of produced and observed points by height class in the Walloon Region
Forest Inventory sample plots.

Height class No. of predicted points No. of observed points
1 13 0
2 18 82
3 86 35
4 87 87
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4 Discussion

The results addressing the objectives of this master’s thesis are discussed in this section to
answer the research questions raised in Section 1.4.1. The discussion is divided into 4 parts:
poplar resource mapping, poplar resource characterization, main personal contributions and
finally perspectives.

4.1 Poplar resource mapping

4.1.1 Classification-based approach

Added value of super-resolved Sentinel-2 images

Due to a large number of pixels in the reference dataset and the splitting of the pixels con-
stituting the latter by polygons to prevent spatial autocorrection effects (cf. Section 2.3.1),
it allows in principle, to consider these values in a reliable way. Keeping this in mind,
we can then argue the results of the post-processed map of the poplar resource from the
classification-based approach are satisfactory. In fact, a kappa of 0.856 indicates that a
large part of the TPs and TNs pixels are not due to randomness and that a F1-score of 0.923
induced an important proportion of TPs.

To better appreciate the accuracy of these results, the evaluation metrics obtained by
Bolyn, Latte, Colson, et al. (2020) and Hamrouni Berkaoui (2021) for their poplar resource
mapping will be presented. It should be considered that these were obtained with different
datasets for different conditions. For the “poplar” label, the first obtained a F1-score, a pre-
cision and a recall of 0.746, 0.843, 0.792 respectively, for the pilot site in Wallonia and of
0.570, 0.831, 0.676, for the pilot site in France. This map was produced from S2 images
in northern France and in Wallonia. The second obtained a F1-score ranging from 0.895
to 0.993 by local S2 image classification and a F1-score ranging of 0.900 and 0.970, after
domain adaptation and active learning on the scale of the French territory. It would appear
that the super-resolution process has added value to the accuracy of the poplar resource
mapping and on the other hand the additional elaboration of ML approaches can potentially
further improve this map.

Overestimation of the poplar resource

As seen above, the poplar resource map from the classification-based approach is relatively
reliable. Correct predictions are observed for the poplar stand at the old tree stage and is not
influenced by the spatial pattern as observed at points A and D in Figure 11. However,
these results are contrasted by those of the image interpretation, indicating a difference of
4,308 ha (42% of the predicted poplar resource area) between the predicted and observed
areas. Consequently, the results of this map overestimate the area of poplar FC.
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4 Discussion

As raised by Bolyn, Latte, Colson, et al. (2020), areas of mixed stands can bias the predic-
tion (see Point B in Figure 11). Actually, forest stands not considered as poplar plantations
can contain natural poplars, which can lead to a classification of these pixels as "poplar",
therefore being FPs. Some species can also present spectral similarities with poplar, for in-
stance willows of the same family which are generally found in the same bioclimatic zone.
Surprisingly, we observe confusions with softwoods, similar to pines or larches by the inter-
pretation of the images as in Point E in Figure 11.

The process of image interpretation is not indisputable, old poplar plantations or areas of
non-pure poplar may have been confused with the label "other" by the operator. This may
slightly decrease the observed poplar resource.

Finally, despite an overestimation of the poplar resource, 16.5% of the 3,423 pixels inter-
sected by the WFI plots were not predicted as "poplar" label. The recall obtained from the
confusion matrix is 0.867, i.e. 13% of the poplars observed in the test dataset were not pre-
dicted. Nevertheless, the field data collection period of the considered WFI plots ranges from
2014 to 2022, so the ground truth might be biased by the temporal difference. Alternatively,
it could mean that the evaluation metrics overestimate the accuracy of the map.

Limitations for young poplar plantation detection

Even though the poplar resource is overestimated, it does have FNs as discussed above.
These are particularly noticed at the Sapling stage, as shown at point C and on the left side
of the canal at point E in Figure 11. There are two reasons for this limitation, one is that the
tree crowns are not extended enough to be reflected by the pixel, the other is that the woody
mask does not take them into account.

