
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Extending Joint Entity and Event Coreference Resolution across Documents

Auteur : Nelissen, Louis

Promoteur(s) : Ittoo, Ashwin

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/16441

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège
Faculty of Applied Sciences

Academic year 2021-2022

Extending Joint Entity and Event
Coreference Resolution across

Documents

Master thesis presented in partial fulfillment of the requirements
for the degree of Master of Science in Data Science and

Engineering

Louis Nelissen

Supervisor: Prof. A. Ittoo

Extending Joint Entity and Event Coreference

Resolution across Documents

Louis Nelissen

Supervisor: Prof. A. Ittoo

Abstract

Detecting corefering events and entities in texts is an important task in NLP,
where it plays a role in many other tasks and applications. In this work, we
build on a joint approach of entity and event coreference resolution, pioneered
by H. Lee, Recasens, et al. 2012 and matured by Barhom et al. 2019 using
a neural architecture. In particular we look at coreference resolution across
documents, more complicated and less researched than coreference resolution
within documents. Using Barhom et al. 2019’s model, we propose a series of
extensions to improve its results. This is done by increasing the amount of
information provided to the model, in particular the joint nature of the modelling
and by improving entity and event representation with the use of document
embedding. As a secondary problem, we investigate ways to improve the
model’s time performance through compressing the mention representations.
Our results are compared with other works tackling the problem of cross
document coreference resolution on the ECB+ dataset, the standard dataset
for cross document entity and event coreference resolution.

1

Acknowledgements

I would like to thank my supervisor, Prof. A. Ittoo and Judicaël Poumay for
their help in making this work come to life.

I would also like to thank my friends, my family and my colleagues for their
support during this intense period of my life.

2

Contents

1 Introduction 6

2 Background 7
2.1 Theoretical Notions . 7

2.1.1 Natural Language Processing 7
2.1.2 Coreference . 8

2.2 Practical Notions . 11
2.2.1 Recurrent Neural Networks 11
2.2.2 Encoder-Decoder . 13
2.2.3 Transformer . 14
2.2.4 Word Embedding . 16
2.2.5 Document Embedding 19
2.2.6 Dimension Reduction . 21

3 Related works 23
3.1 WD Coreference Resolution . 24

3.1.1 WD Entity Coreference Resolution 24
3.2 CD Coreference Resolution . 25

3.2.1 CD Joint Entity and Event Coreference Resolution . . . 25
3.2.2 CD Event Coreference resolution 25

4 Methodology 26
4.1 Joint Entity and Event Coreference Resolution 26
4.2 Original Model Methodology . 27

4.2.1 Mention Representation 28
4.2.2 Pairwise Mention Representation 30
4.2.3 Pairwise Scorer . 30

4.3 Thresholding . 30
4.4 Document Embedding . 31

4.4.1 Enriching Mention Representations 31
4.4.2 Enriching Semantic Arguments 32

4.5 Scorer Input Reduction . 33

5 Implementation Details and Experimental Setup 35
5.1 Data . 35
5.2 Data Preprocessing . 35

3

5.3 Implementation . 36
5.3.1 Thresholding . 36
5.3.2 Document Embedding 36
5.3.3 Pairwise Scorer . 37
5.3.4 Input Reduction . 38
5.3.5 Evaluation Metrics . 39

5.4 Experimental setup . 40

6 Results 41
6.1 Baselines . 41
6.2 Evaluated Models . 41
6.3 Analysis . 43
6.4 Further developments . 45

7 Conclusion 46

A Tables 54

University of Liège - 4 - 2022

Abbreviations

AI Artificial Intelligence

BERT Bidirectional Encoder Representations from Transformers

CD Cross Document (Coreference Resolution)

DL Deep Learning

ELMo Embeddings from Language Models

GRU Gated Recurrent Unit

LM Language Model

LSTM Long Short Term Memory

ML Machine Learning

MLP Multilayer Perceptron

NLP Natural Language Processing

PCA Principal Component Analysis

RNN Recurrent Neural Networks

SRL Semantic Role Labelling

WD Within Document (Coreference Resolution)

University of Liège - 5 - 2022

Chapter 1

Introduction

The detection of coreferring events and entities, defined as textual spans referring
to the same entity or event, is an important task in NLP. It plays a role in
many other tasks and applications. The particular subtask of entity recognition
within documents has taken up a majority of the research interest in this field,
with the other variants receiving less attention.

In 2012, Lee et al. proposed a model for coreference resolution which jointly
modelled entity and events. This joint modelling lead to an improvement in
performance for both tasks. Barhom et al. 2019 used this joint modelling idea to
propose a neural architecture for cross-document coreference resolution.

In this work, we build upon their model by adding a series of modifications in
order to first improve its results on the ECB+ dataset, and second its time
performance. These improvements center around 3 aspects. We accentuate
the joint nature of the modelling by increasing the frequency of switches
between entity and event coreference training iterations. We also broaden entity
and event representation with the use of document embedding. Finally we
investigate the compression of mention representations with the aim to improve
time performances.

In chapter 2 we will discuss background concepts. First, we will go over the con-
cepts of Natural Language Processing and in particular the task of coreference
resolution. This will be followed by a brief explanation of different tools and
models used in this work. Chapter 3 will cover recent works tackling coreference
resolution. Chapter 4 will detail our proposed extensions, chapter 5 the imple-
mentation, data and training procedures used and chapter 6 the performance
of the aforementioned solution and further lines of inquiry. Chapter 7 will
conclude this paper. Additional tables can be found in the Appendix.

6

Chapter 2

Background

This chapter will go over important theoretical and practical notions supporting
the solution we propose. We first introduce Natural Language Processing and
coreference. We then focus on the task of coreference resolution in its different
variants.
We then go over two important categories of models we will use in this work:
word embedding and document embedding. To explain how the models work,
we will present the Recurrent Neural Network (RNN), Encoder-Decoder and
Transformer architectures.
Finally we introduce the concept of dimension reduction and two approaches
we will use (PCA and deterministic bottlenecked autoencoders).

2.1 Theoretical Notions

2.1.1 Natural Language Processing

Natural Language Processing (NLP), also called Computational Linguistics,
is one of the possible applications of Artificial Intelligence (AI). It focuses on
the treatment of natural language1 by computers to perform useful tasks (in
a similar fashion computer vision centres on the treatment of visual input by
computers) (Deng and Y. Liu 2018). NLP is a multidisciplinary field, which, on
top of AI, also involves elements from fields such as linguistics and computer
science (Eisenstein 2019). The complexity of this field resides in the ambiguity
and variability of human language (Goldberg 2017).

The development of NLP can historically be divided in 3 periods: rationalization,
empiricism and deep learning.
The rationalism period coincides with the early phase of AI development in the
1950s, relying on the notion that there must be an innate structure to language
(Chomsky 2015). This period is also referred to as the symbolic period as

1Natural language refers to a language that has developed as a means of communication
between people, rather than a language created for computers for instance (Natural Language
2021)

7

programs were built using symbolic logic rules. The programs would then apply
these rules to a given input and produce an output. The main drawback of
these techniques is their inability to learn from data.

This lead to the development of the empiricist NLP models around the 1980s,
coinciding with the rise of machine learning. Instead of trying to use the innate
structure of natural languages, the empiricist approach exploits data to search
for patterns and generalizations. Building on theoretical concepts such as the
Hidden Markov Model (Baum and Petrie 1966), models like support vector
machines, conditional random fields and perceptrons became the norm. These
models are usually referred to as statistical models.

Since the 2010s, these models are being supplanted by the so-called ”deep”
learning models (Y. Bengio 2009), (LeCun, Yoshua Bengio, and G. Hinton
2015), (Goodfellow, Yoshua Bengio, and Courville 2016). These models are
characterized by their ability to process huge amounts of data. They also do
not need a lot of the feature engineering2 that was required by older models
(Deng and Y. Liu 2018). On the other hand, they require a significant amount
of data to train.

Research in NLP is usually focused on certain tasks. The most common of these
include: speech recognition, spoken language understanding, dialogue systems,
lexical analysis, parsing, machine translation, information retrieval, question
answering, sentiment analysis, social computing, natural language generation,
and natural language summarization (Deng and Y. Liu 2018). The particular
task of coreference resolution and its two main categories of entity coreference
resolution and event coreference resolution (detailed in Sections 2.1.2 and 2.1.2
respectively) are of importance as they serve as building blocks for several other
tasks and applications. Information extraction, text summarization, machine
translation and text mining are some examples that sometimes make use of
coreference resolution (Poumay and Ittoo 2021).

2.1.2 Coreference

Coreference is a linguistic concept that occurs when two or more expressions
refer to the same entity(Group 2022). These two expressions are then referred
to as being coreferential. For example, in the sentence ’John burnt himself
while cooking’, ’John’ and ’himself’ are coreferential as they both refer to the
same entity, in this case a person named John.

Entities in natural language processing systems (and humans) are interpreted
with respect to a discourse model (Karttunen 1969). A discourse model is
a mental model built incrementally by the understander of some text, which
contains representations of the entities as well as the relationships between
them. An entity is introduced in this model the first time it is mentioned, a
process known as evocation. When the text subsequently refers to this entity,

2Feature engineering refers to the concept of leveraging domain knowledge when crafting
Machine Learning features from raw data (Zabokrtsky 2016).

University of Liège - 8 - 2022

the understander links this mention of the entity to the entity in the discourse
model. This process is illustrated in Figure 2.1.

Figure 2.1: Discourse model example for the sentence ”John burnt himself
while cooking”

As mentioned previously, coreference is an important component of Natural
Language Processing, and is essential to several important tasks. For example,
a question answering system that needs to process an encyclopedia entry about
J.R.R Tolkien must understand that, in the sentence ”He wrote the Lord of the
Rings.”, ”he” refers to J.R.R. Tolkien to answer any question concerning the
author’s bibliography properly.

Another example is in machine translation, when translating to English from a
language which drops pronouns such as Italian or Spanish. To translate the
Italian sentences: ”La professoressa ha chiamato. Dice che sta arrivando.”3,
the machine translation system must correctly understand that ”dice” refers
to the female professor mentioned in the first and translate it by ”she says”.
Incorrect coreference might lead to improper translation of ”dice” into ”he says”.
This is a problem observed in some machine translation systems (Lopez Medel
2021).

Entity coreference

Entity coreference resolution refers to the problem of finding and clustering
together all expressions that refer to the same entity in the discourse model. In
the following two sentences: ”J.R.R. Tolkien is an author. He wrote the Lord
of the Rings.”, entity coreference resolution consits in linking the two mentions
refering to the discourse entity of J.R.R. Tolkien: ”J.R.R. Tolkien” and ”he.
Despite being well studied, it is considered one of the more difficult tasks of
natural language processing (Stylianou and Vlahavas 2021).

3”The (female) professor called. She says that she is arriving.”

University of Liège - 9 - 2022

Event coreference

Event coreference resolution is another variant of coreference resolution. Instead
of clustering entities referring to the same discourse entity, the task is to cluster
together event mentions referring to the same event. The definition of an event
is not strictly settled and is defined differently depending on the dataset4 Most
relevant is the definition of events proposed by Cybulska and Vossen 2014 in the
ECB+ dataset models used in this paper, which defines events as a combination
of four components:

1. an action component which describes what happens

2. a time component which anchors the action in time. It describes when
the action happens

3. a location component which anchors the action in space. It describes
where the action happens

4. a participant component which links the event to an entity or entities
which is/are involved, undergo(es) a change as a result of or facilitate(s)
an event or a state.

The following two sentences refer to the same event, namely the writing of
J.R.R. Tolkien’s The Lord of the Rings:

1. The Lord of the Rings was written while Tolkien was a professor at
Oxford.

2. The redaction of the Lord of the Rings was a lengthy process.

where written and redaction are the mentions of this event.

Resolving event coreferences is considered more complex than entity corefer-
ences, as events mentions can also be verbal instead of just nominal as with
entities (Jurafsky and Martin 2009).

Mention Detection

A related task to coreference resolution is the mention detection task. It is
an essential preprocessing step for coreference resolution, as it centres around
the identification of mentions of entities in text (J. Yu, Bohnet, and Poesio
2020). It is often tackled as a separate task to coreference resolution. Some
recent models have started to tackle both tasks together in the case of entity
coreference resolution (K. Lee, He, Lewis, et al. 2017; Joshi, Levy, et al. 2019)
and event coreference resolution (Y. Lu et al. 2022). This is important to
note when comparing resulting and evaluating these models, as coreference

4The Automatic Content Extraction program defines an event as ”a specific occurrence of
something that happens, often a change of state, involving participants” (ACE (Automatic
Content Extraction) English Annotation Guidelines for Events 2005). The TimeML dataset
describes events as ”situations that happen or occur that can be punctual or durational, as
well as stative predicates describing states or circumstances in which something obtains or
holds true” (Pustejovsky et al. 2004).

