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Introduction

In the past decades, the study of plasma flows has gain significant importance in scientific
research. Indeed, many applications have resulted from it. From day to day applications, such
as screen technologies with PDP (plasma display panels) [8], manufacturing applications or
even more recently medical application [36], to high end promising technologies such as the
Tokamak fusion reactor [11, 12] or the Hall thruster electric drive [1, 9, 10, 15, 24, 33]. This
last application is of particular interesting in the field of CFD as the physics of it can display
various challenges and are still somewhat misunderstood.

In brief, the Hall thruster works by using an electrostatic potential to accelerate ions to
high speeds, ejecting them and thus produce thrust. Typically, the Hall thruster uses a Xenon
gas, the ion being positively charged charge. Contrary to grid thruster, the Hall thruster differs
as no grid is present, instead the negative charge used to attract positve ions is provided by
electrons which are injected from the end of the thruster.
The thruster is composed of two concentric radial magnets inducing then a radial magnetic
field in between the two magnets. Under such field a circular motion is induced on charged
particles. The radius of such motion is in effect depended on the mass and strength of the
field. The field is then calibrated to only be able to deflect electrons capturing electrons and
cause a disparity between the density of ions and electrons. The result is the creation of an
electric field. Moreover, the ions tend to drift in the axial direction of the thruster, thus an
axial electric field appears. The electric field contributes in the acceleration of charged particles
toward the end of the thruster.
Xenon is then fed from the back of the thruster by collision with the confined electrons, the gas
is ionized, creating more charged particles in which ions will be accelerate towards the exhaust
and electrons will be confined in the thruster. This cycle can be stabilised given that a steady
flow of Xenon and electrons is fed in the chamber. Indeed, ions exiting the thruster will pull a
portion of the confined electrons. This pulling is what causes the characteristic blue plume of
the thruster. A schematic of the process described is shown in Fig. 1.

Figure 1: Diagram of the Hall thruster from [9]
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As mentioned previously, the simulation of the plasma flow inside such device is an on-
going field of research in CFD. Particularly, the Hall thruster introduces several challenging
aspect. On one hand, the simulation needs to capture electric and magnetic field interactions
with the plasma flow. On the other, the solver should also be able to capture chemical inter-
action between reacting species (either by collisional or radiative mechanisms). Furthermore,
the characteristic times associated to chemical reactions and the fluid motion tend to differ
in magnitude (the chemistry being much faster). Lastly, plasma simulations, regardless of the
application, are particularly challenging as the strong disparity in mass between electron and
atomic species (also referred as heavy species) implies then very stiff problems.

Such research is for instance currently being done at the Université de Liège by professor
K. Hillewaert and his students. This work inscribes itself in the continuation of the previous
research in which methodologies to tackle interactions between the electric field and the plasma
flow have been successfully developed in the works of N. Corthouts [17] and F. Custinne [18].
For this work, the focus will be on a different aspect of the overall problematic. The focus is
on the chemistry, the goal is then to develop a methodology to resolve reactive plasama flows.

To do so, a post-shock relaxation problem is considered. Such problem incorporates several
challenging aspect relevant to the Hall thruster research. The problem at hand was introduced
in [46] and many have then studied the numerical resolution of such problems [4, 7, 31, 32]. In
particular, this works refers to the work of Kapper [31, 32] which has solved this problem in
the one and two dimensional case using for a State-to-State chemical model.

The present work is then split in three parts: the physics of the studied plasma, the numer-
ical methodology of this work and lastly the results with the previous considerations.
In the first part, the governing equations are established with a Multi-fluid formulation [4, 35].
Then the chemistry of the studied plasma is presented. Moreover, this part introduces models
for the chemical behaviour of the plasma based on literature [5, 6, 14, 35, 42, 43, 45, 49]. Lastly,
the problem of interest of this work is defined.
In the second part, the discretisation of the governing equations is done following a Discontin-
uous Galerkin Finite Element Method (DG-FEM). Additionally, schemes to solve the system
of equations are presented for steady and unsteady simulations.
Finally, the last part of this work presents the results up to date of the problem obtained with
the DG-FEM formulation. A final discussion is done in order to assess the successes or the
failures of particular points in the overall methodology presented in this work.
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Part I

Plasma physics



Chapter 1

Governing equations

In this chapter, the governing equations for a quasi-neutral plasma mixture are developed.
To do so, the following methodology is taken. First the micro scale behaviour of the system
is described using a probabilistic approach. Such method is often employed to describe gas
dynamics but remains valid for plasma flows. The difference for the latter is that additional
effects on the flow need to be considered such as the influence of electromagnetic fields and ion-
ization mechanisms. From the micro scale description of the flow, the macroscopic behaviour
of the system is obtained by considering a Multi-fluid formulation.

Before diving into each approach, note that the developments presented here follow the
methodology presented in [5, 42, 43], the derivations are then restricted to the relevant aspects
of this work.

1.1 Statistical approach
Similar to gases, a plasma can be described from a statistical point of view as a mixture of

charged particle. Such approach is sometimes also called a kinetic description, as the statistical
aspect of it relates to the variation in velocity of the particles composing the plasma (or gas
in general) with respect to the overall mixture velocity. Considering that gases are composed
of a significant number of particles, one can understand how a statistical approach is often
privileged when describing gas dynamics (rather than describing each particle’s behaviour).

Contrary to gases a plasma is by definition multi-species. To denote its composition, the S
notation is introduced referring to the set of species composing the plasma mixture. Note that
this notation will remain for the rest of this work. The particle density of a given species α in
the mixture follows then a certain distribution fα, itself function of the particle’s velocity vα,
its position x and time t. The conservation of fα for a moving fluid is then described with the
Boltzmann equation [42],

∂tfα + vα ·∇fα +∇vα ·
(
fα

Fα

mα

)
=
∑
β∈S

Jαβ + Γα (1.1)

where Fα is the total force acting on the particle, Jαβ accounting for elastic interactions with
other particles in the plasma mixture S and Γα accounting for the production of particles α
from ionization processes. Furthermore, the total force is the resultant force of the electric
and magnetic fields acting on particle α. In this work, no such effects will be considered and
the focus is then shifted on the sources in Eq. (1.1). The Boltzmann equation is the basis for
the Multi-fluid model as considering fα for higher moments gives then a system of equations
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describing the conservation of mass, momentum and total energy of the system at a macro
scale.

1.2 The Multi-fluid model
Let’s now obtain the governing equation for local macro scale quantities. The derivation

of the Multi-fluid model equations is well documented in literature, here the derivation follows
the methodology presented in [5, 43].

The macro scale quantities of interest are defined by integrating the distribution function
fα over the velocity space, one can then define for a given species α the particle density nα, the
mean velocity vα and the internal energy Uα as follows.

nα(x, t) =

∫
R3

fα (x,vα, t) dvα (1.2)

vα(x, t) = ⟨vα(x, t)⟩ =
1

nα(x, t)

∫
R3

vα fα (x,vα, t) dvα (1.3)

Uα(x, t) =
1

nα(x, t)

∫
R3

1

2
(vα − vα)

2 fα (x,vα, t) dvα (1.4)

Similarly, one can describe the evolution of such quantities by multiplying fα by a collision
invariant ψα, injecting it back in the Boltzmann equation (1.1) and averaging over the velocity
space. Choosing the collision invariants 1, vα and vα ·vα/2 gives then a set of conservation
equations for particle density, momentum and total energy. Additionally, the plasma is assumed
to be isotropic. One implication is for instance that the particle mass of species α is constant in
time and space, mα (x, t) = mα. This in turn means that the conservation equation for particle
density is equivalent to the conservation equation for mass, also known as continuity equation
for fluids.

ρα(x, t) = mαnα(x, t) (1.5)

The conservation equation, irrespective of which invariant is chosen, is the following,

∂t

(
nα ⟨ψα⟩

)
+∇ ·

(
nα ⟨ψαvα⟩

)
− nα

(
⟨∂tψα⟩+ ⟨vα ·∇ψα⟩

)
=
∑
β∈S

∫
R3

ψαJαβdvα

+

∫
R3

ψαΓαdvα

(1.6)

where the average operator of the collision invariant ψα is defined as

nα ⟨ψα⟩ =
∫
R3

ψαfαdvα.

Before developing each equation, it is important to introduce some key properties of the average
operator ⟨.⟩ for isotropic fluids.

It is common practice in fluid mechanics to express the velocity of the fluid into a sum of an
average velocity v and a perturbation velocity v′. The fluid has then the following properties :

• The average of the perturbation velocity is zero.

⟨v⟩ = ⟨v⟩+ ⟨v′⟩ = v
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• The average of the squared perturbation velocity is non zero for same direction products.〈
v′iv

′
j

〉
= 0 , if i ̸= j

• The average of the terms ⟨∂tψ⟩ and ⟨v ·∇ψ⟩ are zero with the considered invariants [35,
43, 49].

Furthermore, the temperature of species α at a macroscopic scale can be derived from micro-
scopic kinetic relation as expressed in Boltzmann theory of gases giving us then an expression
for ⟨v′iv′i⟩,

mα

〈
v′i

2
〉

2
=
kB Tα
2

where kB is the Boltzman constant. The average of the square velocity can be then fully
expressed in each directions.

⟨vivj⟩ =
〈
(vi + v′i)

(
vj + v′j

)〉
= ⟨vivj⟩+

〈
v′iv

′
j

〉
+ vi

〈
v′j
〉
+ vj ⟨v′i⟩

= vivj +
〈
v′iv

′
j

〉
= vivj + δij

kB Tα
mα

Additionnally, each fluid is assumed to behave as a perfect gas, therefore the expression obtained
just above is equivalent to

nα ⟨vivj⟩ = nαvivj + δij
pα
mα

(1.7)

where pα = nαkBTα is the pressure of species α. Moreover, from the perfect gas assumption,
the total energy per unit mass Eα and the enthalpy Hα of species α can be defined in relation
to the previous quantities.

Eα = Uα +
1

2
(vα ·vα) (1.8)

Hα = Eα +
pα
ρα

(1.9)

Finally, returning back to Eq. (1.6) and developing each equation with the chosen invariant,
neglecting the stress tensor terms and considering only the one dimensional case, the governing
equations for the studied plasma flow of the present work are :

∂tnα + ∂x (nαuα) = S(n)
α (1.10)

∂t (nαuα) + ∂x

(
nαu

2
α +

pα
mα

)
= S(m)

α (1.11)

∂t (nαEα) + ∂x (nαHαuα) = − 1

mα

∂xqα + S(e)
α (1.12)

where mα, nα, uα, Eα, pα and qα are respectively the mass, the particle density, the mean
velocity in the x direction, the total energy per unit mass, the static pressure and the heat
flux associated to particle α. The terms S(n)

α , S(m)
α and S

(e)
α are the source terms and refer

respectively to the production of particle density, momentum and total energy. The source
terms can be further split into a contribution from elastic collisions and a contribution from
inelastic collisions. In this case, inelastic collision are understood as chemical reaction due to
collision between reacting species. The source term can be generalized for each equation as

S(k)
α =

1

mα

∑
β∈S

r
(k)
αβ + ω̇(k) (1.13)
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where the k superscipt refer to a given equation in the system of Eqs. (1.10–1.12), r(k)αβ and ω̇(k)

are respectively the exchange of the given conserved quantity between particle of species α and
particle of species β due to elastic collisions and the production of the conserved quantity for
species α due to the underlying chemical processes. The modeling of these terms will be further
developed in the next chapter.
Furthermore, the heat flux qα is modeled with the Fourier law as no radiative processes are
considered in this work. The heat conductivity κα of species α will also be detailled in the next
chapter.

qα = −κα∂xTα (1.14)

Before ending this chapter, it is also useful to define so called state function relating impor-
tant thermodynamical quantities such as temperature and pressure to the conserved variables.
One can then fully describe the evolution of the system from a thermodynamical point of view
with the system of Eqs. (1.10)–(1.12) previously defined. Let us then introduce the vector of
conserved variables for a given species α :

Uα =
[
nα nαuα nαEα

]T
,

the pressure state function is found with the perfect gas relation relating internal energy to
pressure.

pα
mα

= (γα − 1)

(
Uα,3 −

1

2

U2
α,2

Uα,1

)
(1.15)

Here γα is the heat capacity ratio of species α. Furthermore, one can relate pressure to tem-
perature, enthalpy and speed of sound.