Dependence on the woody mask

The classification-based approach to mapping the poplar resource depends on the woody
mask. Consequently, the latter has a significant influence on the predicted poplar area within
the province of Hainaut, as well as on the detection of young poplar plantations. The quality
of the woody mask is itself dependent on the accuracy of the height data. In the case of the
2018 pCHM, small crowns may potentially not be detected.

It should be pointed out that we consider the poplar resource from a height of 3 m, thus
not considering the juvenile stage of development. Not detected young poplars at point C in
Figure 11, may also be excluded from the definition of the poplar resource as considered in
this project.
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4 Discussion

4.1.2 Semantic segmentation-based approach

Accurate location of detected objects

The post-processed map of the poplar resource predicted by the semantic segmentation-
based approach has a remarkable accuracy in localizing poplar trees. In fact, an average
distance of 1 m is obtained between the TPs predictions and those observed. Since the
distance is only calculated between the TPs and observations, it is precisely a derivation of
the Hausdorff distance. This accuracy of localization is confirmed by image interpretation of
the post-processed vector layer as observed at point A in Figure 12.

Underestimation of the poplar resource

It was identified that the recall value for this map is 0.56, which implies a large number
of FNs, thus underestimating the poplar resource. While poplar plantations at a young stage
of development (young sapling) are sometimes partially detected (see point B in Figure 12),
they are rarely fully detected. Even more pronounced is the poor detection of plantations at
an advanced stage of development (Old Trees) (see point F in Figure 12). We also observe
that spatial patterns influence the quality of the prediction, as alignments were difficult
to detect in this project. The main difficulty for the model is to detect alignments with a
young or old stand development stage (see point C in Figure 12). Finally, post-processing the
dense prediction score map to reduce FPs, may remove TPs as well, thus contributing to an
underestimation of the poplar resource.

Sensitivity to the reference dataset

A Deep Learning-based approach requires a larger reference dataset than a Machine Learn-
ing-based approach (L. Zhang, L. Zhang, and Du, 2016), making the latter more sensitive.
Poplar alignments, rarer in the landscape of the province of Hainaut compared to checker-
board spatial patterns, were consequently less frequent in the reference dataset, thus proba-
bly under-trained. This necessity of the Deep Learning-based approach for a large reference
dataset is a limitation of its use compared to the Machine Learning-based approach.

Additional data dependency

Although post-processing has removed many FPs, some still remain (see points B and E in
Figure 12). However, this step depends on additional data, namely: a 2019 pCHM and the
confidence score map. Their quality is crucial for post-processing and has been essential in
improving the accuracy of the map.

Specific knowledge

The implementation of the semantic segmentation approach was possible thanks to Nicolas
Latte, having specific skills for DL. This level of knowledge was necessary for the implemen-
tation of this type of approach, contrary to an approach based on classification. Moreover,
even with a powerful GPU and CPU, the DL approach requires considerably more time than
a ML-based approach.
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4 Discussion

4.2 Poplar resource characterization

Poplar resource characterization using the classification-based approach and the semantic
segmentation-based approach is distinguished by processing at the pixel level for one and the
object level for the other. The height class map for the first approach is derived from the pixel
processing of the 2018 pCHM (low-pass filter, height classification, and post-processing) and
for the other the tree height of a group of poplars is the average of the height extraction of the
2019 pCHM per poplar in the group.

4.2.1 Classification-based approach

Pixel-based map

The poor rate of properly labeled height classes in the WFI plots (50%), may call into doubt
the height class map derived from the classification-based approach. The situation is a bit
more complex, as observed heights per WFI plots is an average of a few dominant tree heights.
The approach considering pCHM pixels treats the entire poplar area after applying an average
filter, so some of the differences may come from this observation.

Canopy Height Model accuracy

Despite the above discussion, we observe that the pCHM seems to be effective in charac-
terizing stands by height. We can see at points A and D in Figure 14 that poplar plantations
have been distinguished by their height classes. However, limitations to the pCHM accuracy
appear to be observed at isolated poplar trees or alignments (see point C in Figure 14) and at
the edges of poplar plantations (see point D in Figure 14).