University of Liège - 10 - 2022

resolution errors may be due to propagated mention detection errors (J. Lu
and Ng 2020).

2.2 Practical Notions

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) refer to a family of artificial neural networks,
known for their capacity to maintain a memory of past inputs. Based on the
work of (Rumelhart, Geoffrey E. Hinton, and Williams 1986), RNNs are based
on feed forward5 neural networks, which are modified by adding a cycle. This
allows RNNs to maintain an internal state (Elman 1990). This internal state,
also called the recurrent state ht, can serve as a memory, which is updated
after every input. This property makes RNNs particularly suited to sequences
of inputs of varying lengths, which is why they are one of the most used
deep-learning tools in NLP (Fleuret 2021).

More formally, an RNN takes as input an ordered sequence of n din-dimensional
vectors x1:n = x1, x2, . . . , xn, (xi ∈ Rdin) and returns as output a single vector
yn ∈ Rdout of dout dimension.

yn = RNN(x1:n)

xi ∈ Rdin yn ∈ Rdout .
(2.1)

This means we can implicitly define an output vector yi for every sequence
x1:n. We can mathematically refer to the function returning these intermediary
outputs as RNN*:

y1:n = RNN⋆ (x1:n)

yi = RNN(x1:i)

xi ∈ Rdin yi ∈ Rdout .

(2.2)

We can also define an RNN recursively using a function R which takes as
input a recurrent state hi−1 and an input vector xi, and returns as output a
new recurrent state hi from which we can map an output vector yi using a
deterministic function:

5Meaning they do not form cycles

University of Liège - 11 - 2022

RNN⋆ (x1:n;h0) = y1:n

yi = O (hi)

hi = R (hi−1,xi)

xi ∈ Rdin ,yi ∈ Rdout ,hi ∈ Rf(dout).

(2.3)

Graphically RNNs can be represented ”rolled” following the recursion or ”un-
rolled” through time, detailing every time instant. This can be observed in
Figure 2.2.

Figure 2.2: Rolled (recursive) and Unrolled (or unfolded) views of a Recurrent
Neural Network. xi ∈ x and oi ∈ o are the inputs and outputs across time,
hi ∈ h the hidden states. V and W are the previously mentioned R and O
functions. U is a function filtering the input. Courtesy of Deloche 2017b.

Nowadays two RNN architectures are used by the research community (Goldberg
2017). Both of these arose to tackle the vanishing gradient problem. This
problem, shared by other deep network architectures, means that gradients6

diminish quickly during backpropagation (Pascanu, Mikolov, and Yoshua Bengio
2013). Networks suffering from this problem are unable to capture long-range
dependencies (Goldberg 2017).

The first commonly used RNN architecture is the Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997), which introduces a gating system
to tackle the vanishing gradient problem. LSTM augments its hidden state ht

with a memory cell cm. The value of cm, computed at time m, is the gated sum
of the previous value ct−1 and z, an update computed from the current input xm

and the previous hidden state ht−1. The next recurrent state hm is computed
from cm. The memory cell is able to propagate information over long distances
as its value is not passed through a non-linear squashing function (Eisenstein
2019). The original LSTM was mathematically defined in the following manner:

6A gradient is a derivative of a function with multiple input variables. Gradients are used
in an optimization process known as gradient descent. Gradient descent is used to optimize
neural neutworks.

University of Liège - 12 - 2022

ht = RLSTM (ht−1,xt) = [ct;ht]

ct = f ⊙ ct−1 + i⊙ z

ht = o⊙ tanh (ct)

i = σ
(
xtW

xi + ht−1W
hi
)

f = σ
(
xtW

xf + ht−1W
hf
)

o = σ
(
xtW

xO + ht−1W
ho
)

z = tanh
(
xtW

xz + ht−1W
hz
)

yt = OLSTM (ht) = ht

ht ∈ R2·dh ,xi ∈ Rdx , ct,ht, i,f ,o, z ∈ Rdh ,W x◦ ∈ Rdx×dh ,W h◦ ∈ Rdh×dh

(2.4)

i, f and o are the gates mentionned previously, controlling for input, forget
and output.

Figure 2.3: Representation of an LSTM cell. xi ∈ x and oi ∈ o are the inputs
and outputs across time, hi ∈ h the hidden states and ci ∈ c the cell states. σ
represents a sigmöıd gate and tanh a hyperbolic tangent gate, ⊕ element-wise
addition gate and ⊗ element-wise multiplication gate. Courtesy of Deloche

2017a.

The other common architecture is called Gated Recurrent Unit (GRU) (Cho
et al. 2014). Based on LSTM, GRU was designed to have fewer gates, making
it computationally cheaper. This tackles one of the downsides of LSTM: its
complexity makes it computationally expensive to work with.

2.2.2 Encoder-Decoder

Since the advent of DL, NMT systems have been implemented using two
Recurrent Neural Networks. These two RNNs, when put end to end, form
what is commonly known as an Encoder-Decoder (or sequence-to-sequence)
architecture (Cho et al. 2014), (Sutskever, Vinyals, and Le 2014). In this

University of Liège - 13 - 2022

framework, the first RNN converts elements of the source language (a word, a
sentence, . . .) into a vector (or matrix) representation. The second RNN takes
the vector representation as input and produces an output in the target language
(Eisenstein 2019). The two RNNs are referred to as the encoder and decoder
respectively. The other name used for this architecture, sequence-to-sequence
(or seq2seq), refers to the fact that the strength of this architecture is its ability
to operate on sequences of inputs and outputs of different lengths. This is
complicated to do with a vanilla RNN architecture (Sutskever, Vinyals, and
Le 2014). The architecture can mathematically be represented in the following
manner:

z = ENCODE(x) (2.5)

y|x ∼ DECODE(z), (2.6)

Equation 2.6 means that the DECODE(z) function defines the conditional
probability P (y|x). In other words, for every source sentence, the encoder
generates Tx hidden states:

hi = f(hi−1, xi) (2.7)

where h(i) is the hidden state at time i, and f is a function representing the
recurrent unit of the RNN. From this hidden state h(i) the decoder generates
an output sentence y in the target language.

Figure 2.4: Encoder-decoder model (Kostadinov 2019)

2.2.3 Transformer

Vaswani et al. 2017 introduced a new framework called transformers to NLP.
Transformers appeared as the evolution of the encoder-decoder architectures
with RNNs that were state-of-the-art at the time, addressing several of its

University of Liège - 14 - 2022

weaknesses such as its difficulty with long-range dependencies and inability to
be parallelized. Transforms on the other hand forego RNNs and rely solely on
self-attention mechanisms.

Attention

Attention is a mechanism originally designed for Encoder-Decoder architectures.
It allows the model to focus on parts of the input sequence which bring more
value, especially with noisy inputs. Introduced by Bahdanau, Cho, and Yoshua
Bengio 2016 to improve Neural Machine Translation, attention proved very
successful as it was able to spread information throughout the entire sequence,
allowing the decoder to selectively retrieve it. An attention model considers a
certain window of words of size Tx. For each of these words, a context vector ci
is generated using as input all the words in the context. These context vectors
will be given to the decoder as input. Using a series of attention weights αij

and the hidden states generated by the encoder hi, the context vectors are
generated as follows:

ci =
Tx∑
j=1

αijhj (2.8)

These attention weights are computed using the normalized output of an MLP
a given the hidden state of an RNN hidden state si−1 just before emitting
output yi:

αij =
exp (eij)∑Tx

k=1 exp (eik)
,

eij = a (si−1, hj)

(2.9)

Other papers have proposed different types of attention, such as Luong, Pham,
and C. D. Manning 2015.

Self Attention

Self attention is introduced by Vaswani et al. 2017 as part of their transformer
model. They use an Encoder-Decoder setup with a novel architecture for
both encoder and decoder. Unlike Bahdanau, Cho, and Yoshua Bengio 2016’s
attention which applies between an input sequence and an output sequence,
self attention only applies to the input sequence or the output sequence on
themselves. Given queries q, key vectors k and value vectors v derived from the
input using three sets of weights WQ,WK and W V and stacked in matrices Q,K
and V respectively, self attention (also called Scaled Dot-Product Attention by
the authors) is computed as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.10)

University of Liège - 15 - 2022

Multi-head attention joins the information from different representations at
different positions into a single input for an MLP to process. Vaswani et al.
2017 express it as follows:

MultiHead(Q,K, V) = Concat (head1, . . . , head h)W
O

where head i = Attention
(
QWQ

i , KWK
i , V W V

i

) (2.11)

As can be observed in Figure 2.5, the encoder and decoder are made of layers
(N of them). The encoder process embedded inputs through a multi-head self-
attention sub-layer and an MLP. The decoder processes the outputs through
a multi-head self-attention sub-layer, then combines it with the output of the
encoder into another multi-head self attention and then into an MLP. As the
Transformer is made of N parallel layers, it can easily be parallelized.

Figure 2.5: Transformer architecture (Vaswani et al. 2017)

2.2.4 Word Embedding

Representing natural language into inputs for an NLP model is no trivial task.
The desired result is usually that the final representation is in the form of
vectors of numbers so as to be readable by computer models. Additionally many
machine learning algorithms require their inputs to be of fixed length, which
is not a property of natural text (Le and Mikolov 2014). A straightforward
approach like one-hot encoding is easy to implement but suffers both from the

University of Liège - 16 - 2022

curse of dimensionality7 as well as an absence of semantic meaning (Ittoo 2019).
In one-hot encoding, every word can be represented by a vector of the size of the
vocabulary. Every word in the vocabulary has an assigned index, therefore a
word is represented by a vector filled with 0s except for its corresponding index
where the value is 1. The size of the vocabulary can lead to huge vectors (hence
the curse of dimensionality) which do not carry any meaning: it is impossible
to infer semantic relationships between words.

This thought process lead the field to reflect about the exact meaning and origin
of semantics. One popular subfield of NLP, distributional semantics, predicates
on the idea that a word’s meaning is derived from its use. It relies on what is
known as Firth’s distributional hypothesis: that words used in similar contexts
have similar meanings (Firth 1935; Harris 1954). As such, incorporating context
into word representations should allow that representation to convey semantics
(Kamath, J. Liu, and Whitaker 2019). There are broadly two ways of doing
this: using count-based methods (such as using Pointwise Mutual Information
or Latent Semantic Analysis) or neural-based methods.

The first to develop a successful neural-based method for encoding natural
language was (Yoshua Bengio et al. 2003), who built models which reduced
the dimensionality of word vectors by learning a distributed representation of
words. These new representations are commonly known as embeddings.

word2vec

In 2013, Mikolov, K. Chen, et al. 2013 proposed 2 new neural techniques to
compute continuous representations over large datasets. These new techniques
were a lot more computationally efficient than previous techniques, and able
to handle much larger corpora (in the ranges of billions of words) with much
larger vocabularies (in the 10 000s to 100 000s). An added feature was that the
new vectors possessed translational properties related to semantics. Applying
simple arithmetic functions to these embeddings produced semantically relevant
results. A classic example is the following: the word queen can be found from
the embeddings of the words king, man, and woman by searching for the nearest
vector to the vector sum:

v(queen) ≈ v(king)− v(man) + v(woman) (2.12)

The first technique, known as continuous bag of words (CBOW) and skip-gram,
learns to predict a word given its context (i.e. the surrounding words). This
leads to similar embeddings for words occurring in similar contexts. The second
technique, named skip-gram, works the other way around: given a target word,
the model predicts context words.

7The curse of dimensionality is a phenomenon observed when working with high-
dimensional data (Bellman 1984). High dimensions often ends up being sparse, which
is an undesirable property for a lot of learning models as it hinders them in finding patterns
in increasingly distinct and unique data elements (Trunk 1979)

University of Liège - 17 - 2022

GLoVe

GLoVe is another word embedding technique published in 2014 by Stanford
researchers (Pennington, Socher, and C. Manning 2014). Its fundamental
difference with word2vec is its use of co-occurrence of words. The word2vec
models learn embeddings by connecting target words to their context, but it does
not take into account the frequency with which different context words appear.
A frequent co-occurrence of terms in word2vec generates more training instances
but contains no more information. GLoVe, on the other hand, emphasizes that
the frequency of co-occurrences is important data. Instead of using them as
extra training instances, the word embeddings of GLoVe connects a combination
of word vectors directly to the likelihood that these words will occur together
in the corpus.

FastText

FastText, proposed by Facebook AI Research in 2017 (Bojanowski et al. 2017),
is an extension of word2vec. Its main novelty is to represent each word as
an n-gram8 of characters instead of learning vectors for words directly. For
example, take the word, “business” with n = 4, the fastText representation of
this word is < busi, usin, sine, ines, ness >. This has several advantages: it
allows the embeddings to understand prefixes, suffixes and composed words,
but also with rare or even unknown words. Despite not having learnt a specific
word, it can infer an embedding and a meaning from its n-grams. This sets
fastText apart from the other two commonly used word embedding methods
(word2vec and GLoVe) which cannot process unknown words.