Tα = (γα − 1)
mα

kB

(
Uα,3

Uα,1

− 1

2

U2
α,2

U2
α,1

)
(1.16)

Hα = γα
Uα,3

Uα,1

− 1

2
(γα − 1)

U2
α,2

U2
α,1

(1.17)

cα =

√
γα
pα
ρα

=

√
γα (γα − 1)

(
Uα,3

Uα,1

− 1

2

U2
α,2

U2
α,1

)
(1.18)
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Chapter 2

Chemistry and source modeling

In the previous chapter, the general form of the system of equations for the studied plasma
flow was derived but some terms were not fully defined. These terms are linked to the chemistry
of the plasma and should be modeled accordingly. The goal of this chapter is then to describe
the considered chemistry of the plasma and provide a description for the undefined terms in
Eqs. (1.10–1.12), i.e the source terms and the heat conductivity.

In the context of this work, an argon plasma is considered. The specification of the plasma
are first described following a multi-temperature model (MT). Then from the model, the in-
elastic and elastic contribution to the source terms are described. Lastly, important parameters
linked to the chemical properties of the plasma are defined such as the heat conductivity or the
inter- and intra-species collision frequencies.

Furthermore, to aid in the computation of chemical interactions within the plasma, the
Mutation++ library is used. Mutation++ is an open-source library developed at the von
Karman Institute for Fluid Dynamics (VKI) with the goal to assist particular CFD application
by providing a robust interface to compute transport, thermodynamical and chemical proper-
ties of the fluid. Such application are for instance, hypersonic flows or plasma flows. A full
description of its implementation and functioning is available in [45]. Note that the practical
uses of Mutation++ for this work will later be detailed in Chapter 5.

2.1 The Argon 3 multi-temperature model
The Argon 3 plasma model is composed of three species following a MT approach. The

set of pseudo-species of the plasma is then composed of a single neutral, one ion and an
electron. The set will be referred then as S3 =

{
e−, Ar, Ar+

}
. Furthermore, the atom species

are supposed to be at their groundstate. The chemical reaction are then only collisional in
nature, two reactions are considered and are denoted from their forward mechanism: an atom-
electron impact ionization and an atom-atom impact ionization process. Note that the backward
mechanism can be seen as recombination processes.

Ar + e− ⇌ Ar+ + 2e− (2.1)
Ar + Ar ⇌ Ar + Ar+ + e− (2.2)

From here, the production of a given species is computed from the Law of mass action as
described in [45], which states that the rate of production of a reaction is proportional to the
rate of progress R of the reaction. The rate of progress is defined as the difference between the
product of the reactant concentrations raised to the forward stoichiometry coefficients and the

8



product concentrations raised to the backward coefficents. For example, the rate of progress of
Eq. (2.1) is

R = kf [Ar]
[
e−
]
− kb

[
Ar+

] [
e−
]2 (2.3)

where kf and kb are respectively the forward and backward rate coefficients, independent from
the species concentrations. The production rate of each species is then proportional to Eq. (2.3).

ω̇ ∝ kf [Ar]
[
e−
]
− kb

[
Ar+

] [
e−
]2 (2.4)

To generalize, the forward and backward stoichiometry coefficients will be referred with the ν ′
and ν ′′ notation respectively.

As shown in the previous equations, the rate coefficients are key parameters in the compu-
tation of the production rates. In practice, the rate coefficient are dependent on the collision
frequency between the reactants but also if the collisions has enough energy to trigger the
reaction. In many applications, these rates are modeled by the modified Arrhenius rate law

k (T ) = AT n e−
Ta
T (2.5)

where k is function of the temperature T and A, n and Ta are constants determining the
behaviour of the Arrhenius law. The exponent term n in Eq. (2.5) models the dependency
of the collision frequency to the temperature while the exponential term acts as an activation
function where Ta is the activation temperature for a given reaction. The constant A can be
seen as an intensity factor. Furthermore, to distinguish between forward and backward, it is
often common practice to compute the forward coefficient from the Arrhenius rate law while
the backward coefficient is evaluated from the equilibrium constant at a temperature linked to
the backward reaction mechanism.

kb (Tb) =
keqf (Tb)

Keq (Tb)
(2.6)

However, the backward coefficient can also be modeled from the Arrhenius rate law and thus
follows the same expression of Eq. (2.5) but evolving at the backward reaction temperature
with different Arrhenius parameter values. This approach is preferred for this work.

kf (Tf ) = AT n
f e

− Ta
Tf (2.7)

kb (Tb) = AT n
b e

−Ta
Tb (2.8)

The coefficient of the Arrhenius law have been derived in [2] for the atom-electron reaction.
The forward parameters for the atom-atom reaction are taken from [7]. While the backward
atom-atom Arrhenius parameters have been determined by retrofitting the backward coefficient
curve for different regimes of temperature with the Mutation++ library. The parameters are
summarised in Table. 2.1 for the forward coefficients and Table. 2.2 for the backward coefficients.
However, some incoherence was observed regarding the units of the constants A in the Arrhenius
law. Indeed, it is common practice to express A in terms of m3mol−1s−1 regardless of the
stoichiometry coefficients and the exponent n. This is not consistent, one can show in Eq. (2.3)
that the units of k (being a generic rate coefficient) should be m3mol−Ns−1, where N here is
the number of reacting species for the considered reaction. Therefore, to fix this inconsistency,
the units of A are not indicated in Table. 2.1 and Table. 2.2, one should then assume that the
value displayed has the appropriate units, i.e units that ensure the units of R to be 1/s.
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Reaction A n [–] Ta [K]

Atom-atom 1.8247× 10−12 3.597 69940
Atom-electron 7.407× 104 1.511 141480

Table 2.1: Forward Arrhenius law parameters.

Reaction A n [–] Ta [K]

Atom-atom 5.6655× 10−11 2.097 −112944
Atom-electron 2.2997× 106 0.011 −41404

Table 2.2: Backward Arrhenius law parameters.

Furthermore, under a MT approach each forward and backward mechanism are supposed to
evolve at a specific temperature. Two temperature bath are considered in the Argon 3 model,
the electron temperature Te (vibrational temperature) and a common heavy temperature Th
(translational temperature), Scoggins [45] provides a description of typical reaction tempera-
tures for many reaction types. The reaction-dependent temperatures for the Argon 3 model
used in this work are summarised in Table. 2.3.

Reaction Tf Tb

Atom-atom Th Th
Atom-electron Te Te

Table 2.3: Forward and backward reaction temperatures for the Argon 3 model.

Lastly, the Argon 3 model is composed of only monoatomic species, the heat capacity ratio
γ is then considered to be the same for all species and is 5/3. This follows the recommendations
from [31] in which γe = 5/3. Note that it is also considered that γ does not vary with tempera-
ture. Furthermore, the temperature state function derived in the previous chapter in Eq. (1.16)
is slightly modified in the case of heavy species since they share a common temperature. The
heavy temperature Th is then computed from the sum of total energies of all heavy species, to
distinguish from the overall set of pseudo-species, the H set is introduced referring then to the
subset of heavy species in the mixture set S3.

ρhEh =
∑
α∈H

ραEα =
∑
α∈H

(
nαkBTh
γ − 1

+
1

2
ραu

2
α

)
y

Th =
(γ − 1)

kB

∑
α∈H ραEα − 1

2
ραu

2
α∑

α∈H nα

(2.9)

2.2 Inelastic collision modeling
In the Argon 3 model previously described, only collisional chemical reactions are considered.

These reactions are inelastic in nature as some energy is lost in the process. The production
rates follow the Law of mass action, in the general case one can consider that the exchange in
mass is a balance between how many particle are created and destroyed for a given reaction.
When summing over each reaction in the set of reactions R, this balance can be called the net
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production rate, here expressed in 1/m3. The net production rates are computed as defined
in [45], note that no third body reactions are present in the Argon 3 model.

ω̇(n)
α =

Mα

mα

∑
r∈R

(
ν ′′α,r − ν ′α,r

) [
kf,r (Tf,r)

∏
β∈S

(
ρβ
Mβ

)ν′β,r

− kb,r (Tb,r)
∏
β∈S

(
ρβ
Mβ

)ν′′β,r
]

(2.10)

To relate to the conserved variables of the conservation system defined in the previous chapter,
one can express the molar concentration in function of particle density. The net production
rates are then function of temperature and particle density.

ω̇(n)
α =

Mα

mα

∑
r∈R

(
ν ′′α,r − ν ′α,r

) [
kf,r (Tf,r)

∏
β∈S

n̂
ν′β,r
β − kb,r (Tb,r)

∏
β∈S

n̂
ν′′β,r
β

]
(2.11)

Here n̂β = nβ/Na is the molar concentration of species β in function of its particle density, with
Na the Avogadro number. Moreover, the net production rate can be split into a contribution
of the forward Γf

α and backward Γb
α production.

ω̇(n)
α =

Mα

mα

∑
r∈R

(
ν ′′α,r − ν ′α,r

)
kf,r (Tf,r)

∏
β

n̂
ν′β,r
β︸ ︷︷ ︸

≡ Γf
α

−Mα

mα

∑
r∈R

(
ν

′′

α,r − ν
′

α,r

)
kb,r (Tb,r)

∏
β

n̂
ν′′β,r
β︸ ︷︷ ︸

≡ Γb
α

⇔
ω̇(n)
α = Γf

α − Γb
α

Let’s remember that two reactions are considered in the Argon 3 model, in which the forward
processes can be seen as ionization processes while backward processes as recombination pro-
cesses. Therefore, the previously defined quantities Γf

α and Γb
α can be split further to express

the contribution of each process for each reaction.

Γf
α =

∑
r∈R

Γf
α,r ⇔ Γion

α = Γf
α,(a−a) + Γf

α,(a−e)

Γb
α =

∑
r∈R

Γb
α,r ⇔ Γrec

α = Γb
α,(a−a) + Γb

α,(a−e)

Here (a− a) and (a− e) refers respectively the atom-atom and atom-electron reactions defined
in Eq. (2.2) and Eq. (2.1).

Having decomposed the production rates into forward and backward mass productions for
each reactions, one can then define momentum and total energy exchanges related to chemical
processes. To do so, it is first assumed that during an inelastic collision the created particles are
emitted at the speed of the heaviest of the reactant species. This is quite a strong assumption
and is based on a intuitive approach which can be illustrated as follows.
Let’s take for example the forward reaction in the case of the atom-electron impact reaction
Eq. (2.1). The chemical reaction occurs when an electron collides with a neutral with enough
energy such as to trigger the reaction. The product of such reaction is that the excess of energy
provides enough energy to extract an electron from the neutral atom. The neutrals becomes
an ion and a free electron is emitted. It is then supposed that the velocity of these "created"1

particles is the same as the neutral speed pre-collision. Furthermore, the free electron providing
1The term "create" is used here for a lack of better term as electron of ions are not in fact created but are

the result of the extraction of an electron from a neutral atom.
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the excess energy pre-collision is supposed to remain unperturbed in term of velocity. A similar
reasoning can be done for the corresponding backward reaction. This time the difference is that
a free electron and a ion recombine (or a free electron is absorbed by an ion). In this case, the
"created" neutral atom inherits the speed of the ion, the reasoning behind it is that the major
contribtuion to its momentum comes from the ion pre-collision since electron are much lighter.
The above example can be summarized with the diagram in Fig. 2.1 detailling the states of
each particle involved in the considered reaction before and after the collision.