WFI plots

The results presented in Section 3.1.3 are conditioned by the small area covered by the WFI
plots and the fact that the dominant heights measured in the field were spread between 2014
and 2022. Figure 13 shows in green the difference in height between the predicted average
height per year from the 2018 pCHM and the observed average height per year; in orange the
observed average height per year. Two findings seem to appear: first, although not present at
both ends (2014 and 2022), the height difference (green) appears to increase the further away
from 2018, and second, the height difference (green) appears to be larger for high observed
height (orange) is large. The second hypothesis is favored in this case, because significant
differences in height (green) is still observed for 2018.
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4 Discussion

Figure 13: The difference in average height per pixel between predictions and observations
(green) and average observed height per pixel (orange) from 2014 to 2022, except
for 2021 containing no field height measurements. The observed height corre-
sponds to the average of the dominant height measured per Walloon Region For-
est Inventory plot and the boxes correspond to the number of plots considered per
year.

Figure 14: Case example from the height class map of the classification-based approach.
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4 Discussion

4.2.2 Semantic segmentation-based approach

Object-based map

It was pointed out in Section 3.2.3 that the accuracy of the ratio of properly labeled height
classes was nearly 70%. This better ratio can be explained by more relevant predicted heights
compared to those observed in the WFI plots, which are also average dominant heights.

Canopy Height Model accuracy

The height class map, from this approach, using the 2019 pCHM, appears to be suffi-
cient to distinguish poplar plantations, as it can be seen at points A and C in Figure 16. In
addition, the edge effect observed for the pixel-based height class map (classification-based
approach) is considerably less present with an object-based approach (see point B in Fig-
ure 16), but some imprecision of the pCHM is still observed on alignments as shown in point
C in Figure 16.

WFI plots

Related to Section 4.2.1, the difference in height between the average height predicted per
year from the 2019 pCHM and that observed per year within the WFI plots (green) does not
appear to increase as the years get further away from 2019. The hypothesis stating that
the difference in height (green) is higher as the observed height (orange) increases, does not
appear to be true in this case as well. The only observed fact is that the height difference
(green) reaches a peak, for both height class maps, at years 2015, 2018, and 2020.

Figure 15: The difference in average height per tree between predictions and observations
(green) and average observed height per tree (orange) according to the years 2014
to 2022, except for 2021 containing no field height measurements. The observed
height corresponds to the average of the dominant height measured per Walloon
Region Forest Inventory plot and the boxes correspond to the number of plots
considered per year.
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Figure 16: Case example from the height class map of the semantic segmentation-based ap-
proach.

4.3 Personal contributions

The activities conducted in the framework of this master’s thesis concern the study of
two types of data to map the poplar resource in the province of Hainaut, namely S2 super-
resolution images and orthoimages, followed by an alternative to LIDAR data to characterize
this resource.

A first cartographic approach using ML from the sub-mentioned satellite images allowed
to evaluate the added value provided by an improvement of the spatial resolution of S2 im-
ages. Considering different datasets, a higher accuracy was obtained compared to the maps
produced by Bolyn, Latte, Colson, et al. (2020) from S2 images without super-resolution.

A second cartographic approach has implemented DL in order to leverage orthoimages to
estimate the poplar resource. To this end, a reference dataset was collected to feed the
neural network to produce a semantic segmentation. These results highlighted the potential
of orthoimages for large-scale poplar detection.

These results were nevertheless marred by a large number of FPs, so a method was adapted
from Bolyn, Latte, Fourbisseur, et al. (2020) initially to identify and classify groups of trees
outside of forests from LIDAR data to consider groups of poplars and remove those isolated
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or having no regular spatial pattern in checkerboard or alignment. This method required the
use of height data from the 2019 pCHM. Beforehand, an initial sorting was performed based
on the confidence score map resulting from the approach using super resolved S2 images
and the prediction dense score map or semantic segmentation result. FPs were significantly
reduced, improving the accuracy of the map produced from the orthoimages.