ELMo

A shared feature of word2vec, GLoVe and FastText is that they are all fixed
embeddings: once trained, a given word will have a single word embedding even
if the word has multiple meanings depending on its context. Peters et al. 2018
therefore introduce Embeddings from Language Model (ELMo), a Language
Model based on bi-directional LSTM trained to predict words given its context.
In other words, context is not only looked at during training but also during
inference, which allows ELMo to provide a context-specific embedding for a
given word. ELMo and those building upon it are therefore referred to as
contextualized word embeddings.

BERT

Bidirectional Encoder Representations from Transformers (BERT), introduced
by Devlin et al. 2019, is a powerful language model. It incorporates many of
the innovations that were developed in NLP at the time. In practice, BERT

8In NLP, an n-gram is a contiguous sequence of n items from a text. These items can be
words, letters or syllables depending on the case. A unigram is an n-gram with n = 1 (Ittoo
2019).

University of Liège - 18 - 2022

functions as a stack of Transformer-based encoders, trained to contextually
embed words. It uses two different training strategies which are trained together.
The goal of training is to minimize their combined loss. Its first training strategy
is referred to as Msked Language Model, meaning that during training part
of the word tokens supplied are replaced by a [MASK] token. Based on the
context of the masked words, BERT attempts to predict the original values of
the masked words. Using the output of this encoded outputs, an MLP classifier
predicts the masked word. Unlike directional models like RNNs and LSTM,
the Transformer at the heart of BERT allows it to read an entire sequence of
words at once. It takes as training signal only the prediction of the masked
value, meaning training takes longer as the model takes longer to converge. But
this is offset by the model developing an increased awareness for the context
of words. The second training strategy is called Next Sentence Prediction. In
this training sequence, BERT learns to predict whether two sentences follow
eachother in a text or not.

One of its most attractive features is that with some small modifications (refered
to as fine-tuning), a pre-trained BERT can be optimized for a particular task
while maintaing the majority of the model’s weights intact. As BERT is a big
model (345 million parameters), this allows for an easy access to a powerful
model with relatively little modifications and extra training to a wide variety
of NLP tasks.

2.2.5 Document Embedding

As mentioned previously, many ML models need their inputs to be fixed-length.
Word embeddings translate words into fixed-length vectors, but in some cases
we may want the model to take a series of words as a singular input. This has
lead to the development of document embedding. By document we refer to any
kind of series of two or more words. This includes sub-sentences, sentences and
paragraphs. Document embeddings, like word embeddings, can provide richer
inputs to ML models, and have been used in tasks such as text classification
(Le and Mikolov 2014), document similarity tasks (Dai, Olah, and Le 2015) and
paraphrase detection (Kiros et al. 2015). The field of document embedding has
enjoyed a resurgence with the advent of deep learning around 2014, similarly
to the field of word-embedding.

Word frequency-based document embedding

The classical way to encode documents was proposed in 1954 in Harris 1954.
In this paper, Harris represents documents as ”bag-of-words”: the sum of the
one-hot vectors of every unique word in the document (implying the vector
contains either 0 values if the word is not present or 1 if the word is present
at least once). This representation loses the sentence structure as well as the
frequency of words9.

9While one would instinctively sum the one-hot encoding vectors of ALL words to
incorporate word frequency in the representation, this does not lead to a better representation

University of Liège - 19 - 2022

One extension of this idea is that of ”bag-of-n-grams”, a generalisation of bag-of-
words. Wheras bag-of-words uses unigrams, bag-of-n-grams uses a vocabulary
made of concatenations of n words (Ittoo 2019). This approach leverages the
frequency of short word sequences and mitigates the loss of information due to
the absence of sentence structure in the encoding without entirely removing
it.

Unsupervised document embedding

Modern document embedding techniques are inspired by the improvements
made in the field of word embedding by neural probabilistic language models,
which are based on Firth’s distributional hypothesis (see Section 2.2.4). The
general idea behind these models is to extend this distributional hypothesis to
documents and longer sequences of words

Mikolov, Sutskever, et al. 2013 were the first to apply this idea in trying to
extend their skip-gram word2vec algorithm. With the observation that some
phrases are more than the sum of their parts (for example it makes more sense
to consider the phrase Brussels Airlines as a single token rather than two
separately as it refers to a separate semantic concept), the authors incorporate
a scoring method to decide when to consider words separately as phrases instead
of unigrams 10. Their results show that this allows for the processing of phrases
2 or 3 words long. Processing larger phrases would require too much computing
power as the vocabulary size would be too large.

The next logical approach to embed documents or phrases, after considering
phrases as single tokens, is to find ways to combine the word embeddings of the
constituent words of phrases. The straightforward method is to simply average
the word embeddings of the words, in a bag-of-words fashion. This method
benefits from its simplicity and was a strong baseline for a long time, in tasks
like answer sentence selection (L. Yu et al. 2014) or text similarity (Kenter and
de Rijke 2015). It nonetheless suffers from several weaknesses, including the
fact that its bag-of-word structure completely forgoes taking into account word
ordering and other structural information that are inherent to documents (L. Yu
et al. 2014). This straightforward method of averaging word embeddings also
suffers from the fact that the word embeddings are not specifically optimized
for representing sentences or documents. Several papers address this issue and
propose models around this.

Kenter, Borisov, and de Rijke 2016 in their paper present a new model ar-
chitecture, called Siamese CBOW, in which a series of word embeddings are
averaged and trained simultaneously. The model therefore optimizes the word
embeddings in the context of sentence embedding and not word embedding.
Siamese CBOW outperforms the previously discussed baselines of averaging

of the document. Common words like ”to”, ”the” or ”a” have a high frequency while not
having a high semantic importance (Pang, L. Lee, and Vaithyanathan 2002)

10The score is based on how often certain pairs of not too common words occur simultane-
ously

University of Liège - 20 - 2022

pre-trained word embeddings and (Mikolov, Sutskever, et al. 2013)’s skip-gram
model.

Le and Mikolov 2014 introduce a different approach to the problem: they
generalize word2vec’s method to work with word sequences. The resulting
models, christened Paragraph Vectors by the authors but commonly referred to
as doc2vec, exist in 2 variants: Distributed Memory (PV-DM) and Distributed
Bag of Words (PV-DBOW).

The Distributed Memory model is the pendent of continuous bag-of-words
from word2vec: using an encoder-decoder architecture with an added memory
vector, the model is trained to predict a word from its context. The memory
vector, called the paragraph vector, is added at the beginning of every document
and aims to capture the document’s topic, or context from the input. Unlike
word2vec, a word’s doc2vec context only refers to the words preceding it and not
surrounding it. Every word in the context is embedded to a word-embedding,
then the sum of all these vectors is used as a feature for a classifier to predict
the guessed word.

The Distributed Bag of Words model is the parallel to the skip-gram model
from word2vec: the classification task is to predict a single context word using
only the paragraph vector. In short, the context words are all dropped and the
model is made to predict randomly sampled words in the document. PV-DBOW
has been shown to train faster than PV-DM and require less memory.

SentenceBERT

More recent approaches to document embedding attempt to leverage powerful
language models like BERT. Reimers and Gurevych 2019 construct an updated
version of BERT specifically to tackle document embedding, as BERT has
huge overheads when performing document embedding. By introducing siamese
and triplet networks, the authors of Sentence-BERT were able to reduce these
overheads drastically.

2.2.6 Dimension Reduction

Dimension reduction is the process of reducing a high-dimensional vector to a
low-dimensional one, while retaining meaningful properties of the vector. This
process is used in a number of cases in AI, including reducing the curse of
dimensionality in large sparse vectors, reducing noise or data visualisation.

PCA

Principal Component Analysis (PCA) is a linear data transformation that
projects a high dimensional space to a lower dimensional one. It does so while
while maximising the preserved variance obtained in the reconstructed lower
dimensional space. In practice, the transformation selects the eigenvectors of the

University of Liège - 21 - 2022

covariance matrix of the data corresponding to the largest eigenvalues11 (Pearson
1901). PCA is often used as a baseline in dimension reduction contexts.

Autoencoder

Autoencoders are artificial neural networks which use unsupervised learning to
create encodings of unlabeled data. For a given space X, an autoencoder can
be represented as the composite function of two functions g ◦ f : an encoder f
which maps the original space X to a latent space Z and a decoder g which
maps the latent space Z to the original space X (Louppe 2022). These encoding
and decoding function can be linear, but more interestingly non-linear. In this
case, the encoder and decoder can both be artificial neural networks, such as
multilayer perceptrons or convolutional networks.

11These eigenvectors with the largest eigenvalues are referred to as the Principal Component,
hence the name.

University of Liège - 22 - 2022

Chapter 3

Related works

In this section we will go over different scientific papers which proposed solutions
to coreference resolution task. Coreference resolution can be done in different
settings: either within document (WD) or across documents (CD), and either
entity coreference resolution or event coreference resolution. Some of these
papers propose solution for more than one of these settings, such as the joint
approach of H. Lee, Recasens, et al. 2012 which tackles both entity and event
coreference resolution in the CD setting. Table 3.1 provides an overview of the
different papers discussed here.

A discussion of the prominent datasets used for this task is provided in Section
5.1.

Table 3.1: Overview of the different papers discussed and the sub-task of
coreference resolution they tackle

23

3.1 WD Coreference Resolution

3.1.1 WD Entity Coreference Resolution

As mentioned previously, most papers tackling coreference resolution do so in a
WD setting. The current state-of-the-art in WD event coreference resolution
includes Clark and C. D. Manning 2016, K. Lee, He, Lewis, et al. 2017; K. Lee,
He, and Zettlemoyer 2018 and Joshi, Levy, et al. 2019; Joshi, D. Chen, et al.
2020.

K. Lee, He, Lewis, et al. 2017 propose their end-to-end coreference model,
which is a span-based model1, meaning it does not perform Mention Detection
separately but integrates it as part of coreference resolution. The model
therefore considers all spans as possible mentions. For a given span x and
possible antecedent spans Y , the model learns a distribution:

P (y) =
es(x,y)∑

y′∈Y es(x,y′)
(3.1)

The function s(x, y) provides a score between spans x and y. This score is the
product between the probability of x being a mention, the probability of y
being a mention and the probability of the two spans being coreferring (should
they turn out to be mentions). The mention probability is computed as the
output of a feedforward neural network. x and y are represented as inputs
using fixed-length span representations the contatenation of 2 bi-directional
LSTM states of the span endpoints. The LSTM is fed with combination of
GLoVe (Pennington, Socher, and C. Manning 2014) and ELMo (Peters et al.
2018).

K. Lee, He, and Zettlemoyer 2018 propose a higher-order coreference model
which improves upon K. Lee, He, Lewis, et al. 2017 by upgrading the span
representations and adding an attention vector computed over the span’s tokens.
This inferred vector allows the model to model coreference decisions based on
previous coreference decisions.

Joshi, Levy, et al. 2019 take the higher-order coreference model’s architecture
and replace the LSTM encoder with a BERT transformer. This improves
accuracy on the coreference task, especially in the processing of words with
similar but distinct meanings (e.g. teacher and professor). This approach is
further developed by Joshi, D. Chen, et al. 2020, who design a variant of BERT
specially pre-trained to model spans. This model is currently state of the art on
the OntoNotes dataset (Weischedel et al. 2013), one of the reference datasets
for WD coreference resolution.

1A span in NLP is a slice of a document containing an ordered number of tokens.

University of Liège - 24 - 2022

3.2 CD Coreference Resolution

3.2.1 CD Joint Entity and Event Coreference Resolution

Entity and event coreference resolution were traditionally considered as two
separate tasks. This has changed with the works of H. Lee, Recasens, et al.
2012 and Barhom et al. 2019 on joint coreference on the ECB+ dataset. We
observe a new interest in the field for solving both entity and event coreference
resolution together. More information about the works of H. Lee, Recasens,
et al. 2012 and Barhom et al. 2019 can be found in Chapter 4.

Cattan et al. 2021 applies K. Lee, He, Lewis, et al. 2017’s end-to-end architecture
to the Cross Document setting, using the RoBERTa-large model to encode
each document separately and then train the pairwise coreference scorer. Their
model is applied to both entity and event coreference resolution.

Caciularu et al. 2021 introduce a new Language Model designed specifically to
tackle multi-document tasks. This is done by introducing pretraining over topics
instead of single documents, and by employing new forms of transformers able
to process much longer sets of inputs. They also replace context embedding of
mentions commonly used in most approaches with embeddings of the document
in which the mentions are.