(a) Forward reaction. (b) Backward reaction.

Figure 2.1: Diagram of the momentum of each species pre and post collision for the
atom-electron impact reaction Eq. (2.1), the mass of each species is conserved while speed is

indicated as v for each species.

Following this assumption, and generalizing to each reaction, one notices that the momen-
tum production for ionization processess is driven by the neutral velocity while recombination
processess by the ion velocity. Therefore, for each reaction the momentum production rate is
defined as

ω̇(m)
α = Γion

α un − Γrec
α ui. (2.12)

Similarly, the total energy production follows the same assumption done for the momentum
production in regards to the kinetic energy production where the forward velocity is the neutral
velocity and the backward velocity is the ion velocity. However, one alos needs to take into
account the production of internal energy. The expression of it was developped in [35] for a
binary mixture of ions and neutrals species. The expression can then be expanded to the current
plasma model. For this work, the production of internal energy is then proportional to the
reaction-dependent temperatures of Table. 2.3 for each reaction. Regrouping each contribution,
the total energy production rate is then

ω̇(e)
α =

1

2

(
Γion
α u2n − Γrec

α u2i
)

+
1

γ − 1

kB
mα

(
Γf
α,(a−a)Th + Γf

α,(a−e)Te − Γb
α,(a−a)Th − Γb

α,(a−e)Te

)
.

(2.13)

2.3 Elastic collision modeling
Elastic collisions are modeled following a collision model between two bodies each with their

own mass and speed. The post collision velocities are then described through conservation of
momentum and kinetic energy. For notation purpose, the speed pre-collision will be denoted
by uk while after collision by vk. Take then two particles denoted by the subscript α and β,
the conservation equations are then

mαuα +mβuβ = mαvα +mβvβ

mαu
2
α +mβu

2
β = mαv

2
α +mβv

2
β.

(2.14)
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The post-collision velocities vα, vβ are obtained by solving the above system in function of uα
and uβ.

vα =
mα −mβ

mα +mβ

uα +
2mβ

mα +mβ

uβ

vβ =
2mα

mα +mβ

uα +
mβ −mα

mα +mβ

uβ

(2.15)

The gain of momentum of a particle α collinding with another particle β is computed as

∆(mV )α = mα (vα − uα) = 2
mαmβ

mα +mβ

(uβ − uα) = 2mαβ (uβ − uα) .

One can now extrapolate this expression to describe the exchange of momentum due to elastic
collision of a particular species α when colliding with another species β. The total exchange of
momentum per second is then proportional to the number of collision occurring in a second, in
other words it is proportional the particle density of species α and the collision frequency ναβ
between species α and β.

r
(m)
αβ = ∆(mV )α nαναβ = 2mαβ (uβ − uα)nαναβ (2.16)

Summing all exchanges between all species β gives then the total production of momentum for
particle α due to elastic collisions. Note that collision between the same species result in a zero
exchange of momentum as expected.

Similar to momentum exchanges, the gain of kinetic energy can be computed from the
post-collision velocities.

1

2
∆
(
mV 2

)
α
=

1

2
mα

(
v2α − u2α

)
=

1

2
mα (vα + uα) (vα − uα)

=
1

2
(vα + uα)∆ (mV )α

=

(
mαβ

mα

uβ +
mαβ

mβ

uα

)
∆(mV )α

Likewise to the inelastic collision modeling, one must also include exchanges of internal energy
through elastic collision to get the exchange of total energy. The exchange of internal energy
is in practice proportional to the difference in temperature between the two colliding particles.
The computation of it follows the work done in [5] and is thus

∆(mU)α = 3 ζαβmαβkB (Tβ − Tα) .

where ζαβ is defined as the ratio of energy to momentum transfer. This ratio will be defined in
the next section as it depends on the ratio of energy to momentum transfer cross-sections.
Finally, adding both contributions and multiplying by the number of collision per second and
the particle density of species α, the total production of energy due to elastic collisions is the
following.

r
(e)
αβ =

[
∆(mU)α +

1

2
∆
(
mV 2

)
α

]
nαναβ

=

(
mαβ

mα

uβ +
mαβ

mβ

uα

)
r
(m)
αβ + 3 ζαβmαβkB (Tβ − Tα)nαναβ

(2.17)

Again, summing over all exchanges between all species β in the mixture gives then the total
production of total energy for particle α.
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2.4 Chemical properties
In this last section, the definition of the collision frequency and heat conductivity is done. As

highlighted from the previous section, these parameters are key when describing the behaviour
of the system of conservation equations Eqs. (1.11–1.12) and are dependent on the chemistry
of the plasma mixture. In this work, the expression of such parameters is taken from littera-
ture [5, 35, 42, 45, 49], in particular from the works of [5] which has detailled elastic collision
for a plasma under a MF formulation and [35] for a low temperature collisionless plasma.

The collision frequency for elastic collision between species α and β is then,

ναβ = nβ σαβ

√
8

π

kBTαβ
mαβ

(2.18)

where σαβ and Tαβ are respectively the momentum transfer cross-section and the average tem-
perature of the two colliding particle. The average temperature is defined similarly as the
reduced mass mαβ between particle α and β.

Tαβ =
mβTα +mαTβ
mα +mβ

(2.19)

This definition is taken from [35] and agrees with the expression derived from [5]. Similarly,
the heat conductivity is taken from [35] ,

κα = 4
nαk

2
BTα

mανα
(2.20)

where να is the intra-species collision frequency. In this work this frequency is modeled with
Eq. (2.18) for same species collision and is thus να = ναα. The heat flux is considered for all
species but one can notice that because of the small mass of electron with respect to heavy
species, the heat conductivity of electron is expected to be more important than heavy species.

An important parameter that still needs to be defined, as introduced in both definition of
the collision frequency and heat flux is the momentum transfer cross-section σαβ. The com-
putation of it is well described in literature [42, 49], in this work the computation follows the
methodology presented in [5]. In practice, the momentum transfer cross-section is obtained by
computing collision integrals between species α and β across scattering angles. However, it is of-
ten convenient to express collision integrals in terms of reduced collision integrals Q̄(l,s)

αβ . Where
the parameter (l, s) correspond to the Sonine polynomial coefficients used in the Chapman-
Enskog solution procedure [42]. Moreover, these reduced collision integrals can understood as
the deviation from the rigid-sphere values and are often used since they have a weaker depen-
dence on temperature.
Therefore, the choice was made to consider the momentum transfer cross-section to be esti-
mated by Q̄(1,1)

αβ , which is often used in kinetic theory of gases [40]. The computation of Q̄(1,1)
αβ

can be done with the Mutation++ library and is shown in Fig. 2.2 for all possible collisions
in the Argon 3 model and for different temperature regimes.

Before ending this chapter, let’s remember that one last term was introduced during the
elastic collision modeling, the energy to momentum transfer coefficient ζαβ Eq. (2.17). Be-
nilov [5] defines it from the ratio of energy transfer cross-section Q

(e)
αβ to momentum transfer

cross-section Q
(m)
αβ . Various definitions are possible, for this work the definition follows the
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expression for rigid spheres particles.

ζαβ ≡
Q

(e)
αβ

Q
(m)
αβ

= 1 +
2

3
M2

αβ (2.21)

Here Mαβ is the Mach number of the relative motion between species α and β defined as

Mαβ =

√
mαβ

2kTαβ
|uα − uβ| . (2.22)
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Figure 2.2: Average collision cross-section from Mutation++ , dashed lines correspond to
inter-species collisions and full lines to intra-species collisions, subscripts n, i and e refer

respectively to neutrals, ions and electrons species.
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Chapter 3

Application to a 1D post shock relaxation
problem

In this chapter an application is selected for the governing equations derived in the first
chapter of this work. The considered test case is a one dimensional post shock relaxation prob-
lem of an argon plasma, for ease of reference the test case will be referred as the 1D post-shock
relaxation problem from now on. Furthermore, the argon plasma mixture is modeled with the
Argon 3 model developed in the second chapter of this work.

For reference, this problem is based on the work of UTIAS [46] and Kapper [31]. The first
paper provides experimental data as well as numerical resolutions with a simple mixture model
(similar to the Argon 3 model) under a Multi-component (MC) formulation of the problem. On
the other hand, [31] has solved the equations (MC) with a more complex mixture taking into
account different levels of excitation for heavy species, such model is called a State-to-State
model (STS). In comparison to the Argon 3 model, the STS model in [31] is composed of 34
species. For this work, the results of [46] will be used as the primary reference for solution
of this work while the results of [31] will be used to assess the Argon 3 model performance.
Furthermore, this problem has also been tackled by [4, 7].

In the first part of this chapter, the problem is presented according to [46] and important
aspects of the problem are unveiled. Then, the equations are scaled with relevant scales to
obtain an non-dimensional formulation of the governing equations Eqs. (1.10–1.12). Finally, a
mathematical study of the adimensional system of equations to be solved numerically is done
and appropriate boundary and initial conditions are chosen. At the end of this chapter, the
goal will be to gain insight on the challenges of the problem.

3.1 The 1D post-shock relaxation problem definition
The 1D post-shock relaxation problem is an argon plasma relaxation problem. The test

case at hand consist in the study of an argon gas in a shock tube. Experimentally, an argon
gas is maintained at different densities left and right of a diaphragm in a tube. The diaphragm
is then broken at t = 0 s and a shock occurs at the location of the broken diaphragm. The
experimental data and reference solution is taken from [46], in particular, this work focuses of
the test case labeled No. 2.

For this test case, the gas in the region left of the shock is not ionized, the Mach number is
15.9, moreover the gas pressure and temperature in the left region are respectively 685.3 Pa and
293.6 K. The temperature after the shock jumps to 23452 K, under such conditions ionization
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processes start occurring and the gas turns into a plasma. The ionization of the gas occurs
within a certain length after the shock and eventually the plasma reaches a thermal equilibrium
at a position xE ∼ 2 cm from the shock, the plasma relaxes then up to the conditions right of
the shock before the diaphragm was broken.

The problem consists then in solving for the ionization structure and determining the loca-
tion of xE. The problem becomes steady in the one dimensional case if considering the shock
to be stationary. To do so, the reference frame of the solution is set to be the moving shock
reference frame, the shock is then located at x = 0m and x measures the distance from the
shock. The reference steady solution is shown in Fig. 3.1. Additionally, one can split the do-
main into several zones and relate them to different processes occurring during the ionization
of the argon gas. These zones are shown in Fig. 3.1a, five zone can then be identified:

• Zone I, where the absence of free electrons and the high heavy temperature starts the
ionization of the gas through atom-atom impact ionization reactions.

• Zone II, where enough free electrons are present to trigger atom-electron impact ionization
reactions.

• Zone III, the temperature of electrons slowly rises from exchange of internal energy with
heavies through elastic collision balanced by inelastic processes.

• Zone IV, the electron avalanche zone, where the build up in free electron reaches a level
such as recombination processes dominate, in particular the atom-electron recombination
reaction (three-body recombination).

• Zone V, the relaxation zone, where the plasma has reached thermal equilibrium and
no production of particle occurs. The mixture then relaxes up to conditions far away
downstream of the shock tube.