Finally, a pCHM-based poplar resource height characterization derived from a combina-
tion of the 2014 LIDAR data DTM and the 2018 or 2019 DAP was applied for both maps.
The characterization of the poplar resource was more accurate using the map resulting from
the segmentation-based approach because the height extraction is tied to the position of the
poplars, thus avoiding potential inaccuracy of the pCHM, especially at the edges or align-
ments of poplar plantations.

4.4 Perspectives

4.4.1 Sentinel-2 super resolution images

This work highlighted the improved accuracy of the poplar resource map thanks to the
super-resolution of the S2 images. It would be possible to produce a new map of the main
forest stand types in Wallonia, thus extending the classification to a larger area and to mul-
tiple forest species. This new map would confirm for other forest species the improvement in
accuracy with that of the spatial resolution of satellite images.

It could also be considered to use a DL approach for poplar resource mapping by classi-
fication of super-resolved S2 images and compare it to results obtained by a ML approach.
Such a study would measure the potential of a complex algorithm combined with complex
images and assess whether the improved spatial resolution of S2 images is now sufficient for
this type of algorithm.

The classification method of remote sensing data, after having been largely access on ML
tends to reconsider DL, after improving the processing time and the results originally thanks
to the AlexNet architecture (Shafaey et al., 2019). Land cover and land use classification
(Pelletier, Webb, and Petitjean, 2019) and FC classification (primary dry forest, secondary dry
plantation forest) in Indonesia (Miranda, Mutiara, and Wibowo, 2019), both from S2 images
showed promising results. Although forest species classification is a more complex problem
than those performed in the previous work, it could be considered to use DNNs to map the
poplar resource through a S2 super-resolution image classification.

Nevertheless, a high processing time, the need for large datasets and a powerful hardware
are limitations to the use of DL, especially as these limitations are accentuated by large-scale
studies. At this point, (Z.-H. Zhou and Feng, 2017) proposed a ML algorithm, inspired by
DL and decision trees, the Deep Forest Classifier, which deserves special attention. A study
to map wetlands using Sentinel-1 and S2 imagery shows good results with this algorithm
(Jamali et al., 2021). It might be interesting to compare the classification of super-resolved
S2 images for poplar resource mapping by a conventional ML method, with a DL method and
finally with the Deep Forest classifier.
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4.4.2 Orthoimages

The potential of orthoimages for poplar resource mapping using a DL approach proved
promising but littered with FPs and FNs. The first one has been greatly reduced by a post-
processing method that seems to be effective, so limiting the number of FNs should be con-
sidered. The following avenues can be considered for this purpose:

• Quantitative improvement of the reference dataset by pointing poplars within manually
delineated poplar plantations with new LIDAR data acquired for the years 2021 and
2022.

• Qualitative improvement of the reference dataset, by considering a greater proportion of
alignments as well as poplars at a young and old development stage.

• Further push the neural network configuration, such as using rotation and brightness
change during data augmentation.

The method investigated in this project to map the poplar resource from orthoimages relies
on the confidence score map in order to reduce the number of FPs, it could be interesting to
conduct further studies to avoid this dependence on satellite images during post-processing.

4.4.3 Photogrammetric canopy height model

The findings reported in this master thesis regarding the characterization of the poplar
resource by pCHM should be considered with caution due to poor ground truth data. Further
study to measure the capability of pCHM data as an alternative to LIDAR CHM for forest
resource height characterization should include field data collection.