3.2.2 CD Event Coreference resolution

Meged et al. 2020 further the work of Barhom et al. 2019 and extend their
model using a paraphrase2 quality scorer to supervise event coreference resolu-
tion.

Zeng et al. 2020 and X. Yu, Yin, and Roth 2022 also use the pairwise scorer
approach of Barhom et al. 2019, but create the features only based on the
output of Language Models and SRLs. Zeng et al. 2020 input two sentences
labelled with coreference mentions into the BERT-large Language Model, which
is concatenated with the semantic role embedding. These are processed by
a Transformer encoder before being processed by the scorer. The resulting
model is end-to-end. X. Yu, Yin, and Roth 2022 follows a similar approach,
but instead use the RoBERTa-large Language model. The authors also forego
the the contextualization tokens of Zeng et al. 2020 when performing pairwise
classification.

2Paraphrasing is the expression of the same discourse object using different words.

University of Liège - 25 - 2022

Chapter 4

Methodology

In this chapter we will first review the Original architecture of Barhom et al.
2019, then our suggestions to improve it1.

4.1 Joint Entity and Event Coreference Resolution

This work extends the work of H. Lee, Recasens, et al. 2012 and Barhom et al.
2019 in the joint coreference resolution of entities and events. This approach to
coreference resolution was introduced by Lee et al. in their 2012 paper Joint
Entity and Event Coreference Resolution across Documents, where they aim
to leverage the link between events and entities. This link is based on the
fact that events, apart from the action itself, are characterised by 3 elements:
time, location and their arguments. These arguments often correspond to
discourse entities. As such, knowing that two arguments corefer is helpful for
finding coreference relations between events since arguments play a key role
in describing an event. In turn, knowing that two events corefer is helpful for
finding coreference relations between entities.

In their original paper, H. Lee, Recasens, et al. 2012 iteratively and jointly build
clusters of event and entity mentions. Event mentions encodings containing
a reference to the entities which fulfill one of the roles of the event. In turn,
entity mentions contain a reference to the events they fill a role for. As entity
and event mentions are clustered together, the features of the mentions are
regenerated and updated.

In practice, the authors first cluster together documents to decrease the search
space for cross-document coreference resolution. From these documents they
extract entity and event mentions using the Stanford coreference resolution
system (Raghunathan et al. 2010; H. Lee, Peirsman, et al. 2011) and enrich
entity mentions with information pertaining to lexical, syntactic, semantic, and
discourse using deterministic models. The resolution model is based on a linear

1We would like to point out that the improvement ideas were the results of suggestions
and subsequent discussion with Judicaël Poumay.

26

Algorithm 1: Outline of H. Lee, Recasens, et al. 2012’s Joint Coreference
Resolution algorithm

Require: D: document set
R: coreference model

/* clusters of mentions */

E ← { }
/* clusters of documents */

C ← clusterDocuments(D)
for document cluster c ∈ C do

/* all mentions in one doc cluster: */

M ← extractMentions(c)
/* singleton mention clusters: */

E ′ ← singletonMentions(M)
while ∃e1, e2 ∈ E ′ s.t. R(e1, e2) > 0.5 do

E ′ ← merge(e1, e2, E
′)

end
/* append to global output */

E ← E + E ′

return E

end

regression model, which scores the quality of a merging of clustered entities.
Two clusters clusters whose similarity is scored over 0.5 by the linear regression
model.

Barhom et al. 2019 furthered this joint coreference resolution approach by
combining Lee et al.’s approach with a neural architecture. By using a neural
network classifier, word embedding models and a language model, the authors
attempt to overcome one of Lee et al.’s limitations: their sparse representations.
These representations were built using lexical resources such as WordNet (Miller
1995), which are limited in coverage, and with a context modelled using semantic
role dependencies, which do not cover the entire sentential context in most
cases. Barhom et al. 2019 instead introduce mention representations using ,
which are fed pairwise into a Multi Layered Perceptron.

Barhom et al. 2019 instead propose an iterative algorithm which clusters entities
and events interdependently in alternation. The final clusters of entities and
events are constructed incrementally. The work for this paper builds upon the
architecture of Barhom et al. 2019, while adding several key changes.

4.2 Original Model Methodology

Barhom et al. 2019 cluster entities and events together in clusters of coreference.
Using an agglomerative clustering algorithm, different mentions (either events
or entities) are clustered together based on a similarity metric. This metric is a

University of Liège - 27 - 2022

pairwise score, provided by a trained model. In this section we will present the
different elements of Barhom et al. 2019’s solution in detail, as our work builds
upon it. For simplicity’s sake, we will refer from now on to this model as the
Original model.

To provide a pairwise score between two mentions, several steps are needed. We
will first discuss the representation of mentions in Section 4.2.1, then how two
mentions are combined in Section 4.2.2 and fed to a pairwise scorer described
in Section 4.2.3. A overview of the pairwise scoring process can be found in
Figure 4.1. The overall algorithms can be found in Algorithms 2 and 3 for
training and inference respectively.

Figure 4.1: An illustration of the pairwise mention scorer from Barhom et al.
2019. The bottom vectors are mention representations. The input to the
network is a concatenation of two mention vectors with their element-wise

multiplication and additional pairwise features.

4.2.1 Mention Representation

A mentionm, be it an eventmv or entityme, is represented as the concatenation
−→v (m) of 3 vectors: the span vector −→s (m), the context vector −→c (m) and the

semantic dependency vector
−→
d (m). We will go over each vector separately.

Span Vector

The span vector aims to encode the mention through the words in it, referred
to as the span. This is done through the concatenation of the word-level
embedding and character-level embedding. Barhom et al. 2019 encode words
using the GLoVE model (Pennington, Socher, and C. Manning 2014). The
choice of this model among the three most common word embedding models
(word2vec, GLoVE and FastText) appears further justified as Poumay and

University of Liège - 28 - 2022

Ittoo 2021 show GLoVe is the best performer in this architecture. Barhom
et al. 2019 chose to use pre-trained word embeddings.

What words are encoded differs between events and entities. For events, the
head word is encoded. This refers to the verb that the event centres around.
In the event ”John burnt himself”, this would be the word ”burnt”. For entities,
the average of all the word embeddings of all the words in the mention is
taken.

To counteract the issue of out-of-context words 2, the authors extend the
word embedding with a character-level encoding obtained through an LSTM
(Hochreiter and Schmidhuber 1997). This is complementary to the word
embedding, but Poumay and Ittoo 2021 show that the two contain a significant
amount of mutual information.

Context Vector

A context vector models the surroundings of the mention. The inclusion of
this vector to provide additional information is confirmed by several papers
(Clark and C. D. Manning 2016; K. Lee, He, Lewis, et al. 2017; Kenyon-Dean,
Cheung, and Precup 2018) who suggest that the compatibility of a mention
with other candidate mentions may be indicated by its surroundings.

Barhom et al. 2019 modelled the context of a mention using ELMo (Peters
et al. 2018).

Semantic Dependency Vector

Barhom et al. 2019 introduce the semantic dependency vector to model depen-
dencies between event and entity clusters. This is an essential element of their
approach, as this provides the link between entities and events during training
and inference, thereby generating the joint approach. For a given event mention
mvi , 4 semantic roles of interest: Arg0, Arg1, location, and time (Surdeanu
et al. 2007). These are extracted using a semantic role labeller (SRL). Arg0
refers to the closest entity on the left of the event, Arg1 to the closest entity on
the right of the event.

When an entity mej fills one of mvi ’s semantic roles, then the corresponding

semantic role value
−→
d sem arg(mvi) is set to the average values of the span vectors

of the entity’s cluster:
−→
d sem arg(mvi) =

1
|c|
∑

m∈c
−→s (m). If no entity fills out

this function, the value is set to
−→
d sem arg(mvi) =

−→
0 . The idea behind this is to

consider that the entity cluster as the proxy for a semantic object. This implies
that taking the average of the span vectors should encompass this semantic
object.

2An out-of-context word is a word not in the word embedding model’s vocabulary, which
it consequently cannot process. The fastText model as explained in Section 2 is designed
to process unknown words through sub-word analysis. GLoVE on the other hand has no
inherent way to counteract this.

University of Liège - 29 - 2022

Symmetrically, the semantic role value for an entity mej is set to the average
values of the span vectors of the cluster of the event mej whose semantic role it

fills:
−→
d sem arg(mvi).

The resulting semantic dependency vector is the concatenation of the four se-

mantic role vectors:
−→
d (m) =

[−→
d Arg0(m),

−→
d Arg1(m),

−→
d loc(m),

−→
d time(m)

]
.

4.2.2 Pairwise Mention Representation

To evaluate whether two mentions refer to the same semantic object, Barhom
et al. 2019 provide a Pairwise mention representation which will be scored by the
pairwise scorer detailed in Section 4.2.3. This pairwise mention representation
combines two separate mentionsmi andmj in a single vector −→v i,j . This vector is
the concatenation of the two mention representations, their element-wise product
and four pairwise features: −→p i,j =

[−→v mi
,−→v mj

,−→v mi
◦ −→v mj

, f(i, j)
]
.

The pairwise features are inspired from H. Lee, Recasens, et al. 2012. These
pairwise features are binary indicators of whether each of the four semantic
dependency arguments correspond between the two mentions. To increase
the signal of each feature, these binary features have been encoded as a 50-
dimensional embedding. This is important considering the size of the mention
vectors (see Table A.2), the signal could get lost otherwise.

4.2.3 Pairwise Scorer

The Original architecture builds a scoring function S(mi,mj) which denotes
the probability of coreference between the two input mentions. Given that
the span of the outputted score (between 0 and 1), we can view this scorer as
a classifier whose score is used. In practice the scoring function is modelled
as a feed-forward neural network and takes as input the pairwise mention
representation detailed in Section 4.2.2. Two separate functions SV and SE are
trained for events and entities respectively.

4.3 Thresholding

As detailed in the above section, Barhom et al. 2019 perform joint modelling by
switching between entity and event training. Nonetheless they alternate only
twice between the two models (for a total of 2 sets of 2 training sessions for
each model). This intuitively felt like an insufficient leverage of the joint feature
of the model, arguably one of its main features. As such our first modification
to Barhom et al. 2019 is to increase the number of alternations between entity
and event models.

A second intuition concerned the clustering threshold. As mentioned above,
training consists of phases of training the pairwise scorer and then of clustering
of coreference mentions (events or entity). Barhom et al. 2019 use a threshold of
0.5 when merging clusters in all cases. Our suggestion instead is to set a higher

University of Liège - 30 - 2022

Algorithm 2: (Barhom et al. 2019) Train

Require: D: document set
M e,M v: gold entity/event mentions
T : gold topics (document clusters)
{Et}t∈T : gold within-doc entity clusters
G(·): gold mention to cluster assignment

for t ∈ T do
Vt ← SingletonEvents(t,Mv)

while ∃ meaningful cluster-pair merge do
/* Entities */

Et ← UpdateJointFeatures(Vt)
SE ← TrainMentionPairScorer(Et, G)
Et ← MergeClusters(SE, Et)
/* Events */

Vt ← UpdateJointFeatures(Et)
SV ← TrainMentionPairScorer(Vt, G)
Vt ← MergeClusters(SV , Vt)

end
return SE, SV

end

threshold initially, and then progressively lower it. This intuitively ensures that
only the best merges of clusters are done initially, and those of lower quality
are only done with the better trained pairwise scorer.

Combining these two solutions we propose to increase the number of alternations,
while having a stricter merge threshold and progressively lowering it.

4.4 Document Embedding

4.4.1 Enriching Mention Representations

Mention representations in (Barhom et al. 2019) are decomposed into 3 sections:
their span vectors, composed of the word embedding of the head work and
the character-level embedding, a context vector provided by ELMo and a
semantic vector, which relates to the cluster in which the mention is placed.
While the context of a mention does give a summary of the surrounding words
and mentions in the sentence, the mention vectors do not contain any direct
reference to the document in which the mention is. This intuitively feels like a
drawback, as our focus is cross-document coreference resolution and as such,
some knowledge of which document the mention is in seems a valuable indication
to the pairwise scorer. As such we extend the mention vector by adding a new
vector with the embedding of the document the mention is in.