The quantity of interest for this problem are the total plasma mass density and the particle
densities of each species, the mixture velocity and the temperature profiles. Total quantities
are defined as follows. The mixture particle density is the sum of particle densities of each
species in the mixture.

n =
∑
β∈S

nβ (3.1)

Similarly, the total mass density is the sum of the mass densities which are defined from the
particle densities of each species.

ρ =
∑
β∈S

mβnβ (3.2)

Lastly, the speed of mixture is defined from the previous relations.

u =
1

ρ

∑
β∈S

ρβuβ (3.3)
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Figure 3.1: Reference solution [46] for the 1D post-shock relaxation problem.
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Furthermore, Table. 3.1 summarize important parameters of the problem, in particular
the pre-shock conditions of the argon gas. To determine the post-shock conditions (initial
conditions) of the problem, the strategy is to freeze the chemistry through the shock and
compute the post-shock conditions using the Rankine-Hugoniot jump relations for steady and
normal shocks. These relations are recapitualed in Appendix. A. Moreover, it is assumed
that only the translational temperature Th jumps after the shock, the vibrational temperature
Te is therefore assumed to remain at its pre-shock value. Lastly, the chemistry pre-shock is
determined by computing the molar concentration Xi of each species from equilibrium relations.
To do so, one can use the Mutation++ tool mppequil. The post-shock conditions are then
summarized in Table. 3.2.

Parameter Unit Value

Length of domain, L m 0.1
Electron-to-Heavy mass ratio, ε – 1.373× 10−5

Relaxation temperature, Tr K 11632
Pre-shock mach, M∞ – 15.9
Pre-shock pressure, p∞ Pa 685.28
Pre-shock temperature, T∞ K 293.6
Pre-shock electron molar concentration, Xe− – 0
Pre-shock neutral molar concentration, XAr – 1
Pre-shock ion molar concentration, XAr+ – 0

Table 3.1: Post shock relaxation test case important parameters.

M1 [–] p1 [kPa] T1 [K] T1,h [K] T1,e [K] n1 [1/m3] V1 [m/s]

0.45 216.385 23452 23452 293.6 7.34× 1023 1226.8

Table 3.2: Post shock conditions after shock located at x = 0 m obtained with the
Rankine-Hugoniot steady normal shock relations and frozen chemistry.

3.2 Scaling and adimensional equations
In this section, the scaling of Eqs. (1.10–1.12) is done. One must take particular interest

in the choice of scales as difference in orders of magnitudes between conserved variables will
influence the accuracy of the computation. In this case, one must consider the difference in
orders of magnitude between the momentum and total energy as well as between heavy species
and electrons.

Some reference scales are first chosen based on the considered problem, a scale for length
L0 = 1m, mass m0 = mh, number density n0 = n1 and temperature T0 = Tr. The other scales
can be derived from these reference scales. The velocity scale of a given species α is computed
as the thermal speed; this choice is made as the square of the thermal speed is a good estimate
of the internal energy (which in this problem is the main contributor to the total energy) and
is consistent with the scaling of the kinetic contribution (which is directly the square of the
velocity scale).

u0,α =

√
kB T0
mα

(3.4)
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However, taking u0,α as a velocity scale might be not optimal as the orders of the thermal
speeds of each species vary greatly and the velocities in the post-shock problem do not.

O (u0,e) = 106 ≫ O (u0,h) = 103 ∼ O (uα)

Therefore, a unique velocity scale is preferred. In this case, the thermal speed of the neutrals
is taken as it is much more close to the actual speed of the mixture in the problem. Having
defined a unique velocity scale, one can define a characteristic time scale and frequency scale
with the length scale.

u0 =

√
kB T0
m0

= 1555.9 m/s

t0 =
L0

u0
= 64.272× 10−5 s

ν0 =
1

t0
= 1555.9 Hz

Moreover, since the total energy is the sum of internal and kinetic energy, and as mentioned
before a good estimation of the internal energy is the squared thermal speed, the total energy
scale can be chosen to be u20,α. From here, all other relevant scales can be computed from the
previously defined ones.

E0,α = u20,α

p0 = n0kBT0 = 117.92 kPa

H0,α = E0,α +
p0

n0mα

= E0,α + u20,α ∼ u20,α

Rearranging the system of governing equation, the adimensional form of Eqs. (1.10–1.12) can
be obtained by developing each term and expressing it in adimensional form. For this purpose,
adimensional quantities will be denoted with the ã notation where a is a given physical quantity.
The scales associated to each equations are then

n0

t0
,

n0u0
t0

and
n0u

2
0,α

t0
=
n0E0,α

t0

respectively for the particle density, momentum and total energy equation. To get an adimen-
sional system, the scaling of each term in a given equation will need to be consistent to the
corresponding equation scale. Let’s then develop the spatial and source terms for each equation
by highlighting their respective scales. The pressure and the total energy convective flux are
the following.

∂x

(
pα
mα

)
=
p0
L0

1

mα

∂x̃p̃α =
n0kBT0
u0t0

1

mα

∂x̃p̃α =
n0u0
t0

m0

mα

∂x̃p̃α =
n0u0
t0

∂x̃

(
p̃α
m̃α

)
(3.5)

∂x (nαHαuα) =
n0E0,αu0

L0

∂x̃

(
ñαH̃αũα

)
=
n0E0,α

t0
∂x̃

(
ñαH̃αũα

)
(3.6)

Regarding the heatflux, a scale for the heat conductivity can be defined following the expression
derived in the previous chapter in Eq. (2.20). The scale is then

κ0,α =
5

2

n0k
2
BT0

mαν0
(3.7)
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and the adimensional heatflux can be shown to be consistent with the energy equation scale.

1

mα

∂x (κα∂xTα) =
1

mα

κ0,αT0
L2
0

∂x̃

(
κ̃α∂x̃T̃α

)
=
n0

t0

(
u20,α
u0

)2

∂x̃

(
κ̃α∂x̃T̃α

)
=
n0u

2
0,α

t0

(
m0

mα

)
∂x̃

(
κ̃α∂x̃T̃α

)
=
n0E0,α

t0
∂x̃

(
κ̃α
m̃α

∂x̃T̃α

)
(3.8)

Finally, considering the source term scales to be the same as the equation scales by definition
ensure a consistent scaling for the source terms.

Injecting back all the previous expressions and dividing each equation by its scale, the
adimensional system of equations is obtained.

∂t̃ñα + ∂x̃ (ñαũα) = S̃(n)
α

∂t̃ (ñαũα) + ∂x̃

(
ñαũ

2
α +

p̃α
m̃α

)
= S̃(m)

α

∂t̃

(
ñαẼα

)
+ ∂x̃

(
ñαH̃αũα

)
= −∂x̃

(
κ̃α
m̃α

∂x̃T̃α

)
+ S̃(e)

α

(3.9)

Note that for α = e, m̃α = ε and for α ∈ H, m̃α = 1 since the neutral and ion mass are almost
the same in this problem (mn ≈ mi). Additionally to avoid clutter, the ã notation referring to
non-dimensional quantities will be dropped for the rest of this work. Any quantity should then
be assumed to be non-dimensional by default except if specified otherwise.

3.3 Characteristic analysis
Having descibed the problem in an adimensional form, it is then useful to perform a char-

acteric analysis to better understand the underlying challenges of the problem form a mathe-
matical point of vue. Let’s first write the adimensional system in matrix form,

∂tU + ∂xF
c + ∂xF

d = S (3.10)

where U , F c, F d and S are respectively the vectors grouping all species for the conserved
variables, the convective fluxes, the diffusive fluxes and the source terms. The characterics of
the system are driven by the convective part of the system, one can show that the slopes of the
caracteristics of the system are the eigenvalues of the convective flux jacobian matrix Ac with
respect to the conserved variables.

Ac =
∂F c

∂U
(3.11)

Before computing Ac, let’s first notice that ordering the conserved variables in a certain way can
easily simplify the process. Indeed choosing the following ordering for the conserved variable
vector,

U =

Ue

Un

Ui


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implies Ac to be in the following form.

Ac =

Ac
e 0 0

0 Ac
n 0

0 0 Ac
i


Since the subsystem of each species in the mixture are only coupled through the source terms.
One can then show that the eigenvalues of the complete system are the combined eigenvalues
of each subsystem associated to each species.

det (Ac − λI9) = 0 ⇔
∏
α∈S

det (Ac
α − λαI3) = 0 (3.12)

Therefore, a general analysis of the matrix Ac
α associated to the subsystem of species α can be

done and will be valid for each species of the plasma mixture. In this case, the convective part
of the system of species α is the same as the 1D Euler equations with the only difference being
that the first conserved variable is the particle density instead of mass density. Therefore, the
characteristics analysis follows the 1D Euler characteristic analysis. In this section only the
important aspects of it will be explored but a more complete analysis is done in Appendix. B.
The fluxes and jacobian matrix associated to each species system is the following.

Uα =

 nα

nαuα
nαEα

 F c
α =

 nαuα
nαuα + pα

mα

nαHαuα



Ac
α =

∂F c
α

∂Uα

=

 0 1 0

− (γ−3)
2
u2α (3− γ)uα

(γ−1)
mα

−γEαuα + (γ − 1)u3αmα γEα − (γ−3)
2
u2αmα γuα


Solving equation Eq. (3.12) for Ac

α, the eigenvalues associated to the species α are found.

λα,0 = uα − cα

λα,1 = uα

λα,2 = uα + cα

Furthermore, from the diagonlization property of inversible matrices Ac
α = R−1

α ΛαRα, the right
eigenvectors matrix Rα,i are found. Here Λα is the diagonal matrix formed by the eigenvalues
of the system.

Rα =
[
Rα,0 Rα,1 Rα,2

]
=

 1 1 1
uα − cα uα uα + cα

Hα − uαcαmα
1
2
u2αmα Hα + uαcαmα


Finally, the caracteristics of the system of species α are

dpα
mα

− nαcα duα = 0 for
dx

dt
= uα − cα

dpα
mα

− c2α dnα = 0 for
dx

dt
= uα

dpα
mα

+ nαcα duα = 0 for
dx

dt
= uα + cα.

(3.13)

In the context of the 1D post relaxation problem defined previously, the temperature evolves
between ∼ 300 K and ∼ 23400 K. Since the speed of sound cα is closely linked to temperature as
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shown in Eq. (1.18), one can bound the eigenvalues to a certain range depending on the regime
of temperature of the problem. Doing so, it is observed that the first eigenvalue is always
negative as |uα| ≤ cα. Therefore, the first characteristic of the system will always propagate
information from the outlet to the inlet of the domain.
Moreover, the magnitude of the eigenvalues for each species will differ, in particular for the
electrons as the speed of sound of the electron is much greater than for heavy species. The
problem is therefore very stiff and should be properly addressed in the numerical scheme.
Lastly, the strong difference in speeds of sound coupled with the fact that the velocities of each
species should not vary much, implies then that the Mach number of each species will also differ
greatly. Indeed, it is observed that the Mach number for heavy species is M1 while for electron
the Mach number is quite low ∼ 0.003. This last feature will also need to be properly addressed
in the numerical scheme as capturing phenomena for such low Mach can become problematic.

3.4 Boundary conditions
Boundary conditions are fundamental to properly solve flow equations. Without them, the

solution is almost guaranteed to be wrong regardless on how accurate the numerical schemes
is. Therefore, it is important to characterise the boundary conditions of the problem at hand.
In practice one can express which physical quantities have to be imposed at the boundary of
the domain by means of a characteristic analysis of the system. Indeed, the study of the char-
acteristics allows to better understand how information is propagated through the domain. In
general characteristics entering the domain propagate a certain physical quantity (through its
conservation) from the exterior of the domain. Therefore, boundary conditions need to commu-
nicate to the solution inside the domain the quantities conserved on the entering characteristics.