Characterization of the poplar resource was more accurately achieved through the use of
an object-based map, as presented in Section 3.2.3. The height classes in the map resulting
from the classification-based approach could then be revised by averaging the local maximum
of the original pCHM by polygons. These local maximums, which can be seen as dominant
tree heights would then be more relevant to compare with the WFI plots data.
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5 Conclusion

Map production and characterization of the poplar resource in the province of Hainaut are
the core components of this master’s thesis. Specifically, the work investigates: the map-
ping potential of the Sentinel-2 (S2) super-resolution images (2.5 m spatial resolution and 10
bands) using a Machine Learning-based classification approach Random Forests (RFs)) and
the potential of orthoimages (0.25 m spatial resolution and RGB and NIR bands) using a Deep
Learning-based semantic segmentation approach (Deep Layer Aggregation (DLA)). Following
these detections of the poplar resource, the feasibility of a characterization based on the clas-
sification into height classes of photogrammetric Canopy Height Models (pCHMs) is explored.
The latter resulting from the combination of a Digital Terrain Model (DTM) (generated from
Light Detection And Ranging (LIDAR) data) and of a Digital Aerial Photogrammetry (DAP).

First, the accuracy assessment of the map produced from the super-resolved S2 images
indicates a kappa of 0.856 and an F1-score of 0.923, for a precision of 0.987 and a recall of
0.867. Although different datasets must be considered, “poplar” label obtained the highest
F1-score of 0.746 by classification of S2 images (Bolyn, Latte, Colson, et al., 2020). The
results from this master’s thesis suggest an improvement in the accuracy of poplar resource
detection by super-resolving these satellite images

Second, with an average distance of 1 m between the location of correctly predicted poplars
(True Positives (TPs)) and observed poplars, leveraging orthoimage to map the poplar resource
through Deep Learning (DL) is undeniable. Nevertheless, with an F1-score of 0.653, a pre-
cision of 0.776 and a recall of 0.564, substantial imperfections are observed. This approach
has notable shortcomings in detecting poplar plantations at young (young sapling) or old
(mature trees) development stages and those with a spatial pattern in alignment.

Third, 50% of the pixels and 69% of the poplars (points) were properly characterized ac-
cording to height class. However, due to the lack of adequate ground truth data, these results
must be measured with caution. poplar resource characterization is more accurate starting
from the object-based height class map from the semantic segmentation-based approach;
as it considers the precise location of poplars, contrary to a pixel-based height class map
(from the classification-based approach) that considers the edge effect and landscape ele-
ments (e.g., alignments) attenuation by the low-pass filter. In the context of this project,
since poplar resource characterization is visually correct and the accuracy assessment of
results from the object-based height class map (semantic segmentation-based approach) is
reasonable, pCHM would be a suitable alternative to LIDAR.
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Appendices

A Artificial Intelligence concepts related to learning

A.1 Artificial Intelligence

This concept dating back to the 1950s and first mentioned at the Dartmouth College Con-
ference in 1956, Artificial intelligence (AI) was defined by John McCarthy as "the science and
engineering of making intelligent machines, especially intelligent computer programs". In other
words, it is about making machines and programs able to mimic human intelligence, by an-
alyzing its environment and designing a plan of action to maximize the chances of solving
the task (Kersting, 2018). Impacting many sectors, AI can be divided into different intercon-
nected fields such as Machine Learning (ML), Artificial Neural Networks (ANNs), Computer
Vision (CV), natural language processing, robotics, speech recognition and expert systems
(Collins et al., 2021). The different subsets of AI related to learning used in this Master’s
thesis, as well as their relationships are shown in Figure 17.

Figure 17: Relationship between Artificial intelligence learning subsets (Alkabbani et al.,
2021; Alzubaidi et al., 2021).

A.2 Machine Learning

A subset of AI, ML is a system that learns from data to perform tasks for which it has not
been explicitly programmed. Conventionally, learning can be supervised for classification
(prediction of discrete values) and regression (prediction of continuous values) tasks, unsu-
pervised for clustering, association and dimension reduction tasks,or by reinforcement, as
well as variants of these types of ML, such as active learning or semi-supervised learning. In
CV, supervised learning can be done on three categories of processing units: image, pixel or
object level.
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A.3 Artificial Neural Networks