University of Liège - 31 - 2022

Algorithm 3: (Barhom et al. 2019) Inference

Require: D: document set
M e,M v: gold entity/event mentions
SE(·, ·): pairwise entity mention scorer
SV (·, ·): pairwise event mention scorer

T ← ClusterDocuments(D)
for t ∈ T do

Vt ← SingletonEvents(t, Mv)
Et ← PredWithinDocEntityCoref(t, Me)
while ∃ meaningful cluster-pair merge do

/* Entities */

Et ← UpdateJointFeatures(Vt)

Et ← MergeClusters(SE, Et)
/* Events */

Vt ← UpdateJointFeatures(Et)

Vt ← MergeClusters(SV , Vt)

end
return {Et}t∈T ,{Vt}t∈T

end

To properly research this train of thought, we test out 3 different document
embedding methods. The first is a classic baseline in document embedding
averaging the word embeddings of the document. This has been shown to
be a very strong baseline (Lau and T. Baldwin 2016). We use the same
word embeddings as used elsewhere in the model, GLoVe for convenience and
knowing that it performs better than the other traditional word embedding
techniques (fastText and word2vec) in this task as shown by (Poumay and Ittoo
2021). The second model is the original document embedding, (Le and Mikolov
2014)’s Paragraph Vectors. Finally we test a state-of-the-art pretrained model,
SentenceBERT (Reimers and Gurevych 2019). While initially intended only
for sentences, the model is able to take in documents of limited length. After
verification, the largest document in the datasets contains 247 tokens, short
of the limits of available pretrained models (which range between 256 and 512
tokens as upper bounds).

4.4.2 Enriching Semantic Arguments

While directly enriching the mention vectors with document embeddings seemed
like a good idea, we wanted to push this idea to other parts of the model.
Specifically, we thought that the semantic argument vectors, based solely on the
average of the span, were insufficiently rich. We therefore try to enrich these
vectors with the ELMO context vectors. As an additional step, we combine this

University of Liège - 32 - 2022

approach with that of subsection 4.4.1: we add document embedding to the
mention representation vector, but also to the argument vectors. We decide to
use the document embedding model producing the best results from subsection
4.4.1.

4.5 Scorer Input Reduction

As mentioned in Section 4.2.2, the input of the MLP assigning the pairwise score
is the concatenation of 2 mention representation vectors, their element-wise
multiplication and additional pairwise features. This vector is quite large, the
authors of the original paper worked with mention representation of size 2774:
the concatenation of the context vector of size 1024, 5 GLoVE word embeddings
of size 300 and 5 character-level embeddings of size 50. Multiplying this number
by 3 (the two mentions and their element-wise multiplication) and adding the
3 additional features of size 50 each, the input size is of 8522. The MLP has 2
hidden layers: the first of size 8522/2 and the second of size 8522. The output
is a single number, being the pairwise score. These numbers can be found in
A.2.

This input is quite large, leading to a strikingly wide and shallow neural network.
(Poumay and Ittoo 2021) performed a comprehensive study of the information
of this large input. Their conclusion is that this vector contains a high amount
of mutual information. An additional observation is that approximatively
two-thirds of the training time is spent training the MLP. All of these problems
are further exacerbated by our extensions of the mention vectors in section
4.4. Mention representation vectors and pairwise representation vectors are
significantly larger, as can be observed in Tables A.3 and A.4, which increases
the training and inference time of the pairwise scorer, and as such also the
clustering time. We therefore decided to investigate the compression of the
input of the MLP, in other words the pairwise mention representation vector.
The aim is to leverage the mutual information in the input vector to compress
it as losselessly as possible, with the added improvement of being able to work
with a smaller network which can be trained faster.

2 different ways of compressing the input were implemented:

• Reduce the size of the mention representation using PCA. We decided to
work on reducing the size of the mention representation, which should in
consequence decrease the size of the pairwise representations.

• Introduce an autoencoder to compress the input. As with PCA, we work
on reducing the mention representation vector.

In the process of building the autoencoder, we observed that a pairwise repre-
sentation was mostly a repetition of the span vector of the mention embeddings.
Indeed, the only part of a mention embedding which is not composed of span
vectors is the context vector, which is not included in the semantic depen-
dency vectors. We want to encode the smallest possible uniform brick of the

University of Liège - 33 - 2022

embeddings. We therefore make the choice of encoding the span and context
vectors. This leads to an issue with the semantic dependency vector, which
only contains span vectors without the context. For the auto-encoding, the
semantic dependency vectors are modified: instead of only taking the span
vector average of the coreference cluster, the average of both the span and
context vectors. This will allow us to train a single autoencoder on the span
and context autoencoder vectors.

University of Liège - 34 - 2022

Chapter 5

Implementation Details and
Experimental Setup

5.1 Data

In this work the ECB+ dataset is used. Introduced by Cybulska and Vossen
2014, it contains both Within Document Coreference (WDCR) and Cross-
document Coreference annotations and is the reference dataset for Cross-
Document Coreference tasks. Events and entities are both annotated separately
in the dataset, which allows one to tackle a task while ignoring the other.
ECB+ is an extension of the EECB dataset, introduced by H. Lee, Recasens,
et al. 2012 to perform joint event and entity coreference resolution. EECB, and
by extension ECB+, are both extensions of the Event Coreference Bank (ECB)
dataset (Bejan and Harabagiu 2014), which contains English-language Google
News documents clustered into topics and annotated for event coreference.
This dataset was extended by H. Lee, Recasens, et al. 2012 to entities, in
order to assess their joint model. ECB+ builds upon EECB by adding several
topics concerning a different event for each topic, thereby making the task more
difficult but richer.

Conversely, Stylianou and Vlahavas 2021; J. Lu and Ng 2018; Sukthanker
et al. 2020 provide an in-depth review of the different coreference resolution
datasets. Poumay and Ittoo 2021 explain why these other datasets do not suit
the approach taken by Barhom et al. 2019 and consequently ours.

5.2 Data Preprocessing

We naturally follow the setup of Barhom et al. 2019, who themselves follow
that of (Cybulska and Vossen 2015). This setup was used by most other papers
tackling the same task on ECB+, such as (Kenyon-Dean, Cheung, and Precup
2018). This setup uses a subset of the annotations which has been validated for
correctness by Cybulska and Vossen 2014 and allocates a larger portion of the

35

dataset for training (see Table A.1). Since the ECB+ corpus only annotates a
part of the mentions, the setup only uses the gold-standard event and entity
mentions and does not require specific treatment.

(Barhom et al. 2019) divide the dataset into three sections: training, develop-
ment and validation. A breakdown of the composition of each dataset provided
by the authors can be found in Table A.1.

5.3 Implementation

Unless otherwise detailed, the training protocol follows that of Barhom et al.
2019. Our implementation differs from the original authors’ in that we used
updated libraries. We will therefore report it as a separate case in our results.
We also do not train for the same number of epochs due to hardware limitations.
For reference, Barhom et al. 2019 trains for 50 epochs, while we manage to do
10 in most cases.

5.3.1 Thresholding

We train in alternation entity and event pairwise scorers. After each training
phase, clusters are merged with thresholds which are progressively lowered. We
start at an initial threshold of 0.9, and we lower by 0.1 after each merge phase,
until 0.5 is reached. Unlike Barhom et al. 2019, we only do a single pass for
each threshold level. This totals to 5 training phases for each of the models.
Once our pairwise scorer is trained, agglomerative clustering is performed and
clusters are merged with all candidate singletons and clusters which score above
the threshold.

5.3.2 Document Embedding

For the baseline GLoVE average and SentenceBERT, no training is required
as both of these are pretrained models. For GLoVE we use the same model
as for Barhom et al. 2019 used for word embedding, with an embedding size
of 300. For SentenceBERT we use a pretrained model provided by Reimers
and Gurevych 20191. In particular we use the all-mpnet-base-v2 model. This
model is labelled as the best performing on encoding among those provided,
and is described as being an all-rounder. Its maximum sequence length is of
384, being larger than the biggest document in ECB+.

Our Doc2Vec model on the other hand has been trained on the training dataset.
This was shown to provide great results even with limited data (Lau and
T. Baldwin 2016). We go through a process of model selection to tune the
hyperparameters of the architecture. The evaluation is done on 3 annex tasks.
While they are not directly linked to our model’s way of working, we created
them with the intuition that, having to reach similar objectives, the resulting

1https://www.sbert.net/

University of Liège - 36 - 2022

https://www.sbert.net/

document embedding model contains meaningful information for the task at
hand.

1. Classification is performed on the documents, classifying them with their
gold topics. We use the SGD classifier 2 from the scikit-learn library with
the default hyperparameters. This model was selected as it was reasonably
simple while providing a probability output and not a binary output,
which we want for our model selection criteria. We evaluate classification
using top-3 accuracy. The intuition behind this is that several topics
are quite similar and we did not want to penalise excessively models
unable to differentiate very similar events. Additionally, the gold-label for
topics are not hand-crafted but generated using clustering as described in
Barhom et al. 2019. The results from Barhom et al. 2019 show that these
document clusters are of high quality.

2. The same task is done with an ExtraTrees classifier 3 from the scikit-learn
library, with the same evaluation procedure and the default hyperparam-
eters.

3. Clustering is performed with a KMeans classifier. The number k of clusters
is set to the number of topics. Evaluation is done using the V-measure4

(Rosenberg and Hirschberg 2007), which allows us to compare the output
of a clustering and the gold labels of a classification.

The output of all 3 classifiers is averaged and gives a unique evaluation score
for a given document embedding model.

To select the correct parameters, a grid search is performed. For each task
we perform K-fold model validation with K = 20 and repeated it five times.
As advised by literature, we did not choose the number of epochs through the
grid-search and arbitrarily set it at 10. The model is trained on the Training
part of the dataset and evaluated on the Development section of the dataset.
The resulting hyperparameters can be found in Table A.5. Of particular note
is the fact that we obtained a vector size of 150.

5.3.3 Pairwise Scorer

The scorer is an feed-forward artificial neural network (or MLP) with 2 hidden
layers: one half the size of the input layer and the other the same size as
the input layer. The input layer is set to the size of the pairwise mention
representation vector and the output to a single number. The ReLU Nair and
Geoffrey E Hinton 2010 activation is used for the hidden layers, and the output
is run through a sigmoid. Layer sizes are further detailed in Section 4.5. SE

(resp. SV) is trained based on all the pairs of entity (resp. event) mentions

2https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

SGDClassifier.html
3https://scikit-learn.org/stable/modules/generated/sklearn.tree.

ExtraTreeClassifier.html
4The V-measure computes the mutual information between two sequences of labellings.

University of Liège - 37 - 2022

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html

that belong to different entity (resp. event) clusters in the current predicted
configuration Et. The gold label is set to 1 if the two entities belong to the
same coreference chain, and 0 otherwise. Binary cross entropy is used as a loss
function for training.

5.3.4 Input Reduction

One of our first observations were that using an autoencoder reduced the time
spent in training the scorer, but this was balanced out by the time spent to
train the autoencoder. To improve time performance, we attempted to train
the autoencoder separately from the rest of the model. To do this we would
need to know in advance what the model inputs are. This is straightforward
in almost all cases: our gold mention embeddings are known in advance and
embedding models (word, context and document) are pre-trained. The only
exception is the character-level LSTM, which is trained at training time. We
therefore train the character-level LSTM at the same time as the autoencoder.
The training parameters are otherwise similar to that of Barhom et al. 2019,
with a hidden layer of size 50.

As a baseline for encoding the inputs we use PCA and in particular its scikit-
learn implementation of the algorithm 5. To ensure that the comparison is fair
as a baseline, PCA is applied to mention embeddings with the static features.
The output size for the dimension reduction is set to 256.

In building the autoencoder, we thought we could enrich the training signal
beyond the reconstruction error. Considering the objective of the task in which
the autoencoder will feature, we chose to use the encoding layer to train a
classifier. This classifier classifies the mention representation extract to its
corresponding gold coreference cluster. Since we choose to use a differentiable
classifier, the training signal from the classifier can be summed with the au-
toencoder’s normal training signal and sent back into the encoder section of
the autoencoder to enrich the training. Our intuition is that this signal will
increase similarity between the encoded mentions belonging to the same gold
cluster, thus making them easier to classify as similar down the line ; or at the
very least help to preserve in the encoded mentions some of the information to
distinguish mentions from different coreference clusters.

5https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.

PCA.html

University of Liège - 38 - 2022

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Figure 5.1: Illustration of our autoencoder training architecture

In practice we built a simple classifier using the PyTorch library, an artificial
neural network with 2 hidden layers of size 512. Rectified Linear Unit is used
as activation layer, and cross entropy loss as a loss function. The architecture
of the autoencoder is illustrated in Figure 5.1.

For the autoencoder, we built a model using the PyTorch library. The Adam
optimizer is used. To select the correct parameters for our autoencoder model,
we use a similar approach as with our Doc2vec training. We chose an arbitrary
encoding size of 256. A series of different models with different hyperparameters
were trained on the training dataset and evaluated on the three tasks described
in Section 4.4.1. The model scoring the highest is selected, and the results of
the grid search can be found in Table A.6.