Let’s then take the characteristics obtained in the previous section in equation Eq. (3.13).
As mentioned previously in Sec. 3.3, the first characteristic associated to the eigenvalue uα− cα
of the system for each species propagate from the outlet to the inlet (reverse from the flow).
One can then conclude that two characteristics are entering the domain at the inlet while a
single one is entering the domain at the outlet; fixing then the number of physical quantities to
be imposed on each boundary. It is then common practice to choose such quantities based on
a primitive decomposition of the system of conserved variables. For this problem the primitive
variable are the following:

V =
[
n u p

]T
Several combination of these variables are possible, since the system’s characteristics are very
similar to the classical Euler 1D characteristics the analysis of which combinations are valid will
follow the Euler 1D case. Here the developments are not made but can be found in Appendix. B.
The possible combinations are then summarised in Table. 3.3. Furthermore, the exact values
to impose are taken from the reference steady-state solution shown in Fig. 3.1. The inlet values
are computed from the post-shock conditions. The outlet values are taken at a reference length
of 10 cm, in practice the domain’s length could be expanded as in this problem the outlet
boundary is not physical in the sense that the domain is cut arbitrarily along the tube’s length
(but far enough so that the ionization structure is clearly defined). The outlet values for this
work are can then be found in Table. 3.4.
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Boundary Valid combinations

Inlet (n, p) (n, u)
Outlet (p) (u)

Table 3.3: Boundary conditions possible combinations for the 1D post-shock relaxation
problem.

n [1/m3] α [–] u [m/s] T [K]

1.5661× 1024 0.0636 335.384 11632

Table 3.4: Outlet solution state taken from reference solution at a location of x = 10 cm in
Fig. 3.1, temperature and speed of each species are equal to the mixture value given here.

3.5 Initial conditions
Additionally, to boundary conditions one should also provide initial conditions. However,

initial conditions differ from boundary conditions as the selection is mainly motivated by speed
of resolution. Indeed for a steady problem like the 1D post shock relaxation problem, an ini-
tial conditions closer to the steady solution will favour the convergence rate and therefore the
overall computation time.

On the other hand, even if a steady problem should not depend on time, some problem
can depend on the evolution of the system. In short, such system need to go through an
overshoot to be able to converge properly to the steady-state. For the problem at hand, the
exact evolution in time is not known since the introduced modeling for the source terms has
not been used in other studies. Therefore, the choosing of initial conditions is referred from
literature and initial conditions for alike problems. Two possibility will be explored in this work.

The first is to consider uniform conditions with the post-shock values of Table. 3.2. Each
species particle density is then calculated from their molar concentrations with respect to the
mixture post-shock particle density n1. The velocities are supposed all to be the mixture
velocity V1. The second alternative is to consider a profile varying between the post-shock
state to the equilibrium state-state along the domain. The evolution from a state to another is
done with a shifted sigmoid function acting as a logistic function and shifting from one state
to another at a distance xs = 0.2cm. The initial conditions for a given variable of the solution
(n, u, T ) is then,

u′ = u′ps +
u′ss − u′ps

1 + e−
B
L
(x−xs)

(3.14)

where u′ is the value of a given variable along the domain, u′ps and u′ss its values at respectively
the post-shock state and the steady-state, and B is a scalar value allowing to module the
strength of the sigmoid, for this problem it is set to a value of 60L. A visualization of such
initial conditions is shown in Fig. 3.2 and compared to the reference steady-state solution.
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(a) Particle density profiles.

0 0.2 0.4 0.6 0.8 1

x=L [!]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u
[!

]

u
Reference

(b) Mixture velocity profile, each species is assumed to share the same profile.
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(c) Temperature profiles.

Figure 3.2: Second type of initial conditions with Eq. (3.14) compared to reference
solution [46], non-dimensional quantities are given here according to the scaling done in

Sec. 3.2.
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Part II

Numerical methods



Chapter 4

The Discontinuous Galerkin Finite
Element method

In this chapter, the Discontinuous Galerkin Finite Element Method (DG-FEM, DGM or
even DG method for short) is presented and applied to the equation of the 1D post-shock
relaxation problem. As the name suggest, the DG method is a finite element method using a
discontinuous interpolation order with a Galerkin variational formulation. On key feature of
DG method is that the solution is fully regular inside an element but not necessarly continuous
across element, this property is also refered as the broken trial space. Such property allows
a more flexible and easy construction of the shape function inside an element. Indeed, since
no continuity is imposed, any basis funciton can be chosen to construct the shape functions.
Additionally, this allows the interpolation order to be specific to the element allowing meshes
with different interpolation orders per element.

In the first part of this chapter the method is presented for a general system of hyperbolic
and elliptic equations. The general approach is then applied to the system of equation developed
in the first chapter of this work.

4.1 Galerkin variational formulation
Let’s first describe the Galerkin variation formulation for a general system of conservation

laws. In the general one dimensional case, the system of equation has the following form:

∂tu(x, t) + ∂xF (u, ∂xu, x, t, ) = S(u, x, t) x ∈ Ω, t ∈ R+ (4.1)

where u is the unknowns (or the solution to be found), F the fluxes associated to the system
which can be split into a contribution of convective F c and diffusive fluxes F d, S the sources
and lastly Ω the uni-dimensional domain.

A weak form formulation of Eq. (4.1) is found by multiplying it by a function φ (x) ∈ C1 (Ω)
and integrating then over the domain Ω. Note for the following developments the dependence
on x, t, etc of each term in Eq. (4.1) are not specified to avoid unnecessary clutter. The weak
form of Eq. (4.1) is then∫

Ω

(∂tu− S)φdV −
∫
Ω

F ∂xφdV +

∮
∂Ω

F ·nφdS = 0 (4.2)

where n is the normal to the boundary ∂Ω of the domain Ω. From here a discrete formulation
of such form is found by first partitioning the domain in N non overlapping elements e, the
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domain is then mathematically
Ω =

∑
e

Ωe (4.3)

where the boundary of a given element e defined as the union of all interfaces between all
neighboring elements of element e.

∂Ωe =
⋃
f

If (4.4)

The discrete formulation of Eq. (4.2) becomes then

∑
e

∫
Ω

(∂tu− S)φdV −
∑
e

(∫
Ωe

F ∂xφdV +
∑

f∈∂Ωe

φF ·ndS

)
= 0 (4.5)

where the integration over the complete domain is the sum of the integrals over all the elements.
Furthermore, similarly to Eq. (4.4), the interface flux term for element e is the sum of the fluxes
over the interfaces of the element with its neighbors. The interface term for a given element is
defined as ∑

f∈∂Ωe

F ·nφdS =
∑
f

∫
f

φF ·ndS

=
∑
f

∫
f

(
φ+F+ ·n+ + φ−F− ·n−) dS (4.6)

where by convention the + sign designates the direction of the outward pointing normal to
the given interface of element e or in other words n+ = n and n− = n. However, this
expression does not necessarly ensure stability of the method. Instead, the interface flux will
not be specified but replaced by an interface flux γ chosen in such a manner as to ensure a
stable method for a given application. In practice, this means that γ should be chosen to be
consistent or in other words the exact solution should then satisfy the following equation.∑

e

∫
Ω

(∂tu− S)φdV −
∑
e

∫
e

F ∂xφdV +
∑
f

∫
f

γ
(
u+,u−;φ+, φ−;n

)
dS = 0 (4.7)

4.2 Residual equation with the DGM
In the previous section the Galerkin variational formulation Eq. (4.7) was derived and holds

true for any φ ∈ C1 (Ω). One can relate such function to the so called shape function. Let’s then
consider a set of function φj ∈ C0

∞ (Ω) infinitely continuously differenciable on an element Ωe

and the basis of C0
∞ (Ωe). From there one can show that the Galerkin variational formulation

remains valid for such function and thus the formulation becomes the following.∑
e

∫
Ω

(∂tu− S)φjdV −
∑
e

∫
e

F ∂xφjdV +
∑
f

∫
f

γ
(
u+,u−;φ+

j , φ
−
j ;n

)
dS = 0 (4.8)

Since these function are the basis of an element, one can then project u,F and S on the
basis formed by the shape function and approximate such quantities the over the domain Ω.

uh(x) ≡
N∑
j=1

ujφj(x) (4.9)

Fh(x) ≡
N∑
j=1

Fjφj(x) (4.10)
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Sh(x) ≡
N∑
j=1

Sjφj(x) (4.11)

Injecting such expression back in the discretized Galerkin variational formulation Eq. (4.7), the
semi-discrete form is obtianed

∂tuj = M−1
ij Rj (4.12)

where Rj is the residual and Mij the mass matrix specific to each element and defined as
follows.

Rj =
∑∫

e

∂xφjFhdV −
∑
e

∫
e

φjShdV −
∑
f

∫
f

γ
(
u+,u−;φ+

j , φ
−
j ;n

)
dS (4.13)

Mij =

∫
e

φiφjdV (4.14)

4.3 Hyperbolic system variational formulation
As mentionned previously, the interface flux γ is dependent on the nature of the system

at hand. For hyperbolic systems, the interface flux corresponds to convective fluxes. The
discretisation of it has been shown to be stabilised with the use of an approximate Riemann
solver [16, 34]. The interface flux is then defined as

γc
(
u+,u−, φ+, φ−,n

)
= [[φ]]F∗ (u+,u−,n

)
(4.15)

where F∗ is the numerical flux obtained with the Riemann solver and [[a]] the scalar jump
operator defined as [[a]] = a+n+ + a−n− with a being a scalar quantity. Such expression can
be shown to satisfy all conditions for a stable scheme:

1. Conservativity: the system of equations is a set of conservation laws and therefore the
discretisation should also describe such principle but a a local level. To ensure conserva-
tivity one can impose that the numerical flux is the same of opposite sign at any interface
between two elements.

F∗ (u+,u−,n
)
= −F∗ (u−,u+,−n

)
2. Consistency: The residual equation with the exact solution should be zero. This implies

then the following.
F∗ (u,u,n) = F c ·n

3. Stability: the numerical flux should be chosen as to ensure a unique solution.

4.4 Elliptic system variational formulation
The diffusive terms of are discretised using an Internal Penalty Method or IPM. The method

is detailled in [34]. In brief, the diffusive interface flux is defined as follows

γd
(
u+,u−;φ+, φ−;n

)
= σ[[φ]] · [[u]] + [[φ]] · {{F d}}+ θ[[u]] · {{F d}} (4.16)

where the {{.}} represent the average operator defined as a++a−

2
for vectors and [[.]] the jump

operator previously defined. The σ and θ are arbitrary parameter. The θ parameter value
depends on which specific IPM is being used:
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• θ = 1, for symmetric interior penalty method (SIPDG), in which optimal convergence is
observed.

• θ = 0, for non-symmetric interior penalty method (NIPDG), which then requires σ > 0.

• θ = −1, for incomplete interior penalty method (IIPDG).

For this work an incomplete interior penalty method was used and thus θ = 0. Lastly, the
sigma parameter was studied by [34] and optimal parameter were proposed.

4.5 Application to the plasma equations of this work
In this last section, the above DGM formulation is applied to the equation of this work.

The different terms in Eq. (4.1) can be related to the conserved valriables of this work as
already shown in the previous chapter in Sec. 3.3. The only missing parameter for the complete
defintion of the discretised equatiosn is the numercial flux.

4.5.1 Convective fluxes

The convective flux scheme used in this work is the AUSM+up-AS-cD. This schemes has
been developped during the thesis of V. Van der Haegen [26] specifically for plasma flows. As
the name suggest, the scheme is a variation of the AUSM scheme adding an all speed handling
(in this case for low machs) and a pressure curing term introducing numerical diffusion in the
scheme. The crucial part of the scheme for this work is the AS component as the Mach number
for electrons is very low.