ANN is a brain-inspired ML model. Specifically, it is a group of interconnected nodes that
allow learning by layer in a non-linear way. An ANN is composed of three network layers:
input layer (e.g., an image), hidden layer and output layer (e.g., categories), each of them
containing nodes, also called artificial neurons or computational units (cf., Figure 18), with
edges to connect them to the inputs and outputs (Park and Lee, 2016; Alzubaidi et al., 2021).
The parameters related to a node are usually called weights and can be weights (or gains)
at each input as well as a offset value (or bias), then the activation function will "break"
the linearity of the output (cf., Section X) (Cresson, 2020). Conventional ANNs are shallow,
i.e. they contain only one hidden layer, yet the latter becomes deep when it contains multiple
hidden layers as illustrated in Figure 19, making it much more complex and heavy to support
by the Central Processing Unit (CPU) and the Graphics Processing Unit (GPU). Deep ANNs
are then called Deep Neural Networks (DNNs) and are the backbone of Deep Learning (DL).

Figure 18: Node structure in an Artificial Neural Network (Alkabbani et al., 2021; Dastres
and Soori, 2021).

Figure 19: Deep Neural Network architecture (Alkabbani et al., 2021; Dastres and Soori,
2021).
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A.4 Deep Learning

DL is a specific ML method that integrates DNN or ANN in successive layers to learn data
iteratively. The model obtained by this learning induces the activation of billions of neurons
in response to the input signals, thus providing a solution to the target problem. The main
difference between DL and ML is its automation, since it does not require an operator to
pre-process, extract features and select features before image classification. In addition, the
latter is more efficient in terms of processing geospatial data, given its ability to identify
spatial dependency by combining spectral and vector information, whereas ML algorithms
are limited to identifying spectral signatures (Nikparvar and Thill, 2021; Zuo et al., 2015;
Alzubaidi et al., 2021).

The neural network learning process works as follows: by backpropagation, parameters
such as input weights of an artificial neuron are adjusted in order to activate or not the
latter and to obtain an output of the neural network as close as possible to the training
case. The backpropagation process is therefore iterative and returns to the input weights an
adjustment to reduce the error. As a reminder, the activation function allows to keep or
not a node (assign a value between 0 and 1) within a neural network by adding a non-linear
property to the network. In short, a linear classification as in ML is faster but faces limits
when two classes are very close in spectral range, but evolve in a different environment, a
non-linear approach will be more likely to solve this kind of problem. The error considered
at the output layer and backward through the neural network during the backpropagation
process is computed using a loss function (also called cost function). A key point is to find
the smallest error. To achieve this, a gradient descent algorithm is used to locate the global
minimum of the loss function. In DL, usually big data are used, implying a partition of the
dataset for training the model. The tiles or patches making up the complete dataset are
divided into batches. An epoch refers to the running of all batches, therefore a full dataset,
the number of iterations corresponds to the number of batches needed to complete an epoch.

Hyperparameters are values defined before the training process and determine how the
neural network learns and affects its structure. Among those, the learning rate defining
the adjustment time of the neural network parameters at each backward. A too small value
increases the time needed to converge the descent gradient to the global minimum, a too
high value makes the behavior of the loss function chaotic thus the descent gradient fails to
converge. Other important hyperparameters are related to the batch size, or the number of
epochs.

During the training process, a middle ground between underfitting and overfitting must
be found. The last occurs when the model learns from noise and details, especially in the
case of non-linear models more flexible. To prevent overfitting, some techniques can be
mentioned, such as early stopping, data augmentation or dropout. The first technique is
to stop learning before overfitting, then data augmentation increases the dataset by adding
new samples with different brightness, after flipping or rotation, finally dropout deliberately
reduces the number of nodes thus increasing the number of iterations needed to converge
the model. A comprehensive description of DL is found in (Mishra, Reddy, and Pathak, 2021;
Rakhmatulin, Kamilaris, and Andreasen, 2021; Zhao and Yan, 2021).

In a non-exhaustive way, the DNN architecture constituting the backbone of the DL algo-
rithm can be based on Convolutional Neural Networks (CNNs) or Recurrent Neural Networks
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(RNNs) during supervised learning or on self-organizing maps or auto-encoders during unsu-
pervised learning. Both RNNs and CNNs are used in CV, the former processes information
sequences such as temperature, time series, while the latter is used for image classification
and object recognition. The following section only describes CNNs, as other architecture types
are not relevant to this project.