5.3.5 Evaluation Metrics

We evaluate our coreference resolution models using the CoNLL scorer (Pradhan
et al. 2014). With the scorer, we evaluate the resulting models on the four most
popular evaluation of the six metrics provided:

• MUC (Vilain et al. 1995), which compares the number of links in the gold
coreference cluster (G) to the number of links missing in the predicted
coreference clusters. This is done using the number of partitions of the
gold cluster through the predicted ones (P). Given a gold cluster G, its
number of internal links (|G|−1) and the number of missing links (|p(G)|),
the recall of MUC can be computed as: R = (|K|−1)−(|p(K)|−1)

|K|−1
= |K|−|p(K)|

K|−1

University of Liège - 39 - 2022

• B3 (Bagga and B. Baldwin 1998), for which precision for a mention mi

is the number of correct mentions in the gold coreference clusters that
contain the mention, divided by the total number of mentions in the gold
cluster. Recall on the other hand is the number of correct mentions in
the gold cluster divided by the number of mentions in the gold clusters
which contains mention mi. The overall precision and recall for the entire
document is the weighted sums of precision and recall of the individual
mentions.

• CEAFe (Luo 2005) is one of the two variants of the CEAF metric. CEAF
computes the best alignment of subsets of gold clusters and predicted
clusters. For any mapping a ∈ Am the total similarity Φ(a) is the sum of
all similarities. The best alignment a∗ is found by maximizing the sum
of similarities Φ(a) between the gold and predicted clusters, while the
maximum total similarity is the sum of the best similarities. Precision
and recall are computed as such: P = Φ(a∗)∑

i ϕ(Pi,Pi)
R = Φ(a∗)∑

i ϕ(Gi,Gi)
. For

CEAFe, the similarity measure is ϕe(G,P) = 2|G∩P |
|G|+|P |

• CoNLL F1 (Pradhan et al. 2014), the average of the first three metrics.

There has been debate about the use of these metrics in the past, notably
concerning their interpretability (Luo 2005) and the apparent lack of agreement
between the three metrics. Holen 2013 perfoms an in-depth study of the metrics,
and shows the low correlation between all the metrics in the task (in particular
MUC and CEAFe have a correlation going down to as low as 0.22).

5.4 Experimental setup

Like Barhom et al. 2019, we follow Cybulska and Vossen 2015’s experimental
setup. This setup uses a subset of the annotations which has been validated for
correctness by Cybulska and Vossen 2014 and allocates a larger portion of the
dataset for training (see Table A.1). Since the ECB+ corpus only annotates
a part of the mentions, the setup uses the gold-standard event and entity
mentions and does not require specific treatment for unannotated mentions
during evaluation. We also use the SwiRL model (Surdeanu et al. 2007), and
follow Barhom et al. 2019’s heureustics for increasing coverage.

University of Liège - 40 - 2022

Chapter 6

Results

In this chapter, we will go over the baselines and evaluated models. We will
then present the results of our tests in Tables 6.2 and 6.2, and analyse them.
Finally we will discuss possible areas of further investigation.

6.1 Baselines

To evaluate our results, we compare our results to the latest state-of-the-art
models as baselines. We use the following models for both entity and event
coreference resolution:

• Barhom et al. 2019

• Cattan et al. 2021

• Caciularu et al. 2021

We use the following models as baselines for event coreference resolution
only:

• Meged et al. 2020

• Zeng et al. 2020

6.2 Evaluated Models

We run the following models:

0. The Original model proposed by Barhom et al. 2019“

1. Thresholds: The Original model with progressive threshold lowering and
increased switches between event and entity embedding.

2. Document Embedding: The Original model with mention encodings
extended with the embedding of their document. Three variations are
used:

41

(a) GloVe Averaging

(b) Doc2Vec

(c) SentenceBERT

3. Extended Semantic Dependecy Vector:

(a) ELMo: The Original model where the Semantic dependency vectors
are extended with the context vector (ELMo)

(b) SentenceBERT: Model 3.C with only the Semantic dependecy vectors
are extended with the document embedding vector (SentenceBERT)

4. Input Reduction:

(a) PCA + ELMo: Model 3.A with mention encoding reduction using
PCA

(b) PCA + ELMo + SentenceBERT: Model 3.C with mention encoding
reduction using PCA

(c) Autoencoder + ELMo: Model 3.A with mention encoding reduction
using an autoencoder

MUC B3 CEAFe CoNLL

R P F1 R P F1 R P F1 F1

Barhom et al. 2019 78.6 80.9 79.7 65.5 76.4 70.5 65.4 61.3 63.3 71.2

Cattan et al. 2021 - Gold 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 73.1

Caciularu et al. 2021 - CDLM 88.1 91.8 89.9 82.5 81.7 82.1 81.2 72.9 76.8 82.9

0 Original (Barhom et al. 2019) 66.3 84.4 74.5 55.8 85.8 67.6 75.0 50.4 60.2 67.4

1 Thresholds 75.7 81.3 78.4 62.5 78.0 69.4 65.2 55.9 60.3 69.3

2.A DocEmb: GLoVe Averaging 77.3 83.9 80.5 64.6 78.4 70.8 70.4 59.3 64.4 71.9

2.B DocEmb: Doc2Vec 79.3 81.5 80.4 64.4 75.6 69.5 64.6 60.7 62.6 70.9

2.C DocEmb: SentenceBERT 77.8 82.9 80.3 65.4 77.3 70.9 68.5 59.9 63.9 71.7

3.A SemDep: ELMo 78.7 81.2 79.9 64.6 76.1 69.8 63.8 59.7 61.6 70.4

3.B SemDep: SentenceBERT 77.9 81.3 79.5 64.9 76.8 70.4 64.5 58.7 61.4 70.4

4.A InRed: PCA + ELMo 71.4 78.6 74.8 59.5 78.1 67.5 63.4 52.1 57.2 66.5

4.B InRed: PCA + ELMo + SentenceBERT 37.5 77.8 50.6 40.7 89.8 56.0 77.6 34.7 48.0 51.5

4.C InRed: Autoencoder + ELMo 56.2 83.0 67.0 47.7 87.4 61.8 76.9 43.5 55.5 61.4

Table 6.1: Results on entity cross-document coreference resolution on ECB+
test set.

University of Liège - 42 - 2022

MUC B3 CEAFe CoNLL

R P F1 R P F1 R P F1 F1

Barhom et al. 2019 77.6 84.5 80.9 76.1 85.1 80.3 81.0 73.8 77.3 79.5

Meged et al. 2020 78.8 84.7 81.6 75.9 85.9 80.6 81.1 74.8 77.8 80.0

Cattan et al. 2021 - Gold 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 81.0

Zeng et al. 2020 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 84.6

Caciularu et al. 2021 - CDLM 87.1 89.2 88.1 84.9 87.9 86.4 83.3 81.2 82.2 85.6

0 Original (Barhom et al. 2019) 73.6 83.7 78.3 73.6 85.8 79.2 80.8 70.6 75.3 77.6

1 Thresholds 72.3 84.1 77.8 72.0 86.8 78.7 81.4 69.5 75.0 77.1

2.A DocEmb: GLoVe Averaging 72.7 83.7 77.8 72.9 86.9 79.3 81.6 70.4 75.6 77.6

2.B DocEmb: Doc2Vec 78.9 82.1 80.4 76.9 83.2 79.9 77.8 74.3 76.0 78.8

2.C DocEmb: SentenceBERT 84.5 80.1 82.2 81.3 81.0 81.1 73.3 78.6 75.8 79.7

3.A SemDep: ELMo 78.0 83.0 80.4 74.3 84.9 79.2 79.1 73.9 76.4 78.7

3.B SemDep: SentenceBERT 78.1 83.6 80.7 76.5 84.8 80.4 79.5 73.6 76.4 79.2

4.A InRed: PCA + ELMo 82.5 73.7 77.8 79.3 72.2 75.6 63.8 74.5 68.7 74.0

4.B InRed: PCA + ELMo + SentenceBERT 57.3 75.1 65.0 64.0 83.0 72.3 76.4 59.3 66.8 68.0

4.C InRed: Autoencoder + ELMo 54.8 87.1 67.3 62.6 91.9 74.5 86.8 59.9 70.9 70.9

Table 6.2: Results on event cross-document coreference resolution on ECB+
test set.

6.3 Analysis

We note that when running the Original model of Barhom et al. 2019 (0),
whether with specified and updated libraries and minor modifications, we never
reach the quality of results described by Barhom et al. 2019 or other baseline
models. It is important to note that we did not train the model for 50 epochs
like Barhom et al. 2019 as the cost would be prohibitive prohibitive. Whatsmore
we observe a fast convergence during training (4 epochs were usually sufficient
for most models to reach their best scores). We therefore trained the models in
our own setting for around 10 epochs.

Another observation during training was that there seemed to be a significant
variance in training performances depending on the seed chosen for the clus-
tering operations. As such a proper evaluation of these algorithms should be
undertaken through a stability analysis (Ben-David, von Luxburg, and Pál
2006).

The Threshold model (1) shows a slight increase in performance in entities
coreference resolution and a slight decrease with events. From the mediocre
changes, we can gather the following two lines of thoughts. First, that slowly
lowering the clustering threshold to incite it towards better clusterings does
not seem to have a noticeable effect. Second, that Barhom et al. 2019’s models
make near full use of the joint information that is present between events and
entities and that the amount of improvement that can be gained from increasing
it is not worth the time investment (training the threshold model (1) took
almost three times what it took with the Original model (0)).

University of Liège - 43 - 2022

Looking at the Original model (0), the Thresholds model (1) and the GLoVe
Averaging model (2.A), the trend between the results for entity and event coref-
erence resolution clearly differ. While for entities we observe a net improvement
in performances between the extended and the Original models, there is little
to no change for events. We can hypothesise that this is due to underspecified
mention encodings for entities, while those of events are saturated: adding a
little information to the encodings leads to improvement for entities and little
to none in events. This intuition is reinforced by the results of the baselines:
they show an improvement of 6.1 points in F1 CoNLL score between Barhom
et al. 2019 and Caciularu et al. 2021 when tackling events and almost twice
this amount (11.7 points) in entities.

When comparing the different document embedding extensions (2.A, 2.B,
2.C), we observe that the heavier models perform marginally better than the
lighter ones, but that trend is not followed with entities. Instead, Doc2Vec
(2.B) underperforms compared to the GLoVe averaging document embedding
technique (2.A). GloVe averaging (2.A) turns out to be the best performing
model among those we computed for entities. The addition of more complex
document embeddings does seem to impact positively the events.

Extending the semantic dependency vectors does seem to provide some minor
improvements, be it with ELMo (3.A) or SentenceBERT (3.B). This does come
at a substantial cost in time, almost twice as long to train, as the vectors are a
bit larger (see Table A.4). Additionally the increased used of language models
also impacts training time negatively.

As for input reduction, we notice as expected a drop in performance. PCA +
ELMo (4.A), for example, loses 0.9 points for entity coreference resolution and
3.5 points for event coreference resolution against the Original model (0). This
is quiet impressive, considering that the mention embeddings get reduced to
less than 10% of their original size using PCA. In particular we note its high
recall We note that PCA, as a baseline, has no knowledge of the task that we
will be trying to perform and simply optimizes for reconstruction error. These
observations can also be put in correlation with the work of Poumay and Ittoo
2021 and their analysis of the significant amount of mutual information in the
mention encodings. On the other hand, PCA + ELMo + SentenceBERT (4.B)
performs very poorly and and loses 16 and 10 points for entities and events
respectively. We explain this by the significant increase in mention size without
augmenting the encoding size or the amount of data. This loss of performance
can also be observed in the Mean Squared Error in Table A.7. We expected the
autoencoder + ELMo model (4.C) to perform better than the simpler baselines
as its more complex architecture and training should give it an edge on PCA.
This turned out not to be the case, as the autoencoder + ELMo model (4.C)
performed more poorly than PCA + ELMo (4.A). We hypothesize this being
due to the insufficient amount of training data to properly train an autoencoder.
To obtain better results, additional mention data would need to be leveraged
from other datasets.

University of Liège - 44 - 2022

6.4 Further developments

While studying Barhom et al. 2019’s modelling, we found several aspects of the
mention representation as potentially improvable. We list them below:

• In our analysis of the results, we aimed not to over-interpret these results,
due to the low interpretability of the metrics on one hand, and due to the
lack of stability on the other. Further interpretation of the results would
require an error analysis as performed by Barhom et al. 2019. The idea is
to sample some of the errors in the coreference clusters and observe what
is the source of this error.

• To simplify the problem, the experimental setup is such that coreference
resolution is performed separately within each topic. This does simplify a
complex problem, but is realistic so long as the topic clustering is very
accurate. It also does not consider the fact that documents can contain
multiple topics. A path of investigation could therefore be to address the
problem of coreference resolution on the same ECB+ dataset in a single
all-encompassing topic.

• As mentioned in Section 6, there seems to be a significant amount of
instability in this problem. As such a stability analysis of the different
models would provide a better picture of their actual performances.

• An entity mention span is represented as the average of all the word
embeddings of the mention. This problem can be set as a document
embedding problem. While we have discussed that averaging word em-
beddings is a strong baseline for document embedding, there are stronger
methods as we have shown in this paper. Replacing the average word
embedding by another document embedding technique could lead to a
more meaningful embedding.