The AUSM or Advection Upstream Splitting Method is a flux splitting method. In general a
fluid contains wavespeed that are define positive and negative, i.e wavespeed propagating down-
stream and upstream, the basic idea of flux splitting method is then to split these contribution
to the convective part of the system. Each component can then be discetised independently.
The AUSM flux splits the numerical flux then into a pressure flux and a convective flux.

F∗ (U )L/R = F∗
c (U)L/R + F∗

p (U)L/R (4.17)

4.5.2 Boundary conditions imposition

The boundary conditions are imposed through ghost cells detailled in [28]. The general
imposition is by computing the value of solution at inside the ghost cell such as to ensure that
the value at the interface between the ghost cell and the first (or last) cell in the domain is the
desired quantity.

x = L

U ∗

UN UN+1

F∗

Figure 4.1: Boundary condition schematics at outlet.
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Following the convention in Fig. 4.1, the value to be imposed U ∗ is done by enforcing

U ∗ =
1

2
(UN +UN+1) ⇒ UN+1 = −UN + 2U ∗ (4.18)

where here UN+1 is the ghost cell and UN the last cell in the domain (outlet in this case).
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Chapter 5

Solving strategy

In this chapter, the strategy to solve for the solution of the 1D post-shock relaxation prob-
lem is presented. As highligted previously, two solvers are used during the resolution process,
one aimed at the CFD part of the problem and the other aimed at computing quantities linked
to the chemical properties of the plasma. The strategy can be seen as a parallel solver strategy.
The solving procedure is then the following. Starting from initial conditions, the CFD or fluid
solver provides to the chemical solver the current state of the solution. The chemical solver
then computes all terms related to the chemistry and communicates back the source terms to
the fluid solver. With that the fluid solver can solve the system for the current iteration, this
process is then repeated for each iteration until the steady-state is reached.

Fluid Solver Chemical Solver

U , ∆x, ∆t

S, κ, ν

Figure 5.1: Relation between fluid and chemical solver of this work, the fluid solver
communicates the solution U while the chemical solver provides source S and chemical

properties computations for each species (in particular heat conductivities κ and collision
frequencies ν).

The computation performed for the chemical solver have arleady been detailed in Chapter 2
of this work, the chemical solver is the Mutation++ library. On the other hand, the fluid
solver computation remains to be fully described. In the previous chapter, the discretizaition
aspect of the CFD computations was presented. The goal of this chapter is then to present the
current resolution scheme implemented in the context of this work.

The 1D post-shock relaxation problem is a steady problem, thus the prefered solver for this
work will be a steady-state solver. However, let’s remember that one big aspect of this work is
to quantify if the sources introduced in Chapter 2 correctly model what is physically occuring
at a chemical level. Since, such effects occur at a much smaller time than the fluid time scale,
it is useful to define a time accurate scheme to track the evolution of the solution. Such scheme
will then allow to have a clearer understanding of the impact of the modeled source terms of
this work.

The chapter is then organised as follows. First the steady solver is presented, then the
unsteady solver. Firthermore, in the case of the unsteady solver, a stability analysis is performed
in order to establish the biggest time step allowed during the integration.
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5.1 Steady-state iterative scheme
The steady solver scheme used for this work is the damped Newton-Krylov method using a

combination of GMRES and Incomplete LU (or ILU) decomposition as preconditioner. Such
method is commonly used when dealing with finite volume methods and has started to be
widely adopted for the DGM [30, 34, 39]. The strategy consists in solving the residual system
Eq. (??) by means of the well known Newton iterative scheme. Contrary to the classical Newton
iterator, the linearized system is solved with a Krylov subspace iteration method. Additionally,
a pseudo time step is added. The scheme is then the following,

∂tUj = M−1
ij Rjy

Un+1
j −Un

j

∆τn+1 = M−1
ij Rj

(5.1)

where ∆τn is the pseudo time step at the nth iteration. The resolution of the system is then
equivalent to solving a pseudo-unsteady problem. In order to maintain a stable scheme, a CFL
number should be specified, the pseudo time step is then computed from the given CFL number.

Since the goal here is to reach a steady solution, the pseudo time step should be chosen
as big as possible in order to convergence faster. In practice, a common strategy to improve
the convergence rate is to adopt an Adaptive CFL strategy. The idea is the following, a initial
CFL0 is provided, such number should be chosen conservatively, i.e not too big as to ensure
that the solver can reach the linear regime in the case of strongly non-linear problems. The
CFL number at each iteration is then computed in function of the convergence rate and CFL0.
The CFL is then increased inversely proportional to the convergence rate, for this work the
definition of the adaptive CFL formula follows [34] and is thus

CFLn = CFL0

(
L2 (R

0)

L2 (Rn)

)α

(5.2)

where L2 is the euclidian norm and α is a scalar coefficient, a typical value which has be shown
to perform well is 0.7. Moreover, the L2 norm of the residual is a kin to measure the overall
error with respect to the steady-state solution. In general, the n-norm of a vector v is defined
as follows.

Ln (v) =

(∑
i

|vi|n
) 1

n

(5.3)

However, in practice the most commonly used norms in CFD are the L2 and the L∞, the latter
is equal to the biggest absolute value in the vector v.

5.2 Time integration scheme
On the other, the time integration scheme for this work is the well known Runge-Kutta 4th

order scheme (RK44 or RK4). In general the scheme solves system of the form:

∂tUj = f (t,Uj) (5.4)

One can then easily relate such system to the discretized DGM formulation Eq. (??) and
therefore the f function is then M−1

ij Rj in the context of this work. The RK4 scheme then
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finds the solution with the following linearizations

Un+1
j = Un

j +
∆t

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn +∆t
(5.5)

where tn is the time of the nth iteration, ∆t the time step (here supposed constant for each
iterations) and the Runge-Kutta coefficient Ki,j are defined as

k1 = f
(
tn,Un

j

)
k2 = f

(
tn +

∆t

2
,Un

j +
∆t

2
k1

)
k3 = f

(
tn +

∆t

2
,Un

j +
∆t

2
k2

)
k4 = f

(
tn +∆t,Un

j +∆t k3
)

(5.6)

5.2.1 Stability analysis

One last aspect hat should be addressed, specifically for the RK4 is the domain of stability of
the scheme in the constext of the 1D post-shock relaxation problem . Specifically, to ensure the
linear stability of the RK4 scheme, the following a Courant–Friedrichs–Lewy or CFL conditions
should be respected.

CFL = σ
∆t

∆x
< 1 (5.7)

Here σ is the maximum propagation speed in the system, ∆t the time step and ∆x the element
size. The maximum propagation speed in the 1D post-shock relaxation problem is associated
to the electron convective flux matrix eigenvalues, as shown in Sec. 3.3 of this work.

σ = λmax = |ue + ce| (5.8)

Furthermore, one can relate Eq. (5.7) to the DGM formulation by expressing ∆x in function
of the order of interpolation p of each element, the number of element Nx and the length L of
the considered domain.

∆x =
L

(2p+ 1)Nx

(5.9)

Altough the above, relations gives an estimate for ∆t, one keep in mind that such conditions
does not take into account the influence of the source terms on the stability of the method.
Indeed, it has been observed that the source terms have a great impact on the domain of
stability. An additional constraint is therefore imposed, the solver should then be able to
follow the chemistry, i.e ionization and recombination should be able to be properly captured
by the scheme. Mathematically this means that

∆tmax
(
νE, νI

)
< 1 (5.10)

where νE and νI are the characteristic frequencies for elastic and inelastic sources.
In practice, the evaluation of such frequencies is hard to do, in particular for application such
as the 1D post-shock relaxation problem in which these frequencies can take a wide range of
values (as they are stongly dependent on the temperature of the system). Under the regimes
of temperature of the 1D post-shock relaxation problem , the maximum encountered collision
frequency is in the order of 1012Hz . The maximum time step for unsteady simulations for the
1D post-shock relaxation problem with the RK4 scheme should then be

∆t ∼ 10−12 s.
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On the other hand, if only the inelastic terms are considered, the maximum allowed time step
jumps to a more favourable value of

∆t ∼ 10−8 s.

Note that the characteristic frequencies in Eq. (5.10) were obtained specifically in the context
of the 1D post-shock relaxation problem regimes of temperatures and densities.

Obviously, the above time steps complexify significantly the practical unsteady resolution
of the problem of this work. The stability is then mostly restricted by the second condition.
Except if only the convective system is considered, in that case the RK4 scheme is stable with
the first condition Eq. (5.7).
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Chapter 6

ForDGe solver

The fluid solver used for this work is the ForDGe solver currently being developped at the
Université de Liège. ForDGe is a high-order cartesian fluid solver using a DG-FEM formu-
lation. Moreover, the solver uses an immersed boundary approach for the mesh discretisation.
Such features allows then to tackle coupled physics problems on complex or even moving ge-
ometries. The solver is implemented in C++.

This chapter is organised in two parts. First, a short description of the ForDGe framework
is given. Then, the current work contribution to the solver is presented. For this work, a
conservation law class was added with the specific aim to tackle plasma relaxation problems
such as the 1D post-shock relaxation problem. The goal here is to provide a brief description
of the current capabilities of ForDGe and in particular of the added conservation law.

6.1 Structure and framework
The main class of ForDGe is the FSolver class which instantiate the solver parameters

from a configuration json file. The ForDGe architecture is organised in several modules each
treating a specific aspect of the numerical implementation. These modules are then called dur-
ing the solving procedure by the main class.

For the purpose of this section, only the key modules are presented. Five modules are then
considered, handling the generation of the mesh, the definition of the physics of the problem, or
in other words the definition of the conservation laws of the problem, the discretization with a
DG approach and finally the solving schemes for steady and unsteady problems. Each modules
is managed with an overarching class. Since the practical implementations of these classes was
not the focus of this work, the presentation here is done to provide a short description of the
usage and capabilities of each class. Note also that the descriptions made here reflect the state
of ForDGe at the date of the current work. The five classes are then the following:

• FMesh: This class implements the mesh generation aspect of the solver. The class allows
to generate cartesian meshes in all three spatial dimension with a user specified order of
interpolation for each element in the mesh. All relevant informations are then stored for
each element in a dedicated data structure for ease of access in other classes.

• FConservationLaw: The conservation law module implements the physics of the problem
to be solved. The base class acts a factory or virtual class allowing then the user to imple-
ment its own conservation law class for the desired physics. The user should then specify
the relevant scales of the problem, the appropriate flux schemes, the computation of the
sources, the implementation for the boundary conditions enforcement, the initialization
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of the solution with initial conditions and lastly the implementation of post-processing
functions to compute relevant physical quantities (such as pressure, temperature, etc).
At current stage of development, several conservation laws have been implemented giving
future developers a basis for proper implementation of their own conservation law class.

• FDGBase: This class implements the disretization module of ForDGe . The module
consist into the evaluation of the residual from each of its contribution through the DG
formulation discretization. The discretization modules allows then to treat the DG dis-
cretization independently from the physics of the problem.

• FIterator: The iterator class implements the Newton-Krylov iterator solvers for steady-
state problem. Additionally, the class provides several strategies to deal with diverse
problems, such as adaptive CFL to improve the convergence rate.

• FTimeIntegration: Similar to the previous class, this class provides an interface to solve
unsteady problem by providing several time accurate integration schemes. The current
implemented schemes are based on the well known Runge-Kutta methods. These schemes
can be spit in explicit schemes (RK44 or Runge-Kutta 4th order) and implicit schemes
(RORK, ESDIRK641) allowing great flexibility when dealing with unsteady problems.