A.5 Convolution Neural Networks

CNNs are a type DNN architecture for which state-of-the-art results are obtained in the
field of image recognition, object detection and semantic segmentation (Alzubaidi et al., 2021;
Cresson, 2020; Ma et al., 2019); they are therefore dominant for the processing of satellite
or aerial images with DNN. A convolution acts as a filter on the data that passes through
the network, in the case of CV process the input images by weighting them to highlight pat-
terns, objects, shapes, etc.. CNNs are composed of four types of layers, namely convolution
layers, ReLU layers, pooling layers and fully connected layers. The first one performs a
convolution to create several smaller images with features, the result is called feature maps.
The second one is a Rectified Linear Unit (ReLU) activation function to add non-linarity by
giving a zero value to the negative value resulting from the convolution figure 20. The third
one receives as input the rectified feature maps and performs a down-sampling operation
to reduce the spatial dimension while preserving the important features. In the end of the
process the fully-connected layer get as input a flattened pooling result in order to recognize
and classify the images or objects. As shown in figure 21, a deep CNN architecture includes
several convolution, ReLU, and pooling layers before the fully connected layer to implement
image classification by the final algorithm.

f(x) = max(0, x)

Figure 20: Rectified Linear Unit (ReLU) activation function (Albawi, Mohammed, and Al-Zawi,
2017).

The entire processing through a CNN involves a kernel with a certain width and height
with the same depth as the input image and moves from the top left to the bottom right in
order to process the entire image.
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B Overview of Computer Vision tasks

CV is a field of AI, dedicated to the reading and understanding of images, namely an ar-
ray of pixels containing values. Automation of image analysis is achieved by coupling CV
with the learning field of AI (cf., Appendix A). Therefore, the progress of CV performance de-
pends on that of AI learning. Research in the 2000s was accessed on improving features for
ML, then following the foundation of CNNs and the successful achievement of the AlexNet
model in 2012, the development of DL algorithms for CV has gained momentum (Alzubaidi
et al., 2021). The applications of the CV are multiple, whether they are military, allowing
the automation of industries, smart cities, medical imaging, intelligent transportation, Earth
Observation (EO) among others. The following four task types are relevant to distinguish in
this project: classification, localization, detection, and segmentation (Alzubaidi et al., 2021).
Before describing them, it is necessary to understand that these tasks are based on recogni-
tion or object recognition resulting from prediction or prediction density, by the backbone of
the algorithm to perform the CV task, this backbone is usually a CNN-based architecture for
image processing (see Figure 22).

Figure 22: Overview of Computer Vision tasks.

Classification, the basis of CV, categorizes a set of data into classes (Wu, Q. Liu, and X.
Liu, 2019). The input data, an image, pixel or recognized object, is labeled and, depending
on the model, is attached with an evaluation measure such as probability, point density,
loss. Localization or object localization is the process that locates an object in an image to
be surrounded by a single bounding box. Detection or object detection is a combination of
classification and localization. This type of task locates and classifies multiple objects which
may have multiple occurrences with consideration of the background (see Figure 23).

Segmentation or object segmentation deals with the edges of target objects in the image,
they are delimited by a pixel mask. This pixel-based operation includes semantic segmenta-
tion and instance segmentation (Wu, Q. Liu, and X. Liu, 2019). The former is a separation
of the image into parts with different semantics, the pixels of the class of interest are dis-
tinguished from the background (Giesen, 2022). The latter is an extension of the detection
task, required to process and refine the edges of the objects (Wu, Q. Liu, and X. Liu, 2019).
Therefore, the detection task enables instance segmentation to differentiate instances unlike
semantic segmentation.
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C Mapping of the poplar resource in the province of Hainaut

C.1 Map produced by the classification-based approach
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C.2 Map produced by the semantic segmentation-based approach
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