• In the course of this work, we noticed that the pairwise scorer’s MLP
architecture is badly optimized. More care could be taken in building
and training this model to ensure that it performs precisely and in a time
efficient manner.

• The use of the SwiRL SRL library and ELMo have been pointed out by
other papers as outdated (Caciularu et al. 2021). As such replacing these
libraries with more modern tools, notably Transformer based Language
Models.

• While the autoencoder has shown poor results in this task, we suspect
that this is due to a lack of data. Training the autoencoder with more data
from other datasets, in particular the larger Within Document coreference
resolution ones, could prove fruitful.

University of Liège - 45 - 2022

Chapter 7

Conclusion

In this paper we developed the approach of H. Lee, Recasens, et al. 2012 and
Barhom et al. 2019 towards the joint resolution of entity and event coreference
in a cross document setting. We showed that Barhom et al. 2019’s joint model
already makes near full use of the joint information between entity and event
coreference resolution by increasing the amount of switches between the two
models.

Our addition of document embeddings to the mention encoding has shown
improvement on the entity coreference embedding, regardless of the complexity
of the document embedding technique. Finally we have shown that harsh
compression of the mention representation using simple baselines can still
provide good results. Furthermore, we observed that the ECB+ dataset contains
insufficient data to effectively train an autoencoder.

46

Bibliography

ACE (Automatic Content Extraction) English Annotation Guidelines for Events
(2005). 5.4.3 2005.07.01. Manual.

Bagga, Amit and Breck Baldwin (1998). “Entity-Based Cross-Document Coref-
erencing Using the Vector Space Model”. In: Proceedings of the 36th Annual
Meeting on Association for Computational Linguistics -. Vol. 1. Montreal,
Quebec, Canada: Association for Computational Linguistics, p. 79. doi:
10.3115/980845.980859.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (May 2016). Neural
Machine Translation by Jointly Learning to Align and Translate. arXiv:
1409.0473 [cs, stat].

Barhom, Shany et al. (June 2019).“Revisiting Joint Modeling of Cross-document
Entity and Event Coreference Resolution”. In: arXiv:1906.01753 [cs]. arXiv:
1906.01753 [cs].

Baum, Leonard E. and Ted Petrie (Dec. 1966). “Statistical Inference for Prob-
abilistic Functions of Finite State Markov Chains”. In: The Annals of
Mathematical Statistics 37.6, pp. 1554–1563. issn: 0003-4851. doi: 10.
1214/aoms/1177699147.

Bejan, Cosmin and Sanda Harabagiu (June 2014). “Unsupervised Event Coref-
erence Resolution”. In: Computational Linguistics 40.2, pp. 311–347. issn:
0891-2017, 1530-9312. doi: 10.1162/COLI_a_00174.

Bellman, Richard (1984). Dynamic Programming. Princeton, NJ: Princeton
Univ. Pr. isbn: 978-0-691-07951-6.

Ben-David, Shai, Ulrike von Luxburg, and Dávid Pál (2006). “A Sober Look at
Clustering Stability”. In: Learning Theory. Ed. by David Hutchison et al.
Vol. 4005. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 5–19. isbn:
978-3-540-35294-5 978-3-540-35296-9. doi: 10.1007/11776420_4.

Bengio, Y. (2009). “Learning Deep Architectures for AI”. In: Foundations and
Trends® in Machine Learning 2.1, pp. 1–127. issn: 1935-8237, 1935-8245.
doi: 10.1561/2200000006.

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model”. In:
JOURNAL OF MACHINE LEARNING RESEARCH 3, pp. 1137–1155.

Bojanowski, Piotr et al. (June 2017). “Enriching Word Vectors with Subword
Information”. In: arXiv:1607.04606 [cs]. arXiv: 1607.04606 [cs].

Caciularu, Avi et al. (Sept. 2021). CDLM: Cross-Document Language Modeling.
arXiv: 2101.00406 [cs].

47

https://doi.org/10.3115/980845.980859
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1906.01753
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1162/COLI_a_00174
https://doi.org/10.1007/11776420_4
https://doi.org/10.1561/2200000006
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/2101.00406

Cattan, Arie et al. (June 2021). Cross-Document Coreference Resolution over
Predicted Mentions. arXiv: 2106.01210 [cs].

Cho, Kyunghyun et al. (Sept. 2014). “Learning Phrase Representations Using
RNN Encoder-Decoder for Statistical Machine Translation”. In: arXiv:1406.1078
[cs, stat]. arXiv: 1406.1078 [cs, stat].

Chomsky, Noam (2015). Syntactic Structures. Repr. der Ausg. ’s-Gravenhage,
Mouton,1957. Mansfield Centre, CT: Martino Publ. isbn: 978-1-61427-804-7.

Clark, Kevin and Christopher D. Manning (2016). “Improving Coreference
Resolution by Learning Entity-Level Distributed Representations”. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 643–653. doi: 10.18653/v1/P16-1061.

Cybulska, Agata and Piek Vossen (May 2014). “Using a Sledgehammer to
Crack a Nut? Lexical Diversity and Event Coreference Resolution”. In:
Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC’14). Ed. by Nicoletta Calzolari (Conference Chair) et
al. Reykjavik, Iceland: European Language Resources Association (ELRA).
isbn: 978-2-9517408-8-4.

— (June 2015). “Translating Granularity of Event Slots into Features for
Event Coreference Resolution.” In: Proceedings of the the 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and Representation. Denver,
Colorado: Association for Computational Linguistics, pp. 1–10. doi: 10.
3115/v1/W15-0801.

Dai, Andrew M., Christopher Olah, and Quoc V. Le (July 2015). Document
Embedding with Paragraph Vectors. arXiv: 1507.07998 [cs].

Deloche, François (June 2017a). A Diagram for a One-Unit Long Short-Term
Memory (LSTM).

— (June 2017b). Structure of RNN.
Deng, Li and Yang Liu, eds. (2018). Deep Learning in Natural Language

Processing. New York, NY: Springer Berlin Heidelberg. isbn: 978-981-
10-5208-8.

Devlin, Jacob et al. (May 2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. arXiv: 1810.04805 [cs].

Eisenstein, Jacob (2019). Introduction to Natural Language Processing. Adaptive
Computation and Machine Learning. Cambridge, Massachusetts: The MIT
Press. isbn: 978-0-262-04284-0.

Elman, Jeffrey L. (Mar. 1990). “Finding Structure in Time”. In: Cognitive Sci-
ence 14.2, pp. 179–211. issn: 03640213. doi: 10.1207/s15516709cog1402_
1.

Firth, J. R. (Nov. 1935). “THE TECHNIQUE OF SEMANTICS.” In: Transac-
tions of the Philological Society 34.1, pp. 36–73. issn: 0079-1636, 1467-968X.
doi: 10.1111/j.1467-968X.1935.tb01254.x.

Fleuret, Francois (2021). Recurrent Neural Networks. École Polytechnique
Fédérale de Lausanne.

Goldberg, Yoav (2017). Neural Network Methods for Natural Language Pro-
cessing. Synthesis Lectures on Human Language Technologies #37. San

University of Liège - 48 - 2022

https://arxiv.org/abs/2106.01210
https://arxiv.org/abs/1406.1078
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.3115/v1/W15-0801
https://doi.org/10.3115/v1/W15-0801
https://arxiv.org/abs/1507.07998
https://arxiv.org/abs/1810.04805
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1111/j.1467-968X.1935.tb01254.x

Rafael, Calif.: Morgan & Claypool Publishers. isbn: 978-1-62705-298-6
978-1-68173-235-0. doi: 10.2200/S00762ED1V01Y201703HLT037.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.
Adaptive Computation and Machine Learning. Cambridge, Massachusetts:
The MIT Press. isbn: 978-0-262-03561-3.

Group, The Stanford Natural Language Processing (2022). Coreference Resolu-
tion.

Harris, Zellig S. (Aug. 1954). “Distributional Structure”. In: Word 10.2-3,
pp. 146–162. issn: 0043-7956, 2373-5112. doi: 10.1080/00437956.1954.
11659520.

Hochreiter, Sepp and Jürgen Schmidhuber (Nov. 1997). “Long Short-Term
Memory”. In: Neural Computation 9.8, pp. 1735–1780. issn: 0899-7667,
1530-888X. doi: 10.1162/neco.1997.9.8.1735.

Holen, Gordana Ilić (June 2013). “Critical Reflections on Evaluation Practices
in Coreference Resolution”. In: Proceedings of the 2013 NAACL HLT Stu-
dent Research Workshop. Atlanta, Georgia: Association for Computational
Linguistics, pp. 1–7.

Ittoo, Ashwin (Nov. 2019). Word Embeddings. HEC Management School –
University of Liège.

Joshi, Mandar, Danqi Chen, et al. (Jan. 2020). SpanBERT: Improving Pre-
training by Representing and Predicting Spans. arXiv: 1907.10529 [cs].

Joshi, Mandar, Omer Levy, et al. (2019). “BERT for Coreference Resolution:
Baselines and Analysis”. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, pp. 5802–5807.
doi: 10.18653/v1/D19-1588.

Jurafsky, Dan and James H. Martin (2009). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. 2nd ed. Prentice Hall Series in Artificial Intelligence.
Upper Saddle River, N.J: Pearson Prentice Hall. isbn: 978-0-13-187321-6.

Kamath, Uday, John Liu, and James Whitaker (2019). Deep Learning for
NLP and Speech Recognition. Cham: Springer. isbn: 978-3-030-14596-5
978-3-030-14595-8 978-3-030-14598-9.

Karttunen, Lauri (1969). “Discourse Referents”. In: Proceedings of the 1969
Conference on Computational Linguistics -. Sång-Säby, Swe-
den: Association for Computational Linguistics, pp. 2–2. doi: 10.3115/
990403.990487.

Kenter, Tom, Alexey Borisov, and Maarten de Rijke (2016). “Siamese CBOW:
Optimizing Word Embeddings for Sentence Representations”. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for Computational
Linguistics, pp. 941–951. doi: 10.18653/v1/P16-1089.

Kenter, Tom and Maarten de Rijke (Oct. 2015). “Short Text Similarity with
Word Embeddings”. In: Proceedings of the 24th ACM International on Con-
ference on Information and Knowledge Management. Melbourne Australia:

University of Liège - 49 - 2022

https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1907.10529
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.3115/990403.990487
https://doi.org/10.3115/990403.990487
https://doi.org/10.18653/v1/P16-1089

ACM, pp. 1411–1420. isbn: 978-1-4503-3794-6. doi: 10.1145/2806416.
2806475.

Kenyon-Dean, Kian, Jackie Chi Kit Cheung, and Doina Precup (2018). “Re-
solving Event Coreference with Supervised Representation Learning and
Clustering-Oriented Regularization”. In: Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics. New Orleans, Louisiana:
Association for Computational Linguistics, pp. 1–10. doi: 10.18653/v1/
S18-2001.

Kiros, Ryan et al. (June 2015). Skip-Thought Vectors. arXiv: 1506.06726 [cs].
Kostadinov, Simeon (Feb. 2019). Encoder-Decoder Sequence to Sequence Model.
Lau, Jey Han and Timothy Baldwin (July 2016). An Empirical Evaluation

of Doc2vec with Practical Insights into Document Embedding Generation.
arXiv: 1607.05368 [cs].

Le, Quoc V. and Tomas Mikolov (May 2014). “Distributed Representations
of Sentences and Documents”. In: arXiv:1405.4053 [cs]. arXiv: 1405.4053
[cs].

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 2015). “Deep Learn-
ing”. In: Nature 521.7553, pp. 436–444. issn: 0028-0836, 1476-4687. doi:
10.1038/nature14539.

Lee, Heeyoung, Yves Peirsman, et al. (June 2011). “Stanford’s Multi-Pass Sieve
Coreference Resolution System at the CoNLL-2011 Shared Task”. In: Pro-
ceedings of the Fifteenth Conference on Computational Natural Language
Learning: Shared Task. Portland, Oregon, USA: Association for Computa-
tional Linguistics, pp. 28–34.

Lee, Heeyoung, Marta Recasens, et al. (July 2012). “Joint Entity and Event
Coreference Resolution across Documents”. In: vol. Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning. Association for Computational
Linguistics, pp. 489–500.

Lee, Kenton, Luheng He, Mike Lewis, et al. (2017). “End-to-End Neural Coref-
erence Resolution”. In: doi: 10.48550/ARXIV.1707.07045.

Lee, Kenton, Luheng He, and Luke Zettlemoyer (Apr. 2018). Higher-Order
Coreference Resolution with Coarse-to-fine Inference. arXiv: 1804.05392
[cs].