6.2 Conservation class for plasma relaxation test cases
The added conservation law class for this work is the FPlasmaRelaxationCLaw class. This

class solves for problems in which the physics is determined by conservation systems of the form
of the system of equations introduced in Chapter 1. In particular, the class implementation was
done in order to solve the 1D post-shock relaxation problem . However, the class also allows
to tackle other similar test cases. To do so, the user can specify several optional parameters
allowing to modify the governing equations, the chemistry and its related source terms but
also all other aspects relevant to the discretization process (flux scheme, boundary condition
enforcement, etc). In this section, the main options provided by the FPlasmaRelaxationCLaw
are presented.

The first option is the formulation of the equations to be solved, which is specified with the
Model parameter. In brief, this options introduces different systems of conservation equations
based on the system developed in this work Eqs. (1.10–1.12). Currently three models are
possible:

• The default model, which simply solves the system Eqs. (1.10–1.12) and is referred with
the FullCoupling keyword.

• A modified source model, the MassCoupling model. Here the source terms are modified
for the momentum and total energy equations. The system becomes then the following,
where the modified terms with respect to the default model are highlighted in red.

∂tnα + ∂x (nαuα) = ω̇(n)
α

∂t (nαuα) + ∂x

(
nαu

2
α +

pα
mα

)
= uαω̇

(n)
α

∂t (nαEα) + ∂x (nαHαuα) = − 1

mα

∂xqα + Eαω̇
(n)
α

(6.1)

1These schemes will not be detailled in the present work as they were not used for this work. The goal here
is just to mention the different possibilities of the ForDGe solver.
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• The last model is the Euler model, which as the name suggest solves the Euler equations
and can be used to study the system in a decoupled form.

∂tnα + ∂x (nαuα) = 0

∂t (nαuα) + ∂x

(
nαu

2
α +

pα
mα

)
= 0

∂t (nαEα) + ∂x (nαHαuα) = 0

(6.2)

Additionally to the Model option, sources terms options are available and allow to specify the
computation and type for these terms. Note that by default the source terms are computed as
described in Chapter 2 of this work with the help of the Mutation++ library.
The SourceComputation option can take either the Mutation or Hardcode arguments. These
argument indicate which algorithm is used to compute the source terms. Indeed, computations
with Mutation++ have shown to be somewhat expensive and thus the user might want to
compute source term with an hardcoded alogrithm. Currently, the hardcoded algorithm fol-
lows the development of Chapter 2 of this work and only is available for the Agon 3 mixture
model. The second option is the SourceType, which allows the user to add only Inelastic
or Elastic contributions to the source terms. The user can then assess the influence of each
contribtuion separately. By default both contributions are taken into account, the default mode
is referred with the All keyword.

Regarding the chemistry, one should encode a mixture (and mechanism) file in Mutation++

and then indicate to the FPlasmaRelaxationCLaw class the name of such file under the Mixture
option. As stated before, currently only the Argon 3 mixture is supported and is referred with
the argon_3 keyword. The class is then built in order that future users can specify their own
mixtures, provided that a proper source modeling is done. Additionally, in order to ensure that
a Hardcode computation can be done, the user needs to provide Arrhenius law parameters for
each foward and backward reaction of the new mixture.

Until now, all presented parameters are optional since a default value overrides in case no
value is specified by the user. However, some options should be specified as they depend on
the considered test case. These parameters are the scaling parameters defined in Sec. 3.2, in
particular the reference scales for particle density and temperature. These scales should be
specified with the ReferenceNumberDensity and ReferenceTemperature parameters. More-
over, one should also be aware that minimum quantities are defined in the class for specific
physical quantities. Indeed, negative densities or temperatures are not physical and should be
avoided. Therefore, the minimum quantities for particle density and temperature are chosen re-
spectively as 10−40m−3 and 100K. Note these values are chosen for plasma applications where
wide variation of particle densities are possible and low temperature such as 100K rarely occur.

The previous described options are specific to the FPlasmaRelaxationCLaw class. The rest
of the options tend to be common to each conservation law class in ForDGe . These options
allow the user for instance to specify the flux scheme, the type of initial and boundary con-
ditions and the post processing options. Let’s then describe the current variations of each of
these parameters for FPlasmaRelaxationCLaw class.
Currently, four flux schemes are available: the LaxFriedrichs scheme [Lax], an entropy stable
Roe scheme [27] applied to the system of Eqs. (1.10–1.12) and lastly the AUSM+ and AUSM+UpAScD
schemes both described in Appendix. ??.
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Furthemore, the class allows to specify either uniform conditions in the one dimensional
case with the Uniform1D or Custom conditions. For the uniform case, the user should then
specify the following parameters:

• NumberParticle: The plasma overall mixture particle density in m−3.

• DegreeOfIonization: The ratio Z of charged number particles to overall number particle
in the plasma mixture.

• Velocity: The velocity of the plasma mixture in m/s, each species velocity is then
supposed to be the same as the plasma velocity.

• ElectronTemperature: The temperature of electrons or the vibrational temperature of
the plasma in K.

• HeavyTemperature: The common heavy temperature in K.

From here, the class initializes the solution to be constant everywhere with the following values.
The particles densities are

for neutrals nα (x, 0) =
(1− Z)n

(NS −NZ)

for ions and electrons nα (x, 0) =
Zn

NZ

where n is the value specified with the NumberParticle parameter and NZ , NS respectively
the number of charged species and the number of species in the mixture. Momentum and total
energy are then computed from their relations to speed, temperature and particle density.

Regarding, boundary conditions, three type are implemented. First, SubsonicInlet and
SubsonicOutlet conditions which refer to the boundary conditions described in the previous
chapters of this work. One should then specify all quantities at the inlet and the pressure at the
outlet with dimensional units. The user can then define the type of inlet with the InletType
parameter, the allowed type are summarised in Table. 3.3. However, the outlet can currently
only be a pressure subsonic outlet boundary.
The third available boundary conditions is a Wall boundary conditions. The implementation
enforces then a no penetration and no slip condition, i.e all component of each species velocity
are enforced to be zero, and a zero heat flux Neumann condition, i.e ∂xT = 0.

Lastly, several physical quantities, other than the conserved variables, can be exported
during the soling procedure. The quantities of interest here are the temperature, the pressure,
the velocity and the mass density of each species. Moreover, each source term can also be
export with the DensitySourceTerm, MomentumSourceTerm and EnergySourceTerm keywords.
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Chapter 7

Preliminary test cases

Solving problems such as the 1D post-shock relaxation problem can be a difficult task
as many aspects of the discretisation can fail. Therefore, to be able to assess the correct
implementation of the numerical methodology presented previously, preliminary test cases are
done. These test cases are specifically designed to validate each part of the discretisation. Two
test cases are then selected, the first dedicated to the convective part of the system and the
second to the sources.

7.1 The 1D step propagation test case
This test case is aimed at studying the propagation of a discontinuity in the domain. Specif-

ically, the solution is initialized with a density step in the middle of the domain. Moreover, the
plasma is assumed to be at rest, i.e no velocity, and all species share a common temperature.
This is then practical to easily identify different behaviour between each species

In the absence of sources and without heat flux, the system of equations becomes the multi-
species Euler 1D system and is thus

∂tnα + ∂x (nαuα) = 0

∂t (nαuα) + ∂x

(
nαu

2
α +

pα
mα

)
= 0

∂t (nαEα) + ∂x (nαHαuα) = 0

(7.1)

where each convective system associated to each particle is independent from each other. The
system is said to be decoupled. To initialize the solution some reference quantities are first
taken. A temperature T0 = 300K and a pressure p0 = 685.28 , the plasma composition is then
equally distributed between each species. The system is then solved with the time integration
RK4 scheme. Having chosen a low temperature profile is then useful as a more generous time
step can be define (remember that the time step for RK4 is dependent on the speed of sound
of electrons, itself dependent on temperature). For this test case, the time step is then 10−8 s.

The results of this test case are displayed in Fig. 7.1 for particle density, Fig. 7.2 for speed
and Fig. 7.3 for pressure. All quantities are displayed with non-dimensional units. As expected,
one can notice that the convection part of the discretization is properly treated. Indeed, when
perturbing a fluid at rest, one should expect waves to ripple from the origin of the perturbation.
Furthermore, notice that the electron dynamics are much faster than heavy species. From the
figure on can measure the propagation speed of the density waves. The electrons propagation
speed is then ∼ 7.92×104m/s and ∼ 297m/s for heavy species. Since the fluid is at rest, these
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measurements correspond to the speed of sound of each species. One can compare such value
with the speed of sound expression Eq. (1.18). Doing so, the speeds of sound at T = 300K
are then 8.7051× 104m/s and 322.6m/s respectively for electrons and heavy species. One can
then conclude that the measurements match the expected physics.
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Figure 7.1: Non-dimensional particle density resulting from initial density step perturbation
with no coupling between the species of the plasma, left for electrons and right for heavy

species.
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Figure 7.2: Non-dimensional velocity resulting from initial density step perturbation with no
coupling between the species of the plasma, left for electrons and right for heavy species.
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Figure 7.3: Non-dimensional pressure resulting from initial density step perturbation with no
coupling between the species of the plasma, left for electrons and right for heavy species.
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7.2 The argon reactor test case
This test case is aimed at testing the source implementation. For this purpose, the test case

describes the evolution of a system in a non-equilibrium state towards and equilibrium point.
For this case, the non-equilibrium conditions are the ones described in the 1D post-shock relax-
ation problem right after the shock. However, specifically for this case, the fluid is at rest. The
system should then evolve towards the equilibrium solution of the 1D post-shock relaxation
problem mainly through chemical exchanges.

The solution is initialized with uniform conditions and wall boundary conditions are enforced
(no slip, no pen). Moreover, the same scaling of Sec. 3.2 is used here. Lastly, the solution is
solved with the time integration RK4 scheme detailed previously in Chapter 5. Since only
inelastic terms are present here, the time step for the time integration is set to ∆t = 10−8. The
system of equations to be solved is the following.

∂tnα + ∂x (nαuα) = ω̇(n)
α

∂t (nαuα) + ∂x

(
nαu

2
α +

pα
mα

)
= ω̇(m)

α

∂t (nαEα) + ∂x (nαHαuα) = ω̇(e)
α

(7.2)

The solutions is then displayed in Fig. 7.4. To be specific, the quantity displayed in each
figure is the evolution of the average of said quantity over the domain. Since uniform conditions
are provided and the production is uniform over the domain, the solution and its average are
the same.

Regarding the results, several observations can be made. First, a mass equilibrium was
properly achieved. One can verify this, as the density production ω̇(n) in Fig. 7.4c eventually
reaches zero and no mass exchange is then possible between each species.
Furthermore, the fluid remains at rest as expected (Fig. 7.4e). Additionally, it is observed that
the velocity is not exactly zero and some very small variations appear. This variations are
negligible, yet one can notice that the species mostly impacted by it are the electrons.

On the other hand, some unexpected behaviours can be observed. In particular regarding
the temperature evolution. Indeed, it seems that inelastic terms do not exchange temperature.
However, one can notice in Fig. 7.4d that the inelastic energy production is not zero but still
does not seem to impact the temperature. One possible explanation could be the chosen scal-
ing. Indeed, the scaling of the energy is species dependent but the source

Lastly, the equilibrium ionization fraction can be compared to the one from the 1D post-
shock relaxation problem . This is done as a validation step even if the observations about
temperature imply that the ionization rate should differ. Indeed, the rate from the 1D post-
shock relaxation problem is α = 0.0679 while the rate of this solution is α = 0.0301.
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Figure 7.4: Equilibrium solution for the ionization process of argon gas at rest.
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Chapter 8

The 1D post-shock relaxation problem

In this last chapter, the current solution of the 1D post-shock relaxation problem is pre-
sented. As one will notice, the results presented here are not conclusive in the sense that the
expected solution as not been obtained. Therefore, this chapter aims to present the different
simulations done in the context of this work and determine the most sensitive parameters. The
results here are obtained with the steady solver. Sadly, because of time constraints unsteady
simulations could not be done realistically such as to show interesting results.