Lopez Medel, Maria (July 2021). “Gender Bias in Machine Translation: An
Analysis of Google Translate in English and Spanish”. In: Academia Letters.
issn: 2771-9359. doi: 10.20935/AL2288.

Louppe, Gilles (Aug. 2022). Lecture 10: Auto-encoders and Variational Auto-
Encoders. Online.

Lu, Jing and Vincent Ng (July 2018). “Event Coreference Resolution: A Sur-
vey of Two Decades of Research”. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence. Stockholm, Swe-
den: International Joint Conferences on Artificial Intelligence Organization,
pp. 5479–5486. isbn: 978-0-9992411-2-7. doi: 10.24963/ijcai.2018/773.

— (2020). “Conundrums in Entity Coreference Resolution: Making Sense of
the State of the Art”. In: Proceedings of the 2020 Conference on Empirical

University of Liège - 50 - 2022

https://doi.org/10.1145/2806416.2806475
https://doi.org/10.1145/2806416.2806475
https://doi.org/10.18653/v1/S18-2001
https://doi.org/10.18653/v1/S18-2001
https://arxiv.org/abs/1506.06726
https://arxiv.org/abs/1607.05368
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1405.4053
https://doi.org/10.1038/nature14539
https://doi.org/10.48550/ARXIV.1707.07045
https://arxiv.org/abs/1804.05392
https://arxiv.org/abs/1804.05392
https://doi.org/10.20935/AL2288
https://doi.org/10.24963/ijcai.2018/773

Methods in Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, pp. 6620–6631. doi: 10.18653/v1/2020.emnlp-
main.536.

Lu, Yaojie et al. (Feb. 2022).“End-to-End Neural Event Coreference Resolution”.
In: Artificial Intelligence 303, p. 103632. issn: 00043702. doi: 10.1016/j.
artint.2021.103632.

Luo, Xiaoqiang (2005). “On Coreference Resolution Performance Metrics”. In:
Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing - HLT ’05. Vancouver, British
Columbia, Canada: Association for Computational Linguistics, pp. 25–32.
doi: 10.3115/1220575.1220579.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (Sept. 2015).
Effective Approaches to Attention-based Neural Machine Translation. arXiv:
1508.04025 [cs].

Meged, Yehudit et al. (Nov. 2020). “Paraphrasing vs Coreferring: Two Sides
of the Same Coin”. In: Findings of the Association for Computational Lin-
guistics: EMNLP 2020. Online: Association for Computational Linguistics,
pp. 4897–4907. doi: 10.18653/v1/2020.findings-emnlp.440.

Mikolov, Tomas, Kai Chen, et al. (Sept. 2013). “Efficient Estimation of Word
Representations in Vector Space”. In: arXiv:1301.3781 [cs]. arXiv: 1301.
3781 [cs].

Mikolov, Tomas, Ilya Sutskever, et al. (Oct. 2013). Distributed Representations
of Words and Phrases and Their Compositionality. arXiv: 1310.4546 [cs,

stat].
Miller, George A. (Nov. 1995). “WordNet: A Lexical Database for English”. In:

Communications of the ACM 38.11, pp. 39–41. issn: 0001-0782, 1557-7317.
doi: 10.1145/219717.219748.

Nair, Vinod and Geoffrey E Hinton (Jan. 2010). “Rectified Linear Units Improve
Restricted Boltzmann Machines”. In.

Natural Language (2021).
Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan (2002). “Thumbs up?:

Sentiment Classification Using Machine Learning Techniques”. In: Proceed-
ings of the ACL-02 Conference on Empirical Methods in Natural Language
Processing - EMNLP ’02. Vol. 10. Not Known: Association for Computa-
tional Linguistics, pp. 79–86. doi: 10.3115/1118693.1118704.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (Feb. 2013). “On the
Difficulty of Training Recurrent Neural Networks”. In: arXiv:1211.5063 [cs].
arXiv: 1211.5063 [cs].

Pearson, Karl (Nov. 1901). “On Lines and Planes of Closest Fit to Systems
of Points in Space”. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 2.11, pp. 559–572. issn: 1941-5982, 1941-
5990. doi: 10.1080/14786440109462720.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “Glove:
Global Vectors for Word Representation”. In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).

University of Liège - 51 - 2022

https://doi.org/10.18653/v1/2020.emnlp-main.536
https://doi.org/10.18653/v1/2020.emnlp-main.536
https://doi.org/10.1016/j.artint.2021.103632
https://doi.org/10.1016/j.artint.2021.103632
https://doi.org/10.3115/1220575.1220579
https://arxiv.org/abs/1508.04025
https://doi.org/10.18653/v1/2020.findings-emnlp.440
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://doi.org/10.1145/219717.219748
https://doi.org/10.3115/1118693.1118704
https://arxiv.org/abs/1211.5063
https://doi.org/10.1080/14786440109462720

Doha, Qatar: Association for Computational Linguistics, pp. 1532–1543.
doi: 10.3115/v1/D14-1162.

Peters, Matthew E. et al. (Mar. 2018). Deep Contextualized Word Representa-
tions. arXiv: 1802.05365 [cs].

Poumay, Judicael and Ashwin Ittoo (Oct. 2021). A Comprehensive Comparison
of Word Embeddings in Event & Entity Coreference Resolution. arXiv:
2110.05115 [cs].

Pradhan, Sameer et al. (2014). “Scoring Coreference Partitions of Predicted
Mentions: A Reference Implementation”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Baltimore, Maryland: Association for Computational Linguistics,
pp. 30–35. doi: 10.3115/v1/P14-2006.

Pustejovsky, James et al. (Mar. 2004). “TimeML: Robust Specification of
Event and Temporal Expressions in Text.” In: New Directions in Question
Answering. Ed. by Mark T. Maybury. AAAI Press, pp. 28–34. isbn: 1-
57735-184-3.

Raghunathan, Karthik et al. (Oct. 2010). “A Multi-Pass Sieve for Corefer-
ence Resolution”. In: Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Cambridge, MA: Association for
Computational Linguistics, pp. 492–501.

Reimers, Nils and Iryna Gurevych (Aug. 2019). Sentence-BERT: Sentence
Embeddings Using Siamese BERT-Networks. arXiv: 1908.10084 [cs].

Rosenberg, Andrew and Julia Hirschberg (June 2007). “V-Measure: A Condi-
tional Entropy-Based External Cluster Evaluation Measure”. In: Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-CoNLL).
Prague, Czech Republic: Association for Computational Linguistics, pp. 410–
420.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (Oct.
1986). “Learning Representations by Back-Propagating Errors”. In: Nature
323.6088, pp. 533–536. issn: 0028-0836, 1476-4687. doi: 10.1038/323533a0.

Stylianou, Nikolaos and Ioannis Vlahavas (Apr. 2021). “A Neural Entity Coref-
erence Resolution Review”. In: Expert Systems with Applications 168,
p. 114466. issn: 09574174. doi: 10.1016/j.eswa.2020.114466. arXiv:
1910.09329 [cs].

Sukthanker, Rhea et al. (July 2020). “Anaphora and Coreference Resolution:
A Review”. In: Information Fusion 59, pp. 139–162. issn: 15662535. doi:
10.1016/j.inffus.2020.01.010.

Surdeanu, M. et al. (June 2007). “Combination Strategies for Semantic Role
Labeling”. In: Journal of Artificial Intelligence Research 29, pp. 105–151.
issn: 1076-9757. doi: 10.1613/jair.2088. arXiv: 1110.0029 [cs].

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (Dec. 2014). “Sequence to
Sequence Learning with Neural Networks”. In: arXiv:1409.3215 [cs]. arXiv:
1409.3215 [cs].

University of Liège - 52 - 2022

https://doi.org/10.3115/v1/D14-1162
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/2110.05115
https://doi.org/10.3115/v1/P14-2006
https://arxiv.org/abs/1908.10084
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.eswa.2020.114466
https://arxiv.org/abs/1910.09329
https://doi.org/10.1016/j.inffus.2020.01.010
https://doi.org/10.1613/jair.2088
https://arxiv.org/abs/1110.0029
https://arxiv.org/abs/1409.3215

Trunk, G. V. (July 1979).“A Problem of Dimensionality: A Simple Example”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1.3,
pp. 306–307. issn: 0162-8828. doi: 10.1109/TPAMI.1979.4766926.

Vaswani, Ashish et al. (Dec. 2017). Attention Is All You Need. arXiv: 1706.
03762 [cs].

Vilain, Marc et al. (1995). “A Model-Theoretic Coreference Scoring Scheme”.
In: vol. Sixth Message Understanding Conference (MUC-6): Proceedings of
a Conference Held in Columbia, Maryland, November 6-8, 1995. MUC.

Weischedel, Ralph et al. (Oct. 2013). OntoNotes Release 5.0. doi: 10.35111/
XMHB-2B84.

Yu, Juntao, Bernd Bohnet, and Massimo Poesio (June 2020). Neural Mention
Detection. arXiv: 1907.12524 [cs].

Yu, Lei et al. (Dec. 2014). Deep Learning for Answer Sentence Selection. arXiv:
1412.1632 [cs].

Yu, Xiaodong, Wenpeng Yin, and Dan Roth (Jan. 2022). Pairwise Representa-
tion Learning for Event Coreference. arXiv: 2010.12808 [cs].

Zabokrtsky, Zdenek (2016). Feature Engineering in Machine Learning. Online.
Zeng, Yutao et al. (2020).“Event Coreference Resolution with Their Paraphrases

and Argument-aware Embeddings”. In: Proceedings of the 28th International
Conference on Computational Linguistics. Barcelona, Spain (Online): In-
ternational Committee on Computational Linguistics, pp. 3084–3094. doi:
10.18653/v1/2020.coling-main.275.

University of Liège - 53 - 2022

https://doi.org/10.1109/TPAMI.1979.4766926
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.35111/XMHB-2B84
https://doi.org/10.35111/XMHB-2B84
https://arxiv.org/abs/1907.12524
https://arxiv.org/abs/1412.1632
https://arxiv.org/abs/2010.12808
https://doi.org/10.18653/v1/2020.coling-main.275

Appendix A

Tables

54

Train Validation Test Total

Topics 25 8 10 43

Sub-topics 50 16 20 86

Documents 574 196 206 976

Sentences 1037 346 457 1840

Event mentions 3808 1245 1780 6833

Entity mentions 4758 1476 2055 8289

Event chains 1527 409 805 2741

Entity chains 1286 330 608 2224

Table A.1: ECB+ statistics (including singleton clusters). The topics are split
in the following manner: - train: 1, 3, 4, 6-11, 13-17, 19-20, 22, 24-33;
validation: 2, 5, 12, 18, 21, 23, 34, 35; test: 36-45. (Barhom et al. 2019)

Original Model Vector Sizes Size

Mention Embedding Span Vector Word Embedding GLoVe 300

Character Level Embedding LSTM 50

Context Vector Context Embedding ELMo 1024

Semantic Features Span Vector 350

Span Vector 350

Span Vector 350

Span Vector 350

Sum 2774

Pairwise Features Mention Embedding x3 8322

Arg0 50

Arg1 50

loc 50

time 50

Sum 200

MLP Input 8522

Table A.2: Breakdown of the Vector Sizes for the Original model from Barhom
et al. 2019

University of Liège - 55 - 2022

ID Model Length Mention Size Pairwise Vector

2.A GloVe Average 300 3074 9422

2.B Doc2Vec 150 2924 8972

2.C SentenceBERT 768 3542 10826

Table A.3: Vector Sizes for models using Document Embeddings

ID Model Length Semantic Feature Mention Size Pairwise Vector

3.A ELMo 1024 1374 6870 11594

3.B SentenceBERT 768 1118 6614 10826

Table A.4: Vector Sizes for models extending the Semantic Dependency Vectors

Parameter Value

doc2vec variant DBOW

dm 0

hs 1

min count 4

vector size 150

window 6

Table A.5: Result of the hyperparameter search for the doc2vec document
embedding.

Parameter Value

batch size 64

encoding layer dimension 256

epochs 100

hidden layer dimension 8192

learning rate 0.0001

number of hidden layers 1

Table A.6: Result of the hyperparameter search for the autoencoder.

University of Liège - 56 - 2022

Dimension Reduc-
tion Technique

Extended Semantic De-
pendency Vector

Coreference
Setting

MSE

PCA ELMo entity 0.0236

PCA ELMo event 0.0203

Autoencoder ELMo entity 0.0263

Autoencoder ELMo event 0.0227

PCA ELMo + SentenceBERT entity 0.0297

PCA ELMo + SentenceBERT event 0.0247

Autoencoder* ELMo + SentenceBERT entity 0.0331

Autoencoder* ELMo + SentenceBERT event 0.0283

Table A.7: Mean Squared Error for dimension reduction models. Note that the
final two autoencoders were never tested in the context of the task.

University of Liège - 57 - 2022