8.1 Steady-state results
Several simulations were done by varying the boundary conditions and initial CFL number.

The presentation here will compare the differences observed in between each setup. In each
case, the solution is compared to the reference solution shown in Chapter 3 of this work.
Furthermore, irespectively of the chosen setup the range of acceptable initial CFL numbers was
observed to be

10−7 < CFL0 < 10−4.

Simulations with values of CFL0 outside of this range would then diverge after a few iterations.
Lastly, for all simulations the minimum relative convergence was set to 10−8.

The solution obtained are then shown in Fig. 8.1 and Fig. 8.2 with respectively a density
and pressure inlet boundary type conditions as highlighted in Sec. 4.5.2. For both case the
following observation can be made:

• The solution equilibrium state is not maintained in the equilibrium region (zone V), in
particular the temperatures start diverging from one another and are practically never
exactly equal.

• A density overshoot appear at roughly x/L ∼ 0.4.

• The electrons particle density seems is a linear.

These observations can partially be explained from the fact that the result presented here are
not strictly the results of the converged steady solution. Indeed, the convergence rate is quite
slow and did not reach the selected minimum relative convergence. The convergence for the
second simulation can be seen on Fig. 8.3. This sadly, could have potentially be fixed, but a
lack of time and a slow convergence rate did not allowed for longer computations. This mean
that the pseudo-transient term is still active in the residual and thus could explain for instance
the appearance of overshoots.
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Overall, from these two simulation, the second seems to be more consistent with the expected
solution. Indeed one can observe that contrary to the first one, the temperature profiles seem
to be maintained at the correct values near the boundaries while in the first simulation the
heavy temperature is observed increasing at the inlet.
The rest of this chapter focus then on the different results for the second simulation, i.e the
solution with a pressure inlet type boundary. The current solution is then showcased in Fig. 8.2,
the velocity of the mixture in Fig. 8.4 and the source terms and in particular the energy source
in Fig. 8.5.
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Figure 8.1: Solution with CFL0 = 10−6 and density inlet type boundary conditions as detailed
in Sec. 4.5.2
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Figure 8.2: Solution with CFL0 = 10−5 and pressure inlet type boundary conditions as
detailed in Sec. 4.5.2
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Figure 8.5: Source terms with CFL0 = 10−5 and pressure inlet type boundary conditions.
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Conclusion and future work

In this work, a numerical methodology to resolve reactive plasma flow problems has been
developed. First the physics of such flow was studied and characterised with a set of governing
laws under a Multi-fluid formulation. Additionally, the resolution of these governing laws was
shown to be dependent on the chemistry of the plasma and thus a chemical and source model
was developed according to the problem of this work. Regarding the problem of interest, the
1D post-shock relaxation problem was properly introduced and formally defined from [31, 46].

In the second part of this work a working DG-FEM formulation was applied to the gov-
erning equation of this work. Steady and unsteady scheme were then introduced to solve the
1D post-shock relaxation problem . Lastly, the implementation of the numerical methodol-
ogy was done in the ForDGe solver by introducing a dedicated conservation law class, the
FPlasmaRelaxationCLaw . Currently, the class handles chemical interactions with the Argon
3 model introduced in this work. Hovewer, the class provides tools to handle other collisional
chemical model for reactive plasma flows.

In the last part of this work, the results achieved with the numerical method of this work
was presented. Additionally to the problem of this work, two other test cases were explored
in a quest to assess the correct implementation of each individual part of the discretization
process. From here several observations were made:

• The propagation of an acoustic perturbation is correctly handled by the discretization.

• The inelastic contibution to the energy source term is inacurate, as it fails to properly
describe the physical exchange of temperature in between electrons and heavy species.

• The current source model does not maintain the equilibrium state in zone V of the 1D
post-shock relaxation problem , as temperature profiles diverge.

To conclude, the current work although not successful in solving the 1D post-shock relax-
ation problem , this work has layed ground for future studies. The main culprit seems to be the
source model, in particular regarding temperature exchanges. Indeed, even if the methodology
did not result in the desired solution, this work results can be used to establish guidelines on
future developments in order to develop a robust numerical method for tackling problems of
the type of the 1D post-shock relaxation problem . Here, two directions are suggested:

• First one could integrate a more complex source model to develop in particular the ex-
change of temperature due to chemical reaction, one example is the work of Benilov [6]
were collision integrals are fully described for the Multi-fluid model.

• Regarding the set up of the problem, one option that was not explored in this work is to
include the shock in the the numerical domain. The resolution is a bit different as shock
capturing method need to be developed. Furthermore, such resolution should be done in
time accurate simulation which can be quite expensive. On the other hand such approach
is quite common and tends to be preferred, one example is for instance [7].
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Appendix A

Rankine-Hugoniot relations

In this appendix the rankine-hugoniot are briefly sumarised. The Rankine-Hugoniot rela-
tions also referred to as Rankine–Hugoniot jump conditions describe the relations of the state
left and right of a shock wave. For this work, the focus is specifically on the normal and steady
shock relations. The Rankine–Hugoniot conditions can be expressed then as

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

(A.1)

which in short describe the conservation of mass, momentum and energy through the shock.

Furthermore, one can expand such relations if perfect gas are considered by introducing the
perfect gas law relation. One can then express the ratio of a conserved variable left to right
(assuming that the left mach number is supersonic) as follows.

M2
2 =

1 + γ−1
2
M2

1

γM2
1 − γ−1

2

ρ2
ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

p2
p1

= 1 +
2γ

γ + 1

(
M2

1 − 1
)

T2
T1

=
p2/p1
ρ2/ρ1

(A.2)
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Appendix B

Characteristic analysis of the 1D Euler
equations

This appendix treats the analysis of the characteristic for the Euler system in the one
dimensional case. It follows the analyis as detailed in the book of C. Hirsch [28].
First, the methodology to determine the characteristic variables of the Euler system is described,
by extension this methodology is valid for any similar system. Then the characteristic analysis
of the Euler system is done and examples of typical boundary conditions are given.

B.1 Characteristic variables
The one dimensional Euler system can be written in matrix form as follows.

∂tU + ∂xF = 0 (B.1)

where the conserved variable U and the fluxes F are

U =

 ρ
ρu
ρE

 F =

 ρu
ρu2 + p
ρuH

 .
One can then introduce the flux jacobian matrix A = ∂F

∂U
.

A =

 0 1 0
1
2
(γ − 3)u2 (3− γ)u γ − 1

−γEu+ (γ − 1)u3 γE − 3
2
(γ − 1)u2 γu


and the system Eq. (B.1) can be rewritten in functin of partial derivative of the conserved
variables U

∂tU +A∂xU = 0 (B.2)

The eigenvalues of the flux jacobian matrix describe the propagation speed of the waves asso-
ciated to each characteristic. To determine the eigenvalues it is often easier to proceed under
a primitive variable formulation, let’s define V as the primitive variable vectors. With a par-
ticular choice of primitive variable one can define the transformation matrix M from primitive
to conservative variables.

M =
∂U

∂V
(B.3)

54



Similarly to the conservative system formulation, a primitive variable formulation is found with
the transformation matrix M .

M∂tV +AM∂xV = 0

M−1 · (M∂tV +AM∂xV ) = 0

∂tV +M−1AM︸ ︷︷ ︸
=Ã

∂xV = 0
(B.4)

As highlighted the flux jacobian matrix for the primitive Ã is then obtained and one can show
that the eigenvalues are the same for both formulation with the diagonalisation property of
inversible matrices. Let’s define the P and Q respectively as the left and right eigenvectors of
A,

A = PΛP−1 = Q−1ΛQ (B.5)

then from the definition of Ã,

Ã = M−1AM = M−1P︸ ︷︷ ︸
=L

ΛP−1M = M−1Q−1ΛQM︸ ︷︷ ︸
=R

(B.6)

the eigenvalues matrix remains the same, while the left and right eigenvectors of the primitive
jacobian matrix are defined respectively as L = M−1P and R = QM .

The characteristic variables W are then found by injecting the diagonlisation expression of
Ã back in the primitive formulation.

∂tV +LΛL−1∂xV = 0

L−1∂tV︸ ︷︷ ︸
=∂tW

+ΛL−1∂xV︸ ︷︷ ︸
=∂xW

= 0 (B.7)

The characteristic variables are ∂W = L−1∂V , since the eigenvalues matrix is a diagonal the
caracteritic curves associated to each Wi corresponds to a 1D wave propagating (in the left or
right direction) through the domain at a velocity λi. Note that if L−1 is constant in time and
space then W = L−1V .

B.2 Characteristic analysis
In this section, an analysis of the characteristics is done for a given choice of primitive

variables. The goal is then to infer the appriopriate choice of variables to impose for different
type of boundary conditions. Here only the subsonic inlet and outlet boundary condition are
explored as these are relevant in the context of this work, other example are further detailled
in [28]. Let’s choose the set of primitive variable

V =
[
ρ u p

]T (B.8)

the associated flux jacobian matrix can be shown to be the following.

A =

u ρ 0
0 u 1/ρ
0 ρc2 u

 (B.9)
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The characteristics of the system are then found following the method detailled in the previous
section.

L−1 =

0 1 −1/ρc
1 0 −1/c2

0 1 1/ρc

 ⇒ ∂W = L−1∂V (B.10)

One can then determine the characteric equations with the left eigenvectors from the diago-
nalisation property of the jacobian matrix A where Λ is the eigenvalues matrix. This in turn
gives that in a direction dx/dt = λi, the relation LidW = 0 is respected. The caracteristic
equations associated to each wave speed are then the following.

dp− ρc du = 0 for
dx

dt
= λ0 = u− c

dp− c2 dρ = 0 for
dx

dt
= λ1 = u

dp+ ρc du = 0 for
dx

dt
= λ2 = u+ c

(B.11)

The appropriate choice of boundary condition can be determine if proceeding the following way,
for a small perturbation δ, the following relation is true

δW = L−1δV ⇔ δW =

[
δW P

δWN

]
=

[
(L−1)

P
I (L−1)

P
II

(L−1)
N
I (L−1)

N
II

] [
δV I

δV II

]
(B.12)

where P and N refer to physical and numerical variables, while I and II are the primitive
variable determined from inside the domain or from information outside the domain. It can be
shown [28] that the solution inside the domain can fully be defined if

det
(
L−1

)N
II

̸= 0 (B.13)

or in other words if (L−1)
N
II is full rank.

Let’s then consider the following practical application of a subsonic inlet boundary condition.
The ingoing characteristics are λ1, λ2 while λ1 exits the domain. Therefore two characteristic
variables need to be imposed. From there, the Eq. (B.12) is reorganised as with the physically
imposed characteristic variable on top of the characteristic variable vector. The condition in
Eq. (B.13) is then checked for all possible primitive variable combinations. One can then show
that the only combination of primitive variable that do not work is to impose the speed and
pressure but the density. δW1

δW2

δW0

 =

 1 0 −1/c2

0 1 1/ρc
0 1 −1/ρc

 ρ
u
p

 =

 1 −1/c2 0
0 1/ρc 1
0 −1/ρc 1

 ρ
p
u

 =

 0 −1/c2 1
1 1/ρc 0
1 −1/ρc 0

 u
p
ρ


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